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ABSTRACT 

 

COMMUNITY STRUCTURE OF DIPLOSTOMUM SPP. (DIGENEA: DIPLOSTOMIDAE) 

IN FISH LENSES 

 

 

Hubert Désilets 

 

 

 Numerous evolutionary and ecological factors can influence parasite community 

composition and structure in fish. Time of sampling, host phylogeny, length, age, sex, 

and interspecific associations among parasite species are among them. I assessed the 

impact of these factors in larval diplostomid infracommunities (i.e., the assemblage of all 

the individuals of all parasite species in an individual host at a particular time) composed 

of four different Diplostomum species. I used the barcode region of cytochrome c 

oxidase subunit I to distinguish species of Diplostomum in 1065 metacercariae from the 

lenses of 828 fish distributed in 20 different host species collected in 2006, 2010 and 

2011. Negative associations among Diplostomum species were found and the strength 

of these associations was a function of parasite abundance. These results suggest 

competitive interactions among nearly all Diplostomum species encountered. Inter-

annual variation in Diplostomum infracommunities was far greater than inter-seasonal 

variation. The differences in infracommunity composition and structure could not be 

explained by host phylogeny. Host length and age, but not sex, had significant effects on 

Diplostomum infracommunity structure. However, a significant amount of variance in the 

system could not be explained, indicating the potential importance of other factors such 

as resistance or exposure in determining infracommunity structure. My work provided 
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insights on factors affecting natural and potentially interactive larval trematode 

communities in fish. 

 

Keywords: Host specificity, host-parasite interaction, interspecific competition, temporal 

variation, eye flukes, larval parasites. 
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1. GENERAL INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1. COMMUNITY THEORY 

 

A community is generally defined as an assemblage of populations of living 

organisms in a given habitat and the description and interpretation of community 

structure are subjects of major interest in ecology. Species abundances and their 

distributions are determined in nature by numerous factors such as habitat quality, 

resource availability, environmental stochasticity, and associations among sympatric 

species, among others (Armstrong and McGehee, 1976; Toft, 1985; Schoener, 1986; 

Holt and Kotler, 1987; Naeem, 1988; Jaeger and Walls, 1989). At the local scale, 

interactions among species may be the major factor structuring the communities 

(MacArthur, 1965; Cody, 1974; Huston, 1994; Belyea and Lancaster, 1999; Weiher and 

Keddy, 1999). However, more and more studies indicate that large-scale regional 

patterns and processes (e.g., colonization, dispersal, biotic and abiotic gradients) are 

good predictors of the composition and structure of local natural communities (Hanski, 

1982; Cornell, 1985; Ricklefs, 1987; Pulliam, 1988; Stevens, 1989; Kareiva et al., 1990; 

Cornell and Lawton, 1992; Hanski and Gilpin, 1997; Srivastava, 1999). 

 

 

1.2. PARASITE COMMUNITIES 

 

Like their hosts, parasites form communities. There are three precise terms used 

to describe parasite communities in nature: the infracommunity is the assemblage of all 
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the individuals of all parasite species (i.e., all infrapopulations) in an individual host at a 

particular time; the component community refers to all infrapopulations (or 

infracommunities) of parasites associated with some subset of a host species (e.g., the 

population of a host species in a given habitat); and the supracommunity comprises all 

developmental stages of all parasite species (i.e., all suprapopulations) in a particular 

habitat/ecosystem at a given time (Bush et al., 1997). 

The use of parasite assemblages in vertebrates provides some clear advantages 

in the study of community organization. The relative ease of replicating samples, the 

similar trophic level and ecological niche shared by different parasitic species, and the 

ubiquitous occurrence of multiple species in a single host are all advantages of parasite 

systems (Krasnov et al., 2005). In addition, it is feasible to completely census all the 

individuals in a parasite community within a host or a host sample, and predation has no 

cofounding influence on interspecific interactions. 

Despite these advantages and the fact that parasite community structure has 

been a focus in parasitology, the extensive number of studies on the subject has 

produced differing results and few generalizations have emerged (Esch et al., 1990; 

Kennedy, 1990; Carney and Dick, 1999; Poulin, 2001, 2007). This is not surprising 

because numerous factors might shape these communities (Locke et al., 2013). Many 

evolutionary and ecological forces influence the structure of parasite communities, and 

separating the respective contribution of each represents a complex problem. Janovy et 

al. (1992) consider the occurrence of a particular parasite species in a particular host to 

be an evolutionary phenomenon, while the population structure and frequency 

distribution parasites in the environment is viewed as an ecological phenomenon. 

Parasite community composition and structure can be influenced by numerous host 

factors such as phylogeny, size, age and sex, by species associations and by the host 
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immune systems. Furthermore, parasite communities can greatly vary over short 

distances (Marcogliese et al., 2006; Faltýnková et al., 2008). 

Host specificity is a fundamental characteristic of parasites and it can be 

evaluated in different ways such as structural specificity, phylogenetic specificity or 

specificity in geographic space (Poulin et al., 2011a). Parasite species can be restricted 

to a few closely related host species or exploit unrelated hosts (Poulin et al., 2011a). 

Depending on the proportion of parasite species of each type (i.e., generalists or 

specialists), host phylogeny can be an important factor in determining the parasite 

community structure. However, ecological differences among hosts can sometimes 

explain the degree of specificity of some parasites (Cooper et al., 2012). 

Kuris et al. (1980) suggested the use of island biogeography theory (MacArthur 

and Wilson, 1967) to determine the influence of host size on parasite species richness. 

The authors acknowledged theoretical difficulties unique to host-parasite systems (e.g., 

host immune defences, induced mortality, short lifespan and vagility) in the use of this 

relationship between host size and parasite richness. Nevertheless, the theory of island 

biogeography suggests that larger hosts should harbour richer parasite 

infracommunities. However, other factors, such as host phylogeny, environmental 

conditions, host geographical range, population density and diet, also seem to affect the 

relationship with host size (Kuris et al., 1980; Poulin, 1995, 1997; Nunn et al., 2003; 

Poulin and Morand, 2004; Lindenfors et al., 2007; Bordes et al., 2009). 

Host age can be an important factor in structuring parasite communities. Studies 

have suggested that young hosts should exhibit more inter-individual differences in 

parasite infracommunities than older hosts because of environmental stochasticity and 

differences in parasite acquisition rates, while the longer exposure period would tend to 

homogenize infracommunities among older hosts (Timi et al., 2010; Timi and Lanfranchi, 

2013). However, older hosts often tend to harbour richer and more diverse 
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infracommunities of increasing complexity and dissimilarity (Zelmer and Arai, 1998, 

2004; Bajer et al., 2005; Locke et al., 2012). This could be the result of increased 

mobility and varied foraging in older hosts (Locke et al., 2012) and/or of parasite 

interactions that could heighten differences in infracommunity structure in older fish 

directly, or through processes such as sequential immunization (Karvonen et al., 2009; 

Rellstab et al., 2011). Still, other studies have found an ambiguous impact of host age on 

parasite community structure, where parasite intensity and species richness were 

correlated with age only at certain sampling sites and times (Carney and Dick, 2000). 

Another potentially important factor that can influence parasite community 

structure is host sex, but research has led to differing results. Differences in 

infracommunity structure have been observed between female and male hosts (Dove, 

2000; Krasnov et al., 2012), while others failed to find any significant differences 

between the sexes (Zelmer et al., 2004; Timi and Lanfranchi, 2009; Yamada et al., 2011; 

Akoll et al., 2012; Bellay et al., 2012; Drago, 2012). Even in systems where no significant 

differences in infracommunity structure between females and males are found, impacts 

on the host may still differ (Adjei et al., 1986). The host sex-related discrepancy in the 

structure of parasite infracommunities appears to be strongly context-dependent, where 

the type of host involved, sexual size dimorphism, variation in immunocompetence, and 

even the season can all have an impact (Krasnov et al., 2012). 

Parasites of one species can interact with those of another, leading to non-

random associations in individual hosts (i.e., within infracommunities). Associations can 

be positive (synergistic, facilitation of establishment of one species by another) or 

negative (antagonistic, competitive interactions between species, exclusion). The null 

scenario consists of neutral, or no effect of cohabitation between species (Behnke et al., 

2001). Thus, it can be asked whether negative or positive associations among parasite 

species occur within a single host. Various experimental studies demonstrate positive as 
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well as negative associations among parasite species (Petney and Andrews, 1998). For 

example, Lello et al. (2004) concluded, after showing occurrence of both positive and 

negative interspecific associations in a community of intestinal helminths in rabbits, that 

host immune response might play an important role in shaping parasite community 

structure because of processes such as the development of cross-immunity. Competitive 

exclusion (i.e., one interacting species excludes another) or coexistence of interacting 

species in reduced niches are present at the infracommunity level in some parasite-host 

systems (Holmes, 1961, 1962; Kennedy and MacKinnon, 1994; Mouillot et al., 2005; 

Begon et al., 2006). However, others have found inconsistent support for these negative 

associations (see Poulin, 2001). 

 

 

1.3. PARASITE COMMUNITIES IN FISH 

 

Parasite communities in fish have certain characteristics. As ectotherms with 

relatively depauperate infracommunities, fish are predicted to sustain unsaturated 

communities of species that do not interact (Janovy et al., 1992; Poulin, 2001). Positive, 

neutral and negative associations have been observed among adult parasites in fish, 

especially in ectoparasites (Combes, 2001; Bagge et al., 2005). Most adult 

endoparasites are found in the gastrointestinal tract, a relatively simple linear gradient of 

niche availability from which each parasite selects. Inspired by seminal work by Bush 

and Holmes (1986) on birds, a number of studies of parasite associations in freshwater 

fish have focused on gastrointestinal parasites (Kennedy, 1990; Carney and Dick, 2000; 

Kennedy and Hartvigsen, 2000; Dezfuli et al., 2001; Kennedy, 2001a). However, 

conflicting results, ranging from positive to neutral to negative associations, led Poulin 

and Valtonen (2002) to state that local and/or temporal effects mainly determine parasite 
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infracommunity structure in fish and that interactions among parasite species are 

comparatively unimportant. 

In fish, one limitation of studies of parasite community structure and species 

interactions is that most have focused on adult parasites, leaving aside the larval stages, 

even though the latter are often more abundant in these hosts. There are two main 

reasons for this. Firstly, larval helminths in freshwater fish are typically thought to be 

inactive, are often encysted and frequently occur in different tissues. Thus, being 

sequestered in cysts, they ought to consume few, if any host resources, and theoretically 

have little or no potential for interspecific associations such as competition or facilitation 

(Poulin, 2001; but see Faltýnková et al., 2011). Secondly, studying larvae is problematic 

because identification to species is often impossible with traditional methods. Although 

the metacercariae of many digeneans can be identified to the genus level, it is virtually 

impossible to identify them to the species level due to the lack of species specific 

morphological features. (Criscione et al., 2005; Nolan and Cribb, 2005). The inability to 

detect species diversity has led specimens of a given genus to be treated as a single 

species. This is now being resolved through use of DNA methods permitting us to 

distinguish, and in some case identify, larval species. 

 

 

1.4. DIPLOSTOMUM COMMUNITIES 

 

1.4.1. Diplostomum species in fish 

Recent DNA studies revealed a high diversity of species in the genus 

Diplostomum (Diplostomidae) within a single site, the lens, in fish of the St. Lawrence 

River (Québec, Canada) and elsewhere (Locke et al., 2010a,b). In some respects, these 

assemblages represent an good system with which to study parasite community 
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structure, dynamics and species associations because they are composed of 

ecologically similar species of energetically active, unencysted larvae occupying a single 

site within the fish. Using molecular methods for species discrimination, this study 

examines potential competitive interactions among species of Diplostomum, while 

assessing the impact of host traits such as phylogeny, size, age and sex on community 

structure within the fish lens. 

 

1.4.2. Diplostomum biology 

Parasites of the genus Diplostomum are digenetic trematodes that use aquatic 

piscivorous birds such as gulls, mergansers and terns as definitive hosts (Chappell et 

al., 1994) (Figure 1). The adults reproduce sexually in the intestine of aquatic birds. 

Eggs are passed with the feces, embryonate in freshwater and hatch in 19 to 33 days 

(Dubois, 1961). Each egg releases a single miracidium, a small ciliated larva that 

actively infects lymnaeid snails. Each miracidium then transforms into a mother 

sporocyst that produces numerous daughter sporocysts. The daughter sporocysts 

produce cercariae. Cercariae are dispersal stages and emerge continuously from the 

snail host starting around 45 days post-infection (Dubois, 1961, Yamaguti, 1975). A 

single infected snail can shed up to 45 000 cercariae per day over a two month span 

(Davies et al., 1973). Cercariae that successfully infect the second intermediate host, a 

fish, penetrate the fish skin or gills, migrate to the lens, vitreous humour or brain 

(depending on the species of Diplostomum) within 24 h and transform into 

metacercariae. Unlike most digeneans, which are sequestered in cysts in host tissues, 

Diplostomum metacercariae do not form protective cysts. They move actively within their 

specific infection site and can interact with con- or heterospecifics that occupy the same 

site. The metacercariae are transmitted back to a piscivorous bird when the infected fish 

is eaten, and develop into sexually reproducing adults. 
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 A fish infected by Diplostomum spp. can experience varying effects on its health 

and fitness depending on the intensity of the infection (Shariff et al., 1980; Bylund and 

Sumari, 1981; Laitinen et al., 1996; Rintamäki-Kinnunen et al., 2004; Seppälä et al., 

2005a,b; Karvonen and Seppälä, 2008; Voutilainen et al., 2008). Diplostomum species 

that are studied here infect the lens and can impair host vision by producing cataracts 

(Owen et al., 1993; Seppälä et al., 2005b) as a result of consumption of lens cortical 

fibers and release of metabolic wastes (Ashton et al., 1969). Even if cataracts are not 

produced, infections can induce a range of behavioural changes such as an increase in 

reaction time and, consequently, an increase in predation risk (Crowden and Broom, 

1980; Brassard et al., 1982; Seppälä et al., 2004, 2005b, 2011). 

 

1.4.3. Diplostomum infracommunity 

Numerous factors have or are believed to have an impact on Diplostomum 

infracommunity composition and structure. Among other factors, time of sampling, water 

flow and quality, host phylogeny and immune response, host length, age, and sex, as 

well as intraspecific and interspecific interactions, are all expected to affect Diplostomum 

infracommunities. 

As with many other parasite species living in the Northern Hemisphere, the life 

cycle and life-history strategy of Diplostomum spp. are influenced by seasonal factors. In 

North America and, more precisely, in the St. Lawrence River, two peaks of infection in 

fish are observed, one late in May to June and the other in September (Marcogliese and 

Compagna, 1999; Marcogliese et al., 2001a,b). The first infection peak is believed to be 

linked to cercariae shed from overwintered snails that die soon after reproducing, while 

the second is linked to infections in the new cohort of snails which are acquired during 

the spring and summer (McKeown and Irwin, 1997). The timing of the second wave of 

infection in fish reflects the time required for the cercariae to develop in the new cohort 
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of snails. Inter-annual variation can also arise as a consequence of a temporary or 

permanent change in environmental conditions (Kennedy and Burrough, 1977; 

Burrough, 1978; Kennedy, 1981; Marcogliese et al., 2006). 

