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Abstract

Analytical Lifecycle Modeling and Threat Analysis of Botnets

Masood Khosroshahy, Ph.D.

Concordia University, 2013

Botnet, which is an overlay network of compromised computers built by cybercriminals

known as botmasters, is the new phenomenon that has caused deep concerns to the security

professionals responsible for governmental, academic, and private sector networks. Bot-

masters use a plethora of methods to infect network-accessible devices (nodes). The initial

malware residing on these nodes then either connects to a central Command & Control

(C&C) server or joins a Peer-to-Peer (P2P) botnet. At this point, the nodes can receive the

commands of the botmaster and proceed to engage in illicit activities such as Distributed

Denial-of-Service (DDoS) attacks and massive e-mail spam campaigns.

Being able to reliably estimate the size of a botnet is an important task which allows

the adequate deployment of mitigation strategies against the botnet. In this thesis, we

develop analytical models that capture the botnet expansion and size evolution behaviors in

sufficient details so as to accomplish this crucial estimation/analysis task. We develop four

Continuous-Time Markov Chain (CTMC) botnet models: the first two, SComI and SComF,

allow the prediction of initial unhindered botnet expansion in the case of infinite and finite

population sizes, respectively. The third model, the SIC model, is a botnet lifecycle model
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which accounts for all important node stages and allows botnet size estimates as well as

evaluation of botnet mitigation strategies such as disinfections of nodes and attacks on

botnet’s C&C mechanism. Finally, the fourth model, the SIC-P2P model, is an extension

of the SIC model suitable for P2P botnets, allowing fine-grained analysis of mitigation

strategies such as index poisoning and sybil attack.

As the convergence of Internet and traditional telecommunication services is underway,

the threat of botnets is looming over essential basic communication services. As the last

contribution presented in this thesis, we analyze the threat of botnets in the 4G cellular wire-

less networks. We identify the vulnerability of the air interface, i.e. the Long Term Evo-

lution (LTE), which allows a successful botnet-launched DDoS attack against it. Through

simulation using an LTE simulator, we determine the number of botnet nodes per cell that

can significantly degrade the service availability of such cellular networks.
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1. Introduction

1.1. Motivation

Botmasters, the cyber criminals behind botnets, leverage a wide range of methods to infect

network-accessible devices, with the majority of the devices being personal computers in

homes, businesses, schools, and governments. Once infected, these devices (or nodes) form

botnets and are remotely controlled by the botmasters for illicit activities such as sending

e-mail spam and extortion by threats of launching Distributed Denial-of-Service (DDoS)

attacks. In recent years, the number of infected and remotely controlled nodes in each

of the major botnets has reached the order of millions. The cumulative processing and

bandwidth resources at the disposal of cyber criminals are therefore enough to severely

attack any entity or temporarily knock entire countries off the Internet; this has resulted in

the designation of botnets as a major security threat.

An important aspect of botnets that needs to be understood and predicted is their size; the

bigger the size, the higher the threat level. Availability of accurate mathematical models

of population size evolution enables security experts to plan ahead and deploy adequate

resources when responding to a growing threat of an emerging botnet. In this thesis, we

focus on this aspect of botnets, i.e., their size and the mathematical models thereof. Next,

we provide a detailed evidence regarding the very real threat of botnets.

1



1.1.1. Botnet Threat

Mansfield-Devine [2] reports that there is about 25% chance that an average Windows user

gets infected in any given year. The growing trend in recent years has been the rise of

botnets as a result of botnet-related malware. Botnets have been used in variety of illicit

activities. In what follows, we provide some of the highlights.

Sending e-mail spams to promote often inappropriate products and services is one such

illicit activity. As IP addresses of e-mail spam sources can be blacklisted by e-mail providers,

botmasters use thousands, even millions, of nodes (bots or compromised computers) as

sources of e-mail spams; hence, largely avoiding the blacklisting efforts. Bleaken [3] re-

ports that in one single takedown of a rogue ISP which hosted the main infrastructure of

few botnets in November 2008, the level of e-mail spams dropped about 80% instantly.

Distributed Denial-of-Service (DDoS) attacks are conducted by flooding web servers and

other network services with countless useless requests/packets. A DDoS attack would lead

to those servers and services going out of operation, not being able to service the clients.

The distributed nature of nodes in the botnet has thus made botnets the perfect platforms

from which such DDoS attacks are launched. Mielke and Chen [4] mention that the country

of Estonia came under such attack in April 2007 which knocked off critical infrastructure

and the media.

Google (Daswani and Stoppelman [5]) has reported another use of botnets: “low-noise

click fraud attack against syndicated search engines.” Click fraud refers to the action of a

user who clicks on an advertisement without having any genuine interest about the adver-

tisement content. The user’s action leads to the advertiser being unfairly charged and the

publisher (which has run the advertisement) getting unfairly paid (Google runs the service

that facilitates the transaction between the two). The user who engages in click fraud and

the publisher are criminally related. Google reports [5] having detected a botnet of 100,000

nodes which has been designed solely to make automated clicks on advertisements.

Other examples of botnets worth mentioning are Mariposa and Conficker. Mansfield-
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Devine [2] notes that the Mariposa botnet has been estimated to have 13 million computers

across 190 countries. A working group consisting of anti-malware industry researchers

cooperated with the law enforcement authorities in order to make arrests and take down the

botnet. This however was quickly followed by a DDoS attack against a key working group

member which resulted in temporary crippling of a major ISP.

Conficker (also known as Kido and Downadup) is another major botnet with impressive

sophistication in design. Emm [6] (Kaspersky Lab) reports that, as a version of Conficker

is using domain names in its Command & Control (C&C) architecture, it generated and

registered 50,000 domain names per day and used some of these randomly in order to evade

detection and analysis. The size of Conficker is estimated to be between 5 and 10 million

nodes. Porras [7] notes how fast Conficker has evolved to combat the countermeasures

deployed by the anti-malware industry: five major variants (lettered A through E) from

October 2008 to April 2009, having both centralized (domain name based) and Peer-to-

Peer-based management and operation.

The latest twist in botnet technology has been the creation of crimeware toolkits such as

Zeus. These are toolkits which allow relatively novice criminals to create and operate their

very own botnets using a control panel to manage the infected computers and the stolen

information. Binsalleeh et al. [8] identify Zeus as the number one botnet threat that has 3.6

million infections in the United States alone and is estimated to be responsible for 44% of

the banking-related malware infections.

Bleaken [3] notes that authorities in many countries are worried about botnets becoming

the weapon of choice against government and business resources in the next battleground –

botnets would be a lot cheaper to construct and operate than conventional weapons. Finally,

Bradbury [9] observes that the organized crime behind botnets is hierarchical and modular,

with the real minds behind the operation are disguised at the top, evading getting tracked

down and apprehended.
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1.2. Analytical Botnet Models

In computer science, the term virus was first used in late 1980’s to refer to a “self-replicating”

code intended to do damage. Facing this new phenomenon, Murray [10] was the first who

suggested the application of epidemiology for studying the propagation of computer virus.

However, it was not until early 1990’s that a major work on producing analytical models

was done [11]. In the course of the two decades that followed, numerous other analyt-

ical models based on the same premises were proposed such as [11, 12, 13, 1]. Before

proceeding further, few definitions are due:

Node Stage A node (an arbitrary network-accessible device in the Internet) can be in

either of the stages defined in the analytical model (e.g., Susceptible and Infected

stages). With time, depending on the model, nodes can usually transition from one

stage to another. In this thesis, we use the term stage in the context of a node and

the term state in the context of the whole system to avoid confusion; the terminology

of the cited works has been adapted to be compatible with ours. State of the system,

therefore, is used to indicate the number of nodes that are in each stage at any given

time.

Lifecycle Lifecycle indicates the fact that nodes change stage in the lifetime of the botnet.

Botnet refers to the nodes that are in a certain stage. Botnet lifecycle, on the other

hand, refers to the span of time from the appearance of a botnet to its disappearance.

During the botnet lifecycle, state of the system varies as a function of the time.

An analytical botnet model can capture and analyze the expansion and shrinkage of a

botnet; hence its lifecycle. Analytical botnet models keep track of the number of nodes

in each stage over time. Each analytical model defines certain possible stages for nodes.

Limiting the number of stages to the important ones leads to the development of a tractable

model. Further, the model then becomes general enough and can be applied in the study
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of majority of botnets, as it does not contain features found rarely in more than one or few

botnets.

Analytical models may provide significant benefits in the fight against botnets. When

either a new botnet threat emerges or an existing botnet goes into a rapid growth period due

to a new infection, then there are two main questions that we would like to have answers

to. One of them will be the determination of seriousness of the threat, which requires

prediction of the size of the botnet as a function of time. This will let us know the number of

nodes that eventually may be compromised. The other will be to determine the appropriate

mix of mitigation strategies that need to be deployed to stop the growth of the botnet and

possibly reverse it. In both cases, a good analytical model will be helpful if the estimates

of its parameters are available. As a result of the growing botnet threat, new organizations

are emerging that continuously keep track of botnets and measure their sizes. Thus, it is

expected that the estimates of the model parameters will become available so that analytical

models may be used to give answers to the above questions.

Methods in the development of analytical models for botnets can be traced back to nearly

a century ago with the development of models capturing the spread of disease among hu-

mans in the mathematical epidemiology. Beginning from the 1980’s to the present date,

computer scientists have used epidemiological models, or their adapted versions, in the

study of computer virus propagation. Similar analytical models have been proposed for

botnets, after their appearance in the previous decade. The models presented in this thesis

stand in this latter category, sharing many similar concepts, yet possessing some distinctive

features which are not found in earlier models.

As will be explained shortly, we develop four analytical models tailored to botnets, their

expansion and evolution behaviors. Each Internet node/host goes through several stages

during the lifetime of the botnet. The stages, and the back-and-forth transition between

them, associated with an Internet node that can join a botnet are more complex compared

to those of an infected computer (node) which remains isolated. These complex node stage
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characteristics lead to botnet expansion behavior that cannot be explained or predicted us-

ing the available analytical models for computer malware propagation. Further, as shown

in the literature review, recent analytical botnet models have not addressed this issue ade-

quately. In this thesis, we intend to fill this gap.

1.2.1. Stochastic vs. Deterministic Modeling

When considering the analytical models, it is important to consider that every analytical

model for botnet expansion/lifecycle falls into either of the following two broad categories:

deterministic and stochastic. While a deterministic model is easy to develop and analyze, it

does not allow some critically important analysis permitted by a stochastic model which is

relatively more difficult to construct and analyze. Specifically, the botnet population size is

a stochastic process since dynamics of botnet expansion is probabilistic. In the determin-

istic models, the botnet population size is assumed to be a deterministic variable and the

arrivals/departures to/from the population are also assumed to have deterministic values.

As a result, the population size as a function of time is governed by an ordinary differential

equation which is written in an ad hoc manner. The deterministic models may capture the

mean population size accurately, however, this approach neither gives the distribution of

the population size nor its higher moments. On the other hand, increasing the number of

node stages causes a stochastic model to become intractable far more quickly in compar-

ison to a deterministic model; therefore, when developing a stochastic model, it becomes

imperative to limit the number of node stages considered.

1.3. Thesis Organization and Contributions

The contributions of this thesis can be summarized as follows:

• Analysis of botnet expansion and development of mathematical models which can

estimate the botnet size at any given time.
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• Evaluation of botnet mitigation strategies (attack on botnets and/or disinfection of

nodes) through the developed models for botnet size estimation.

• Threat analysis of botnets in 4G cellular wireless networks.

A comprehensive literature review is provided in Chapter 2 in which a thorough back-

ground information on botnets is first presented: we start by introducing botnet architec-

tures through some published studies focused on structural analyses and direct measure-

ments. Next, we briefly outline botnet detection methods, countermeasures against bot-

nets, and the methodologies used to measure the size of botnets. This is then followed

by a detailed presentation and examination of some simulation and experiments regarding

some botnets. Delving into the main theme of this thesis work, a literature review of exist-

ing analytical botnet expansion/lifecycle models is presented, concluding with an in-depth

analysis of one of the most recent models. In what follows, the contributions are explained

with more details while describing the thesis organization.

1.3.1. The SCom Botnet Models

In Chapter 3, we propose the following two Continuous-Time Markov Chain (CTMC)-

based models for prediction of the botnet size in the initial phase of botnet lifecycle:

SComF for the case of finite number of susceptible nodes (suitable for a botnet expanding

in a closed environment such as an administrative domain, or a LAN) and SComI for the

case of infinite number of susceptible nodes (suitable for a botnet expanding in the larger

Internet). Having access to such models would enable security experts to have reliable

size estimates and therefore be able to defend against an emerging botnet with adequate

resources. We derive the probability distributions for both models and provide some nu-

merical results as well as a simulation study accompanying the numerical analysis of the

SComF model using the GTNetS network simulator.
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1.3.2. The SIC Botnet Model

In Chapter 4, we introduce the Susceptible-Infected-Connected (SIC) botnet lifecycle model.

The SIC model possesses some key improvements over earlier models: (1) keeping track

of only key node stages (Infected and Connected), hence being applicable to a larger set of

botnets; and (2) being a CTMC-based model, it takes into account the stochastic nature of

population size evolution. The SIC model helps the security experts with the following two

key analyses: (1) estimation of the global botnet size during its initial appearance based on

local measurements; and (2) comparison of botnet mitigation strategies such as disinfection

of nodes and attacks on botnet’s Command and Control (C&C) structure. The analysis of

the mitigation strategies has been strengthened by the development of an analytical link

between the SIC model and the P2P botnet mitigation strategies. Specifically, one can an-

alyze how a random sybil attack on a botnet can be fine-tuned based on the insight drawn

from the use of the SIC model. We also show that derived results may be used to model the

sudden growth and size fluctuations of real-world botnets.

1.3.3. The SIC-P2P Botnet Model

Among the many underlying architectures powering these overlay networks (i.e., botnets),

Distributed Hash Table (DHT)-based Peer-to-Peer (P2P) botnets are perhaps the most re-

silient, hence the most threatening types. In Chapter 5, we propose the SIC-P2P botnet

lifecycle model which is an extension of the previously-introduced SIC model. Being the

first analytical model enabling such an analysis, the model allows a detailed evaluation of

mitigation strategies such as index poisoning and sybil attack against DHT-based P2P bot-

nets. The SIC-P2P model is also a CTMC-based model and as such, it properly captures

the stochastic nature of population size changes. We derive closed-form expressions for the

time-dependent means and variances of the number of nodes, among other analytical re-

sults, and provide a thorough numerical analysis. Until now, the insight gained from the use

of the SIC-P2P model could have been obtained only through large-scale, time-consuming,
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and expensive simulations and testbed experiments. The model therefore serves as a rapid,

low-cost tool helping security experts evaluate and fine-tune mitigation strategies before

deployment.

1.3.4. Botnets in 4G Cellular Networks

Long Term Evolution (LTE) is the main air interface technology for the 4G cellular net-

works. Voice over LTE is being, or scheduled to be, offered using the packet-switched

technologies, rather than using the traditional circuit-switched ones [14]. Further, IP Multi-

media Subsystem (IMS) is scheduled to be deployed in the core network with the LTE being

the primary cellular access technology. Such a paradigm shift in offering vital telecommu-

nication services has many technological benefits, but it also presents a host of other new

challenges, the most important of which, in our view, is the maintenance of security and

availability of service in the face of Internet-world security threats such as botnets. The

threat of botnets and DDoS attacks due to the all-IP, non-circuit switched architecture, has

been reported to be the greatest concern of telecom operators [15]. As botnets have shown

to be the platform of choice to launch DDoS attacks in the Internet [16], the aforementioned

concern of the operators is very well placed.

Finally, as our last contribution, in Chapter 6, we report a vulnerability of the air inter-

face of 4G cellular networks, the LTE, to DDoS attacks launched from botnets. The attack

scenario constitutes of a botmaster instructing the botnet nodes to start sending or down-

loading dummy data in order to overwhelm the air interface, thereby denying service for

voice users. Through simulation using a capable LTE simulator, we determine the number

of botnet nodes needed per cell that can effectively render the cellular network unusable.

1.3.5. Conclusions, Future Work, and Appendices

The thesis is concluded in Chapter 7 by providing a summary of the contributions, drawing

conclusions, mentioning the produced publications, outlining possible future work, ending
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on a note highlighting the significance of the results obtained and the overall contribution

of this thesis to knowledge and practice in the domain of computer and telecommunication

network security.

This document has three extensive appendices which contain the great portion of deriva-

tions of various models in order to remove the tediousness from the main text. Specifically,

Appendix A contains some parts of the derivations of the SComI and SComF models as

well as the code used in the simulation regarding the SComF model using the GTNetS net-

work simulator. Finally, Appendix B and Appendix C contain some parts of the derivations

of the SIC and SIC-P2P models, respectively.
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2. Literature Review

In this chapter, we explore all major aspects of botnets, from their construction and archi-

tecture, to their detection and countermeasures, ending with describing ways to measure,

simulate, and model them. Relevant to the P2P aspect of some of our developed models,

we also introduce some analytical studies, simulations, testbed, and real-world experiments

dealing with P2P botnets and their mitigation strategies.

2.1. Botnet Design, Construction and Control

2.1.1. Infection Vectors

To create a botnet, the first step is to infect the hosts (personal computers, or nodes). In re-

cent major botnets, cyber criminals have been using numerous infection vectors1 all at the

same time which is a major shift from earlier one-method-only attacks (e.g., e-mail attach-

ments). In what follows, some of the infection vectors utilized by botnets are mentioned.

Bailey et al. [17] give the SDBot botnet as an example which utilizes numerous methods

such as file sharing sites, peer-to-peer networks, exploits of common Windows vulnerabil-

ities and backdoors which have been left by previous malware. They also note the trend of

gaining entry into a system from operating system and low-level services exploits to higher

layer web-based methods (e.g., sites exploiting vulnerabilities in Flash player).

1The term “vector” is used in biology and computer anti-virus industry to refer to the carrier of virus or
means of infection.
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P2P file sharing has been an ideal medium to get the malware on victims’ computers as it

is usually difficult, if not impossible, to inspect the content of the file before its full recep-

tion from anonymous sources. Wang et al. [18] observe this exploitation in P2P networks

and further note that although recent P2P botnets (to be explained shortly) have tapped into

existing P2P networks to recruit nodes, in order not to be bound by the size of the net-

works, they have used other methods such as e-mail attachments, instant messages and file

exchanging simultaneously as well.

Dittrich and Dietrich [19] have examined the Nugache botnet and observed its infec-

tion vectors to be a sophisticated mix of direct and indirect propagation methods. The

direct propagation methods include: (1) exploiting vulnerabilities in two Windows services

which are remotely accessible; (2) when inside a host, using the Windows Address Book

to e-mail the malware automatically to the address book entries; and (3) sending instant

messages (on AIM and MSN) to potential victims with the content of the message being

some random sentences with a link to a site which hosts the malware and can exploit the

vulnerabilities of the visiting user. The authors also note an indirect method of propaga-

tion which works as follows: Botmasters have created a “trojan horse” out of a freeware

video editing application. They have altered the program to include their malware and then

re-distributed the software on common freeware sites. Unaware users who download and

install the video editing software get also infected as a result.

2.1.2. Construction and Command & Control

Once the malware is on the victim’s computer, it tries to connect the computer (the node) to

the botnet. Command & Control (C&C) refers to the mechanism that the botmasters use to

send commands to the nodes in order to control them, i.e., to provide instructions for illicit

activities as well as to update/manage the malware residing in the nodes.