Host phylogeny, linked with specificity of the parasites, might also play an 

important role in structuring Diplostomum infracommunities in fish. Recent studies have 

shown that the Diplostomum species residing in the lenses of fish are generalists, and 

typically infect a greater number of host species than Diplostomum species infecting 

other sites (e.g., the vitreous humour and brain) (Locke et al., 2010a; Rellstab et al., 

2011). One explanation for this phenomenon is linked to the host immune response. The 

lens capsule protects the metacercariae from immune responses of their host (Lester 

and Huizinga, 1977; Shariff et al., 1980). This presumably limits the interaction between 

the parasite and the host immune system following a successful establishment, which in 

turn reduces selection for specialized adaptation for selected host taxa on the part of the 

parasite. The lower host specificity of the lens-infecting Diplostomum spp. could 

plausibly result in higher transmission and fitness because the avian hosts feed on 

multiple species of fish (Feunteun and Marion, 1994; Johnson et al., 2002). In that 

context, a parasite individual able to establish in a wide variety of hosts has an important 

advantage. Rellstab et al. (2011) showed that although Diplostomum species in the lens 

are generalists, they nonetheless form different infracommunities in different fish 

species. However, it was not possible for the authors to determine the cause of the 

observed variations, which could have arisen from differing ecology of the host species, 

different affinities for phylogenetic groups of hosts, and/or the presence of fish from 

multiple populations, as well as interspecific interactions. 
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1.4.4. Diplostomum species associations 

A few studies have assessed associations among larval parasites in freshwater 

fish, including species of Diplostomum. For example, Kennedy and Burrough (1977), 

and Burrough (1978) found mixed-species infections of Diplostomum spathaceum, 

infecting the lens, and Tylodelphys clavata, in the vitreous humour, in some hosts, but 

intensity of both species was rarely simultaneously high. The authors considered this 

systematic absence of high numbers of both parasite species as evidence of negative 

interspecific interactions. Others have also found indirect support for competition among 

diplostomid metacercariae. Kennedy (2001a) surveyed a perch population over 29 years 

and found that a decrease in prevalence and intensity of a lens-infecting Diplostomum 

species coincided with an increase in two introduced vitreous humour-infecting 

Tylodelphys species. Finally, Karvonen et al. (2006) found that two species of 

Diplostomum, one establishing in the lens and one in the vitreous humour, maintained 

their preferences in infection site in an experimentally infected novel host. The authors 

contended that the stability of this specialized site-selection is evidence of site 

segregation over evolutionary time, hence a historical legacy of past competition 

between the two species. Taken together, these results suggest that negative 

associations and competitive interactions can indeed occur among diplostomid 

metacercariae. However, these studies share several limitations. Firstly, they postulate 

competition in species inhabiting two different tissues within the same organ (i.e., lens 

and vitreous humour) and the mechanism underlying such a negative interaction is not 

clear because the niches of such species do not overlap. Secondly, all studies treated 

Diplostomum metacercariae inhabiting the lens as a single species, which is now known 

to be a highly problematic assumption (Niewiadomska and Laskowski, 2002; Galazzo et 

al., 2002; Locke et al., 2010b; Rellstab et al., 2011; Georgieva et al., 2013). Multiple 
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species of Diplostomum can coexist in this constrained infection site, leading to potential 

intra- and/or interspecific competition for the same spatial and energetic resources. 

 

1.4.5. Effects of host immune system 

The species of Diplostomum studied here infect the lens of fish, which is 

considered an immunologically privileged infection site (Lester and Huizinga, 1977; 

Shariff et al., 1980; Sitjà-Bobadilla, 2008). Because of limited blood flow, most immune 

reactions that a fish can develop against a parasite cannot be manifested in the lens. 

This protects visual acuity. However, during the migration period (maximum of 24 h) that 

cercariae require to travel from the penetration site to the lens, the parasites are 

vulnerable to the rapid innate response, particularly if the host acquired resistance by 

previous non-lethal infections (Hines and Spira, 1974; Goven et al., 1980; Whyte et al., 

1990; Karvonen et al., 2004a,b, 2005, 2009, 2010). In nature, however, older fish are 

frequently observed to harbour a greater number of metacercariae than would have 

been acquired in a single cercarial exposure (Marcogliese et al., 2001b). Moreover, a 

study on microsatellite loci of Diplostomum pseudospathaceum showed that very few 

identical clones of the parasite are found in individual fish (Reusch et al., 2004), which 

suggests that metacercariae are acquired in small numbers and accumulate over time 

due to multiple exposures, rather than all at once. These findings suggest that acquired 

immune resistance developed by the host may be temporary or incomplete. Höglund 

and Thuvander (1990) experimentally infected rainbow trout (Oncorhynchus mykiss) with 

cercariae of Diplostomum spathaceum on numerous occasions over a 12-week period. 

They found that although fewer and fewer cercariae were able to establish in the lens 

over the 12-week period, this reduction was due to cell mediated immunity or non-

specific mechanisms of protection targeting the migrating cercariae and not to a specific 

antibody-driven immune response. Karvonen et al. (2010) conducted a similar 
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experiment and concluded that although the fish developed some level of resistance to 

the infections, the process was ineffective and would have insignificant consequences in 

high exposure conditions in nature. 

Based on present knowledge of the innate and acquired immune systems, a 

specific adaptive antibody-driven immune response aimed at migrating cercariae in a 

fish would take too much time to initiate. Studies suggest that a migrating larva would 

establish in the host lens well before specific adaptive antibodies could stop it, even in 

secondary exposures (Janeway and Medzhitov, 2002; Karvonen et al., 2004a,b, 2005, 

2009; Wegner et al., 2007). However, alternative systems similar to the processes 

observed in invertebrates (Kurtz, 2005) could also be involved. The innate immune 

system of vertebrates is similar to the immune defenses of invertebrates (Magnadóttir, 

2006). Lectin receptors or natural antibody could produce a quick specific response and 

explain the acquired resistance to parasites without the involvement of specific antibody 

production by the adaptive immune system (Magnadóttir, 2006; Rauch et al., 2006). 

 

1.4.6. Molecular discrimination of Diplostomum species 

Species-level discrimination of Diplostomum metacercariae using traditional 

morphological methods is impossible (Niewiadomska and Laskowski, 2002; Cavaleiro et 

al., 2012), and until recently, it was difficult to determine which and/or how many species 

of Diplostomum may be present in an individual fish. Studies showed Diplostomum 

species can be differentiated by DNA sequences of the internal transcribed spacer (ITS) 

(Galazzo et al., 2002) and the barcode region of cytochrome c oxidase subunit I (COI) 

(Locke et al., 2010a,b; Cavaleiro et al., 2012; Georgieva et al., 2013) or single-

nucleotide polymorphisms (Rellstab et al., 2011). While ITS has been commonly used to 

distinguish among species of trematodes, sequences of the COI provide greater 

resolution, including, notably, among locally occurring species of Diplostomum (Locke et 
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al., 2010a,b; Behrmann-Godel, 2013). Unfortunately, the complete taxonomy of the 

genus Diplostomum is not resolved, and confusion, misidentifications and imprecision 

remain despite the new sequencing tools (Georgieva et al., 2013). Clear identification to 

species level remains problematic mainly because, although numerous species can be 

distinguished in metacercariae, few larvae and adults specimens have been linked 

genetically. 

 

 

1.5. DESCRIPTION AND AIMS OF THE STUDY 

 

The present study uses molecular data to discriminate among field-collected 

Diplostomum species in order to explore factors that might influence infection intensity, 

species richness, Shannon diversity and composition of lens-infecting Diplostomum spp. 

infracommunities in fish in natural conditions. I assess the potential influence of time of 

sampling, phylogeny, size, age and sex of the host on infracommunity structure and 

composition. I predict that infection intensity will vary seasonally. Because lens-infecting 

Diplostomum species are generalists, I do not expect host phylogeny to have a profound 

impact on infracommunity composition and structure. However, certain fish species still 

might harbour similar infracommunities. Based on the hosts as islands theory, I predict 

that larger/older host will harbour larger, richer and more diverse Diplostomum 

infracommunities. I do not expect to see marked differences in infracommunity 

composition and structure between female and male hosts. I also evaluate potential 

interspecific interactions among these parasite species using species-association 

indicators and predict occurrence of negative interspecific associations among them. 

The work will contribute to the understanding of parasite community structure and 

parasite interactions within the community inhabiting the lens. The data will provide 
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insights on factors affecting natural and potentially interactive larval trematode 

communities in fish. 
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2.1. INTRODUCTION 

 

 Few generalizations have emerged from the study of parasite community 

structure (Esch et al., 1990; Poulin, 2001). This is not surprising because numerous 

factors might shape these communities (Locke et al., 2013) and many evolutionary and 

ecological forces can influence the structure of parasite communities (Janovy et al., 

1992). Parasite communities in fish are no exception (Kennedy, 1990). As ectotherms 

with relatively depauperate infracommunities, fish are predicted to sustain unsaturated 

communities of species that do not interact (Janovy et al., 1992; Poulin, 2001). However, 

conflicting results, ranging from positive to negative interactions, led Poulin and Valtonen 

(2002) to state that local and/or temporal effects are the main determinant of parasite 

infracommunities in fish and that interactions among parasite species are comparatively 

unimportant. 

 One limitation of studies of parasite community structure and species interactions 

in fish is that most have focused on adult parasites primarily in the digestive tract and 

failed to consider larval stages, even though the latter are often more abundant in these 

hosts. There are several reasons for this. Larval stages are believed to exhibit lower 

diversity and specificity than adult parasites (Poulin, 2001). Most larval helminths in 

freshwater fish are typically thought to be inactive, are often encysted and different 

larvae frequently occur in different tissues. They ought to consume few, if any host 

resources, and have little potential for interspecific interactions such as competition or 

facilitation (Poulin, 2001, but see Faltýnková et al., 2011). In addition, study of larval 

parasite communities, particularly metacercariae, is problematic because species level 

identification is often impossible with traditional methods. 

Molecular identification methods allow a greater level of species discrimination 

than previously possible (Hebert et al., 2003). Larval parasite species can now be 
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distinguished although identification to species level remains problematic (Georgieva et 

al., 2013). Using these techniques, Locke et al. (2010a,b) showed that there is greater 

diversity in these larval parasite assemblages in fish than previously thought. Unlike 

many larval helminths, most metacercariae of the genus Diplostomum (Digenea: 

Diplostomidae) are unencysted and constrained to a restricted infection site, the eyes, 

and especially the lenses of fish hosts. Therefore they may be in competition for limited 

spatial and energetic resources. Thus, they constitute a good system with which to study 

infracommunity composition, structure, and potential interactions among species. 

Molecular methods provide means of distinguishing among these morphologically 

indistinguishable metacercariae (Galazzo et al., 2002; Niewiadomska and Laskowski, 

2002; Locke et al., 2010a,b; Rellstab et al., 2011; Cavaleiro et al., 2012; Behrmann-

Godel, 2013; Georgieva et al., 2013). 

Lens-infecting Diplostomum species are generalists (Locke et al., 2010a; 

Rellstab et al., 2011) and their infracommunities might be influenced by numerous 

evolutionary and ecological factors. Indeed, time of sampling (Marcogliese and 

Compagna, 1999; Marcogliese et al., 2001a,b), host phylogeny and immune response 

(Locke et al., 2010a; Rellstab et al., 2011), host length (Kuris et al., 1980), age (Zelmer 

and Arai, 1998, 2004; Carney and Dick, 2000; Timi et al., 2010; Timi and Lanfranchi, 

2013), and sex (Dove, 2000; Timi and Lanfranchi, 2009; Akoll et al., 2012; Drago, 2012) 

are all potential factors that could shape Diplostomum infracommunities. Several studies 

have examined associations among diplostomids (Kennedy and Burrough, 1977; 

Burrough, 1978, Kennedy, 2001b; Karvonen et al., 2006). Taken together, these studies 

suggest that competitive interactions and negative associations can indeed occur among 

diplostomids. However, these studies share several limitations. Firstly, they postulate 

competition in species inhabiting two different tissues within the same organ (i.e., lens 

and vitreous humour) and the mechanism underlying such a negative interaction is not 
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clear because the niches of such species do not overlap. Secondly, all studies treated 

Diplostomum metacercariae inhabiting the lens as a single species, which is now known 

to be a highly problematic assumption (Niewiadomska and Laskowski, 2002; Galazzo et 

al., 2002; Locke et al., 2010b; Rellstab et al., 2011; Georgieva et al., 2013). 

In this study, we examine parasite communities in natural fish populations using 

the barcode region of cytochrome c oxidase subunit I (COI) to distinguish among 

species of Diplostomum (Locke et al., 2010a,b), to assess Diplostomum infracommunity 

composition and structure. The effects of host phylogeny, sampling time, host length, 

age and sex on probability of infection of the host, on variation in infection intensity, and 

on species richness, Shannon diversity and composition of infracommunities were 

examined. We predict seasonal variation in Diplostomum infection levels, a weak effect 

of host phylogeny on infracommunity composition and structure, an increase in intensity 

of infection, species richness and diversity with host size and age, and no marked 

differences between infracommunities of female and male hosts. We also explore 

interspecific associations among Diplostomum spp. that could influence the composition 

of the communities. We predict occurrence of negative interspecific associations among 

these parasite species. 

 

 

2.2. MATERIALS AND METHODS 

 

2.2.1. Study locality and fish collection 

Fish were collected at two localities on Lake Saint-François, along the St. 

Lawrence River. Most fish (n = 706) were collected on the north shore (LSF-1 in Figure 

2) near Creg Quay Marina (45.161 °, -74.430 °) in Bainsville (Ontario, Canada) on four 

occasions: 20 June 2006, 13-14 September 2010, 14-15 June 2011, and 13-14 
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September 2011. A small sample (n = 122) was also collected on the south shore (LSF-

2 in Figure 2) near Pointe Dupuis (45.128 °, -74.404 °) in Saint-Anicet (Québec, Canada) 

on 21 June 2006. The main sampling locality and two focal species were selected based 

on studies by Locke et al. (2010a, 2013) who found that the diversity and abundance of 

lens-infecting Diplostomum spp. were particularly high in golden shiner (Notemigonus 

crysoleucas) collected in LSF-1 in 2006. In addition to golden shiner, yellow perch 

(Perca flavescens) was also selected for two reasons: in 2006, it was infected by most 

lens-infecting Diplostomum spp. occurring in the St. Lawrence and this host species is 

phylogenetically independent from golden shiner. Approximately 20 individuals of golden 

shiner and yellow perch per age group (0+, 1+, 2+, ≥3+) and up to 10 individuals of all 

other fish species present were collected, representing 6 orders, 9 families and 20 

species (Table 1). 

Fish were caught in shallow water with a beach seine (22.6 m x 1.15 m, with 3 

mm mesh). They were killed immediately in an overdose of MS 222 solution (Sigma 

Chemical, St. Louis), placed in plastic bags and kept on ice during transport to the 

laboratory where they were frozen at -80 °C and stored until examination. 

 

2.2.2. Fish examination and ageing 

Each fish was thawed, weighed to the nearest 0.01 g, and standard length was 

measured to the nearest millimeter. Fork length was recorded instead of standard length 

on fish collected in 2006. As a consequence, standard lengths were estimated using 

linear regressions calculated with the 2010 and 2011 samples (fork lengths were also 

measured on these hosts). 

In fish collected in September of 2010, the opercular bone and scales were used 

to estimate the age of each host. The left operculum was removed and placed in hot 

water until muscles and skin could be removed easily, then cleaned, and dried at room 
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temperature for a minimum of two weeks, at which time the fish was aged based upon 

growth bars (Bardach, 1955; Khan and Khan, 2009). Ten scales were removed from the 

left side of each fish, dorsal to the lateral line, between the anterior and posterior 

insertions of the dorsal fin(s). Scales were cleaned with fine forceps in soapy water, 

rinsed, mounted between two microscope slides and dried at room temperature for at 

least two weeks before scale growth rings were counted (Pierce et al., 1996; Khan and 

Khan, 2009). The resulting age-length curves for each fish species collected in 

September 2010 were used to estimate the ages of conspecifics collected on all other 

occasions. The ages of ten banded killifish (Fundulus diaphanus) and eight white 

suckers (Catostomus commersonii) were estimated from age-length relationships in 

Abraham (1985) and Chalanchuk (1998) because operculum and scales were not 

collected on these fish caught in 2011. 

 

2.2.3. Fish necropsy 

 Fish were necropsied and sex was determined upon observation of gonads. Eyes 

were removed and placed intact in separate petri dishes; the lens of each eye was then 

removed intact and examined in separate dishes with a stereomicroscope. All parasites 

observed in each lens were collected. Diplostomum metacercariae from each eye were 

preserved separately in 1.5 mL Eppendorf tubes filled with 95% ethanol and stored at -

20 °C or -80 °C until DNA extraction. 

 

2.2.4. Molecular discrimination of Diplostomum species 

The DNA of each Diplostomum specimen was used as a species discrimination 

tool because Diplostomum metacercariae are impossible to identify with traditional 

morphological methods (Niewiadomska and Laskowski, 2002; Cavaleiro et al., 2012). All 

Diplostomum metacercariae from the lenses of the fish collected were sent to the 
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Canadian Centre for DNA Barcoding in Guelph, Ontario, for analysis of their cytochrome 

c oxidase subunit I (COI) sequences. DNA from each Diplostomum specimen was 

extracted, amplified and sequenced using the primers Plat-diploCOX1F/R and, in a few 

cases, MplatCOX1dF/R, and protocols described by Moszczynska et al. (2009). The 

resulting COI sequences were aligned with the MUSCLE method (Edgar, 2004; Nuin et 

al., 2006) and evolutionary divergence was calculated within and among Diplostomum 

species using neighbour-joining analysis of Kimura 2-parameter distances (Kimura, 

1980) with pairwise deletion of gaps in MEGA 5.1 (Tamura et al., 2011). These 

calculations insured the preciseness of the species discrimination method: low 

divergence within species and high divergence among species result in confident 

species discrimination and reduced risks of errors. The Kimura 2-parameter model 

allowed precise calculations that take into account differences in chances of transition 

and transversion occurrence at a homologous site between two sequences. 

 

2.2.5. Data analysis 

Some specimens of Diplostomum did not yield sequences, which resulted in 

incomplete species-level information on the parasite communities in some hosts. As a 

consequence, different subsets of data were used in accordance with different 

hypotheses and analytical requirements, based on sequencing success and infection 

level (Table 2). Infracommunity analyses were restricted to lens-infecting Diplostomum 

species only. To assess Diplostomum spp. infection levels, prevalence (i.e., proportion 

of infected fish in a sample) and mean intensity (i.e., mean number of parasites per 

infected fish in a sample) were calculated in each host species (Bush et al., 1997) using 

data sets 1 and 2 respectively (Table 2). 

Factors distinguishing infected from uninfected fish were explored with a logistic 

regression using data set 1 (Table 2). Variation in the host infection state (infected or 
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uninfected) was regressed against the time of collection (year, month and their 

interaction), phylogeny (order, species), and morpho-physiology (standard length, age, 

sex) of hosts. The most parsimonious model was obtained by a forward stepwise 

selection method based on minimizing the Akaike information criterion (AIC) (Bozdogan, 

1987; Burnham and Anderson, 2002, 2004). The Nagelkerke/Cragg and Uhler pseudo-

R2 was calculated as a rough indication of model performance and goodness of fit 

(Nagelkerke, 1991). 

The probability of a host being infected with single versus multiple Diplostomum 

species was also analyzed by logistic regression using the same explanatory variables 

and model selection used in the previous procedure, but using data set 3 (Table 2). 

Although the Diplostomum species discrimination was incomplete for some 

infracommunities, all hosts included in data set 3 could be classified as harbouring single 

or multiple Diplostomum species. 

Three generalized linear models (GLMs) were constructed to characterize the 

influence of host traits on the intensity, species richness and Shannon diversity of lens 

infections (Paterson and Lello, 2003). Shannon diversity quantifies the uncertainty in 

predicting the species identity of an individual that is randomly selected from the data 

(Shannon and Weaver, 1963). The GLM on intensity was run using data set 2, while the 

GLMs on species richness and diversity were run using data set 4 (Table 2). Intensity, 

richness and the exponential function of diversity (i.e., eDiversity) were regressed against 

sampling time (year and month of capture, and their interaction), phylogeny (order and 

species), and morpho-physiology (standard length, age group and sex) of hosts. 

Intensity and richness were modeled using a negative binomial error distribution 

(Alexander et al., 2000), while the exponential function of diversity was modeled using a 

Gamma distribution (for positive non-zero continuous data). The best model was 
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selected with a forward stepwise selection minimizing AIC. Nagelkerke/Cragg and Uhler 

pseudo-R2 were also calculated (Nagelkerke, 1991). 

A redundancy analysis (RDA) was conducted using data set 4 (Table 2) to 

examine the influence of host traits on the composition of Diplostomum 

infracommunities, as well as associations among host species and parasite species, 

among Diplostomum species themselves, and similarities in infracommunity composition 

among different host species. Parasite abundance was Hellinger-transformed to 

accommodate problems associated with comparisons with abundances of zero, and to 

reduce the influence of species with high abundances (Legendre and Legendre, 1998). 

The initial model included the variables used in logistic regressions, except that a 

continuous numerical variable (Modified Julian Date) was used to assign a sampling 

time for each fish in order to improve explanatory power and facilitate interpretation of 

the resulting RDA graphical triplot. The best model was selected using a forward 

stepwise selection maximizing the adjusted R2. 

To assess pairwise associations among Diplostomum species, a matrix of 

Spearman correlation coefficients was constructed using data set 5 (Table 2). The 

partitioned infracommunity data from left and right lenses were used because 

interactions among metacercariae would most likely occur within lenses, and to avoid 

trivial cases of single specimen infections in the calculations (i.e., by default, a single 

specimen in a lens cannot interact with a representative of another Diplostomum 

species). Because there are difficulties (i.e., highly skewed frequency distribution and 

high frequency of zeros) involved in calculating correlation coefficients on species 

abundance data (Legendre and Legendre, 1998, p.292), the infracommunity data were 

Hellinger-transformed before the calculation of the Spearman coefficients (Legendre and 

Gallagher, 2001; Legendre, 2005). This transformation does not affect the results of the 
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Spearman correlations (Legendre, 2005). The P calculated for each coefficient was 

adjusted by the Holm’s method for multiple inferences (Holm, 1979). 

All analyses were conducted using the version 2.15.2 of the R software (R Core 

Team, 2012) with the ‘ade4’, ‘glmulti’, ‘labdsv’, ‘lme4’, ‘MASS’, ‘Rcmdr’, ‘rgl’ and ‘vegan’ 

packages. Software and packages are available online through the comprehensive R 

archive network (http://cran.r-project.org). 

 

2.3. RESULTS 

 

2.3.1. Species of Diplostomum 

Five species of lens-infecting Diplostomum (Diplostomum huronense, 

Diplostomum indistinctum and Diplostomum sp. 1, sp. 3 and sp. 4) were distinguished by 

comparison of COI sequences with those previously found by Locke et al. (2010a,b) 

(Figure 3, Appendix 2). All COI sequences, original DNA trace files, and host and 

sampling information are stored in project FLUKE at http://boldsystems.org. Mean 

evolutionary divergence of DNA sequences was 0.46% (range from 0.22% to 0.76%) 

within and 11.9% (range from 10.4% to 13.8%) among species (Table 3), indicating that 

the discrimination method was precise. Only one specimen of D. indistinctum was found 

(in the lens of a golden shiner) and this species was not considered further in ecological 

analyses. No other parasite species were found in fish lenses. 

The number of Diplostomum metacercariae collected from the lenses varied 

among host species and sampling times. Sixty-six percent of these metacercariae were 

successfully sequenced. There were differences in success of sequencing among 

sampling times and host species. Infected fish from 2006 represented 45.6% of all 

infected hosts collected and harboured the majority (71.6%) of the successfully 

discriminated Diplostomum metacercariae. Infected fish from 2010 represented only 
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14.4% of all infected hosts and harboured 8.5% of the successfully discriminated 

metacercariae, while fish from 2011 harboured 21.2% of discriminated metacercariae in 

40.0% of the infected hosts (Table 4). 

Approximately one third of all fish were infected with Diplostomum. Diplostomum 

sp. 1 and sp. 4 were more prevalent than Diplostomum sp. 3 and D. huronense (Table 

5). Mean intensity was generally high in cypriniforms. Eleven of 20 host species were 

infected by more than one species of Diplostomum and seven harboured more than two. 

Diplostomum huronense was only found in cypriniforms; white sucker, golden shiner, 

sand shiner and bluntnose minnow (Table 6). Preliminary analyses showed that 

sampling locality (i.e., north or south shore) was not a significant factor in determining 

the probability of infection and in structuring the Diplostomum infracommunities. As a 

consequence, fish collected on the south shore in June 2006 were pooled with those 

from the north shore in all subsequent analysis. 

 

2.3.2. Probability of infection 

A logistic regression revealed the probability of a fish being infected by 

Diplostomum (data set 1, Table 2) was best explained by year of sampling and fish 

standard length (ΔAIC to full model = -8.12, pseudo-R2 = 0.460). Hosts collected in 2010 

and 2011 had less chance of being infected, while larger fish, regardless of year, had a 

higher chance of being infected (Table 7). Host species was also included in the model, 

but was not significant. No other model was within two units of the AIC value of the most 

parsimonious model, indicating that year of sampling and fish length are the best 

predictors of whether fish are infected or not (Burnham and Anderson, 2002). 
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2.3.3. Probability of mixed-species infection 

A second logistic regression showed the probability of a host being infected by 

more than one Diplostomum species (data set 3, Table 2) was influenced by fish 

standard length (ΔAIC to full model = -22.74, pseudo-R2 = 0.543). According to this most 

parsimonious model, larger hosts had a higher chance of harbouring mixed-species 

infections (Table 8). Year of sampling and host species were included in the model, but 

were not significant. Two other models were within two units of the AIC value of the most 

parsimonious model. These involved (1) host length and host species (ΔAIC to most 

parsimonious model = 1.67, pseudo-R2 = 0.505) and (2) host length and species, year 

and month of sampling (ΔAIC to most parsimonious model = 2.00, pseudo-R2 = 0.543). 

In these two alternative models, larger hosts also had a higher chance of harbouring 

mixed-species infections (Table 8). 

 

2.3.4. Variation in intensity, richness and diversity 

 Three GLMs were constructed in an effort to explore in more detail the influence 

of selected host traits on infection intensity, species richness and Shannon diversity of 

Diplostomum infracommunities. The most parsimonious model for intensity of infection 

(data set 2, Table 2) included year of sampling, host species and age (ΔAIC to full model 

= -9, pseudo-R2 = 0.553). This model showed that infection intensity was lower in hosts 

collected in 2010 and 2011. Infection intensity was higher in golden shiner, sand shiner 

and bluntnose minnow (all Cypriniformes, Cyprinidae) compared to other host species. 

The model also showed a significant progressive increase in infection level with host age 

(Table 9). 

The most parsimonious model for infracommunity richness (data set 4, Table 2) 

also included year of sampling, taxonomic order and age (ΔAIC to full model = -31.72, 

pseudo-R2 = 0.385). Hosts caught in 2006 had significantly richer Diplostomum 
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infections than hosts collected in 2010-2011. Taxonomic order and host age were 

included in the model, but their effects were not significant (Table 10). 

The most parsimonious model for Shannon diversity (data set 4, Table 2) 

included year of sampling, taxonomic order and age (ΔAIC to full model = -11.29, 

pseudo-R2 = 0.642). Year of sampling had a significant positive effect on diversity of 

infection. In general, perciform hosts had significantly more diverse infections than hosts 

from other orders. Diversity was marginally (P of coefficient = 0.051) low in hosts of age 

group +2 and was significantly reduced in hosts of age group ≥3+ (Table 11). No other 

model was within two units of the AIC value of the most parsimonious models presented, 

indicating that year of sampling and fish age are the best predictors of intensity, richness 

and diversity of Diplostomum infections (Burnham and Anderson, 2002). 

 

2.3.5. Infracommunity composition 

In a partial RDA with parasites partitioned into left and right lenses, individual 

host identity explained almost all of the observed variance (92%), even when all the 

other host traits (i.e., sampling date, host species, length, sex and age group) were 

included. In other words, in a given host, the species assemblages from the left and right 

lenses are similar, although some stochastic variation remains. This similarity between 

partitioned infracommunities in a given host indicates that individual host identity is 

important. This result suggests that if host traits affect associations among Diplostomum 

species, they should affect both lenses the same way, even if the potential interactions 

among species of Diplostomum would most likely occur within each respective lens. 

In consequence, a RDA was run on infracommunity data in which left and right 

lenses were pooled to form a single infracommunity for each fish. The RDA model (data 

set 4, Table 2) that explained the greatest amount of variation included sampling date, 

host species, length, sex and age group, and explained 25% of the variance (adjusted 
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R2 = 0.249; model significant at F = 3.2428, P = 0.0001, 9999 permutations). The first 

axis, significant at F = 52.4626, P = 0.0001, 9999 permutations, explained 16.0% of 

variance; the second axis, significant at F = 19.5517, P = 0.0001, 9999 permutations, 

explained 6.0% of variance; the third axis, significant at F = 8.3249, P = 0.0002, 9999 

permutations, explained 2.5% of variance. The RDA graphical triplot (Figure 4; see also 

additional rotations in Appendix 3) shows that host age and sex had little influence on 

the composition of Diplostomum infracommunities: their centroid values were relatively 

closely grouped, with the exception of ≥3+ host individuals that were associated with 

Diplostomum sp. 4. Hosts of undetermined sex were more closely associated with 

Diplostomum sp. 1, but this could be the result of the very low sample size (n = 11) of 

these hosts. 

There appeared to be some temporal variation in which the common 

Diplostomum sp. 1 and sp. 4 decreased in abundance between 2006 and 2010-2011 

while the more rare Diplostomum sp. 3 and D. huronense increased (Figure 4). This 

increase was not in absolute number of metacercariae, but rather resulted from a 

decrease in their variation, resulting in a detection of an increase in the RDA. 

Diplostomum sp. 3 and Diplostomum sp. 4 were found in higher numbers in 

larger hosts as these parasite species were correlated with host standard length (Figure 

4). Conversely, Diplostomum sp. 1 showed a strong negative correlation with host 

length, indicating it was more abundant in smaller hosts. 

Certain species of Diplostomum were associated with certain fish species but 

these associations did not correspond in any obvious way to host phylogeny (Figure 4). 

Infracommunities in hosts of the same genus did not form groups and those in fish 

species from different orders and families were often clustered. For example, 

Diplostomum sp. 4 characterized pumpkinseed (Lepomis gibbosus, Perciformes, 

Centrarchidae), johnny darter (Etheostoma nigrum, Perciformes, Percidae) and yellow 
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perch (Perciformes, Percidae). Diplostomum sp. 3 characterized golden shiner 

(Cypriniformes, Cyprinidae) and brook silverside (Labidesthes sicculus, Atheriniformes, 

Atherinidae). Balanced intensities of Diplostomum sp. 1 and sp. 4 were found in rock 

bass (Ambloplites rupestris, Perciformes, Centrachidae) and bluntnose minnows 

(Pimephales notatus, Cypriniformes, Cyprinidae). The centroids of the remaining host 

species were either strongly overlapping as a result of the small sample size and/or low 

parasite prevalence, or isolated in the RDA space (Figure 4). Finally, the RDA triplot also 

suggested negative associations among all Diplostomum species because the vectors 

were directionally opposed in the RDA space (Figure 4, Appendix 3). 

 

2.3.6. Diplostomum species associations 

The Spearman correlation coefficients (data set 5, Table 2) showed the presence 

of four significant negative associations. Diplostomum sp. 1 was negatively associated 

with Diplostomum spp. 3 and 4. Diplostomum sp. 4 was also negatively associated with 

Diplostomum sp. 3 and D. huronense (Table 12). There was a negative correlation 

between intensity of infection and the strength of species associations as measured by 

Spearman coefficients (Figure 5). All non-significant associations were associated with 

D. huronense, the species with the lowest mean intensity, and the strength of significant 

negative associations was higher between Diplostomum species with higher intensities, 

i.e., Diplostomum sp. 1 and 4 (Tables 6 and 12, Figure 5). 
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2.4. DISCUSSION 

 

2.4.1. Results summary 

To our knowledge, this study is one of the first to use molecular data to analyse 

community composition and structure of morphologically indistinguishable larval 

parasites in fish (see also Rellstab et al., 2011; Locke et al., 2013; Behrmann-Godel, 

2013; Georgieva et al., 2013). We explored the effects of several variables, including 

some not previously examined in this context, such as inter-annual and inter-seasonal 

variation, host phylogeny, size, age and sex. Most importantly, we found negative 

associations among the four Diplostomum species infecting fish in Lake Saint-François 

and strong inter-annual variation in infracommunity composition and structure. 