C&C mechanism of botnets can be centralized, peer-to-peer, unstructured or a hybrid

of these architectures [17, 20, 21]. We will describe the centralized botnets shortly. Peer-
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to-Peer botnets and Unstructured/Hybrid botnets are treated in the next sub-sections. It

is important to note that a botnet does not necessarily fall into one category or the other.

For example, variants of the Conficker botnet (introduced earlier) have evolved from one

design to another and the botmasters have kept all these portions operational at the same

time.

Like most network technologies, botnets also started with centralized topology by hav-

ing a C&C server as the focal point of the botnet. Pros of such a centralized topology

include the ease and speed of sending commands to nodes. The obvious disadvantage of

such a topology is the dependence of the whole botnet on the availability, reachability and

performance of the C&C server. To attack a botnet, the first natural step is the takedown

of the C&C server which effectively renders the botnet useless, despite the nodes remain-

ing infected. Having a central C&C server as the origin and destination of all C&C traffic

leads to higher probability of detection of the server and its subsequent takedown as well.

In order to alleviate this weakness, recent centralized botnets use multiple C&C servers as

backups (e.g., in the case of Conficker’s centralized variant, thousands of random domain

names generated daily pointing to the main servers with changing IP addresses.).

Centralized botnets have used Internet Relay Chat (IRC) and Hypertext Transfer Protocol

(HTTP) protocols for their C&C traffic. Gu et al. [22] define two styles of communication

which result from these protocols: (1) “push” style, using the IRC protocol, based on which

commands are pushed to the nodes by the C&C server; and (2) “pull” style, using the HTTP

protocol, based on which commands are pulled by the nodes from the C&C server.

Zeidanloo and Manaf [21] attribute the choice of IRC protocol (used for real-time In-

ternet text messaging) as the C&C protocol due to possessing features such as low latency

and anonymous communication, capability for group and private communication and sim-

ple setup/commands. On the other hand, the choice of HTTP is attributed to its ability to

blend with other web traffic and bypass firewalls which usually look for and block the IRC

traffic.
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2.1.3. Peer-to-Peer Botnets

Mansfield-Devine [2] reports that the biggest shift in botnet design in recent years has

been the move from centralized C&C to the distributed Peer-to-Peer (P2P) model which

provides resilience against attacks and server takedowns. The prominent examples of such

P2P botnets are the Storm botnet [23] and its recent improved version, the Waledac botnet

[24]. The biggest advantage of P2P botnets is the fact that neutralizing some nodes (which

act both as nodes and C&C servers) will not disrupt the botnet operation as a whole; a fact

that has been shown in real life to be true by the aforementioned botnet examples.

Wang et al. [18] categorize the P2P botnets into three classes: “parasite”, “leeching”

and “bot-only”. A parasite P2P botnet is built within an existing P2P network such as a

P2P file sharing network. The botnet can then put in use the existing protocols in the P2P

network for its C&C traffic. In a leeching P2P botnet, nodes have been infected possibly

in many ways; however, they join an existing P2P network and use it for their C&C traffic.

Finally, the bot-only P2P botnet is a botnet that is purely composed of infected nodes and

the P2P network has been designed from scratch by the botmasters for the specific purpose

of routing the C&C traffic.

Among the three classes, parasite P2P botnets are easier to construct, but they are less

flexible as botmasters have to rely solely on existing P2P protocols. On the other hand,

bot-only P2P botnets offer more flexibility to botmasters in terms of choices for P2P proto-

cols. Leeching and bot-only P2P botnets are more vulnerable in the initial phases of botnet

expansion as nodes are initially isolated and have to find other nodes to connect to; this

process can be interfered with by an attack on the botnet. Finally, leeching P2P botnets are

stealthier as infected nodes are mixed with other clean nodes in the P2P network.

The aforementioned “pull” and “push” C&C styles for centralized botnets also exist in

P2P botnets. In the pull style, nodes actively seek to find the location where the botmaster’s

commands are and subsequently request the commands. In push style, nodes remain idle

until commands are forwarded to them; they in turn forward the commands to other nodes.
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As an example, the pull style is described as follows: Each piece of content in a Dis-

tributed Hash Table (DHT)-based P2P network is saved in association with a key which

uniquely identifies the location of the content. When a node in a P2P network wants that

specific content, it initiates queries for the key and the content is subsequently returned. In

a P2P botnet, the keys are defined by the botmaster and all nodes know about them in one

way or another (hard-coded or otherwise calculated in the malware). The botmaster stores

the commands in the P2P network as content under those predefined keys. The nodes then

initiate queries periodically for those keys to find and receive the commands. This mecha-

nism allows the botmaster to remain unidentifiable, all the while capable of communicating

their commands to all the nodes in the botnet.

2.1.4. Unstructured and Hybrid Peer-to-Peer Botnets

Apart from the centralized and P2P botnets, Bailey et al. [17] mention that botnets can be

completely unstructured. Although such a botnet can be easily constructed, it has major

performance problems which will likely prevent it from steady growth. In such a botnet, a

node knows only about one other node to which it can pass along the commands. Botmas-

ter, and nodes, would need to randomly scan the Internet to find other botnet nodes which

leads to high latency in command propagation and subsequent low performance of the bot-

net. The only advantage of such botnets is that they are extremely resilient to attacks, as

the takedown of one node has no effect on the botnet as a whole.

Researchers have recently tried to “outpace” the botmasters by proposing novel botnet

designs, implementing both “push” and “pull” styles. They have then analyzed how such

botnets can be attacked, in the hope of being prepared for future botnets. Wang et al. [25]

have proposed the “Hybrid P2P botnet” in which the existing P2P protocols and architec-

tures have not been reused. In the Hybrid P2P botnet, nodes can forward the commands

to their peers as well as proactively query their peers to receive commands. On the other

hand, Vogt et al. [26] have proposed the “Super Botnet” in which the botnet is composed
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of several smaller centralized botnets, each of which possessing a C&C server that makes

the commands available to the nodes using the “pull” mechanism. Further, commands can

be “pushed” from one small botnet to the other within the larger botnet. Although Hybrid

P2P botnet and Super Botnet have interesting designs, their performance and effectiveness

are unknown in the real world as they are purely hypothetical botnets.

2.2. Botnet Detection

To attack botnets and reduce their threat, we need effective methods to detect them. Detec-

tion of botnet’s C&C traffic is far from straightforward, as botmasters continuously evolve

botnet designs which renders existing detection methods useless. In what follows, we take

a brief look at recently proposed methods for botnet detection.

Bailey et al. [17] note the types (or bases) of detection methods as: “signatures”, “coop-

erative behaviors” and “attack behaviors”. Wang et al. [27], however, refer to the methods

based on the first type as “static” methods and to the ones based on the last two types as

“dynamic” methods.

In the category of signature methods, Binkley and Singh [28] have proposed the correla-

tion of the following two sets of data: (1) IP addresses of the hosts that are seen in an IRC

channel; and (2) IP addresses from which Internet scanning have been conducted. Com-

mon IP addresses between these two sets of data are high-probability candidates for being

part of an IRC-based botnet. While maybe effective in some instances, signature-based de-

tection methods are now largely unsuccessful due to the recent use of encryption for C&C

traffic.

In the category of “cooperative behavior” methods, three prominent examples are BotH-

unter [29], BotSniffer [22] and BotMiner [30]. BotHunter [29] identifies a suspected in-

fection event by correlating data from multiple detection systems and comparing the result

against known malware propagation processes. BotSniffer [22], and its improved version,
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BotMiner [30], have the same foundation: both analyze crowd-like behaviors in the traffic

patterns and, in the case of BotMiner, a correlation with the traffic of detected malicious

activities is done which results in identification of botnet members. Besides these three

examples, methods described by Wang et al. [27] as “anomaly detection” methods roughly

fall under this category as well. These latter methods include the one proposed by Gian-

vecchio et al. [31] which analyzes Internet chat patterns to classify human and bots as well

as another one described by Wang et al. [27] themselves which analyzes the P2P traffic in

search of peers which initiate periodic queries for the same keys.

Finally, as an “attack behavior”-based method, Brodsky and Brodsky [32] have based

their proposal on the simple assumption that botnets tend to do their malicious activity,

e.g., sending e-mail spams, in relatively short amount of time. The traffic analysis taking

this assumption into account would lead to the detection of the botnet. Like most other

detection methods however, this method is not too difficult to evade, e.g., by introducing

some randomness in the timing of the activities.

2.3. Countermeasures Against Botnets

After having mentioned some of the detection methods as well as their general categories,

in what follows, some methods for attacking botnets (botnet mitigation strategies) are de-

scribed. Before proceeding further, however, it is important to point out that the ethical

aspect of the research on botnets is an important one and has been explored by Dittrich

et al. [33]. They note the difficulties of combating botnets in real life as boundaries blur

and researchers frequently find themselves having control or needing to take control of

machines owned by private citizens and corporations located across many jurisdictions.

Researchers have proposed many methods to attack botnets. However, in the case of

non-P2P-based botnets, these methods are largely ad hoc measures which are effective

only against the specific botnet under consideration. For P2P botnets, on the other hand,
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there are three generally applicable attack methods as follows: (1) Index poisoning; (2)

Sybil attack; and (3) Eclipse attack. These methods, however, were originally created and

intended for normal P2P networks, as P2P botnets were not around yet. They were, and

still are, largely used by corporations fighting illegal distribution of copyrighted content on

P2P file sharing networks.

2.3.1. DHT-based P2P Botnets

In a Distributed Hash Table (DHT)-based P2P botnet, nodes find each other, construct their

routing tables, and relay the traffic to, or closer to, its intended destination based on normal

DHT methods. In a DHT-based P2P botnet like the Storm botnet, with a Kademlia-based

[34] DHT implementation, each botnet node has an ID. Each content to be stored in a

node on the network gets a unique hash key2 with the same size (number of bits) as the

node IDs; the content is therefore denoted as the pair <hash key, content>. When deciding

where to store the content on the network, a distance is calculated between the hash key of

the content and the node IDs using the XOR operation. The content is therefore stored on

the node whose ID is closest to the hash key. In order to find (lookup) a particular content

using its hash key, a search is launched to find nodes whose IDs are close to the hash key

of the content; these nodes likely have the content.

The botmaster also relies on the aforementioned methods for the C&C of the botnet;

therefore, the decreased efficiency of the C&C mechanism as a result of the attacks trans-

lates into an inefficient botnet. In what follows, we explain the aforementioned attack

methods briefly using the terminology relevant to P2P botnets.

2.3.2. Index Poisoning, Sybil, and Eclipse Attacks

Index poisoning, introduced by Liang et al. [35], is used for “poisoning” the index (address

space) of a DHT-based P2P botnets. This method entails injecting bogus content (to replace

2Index, key and hash key are terms that are frequently used interchangeably.
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the original content which is botmaster’s commands) under the same keys associated with

the original content. After the poisoning, when nodes (bots) of the botnet try to locate the

content, they will likely receive the bogus content rather than the botmaster’s commands.

This leads to the disruption of the C&C mechanism of the botnet.

Sybil attack, first presented by Douceur [36], is an attack method under which numerous

clean nodes (sybils) are injected into the P2P botnet, posing themselves as “legitimate”

botnet nodes. They then try to re-route, block and corrupt the normal C&C traffic flowing

in the P2P network, thereby lowering the efficiency of the C&C mechanism of the botnet.

First introduced by Castro et al. [37], an Eclipse attack can be carried out by injection

of numerous clean nodes into the P2P botnet. However, this time, the clean nodes try

to surround, or eclipse, one or more botnet nodes, thereby controlling all incoming and

outgoing C&C traffic of the eclipsed nodes. This method leads to the eclipsed botnet nodes

effectively becoming disconnected from the botnet.

Using simulations, Davis et al. [38, 39] have shown the effectiveness of sybil attacks on

P2P botnets. On the other hand, Ha et al. [40] have shown that Eclipse attacks are not as

effective as index poisoning or sybil attacks against P2P botnets. It is important however

to note the limitation of the carried out simulations which is the fact that they have been

application-layer-only simulations without realistic, or near-realistic, traffic mix. Consid-

ering the simulations carried out across several studies, one can infer that the simulation

results obtained are usually open to debate and inconclusive, as simulations of botnets,

including attack on botnets, are extremely burdensome and need simplifications on many

levels.

2.3.3. Index Poisoning and Sybil Attack: An Analytical View

Later in this thesis, we will use some analytical results with regard to the effect of index

poisoning and sybil attack on botnets. As we have just given an overview of these attack

methods, it is appropriate to follow up the overview with some analytical results presented
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in [18] which will be used later on in Chapter 5.

Wang et al. [18] have provided an analysis which allows the determination of Ps, the

probability that a botnet node obtains a real command, based on various parameters of the

index poisoning and sybil attacks; these parameters as well as related botnet variables are

as follows:

Ps probability that a botnet node obtains a real command.

n botnet size.

np number of nodes poisoned in the target zone (target zone is the address space close

to the hash key generated by the botmaster from its content, i.e., the botnet’s C&C

commands).

ns number of sybil nodes inserted randomly in the network, in the case of random sybil

attack, or inserted in the target zone, in the case of targeted sybil attack.

c number of first bits in common with a hash key (used to determine the size of target

zone).

ntz number of nodes in the target zone which is determined by n and c as follows: ntz =
n
2c .

b number of bits improved per step (i.e., getting closer to the destination) for a lookup for

a hash key.

ltz number of steps required in the lookup process to get to the destination within the target

zone. The mean value of ltz is Log2[ntz]
b .

The attacks constitute of intercepting the lookup query made by a botnet node to reach

the destination and returning bogus content, instead of the real botmaster C&C commands,

to the initiator of the query. To carry out the attacks, first a target zone around the destina-

tion is set up with a “radius” that is determined by c. The target zone must be big enough
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that at least one step of the lookup process falls within it before reaching the destination.

Let x be the probability that a poisoned node (or sybil node) is chosen in a step within the

target zone. For the lookup process to be successful, i.e., reaching the destination contain-

ing real botmaster C&C commands, no poisoned node (or sybil node) should be chosen in

the steps leading to the destination. Therefore, Ps = (1− x)ltz .

For an index poisoning attack, x =
np
ntz

. With ltz =
Log2[ntz]

b and ntz =
n
2c , the obtained

formula is the following:

Ps =

(
1− 2cnp

n

) Log2[n]−c
b

(2.3.1)

On the other hand, for the targeted sybil attack, x = ns
ns+ntz

. With ltz =
Log2[ns+ntz]

b and

ntz =
n
2c , the obtained formula is the following:

Ps =

(
1− ns

ns +
n
2c

)Log2[ns+ n
2c ]

b

(2.3.2)

Finally, for the random sybil attack, the target zone is simply the whole network, i.e.,

ntz = n. Therefore, x = ns
ns+n . With ltz =

Log2[ns+n]
b , the obtained formula is the following:

Ps =

(
1− ns

ns +n

)Log2[ns+n]
b

(2.3.3)

2.4. Botnet Measurements

Responding to the growing threat of botnets in the past few years, researchers have paid

much attention to measuring the size of botnets in order to determine their threat level. In

what follows, we provide a brief overview of these efforts and will conclude the section

with some notes regarding the effectiveness and relevance of such measurement studies.

Zhu et al. [41] mention the measurement techniques applicable to centralized, mostly

IRC-based, botnets. They note the use of Honeynets [42], in which Honeypots run un-

patched (i.e., still vulnerable) versions of Windows operating system in virtualized envi-
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ronments. The Honeypots serve to gather data on botnets as botmasters, and the propa-

gating malware, cannot distinguish them from other normal machines3. Another reported

method is the use of a “drone” to join the IRC server/channel used by the botnet and record

the information regarding bot joining, etc. Finally, manipulation of Domain Name System

(DNS) record of the C&C server (e.g., IRC server) and redirection of connection requests

is another method used to gather data on botnets.

Advent of P2P botnets have further complicated the measurement efforts of the research

community, as there is a lack of a central measurement point in such botnets. The com-

monly used method for measuring the size of a P2P network is the use of a “crawler”

which uses “get peers list” type commands to learn about the peers/nodes in the P2P net-

work. However, Kang et al. [43] have shown that such a method misses a large portion

of the population, i.e., peers who are behind firewalls and Network Address Translation

(NAT) devices. They have proposed a method called Passive P2P Monitor (PPM) which

is used for the enumeration of Storm botnet nodes and is based on injection of numerous

“routing only” nodes into the P2P botnet; these nodes gather data from the normal C&C

traffic flowing in the P2P network.

As the number of measurement studies on botnets has grown, so has the number of dis-

crepancies in the reported results. Rajab et al. [44] attribute the inconsistencies to the used

counting techniques and mention “cloning”, “temporary migration”, and “hidden struc-

tures” as issues affecting the accuracy of the size measurements. On the other hand, Kanich

et al. [45] attribute such discrepancies to: (1) “temporal dynamics” such as address space

reuse; (2) “address aliasing” due to, for example, the presence of NAT devices; (3) activ-

ities of other participants such as other researchers, botmaster’s competitors, etc.; and (4)

bots piggybacking on existing protocols. Finally, regarding botnet size measurement re-

sults, Rajab et al. [44] state: “we hear widely diverging answers. In fact, some may argue,

contradictory.” On the same topic, Kanich et al. [45] state: “our community should have

3Honeynets can be used to study any type of botnet/malware; their use is not limited to centralized botnets.
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considerable skepticism about the veracity of botnet measurement results going forwards.”

2.5. General P2P Botnet Simulations

As botnets which have a P2P structure are the focus of some of the work done in this thesis,

in this section, we describe some of the important simulation models developed for such

botnets.

Using the stochastic Monte Carlo simulation, Wang et al. [46] investigated P2P botnet

topologies and studied botnet size and number of peers under worm infection and coun-

termeasures. The study therefore provides some insight with regard to the robustness and

effectiveness of the P2P botnet under analysis. The study is limited due to the used simula-

tion environment and as such, it lacks formulas to examine the botnet size, which in general

limits any botnet analysis by a third party.

The population size of the Storm botnet [47] has been studied by Ruitenbeek and Sanders

[48] through simulation of a Stochastic Activity Network (SAN) model (a variant of stochas-

tic Petri nets). The SAN model and its parameters have been loosely based on the infor-

mation gathered on the Storm botnet. The SAN models the lifecycle of a node with four

stages: Susceptible, InitialBotInfection, ConnectedBot, and FullyConnectedBot. It is as-

sumed that the number of nodes in the Susceptible stage is infinite and the time interval for

a node to move from one stage to the next one in the last three stages are exponentially

distributed with different parameters (this effectively makes the model very close to an an-

alytical CTMC model). It has been also assumed that the move of a node between stages

succeeds with certain probability and unsuccessful nodes are removed from the experiment.

Success probabilities may be used to account for the impact of mitigation strategies on the

growth of the botnet. The paper presents simulation results for the mean population size

of nodes in FullyConnectedBot stage as a function of time for different success probabili-

ties between stages. It may be seen that when success probability is one, the botnet grows
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exponentially.

As an analytical model further exploring the aforementioned simulation model [48],

Kolesnichenko et al. [49] develop a set of ordinary differential equations (ODEs) using

mean field theory. This set of ODEs captures the transition of nodes from one stage to an-

other. The numerical solution of this set of ODEs are presented and the focus of the paper

is on showing that mean field theory produces the same results much faster compared to

the simulations conducted in [48]. Further, this study too shows exponential growth of the

number of nodes, as in [48]. The limitation of the method, however, is that the stochastic

analysis of the model is not possible as variances/standard deviations cannot be derived

using this deterministic approximation.