Our analysis highlighted the importance of individual host identity in the 

structuring of Diplostomum infracommunities in fish. On the one hand, 25% of the 

variance in Diplostomum infracommunity composition was explained with sampling date, 

host species, length, age group and sex in the best RDA model. On the other hand, 

individual host identity alone explained 92% of the variance in a RDA on 

infracommunities partitioned into left and right lenses. The difference in explanatory 

power and the relatively low adjusted R2 of the best RDA model by itself (0.249) suggest 

that unmeasured individual host characteristics, such as genetics, immune resistance 

and exposure, may be important. The contribution of these factors to the structuring of 

Diplostomum infracommunity remains to be determined. Considering this, the overall 

impact of the measured host traits on Diplostomum infracommunity composition and 

structure, although often statistically significant, is probably small. A similar conclusion 

also emerged from analyses of probability of infection and GLMs on intensity, richness 

and diversity. Indeed, their pseudo-R2 values, ranging from 0.385 to 0.642, show that a 
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significant part of the variance in each model could not be explained by the measured 

host traits. 

 

2.4.2. Negative associations among Diplostomum species 

Fish have long been considered to harbour relatively depauperate, unsaturated 

infracommunities composed of non-interactive species (Janovy et al., 1992; Poulin, 

2001), particularly for larval helminths, which are thought to be inactive, being often 

encysted, and displaying little or no potential for interspecific associations such as 

competition or facilitation (Poulin, 2001). However, the negative associations revealed 

herein are consistent with those of earlier studies on diplostomid metacercariae by 

Kennedy and Burrough (1977), Burrough (1978), Kennedy (2001a) and Karvonen et al. 

(2006), but the molecular method used to discriminate species allowed for a more 

rigorous analysis. Indeed, numerous results obtained in this study revealed the presence 

of negative associations among Diplostomum species. Firstly, although Fenton et al. 

(2010) showed that correlation analysis has a low accuracy of identifying negative 

parasite interactions when they were in fact present in simulated data, our Spearman 

correlations showed occurrence of strong negative associations among four pairs of 

Diplostomum species. The strength of these negative associations was directly related 

to the intensity of infection of the interacting Diplostomum species. This makes intuitive 

sense since competitive interactions might be expected to be stronger between more 

abundant species simply because specimens of these species will come into contact 

more often. Secondly, the four main species of Diplostomum studied were clearly 

separated in the RDA space in the infracommunity analysis, indicating negative 

correlations among all of them. Thirdly, although intensity of infection was progressively 

higher as host age increased, Shannon diversity was lower in older hosts. This indicated 

that although older fish harboured more Diplostomum metacercariae in general, one 
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species was dominant, resulting in low diversity values. This could be the result of 

negative interspecific interactions or cross-immunization (Karvonen et al., 2009; Rellstab 

et al., 2011). All these results tend to confirm presence of negative interspecific 

associations, underlying potential negative interactions among these species. 

 

2.4.3. Annual and seasonal variation 

There was substantial inter-annual variation in infection probability, intensity and 

species richness of Diplostomum infections. In 2006, fish were not only more likely to be 

infected than in 2010 or 2011, they were also more often infected with communities of 

higher intensity and greater richness. The generally lower infection intensity in 2010 and 

2011 could be attributed to variation in infracommunity composition in which the two 

most abundant species, Diplostomum sp. 1 and sp. 4, experienced a marked population 

decrease. Conversely, Shannon diversity was slightly higher in 2010 and 2011. 

However, the data did not reflect this unexpected result. In sharp contrast to 2006 hosts, 

most of the hosts collected in 2010 and 2011 and included in data set 4 (Table 2) were 

infected by a single metacercaria, consequently displaying a diversity value of zero. It is 

unclear why the GLM detected such an effect of year of sampling. 

No significant inter-seasonal variation in Diplostomum infracommunity 

composition and structure was found between the June and September samples. This 

means that the importance of inter-annual variation surpassed any potential variation 

between late spring and early fall. The magnitude of the significant drop in infection level 

in 2010 and 2011 can explain this: the ratio of Diplostomum found to fish sampled in 

2011 was more than three times lower than in 2006. This result agrees with findings of 

Marcogliese et al. (2006) who showed strong inter-annual differences in parasite 

communities of spottail shiner and in overall Diplostomum spp. abundance in nearby 

localities on the St. Lawrence River. 
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The cause of the inter-annual variation in Diplostomum infracommunity 

composition and structure was not explained by the analyses. However, one notable 

change in the St. Lawrence River since Marcogliese et al. (2006) conducted their study 

is the introduction of the round goby (Neogobius melanostomus). In 2006, round goby 

was not observed in Lake Saint-François, but by 2010 and 2011, it was abundant. These 

invasive fish can significantly reduce gastropod biomass (Kipp and Ricciardi, 2012), thus 

potentially affecting the early phases of Diplostomum spp. life cycles. The round goby, 

with its high abundance, could also have “diluted” the available pool of cercariae, 

consequently reducing the exposure of the other sympatric fish species (Keesing et al., 

2006; Poulin et al., 2011b). Other biotic and abiotic factors (Dunson and Travis, 1991), 

such as water flow (Janovy et al., 1997; Marcogliese, 2001), or final host distribution and 

habitat use (Brown et al., 1988; Marcogliese et al., 2001a; Smith, 2001; Byers et al., 

2008), may also be involved in inter-annual variation of Diplostomum spp. populations, 

and could be assessed in future work. 

 

2.4.4. Absence of phylogenetic affiliations 

 Intensity of infection of Diplostomum spp. (as a group) was affected by host 

species, with high levels in cyprinids. Curiously, however, no fish species was more 

likely to acquire an initial infection than another. Host phylogeny at the order level also 

influenced the diversity of infection with perciform hosts having significantly more diverse 

infections than hosts from other orders. Again, the data did not reflect this unexpected 

result and discrepancy in sequencing success (Table 4) might be the cause of these 

results. The “cypriniform effect” might have been reduced or the “perciform effect” might 

have been inflated by the fact that a significant number of heavily infected cypriniforms 

were excluded from the diversity analysis because of incomplete Diplostomum species 

determination. 
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Our results are in accordance with studies on Diplostomum that showed that 

lens-infecting species are generalists, often infecting numerous fish species (Locke et 

al., 2010a; Rellstab et al., 2011). The lower host specificity of the lens-infecting 

Diplostomum spp., presumably caused by the establishment in an immunologically 

privileged site (Lester and Huizinga, 1977; Shariff et al., 1980; Sitjà-Bobadilla, 2008), 

could plausibly result in higher transmission and fitness because the avian hosts feed on 

multiple fish species (Feunteun and Marion, 1994; Johnson et al., 2002). The degree of 

specificity varied among Diplostomum species, with D. huronense being confined to only 

four cypriniform host species. This represents an example of strong phylogenetic 

specificity (Poulin et al., 2011a). However, D. huronense has been found in perciform 

hosts (rock bass and yellow perch) in nearby localities on the St. Lawrence River (Locke 

et al., 2010b), indicating that D. huronense might be less specific than predicted by our 

results or that its geographic specificity varies (Poulin et al., 2011a). Diplostomum sp. 4 

exhibited specificity to a lesser degree, infecting various phylogenetically diverse host 

species, but showing a close association with yellow perch. Rellstab et al. (2011) found 

a similar phenomenon while studying European species of Diplostomum and suggested 

that differences in host immune responses against certain parasite species could be the 

cause of such patterns. While certain species of hosts harboured similar 

infracommunities, the fact that hosts of the same genus never formed exclusive groups 

and that fish species from different orders and families clustered together indicate that 

host phylogeny was not a major factor in structuring Diplostomum infracommunities in 

fish. However, these host-parasite associations might be artefacts of sequencing 

success (Table 4), where the exclusion of incompletely discriminated infracommunities 

might have biased the position of host species centroids in the RDA space. For example, 

numerous heavily infected bluntnose minnows had to be discarded from the analysis 

resulting in apparent infracommunity resemblance with rock bass even though this latter 
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species exhibit half of the prevalence value and a fifth of the mean intensity value of 

bluntnose minnow (Tables 4-6). Yet, studies on other host-parasite systems have also 

found that host phylogeny could not explain community structure adequately (Muñoz et 

al., 2007). Overall, these results on phylogenetic affiliation are in line with recent work 

that shows that host phylogeny has more impact at larger scales (e.g., 

presence/absence of species and Sørensen dissimilarity, component communities or at 

the species level) than at the finer host infracommunity scale (Locke et al., 2013). 

 

2.4.5. Host effects 

Although the contribution of the measured host traits to Diplostomum 

infracommunity composition and structure in our system is probably small, certain host 

traits significantly influenced infection intensity and infracommunity richness, diversity, 

and composition. Host length and age were strongly correlated and their respective 

effects were complementary. Host length had a positive effect on probability of infection 

and of mixed infections. Larger hosts had more chance of being infected and more 

chance of harbouring mixed-species infections than smaller ones. However, host age 

influenced intensity of infection and diversity in different ways. There was a progressive 

increase in infection level with host age, but the opposite was found for diversity. Most of 

these results fall in line with the predictions made by Kuris et al. (1980) using a modified 

version of the island biogeography theory of MacArthur and Wilson (1967) in which 

larger/older hosts are expected to harbour parasite infracommunities of higher intensity 

and species richness than smaller/younger ones. The one exception would be the 

decrease of Shannon diversity in older hosts. This result is a consequence of a 

proportionally higher number of “unbalanced” assemblages in which one Diplostomum 

species is clearly outnumbering the others present in mixed-species infracommunities in 

≥3+ hosts compared to younger ones. This results in lower diversity values even if 
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intensity of infection is high. That could be explained by annual variation in parasite 

recruitment in which older fish might have experienced high recruitment in the years 

preceding the arrival of the young fish cohorts. Differences in sample size between 

young and old hosts might also have obscured the analyses. Nevertheless, as stated 

earlier, this situation could be the result of direct negative interactions among 

Diplostomum species or an indirect impact of cross-immunization (Karvonen et al., 2009; 

Rellstab et al., 2011). At the infracommunity composition scale, no obvious variation 

among the different age groups was detected, with the exception of ≥3+ hosts that 

appeared to harbour more Diplostomum sp. 4. However, immigration of older fish from 

other localities cannot be ruled out as a possibility that could explain differences in 

infection levels and infracommunity diversity observed among age groups. Indeed, 

parasite communities in fish can significantly vary over short distances (Marcogliese et 

al., 2006) and the older hosts collected in this study could have been immigrants from 

another locality with different Diplostomum infracommunity composition and structure. 

Host sex was not an important factor in determining Diplostomum infracommunity 

composition and structure: female and male hosts were very similar. These results are 

consistent with numerous studies in various host-parasite systems that failed to find any 

differences in infracommunity composition and structure between host sexes (Zelmer et 

al., 2004; Timi and Lanfranchi, 2009; Yamada et al., 2011; Akoll et al., 2012; Bellay et 

al., 2012; Drago, 2012). 

 

2.4.6. Limitations of the study 

Our study has certain limitations that could not be avoided. Most (707 out of 

1065) metacercariae were successfully sequenced and assigned to particular 

Diplostomum species. However, the sequencing success varied among sampling times 

and host species. The reasons of this inability to sequence certain specimens and of the 
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variation among sampling times and host species are unclear, but they are unlikely 

related to quantity of DNA provided by the specimens or their actual size (Moszczynska 

et al., 2009). This problem in sequencing success gave rise to some difficulties in 

interpretation of certain analyses. Nevertheless, the discrimination results that were 

obtained are consistent with those of Locke et al. (2010a,b). 
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3. FINAL CONCLUSIONS AND SUMMARY 

 

 

The main objectives of the present study were to identify factors influencing the 

composition and the structure of lens-infecting Diplostomum infracommunities in fish. I 

assessed the potential influence of time of sampling, phylogeny, size, age and sex of the 

host. I also evaluated potential interspecific interactions among these parasite species 

using species association indicators. 

 My system involved four Diplostomum species establishing in the lenses of their 

hosts. The DNA of each metacercaria from all the infracommunities of fish belonging to 

20 species sampled in a fluvial lake, Lake Saint-François, in 2006, 2010 and 2011, was 

analyzed and species were distinguished using the barcode region of cytochrome c 

oxidase subunit I. The analyses revealed negative associations among Diplostomum 

species, confirming my initial hypothesis. The strength of these associations was directly 

proportional to the mean intensity of the parasite species involved. These negative 

associations suggest the presence of competitive interactions among nearly all 

Diplostomum species. Contrary to my expectations, analyses revealed important inter-

annual variations in Diplostomum infracommunities that were far greater than seasonal 

variations. As expected, I found that host phylogeny could not explain the differences 

observed in infracommunity composition and structure. Meanwhile, host length and age, 

but not sex, had significant impacts on Diplostomum infracommunities. As predicted, 

infection intensity was higher in larger/older host, but diversity was unexpectedly lower. 

However, a significant amount of variance in the system could not be explained, 

indicating the potential importance of other factors such as resistance or exposure in 

determining infracommunity structure. 
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The work contributed to the understanding of parasite community structure and 

species interactions within parasite infracommunities. The data provided insights on 

factors affecting natural and potentially interactive larval trematode communities in fish. 

The study system provided an opportunity to study these effects concurrently in the 

same host in a field situation. A possible next step to get a better understanding of 

processes affecting the infracommunity composition and structure of these parasite 

species would be to explore more in depth the involvement and mechanics of the host 

immune system and host exposure in mixed-species infections of Diplostomum. Well-

designed laboratory studies are needed to assess this. Also, as my study showed that a 

large proportion of variance in community structure was unexplained, other studies on 

Diplostomum infracommunities in natural conditions should include other host- and 

environment-related traits in an attempt to explain more of the variation in community 

structure. Such studies could also provide information on the causes of the temporal 

variation that was observed in this host-parasite system. 
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FIGURES AND TABLES 

 

Figure 1. Life cycle of parasites of the genus Diplostomum. Adult parasites establish in 

the intestines of aquatic birds. They reproduce sexually and eggs pass with the host 

feces. The eggs embryonate and hatch in freshwater, releasing miracidia that infect 

lymnaeid snails. The miracidia then undergo development into mother sporocysts that 

produce daughter sporocysts asexually. These in turn produce large numbers of 

cercariae asexually. Cercariae leave the snail and, following contact with a fish, they 

penetrate the skin, migrate to the eyes and transform into metacercariae that are 

infective to birds. These are transmitted to a piscivorous bird when the infected fish is 

eaten. The parasites can take from 15 to 18 weeks to complete the life cycle. Diagram 

taken from Ashton et al. (1969).
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Figure 2. Sampling localities in Lake Saint-François, along the St. Lawrence River, 

where fish were collected in 2006, 2010 and 2011. Most (n = 707) fish were taken at 

LSF-1 (near Creg Quay Marina, 45.161 °, -74.430 °, in Bainsville, Ontario, Canada) and 

122 hosts were collected at LSF-2 (near Pointe Dupuis, 45.128 °, -74.404 °, in Saint-

Anicet, Québec, Canada).
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Figure 3. Neighbour-joining phenogram profile of 693 sequences of cytochrome oxidase 

I obtained from Diplostomum spp. metacercariae (neighbour-joining analysis of Kimura 

2-parameter distances with pairwise deletion of gaps). The vertical height of black 

triangles is proportional to the number of specimens sequenced. The width of black 

triangles, and horizontal branch lengths, are both proportional to sequence dissimilarity.
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Legend:
Atherinidae 1 = Brook silverside
Catostomidae 1 = White sucker
Cyprinidae 1 = Golden shiner

2 = Emerald shiner
3 = Blackchin shiner
4 = Spottail shiner
5 = Sand shiner
6 = Bluntnose minnow

Fundulidae 1 = Banded killifish
Gobiidae 1 = Round goby
Centrarchidae 1 = Rock bass

2 = Pumpkinseed
3 = Largemouth bass
4 = Black crappie

Percidae 1 = Johnny darter
2 = Yellow perch  

Figure 4. Redundancy analysis triplot of Diplostomum spp. lens infracommunities in fish 

retaining correlations between descriptive variables (i.e., type 2 scaling). The model 

explains 25% of the variance with axes RDA1 and RDA2 explaining 16.0% and 6.0% 

respectively. Species of Diplostomum, fishing date and host length appear as arrows. 

Host sex (M = males, F = females, U = undetermined sex) and age (0+, 1+, 2+, ≥3+) are 

indicated at their centroid values. Small symbols represent infracommunity position of 

each individual host while larger numbered symbols indicate the position of host species 

centroids. This triplot was constructed using only infracommunities formed by the 411 

successfully sequenced Diplostomum specimens in 150 hosts (data set 4, Table 2). 



 

 44 

1.5 1.6 1.7 1.8 1.9 2.0

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

0
.0

Mean intensity

S
p

e
a

rm
a

n
 r

 

Figure 5. Scatterplot of mean intensity of Diplostomum spp. infections and strength of 

associations in pairs of Diplostomum species (linear model marginally significant at F = 

6.1, P = 0.069, adjusted R2 = 0.505). The four significant Spearman r coefficients are 

identified by closed circles and the two non-significant ones (between Diplostomum sp. 1 

and D. huronense, and between Diplostomum sp. 3 and D. huronense), by open circles. 

The mean intensity values were calculated by averaging the infection intensities of each 

Diplostomum species in a pair (data set 5, Table 2). 



 

 45 

Table 1. Distribution and number of fish collected in Lake Saint-François in June 2006, 

September 2010, and June and September 2011 (n = 828). 

Order Family Species Common name Sample size

Atheriniformes Atherinidae Labidesthes sicculus Brook silverside 27

Clupeiformes Clupeidae Alosa pseudoharengus Alewife 12

Cypriniformes Catostomidae Catostomus commersonii White sucker 8

Cyprinidae Notemigonus crysoleucas Golden shiner 230

Notropis atherinoides Emerald shiner 5

Notropis heterodon Blackchin shiner 15

Notropis hudsonius Spottail shiner 4

Notropis stramineus Sand shiner 13

Pimephales notatus Bluntnose minnow 42

Cyprinodontiformes Fundulidae Fundulus diaphanus Banded killifish 10

Perciformes Centrarchidae Ambloplites rupestris Rock bass 35

Lepomis gibbosus Pumpkinseed 48

Lepomis macrochirus Bluegill 7

Micropterus dolomieu Smallmouth bass 6

Micropterus salmoides Largemouth bass 11

Pomoxis nigromaculatus Black crappie 5

Gobiidae Neogobius melanostomus Round goby 31

Percidae Etheostoma nigrum Johnny darter 45

Perca flavescens Yellow perch 273

Siluriformes Ictaluridae Ameiurus nebulosus Brown bullhead 1
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Table 2. Subdivisions of the data used in various statistical analyses. Sequencing success and infection level were the two criteria 

used to select the appropriate data for each analysis. Partial sequencing success refers to the use of infracommunities in which 

some Diplostomum metacercariae were not successfully sequenced, while complete sequencing success refers to the use of entirely 

discriminated infracommunities only. The infection level indicates the number of metacercariae present in the selected 

infracommunities. For most analyses, lens infracommunities were pooled in each host (i.e., the left and right lenses were pooled 

together) with the exception of data set 5 used for species association analysis. 

Data set Sequencing success Infection level Lens infracommunity Number of hosts Number of parasites Analyses

1 Partial 0, 1 and >1
Pooled, all infected and 

uninfected hosts
828 1065

Prevalence, infection 

probability (logistic 

regression)

2 Partial 1 and >1 Pooled, all infected hosts 270 1065
Mean intensity, variation in 

intensity (GLM) 

3 Partial >1

Pooled, all hosts with 

single or mixed-species 

infection determined 

according to sequencing 

success

148 943

Mixed-species infection 

probability (logistic 

regression)

4 Complete 1 and >1 Pooled, all infected hosts 150 411

Variation in richness and 

diversity (GLMs), 

infracommunity structure 

(RDA)

5 Complete >1
Partitioned into left and 

right lenses

94 lenses from 

51 hosts
395

Species associations 

(Spearman correlation)
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Table 3. Evolutionary divergence (% of nucleotide substitutions between sequences) 

within Diplostomum species encountered in Lake Saint-François in June 2006, 

September 2010, and June and September 2011. Evolutionary divergence was 

calculated using neighbour-joining analysis of Kimura 2-parameter distances (Kimura, 

1980) with pairwise deletion of gaps. The average of divergence across all four 

Diplostomum species is equal to 0.46%. 

Mean Minimum Maximum

Diplostomum sp. 1 0.76 0.00 2.35

Diplostomum sp. 3 0.22 0.00 2.03

Diplostomum sp. 4 0.61 0.00 3.80

D. huronense 0.26 0.00 1.49
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Table 4. Number (N) of fish collected in Lake Saint-François, number of Diplostomum metacercariae found in lenses, number of 

metacercariae from which sequences of cytochrome oxidase I were obtained, and overall sequencing success (%) in June 2006, 

September 2010, and June and September 2011. 

Host species N fish
N 

Diplostomum

N 

discriminated

Sequencing 

success (%)
N fish

N 

Diplostomum

N 

discriminated

Sequencing 

success (%)
N fish

N 

Diplostomum

N 

discriminated

Sequencing 

success (%)
N fish

N 

Diplostomum

N 

discriminated

Sequencing 

success (%)

Brook silverside 3 7 7 100.0 1 1 1 100.0

White sucker 3 4 4 100.0

Golden shiner 37 315 199 63.2 15 35 28 80.0 39 110 42 38.2 5 10 9 90.0

Emerald shiner 3 5 4 80.0

Blackchin shiner 1 1 0 0.0 4 4 3 75.0

Spottail shiner 1 3 3 100.0

Sand shiner 3 10 10 100.0 3 8 8 100.0

Bluntnose minnow 26 289 207 71.6 2 2 2 100.0

Banded killifish 1 3 3 100.0 2 3 3 100.0

Rock bass 11 27 24 88.9

Pumpkinseed 13 16 10 62.5

Largemouth bass 1 1 0 0.0 1 1 1 100.0

Black crappie 1 3 1 33.3 1 1 1 100.0

Round goby 1 3 0 0.0 6 13 12 92.3

Johnny darter 9 15 14 93.3 1 1 1 100.0

Yellow perch 24 56 48 85.7 19 51 25 49.0 22 43 18 41.9 11 24 19 79.2

All host species 123 725 506 69.8 39 97 60 61.9 66 167 74 44.3 42 76 67 88.2

June 2006 September 2010 June 2011 September 2011
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Table 5. Prevalence (%) of the four species of lens-infecting Diplostomum found in Lake 

Saint-François in 20 host species. The number of fish examined is indicated in 

parentheses. Prevalences were calculated using the 1065 metacercariae distributed in 

828 infected or uninfected hosts (data set 1, Table 2). 

Host species All species Diplostomum sp. 1 Diplostomum sp. 3 Diplostomum sp. 4 D. huronense

Brook silverside (27) 14.8 7.4 7.4 3.7 0.0

Alewife (12) 0.0 0.0 0.0 0.0 0.0

White sucker (8) 37.5 12.5 0.0 0.0 37.5

Golden shiner (230) 41.7 18.7 15.2 3.9 7.8

Emerald shiner (5) 60.0 40.0 0.0 20.0 0.0

Blackchin shiner (15) 33.3 20.0 0.0 0.0 0.0

Spottail shiner (4) 25.0 25.0 0.0 25.0 0.0

Sand shiner (13) 46.2 23.1 0.0 30.8 7.7

Bluntnose minnow (42) 66.7 50.0 7.1 40.5 2.4

Banded killifish  (10) 30.0 30.0 0.0 0.0 0.0

Rock bass  (35) 31.4 20.0 5.7 14.3 0.0

Pumpkinseed (48) 27.1 6.3 0.0 12.5 0.0

Bluegill (7) 0.0 0.0 0.0 0.0 0.0

Smallmouth bass (6) 0.0 0.0 0.0 0.0 0.0

Largemouth bass (11) 18.2 9.1 0.0 0.0 0.0

Black crappie (5) 40.0 40.0 0.0 0.0 0.0

Round goby (31) 22.6 19.4 0.0 0.0 0.0

Johnny darter (45) 22.2 6.7 2.2 13.3 0.0

Yellow perch (273) 27.8 8.1 1.8 15.4 0.0

Brown bullhead (1) 0.0 0.0 0.0 0.0 0.0

All host species (828) 32.6 14.9 5.8 11.1 2.8
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Table 6. Mean intensity (± standard deviation) of four species of lens-infecting 

Diplostomum found in Lake Saint-François in 16 species of hosts. The number of fish 

examined is indicated in parentheses. Mean intensities were calculated using the 1065 

Diplostomum metacercariae distributed in the 270 infected hosts (data set 2, Table 2). 

Host species All species Diplostomum sp. 1 Diplostomum sp. 3 Diplostomum sp. 4 D. huronense

Brook silverside (4) 2.00 (2.00) 2.50 (2.12) 1.00 (0.00) 1.00

White sucker (3) 1.33 (0.58) 1.00 1.00 (0.00)

Golden shiner (96) 4.90 (4.91) 3.40 (3.18) 2.37 (1.91) 1.56 (1.01) 1.89 (1.23)

Emerald shiner (3) 1.67 (1.15) 1.50 (0.71) 1.00

Blackchin shiner (5) 1.00 (0.00) 1.00 (0.00)

Spottail shiner (1) 3.00 1.00 2.00

Sand shiner (6) 3.00 (2.76) 1.67 (0.58) 3.00 (2.31) 1.00

Bluntnose minnow (28) 10.39 (8.37) 4.24 (3.48) 1.33 (0.58) 6.76 (5.32) 1.00

Banded killifish  (3) 2.00 (1.00) 2.00 (1.00)

Rock bass  (11) 2.45 (2.42) 1.57 (0.79) 1.00 (0.00) 2.20 (2.17)

Pumpkinseed (13) 1.23 (0.83) 1.00 (0.00) 1.17 (0.41)

Largemouth bass (2) 1.00 (0.00) 1.00

Black crappie (2) 2.00 (1.41) 1.00 (0.00)

Round goby (7) 2.29 (0.76) 2.00 (0.89)

Johnny darter (10) 1.60 (1.90) 1.67 (1.15) 1.00 1.50 (1.22)

Yellow perch (76) 2.29 (2.01) 1.14 (0.35) 1.20 (0.45) 1.86 (1.83)

All host species (270) 3.94 (4.89) 2.59 (2.66) 2.04 (1.73) 2.72 (3.31) 1.70 (1.15)
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Table 7. Estimated values and significance of coefficients in a logistic regression on the 

probability of Diplostomum infection using the 1065 metacercariae distributed in 828 

infected or uninfected hosts (data set 1, Table 2). The model has a percentage of 

residual deviance of 68.3 on 806 degrees of freedom and a pseudo-R2 of 0.460. Non-

significant (N.S.) host species coefficients were not listed (coefficient significance 

indicated by symbols: * for P < 0.05, *** for P < 0.001). 

Model Parameter Estimate Standard error Z

Most parsimonious

Intercept -1748 701.6 -2.491 0.0127 *

Year 0.880 0.078 11.31 < 0.0001 ***

Host species N.S. N.S. N.S. > 0.9795

Standard length -0.060 0.006 -9.826 < 0.0001 ***

P
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Table 8. Estimated values and significance of coefficients in a logistic regression on the 

probability of mixed-species infection using the 943 Diplostomum specimens in 148 

hosts infected by more than one metacercaria, and in which the host could be classified 

as infected by single or mixed-species infracommunity (data set 3, Table 2). The most 

parsimonious model has a percentage of residual deviance of 60.4 on 75 degrees of 

freedom and a pseudo-R2 of 0.543, Alternative 1 has a deviance of 63.4 on 76 degrees 

of freedom and a pseudo-R2 of 0.505, and Alternative 2 has a deviance of 60.4 on 74 

degrees of freedom and a pseudo-R2 of 0.543. Non-significant (N.S.) host species 

coefficients were not listed (coefficient significance indicated by symbols: ° for 0.05 < P < 

0.1, * for P < 0.05, ** for P < 0.01). 

Model Parameter Estimate Standard error Z

Most parsimonious

Intercept -823.6 457.3 -1.801 0.0717 °

Year 0.412 0.229 1.805 0.0711 °

Host species N.S. N.S. N.S. > 0.1373

Standard length -0.079 0.029 -2.754 0.0059 **

Alternative 1

Intercept 1.888 1.687 1.119 0.2630

Host species N.S. N.S. N.S. > 0.1927

Standard length -0.047 0.020 -2.420 0.0155 *

Alternative 2

Intercept -827.8 526.8 -1.571 0.1161

Year 0.414 0.264 1.572 0.1159

Month -0.006 0.356 -0.016 0.9873

Host species N.S. N.S. N.S. > 0.1373

Standard length -0.079 0.029 -2.750 0.0060 **

P
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Table 9. Estimated values and significance of coefficients in a generalized linear model 

on the intensity of Diplostomum infection using the 1065 metacercariae distributed in the 

270 infected hosts (data set 2, Table 2). The model has a percentage of residual 

deviance of 40.6 on 250 degrees of freedom and a pseudo-R2 of 0.553 (coefficient 

significance indicated by symbols: ° for 0.05 < P < 0.1, * for P < 0.05, ** for P < 0.01, *** 

for P < 0.001). 

Model Parameter Estimate Standard error Z

Most parsimonious

Intercept 548.8 54.12 10.14 < 0.0001 ***

Year -0.274 0.027 -10.13 < 0.0001 ***

Host species

   Brook silverside 1.649 0.538 3.066 0.0022 **

   White sucker 1.121 0.652 1.718 0.0858 °

   Golden shiner 2.042 0.306 6.671 < 0.0001 ***

   Emerald shiner 1.553 0.620 2.504 0.0123 *

   Blackchin shiner 1.664 0.609 2.735 0.0062 **

   Spottail shiner 0.254 0.795 0.320 0.7493

   Sand shiner 2.370 0.453 5.231 < 0.0001 ***

   Bluntnose minnow 2.271 0.302 7.519 < 0.0001 ***

   Banded killifish 1.682 0.590 2.852 0.0044 **

   Pumpkinseed -0.427 0.390 -1.095 0.2737

   Largemouth bass -0.310 0.832 -0.372 0.7096

   Black crappie 0.090 0.676 0.132 0.8946

   Round goby 1.533 0.434 3.530 0.0004 ***

   Johnny darter 0.314 0.404 0.779 0.4362

   Yellow perch 0.883 0.276 3.195 0.0014 **

Age

   1+ 0.681 0.117 5.815 < 0.0001 ***

   2+ 1.199 0.222 5.410 < 0.0001 ***

   ≥3+ 1.667 0.229 7.263 < 0.0001 ***

P
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Table 10. Estimated values and significance of coefficients in a generalized linear model 

on the species richness of Diplostomum infection using the 411 successfully sequenced 

Diplostomum specimens in 150 hosts (data set 4, Table 2). The model has a percentage 

of residual deviance of 64.3 on 142 degrees of freedom and a pseudo-R2 of 0.385 

(coefficient significance indicated by symbols: ° for 0.05 < P < 0.1, ** for P < 0.01). 