2.6. DHT-based P2P Botnets and Their Mitigation

Strategies: Simulations and Experiments

In this section, we present some simulation models and experiments that focus on DHT

details and evaluate attacks such as index poisoning and sybil attack.

Sybil attack against the Storm botnet has been studied using graph theory-based simula-

tions by Davis et al. [38]. The study reveals information such as: (1) the effect of the ratio

between the number of sybils and the botnet’s growth rate on the level of the disruption

of the botnet; (2) how the duration of the sybil attack could affect its effectiveness; and

(3) the precise botnet design choices, such as the size of the peer-list of each botnet node,

do not seem to have much effect on the sybil attack’s effectiveness. The study concludes

on the note that packet-level simulations, with more realistic background traffic, delays,

and network size are needed to arrive at more definitive conclusions. The authors have

extended their work in [39] using a refined graph model that captures more accurately the

P2P botnet’s search query mechanism. Using the new model, they have then determined

that slower-rate sybil injection with random placement of sybils is nearly as effective as
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higher-rate injection with targeted placement. Finally, the authors point out that the results

are not confined to the Storm botnet and should be applicable to all P2P botnets sharing

Storm’s core operating principals.

A study of the structure of P2P networks running Kademlia, one of few P2P protocols

widely used in practice, has been reported by Ha et al. [40]. The developed simulation

testbed incorporates the actual code of a real Kademlia client software to increase the real-

ism of the simulation environment. Many P2P network parameters from a graph-theoretical

perspective have been studied using the testbed. They have also investigated countermea-

sures such as index poisoning and sybil attack. One notable reported result is that, in

sybil attack, it is more effective to spread out the IDs (keys) of the sybils than to inject

more sybils in a concentrated fashion. With regard to the built testbed, they acknowledge

that simulation of a botnet at a realistic scale is computationally prohibitive and cannot be

achieved with a single PC within a reasonable amount of time; the built testbed is therefore

a 30-machine installation which runs the distributed simulation. However, even with this

powerful testbed, in order to have the desired scalability, they had to limit the simulation to

IP layer and above and ignore background traffic and IP routing protocols. As the authors

of the aforementioned papers [38, 39] pointed out, these simplifications can potentially in-

fluence significantly the outcomes, as peers are sensitive towards the propagation delays

which determine from which types of nodes (legitimate, poisoned, or sybil) commands are

received first.

Apart from the aforementioned simulations and experiment which were examined in

depth as examples, there are few other relevant works which are introduced briefly as fol-

lows: Holz et al. [23] reported the first instance of attacking a real-world P2P botnet, the

Storm botnet. The authors report on having used a sybil attack to infiltrate the botnet in

order to enumerate the number of botnet nodes. Further, they report on having successfully

executed an index poisoning attack which has disrupted the C&C mechanism of the botnet.

A hypothetical P2P botnet with improvements such as having reputation and proof-of-work
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systems was simulated and the effectiveness of a sybil attack against the botnet was studied

by White et al. [50]. Reputation systems introduce a metric of trust between peers in the

botnet and proof-of-work systems are cryptographic puzzles that are time consuming for

a client (a sybil that wants to join) to solve, but are quickly verifiable by the server (the

targeted botnet node). They found that the reputation system made the botnet more vul-

nerable to the sybil attack, contrary to the proof-of-work system which made the botnet

stronger. They consider the simulation of layers below the application layer unnecessary

which might be a point of concern, considering the conclusions made by an aforementioned

study [38]. In terms of simulation run time, they indicate that a simulation would take sec-

onds in the case of 1,000 botnet nodes, but that it would grow somewhat exponentially, for

example to more than a day in the case of 20,000 botnet nodes. Finally, Calvet et al. [51]

reported an at-scale emulation of the Waledac botnet (a recent P2P botnet) in laboratory

conditions. The emulated botnet consists of approximately 3,000 nodes and has been made

possible using an equivalent of 98 powerful PCs and about 30 virtual machines per PC.

Using the testbed, they report the effectiveness of the sybil attack against this P2P botnet

by measuring parameters such as e-mail spam output and the connectivity of the botnet.

Some of experiment’s results, however, are sensitive to how much resource is given to the

C&C server which remains an unknown. Further, the authors point out the challenge in the

experiment methodology which is the simulation of network characteristics and user behav-

ior and mention that the emulation of the operating environment of the botnet is somewhat

simplistic.

While experiments are generally known to produce the most realistic results, the scale of

the operations is usually prohibitively large. On the other hand, simulation models may be

designed to capture more of the real-world details compared to what analytical models can

do; however, the computational cost is generally too high. This is why we have embarked

on this research work and developed some analytical botnet models which are presented in

the following chapters.
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2.7. Analytical Botnet Models

Abstracting away the name of actors in the system to be modeled, developing analytical

models for spread of computer virus, expansion of botnets and disease spread (biology)

are similar problems. In the past two decades, researchers have adapted the analytical

results from epidemiology [52] to malware propagation and, recently, to botnet lifecycle

modeling. We limit, however, the overview in this section to studies regarding botnet pop-

ulation/lifecycle modeling to ensure that the models can be reasonably compared to one

another. The only exception would be the first major analytical model for the spread of

computer virus [11] which is presented next due to its historical significance.

2.7.1. Analytical Models: The First Major Work

In the development of an analytical model for computer virus propagation, Kephart and

White [11](1991) used the common epidemiological approach by ignoring the details of in-

fection inside a single machine (node) and considered the node to be in one of few stages,

e.g., Infected, Uninfected, Immune, etc. Further, another simplification common in epi-

demiology is the abstraction of the details of viral transmission. A probability per unit time

is therefore used based on which an infected node will infect an uninfected/susceptible node

(and the same for disinfection). These assumptions and modeling techniques are employed

in all subsequent models introduced by other researchers as well as in our own work.

They have formulated a directed random graph model in order to study the virus prop-

agation between nodes. An individual machine is a node in the graph with directed edges

from a given node j to all other nodes that can be infected by the node j. An infection

rate is associated with each edge and a disinfection rate is associated with each node. The

model that is considered in this study is the classical epidemiological Susceptible-Infected-

Susceptible (SIS) model, i.e., nodes can be in either of two stages, Susceptible or Infected

and they can go back and forth between these stages. The authors then proceed to derive
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the mean number of infections as a function of time from a deterministic approximation of

the described graph.

A random graph of N nodes is constructed with probabilistic decisions regarding the

inclusion of edges which can be up to N(N − 1). The mean number of edges is therefore

pN(N − 1), with p being the probability of edge inclusion. Each edge has an associated

infection rate β jk (between node j and node k) and the disinfection rate from each node

j is δ j. The deterministic approximation is as follows: they consider all infection and

disinfection rates to be identical, ignore the details of graph connectivity (number of nodes

is therefore the important value rather than which nodes) and ignore the variation in the

number of edges emanating from each node. As a result, the infection rate along each edge

is denoted by β and the disinfection rate from each node by δ . Finally, considering N to

be large, a continuous quantity i is defined to represent the fraction of Infected nodes, i.e.,

i ≡ I/N (both i and I are functions of time).

As the mean number of edges in the graph is pN(N − 1), the mean number of edges

emanating from a given Infected node is b̄= p(N−1). As the fraction of neighboring nodes

that are Susceptible is 1− i, the mean number of Susceptible nodes that can be infected by

this given Infected node is b̄(1− i). They further define β ′, which is equal to β b̄, to be the

average total rate at which a node attempts to infect its neighboring nodes . The average

system-wide rate at which Infected nodes infect their neighboring Susceptible nodes is

therefore β ′I(1− i). On the other hand, δ I is the system-wide rate at which Infected nodes

are disinfected. The deterministic differential equation describing the time evolution of i is

therefore as follows: di
dt = β ′i(1− i)− δ i. The authors then go on to analyze this derived

formula and discuss different scenarios with regard to the possibility of an epidemic.

In a stochastic treatment of the same graph, on top of the approximations made above

to derive the deterministic case, they assume that the various probabilities are independent

(i.e., there is no correlation between the probability that a node is infected and the probabil-

ity that its neighbors are infected). In this case, the main resulting equation is a probability

28



flow equation which is as follows:

d p(I, t)
dt

=−p(I, t)[I(1− i)β ′+δ I]+ p(I+, t)I+δ + p(I−, t)[I−(1− i−)β ′] (2.7.1)

where, p(I, t) denotes the probability distribution of I infected individuals at time t, I+ ≡
I + 1, and I− ≡ I − 1. For a graph with N nodes, this is a set of N + 1 coupled linear

differential equations which have been numerically solved. While many cases have been

discussed and derived, a general probability distribution for the number of infected nodes as

a function of time has not been presented. On the other hand, the model/study, has focused

on local methods for the spreading of computer virus (namely, computer program sharing

with other individuals), as the Internet, with its current form, capabilities, and popularity,

appeared much later. Finally, the model studied is, as mentioned, the SIS model, i.e., only

two node stages are considered. We will see later on that capturing the full dynamics of

botnet size fluctuations will need three node stages.

2.7.2. Stochastic Models

A probability model to estimate the number of machines infected per hour with the Conficker-

C botnet has been presented by Weaver [53]; the work includes derivation of the distribution

of the number of hourly UDP connection attempts made by an infected host and the con-

ditional distribution of the number of observed hits in the monitored IP space. The model

considers the Conficker botnet to be a worm and proposes a one-stage only (Infected stage)

model. To model a botnet, however, apart from the healthy/susceptible node stage, one

should consider at least two node stages (Infected nodes as well as nodes which subse-

quently manage to connect to the botnet and receive the C&C traffic). In this sense, the

presented model can only partially capture and model the botnet and its real firepower.

Li et al. [54] have introduced “genetic mechanism” as the topology construction mecha-

nism of botnets. Through this modeling method, they study “in-degree distribution”, short-
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est distance, and clustering coefficient of the constructed topology. The study, however,

lacks results regarding botnet size and various parameters thereof.

Spread of botnets in social networks has been studied by Li et al. [55]. The model can

predict the size of the botnet at any time with the knowledge of social networks’ topology

and the initial number of infected nodes. The model contains parameters for characterizing

user reading habits and the relationship between nodes in the propagation process. Specif-

ically, the probability Pi,t has been defined which is the probability that node i is infected

at time t and has the following relationship: Pi,t ≈ Pi,t−1 +∑ j �=i α jiPj,t−twi; where, twi is

a waiting time of a user who is reacting to a received malware and α ji expresses the re-

lationship that exists between node j and node i. The paper does not give details about

how α ji parameters are in fact calculated. From the probabilities, an average of number of

infected nodes is then calculated. This developed model is therefore a stochastic analytical

model which has been solved and evaluated numerically using the MATLAB package. It

seems that the accuracy of the results depends heavily on precise knowledge about multi-

tude of factors regarding social networks which are generally unavailable. Besides the lack

of details about some important parts of the model, there is an inherent shortcoming of the

modeling approach: botmasters are known to utilize many infection vectors, including so-

cial networks, at the same time to maximize the effectiveness of their recruiting campaigns.

This model, therefore, may ultimately reveal partial information about a botnet.

Finally, Wang et al. [56] presented a model of worm’s propagation probability in a P2P

overlay network using a fully-connected graph. This model is limited to small networks,

however, as having a square matrix of dimension n, with n being the number of nodes in

the network, to define and examine the network topology and botnet size leads to the model

being unusable for Internet-scale scenarios.
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2.7.3. Deterministic Models

Inspired by epidemic models, there have been several deterministic models proposed in

recent years [57, 58, 59, 60, 1] based on ordinary differential equations describing the flow

of nodes from one stage to another; these are briefly described as follows: Zou and Cun-

ningham [57] presented a model for the growth of a P2P botnet which is dependent on the

number of target hosts that can be infected at any one time. Dagon et al. [58] extended

the classic Susceptible-Infectious-Removed (SIR) model by taking into account the diurnal

pattern, i.e., the effect of time zones in malware propagation. Using the domain name redi-

rection technique to gather data on the Conficker botnet, Li et al. [59] customized the SIR

epidemic model. Xin-liang et al. [60], on the other hand, analyzed the relationship between

the number of infected hosts and propagation ratio based on the SIR model, drawing an

insight regarding the effects of different propagation ratios on botnet scale and stability.

Detailed Analysis of a Recent Botnet Model: Building on the previous works in

theoretical biology and the domain of malware/virus propagation modeling, Ajelli et al.

[1](2010) have recently proposed an analytical model which is based on the same premises

as the models explained earlier. They have proposed two models in their paper: (1) a model

in which Infected/Active nodes will never transition back to Susceptible stage; and (2) an-

other model, which we consider to be more complete and accurate, in which Infected/Active

nodes, when disinfected, can be re-infected again; therefore, there is a possible transition

from Infected/Active stage to Susceptible stage. We will describe the second model as fol-

lows: the model, like most previous works, is a deterministic model based on ordinary

differential equations describing the flow of nodes from one stage to another. With N de-

noting the total population size of nodes, these are the four stages of nodes: (1) S stage:

susceptible nodes that can become infected; (2) I stage: infectious nodes that can infect the

susceptible nodes; (3) V stage: infectious nodes that can infect the susceptible nodes on

top of being active in botnet’s illicit activities (nodes autonomously and probabilistically
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Figure 2.7.1.: Botnet model by Ajelli et al. [1]: model parameters and variables (left) and
flow among stages (right). Adapted from [1].

change stage between V and I); and (4) R stage: removed/disinfected nodes that remain

immune to all future infection vectors utilized by the botmasters.

The epidemic flow among these stages is depicted in Figure 2.7.1. The same figure also

describes all the model variables and parameters. As it is clear from the description of node

stages, Infected nodes are in one of two possible stages. A fraction p of Infected nodes are

in I stage and the rest, fraction (1− p), are in V stage. There is a flow between these two

stages I →V and V → I, with normalized rates of 1
1−p and 1

p , respectively. The actual rates

of transition between stage I and stage V depend on how often the nodes autonomously

decide to change stage between these two stages, with the stage switching rate μ . This

means that, on average, the time spent by a node in stage I and stage V is 1−p
μ and p

μ ,

respectively. Finally, the nodes in stage V can either transition to stage R with the rate γ or

transition back to stage S with the rate ρ . Time(τ), all rates and variables are normalized

with respect to the switching rate μ and the population size N as follows: t ≡ μτ , s ≡ S
N ,

i ≡ I
N , v ≡ V

N , β ≡ b
μ and γ ≡ g

μ . Finally, N = S(τ)+ I(τ)+V (τ)+R(τ) ∀τ . The system

of equations describing the (normalized) mean values of nodes in each stage is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ds(t)
dt = −β [i(t)+ v(t)]s(t)+ρv(t)

di(t)
dt = β [i(t)+ v(t)]s(t)− 1

1−p i(t)+ 1
pv(t)

dv(t)
dt = 1

1−p i(t)−
(

1
p +ρ + γ

)
v(t)
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The authors then proceed to present some figures regarding the evolution of variable

values, focusing in each case on changing a specific parameter. The above work has several

limitations: (1) this is a deterministic model and does not account for the stochastic nature

of botnet node population changes; (2) the analysis only leads to the mean number of nodes

in different stages of node lifecycle and higher moments cannot be obtained. Further, the

results may only be calculated numerically and no closed-form results are obtained for the

mean values; (3) in the model, new infections depend on the number of nodes in Infected

stages (I and V), which is not usually the case in botnets (Infected nodes not yet part of the

botnet are generally not able to cause new infections, e.g., see [47]); and (4) the developed

model embeds the potential characteristics of a botnet used solely for spamming purposes,

as I and V stages do not carry much meaning beyond spamming roles; for example, a

botmaster launching a DDoS attack instructs all, or most, nodes to “wake up” and attack

and nodes do not choose “autonomously” to go to sleep during such operation.

In this chapter, we have provided a literature review of all aspects of research regarding

botnets. In the last section, we focused on analytical botnet models and examined in-depth

some important works done so far. We have then observed the need to improve the state

of the art in this domain. As presented in the following chapters, we have attended to

this identified need and have developed analytical models that capture more accurately the

main characteristics of botnet population size fluctuations, namely, their stochastic nature

as well as dependency on proper selection of node stages and inter-stage transition rates.

In the next chapter, we start by presenting two relatively simple stochastic models that are

especially suited to predict botnet population size at the onset of botnet expansion. In later

chapters, we then move on to more comprehensive, albeit more complicated, analytical

botnet models.
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3. The SCom Botnet Models

3.1. Introduction

In this chapter, we present two Continuous-Time Markov Chain (CTMC) models of botnet

expansion. CTMC models take into account stochastic population size changes and the ap-

propriateness of their use has been confirmed [61] for malware propagation which happens

under the influence of the same physical processes affecting botnets. Each dimension in

the CTMC models represents a node stage, with the considered stages being Susceptible

(i.e., susceptible to be compromised) and Compromised (i.e, Infected and Connected to the

botnet). As botmasters use a plethora of methods to infect the nodes, it is reasonable to as-

sume that a node is never in Immune/Removed stage. Further, we do not track the number

of Infected-only nodes; limiting the number of stages allows the development of tractable

CTMC models.

We first model the unhindered growth of botnet when the population size is infinite. An

infinite population size is a realistic assumption considering the total number of devices

that are connected to the Internet today. As we consider Susceptible and Compromised

stages and the population size to be Infinite, we name the model SComI. Next, we model

the unhindered growth of botnet when the population size is finite. The assumption of

finite population size makes the model more suitable in case a segment of Internet or a

local/wide area network is the environment in which the botnet can expand. As we consider

Susceptible and Compromised stages and the population size to be Finite, we name the
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model SComF.

The chapter is organized as follows: Sections 3.2 and 3.3 present the model, the proba-

bility distribution derivation, and some numerical results regarding the SComI model and

the SComF model, respectively. Finally, we present the simulation study in Section 3.4.

3.2. SComI: Unhindered Botnet Expansion Model -

Infinite Population Size

In this section, we model unhindered growth of the botnet. In this model, a node is either

in Susceptible stage or Compromised stage. Since we assume that the number of nodes in

the Susceptible stage is infinite, we need to keep track of only the number of nodes in the

Compromised stage. We therefore define the state of the system to be the number of nodes

that are in the botnet (nodes in Compromised stage). Our development leads to a solution

for the time-dependent probability distribution of the number of nodes in the botnet.

3.2.1. State-transition-rate Diagram

1 2 n n+13 n-1

λ 2λ 3λ (n+1)λnλ(n-1)λ

Figure 3.2.1.: SComI botnet model: 1-dimensional CTMC

The state-transition-rate diagram for the SComI model is depicted in Fig. 3.2.1. As

initial condition, we assume that the size of the botnet is one. In this model, we consider

that each node in the botnet recruits one node (grows the size of the botnet by one) with

probability λΔt +o(Δt) in any Δt interval.
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3.2.2. Probability Distribution Derivation

3.2.2.1. Differential-Difference Equations

We let Pn(t) denote the probability that the state of the system will be n at time t. For this

pure-birth process, the rate of change of probability at any state is determined by setting it

equal to the difference of probability flows into and out of that state as follows:

dPn(t)
dt

= (n−1)λPn−1(t)−nλPn(t) n ≥ 1 (3.2.1)

The initial condition is P1(0) = 1.

3.2.2.2. Probability Generating Function

To determine Pn(t), the probability distribution, we first derive the corresponding Prob-

ability Generating Function (PGF). For that, we need to start from the aforementioned

differential-difference equation. The relationship between P(z, t), the PGF, and Pn(t), the

probability distribution is P(z, t) = ∑∞
n=0 Pn(t)zn. We can also write ∂P(z,t)

∂ t = ∑∞
n=0

dPn(t)
dt zn

and the initial condition in terms of PGF as P(z,0) = z.

We multiply both sides of (3.2.1) by zn and sum over n to yield:

∂P(z, t)
∂ t

=
∞

∑
n=1

[(n−1)λPn−1(t)zn −nλPn(t)zn]

= λ z2
∞

∑
n=2

(n−1)Pn−1(t)zn−2 −λ z
∞

∑
n=1

nPn(t)zn−1

= λ z2 ∂P(z, t)
∂ z

−λ z
∂P(z, t)

∂ z

We therefore have:

∂P(z, t)
∂ t

+λ z(1− z)
∂P(z, t)

∂ z
= 0 (3.2.2)

We need to solve this first-order Partial Differential Equation (PDE) in order to derive
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P(z, t). We use the Method of Characteristics [62] to solve this PDE as detailed in the

appendix, Section A.1, which results in the following P(z, t):

P(z, t) =
ze−λ t

1− z+ ze−λ t
(3.2.3)

3.2.2.3. Probability Distribution

To get the probability distribution Pn(t), we need to determine the inverse of the PGF in

(3.2.3). We use the transform property Aαn ⇔ A
1−αz [63, p.331] to obtain the following:

e−λ t(1− e−λ t)n ⇔ e−λ t

1− (1− e−λ t)z

And using the property fn−k ⇔ zkF(z) (for k > 0) [63, p.330], we derive Pn(t), the proba-

bility distribution of the number of nodes in the botnet at time t, as follows1:

Pn(t) = e−λ t(1− e−λ t)n−1 n ≥ 1 (3.2.4)

3.2.3. Numerical Analysis
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Figure 3.2.2.: SComI model: Mean and variance of botnet size

We now present some numerical results, depicted in Figs. 3.2.2 and 3.2.3, to illustrate

1The derived probability distribution is a geometric distribution for a fixed value of t.
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Figure 3.2.3.: SComI model: Time-dependent probability of the number of Compromised
nodes (botnet size) for λ = 0.5,1.0,1.5

how the derived probability distribution could be used in the study of any particular pa-

rameter of interest in the process of botnet expansion. Time-dependent mean and variance

have been calculated and drawn, depicted in Fig. 3.2.2, which show how quickly botnet

expansion can happen if the botnet is able to expand throughout the Internet. In each figure,

we demonstrate the effect of varying values of λ (with the unit of nodes/hour) which pro-

vides insight on how this parameter affects the speed of botnet expansion. In the numerical

analysis of the SComF model (introduced in the next section), we set the total number of

nodes (N) to 20 (N can be set to any arbitrarily large value of interest as well). To have a

comparison between the two models, in Fig. 3.2.3, we draw the time-dependent probabil-

ities for several values of N; in the figure, probabilities of botnet size being one (bottom

right), ten (bottom left), twenty (top right), or greater than twenty (top left) are depicted.
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3.3. SComF: Unhindered Botnet Expansion Model -

Finite Population Size

In this section, we model unhindered growth of the botnet with the finite population size

assumption. In this model, there is a fixed number of nodes in Susceptible stage and these

nodes move to Compromised stage as time goes by. State of the system is therefore defined

to be the number of nodes in the aforementioned stages. Our development leads to a so-

lution for the time-dependent probability distribution of the number of nodes in the botnet

(nodes in Compromised stage).

3.3.1. State-transition-rate Diagram

N-1,1 N-2,2 0,N1,N-1

λ 2λ λ2λ(N/2-1)λ
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Figure 3.3.1.: SComF botnet expansion model: 2-dimensional CTMC. In the middle, the
expansion rate starts to decrease.

The state-transition-rate diagram for the SComF model is depicted in Fig. 3.3.1. As

initial condition, we assume that the size of the botnet is one and there are N −1 nodes in

Susceptible stage. A state in the 2-dimensional CTMC is denoted by the duplet (n0,n1) (n0

is the number of nodes in Susceptible stage and n1 is the number of nodes in Compromised

stage, as indicated in the diagram). Since n0 + n1 = N, n0 and n1 are interdependent. As

a result, we can drop one of them. For simplicity of notation, let us denote Pn0,n1(t) as

Pn1(t) by dropping n0 (i.e., considering n0 to be the dependent variable). Finally, let us

use n instead of n1, thus Pn1(t) is replaced by Pn(t). Pn(t) is therefore the time-dependent

probability distribution of the number of nodes in the botnet.

In this model, we consider that each node in the botnet recruits one node (grows the size

of the botnet by one) with probability λΔt + o(Δt) in any Δt interval. The expansion rate
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continues to increase up to the point where half of the susceptible population has left this

stage. At this point, there are less nodes in Susceptible stage in the neighborhood of each

node of the botnet; this would lead to a decrease in the expansion rate from that point on.

The rate will continue to decrease until all nodes are in Compromised stage.

3.3.2. Probability Distribution Derivation

3.3.2.1. Differential-Difference Equations

For this birth process, the equations for the rate of change of probabilities are as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP1(t)
dt =−λP1(t) n = 1

dPn(t)
dt = (n−1)λPn−1(t)−nλPn(t) 2 ≤ n ≤ N

2

dPn(t)
dt = (N −n+1)λPn−1(t)− (N −n)λPn(t) N

2 +1 ≤ n ≤ N

(3.3.1)

Initial condition is P1(0) = 1. Without loss of generality, we assume N to be even.

3.3.2.2. Laplace Transform of the Probability Distribution

In order to derive the probability distribution, we first move (3.3.1) to Laplace domain. We

let P∗
n (s) denote the Laplace transform of Pn(t) and then use the induction method in order

to derive the probability distribution in the Laplace domain as follows (see the appendix,

Section A.2 for a detailed derivation):

P∗
n (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
s+λ n = 1

(n−1)!λ n−1

∏n
k=1(s+kλ ) 2 ≤ n ≤ N

2
N
2 !

(N−n)! λ (n−N
2 )

∏
n−N

2
k=1 (s+(N

2 −k)λ)
P∗

N
2
(s) N

2 +1 ≤ n ≤ N

(3.3.2)
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3.3.2.3. Probability Distribution

In order to derive the probability distribution, we apply the partial fraction expansion

method to expressions obtained for P∗
n (s) in order to perform the Laplace inversion; the

process is detailed in the appendix, Sub-section A.2.2. Finally, the probability distribution

of the number of nodes in the botnet (nodes that are in Compromised stage) at time t is

determined as follows:

Pn(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−λ t n = 1

∑n−1
k=0

(
(−1)k

(
n−1

k

)
e−(k+1)λ t

)
2 ≤ n ≤ N

2

∑
N
2
k=1

k/∈[N−n,N
2 −1]

(
T1
T2

e−kλ t
)
+ ∑

N
2 −1
k=1

k∈[N−n,N
2 −1]

(
T1
T2

te−kλ t +
d( T1

T3
)

ds

∣∣∣∣∣
s=−kλ

e−kλ t

)
N
2 +1 ≤ n < N

T1
T2|k=0

+∑
N
2 −1
k=1

(
T1
T2

te−kλ t +
d( T1

T3
)

ds

∣∣∣∣∣
s=−kλ

e−kλ t

)
+ T1

T2|k=N
2

e−
N
2 λ t n = N

(3.3.3)

where T1, T2 and T3 are given as follows:

T1 =
N
2 !

(N −n)!
λ (n−N

2 )(
N
2
−1)!λ

N
2 −1

T2 =

N
2

∏
i=1
i�=k

(i− k)λ
N
2 −1

∏
j=N−n

j �=k

( j− k)λ

T3 =

N
2

∏
i=1
i�=k

(s+ iλ )
N
2 −1

∏
j=N−n

j �=k

(s+ jλ )
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3.3.3. Numerical Analysis

Comparable to the numerical analysis for the SComI model, Fig. 3.3.2 depicts the time-

dependent mean and variance of the number of nodes in Compromised stage (botnet size)

for the SComF model. Fig. 3.3.3 depicts the three respective time-dependent probabilities

for the model. Like before, the effect of varying values of λ on the speed of botnet expan-

sion can be observed in the figures. It is also interesting to observe the “saturation effect”

as the botnet expands to all nodes, depicted in Fig. 3.3.2.
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Figure 3.3.2.: SComF model: Mean and variance of botnet size (population size N = 20)
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Figure 3.3.3.: SComF model: Time-dependent probabilities of the botnet size (population
size N = 20)
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3.4. Simulation Study

In this section, we provide a brief simulation study which is complementary to the presented

numerical analysis. The simulation study concerns the SComF model, as the SComI model

does not lend itself to comparison to a simulated network with limited number of nodes. We

borrow the term “spearhead” and the notion of “two-stage worm” used in [57] to describe

our simulation study. Spearhead is the initial infection (e.g., a worm) that spreads in the

network after which the infected nodes start to connect to the botnet which is the process

of botnet expansion. The botnet expansion therefore happens with a delay compared to

the spread of the initial infection. In this simulation study, we examine the spread of the

initial infection (the worm spread) and compare it to the determined analytical result for

the botnet expansion.

The infection of nodes (e.g., worm spread) is independent from the connection of in-

fected nodes to the botnet. Specifically, there is no relationship between the infection rate

and the connection rate (λ ), i.e., the latter could be lower or higher than the former. It is,

however, interesting to observe how the botnet could expand in relation to the spread of the

worm, in case these rates are equal.

The worm models developed in the Georgia Tech Network Simulator (GTNetS) [64]

seem to be the most well-developed publicly-available simulation models for worm spread.

With these models incorporated, the simulator models the activities of the worms in packet-

level detail. In this simulator, a UDP-based worm can be configured using parameters such

as worm “scan rate”, whereas a TCP-based worm can be configured by setting the number

of simultaneous TCP connections that each infectious node can create. We use a UDP-

based worm in this simulation in order to be able to have a comparison between λ of the

SComF model and the “scan rate” of the worm model2.

Comparable to the numerical results for the SComF model, we simulated a 20-host topol-

2The simulation scenario is a slightly modified version of wormsim.cc in GTNetS; see Section A.3 for the
code and for a screen shot of the simulated topology.
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Figure 3.4.1.: Count of infected hosts over time in the simulation in blue dots (scan rate =
1) vs. the botnet expansion curve using the SComF model in red (λ = 1)

ogy and tracked the number of infected hosts over time. The worm “scan rate” is the num-

ber of infectious packets each infected host sends out each hour (here, scan rate is set to

one). The number of infected hosts over time (mean of 10 runs) is depicted in Fig. 3.4.1 in

blue dots (value reported 20 times each hour). In the same figure, we also show the botnet

growth in red, which is the λ = 1 curve from the left sub-figure of Fig. 3.3.2. We therefore

can observe that the botnet growth correctly lags the spread of infection.

The contribution of the work presented in this chapter is twofold: (1) two stochastic

analytical botnet models, SComI and SComF, that cover both cases of infinite and finite

node population sizes ; and (2) the method of examination of the interaction between the

botnet expansion and the worm spread using the GTNetS simulator. In order to use the

models in the real world, one could consider the following methods when trying to estimate

a value for λ : (1) local measurements through Honeynet log analysis [42], for example; and

(2) a statistical approach to botnet virulence estimation which has recently been proposed

[65]; this latter method improves the reliability of the process of estimating λ .
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4. The SIC Botnet Model

4.1. Introduction

In the previous chapter, we introduced the SComI and SComF botnet models which are

useful for the initial unhindered botnet expansion phase, as they take into account only

two node stages. In this chapter, we increase the complexity of the model one step further

by considering three node stages, which allows for the capture of botnet size fluctuations

throughout the botnet lifecycle. The stages can be considered to have been created as a

result of the split of the Compromised stage of the SComI model into two stages of Infected

and Connected of the SIC model which will be explained shortly.

This chapter is organized as follows: in Section 4.2, the SIC model is introduced by

describing the Continuous-Time Markov Chain (CTMC) model as well as justifying the

modeling assumptions. We then present an extensive performance modeling of the SIC

model in Section 4.3. First, the fundamental probability flow equations resulting from the

CTMC model are presented. We then proceed to derive the means, variances, and Basic

Reproduction Number of the SIC model. Afterwards, we introduce the developed link

between the SIC model and mitigation strategies aimed at DHT-based P2P botnets. As a

case study, we analyze a random sybil attack on a P2P botnet and examine how the attack

can be fine-tuned based on the information provided by the SIC model. Next, we study in

Section 4.4 how the results estimated by the SIC model would relate to some of the reported

botnet size measurements. Finally, in Section 4.5, numerical results are provided showing
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the kinds of insight that can be drawn from the SIC model based on the aforementioned

derived analytical results.

4.2. The SIC Model

In this section, we present our botnet lifecycle model and then develop its mathematical

representation. We first introduce the model basics and later elaborate on the main assump-

tions of the model.

4.2.1. Node Stages in the SIC Model

As reported extensively in the literature [17, 18, 48, 66], a node, when infected by a botnet-

related malware, goes through multiple stages in the lifetime of the botnet, with the main

stages being Susceptible, Infected, and Connected. Here are the definitions of these terms,

as used in this chapter (and in the rest of the thesis):

Susceptible (S) A node is considered to be in the Susceptible stage, if it is healthy,

whether or not vulnerable. A vulnerable node can be infected through at least one of

the possibly many infection vectors (worm scans, e-mail attachments, etc.) deployed

simultaneously or sequentially by the botmasters of a single botnet. On the other

hand, a node is invulnerable if either it cannot be infected by any infection vector

or the address is either unused or unroutable/unreachable. As defined, the Suscep-

tible node population corresponds to the entire population of the Internet. The term

Susceptible refers to the fact that until probed, one usually cannot determine whether

or not the node is vulnerable. A Susceptible node may either get infected with the

small probability p and possibly later become part of the botnet or remain healthy

throughout the whole period with the large probability of 1− p. All nodes are ini-

tially considered to be in the Susceptible stage.
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Infected (I) The Infected stage denotes a stage in which a node has been infected by any

of the infection vectors that have been utilized by the botmasters. In this stage, the

node usually does not have the full malware code to engage in illicit activities; this is

primarily for keeping the payload small. The minimal malware code serves only to

connect the node to the botnet and pass the node to the Connected stage.

Connected (C) The Connected stage refers to the stage when the node is connected to

the botnet, can download the full malware code and receive the botmasters’ Com-

mand & Control (C&C) traffic, and therefore, it is part of the army of bots controlled

by the botmasters.

Infected
stage

λ1n2 λ2n1

Connected
stageSusceptible 

Nodes: infinite 
source
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λr1n1 λr2n2

n2n1

Figure 4.2.1.: SIC model: 2-dimensional birth-death CTMC
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Figure 4.2.2.: SIC model: State-transition-rate diagram
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As we model the lifecycle of a node with the aforementioned three stages, the model is

referred to as the Susceptible-Infected-Connected (SIC) model. In Fig. 4.2.1, we show the

stages of the model and the transitions between the stages. As shown in the figure, we let

n1 and n2 denote the number of nodes in Infected and Connected stages, respectively, and

the state of the system is represented by the vector (n1,n2). In Fig. 4.2.2, we show all the

transitions from and to state (n1,n2).

In this model, we consider that each node in the botnet (nodes in Connected stage) infects

one Susceptible node (increases n1 by one) with probability λ1Δt +o(Δt) in any Δt interval

(cf. Fig. 4.2.1). Thus the time interval for a Connected node to infect a Susceptible node

is exponentially distributed with parameter λ1 and the transition rate between Susceptible

and Infected stages is given by λ1n2. Further, each Infected node can transition to Con-

nected stage (which increases n2 and decreases n1) with probability λ2Δt +o(Δt) in any Δt

interval. Finally, there is a transition rate (λan2) from Connected stage to Infected stage.

This transition rate represents an attack on the botnet, attacks such as index poisoning and

sybil attacks in the case of P2P botnets. Under such attacks, nodes do not transition back to

Susceptible stage; they just lose the ability to communicate and might be able to reconnect

again (hence the rate from Connected stage back to Infected stage). We further assume the

rate of disinfection of nodes which are in Infected stage and Connected stage to be λr1n1

and λr2n2, respectively.

4.2.2. Model Assumptions

In this sub-section, we put forward the reasoning behind the assumptions made in the devel-

opment of the SIC model. To the best of our knowledge, these assumptions are reasonable

mathematically as well as consistent with precedence and evidence from closely-related

phenomena such as malware propagation and spread of human disease.
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4.2.2.1. CTMC (Exponential probability distributions) Modeling

Continuous-time Markov Chain (CTMC) models are based on the assumption that the time

intervals for the transitions of nodes from one stage to the next one are exponentially dis-

tributed with different parameters. In this part, we first provide the mathematical basis for

the use of exponential distributions and then describe how this assumption is in agreement

with precedence.

A. Mathematical Basis: Each attempt to make a node transition from any stage to an-

other stage is a Bernoulli trial with success probability of p. We explain how this concept

of Bernoulli trial corresponds to physical reality first for the transition from Susceptible to

Infected (S → I) which is the most important transition in the model leading to the expo-

nential growth of the number of nodes in the Infected and Connected stages. At the end, we

briefly explain how the same concept of Bernoulli trial also corresponds to physical reality

for the rest of the transitions in the SIC model.

Most botnets apply worm-scanning methods to recruit new bots [67]. Further, it has

been reported that 66.5% of scan patterns are uniform random scanning [68]. To explain

the process with a concrete example, we therefore consider uniform random scanning as

the infection vector used by the botnet node. Using the terminology presented in [69], for

a uniform scan worm, η is the average scan rate, i.e., the average number of scans a botnet

node sends out per unit of time. Each scan corresponds to an attempt to infect a susceptible

node. If the susceptible node is vulnerable to this specific worm scan, then, it will be

infected, otherwise the attack will fail and the node will remain healthy. η is therefore

equal to m, which is the number of aforementioned Bernoulli trials. The campaign of a

single botnet node to infect can then be viewed as a series of Bernoulli trials with few

successes/infections among many failures.

The above series of Bernoulli trials has therefore a Binomial distribution with parame-

ters p (success probability) and m (number of Bernoulli trials). A Binomial distribution

can be approximated by a Poisson distribution with parameter λ = mp, when p is small
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and m is large [70, pp.111-3]. Note that m is different from n1 and n2 which denote the

numbers of Infected and Connected nodes, respectively; however, the λ parameter refers

to λ1 indicated in Fig. 4.2.1. The conditions on the values of m and p are consistent with

the S → I transition, as the success probability is low and the number of trials is large.

Therefore, the probability distribution of the number of nodes making the S → I transition

in unit time period can be approximated by this Poisson distribution. Further, as sum of

processes each having a Poisson distribution with parameter λ1 also has a Poisson distribu-

tion, the whole arrivals into the Infected stage (i.e., nodes making the S → I transition) due

to all botnet nodes then have a Poisson distribution with parameter λ1n2. From the Poisson

distribution, it follows that the time intervals between node arrivals to the Infected stage are

exponentially distributed.

As noted at the beginning, we provide a brief explanation regarding how the same con-

cept of Bernoulli trial also corresponds to physical reality for the rest of the transitions in

the SIC model as follows:

I → C Each Infected node which has the minimal malware code to help it to connect itself

to the botnet makes, on average, several attempts to either connect to the central C&C

server or find peers in a P2P botnet. As such, we can designate a success probability

of p for the successful connection to the botnet for these attempts each of which can

be considered a Bernoulli trial.