Model Parameter Estimate Standard error Z

Most parsimonious

Intercept 200.2 71.83 2.787 0.0053 **

Year -0.099 0.036 -2.783 0.0054 **

Host order

   Cypriniformes -0.066 0.464 -0.141 0.8877

   Cyprinodontiformes -0.214 0.737 -0.290 0.7714

   Perciformes -0.448 0.485 -0.923 0.3561

Age

   1+ 0.003 0.171 0.017 0.9861

   2+ 0.191 0.276 0.690 0.4902

   ≥3+ 0.587 0.323 1.821 0.0686 °

P
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Table 11. Estimated values and significance of coefficients in a generalized linear model 

on the Shannon diversity of Diplostomum infection using the 411 successfully 

sequenced Diplostomum specimens in 150 hosts (data set 4, Table 2). The model has a 

percentage of residual deviance of 62.9 on 142 degrees of freedom and a pseudo-R2 of 

0.642 (coefficient significance indicated by symbols: ° for 0.05 < P < 0.1, * for P < 0.05, 

*** for P < 0.001). 

Model Parameter Estimate Standard error T

Most parsimonious

Intercept -131.1 17.53 -7.477 < 0.0001 ***

Year 0.066 0.009 7.523 < 0.0001 ***

Host order

   Cypriniformes 0.028 0.122 0.230 0.8182

   Cyprinodontiformes 0.135 0.198 0.681 0.4973

   Perciformes 0.268 0.127 2.118 0.0359 *

Age

   1+ -0.006 0.042 -0.137 0.8912

   2+ -0.132 0.067 -1.968 0.0510 °

   ≥3+ -0.365 0.077 -4.754 < 0.0001 ***

P
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Table 12. Correlations in abundance among species of Diplostomum in the lenses of fish 

(Spearman correlation coefficients on Hellinger-transformed abundance). The 

coefficients were calculated among 395 successfully sequenced Diplostomum 

specimens found in 94 lenses harbouring more than one metacercaria, from 51 different 

hosts (data set 5, Table 2). Infracommunities were partitioned into left and right lenses 

and analysed separately. Spearman r coefficients are below the diagonal, and P 

adjusted by Holm’s method are above the diagonal. Significant values are printed in 

bold. 

Diplostomum sp. 1 Diplostomum sp. 3 Diplostomum sp. 4 D. huronense

Diplostomum sp. 1 < 0.0001 < 0.0001 0.4412

Diplostomum sp. 3 -0.33 < 0.0001 0.4412

Diplostomum sp. 4 -0.63 -0.37 0.0011

D. huronense -0.08 0.07 -0.24
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APPENDICES 

 

Appendix 1. Definitions. 

 

COI: cytochrome c oxidase subunit I; the first 650 bp of this gene form the barcode 

region that was sequenced and used for Diplostomum species discrimination. 

 

Component community: refers to all assemblages of all the individuals of all parasite 

species (i.e., all infrapopulations) associated with some subset of a host species (e.g., 

the population of a host species in a given habitat) (Bush et al., 1997). 

 

GLM(s): generalized linear model(s); a generalization of the linear regression that can 

treat response variables other distributions than the normal distribution (Paterson and 

Lello, 2003). The linear model is related to the response variable using a link function 

(negative binomial and Gamma error distributions were used in this study). 

 

Infracommunity: the assemblage of all the individuals of all parasite species (i.e., all 

infrapopulations) in an individual host at a particular time (Bush et al., 1997). 

 

ITS: internal transcribed spacer; a sequence of non-functional RNA situated between 

structural ribosomal RNAs (rRNA) on a common precursor transcript. ITS sequences 

has been used to distinguish among species in various taxa, including Diplostomum 

(Galazzo et al., 2002) 
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Mean intensity: the mean number of parasites per infected fish in a sample (Bush et al., 

1997). 

 

Mixed-species infection: parasite infection in which the host is infected by more than one 

parasite species. 

 

Parasite associations: the result of interactions among parasites present or trying to 

establish in a given infracommunity. Associations can be positive (synergistic, facilitation 

of establishment of one species by another), negative (antagonistic, competitive 

interactions between species, exclusion), or neutral (no detected effect of cohabitation 

between species) (Behnke et al., 2001). 

 

Prevalence: the proportion of infected fish in a sample (Bush et al., 1997). 

 

RDA: redundancy analysis; it is a method combining regression and principal component 

analysis (PCA) used to model multivariate response data. In more details, a RDA is a 

multivariate multiple linear regression followed by a PCA of the resulting fitted values 

(Legendre and Legendre, 1998) 

 

Single-species infection: parasite infection in which the host is infected by only one 

parasite species. 

 

Supracommunity (compound community): comprises all developmental stages of all 

parasite species (i.e., all suprapopulations) in a particular habitat/ecosystem at a given 

time (Bush et al., 1997). 
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Appendix 2. Neighbour-joining phenogram of 741 sequences of cytochrome oxidase I 

obtained from Diplostomum spp. metacercariae. The Kimura 2-parameter was used in 

the distance modeling along with pairwise deletion of gaps to construct the tree. Species 

of Diplostomum and sample identification codes are printed at the tip of each branches 

of the tree. Diplostomum baeri is a vitreous humour-infecting species that was also 

collected during this study, but not included in the data set and the analyses because of 

its different infection site. 
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Diplostomum sp. 4|LSF1.0611.PEFL.30.L.1

Diplostomum sp. 4|T.RL.2.B.19.1

Diplostomum sp. 4|LSF1.0911.PEFL.38.R.1

Diplostomum sp. 4|LSF1.0611.NOSV.3.L.1

Diplostomum sp. 4|LSF1.0611.PEFL.14.R.1

Diplostomum sp. 4|LSF1.0611.PEFL.78.R.1

Diplostomum sp. 4|D.RL.2.B.12.1

Diplostomum sp. 4|D.LL.2.B.22.3

Diplostomum sp. 4|T.LL.2.B.23.3

Diplostomum sp. 4|T.LL.2.B.22.3

Diplostomum sp. 4|T.LL.2.B.8.1

Diplostomum sp. 4|D.LL.2.B.23.1

Diplostomum sp. 4|cq0910.pefl39.rl.d1

Diplostomum sp. 4|cq0910.pefl33.rl.d2

Diplostomum sp. 4|D.RL.1.S.6.1

Diplostomum sp. 4|D.LL.2.B.22.2

Diplostomum sp. 4|D.LL.2.B.10.9

Diplostomum sp. 4|LSF1.0911.PEFL.15.L.1

Diplostomum sp. 4|T.LL.2.B.11.2

Diplostomum sp. 4|cq0910.pefl35.ll.d1

Diplostomum sp. 4|D.LL.2.B.22.15

Diplostomum sp. 4|D.LL.1.B.4.1

Diplostomum sp. 4|D.RL.1.P.1.1

Diplostomum sp. 4|cq0910.pefl46.rl.d1

Diplostomum sp. 4|D.LL.2.B.3.4

Diplostomum sp. 4|D.RL.1.P.1.2

Diplostomum sp. 4|D.LL.2.B.19.1

Diplostomum sp. 4|D.LL.2.B.23.3

Diplostomum sp. 4|T.LL.2.B.18.2

Diplostomum sp. 4|LSF1.0611.NOSV.7.L.1

Diplostomum sp. 4|D.LL.2.B.18.12

Diplostomum sp. 4|D.LL.2.B.22.8

Diplostomum sp. 4|D.RL.2.B.3.8

Diplostomum sp. 4|D.RL.2.G.14.2

Diplostomum sp. 4|D.LL.1.J.6.5

Diplostomum sp. 4|LSF1.0911.NOCR.7.R.1

Diplostomum sp. 4|T.LL.1.B.4.1

Diplostomum sp. 4|D.RL.1.S.1.1

Diplostomum sp. 4|LSF1.0911.PEFL.65.L.3

Diplostomum sp. 4|T.LL.2.B.23.2

Diplostomum sp. 4|D.RL.2.B.22.3

Diplostomum sp. 4|D.RL.2.B.18.6

Diplostomum sp. 4|D.LL.2.B.1.5

Diplostomum sp. 4|LSF1.0611.PEFL.39.L.1

Diplostomum sp. 4|D.LL.2.P.18.1

Diplostomum sp. 4|D.LL.1.R.5.4

Diplostomum sp. 4|LSF1.0611.NOSV.3.R.1

Diplostomum sp. 4|D.RL.1.G.16.4

Diplostomum sp. 4|D.RL.2.G.14.12

Diplostomum sp. 4|D.LL.2.B.22.7

Diplostomum sp. 4|cq0611.nocr67.ll.d1

Diplostomum sp. 4|T.LL.2.B.22.2

Diplostomum sp. 4|D.LL.2.B.22.9

Diplostomum sp. 4|D.LL.2.B.18.4

Diplostomum sp. 4|LSF1.0911.ETNI.2.L.1

Diplostomum sp. 4|LSF1.0911.NOSV.1.R.1

Diplostomum sp. 4|LSF1.0611.PEFL.21.R.3

Diplostomum sp. 4|T.RL.2.B.4.1

Diplostomum sp. 4|D.RL.2.J.18.1

Diplostomum sp. 4|D.LL.2.B.4.4

Diplostomum sp. 4|D.LL.2.P.19.1

Diplostomum sp. 4|D.RL.2.G.14.7

Diplostomum sp. 4|LSF1.0911.PEFL.65.R.3

Diplostomum sp. 4|T.LL.2.B.18.3

Diplostomum sp. 4|D.RL.2.B.18.11

Diplostomum sp. 4|cq0910.pefl33.rl.d4

Diplostomum sp. 4|cq0910.pefl5.rl.d3

Diplostomum sp. 4|cq0910.pefl33.rl.d5

Diplostomum sp. 4|T.RL.2.B.22.2

Diplostomum sp. 4|cq0910.pefl53.ll.d1

Diplostomum sp. 4|T.RL.2.B.3.1

Diplostomum sp. 4|LSF1.0911.PEFL.63.R.1
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Diplostomum sp. 4|LSF1.0911.PEFL.65.R.2

Diplostomum sp. 4|D.RL.2.B.23.5

Diplostomum sp. 4|D.RL.1.B.4.4

Diplostomum sp. 4|LSF1.0911.PEFL.65.L.1

Diplostomum sp. 4|D.LL.1.P.5.1

Diplostomum sp. 4|D.RL.1.G.10.3

Diplostomum sp. 4|D.RL.2.P.19.2

Diplostomum sp. 4|T.RL.2.B.10.3

Diplostomum sp. 4|D.RL.2.B.10.2

Diplostomum sp. 4|T.RL.2.B.22.3

Diplostomum sp. 4|LSF1.0911.NOSV.1.L.1

Diplostomum sp. 4|D.RL.2.B.23.1

Diplostomum sp. 4|LSF1.0911.NOAT.5.L.1

Diplostomum sp. 4|D.LL.1.R.8.2

Diplostomum sp. 4|D.RL.1.B.3.1

Diplostomum sp. 4|LSF1.0911.PEFL.65.R.4

Diplostomum sp. 4|D.LL.2.S.1.1

Diplostomum sp. 4|D.LL.1.R.5.2

Diplostomum sp. 4|LSF1.0911.NOSV.1.L.2

Diplostomum sp. 4|LSF1.0911.PEFL.65.R.1

Diplostomum sp. 4|D.RL.1.B.4.2

Diplostomum sp. 4|LSF1.0911.NOSV.1.R.2

Diplostomum sp. 4|D.LL.1.S.19.1

Diplostomum sp. 4|LSF1.0611.NOSV.3.R.2

Diplostomum sp. 4|LSF1.0911.PEFL.65.L.4

Diplostomum sp. 4|D.LL.2.J.19.1

Diplostomum sp. 4|T.LL.2.B.4.1

Diplostomum sp. 4|D.LL.2.B.14.1

Diplostomum sp. 4|D.RL.2.S.3.1

Diplostomum sp. 4|LSF1.0911.NOSV.2.R.1

Diplostomum sp. 4|LSF1.0911.PEFL.65.L.2

Diplostomum sp. 4|D.RL.2.R.5.2

Diplostomum sp. 4|D.RL.2.P.19.1

Diplostomum sp. 4|LSF1.0611.PEFL.37.R.3

Diplostomum sp. 4|D.RL.2.R.3.1

Diplostomum sp. 4|D.LL.2.P.8.1

Diplostomum sp. 4|LSF1.0911.PEFL.65.R.7

Diplostomum sp. 4|LSF1.0611.PEFL.63.L.2

Diplostomum sp. 4|LSF1.0911.NOSV.1.L.3

Diplostomum sp. 4|D.RL.2.B.14.3

Diplostomum sp. 4|LSF1.0611.NOSV.3.L.4

Diplostomum sp. 4|D.RL.1.J.6.2

Diplostomum sp. 4|D.RL.2.B.22.2

Diplostomum sp. 4|D.LL.2.B.18.3

Diplostomum sp. 4|D.RL.2.B.3.4

Diplostomum sp. 4|D.LL.2.B.22.11

Diplostomum sp. 4|D.RL.2.B.19.5

Diplostomum sp. 4|T.LL.2.B.22.1

Diplostomum sp. 4|D.LL.2.B.1.6

Diplostomum sp. 4|D.RL.2.B.8.3

Diplostomum sp. 4|D.RL.2.B.8.4

Diplostomum sp. 4|D.RL.2.B.23.6

Diplostomum sp. 4|D.LL.2.B.22.10

Diplostomum sp. 4|D.LL.2.B.1.2

Diplostomum sp. 4|D.LL.2.B.1.3

Diplostomum sp. 4|D.LL.2.G.14.1

Diplostomum sp. 4|D.RL.2.B.11.4

Diplostomum sp. 4|D.LL.2.B.18.8

Diplostomum sp. 4|D.RL.2.G.3.4

Diplostomum sp. 4|D.LL.2.B.3.8

Diplostomum sp. 4|D.RL.2.B.19.2

Diplostomum sp. 4|T.RL.2.B.10.1

Diplostomum sp. 4|D.RL.2.B.18.7

Diplostomum sp. 4|D.LL.2.B.1.4

Diplostomum sp. 4|D.LL.2.B.18.7

Diplostomum sp. 4|D.LL.2.B.1.1

Diplostomum sp. 4|D.RL.2.G.3.5

Diplostomum sp. 4|D.LL.2.B.5.3

Diplostomum sp. 4|D.LL.2.B.19.3

Diplostomum sp. 4|D.LL.2.B.18.2

Diplostomum sp. 4|D.LL.2.B.18.6

Diplostomum sp. 4|D.LL.2.B.10.4

Diplostomum sp. 4|T.LL.2.B.18.1

Diplostomum sp. 4|D.RL.2.B.3.7

Diplostomum sp. 4|cq0910.pefl33.ll.d4

Diplostomum sp. 4|cq0910.pefl33.ll.d5

Diplostomum sp. 4|cq0910.pefl33.ll.d3

Diplostomum sp. 4|cq0910.pefl58.ll.d1

Diplostomum sp. 4|cq0910.pefl1.ll.d1

Diplostomum sp. 4|cq0910.pefl33.rl.d3

Diplostomum sp. 4|LSF1.0611.PEFL.44.R.1

Diplostomum sp. 4|D.LL.2.B.17.1

Diplostomum sp. 4|LSF1.0611.PEFL.29.R.1

Diplostomum sp. 4|D.LL.2.P.12.1

Diplostomum sp. 4|D.RL.2.B.11.1

Diplostomum sp. 4|D.LL.2.G.13.3

Diplostomum sp. 4|T.RL.2.B.8.1

Diplostomum sp. 4|D.LL.2.B.18.11

Diplostomum sp. 4|D.RL.1.J.3.1

Diplostomum sp. 4|D.RL.2.S.13.1

Diplostomum sp. 4|D.RL.2.J.1.1

Diplostomum sp. 4|D.RL.1.Nh.1.4

Diplostomum sp. 4|D.RL.1.J.2.1

Diplostomum sp. 4|D.LL.2.B.23.4

Diplostomum sp. 4|T.RL.2.B.10.2

Diplostomum sp. 4|D.LL.2.B.14.4
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Diplostomum sp. 3|D.LL.1.G.6.1