C → I When the botnet is under attack, the effort to disconnect each botnet node can also

be considered a Bernoulli trial with a success probability of p which is the probabil-

ity of disconnection. As botnet mitigation strategies are generally complicated and

hard to implement with often limited impact on the botnet, on average, this per-node

success probability is small.

I → S & C → S Similar to the attack on the botnet, each attempt to disinfect a node that

is in either stages of Infected or Connected can be considered a Bernoulli trial with a
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success probability of p, i.e., the probability of disinfection. As the identification of

most nodes as well as the physical access to them are hard, on average, this success

probability is small.

With the aforementioned descriptions for the characteristics of all the inter-stage transi-

tions, the CTMC model can be considered a reasonable approximation.

B. Accordance with Precedence: CTMC as a modeling tool in epidemiology has a

proven track record [52] that deals with the phenomenon of spread of an element within

a susceptible population which has a close resemblance to the spread of malware and the

expansion of a botnet. Further, successful use of CTMC models in the study of spread of

malware has also been documented [61]. Expansion, and size evolution, of botnets happen

under the influence of the same physical processes as the ones affecting the spread of mal-

ware; therefore, the use of the same CTMC theory for botnets is a natural extension. To

our knowledge, the only case of application of CTMC-like models to botnets is the work

of [48] which is a simulation model that has been developed based on the measurement

data of the Storm botnet. Finally, in terms of the choice of Poisson distribution for the

arrival of nodes into a stage (i.e., the exponentially-distributed inter-arrival times), similar

to the SIC model, [53] has also determined this assumption to be reasonable in the study of

Conficker-C botnet/worm for the distribution of the number of UDP connection attempts

made by an infected host.

4.2.2.2. Node Stages and Transitions

A. Main Node Stages Considered: As described in Sub-section 4.2.1, the main dynamics

of botnets can be captured by keeping track of the two main node stages, i.e., Infected and

Connected. On the other hand, as mentioned in Sub-section 1.2.1, the number of stages

considered in a stochastic model, and in our CTMC model in particular, must be limited if

we are to avoid an intractable model caused by consideration of several node stages. Based

on our extensive investigations and considering the prior work done in this field, the optimal
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tradeoff has been determined to be the consideration of the aforementioned two node stages

(i.e., Infected and Connected), each being a dimension in the CTMC (hence the number

of nodes in each of these two stages is tracked), with Susceptible stage having infinite

number of nodes (hence the number of Susceptible nodes need not be tracked). An infinite

susceptible population is a reasonable assumption, since this population corresponds to the

population of the entire Internet which is an assumption made also in [48].

B. No Immune/Removed Stage Considered: As botmasters use a plethora of methods to

infect (and re-infect) the nodes, it is reasonable to assume that a node is never in Immune

(or Removed) stage; therefore, we do not consider this stage in our model. It is important

to remember that existence and maintenance of a botnet is independent of any infection

vector (e-mail attachments, file sharing sites, worm scans, etc.) used by the botmaster

and obtaining immunity against one infection vector still leaves the node susceptible to be

re-infected through other infection vectors.

C. Botnet’s Footprint vs. Live Population: Using the terminology presented in [44], we

emphasize that the SIC model tracks the botnet’s “footprint” and not its “live population”.

As such, effects such as day/night differences and time zones which impact the number

of live botnet nodes at any given time, are not taken into account. In the SIC model,

Connected nodes represent the total number of botnet nodes, i.e., botnet’s footprint. On

the other hand, it is possible to use the SIC model and take into account the effects of

time zones and day/night differences on λ parameters’ values as follows depending on the

length of the analysis period: (1) if the analysis period is around or less than 24 hours, then,

piecewise time-invariant parameters can be used, i.e., we use different sets of values for

the λ parameters in each 12-hour analysis period to account for the day/night differences

and/or the time zones; and (2) if the analysis period is significantly more than 24 hours,

e.g., weekly size variations are important as is the case in the analysis of FourLakeRiders

botnet in Section 4.4, then, the variations due to time zones and day/night differences are

insignificant and average parameter values will yield accurate results.
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D. Accommodating Time-variant Parameters: As presented, the λ parameters are con-

sidered constant throughout the analysis period. It is however possible to use the SIC

model if these parameters change over time using piecewise time-invariant parameters, i.e.,

in each piece of the analysis period, we consider the parameters to be constant. The du-

ration of each piece can be decided upon on a case-by-case basis; an example of this kind

of analysis, with each piece duration to be a week, is presented in Section 4.4. Another

example of this kind of analysis, as suggested in the above point, is to accommodate the

effects of time zones and the day/night differences when the analysis period is less than 24

hours. In this case, we can choose a 12-hour analysis period during which we consider the

λ parameters to be constant and can set low values for the λ parameters during night time.

As described above, the SIC model and its main assumptions are similar to the model

in [48] which has been based on the gathered information about the Storm botnet. These

assumptions were further justified mathematically and through comparison to other similar

works. As a result, we believe that we have a realistic model, which leads us to two-

dimensional Markovian birth-death processes. Using the model, we can study the size

evolution of a botnet as well as effectiveness of mitigation strategies by monitoring the

number of nodes that are in Infected and Connected stages at any given time.

4.3. Performance Modeling of the SIC Model

In this section, we provide an extensive performance modeling of the SIC model. First,

botnet size evolution phases and initial state values for the SIC model are explained. We

then proceed to derive the probability flow equations based on the two-dimensional CTMC

of the SIC model. These probability flow equations are further reduced to a partial differen-

tial equation (PDE) of the probability generating function (PGF). Directly from this PDE,

we then derive the mean and variance of the SIC model. Next, the derivation of the Basic

Reproduction Number, which is a widely used parameter in epidemiology and the study of
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malware propagation, is documented. We conclude this section by deriving a novel ana-

lytical result which is a link between the SIC model and the mitigation strategies against

Distributed Hash Table (DHT)-based P2P botnets.

4.3.1. Botnet Size Evolution Phases and Initial State Values

A botnet may go through many phases during its lifecycle, where a phase will refer to a

period that system parameters (λ1, λ2, λr1, λr2, and λa) remain constant. For example,

when a botnet appears for the first time, it will probably experience unhindered expansion

as there will not be any active mitigation strategies to counter its growth; thus, λr1, λr2,

and λa will be zero. Typically, the botnet’s population will alternate between sawtooth

growth period followed by a period of relatively stable population size [71]. The sawtooth

growth begins with the release of a new infection; after sometime, it will be reversed with

the deployment of new counter measures until an equilibrium is reached. Probably, new

equilibrium population will have a size greater than previous equilibrium size. In any phase,

the SIC model will apply with the end results of the preceding phase providing the initial

conditions (state values) to the next phase.

4.3.2. Probability Flow Equations and PDE of PGF

In this section, we determine the probability flow equations and then, the partial differ-

ential equation (PDE) of the probability generating function (PGF) describing the system.

Let Pn1,n2(t) denote the probability that the system is in state (n1,n2) at time t. We write

probability flow equations through inspection from the state-transition-rate diagram given

in Fig. 4.2.2 by equating the rate of change of probabilities at any state to the difference

between the total input/output flows to/from that state as follows.
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dPn1,n2(t)
dt

=λ1n2Pn1−1,n2(t)+λr1(n1 +1)Pn1+1,n2(t)

+λr2(n2 +1)Pn1,n2+1(t)+λ2(n1 +1)Pn1+1,n2−1(t)

+λa(n2 +1)Pn1−1,n2+1(t)

−(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t)〈
n1 > 0,n2 > 0

〉
(a)

dP0,n2(t)
dt

=λr1P1,n2(t)+λr2(n2 +1)P0,n2+1(t)+λ2P1,n2−1(t)

−(λ1n2 +λr2n2 +λan2)P0,n2(t) 〈
n1 = 0,n2 > 0

〉
(b)

dPn1,0(t)
dt

=λr1(n1 +1)Pn1+1,0(t)+λr2Pn1,1(t)+λaPn1−1,1(t)

−(λr1n1 +λ2n1)Pn1,0(t) 〈
n1 > 0,n2 = 0

〉
(c)

dP0,0(t)
dt

=λr1P1,0(t)+λr2P0,1(t) 〈
n1 = 0,n2 = 0

〉
(d)

(4.3.1)

In order to solve (4.3.1) and derive the probability distribution Pn1,n2(t), a known method

is to transform the equations of probability flows to a partial differential equation (PDE)

of the probability generating function (PGF) which can be tackled using known methods

to solve PDEs. Let us denote P(z1,z2, t) as the PGF of the probability distribution Pn1,n2(t)

which is given by P(z1,z2, t) = ∑∞
n1=0 ∑∞

n2=0 Pn1,n2(t)z
n1
1 zn2

2 .

The initial probability distribution is denoted by Pk1,k2(0). Here, we assume that the

initial number of nodes in each stage is constant (k1,k2). Though the initial derivations

are conditional, we will suppress the conditions for simplicity in expressing the PDE. This

aspect, however, has been fully taken care of in the derivation of means (e.g., see (B.3.5)

and (B.3.6)) and later in the derivation of variances.

We multiply each of the equations in (4.3.1) by zn1
1 zn2

2 , sum over the respective ranges
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of n1 and n2, and then add them together. After some simplifications and manipulations

(detailed derivation provided in Appendix B.1), we arrive at the following PDE of the

PGF:

(λr1 +λ2z2 −λr1z1 −λ2z1)
∂P(z1,z2, t)

∂ z1

+(λ1z1z2 +λr2 +λaz1 −λ1z2 −λr2z2 −λaz2)
∂P(z1,z2, t)

∂ z2
−∂P(z1,z2, t)

∂ t
= 0 (4.3.2)

Our efforts to solve the preceding PDE, however, have not been successful, as de-

tailed in Appendix B.2. Nonetheless, there are publications reporting new solved cases

of Abel/Lienard equations (differential equations encountered in the process of solving the

PDE). Thus, it is possible that we may have the solution of the PDE in the near future. We

can still obtain from the PDE the moments of botnet population size, as presented next.

4.3.3. Derivation of the Time-dependent Mean and Variance

of Botnet Population Size

In this section, we derive the means and variances of the number of nodes in Infected stage

and Connected stage (botnet population size) as a function of time. Let Et [n1] and Et [n2]

denote the mean number of nodes that are in Infected and Connected stages at time t,

respectively, then:

Et [n1] =
∂P(z1,z2, t)

∂ z1
|z1=z2=1 , Et [n2] =

∂P(z1,z2, t)
∂ z2

|z1=z2=1 (4.3.3)

We take the derivatives of the PDE given in (4.3.2) with respect to z1 and z2, separately.

By setting z1 = z2 = 1 in each resulting equation, we arrive at a set of ODEs of Et [n1] and

Et [n2]. To emphasize the time dependency of the means from here on, we will denote Et [n1]

and Et [n2] by E1(t) and E2(t), respectively. Note that only the important steps of derivation

are provided here; the rest of the steps is in Appendix B.3. After the initial steps outlined
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above and detailed in the appendix, we arrive at the following set of ODEs:

⎧⎪⎪⎨
⎪⎪⎩

dE1(t)
dt = (λ1 +λa)E2(t)− (λ2 +λr1)E1(t)

dE2(t)
dt = λ2E1(t)− (λr2 +λa)E2(t)

(4.3.4)

We then proceed to derive E1(t) and E2(t) from the previous set of ODEs as detailed in

Appendix B.3; the final results are as follows:

E1(t) =
[

exp
(
−1

2
t (λT3 +λT1)

)(
k̄1λ2 (−exp(tλT3))

+
(
k̄1λa − k̄1λr1 + k̄1λr2 + k̄1λT3 +2λ1k̄2

)
exp(tλT3)

+2k̄2λa exp(tλT3)+ k̄1λT3 + k̄1λ2 − k̄1λa + k̄1λr1

−k̄1λr2 −2λ1k̄2 −2k̄2λa
)]
/(2λT3)

(4.3.5)

E2(t) =
[

exp
(
−1

2
t (λT3 +λT1)

)(
2k̄1λ2 exp(tλT3)

+
(
λ2k̄2 − k̄2λa + k̄2λr1 − k̄2λr2 + k̄2λT3

)
exp(tλT3)

−2k̄1λ2 + k̄2λT3 −λ2k̄2 + k̄2λa − k̄2λr1

+k̄2λr2
)]
/(2λT3)

(4.3.6)

where, λT1 = λ2+λa+λr1+λr2, λT2 =−λ1λ2+λr2 (λ2 +λr1)+λaλr1, and λT3 =
√

λT1
2 −4λT2.

Next, we describe the derivation of variances, which are given by:

σ2
1 (t) = Et [n2

1]− (E1(t))
2 , σ2

2 (t) = Et [n2
2]− (E2(t))

2 (4.3.7)
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where:

Et [n2
1] =

∂ 2P(z1,z2, t)
∂ z2

1
|z1=z2=1 +

∂P(z1,z2, t)
∂ z1

|z1=z2=1

Et [n2
2] =

∂ 2P(z1,z2, t)
∂ z2

2
|z1=z2=1 +

∂P(z1,z2, t)
∂ z2

|z1=z2=1 (4.3.8)

Let us define:

ψ1(t)�
∂ 2P(z1,z2, t)

∂ z2
1

|z1=z2=1

ψ2(t)�
∂ 2P(z1,z2, t)

∂ z2
2

|z1=z2=1

ψ12(t)�
∂ 2P(z1,z2, t)

∂ z1∂ z2
|z1=z2=1 (4.3.9)

Considering that E1(t = 0) = k̄1 and E2(t = 0) = k̄2, the preceding functions have the

following initial values:

ψ1(t = 0) = k̄2
1 − k̄1 , ψ2(t = 0) = k̄2

2 − k̄2 , ψ12(t = 0) = ¯k1k2 (4.3.10)

The variances are then given by:

σ2
1 (t) = ψ1(t)+E1(t)− (E1(t))

2 , σ2
2 (t) = ψ2(t)+E2(t)− (E2(t))

2 (4.3.11)

Next, we take the 2nd derivatives of the PDE in (4.3.2) with respect to z1 and z2, separately.

Further, we take the derivative of the PDE with respect to z1 and then with respect to z2

(see Appendix B.4). By setting z1 = z2 = 1 in each resulting equation, we arrive at a set of

ordinary differential equations, which if written in terms of ψ1(t), ψ2(t), and ψ12(t) is, as

follows.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dψ1(t)
dt

=2(λ1 +λa)ψ12(t)−2(λr1 +λ2)ψ1(t)

dψ2(t)
dt

=2λ2ψ12(t)−2(λr2 +λa)ψ2(t)
dψ12(t)

dt
=− (λr1 +λ2 +λr2 +λa)ψ12(t)+λ2ψ1(t)

+λ1E2(t)+(λ1 +λa)ψ2(t)

(4.3.12)

Finally, from the preceding set of ODEs, we obtain the variances, as explained in Appendix

B.4.

4.3.4. Epidemiological Threshold: Basic Reproduction Number

Basic Reproduction Number1 (R0) is a widely used parameter in epidemiology as well as in

the study of malware propagation. In the context of botnets, this number is the mean num-

ber of infections that any single botnet node can cause among the population of susceptible

nodes. The measurement of the mean number is assumed to happen with the presence of

mitigation strategies that bring down the number of botnet nodes while the remaining bot-

net nodes cause new infections. R0 is calculated based on the rates used in the model. If

R0 < 1, the botnet will eventually disappear with probability one. If R0 > 1, however, there

is a probability that the botnet size will continue to increase exponentially.

Based on (4.3.4), the Basic Reproduction Number (R0) can be derived in terms of various

SIC model’s parameters using the “Next Generation Matrix” method as follows (detailed

derivation in Appendix B.7):

R0 =

√
λ2(λ1 +λa)

(λr2 +λa)(λ2 +λr1)
(4.3.13)

1In the theoretical epidemiology literature [52], Basic Reproduction Number (R0) generally refers to the on-
set of disease spread. Once the epidemic is underway, and especially when control measures (mitigation
strategies) are put into effect, other terminologies such as “Control Reproduction Number (Rc)” and “Ef-
fective Reproduction Number (Re)” are used instead to refer to essentially the same threshold parameter.
In this thesis, we use the phrase “Basic Reproduction Number (R0)” in all instances.
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4.3.5. P2P Botnet Mitigation Strategies and the SIC Model

As our last analytical result for the SIC model, we present a link between lifecycle (or prop-

agation/population) models and the P2P botnet mitigation strategies. Mitigation strategies

aimed at Distributed Hash Table (DHT)-based P2P botnets include sybil, index poisoning,

and eclipse attacks. We base the discussion on random sybil attack, however, the process

is similar for other attack types.

As described in Section 2.3, Sybil attack, first presented in [36], is an attack method under

which numerous clean nodes (sybils) are injected into the P2P botnet, posing themselves

as “legitimate” botnet nodes. They then try to re-route, block, and corrupt the Command &

Control (C&C) traffic, thereby lowering the efficiency of the C&C mechanism of the botnet.

In a DHT-based P2P botnet, nodes find each other, construct their routing tables, and relay

the traffic to, or closer to, its intended destination based on normal DHT methods. The

botmaster also relies on the aforementioned methods for the C&C of the botnet; therefore,

the decreased efficiency of the C&C mechanism as a result of the sybil attack translates

into an inefficient botnet.

Random sybil attack on P2P botnets has been studied in [18]. The derived formula

therein can be used to construct a relationship between the number of sybils inserted in

the network and λan2, the transition rate from Connected stage to Infected stage (cf. Fig.

4.2.1). The obtained formula for the random sybil attack was mentioned in (2.3.3) which

is repeated here:

Ps(ns) =

(
1− ns

ns +n

) log2(ns+n)
b

(4.3.14)

Where:

Ps(ns) The probability that a botnet node successfully obtains the botmaster’s commands.

ns The number of sybils inserted randomly in the network.

b The number of bits improved per step for a lookup (set to a mid-range value of 5 [18]).
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n The botnet size. This is the value of n2 in our model.

We therefore note that 1−Ps(ns) is the probability that a botnet node is no longer able

to receive the commands of the botmaster as a result of the attack on the botnet (insertion

of sybils). This probability is therefore equal to λaΔt, as the latter is the approximate

probability that a botnet node transitions from Connected stage to Infected stage (i.e., the

node gets disconnected). The aforementioned link between lifecycle models and the P2P

botnet mitigation strategies is therefore demonstrated using the following formula:

λaΔt = 1−Ps(ns) (4.3.15)

As seen in (4.3.14), Ps(ns) is a function of ns. At any instant of time, a change in λa (i.e.,

Δλa) is a result of a change in the number of sybils (i.e., Δns). Based on (4.3.15), we can

then analyze the relationship between the amount of change of λa with respect to a change

in the number of sybils inserted in the network as follows:

λa +Δλa

λa
=

1−Ps(ns +Δns)

1−Ps(ns)
(4.3.16)

4.4. SIC Model vs. Reported Botnet Measurements

In this section, we show that our results can be used to model the botnets in the real

world. Measurements of the size of some botnets have been reported on a weekly basis

by Damballa [71]. Assuming that the employed measurement techniques capture correctly

the global size of the botnets, in this section, we examine how such measurement results

would compare to the results predicted by the SIC model. First, we examine a case of ini-

tial unhindered botnet expansion, based on available data from a Zeus-based botnet called

GreenAlienRiders. Next, we will examine a case of deployment of mitigation strategies,

based on available data from another Zeus-based botnet called FourLakeRiders.