Diplostomum sp. 3|D.LL.1.G.6.2

Diplostomum sp. 3|D.RL.1.G.3.5

Diplostomum sp. 3|D.RL.1.G.10.5

Diplostomum sp. 3|cq0611.nocr39.rl.d1

Diplostomum sp. 3|cq0611.nocr17.rl.d1

Diplostomum sp. 3|cq0611.nocr19.ll.d1

Diplostomum sp. 3|cq0611.nocr30.ll.d1

Diplostomum sp. 3|cq0611.nocr22.lh.i1

Diplostomum sp. 3|cq0611.nocr51.ll.d1

Diplostomum sp. 3|D.LL.1.G.12.1

Diplostomum sp. 3|D.RL.1.G.10.4

Diplostomum sp. 3|D.LL.1.G.6.7

Diplostomum sp. 3|cq0611.nocr40.ll.d1

Diplostomum sp. 3|cq0611.nocr17.ll.d1

Diplostomum sp. 3|D.RL.1.G.6.2

Diplostomum sp. 3|D.RL.2.G.6.2

Diplostomum sp. 3|D.LL.2.G.9.1

Diplostomum sp. 3|D.RL.2.G.9.4

Diplostomum sp. 3|D.RL.2.G.7.2

Diplostomum sp. 3|D.RL.2.G.18.7

Diplostomum sp. 3|LSF1.0911.PEFL.38.L.1

Diplostomum sp. 3|cq0910.nocr35.ll.d5

Diplostomum sp. 3|cq0910.nocr35.ll.d3

Diplostomum sp. 3|cq0910.nocr30.rl.d2

Diplostomum sp. 3|cq0910.nocr30.rl.d3

Diplostomum sp. 3|cq0910.nocr35.ll.d6

Diplostomum sp. 3|cq0910.nocr39.ll.d2

Diplostomum sp. 3|cq0910.nocr35.rl.d2

Diplostomum sp. 3|cq0910.lasi5.ll.d1

Diplostomum sp. 3|cq0910.nocr34.ll.d1

Diplostomum sp. 3|D.RL.2.G.6.1

Diplostomum sp. 3|D.LL.2.G.18.2

Diplostomum sp. 3|LSF1.0911.NOCR.27.R.4

Diplostomum sp. 3|D.RL.1.G.9.4

Diplostomum sp. 3|D.RL.1.G.9.1

Diplostomum sp. 3|cq0910.lasi6.rl.d1

Diplostomum sp. 3|cq0910.nocr35.ll.d1

Diplostomum sp. 3|cq0910.nocr33.rl.d1

Diplostomum sp. 3|cq0611.nocr15.rl.d4

Diplostomum sp. 3|cq0910.nocr35.ll.d4

Diplostomum sp. 3|cq0910.nocr35.ll.d2

Diplostomum sp. 3|LSF1.0911.NOCR.27.R.5

Diplostomum sp. 3|LSF1.0911.PEFL.64.L.1

Diplostomum sp. 3|D.RL.2.R.5.1

Diplostomum sp. 3|LSF1.0911.NOCR.30.L.1

Diplostomum sp. 3|LSF1.0911.NOCR.27.R.1

Diplostomum sp. 3|D.LL.1.R.5.3

Diplostomum sp. 3|LSF1.0911.NOCR.27.R.2

Diplostomum sp. 3|cq0910.nocr39.rl.d1

Diplostomum sp. 3|D.LL.2.G.7.1

Diplostomum sp. 3|cq0910.pefl49.rl.d1

Diplostomum sp. 3|cq0910.nocr25.rl.d1

Diplostomum sp. 3|cq0910.nocr30.rl.d4

Diplostomum sp. 3|D.RL.2.G.18.5

Diplostomum sp. 3|D.RL.2.G.9.2

Diplostomum sp. 3|D.RL.2.G.18.9

Diplostomum sp. 3|D.RL.2.G.18.8

Diplostomum sp. 3|D.LL.2.G.19.8

Diplostomum sp. 3|D.RL.2.G.19.9

Diplostomum sp. 3|D.RL.2.G.18.1

Diplostomum sp. 3|D.LL.2.B.1.7

Diplostomum sp. 3|D.LL.2.B.10.7

Diplostomum sp. 3|cq0910.pefl49.rl.d2

Diplostomum sp. 3|D.LL.1.G.8.3

Diplostomum sp. 3|D.LL.1.G.9.2

Diplostomum sp. 3|D.LL.1.G.9.1

Diplostomum sp. 3|cq0910.nocr25.ll.d1

Diplostomum sp. 3|D.LL.2.G.17.2

Diplostomum sp. 3|cq0611.nocr56.ll.d1

Diplostomum sp. 3|cq0910.nocr30.rl.d1

Diplostomum sp. 3|LSF1.0911.NOCR.27.L.1

Diplostomum sp. 3|D.RL.1.G.14.1

Diplostomum sp. 3|cq0910.nocr39.ll.d1

Diplostomum sp. 3|D.RL.2.G.9.3

Diplostomum sp. 3|D.LL.2.B.10.10

Diplostomum sp. 3|D.LL.1.G.9.5

Diplostomum sp. 3|cq0910.nocr35.rl.d1

Diplostomum sp. 3|D.LL.1.G.9.3

Diplostomum sp. 3|cq0910.nocr35.ll.d7

Diplostomum sp. 3|D.RL.1.B.2.1

Diplostomum sp. 3|cq0611.nocr56.rl.d1

Diplostomum sp. 3|cq0910.nocr28.rl.d1

Diplostomum sp. 3|cq0611.nocr63.rl.d1

Diplostomum sp. 3|cq0910.nocr25.ll.d2

Diplostomum sp. 4|D.RL.2.B.22.6

Diplostomum sp. 4|D.RL.2.B.18.4

Diplostomum sp. 4|LSF1.0911.PEFL.13.R.1

Diplostomum sp. 4|D.RL.2.B.18.8

Diplostomum sp. 4|D.RL.2.B.8.5

Diplostomum sp. 4|D.LL.2.B.18.1

Diplostomum sp. 4|T.LL.2.B.11.1

Diplostomum sp. 4|cq0910.pefl54.rl.d1

Diplostomum sp. 4|LSF1.0911.PEFL.65.R.2

Diplostomum sp. 4|D.RL.2.B.23.5

Diplostomum sp. 4|D.RL.1.B.4.4

Diplostomum sp. 4|LSF1.0911.PEFL.65.L.1
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Diplostomum sp. 1|D.RL.2.G.17.6

Diplostomum sp. 1|D.LL.1.R.2.1

Diplostomum sp. 1|D.RL.2.G.19.2

Diplostomum sp. 1|D.LL.2.G.3.1

Diplostomum sp. 1|D.RL.2.B.3.1

Diplostomum sp. 1|D.RL.2.B.4.1

Diplostomum sp. 1|D.RL.2.B.18.9

Diplostomum sp. 1|D.LL.2.B.10.3

Diplostomum sp. 1|LSF1.0611.FUDI.5.L.2

Diplostomum sp. 1|D.RL.2.B.18.1

Diplostomum sp. 1|LSF1.0611.LASI.4.L.1

Diplostomum sp. 1|D.RL.2.G.13.7

Diplostomum sp. 1|cq0611.nocr9.rl.d1

Diplostomum sp. 1|D.RL.2.B.17.1

Diplostomum sp. 1|D.LL.2.B.19.4

Diplostomum sp. 1|D.LL.2.R.7.2

Diplostomum sp. 1|D.RL.1.P.10.1

Diplostomum sp. 1|LSF1.0911.NOAT.4.R.1

Diplostomum sp. 1|LSF1.0911.NOAT.4.L.1

Diplostomum sp. 1|D.LL.1.G.8.1

Diplostomum sp. 1|LSF1.0911.NEME.8.R.2

Diplostomum sp. 1|D.LL.2.B.18.9

Diplostomum sp. 1|LSF1.0911.PEFL.65.R.5

Diplostomum sp. 1|D.RL.1.G.15.1

Diplostomum sp. 1|D.RL.2.B.19.3

Diplostomum sp. 1|cq0910.pefl5.rl.d2

Diplostomum sp. 1|D.LL.2.G.19.1

Diplostomum sp. 1|LSF1.0611.NOSV.5.R.1

Diplostomum sp. 1|LSF1.0611.PEFL.19.L.2

Diplostomum sp. 1|D.LL.1.G.17.1

Diplostomum sp. 1|D.RL.2.G.14.4

Diplostomum sp. 1|D.RL.1.B.4.1

Diplostomum sp. 1|D.RL.1.G.16.3

Diplostomum sp. 1|D.LL.2.B.4.2

Diplostomum sp. 1|D.RL.2.B.10.8

Diplostomum sp. 1|D.RL.2.G.3.2

Diplostomum sp. 1|D.LL.1.G.13.3

Diplostomum sp. 1|D.RL.1.B.2.2

Diplostomum sp. 1|D.RL.2.G.13.5

Diplostomum sp. 1|D.RL.2.B.4.2

Diplostomum sp. 1|D.RL.1.B.1.1

Diplostomum sp. 1|LSF1.0911.NOHE.9.R.1

Diplostomum sp. 1|LSF1.0611.FUDI.5.L.1

Diplostomum sp. 1|D.LL.1.S.14.1

Diplostomum huronense|D.RL.2.G.19.8

Diplostomum huronense|LSF1.0911.CACO.2.L.1

Diplostomum huronense|cq0611.nocr16.rl.d1

Diplostomum huronense|cq0611.nocr47.ll.d1

Diplostomum huronense|cq0611.nocr35.rl.d2

Diplostomum huronense|LSF1.0911.CACO.4.L.1

Diplostomum huronense|LSF1.0911.CACO.7.L.2

Diplostomum huronense|T.LL.2.G.4.1

Diplostomum huronense|D.LL.2.G.7.4

Diplostomum huronense|cq0910.nocr3.rl.d1

Diplostomum huronense|D.RL.2.B.10.4

Diplostomum huronense|D.RL.2.G.13.1

Diplostomum huronense|D.LL.1.G.6.4

Diplostomum huronense|D.LL.1.G.6.5

Diplostomum huronense|D.LL.2.G.10.2

Diplostomum huronense|D.RL.1.G.6.1

Diplostomum huronense|LSF1.0911.NOSV.5.R.1

Diplostomum huronense|T.RL.2.G.15.1

Diplostomum huronense|D.RL.2.G.14.14

Diplostomum huronense|D.RL.2.G.14.13

Diplostomum huronense|D.LL.2.G.19.7

Diplostomum huronense|T.RL.2.G.6.1

Diplostomum huronense|D.LL.2.G.7.2

Diplostomum huronense|D.LL.2.G.18.3

Diplostomum huronense|D.RL.2.G.19.1

Diplostomum huronense|D.RL.2.G.14.10

Diplostomum huronense|D.RL.2.G.13.8

Diplostomum huronense|D.RL.2.G.18.4

Diplostomum huronense|T.RL.1.G.14.1

Diplostomum huronense|D.RL.1.G.18.1

Diplostomum huronense|D.LL.2.G.19.3

Diplostomum huronense|D.RL.1.G.3.1

Diplostomum huronense|D.RL.1.G.3.4

Diplostomum huronense|D.RL.2.G.13.2

Diplostomum huronense|T.LL.2.G.7.1

Diplostomum huronense|D.LL.2.G.3.2

Diplostomum huronense|cq0611.nocr47.rl.d2

Diplostomum sp. 3|D.LL.2.G.6.2

Diplostomum sp. 3|D.LL.1.G.14.1

Diplostomum sp. 3|D.LL.1.G.10.4

Diplostomum sp. 3|cq0611.nocr15.ll.d2

Diplostomum sp. 3|cq0611.nocr15.ll.d4

Diplostomum sp. 3|D.RL.1.P.17.1

Diplostomum sp. 3|D.LL.1.P.11.1

Diplostomum sp. 3|cq0611.nocr47.ll.d4

Diplostomum sp. 3|cq0611.nocr29.ll.d1

Diplostomum sp. 3|D.RL.1.G.6.10

Diplostomum sp. 3|cq0611.nocr52.ll.d1

Diplostomum sp. 3|D.RL.1.G.3.2

Diplostomum sp. 3|D.LL.1.G.6.1

Diplostomum sp. 3|D.LL.1.G.6.2

Diplostomum sp. 3|D.RL.1.G.3.5

Diplostomum sp. 3|D.RL.1.G.10.5
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Diplostomum sp. 1|D.LL.2.B.23.2