GreenAlienRiders is a botnet for which the initial unhindered expansion phase has been
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(a) Mean number of Connected nodes
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(b) Mean number of Infected nodes

Figure 4.4.1.: GreenAlienRiders (a Zeus-based botnet): initial unhindered botnet expan-
sion estimated using the SIC model.

captured and reported by Damballa [71]. From the Damballa report, it appears that the

botnet has reached the size of about 6,000 nodes (i.e., Connected nodes) at Hour 12 of its

appearance. To reach this size, using the SIC model, we can set λ1 = 6.85 and λ2 = 0.1

(both nodes/hour). The result is shown in Fig. 4.4.1a. Further, Fig. 4.4.1b shows the SIC

model’s estimate of the existing Infected nodes during this period.

FourLakeRiders, on the other hand, is a botnet for which deployment of mitigation strate-

gies can be analyzed based on a portion of data of the botnet size evolution over time, a

5-week period from Week 36 to Week 40, as captured and reported by Damballa [71]. The

data reported for this 5-week period lends itself to an analysis with clear separation of ef-

fects of each of the mitigation strategies. The scenario that follows, however, represents

one of potentially many possibilities. The reported data on botnet size during this 5-week

period is depicted in Fig. 4.4.2a. A scenario that fits this pattern of rise-and-fall is as fol-
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(a) Reported weekly botnet size evolution
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(b) Botnet size evolution reconstructed using the SIC Model

Figure 4.4.2.: FourLakeRiders (a Zeus-based botnet): botnet mitigation strategies analyzed
using the SIC model (time interval: Weeks 36-40).

lows: during Week 36, the botnet size has reached an equilibrium; on one side, the number

of Infected and Connected nodes grow, and on the other side, some mitigation strategies

are reducing the number of Infected and Connected nodes (λr1, λr2). During Week 37, the

aforementioned mitigation strategies weaken and, during Week 38, they completely disap-

pear, which results in a steep growth of the size of the botnet. During Weeks 39 and 40, all

mitigation strategies are employed (λr1, λr2, and λa), which results in a dramatic reduction

in the size of the botnet. The described scenario is depicted in Fig 4.4.2b2. The potential

2To produce Figs. 4.4.2b and 4.4.3, parameter values have been chosen as follows: During the whole 5-
week period, λ1 and λ2 are constant and set as follows: λ1 = 0.042 and λ2 = 0.001. λr1 , λr2 , and λa
are chosen as follows for each week: Part 1 (Week 36): λr1 = 0.0082 , λr2 = 0.0046 , and λa = 0; Part 2
(Week 37): λr1 = 0.0082 , λr2 = 0.0027 , and λa = 0; Part 3 (Week 38): λr1 = 0 , λr2 = 0 , and λa = 0;
Part 4 (Weeks 39-40): λr1 = 0.0082 , λr2 = 0.0046 , and λa = 0.0057. All λ parameters are nodes/hour.
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Figure 4.4.3.: FourLakeRiders botnet: size evolution of the number of Infected nodes esti-
mated using the SIC Model.

number of Infected nodes are estimated using the SIC model as well, as depicted in Fig.

4.4.3. As may be seen, during both expansion and shrinkage, our results follow quite well

the reported data.

4.5. Numerical Analysis

In this section, we present some numerical results to further illustrate the usefulness of the

SIC model. First, we briefly introduce some parameter estimation techniques which help

with the use of the SIC model. The first set of numerical results are with regard to the

analysis of the initial unhindered expansion of a botnet. We then show how the SIC model

could help with the evaluation and comparison of mitigation strategies. Botnet size standard

deviation and utilization of Basic Reproduction Number are then depicted and examined

next. We conclude this section by examining the developed analytical link between the SIC

model and the P2P botnet mitigation strategies through an analysis of a random sybil attack

on a P2P botnet. Throughout this section, we plot the previously-derived analytical results

by assigning values to various parameters (λ1, λ2, λr1, λr2, and λa), all with the unit of

nodes/time unit (time unit can be hour, day, week, or any other period). The plotted results
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are therefore general as parameter values may be assumed to be nodes per any time unit

and then the plotted time-dependent performance measures will be interpreted as functions

of that time unit.

4.5.1. Model’s Parameter Estimation Techniques

Using the SIC model, the botnet size estimation problem has been reduced from having

to estimate the global size of the botnet to the estimation of the model’s parameters (λ1

and λ2) which requires only local knowledge. On the other hand, values for λr1, λr2, and

λa depend on the type of disinfection and attack on the botnet; as the mitigation strategies

are being conducted by the security experts, they will be able to reliably choose values for

these latter parameters.

As a starting point, we would suggest a consideration of the following methods when

trying to estimate values for λ1 and λ2: (1) real botnet size measurements, if available, can

be used to estimate the parameter values (as done in Section 4.4); (2) local measurements

through Honeynet log analysis [42], for example; and (3) a statistical approach to botnet

virulence estimation (vulnerability and infection rates estimation) [65].

4.5.2. Initial Unhindered Botnet Expansion

We first examine the unhindered botnet expansion that happens when the botnet first ap-

pears. In Fig. 4.5.1, we consider a 12-time-unit period during which the botnet expands. In

this initial phase, there is neither any attack on the botnet, nor any removal (disinfection)

from Infected/Connected stages; hence we set λr1 = λr2 = λa = 0. We choose λ1 = 7 and

λ2 = 0.1 as the center values for these parameters; these values are based on the values

derived from the analysis of GreenAlienRiders botnet (cf. Fig. 4.4.1). We then examine

how the mean values of the number of nodes in Infected stage and Connected stage (botnet

size) would change over this initial expansion period by varying the parameter values in

the following ranges: 0 ≤ λ1 ≤ 11 and 0 ≤ λ2 ≤ 0.2. In Figs. 4.5.1a and 4.5.1b, we set
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Figure 4.5.1.: SIC model: initial unhindered botnet expansion. Mean number of nodes in
Infected stage (Eu1(t)) and Connected stage (Eu2(t)).
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Figure 4.5.2.: SIC model: initial unhindered botnet expansion. Mean and standard devia-
tion of the number of nodes in Infected and Connected stages.

λ2 = 0.1 and examine the change of mean values over time by varying λ1 over [0,11] (ini-

tial state values: Eu1(0) = k̄1 = 0,Eu2(0) = k̄2 = 1; the subscript u refers to the Unhindered

expansion.). In Figs. 4.5.1c and 4.5.1d, on the other hand, we set λ1 = 7 and examine the

change of mean values over time by varying λ2 over [0,0.2]. Slicing Figs. 4.5.1b and 4.5.1d

at t = 12, Figs. 4.5.1e and 4.5.1f closely show how mean numbers would change over the

respective ranges of values for λ1 and λ2. Finally, Fig. 4.5.2 shows the means along with

the standard deviations (λ1 = 7,λ2 = 0.1).

4.5.3. Comparison of Mitigation Strategies

One of the main advantages of the SIC model is that it enables the security experts to

compare and analyze mitigation strategies before deployment. In this sub-section, we study

the case where botnet faces attack and/or removal (disinfection) and observe how severe

these interventions must be in order to contain or dismantle the botnet. In all scenarios, we

assign λ1 = 7 and λ2 = 0.1; their choice has no bearing on the following analysis regarding

λr1, λr2, and λa. Further, we assume the mean number of Infected nodes and Connected

nodes to be as follows: E1(0) = k̄1 = 53484 and E2(0) = k̄2 = 6786; these values are

determined from Fig. 4.5.2 at t = 12 when λ1 = 7 and λ2 = 0.1. We can then proceed to
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Figure 4.5.3.: SIC model: comparison of mitigation strategies. Mean number of nodes in
Infected stage (E1(t)) and Connected stage (E2(t)).

analyze how this particular botnet would react to different mitigation strategies.

In Fig. 4.5.3, the solid line depicts the scenario where there are no mitigation strategies

and the number of Infected nodes and the botnet size continue to increase. Dotted/dashed

lines denote scenarios under which different values chosen for λr1, λr2, and λa result in

different trajectories for the mean3. In Fig. 4.5.3a, we observe that the mean eventually

goes to zero in only one scenario, i.e., when all three strategies are employed at the same

3Initial state values: E1(0) = k̄1 = 53484,E2(0) = k̄2 = 6786; Parameter values: λ1 = 7,λ2 = 0.1; Scenario
1: unhindered expansion (λr1 = 0,λr2 = 0,λa = 0); Scenario 2: only removal of Infected nodes (λr1 =
2,λr2 = 0,λa = 0); Scenario 3: only removal of Connected nodes (λr1 = 0,λr2 = 2,λa = 0); Scenario
4: only attack on botnet (λr1 = 0,λr2 = 0,λa = 2); Scenario 5: three strategies simultaneously (λr1 =
2,λr2 = 2,λa = 2). All λ parameters are nodes/time unit.
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time. Note that a large enough value chosen for λr1 would make the mean number of nodes

in Infected stage go to zero as well. Fig. 4.5.3b depicts the same scenarios as in Fig. 4.5.3a,

but this time, the mean is for the nodes in Connected stage (botnet size). In this particular

case, we observe that the mean number of nodes in Connected stage also eventually goes

to zero in only one scenario, i.e., when all three strategies are employed at the same time.

We can therefore state that, all things being equal, removal/disinfection from Connected

stage (λr2) has the most effect on containing the size of the botnet (nodes in Connected

stage). Further, we intuitively deduce that it would be less costly to combat a botnet if

we implement all three strategies at the same time, as we can choose moderate disinfec-

tion/attack rates. Concentrating on a single strategy (disinfection or attack) would mean

that we need to choose a very high rate to achieve a comparable effect. Having to choose a

high rate is usually associated with high cost in the real world (e.g., the plan of malware re-

moval from near 100% of computers is either infeasible or extremely costly to implement).

4.5.4. Standard Deviation and Basic Reproduction Number

In Fig. 4.5.4, we draw the mean along with the standard deviation in each sub-figure. Since

we consider that all mitigation strategies are being implemented, the sub-figures of Fig.

4.5.4 would be comparable to Fig. 4.5.3, as the chosen initial state values (values for k̄1

and k̄2) are the same. Furthermore, in Fig. 4.5.4, we use the derived formula for Basic

Reproduction Number (R0) to choose values for different parameters in a way that leads to

the size of the botnet shrinking (bottom sub-figs.), remaining constant (center sub-figs.) or

growing (top sub-figs.). To achieve this, we choose sample values for various parameters

(except for λr2) and for R0; therefore, the value of λr2 would be determined in order to

satisfy (4.3.13)4.

4Parameter values are as follows: k̄1 = 53484 , k̄2 = 6786 , λ1 = 7 , λ2 = 0.1 , and λa = 0.2 for all sub-
figures; for bottom sub-figures: R0 = 0.8,λr1 = 1, and λr2(determined) = 0.8227 ; for center sub-figures:
R0 = 1,λr1 = 0.8135, and λr2(determined) = 0.5880 ; and for top sub-figures: R0 = 1.2,λr1 = 1, and
λr2(determined) = 0.2545. All λ parameters are nodes/time unit.
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(c) R0 = 1.0
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(e) R0 = 0.8
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Figure 4.5.4.: SIC model (standard deviation and R0): number of nodes in Infected stage
(left sub-figs.) and Connected stage (right sub-figs.).
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4.5.5. Random Sybil Attack on DHT-based P2P Botnets
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Figure 4.5.5.: SIC model: relationship between the attack rate (λa) and the number of sybils

Finally, we provide a numerical analysis of the developed relationship between the SIC

model’s attack rate (λa) and the number of sybils inserted in the P2P botnet. The analysis

will be the case of adding the sybils at t = 0 in Fig. 4.5.3, assuming an instantaneous ef-

fect on the P2P botnet, and examining the situation in the next Δt. The numerical result is

derived from (4.3.16) and depicted in Fig. 4.5.55. The figure demonstrates the relationship

between the percentage increase in the number of inserted sybils and the resulting per-

centage increase in the value of λa. The demonstrated relationship leads to the following

insight: once the sybil attack is underway, the value of ns is known and the resulting λa

can be measured. The security expert can then determine, for example, how many sybils

should be added in order to arrive at a desired λa to have the intended mitigation effect.

As summary, we remind that the contribution of this chapter is twofold: (1) the SIC

botnet model which captures the key node stages relevant to botnets; we derived important

results such as mean and variance of the number of nodes in different stages based on this

model; and (2) development of a link between a botnet lifecycle/propagation/population

model (the SIC model) and mitigation strategies aimed at DHT-based P2P botnets; with

this analytical link, a security expert would be able to evaluate different mitigation strate-

5Initial ns = 1000, n = k̄2 = 6786, and b = 5. As the size of botnet changes with time, it is necessary to
update the respective calculated values in regular intervals to keep a close approximation.
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gies (disinfection, sybil attack, index poisoning, etc.) prior to their implementation. The

developed link leads to a two-step, or recursive, analysis process: (1) examining the ef-

fect of the chosen λa on the botnet size based on (4.3.4) for the means; and (2) examining

the relationship between a change of λa and the associated change in the number of sybils

based on (4.3.16). In the next chapter, we integrate these two steps which entails changes

to the SIC model itself and leads to an analytical model specific to DHT-based P2P botnets,

the SIC-P2P model.
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5. The SIC-P2P Botnet Model

5.1. Introduction

The general SIC model was proposed, developed, and analyzed in the previous chapter. In

this chapter, we extend the proposed SIC model and customize it so as to be able to thor-

oughly analyze the Distributed Hash Table (DHT)-based P2P botnets; this extended SIC

model is therefore named SIC-P2P. The SIC-P2P model is a Continuous-Time Markov

Chain (CTMC) model which allows evaluation of botnet mitigation strategies such as dis-

infections of nodes and attacks on botnet’s C&C mechanism. The model, contrary to most

earlier deterministic analytical botnet models, is a stochastic model properly capturing the

stochastic nature of population size changes. As DHT-based P2P botnets are especially

resilient and perhaps pose the most significant threat, we believe the SIC-P2P model may

prove to be a valuable asset in the toolkit of security experts who intend to analyze in depth

attacks such as index poisoning and sybil attack which are the two most common attacks

against P2P networks, including P2P botnets. Until now, the insight gained from the use

of the SIC-P2P model could have been obtained only through large-scale, time-consuming,

and expensive simulations and testbed experiments.

The chapter is organized as follows: in Section 5.2, we explain in depth the proposed

model by examining the CTMC model. Section 5.3 then provides a thorough performance

modeling of the SIC-P2P model by first examining the differential-difference probability

flow equations resulting from the CTMC model and then moving on to derive closed-form
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expressions for the time-dependent means and variances/standard deviations, finishing with

the derivation of the Basic Reproduction Number. Section 5.4 then presents the devel-

oped analytical link between the SIC-P2P botnet lifecycle model and the real-world attacks

against DHT-based P2P botnets; attacks such as index poisoning and sybil attacks. After

the analytical results, Section 5.5 then provides some numerical results, shedding light on

possible uses of the SIC-P2P model and the kinds of insight that can be drawn.

5.2. The SIC-P2P Model

Infected
stage

λ1n2 λ2n1

Connected
stageSusceptible 

Nodes: infinite 
source

f(n2)=λa1+λa2n2

λr1n1 λr2n2

n2n1

Figure 5.2.1.: SIC-P2P model: Inter-stage-rate diagram
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Figure 5.2.2.: SIC-P2P model: State-transition-rate diagram

In this section, we present the SIC-P2P botnet lifecycle model which is an extension of

the SIC model. Like the SIC model, the SIC-P2P model accounts for three node stages:
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Susceptible, Infected, and Connected. In Fig. 5.2.1, we show the stages of the model and

the transitions between the stages. As shown in the figure, we let n1 and n2 denote the

number of nodes in Infected and Connected stages, respectively, and the state of the system

is represented by the vector (n1,n2). In Fig. 5.2.2, we show all the transitions from and to

state (n1,n2).

Similar to the SIC model, in the SIC-P2P model, all nodes are initially considered to

be Susceptible, i.e., they are healthy, but might be Infected in the lifetime of the botnet.

As botmasters use multitude of methods and infection vectors to infect (and re-infect) the

nodes, even after disinfection and/or patching, nodes remain Susceptible to infection. In

the Infected stage, a node is usually not able to engage in illicit activities, as it is not yet

part of the botnet and does not receive the botmaster’s C&C messages. The initial infection

usually only serves to connect the node to the botnet and pass the node to the Connected

stage. In this latter stage, a node is fully operational as a botnet node and can act on

botmaster commands received from either a C&C server or a peer in the P2P botnet.

In the SIC-P2P model, we consider that each node in the botnet (nodes in Connected

stage) infects one Susceptible node (increases n1 by one) with probability λ1Δt +o(Δt) in

any Δt interval (cf. Fig. 5.2.1). Thus the time interval for a Connected node to infect a Sus-

ceptible node is exponentially distributed with parameter λ1. The transition rate between

Susceptible and Infected stages is therefore given by λ1n2. Further, each Infected node

can transition to Connected stage (which increases n2 and decreases n1) with probability

λ2Δt + o(Δt) in any Δt interval. Finally, there is a transition rate (λa1 +λa2n2) from Con-

nected stage to Infected stage. This transition rate represents an attack on the botnet, attacks

such as index poisoning and sybil attacks in the case of P2P botnets. Under such attacks,

nodes do not transition back to Susceptible stage; they just lose the ability to communicate

and might be able to reconnect again. We further assume the rate of disinfection of nodes

which are in Infected stage and Connected stage to be λr1n1 and λr2n2, respectively.

It may be seen that the time interval for the transition of a node from one stage to the
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next one is exponentially distributed with different parameters. Further, the model assumes

the number of nodes in the Susceptible stage to be infinite. This is a reasonable assumption

considering the total number of devices that are connected to the Internet today. All the

aforementioned assumptions, including the choice of node stages as well as the transition

rates between the stages, are similar to the SIC model and were explained extensively and

justified earlier. Note that the model’s assumptions are consistent with how the Storm

botnet actually operated [47] as well as how previous models [48, 49] of the Storm botnet

have been designed. As a result, we believe that we have a realistic model, which leads us

to two-dimensional Markovian birth-death processes. Using the model, we can study the

size evolution of a botnet as well as effectiveness of mitigation strategies by monitoring the

number of nodes that are in Infected and Connected stages at any given time.

The node stages as well as the transition rates among stages between the SIC and the

SIC-P2P model are the same, except the transition rate from the Connected stage to the

Infected stage (which has changed from λan2 in the SIC model to λa1 +λa2n2 in the SIC-

P2P model). This seemingly minor difference, however, propagates throughout all the steps

of derivations and leads to significantly different, more complicated formulas. This more

general transition rate leads to the SIC-P2P model being able to capture and analyze attacks

on P2P botnets which is the main contribution of this chapter. We will concentrate on DHT-

based P2P botnets and incorporate the real-world attacks on such botnets in the lifecycle

model. Specifically, we are concerned with determining the values of λa1 and λa2 in the

SIC-P2P model. In Section 5.4, we develop a methodology to suggest values for λa1 and

λa2 based on known mitigation strategies against DHT-based P2P botnets.

5.3. Performance Modeling

In this section, we provide a comprehensive performance analysis of the SIC-P2P model.

We first show the probability flow differential-difference equations set, derived based on
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the 2-dimensional CTMC which was shown in the model’s inter-stage-rate diagram. In

order to solve this equations set, we reduce it to a partial differential equation (PDE) of

the probability generating function (PGF). Next, we derive closed-form expressions for the

time-dependent means and variances from the aforementioned PDE of the PGF. Finally, we

derive the Basic Reproduction Number, a parameter widely used in epidemiology, which

helps to find the relationship between various transition rate parameters of the SIC-P2P

model in order to achieve a botnet size that is constant over time.