Diplostomum sp. 1|D.RL.2.B.8.2

Diplostomum sp. 1|D.RL.2.G.19.3

Diplostomum sp. 1|D.RL.1.G.9.2

Diplostomum sp. 1|D.LL.2.B.12.5

Diplostomum sp. 1|LSF1.0911.MISA.7.L.1

Diplostomum sp. 1|cq0910.nocr39.rl.d2

Diplostomum sp. 1|D.LL.1.G.14.9

Diplostomum sp. 1|D.RL.2.B.11.5

Diplostomum sp. 1|D.LL.2.G.19.5

Diplostomum sp. 1|cq0910.pefl31.rl.d1

Diplostomum sp. 1|LSF1.0911.NEME.2.L.1

Diplostomum sp. 1|cq0910.lasi6.ll.d3

Diplostomum sp. 1|cq0611.nocr36.rl.d4

Diplostomum sp. 1|D.RL.2.B.23.4

Diplostomum sp. 1|D.LL.2.B.3.7

Diplostomum sp. 1|D.LL.2.B.4.5

Diplostomum sp. 1|D.RL.2.G.3.3

Diplostomum sp. 1|cq0910.pefl48.ll.d1

Diplostomum sp. 1|D.LL.2.G.19.11

Diplostomum sp. 1|D.RL.2.G.17.1

Diplostomum sp. 1|D.LL.2.G.7.5

Diplostomum sp. 1|D.LL.2.G.12.1

Diplostomum sp. 1|D.LL.2.B.22.14

Diplostomum sp. 1|D.RL.2.G.17.4

Diplostomum sp. 1|D.RL.1.G.14.3

Diplostomum sp. 1|D.LL.2.B.11.2

Diplostomum sp. 1|LSF1.0911.PINO.2.L.1

Diplostomum sp. 1|D.LL.1.G.4.1

Diplostomum sp. 1|D.LL.2.B.3.1

Diplostomum sp. 1|LSF1.0911.FUDI.3.L.1

Diplostomum sp. 1|D.LL.2.B.19.2

Diplostomum sp. 1|D.RL.2.G.19.5

Diplostomum sp. 1|D.RL.2.B.3.9

Diplostomum sp. 1|D.LL.2.B.8.6

Diplostomum sp. 1|D.RL.1.S.5.1

Diplostomum sp. 1|D.RL.1.J.4.1

Diplostomum sp. 1|D.RL.2.G.19.7

Diplostomum sp. 1|D.RL.1.G.8.2

Diplostomum sp. 1|D.LL.2.B.14.3

Diplostomum sp. 1|D.LL.2.G.13.2

Diplostomum sp. 1|D.LL.2.G.17.1

Diplostomum sp. 1|D.RL.2.B.4.3

Diplostomum sp. 1|D.LL.2.B.10.1

Diplostomum sp. 1|D.LL.2.G.17.3

Diplostomum sp. 1|LSF1.0911.NEME.7.R.1

Diplostomum sp. 1|D.RL.1.G.16.1

Diplostomum sp. 1|LSF1.0911.NEME.5.R.3

Diplostomum sp. 1|LSF1.0911.PINO.3.L.1

Diplostomum sp. 1|D.RL.1.G.13.1

Diplostomum sp. 1|D.RL.2.B.3.6

Diplostomum sp. 1|LSF1.0911.NOHE.1.R.1

Diplostomum sp. 1|LSF1.0911.NEME.11.R.1

Diplostomum sp. 1|D.LL.2.G.18.4

Diplostomum sp. 1|D.LL.2.B.10.2

Diplostomum sp. 1|D.LL.2.G.18.1

Diplostomum sp. 1|cq0910.lasi6.rl.d2

Diplostomum sp. 1|D.RL.2.B.11.8

Diplostomum sp. 1|D.RL.2.B.16.3

Diplostomum sp. 1|LSF1.0911.NEME.8.L.1

Diplostomum sp. 1|D.RL.2.G.17.2

Diplostomum sp. 1|D.RL.1.R.6.1

Diplostomum sp. 1|LSF1.0611.PEFL.27.R.1

Diplostomum sp. 1|D.LL.2.G.13.1

Diplostomum sp. 1|D.LL.1.G.4.2

Diplostomum sp. 1|D.LL.2.G.19.4

Diplostomum sp. 1|D.LL.2.G.7.3

Diplostomum sp. 1|D.LL.2.B.4.1

Diplostomum sp. 1|LSF1.0911.NOCR.14.R.1

Diplostomum sp. 1|cq0910.pefl41.rl.d1

Diplostomum sp. 1|D.LL.2.G.13.4

Diplostomum sp. 1|D.LL.2.P.10.1

Diplostomum sp. 1|cq0910.nocr38.ll.d1

Diplostomum sp. 1|cq0611.nocr36.rl.d6

Diplostomum sp. 1|D.LL.2.B.22.6

Diplostomum sp. 1|LSF1.0611.FUDI.5.R.1

Diplostomum sp. 1|cq0611.nocr9.rl.d2

Diplostomum sp. 1|D.LL.2.B.23.5

Diplostomum sp. 1|D.LL.2.B.8.5

Diplostomum sp. 1|D.LL.1.P.1.1

Diplostomum sp. 1|D.RL.2.P.15.3

Diplostomum sp. 1|D.RL.2.B.18.2

Diplostomum sp. 1|D.LL.2.B.8.7

Diplostomum sp. 1|D.LL.2.B.14.2

Diplostomum sp. 1|D.LL.2.G.12.2

Diplostomum sp. 1|D.RL.2.G.19.6

Diplostomum sp. 1|D.LL.2.G.17.4

Diplostomum sp. 1|D.LL.1.G.8.2

Diplostomum sp. 1|LSF1.0611.PEFL.37.R.2

Diplostomum sp. 1|D.LL.2.B.17.2

Diplostomum sp. 1|LSF1.0911.PEFL.23.L.1

Diplostomum sp. 1|D.RL.2.B.4.4

Diplostomum sp. 1|D.RL.2.G.17.6

Diplostomum sp. 1|D.LL.1.R.2.1

Diplostomum sp. 1|D.RL.2.G.19.2

Diplostomum sp. 1|D.LL.2.G.3.1
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Diplostomum sp. 1|cq0611.nocr9.ll.d3

Diplostomum sp. 1|D.LL.2.B.22.13

Diplostomum sp. 1|D.RL.2.B.17.2

Diplostomum sp. 1|cq0611.nocr42.ll.d1

Diplostomum sp. 1|D.RL.2.B.10.7

Diplostomum sp. 1|D.LL.2.R.7.1

Diplostomum sp. 1|D.RL.2.G.19.4

Diplostomum sp. 1|cq0611.nocr36.rl.d2

Diplostomum sp. 1|D.RL.2.B.16.2

Diplostomum sp. 1|D.RL.2.J.16.1

Diplostomum sp. 1|D.RL.1.G.14.2

Diplostomum sp. 1|D.RL.2.B.10.3

Diplostomum sp. 1|D.RL.2.G.3.1

Diplostomum sp. 1|D.RL.2.B.3.3

Diplostomum sp. 1|D.LL.2.G.19.6

Diplostomum sp. 1|LSF1.0911.PONI.1.R.1

Diplostomum sp. 1|D.RL.2.G.14.6

Diplostomum sp. 1|D.LL.1.J.6.4

Diplostomum sp. 1|D.RL.2.G.13.6

Diplostomum sp. 1|D.LL.2.R.7.3

Diplostomum sp. 1|D.RL.2.B.4.5

Diplostomum sp. 1|D.LL.2.B.20.1

Diplostomum sp. 1|D.LL.2.B.18.10

Diplostomum sp. 1|D.RL.2.B.10.1

Diplostomum sp. 1|LSF1.0611.PEFL.21.R.1

Diplostomum sp. 1|LSF1.0911.NEME.5.R.2

Diplostomum sp. 1|D.LL.2.B.10.11

Diplostomum sp. 1|D.RL.2.G.13.4

Diplostomum sp. 1|D.LL.2.B.4.3

Diplostomum sp. 1|cq0611.nocr9.ll.d2

Diplostomum sp. 1|D.LL.2.B.10.8

Diplostomum sp. 1|LSF1.0611.NOSV.5.L.1

Diplostomum sp. 1|cq0910.pefl33.ll.d2

Diplostomum sp. 1|LSF1.0611.PEFL.30.R.1

Diplostomum sp. 1|D.RL.2.B.3.2

Diplostomum sp. 1|LSF1.0911.NEME.9.R.2

Diplostomum sp. 1|D.LL.1.G.6.3

Diplostomum sp. 1|D.RL.1.G.8.3

Diplostomum sp. 1|D.RL.1.P.6.1

Diplostomum sp. 1|cq0910.lasi6.ll.d2

Diplostomum sp. 1|cq0910.nocr21.ll.d1

Diplostomum sp. 1|D.RL.1.G.9.3

Diplostomum sp. 1|D.RL.1.Nh.1.3

Diplostomum sp. 1|D.LL.2.B.3.3

Diplostomum sp. 1|D.LL.2.B.3.5

Diplostomum sp. 1|D.RL.2.G.13.3

Diplostomum sp. 1|LSF1.0911.NEME.2.L.2

Diplostomum sp. 1|D.LL.1.G.9.4

Diplostomum sp. 1|D.RL.1.G.8.1

Diplostomum sp. 1|D.LL.1.R.5.6

Diplostomum sp. 1|D.LL.2.B.22.5

Diplostomum sp. 1|D.LL.2.G.19.2

Diplostomum sp. 1|D.RL.2.B.22.1

Diplostomum sp. 1|D.RL.1.G.16.2

Diplostomum sp. 1|D.RL.2.B.14.1

Diplostomum sp. 1|D.RL.2.G.17.5

Diplostomum sp. 1|D.RL.2.G.18.2

Diplostomum sp. 1|D.LL.2.G.10.1

Diplostomum sp. 1|LSF1.0911.CACO.7.L.1

Diplostomum sp. 1|D.RL.1.Pn.1.1

Diplostomum sp. 1|D.RL.2.B.22.4

Diplostomum sp. 1|D.LL.2.B.22.4

Diplostomum sp. 1|D.RL.2.B.18.3

Diplostomum sp. 1|D.LL.2.B.8.3

Diplostomum sp. 1|D.RL.1.J.6.1

Diplostomum sp. 1|D.RL.2.B.16.4

Diplostomum sp. 1|cq0910.pefl46.rl.d2

Diplostomum sp. 1|LSF1.0911.FUDI.5.L.1

Diplostomum sp. 1|LSF1.0611.PEFL.26.L.1

Diplostomum sp. 1|D.LL.2.B.5.1

Diplostomum sp. 1|LSF1.0911.NEME.5.R.1

Diplostomum sp. 1|LSF1.0911.NOCR.22.R.1

Diplostomum sp. 1|LSF1.0911.FUDI.5.R.1

Diplostomum sp. 1|D.RL.2.G.17.3

Diplostomum sp. 1|LSF1.0611.NOSV.3.L.2

Diplostomum sp. 1|D.RL.1.R.9.1

Diplostomum sp. 1|LSF1.0911.NEME.9.R.1

Diplostomum sp. 1|D.LL.2.B.10.6

Diplostomum sp. 1|D.RL.2.G.18.11

Diplostomum sp. 1|D.RL.2.B.23.2

Diplostomum sp. 1|D.RL.1.P.10.2

Diplostomum sp. 1|LSF1.0911.NOSV.1.L.4

Diplostomum sp. 1|cq0910.lasi6.ll.d1

Diplostomum sp. 1|D.RL.1.G.13.2

Diplostomum sp. 1|D.RL.2.B.14.2

Diplostomum sp. 1|LSF1.0611.NOSV.3.L.3

Diplostomum sp. 1|cq0910.pefl33.rl.d1

Diplostomum sp. 1|LSF1.0911.NOHE.7.R.1

Diplostomum sp. 1|D.RL.1.R.9.2

Diplostomum sp. 1|D.RL.2.G.18.12

Diplostomum sp. 1|D.RL.1.G.2.1

Diplostomum sp. 1|D.RL.2.B.8.1

Diplostomum sp. 1|D.RL.2.S.1.1

Diplostomum sp. 1|D.LL.2.B.23.2

Diplostomum sp. 1|D.RL.2.B.8.2

Diplostomum sp. 1|D.RL.2.G.19.3
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Diplostomum indistinctum|D.LL.1.G.12.3

Diplostomum sp. 1|cq0611.nocr44.rl.d2

Diplostomum sp. 1|D.LL.1.P.3.2

Diplostomum sp. 1|D.RL.1.G.1.3

Diplostomum sp. 1|D.LL.1.G.1.3

Diplostomum sp. 1|D.LL.1.G.3.1

Diplostomum sp. 1|D.LL.1.G.14.3

Diplostomum sp. 1|D.LL.1.G.5.3

Diplostomum sp. 1|D.LL.1.G.18.2

Diplostomum sp. 1|cq0611.nocr31.ll.d1

Diplostomum sp. 1|cq0611.nocr49.ll.d1

Diplostomum sp. 1|D.RL.1.G.5.1

Diplostomum sp. 1|D.LL.1.G.10.3

Diplostomum sp. 1|D.RL.1.G.1.4

Diplostomum sp. 1|D.LL.1.G.5.7

Diplostomum sp. 1|D.LL.1.G.5.1

Diplostomum sp. 1|cq0611.nocr24.rl.d1

Diplostomum sp. 1|D.LL.1.G.5.8

Diplostomum sp. 1|cq0611.nocr7.ll.d1

Diplostomum sp. 1|D.RL.1.G.3.6

Diplostomum sp. 1|D.LL.1.G.10.2

Diplostomum sp. 1|D.LL.1.G.6.6

Diplostomum sp. 1|D.LL.1.G.14.7

Diplostomum sp. 1|D.LL.1.G.6.8

Diplostomum sp. 1|D.LL.1.G.14.8

Diplostomum sp. 1|D.LL.1.G.6.9

Diplostomum sp. 1|D.LL.1.G.14.4

Diplostomum sp. 1|D.RL.1.G.6.5

Diplostomum sp. 1|D.RL.1.G.1.2

Diplostomum sp. 1|D.LL.1.G.5.4

Diplostomum sp. 1|D.RL.1.G.6.6

Diplostomum sp. 1|D.RL.1.G.6.9

Diplostomum sp. 1|D.LL.1.G.14.5

Diplostomum sp. 1|D.RL.2.B.1.2

Diplostomum sp. 1|D.RL.2.B.1.4

Diplostomum sp. 1|cq0611.nocr47.rl.d3

Diplostomum sp. 1|D.RL.2.B.11.2

Diplostomum sp. 1|cq0611.nocr9.rl.d3

Diplostomum sp. 1|D.LL.2.B.8.1

Diplostomum sp. 1|D.RL.2.G.6.3

Diplostomum sp. 1|D.RL.2.B.19.1

Diplostomum sp. 1|D.LL.1.G.13.1

Diplostomum sp. 1|D.LL.1.G.13.2

Diplostomum sp. 1|cq0910.nocr6.rl.d1

Diplostomum sp. 1|D.LL.1.G.16.1

Diplostomum sp. 1|D.LL.1.R.5.5

Diplostomum sp. 1|D.RL.1.G.5.2

Diplostomum sp. 1|D.RL.1.G.10.2

Diplostomum sp. 1|D.RL.1.G.10.1

Diplostomum sp. 1|D.LL.1.G.5.9

Diplostomum sp. 1|D.LL.1.G.10.1

Diplostomum sp. 1|D.LL.1.G.5.2

Diplostomum sp. 1|D.LL.1.G.1.2

Diplostomum sp. 1|D.LL.1.G.14.2

Diplostomum sp. 1|D.LL.1.G.1.1

Diplostomum sp. 1|cq0611.nocr14.rl.d1

Diplostomum sp. 1|D.LL.1.G.5.6

Diplostomum sp. 1|cq0611.nocr44.ll.d1

Diplostomum sp. 1|D.RL.1.G.6.4

Diplostomum sp. 1|D.LL.1.G.12.2

Diplostomum sp. 1|D.LL.1.G.18.1

Diplostomum sp. 1|D.RL.1.G.6.3

Diplostomum sp. 1|D.LL.1.G.15.1

Diplostomum sp. 1|D.LL.1.G.14.6

Diplostomum sp. 1|D.LL.1.G.5.5

Diplostomum sp. 1|D.RL.1.G.3.3

Diplostomum sp. 1|D.RL.1.G.1.1

Diplostomum sp. 1|D.RL.2.G.7.1

Diplostomum sp. 1|D.RL.2.B.23.3

Diplostomum sp. 1|cq0611.nocr65.ll.d1

Diplostomum sp. 1|D.LL.2.B.18.5

Diplostomum sp. 1|D.LL.2.B.8.4

Diplostomum sp. 1|LSF1.0911.NEME.8.R.1

Diplostomum sp. 1|LSF1.0911.NOAT.2.R.1

Diplostomum sp. 1|D.RL.2.G.14.11

Diplostomum sp. 1|D.LL.2.B.8.2

Diplostomum sp. 1|D.LL.2.B.4.6

Diplostomum sp. 1|D.LL.1.P.18.1

Diplostomum sp. 1|D.LL.2.B.22.1

Diplostomum sp. 1|D.LL.2.G.6.3

Diplostomum sp. 1|D.LL.2.G.19.9

Diplostomum sp. 1|D.LL.2.R.9.1

Diplostomum sp. 1|D.RL.2.G.14.3

Diplostomum sp. 1|D.RL.2.P.12.1

Diplostomum sp. 1|D.LL.1.J.6.3

Diplostomum sp. 1|D.RL.2.G.7.4

Diplostomum sp. 1|D.RL.2.B.10.6

Diplostomum sp. 1|cq0611.nocr65.rl.d1

Diplostomum sp. 1|D.RL.1.G.8.4

Diplostomum sp. 1|D.RL.2.B.22.5

Diplostomum sp. 1|D.LL.2.R.5.1

Diplostomum sp. 1|cq0611.nocr9.ll.d3

Diplostomum sp. 1|D.LL.2.B.22.13

Diplostomum sp. 1|D.RL.2.B.17.2

 



 

 88 

 

 

 

 

 

Appendix 3. Redundancy analysis triplot of Diplostomum spp. lens infracommunities in 

fish (additional rotations to Figure 4) with type 2 scaling, retaining correlations between 

descriptive variables. Species of Diplostomum, and fishing date and host length appear 

as lines. Host sex (M = males, F = females, U = undetermined sex) and age (0+, 1+, 2+, 

≥3+) are printed at their centroid values. Closed circles represent the position of the 

infracommunity of each host individual. Alpha-numerical codes indicate the position of 

host species centroids: At = Atherinidae (1 = Brook silverside), Ca = Catostomidae (1 = 

White sucker), Cy = Cyprinidae (1 = golden shiner, 2 = emerald shiner, 3 = blackchin 

shiner, 4 = spottail shiner, 5 = sand shiner, 6 = bluntnose minnow), Fu = Fundulidae (1 = 

banded killifish), Go = Gobiidae (1 = round goby), Ce = Centrarchidae (1 = rock bass, 2 

= pumpkinseed, 3 = largemouth bass, 4 = black crappie), Pe = Percidae (1 = johnny 

darter, 2 = yellow perch). Rotation A displays the plot from octant I; rotation B, from 

octant II; rotation C, from octant VI; rotation D, from octant V. This triplot was 

constructed using the 411 successfully sequenced Diplostomum specimens in 150 hosts 

(data set 4, Table 2). 
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