5.3.1. Differential-difference Equations and the PDE

According to the inter-stage-rate diagram depicted in Fig. 5.2.1, for the birth-death process

of the SIC-P2P model, the equations for the rate of change of probabilities are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dPn1,n2(t)
dt

=λ1n2Pn1−1,n2(t)+λr1(n1 +1)Pn1+1,n2(t)

+λr2(n2 +1)Pn1,n2+1(t)+λ2(n1 +1)Pn1+1,n2−1(t)

+[λa1 +λa2(n2 +1)]Pn1−1,n2+1(t)

−(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λa1 +λa2n2)Pn1,n2(t)〈
n1 > 0,n2 > 0

〉
(a)

dP0,n2(t)
dt

=λr1P1,n2(t)+λr2(n2 +1)P0,n2+1(t)+λ2P1,n2−1(t)

−(λ1n2 +λr2n2 +λa1 +λa2n2)P0,n2(t) 〈
n1 = 0,n2 > 0

〉
(b)

dPn1,0(t)
dt

=λr1(n1 +1)Pn1+1,0(t)+λr2Pn1,1(t)

+(λa1 +λa2)Pn1−1,1(t)− (λr1n1 +λ2n1)Pn1,0(t)〈
n1 > 0,n2 = 0

〉
(c)

dP0,0(t)
dt

=λr1P1,0(t)+λr2P0,1(t) 〈
n1 = 0,n2 = 0

〉
(d)

(5.3.1)
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The analysis of the SIC-P2P model runs parallel to that of the SIC model presented in the

previous chapter. In order to solve (5.3.1) and derive the probability distribution Pn1,n2(t), as

mentioned for the SIC model, a known method is to transform the equations of probability

flows to a PDE of the PGF which can be tackled using known methods to solve PDEs. Let

us denote P(z1,z2, t) as the PGF of the probability distribution Pn1,n2(t) which is given by

P(z1,z2, t) = ∑∞
n1=0 ∑∞

n2=0 Pn1,n2(t)z
n1
1 zn2

2 .

The initial probability distribution is denoted by Pk1,k2(0). Here, we assume that the ini-

tial number of nodes in each stage is constant (k1,k2). Though the initial derivations are

conditional, we will suppress the conditions for simplicity in expressing the PDE. Deriva-

tions of means and variances, however, properly take this aspect into account.

We multiply each of the equations in (5.3.1) by zn1
1 zn2

2 , sum over the respective ranges of

n1 and n2, and then add them together. After some simplifications and manipulations (see

Appendix C.1 for a detailed derivation), we arrive at the following PDE of the PGF:

(λr1 +λ2z2 −λr1z1 −λ2z1)
∂P(z1,z2, t)

∂ z1

+(λ1z1z2 +λr2 +λa2z1 −λ1z2 −λr2z2 −λa2z2)
∂P(z1,z2, t)

∂ z2
− ∂P(z1,z2, t)

∂ t

= λa1(1− z1

z2
)

(
P(z1,z2, t)−

∞

∑
n1=0

Pn1,0(t)z
n1
1

)
(5.3.2)

The usual use scenario of the SIC-P2P model is when the botnet is already present on the

Internet, potentially has a considerable size and, therefore, is considered to be an important

threat which needs to be mitigated; hence the evalution of mitigation strategies using the

SIC-P2P model. Considering this scenario, we can see that the probability of the botnet size

(n2) being zero, or near zero, is negligible, as the assumption is that the botnet is indeed

present and has a considerable size; therefore, ∑∞
n1=0 Pn1,0(t)≈ 0.

As |∑∞
n1=0 Pn1,0(t)z

n1
1 |≤∑∞

n1=0 Pn1,0(t), for the usual use scenario considered in this chapter,
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the PDE of (5.3.2) (its right hand side, in particular) can therefore be reduced as follows:

(λr1 +λ2z2 −λr1z1 −λ2z1)
∂P(z1,z2, t)

∂ z1

+(λ1z1z2 +λr2 +λa2z1 −λ1z2 −λr2z2 −λa2z2)
∂P(z1,z2, t)

∂ z2
− ∂P(z1,z2, t)

∂ t

= λa1(1− z1

z2
)P(z1,z2, t) (5.3.3)

The solution of (5.3.3), and in turn the probability distribution of the SIC-P2P model,

cannot be obtained at this moment, however, due to the complexity of the equation; it may

be obtained in the future as per discussion provided in Appendix B.2. In the meantime, we

can obtain from the PDE important results such as the moments of the number of nodes in

Infected and Connected stages, as presented next.

5.3.2. Derivation of Means and Variances

Let Et [n1] and Et [n2] denote the mean number of nodes that are in Infected and Connected

stages at time t, respectively, then:

Et [n1] =
∂P(z1,z2, t)

∂ z1
|z1=z2=1,Et [n2] =

∂P(z1,z2, t)
∂ z2

|z1=z2=1 (5.3.4)

We take the derivatives of the PDE given in (5.3.3) with respect to z1 and z2, separately.

By setting z1 = z2 = 1 in each resulting equation, we arrive at a set of ODEs of Et [n1]

and Et [n2]. To emphasize the time dependency of the means from here on, we will denote

Et [n1] and Et [n2] by E1(t) and E2(t), respectively. The details of the aforementioned steps

are provided in Appendix C.2; the set of ODEs is as follows:

⎧⎪⎪⎨
⎪⎪⎩

dE1(t)
dt = −(λ2 +λr1)E1(t)+(λ1 +λa2)E2(t)+λa1

dE2(t)
dt = λ2E1(t)− (λr2 +λa2)E2(t)−λa1

(5.3.5)
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E1(t) and E2(t) can then be derived as follows (details in Appendix C.2):

E1(t) =
[

λT4

(
2
(
−1+ etλT1

)
k2 (λ1 +λa2)λT2

)
+λT4k1

(
etλT1 (−λ2 +λa2 −λr1 +λr2 +λT1)

)
+λT4k1 (λ2 −λa2 +λr1 −λr2 +λT1)λT2

+λT4λa1etλT1
(−λ 2

r2 +λ2λr2 −λa2λr2
)

+λT4λa1etλT1 (λr1λr2 −λT1λr2 +2λa2λr1)

+λT4λa1
(
λ 2

r2 −λ2λr2 +λa2λr2 −λr1λr2
)

+λT4λa1

(
2e

1
2 t(λT3+λT1)λT1λr2 −λT1λr2 −2λa2λr1

)
+λT4λa1λ1

(
etλT1 (−λ2 +λa2 +λr1 +λr2 +λT1)

)
+λT4λa1λ1

(
λ2−λa2−λr1−λr2−2e

1
2 t(λT3+λT1)λT1

)
+λT4λa1λ1λT1

]
/
(

2λT2
√

λT3
2 −4λT2

)

(5.3.6)

E2(t) =
[

λT5

(
2
(

1− etλT1

)
k1λ2λT2

)
−λT5k2λT2

((
−1+ etλT1

)
λ2+λa2−λr1+λr2+λT1

)
−λT5k2λT2etλT1 (−λa2 +λr1 −λr2 +λT1)

−λT5λa1

(
2
(
−1+ etλT1

)
λ1λ2 −λ2λr1 +λa2λr1

)
−λT5λa1

(
2λ2λr2 −λ 2

r1 +λr1λr2 +λr1λT1
)

+2λT5λa1e
1
2 t(λT3+λT1)λr1λT1

−λT5λa1etλT1
(
λ2λr1 −λa2λr1 +λ 2

r1 −2 λ2λr2
)

−λT5λa1etλT1 (−λr1λr2)

−λT5λa1etλT1 (λr1λT1)

]
/
(
−2λT2

√
λT3

2 −4λT2

)

(5.3.7)
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where:

λT1 =
√

λ 2
2 +4λ1λ2 +2(λa2 +λr1 −λr2)λ2 +(λa2 −λr1 +λr2)2

λT2 =−λ1λ2 +λa2λr1 +(λ2 +λr1)λr2

λT3 =λ2 +λa2 +λr1 +λr2

λT4 =exp
(
−1

2
t
(

λT3 +
√

λT3
2 −4λT2

))

λT5 =exp
(
−1

2
t (λT3 +λT1)

)
k1,k2 =E1(t = 0),E2(t = 0), respectively.

(5.3.8)

Next, we derive the variances from the PDE of the PGF in (5.3.3). We know:

σ2
1 (t) = Et [n2

1]− (E1(t))
2 , σ2

2 (t) = Et [n2
2]− (E2(t))

2 (5.3.9)

where:

Et [n2
1] =

∂ 2P(z1,z2, t)
∂ z2

1
|z1=z2=1 +

∂P(z1,z2, t)
∂ z1

|z1=z2=1

Et [n2
2] =

∂ 2P(z1,z2, t)
∂ z2

2
|z1=z2=1 +

∂P(z1,z2, t)
∂ z2

|z1=z2=1 (5.3.10)

We take the 2nd derivatives of the PDE in (5.3.3) with respect to z1 and z2, separately.

Further, we take the derivative of the PDE with respect to z1 and then with respect to z2.

By setting z1 = z2 = 1 in each resulting equation, we arrive at a set of ordinary differential

equations solution of which will lead to closed-form expressions for the variances of the

SIC-P2P model. The derivations and obtained expressions are extremely lengthy however;

hence, they are provided in Appendix C.3 and [72] instead.
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5.3.3. Basic Reproduction Number (R0)

In this sub-section, we calculate an epidemiological threshold, i.e., the Basic Reproduction

Number (R0), which is a widely used parameter in epidemiology [52] as well as in the

study of malware propagation. In the context of botnets, this number is the mean number

of infections that any single botnet node can cause among the population of susceptible

nodes. If R0 < 1, the botnet will eventually disappear with probability one. If R0 > 1,

however, there is a probability that the botnet size will continue to increase exponentially.

When R0 = 1, the values of means remain constant as time goes by. Based on the ODEs of

means in (5.3.5), R0 can be written as follows:

R0 =
(λ1 +λa2)k̄2 +λa1

(λ2 +λr1)k̄1
=

λ2k̄1

(λr2 +λa2)k̄2 +λa1
(5.3.11)

Equations (5.3.11) have been derived from (5.3.5) by putting the right-hand-side terms

contributing positively in the numerator and putting the right-hand-side terms contributing

negatively in the denominator. Assuming that k̄1, k̄2, λ1, and λ2 are fixed and given (i.e.,

the aim is to evaluate different mitigation strategies), then the triplet
(〈

λa1,λa2
〉
,λr1,λr2

)
has one degree of freedom, i.e., if, for example,

〈
λa1,λa2

〉
is chosen, λr1 and λr2 will be

fixed automatically according to (5.3.11).

The “Next Generation Matrix” method used in deriving R0 for the SIC model in the

previous chapter, as shown in (4.3.13), is not applicable to the SIC-P2P model, since λa1

disappears in the differentiation involved in the method. We have therefore used the above

method to derive R0 for the SIC-P2P model which leads to a formula which is equivalent,

albeit unlike, to the one mentioned in (4.3.13). As an example verification test, we can

use the parameter values used to generate Figs. 4.5.4c and 4.5.4d which were: R0 = 1,

k̄1 = 53484, k̄2 = 6786, λ1 = 7, λ2 = 0.1, λa = 0.2, λr1 = 0.8135, and λr2 = 0.5880. Using

these values for the parameters, by setting λa1 = 0 and λa2 = λa, both equations in (5.3.11)

would be satisfied.
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5.4. From Real-world Rate of Attack on P2P Botnets

to λa1+λa2n2

In this section, we present our novel analytical methodology to relate the attack rate in the

SIC-P2P model (i.e., λa1 +λa2n2) to previously-derived analytical results by Wang et al.

[18] regarding real-world attacks on DHT-based P2P botnets which were described in Sub-

section 2.3.3. They have provided formulas for index poisoning and sybil attacks that can

guide us in choosing values for λa1 and λa2 in our model. Here, we treat the case of index

poisoning; random and targeted sybil attacks have similar treatments and are detailed in

Section 5.6. The obtained formula for the index poisoning attack was mentioned in (2.3.1)

which is repeated here:

Ps =

(
1− 2cnp

n

) Log2[n]−c
b

(5.4.1)

where, Ps is the probability that a botnet node obtains a real command; c is the number of

first bits in common with a hash key (a configurable attack parameter); np is the number of

nodes poisoned in the target zone (a configurable attack parameter); b is the number of bits

improved per step for a lookup (set to a mid-range value of 5 in our study [18]); and n is

the botnet size (this is the value of n2 in the SIC-P2P model).

5.4.1. Definition of Attack Rate

Let us assume that a botnet node (a node in Connected stage) periodically initiates a new

query to receive the new commands of the botmaster. Let us assume that this period is

exponentially distributed with mean duration of τ units of time. n2 denotes the number

of nodes in the Connected stage (botnet size). Then, the time interval between consecu-

tive queries generated by all botnet nodes will be exponentially distributed with parameter

n2
τ . Ps denotes the probability that a botnet node will receive a real command. Then, the

time interval for the transition of nodes from the Connected to Infected stage will be ex-
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ponentially distributed with parameter (1−Ps)
n2
τ . Thus, the total transition rate from the

Connected to the Infected stage (i.e., the rate of attack on the botnet or attack rate) is given

by:

Attack Rate =
(1−Ps)n2

τ
(5.4.2)

5.4.2. Attack Rate: Taylor Series Approximation

In the expression for Ps, the only variable (considering the SIC-P2P model) is n (which is n2,

the botnet size). Our goal is to relate the λa1+λa2n2 of the SIC-P2P model to the attack rate

defined in (5.4.2). As the formula for Ps is too complex for use in our model, we proceed

to obtain the Taylor series of Ps around k, as follows (first 2 terms): Ps ≈ T1 +(n− k)T2,

where:

T1 = Ps
∣∣
n=k =

(
1− 2cnp

k

)
Log[k]−cLog[2]

bLog[2]

T2 =
d(Ps)

dn

∣∣
n=k = T1

⎛
⎝Log

[
1− 2cnp

k

]
bkLog[2]

− 2cnp(Log[k]− cLog[2])
bkLog[2] (2cnp − k)

⎞
⎠ (5.4.3)

where k and n are k̄2 and n2 in the SIC-P2P model, respectively; therefore: Ps ≈ T 1+T2(n−
k) = T1 +T2(n2 − k̄2).

Considering (5.4.2), we notice that the attack rate will be quadratic in n2, i.e., the attack

rate will not have the needed linear λa1 + λa2n2 form and would need the derivation of

a second order PDE of PGF for the SIC-P2P model for which we can derive neither the

probability distribution nor the mean/variance. On the other hand, we would need to test

whether or not the first 2 terms of the Taylor series approximation are enough with means

of n1 and n2, as a direct test with n1 and n2 would need the probability distribution. In

order to address both aforementioned issues, let us replace n2 with E2(t) and define the

Mean Attack Rate as follows:
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Mean Attack Rate =
(1− P̄s)k̄2

τ
(5.4.4)

where:

P̄s =

(
1− 2cnp

E2(t)

) log2(E2(t))−c
b

(5.4.5)

In (5.4.4), we have also used (1− P̄s)k̄2 instead of (1− P̄s)E2(t) which is an approxima-

tion. This latter approximation entails that attack rate can have a linear form rather than

a quadratic form. The approximation is acceptable only if the value of E2(t) does not get

too far from k̄2 in any analysis phase. If it does, then we will need to do the analysis in

multiple phases, with each phase starting with an updated value for k̄2 which is equal to the

last value of E2(t) in the previous phase (let us assume the following region for the appro-

priateness of the approximation in each phase: 0.2k̄2 < E2(t) < 5k̄2). The approximation

is equivalent to, for example, approximating x2 with 10x as long as x does not get too far

from 10. Note that in all figures presented later examining different attack scenarios, we

have deliberately chosen attack parameters such that E2(t) does not get too far from k̄2 in

order to avoid having to do the analysis in multiple phases.

We now need to determine whether the first two terms of the the Taylor series of P̄s,

i.e., P̄s ≈ T1 + T2(E2(t)− k̄2), are a reasonable approximation. To start the evaluation,

we numerically solve the ODEs of means with the expression for P̄s, i.e., (5.4.5), and the

defined mean attack rate, i.e., (5.4.4), as follows. The ODEs of means were:

⎧⎪⎪⎨
⎪⎪⎩

dE1(t)
dt = −(λ2 +λr1)E1(t)+(λ1 +λa2)E2(t)+λa1

dE2(t)
dt = λ2E1(t)− (λr2 +λa2)E2(t)−λa1

(5.4.6)

We therefore need to solve:
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Figure 5.4.1.: SIC-P2P model: E1(t) and E2(t) with the mean rate of attack being (1−P̄s)k̄2
τ

(i.e., original Ps) and λa1 +λa2E2(t) (i.e., Taylor approximation of Ps)

⎧⎪⎪⎨
⎪⎪⎩

dE1(t)
dt = −(λ2 +λr1)E1(t)+λ1E2(t)+

(1−P̄s)k̄2
τ

dE2(t)
dt = λ2E1(t)−λr2E2(t)− (1−P̄s)k̄2

τ

(5.4.7)

Compared to the ODEs of means in the SIC-P2P model, i.e., (5.4.6), the change is the

replacement of λa1 + λa2E2(t) with (1−P̄s)k̄2
τ . By choosing some sample values for the

parameters of the index poisoning attack, we proceed to numerically solve (5.4.7) and

draw E1(t) and E2(t), as depicted in Figure 5.4.1 (solid lines). Note that, without loss of

any generality, the mean duration of attack on the botnet will be set equal to the mean

interarrival time of the queries initiated by botnet nodes to get the botmaster’s commands.

In this scenario, τ is the first time unit of the analysis period. After t = τ , there is no new

attack on the botnet and the botnet continues to expand.

We now investigate how each term of the Taylor series of P̄s has contributed to the total

value of the mean attack rate. With some chosen values for various parameters1, the values

of the terms of the Taylor series of P̄s are as follows: T1 = 0.3544, T2 = 6.503× 10
−5

. It

therefore seems that using the first 2 terms of the Taylor series is a good approximation; we

1Parameter values (nodes/time unit): λ1 = 7, λ2 = 0.1,λr1 = 0.7, and λr2 = 0.7. Index poisoning parameter
values: c = 4, np = 190, b = 5, and τ = 1. Initial state values: k̄1 = 53480 and k̄2 = 6786.
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investigate this approximation as follows:

(1− P̄s)k̄2

τ
≈

(
1−T1 −T2(E2(t)− k̄2)

) k̄2

τ

≈

λa1︷ ︸︸ ︷
k̄2

τ
(
1−T1 +T2k̄2

) λa2︷ ︸︸ ︷
− k̄2

τ
T2 E2(t) (5.4.8)

Mean Attack Rate = λa1 +λa2E2(t) (5.4.9)

Considering the chosen values for the parameters and the values calculated for T1 and T2,

the components of the mean rate of attack would be as follows: λa1 = 7375, λa2 =−0.441

(the initial rate of attack, i.e., λa1 +λa2k̄2, would therefore be 4380 nodes/time unit). As

np is constant throughout τ , a higher value of E2(t) means a lower value for the mean at-

tack rate (i.e., the larger the botnet gets, the less effective the previously poisoned nodes

become); this fact gets manifested through a negative value for λa2. In order to confirm

that considering only the first 2 terms of the Taylor series of P̄s is indeed enough, we draw

E1(t) and E2(t), as depicted in Figure 5.4.1 (dashed lines), using their derived analytical

expressions (i.e., with (5.3.6) and (5.3.7)) with the mean attack rate as defined in (5.4.8) by

choosing the same sample values as before for the parameters of the index poisoning attack.

As is clear from the figure, these two mean rates of attack (i.e., (1−P̄s)k̄2
τ and λa1+λa2E2(t))

have near identical impact on E1(t) and E2(t) which shows that the Taylor series approx-

imation (i.e., the first 2 terms of the Taylor series) is a good approximation. Therefore,

we can conclude that the SIC-P2P model is a suitable model to study the impact of index

poisoning against DHT-based P2P botnets. Finally, note that, as per (5.4.8), both λa1 and

λa2 depend on the value of k̄2, among others, and λa1 is not an independent, fixed constant.

5.5. Numerical Analysis

In this section, we provide some numerical analysis based on the analytical results of the

SIC-P2P model derived in the previous sections. This numercial analysis sheds light on
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Figure 5.5.1.: SIC-P2P model: mean and standard deviation of number of nodes in Infected
stage (left) and Connected stage (right) – with index poisoning.
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possible uses of the SIC-P2P model in the real world, i.e., how the model helps security

experts evaluate and refine mitigation strategies before deployment. The analysis of the

index poisoning attack is depicted in Fig. 5.5.1. Few points on this analysis:

• In all scenarios, we set λ1 = 7 and λ2 = 0.1, as the focus is on the evaluation of

mitigation strategies.

• The initial values at t = 0 for means and standard deviations are values at t = 12

when the botnet expands unhindered from k̄1 = 0 and k̄2 = 1.

• All λ parameters are nodes/time unit.

• τ is set to 1 time unit in our analyses.

The examined scenario is as follows: we first choose the following sample values: np =

200, c = 4 and b = 5 (values for c and b are some mid-range values [18]); the preceding

chosen values determine λa1 and λa2 (i.e., we have: λa1 + λa2n2 = 7618− 0.451n2). In

order to also demonstrate the use of the Basic Reproduction Number (R0), we consider

the case where R0 = 1. As all other parameters are already determined, λr1 and λr2 are

therefore obtained from (5.3.11) (i.e., λr1 = 0.873 and λr2 = 0.116). These values of λr1

and λr2 are kept for all scenarios examined in Fig. 5.5.1. The center-bottom sub-figures of

Fig. 5.5.1 depict the aforementioned scenario, i.e., when R0 = 1. In the bottom sub-figures

of Fig. 5.5.1, the only difference is that we have increased the number of poisoned nodes

to 400, i.e., np = 400 (i.e., we have: λa1 +λa2n2 = 8020−0.188n2). This doubling of the

number of the poisoned nodes shows a significant reduction of Infected and botnet nodes

at t = τ . In the center-top sub-figures of Fig. 5.5.1, on the other hand, the only difference is

that we have decreased the number of poisoned nodes to 100, i.e., np = 100 (i.e., we have:

λa1 +λa2n2 = 4498− 0.288n2). This halving of the number of the poisoned nodes shows

that the Infected and botnet nodes continue to increase. Finally, the top sub-figures of Fig.

5.5.1 show the scenario where we set np = 0 (which means λa1+λa2n2 = 0). This scenario
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shows the case where there is no attack at all on the botnet and the only mitigation is the

disinfection (λr1 and λr2).

5.6. Sybil Attack

This section concerns the sybil attack (random and targeted) and lays out a treatment similar

to what was done for index poisoning in the previous two sections.

5.6.1. Taylor Series Approximation

This sub-section contains the steps equivalent to what was shown in Section 5.4 concern-

ing the index poisoning attack; only formulas and descriptions that are different from the

index poisoning case are provided. The obtained formula for the random sybil attack was

mentioned in (2.3.3) which is repeated here:

Ps =

(
1− ns

ns +n

)Log2[ns+n]
b

(5.6.1)

where ns is the number of sybil nodes inserted randomly in the network (a configurable

attack parameter). The rest of the parameters have similar definitions as mentioned for

(5.4.1). Further, the Attack Rate (transition rate from Connected stage to Infected stage) is

as defined in (5.4.2).

We proceed to obtain and test the Taylor series of Ps in (5.6.1). The Taylor series of Ps

around k, the initial mean botnet size, is as follows (first 2 terms): Ps ≈ T1 + (n− k)T2,

where:

T1 =

(
1− ns

ns + k

)
Log[ns+k]

bLog[2]

T2 = T1

(
kLog

[
k

k+ns

]
+nsLog [k+ns]

)
bk (k+ns)Log[2]

(5.6.2)
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Likewise, the obtained formula for the targeted sybil attack was mentioned in (2.3.2)

which is repeated here:

Ps =

(
1− ns

ns +
n
2c

)Log2[ns+ n
2c ]

b

(5.6.3)

where ns is the number of sybils inserted in the zone whose address space is close to the

hash key used by the botmaster to distribute the botnet’s C&C commands. The rest of the

parameters have similar definitions as mentioned before. The Taylor series of Ps in (5.6.3)

around k, the initial mean botnet size, is Ps ≈ T1 +(n− k)T2, where:

T1 =

(
1− ns

ns +
k
2c

)
Log[ns+ k

2c ]
bLog[2]

T2 = T1

(
2cnsLog [2−ck+ns]+ kLog

[
k

k+2cns

])
bk (k+2cns)Log[2]

(5.6.4)

As done for the index poisoning case, we use the approximation of using E2(t) and P̄s

instead of n2 and Ps, respectively. We therefore numerically solve the ODEs of means with

the expressions for P̄s and the defined mean attack rate (i.e., with (5.4.4)), as presented in

(5.4.7). By choosing some sample values for the parameters of random and targeted sybil

attacks, we proceed to numerically solve the ODEs of means in (5.4.7) and draw E1(t) and

E2(t), as depicted in Fig. 5.6.12. Again, note that in this scenario, τ is the first time unit

of the analysis period. After t = τ , there is no new attack on the botnet and the botnet

continues to expand.

Considering the chosen values for the parameters, the components of the mean rate of

attack (i.e., (5.4.8)) would be as follows: λa1 = 5195 and λa2 = −0.273 (initial rate of

attack, i.e., λa1 + λa2k̄2 = 3337 nodes/time unit) in the case of random sybil attack and

they would be as follows: λa1 = 5410 and λa2 = −0.255 (initial rate of attack, i.e., λa1 +

λa2k̄2 = 3674 nodes/time unit) in the case of targeted sybil attack. In order to confirm that

2Parameter values (nodes/time unit): λ1 = 7, λ2 = 0.1, λr1 = 0.7, and λr2 = 0.7. Random sybil attack
parameter values: ns = 2000, and b = 5. Targeted sybil attack parameter values: ns = 220, b = 5, and
c = 4. τ is 1 time unit. Initial state values (number of nodes): k̄1 = 53480 and k̄2 = 6786.
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(a) Random sybil attack, E1(t)
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(b) Targeted sybil attack, E1(t)
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(c) Random sybil attack, E2(t)
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(d) Targeted sybil attack, E2(t)

Figure 5.6.1.: SIC-P2P model: E1(t) and E2(t) with the mean rate of attack being (1−P̄s)k̄2
τ

(i.e., original Ps) and λa1 +λa2E2(t) (i.e., Taylor approximation of Ps).

considering only the first 2 terms of the Taylor series of Ps is indeed enough, in Fig. 5.6.1,

we draw E1(t) and E2(t), as derived analytically in (5.3.6) and (5.3.7), with the mean attack

rate as defined in (5.4.8) and with the same sample values as before for the parameters of

the random and targeted sybil attacks.

As is clear from Fig. 5.6.1, these two mean rates of attack (i.e., (1−P̄s)k̄2
τ and λa1 +

λa2E2(t)) have near identical impact on E1(t) and E2(t). Therefore, we can conclude that

the SIC-P2P model with λa1+λa2n2 as the transition rate from Connected stage to Infected

stage is also a suitable model to study the impact of both random and targeted sybil attacks,

as mitigation strategies, against DHT-based P2P botnets.
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5.6.2. Numerical Analysis

The numerical analysis of a targeted sybil attack is not necessary, as the results and the

values for different parameters are very similar to what was depicted in Fig. 5.5.1. This

similarity in the results is due to the closeness in the structure of expressions of Ps in

(5.6.3) and (5.4.1); in the interpretation of the results, np should be replaced by ns which

is the number of sybils inserted in the target zone. The numerical analysis of the random

sybil attack, on the other hand, is depicted in Fig. 5.6.2. The examined scenario is similar

to what was described for the index poisoning attack and is as follows: we first choose

the following sample values: ns = 2000 and b = 5; the preceding chosen values determine

λa1 and λa2 (i.e., we have: λa1 +λa2n2 = 5195− 0.273n2). In order to also demonstrate

the use of the Basic Reproduction Number (R0), we again consider the case where R0 = 1.

As all other parameters are already determined, λr1 and λr2 are therefore obtained from

(5.3.11) (i.e., λr1 = 0.850 and λr2 = 0.296). These values of λr1 and λr2 are kept for all

scenarios examined in Fig. 5.6.2. The center-bottom sub-figures of Fig. 5.6.2 depict the

aforementioned scenario, i.e., when R0 = 1.

In the bottom sub-figures of Fig. 5.6.2, the only difference is that we have increased

the number of inserted sybils to 10000, i.e., ns = 10000 (i.e., we have: λa1 + λa2n2 =

7088− 0.123n2). This increase in the number of sybils shows a significant reduction of

Infected and botnet nodes at t = τ . In the center-top sub-figures of Fig. 5.6.2, on the

other hand, the only difference is that we have decreased the number of sybils to 1000, i.e.,

ns = 1000 (i.e., we have: λa1 +λa2n2 = 3444− 0.208n2). This halving of the number of

sybils shows that the Infected and botnet nodes continue to increase. Finally, the top sub-

figures of Fig. 5.6.2 show the scenario where we set ns = 0 (which means λa1+λa2n2 = 0).

This scenario shows the case where there is no attack at all on the botnet and the only

mitigation is the disinfection (λr1 and λr2).
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Figure 5.6.2.: SIC-P2P model: mean and standard deviation of number of nodes in Infected
stage (left) and Connected stage (right) – with sybil nodes.
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6. Botnets in 4G Cellular Networks

6.1. Introduction and Background

In this last chapter, we report and analyze a vulnerability of the air interface of 4G cellular

networks, the Long Term Evolution (LTE), to DDoS attacks launched from botnets. The

chapter is organized as follows: in this section, the iKee.B botnet is first introduced which

was a botnet designed for cellular networks. Some hypothetical cellular botnet designs are

explored afterwards which are few examples showing the growing interest of researchers

in exploring and understanding potential cellular botnets. We then examine a study which

quantified the threat of botnets in 2G/3G cellular networks by focusing on attacking a core

network element. In Section 6.2, we explain the contribution of this chapter, i.e., identi-

fication and evaluation of botnet threat against the air interface in 4G networks. Finally,

in Section 6.3, we describe the simulation scenario that we have used in order to quantify

the threat against the 4G air interface; the section ends with the simulation results giving

some indication regarding the needed botnet size in order to seriously impact the service

availability.

6.1.1. Meet iKee.B Botnet

Botnets are already operating in cellular networks and the threat is not a hypothetical one.

An example of a cellular botnet is iKee.B which was released in November 2009 and tar-

geted iPhone users in several countries in Europe and Australia; the incident and the client
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code have been examined in [73]. It is reported that iKee.B was the successor to iKee.A;

the latter was released shortly beforehand in Australia and managed to infect an estimated

21,000 iPhone users within a week. iKee.B was spotted in Europe, however, and was the

more capable version of the malware, possessing many of the important features of modern-

day botnets: ability to self-propagate, carrying of malicious payload, and the functionality

to connect to the C&C server to receive updates and commands from the botmaster.

6.1.2. Studies on Hypothetical Cellular Botnets

Recognizing the threat of botnets in cellular networks, many researchers have recently

started to examine how botnets can be constructed in such networks: In [74], it has been

shown how the Session Initiation Protocol (SIP), which is used in IMS for service delivery,

can be abused to conceal botnet traffic which would prevent the detection of a botnet in

4G cellular networks. An example of in-the-lab cellular botnet is the implementation and

evaluation of an iPhone-based mobile botnet [75]. In this work, authors report having tested

a P2P-based and an SMS-based C&C mechanisms for the botnet and conclude that a hybrid

approach of SMS- and HTTP-based C&C mechanism is the most threatening structure due

to the difficulties in detection that it presents. Similar to the research that has been done for

several years now for botnets operating in the wired Internet world, these studies provide

ideas on how to develop mitigation strategies for botnets operating in the wireless/cellular

networks.

6.1.3. Botnet-launched DDoS Attacks in 2G/3G Networks

Regarding the threat of botnets in 2G/3G cellular networks, the work done in [76] is perhaps

the most detailed, with convincing and worrying results. In the study, a DDoS attack on

the Home Location Register (HLR) has been tested. A DDoS attack that can successfully

overload the HLR would make the network unusable for the clients. In order to carry

out the attack, they have chosen to test various signaling requests sent by handsets; these
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requests must be processed by the HLR. After several tests, they have determined that, in

2G/3G networks, “Insert/Delete Call Forwarding” is the most demanding request that can

be sent by the handsets that needs to be processed by the HLR. The DDoS attack then

constitutes of handsets simultaneously sending such requests to the HLR. To determine

whether or not the generated traffic overloads the HLR, a several-computer testbed has been

built using a traffic generating and benchmarking suite. The result of the tests is the number

of botnet nodes needed by the botmaster in each HLR service area in order to overload the

HLR. Depending on the traffic condition and the capacity of the HLR system, the numbers

range from 11,750 to 141,000 botnet nodes (infected phones). With the assumption of one

million users serviced by each HLR, the paper concludes, the needed infection rate would

be between 1.2% and 14.1%.

6.2. DDoS Attacks Against the Air Interface of 4G

Cellular Networks

The contribution of this chapter is the identification and evaluation of the threat of attacking

the air interface which always has limited capacity due to the limited frequency spectrum

available for such networks. 4G cellular networks, with their packet-switched mechanism

and support of rich multimedia applications, are particularly vulnerable to such DDoS at-

tacks that can be launched at will from a botnet operating in the cellular network. We

therefore consider the air interface as the main target of the DDoS attack; the attack sce-

nario would be as follows: when the botmasters create a botnet using smartphones, they

can either activate all botnet nodes using a command or pre-program the nodes to wake up

at a certain time. At the moment of attack, all botnet nodes can either start downloading

a large file (a YouTube video, for example) to create congestion on the downlink or send

dummy data to an arbitrary destination to create congestion on the uplink. The effect of

the congestion is that most clients would no longer be able to effectively use the cellular
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network which is the same effect predicted in [76] caused through overloading an HLR

in 2G/3G networks. In the next section, we determine the needed botnet nodes per cell

through a simulation study done using a highly capable open-source LTE simulator. The

knowledge about existence of such a threat and how it might impact the availability of ser-

vice, especially in emergency situations where the system already operates at capacity, is

important and may lead to the designing of countermeasures by the operators.

6.3. Impact of Botnets: A Simulation Study

6.3.1. Simulation Scenario

In order to do performance evaluations of the LTE air interface, one of the best options is

to use the LTE-Sim simulator [77]. As a feature-rich simulator, LTE-Sim has everything

we need to assess the congestion caused by the DDoS attack on the air interface: it has an

implementation of the physical layer, radio resource schedulers, applications (Voice over

IP [VoIP], video, etc.), and a full protocol stack. In our scenario, VoIP uses a G.729 voice

codec and the voice flow alternates between On and Off periods to model the natural si-

lences in human conversation [77]. The duration of On periods is exponentially distributed

with a mean value of 3 secs. On the other hand, the Off periods have a truncated expo-

nential distribution with an average of 3 secs. and an upper limit of 6.9 secs. During the

Off period, the sending rate is zero, as a voice activity detector is assumed to be present.

During the On period, the source sends with the rate of 8 Kbps (20 bytes every 20 msec.).

Finally, the video flow uses realistic video trace files of type H.264 Foreman sequence with

a bit rate of 242 Kbps [77].

The whole evaluation of the botnet-launched DDoS attack takes place when the system

operates at or near capacity, as we are concerned with times when the system is already

under pressure to service many users due to an emergency; the assumption is that the cel-

lular system has already been planned and deployed to be able to deal with a hypothetical
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Simulation Scenario:
- User Equipment (UE) connected to eNodeB of each cell with radius of 1 km
- eNodeBs connected to Mobility Management Entity/Gateway (MME/GW)
- Cluster size (frequency reuse) of 3 cells with 5 MHz downlink in each cell (FDD)
- Scheduling: 1) Proportional Fair (PF)
                      2) Modified Largest Weighted Delay First (MLWDF)
                      3) Exponential Proportional Fair (EXP/PF)
- UEs distributed uniformly and are in Random Walk with 3 km/h (may hand over)
- Simulation results averaging several runs of 100 seconds each

MME/GW

eNodeB

UE

UE (botnet node)

UE (performing hand-over)

Figure 6.3.1.: Simulation Scenario: User Equipments (UEs) carrying VoIP sessions as well
as botnet nodes starting dummy video sessions both moving around

emergency situation. When operating at capacity, the botnet attack is launched and we ob-

serve the effect of such an attack and determine the needed botnet nodes per cell in order

to effectively deny service to users.

The simulated scenario is depicted in Fig. 6.3.1. We consider that there is a botnet built

by a botmaster that can be activated to launch a DDoS attack against the air interface. The

total botnet size is equal to the number of botnet nodes per cell times the number of cells.

In each simulation run, there are a number of botnet nodes that are configured to download

video simultaneously and there are other normal nodes (users) in the simulation that would

be using VoIP in the meantime. We then examine the relationship between the number of

botnet nodes and the level of degradation of service quality for the VoIP users.

In this work, due to simulator limitations, we only examine the case that all calls can

pass through any call admission control module that might be present. It is noteworthy that

even the presence of any such module does not diminish the threat posed by botnets, as the

module cannot differentiate between any VoIP/video calls initiated by the botnet and the

legitimate VoIP calls. The botnet therefore still manages to decrease the available capacity

of service considerably.

As we are examining an extreme case in terms of number of User Equipments (UEs)
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and the fact that LTE-Sim is a particularly detailed simulator, each simulation run of 100

seconds takes 24 hours to complete in a powerful PC. In order to reduce the time needed

for each run to 24 hours, however, we had to simulate a rather small network size of one

cluster of 3 cells, with each cell having 5 MHz allocated downlink bandwidth. The cell

radius is 1 km and users move around with a pedestrian speed of 3 km/h according to

the Random Walk mobility model [78]; the UEs may hand over to the eNodeB of the

neighboring cell due to changing power reception levels. As will be shown later on, with

the aforementioned configuration for the cellular network, each cell/eNodeB has a capacity

of servicing 100 VoIP users simultaneously; above this threshold, the quality of service

starts to drop below industry standards. While examining the botnet-launched DDoS attack

when the system operates at this maximum capacity, we also compare the performance

of the main three downlink schedulers: (1) Proportional Fair (PF); (2) Modified Largest

Weighted Delay First (MLWDF); and (3) Exponential Proportional Fair (EXP/PF). The

details of these schedulers are beyond the scope of this thesis and it suffices to mention

that MLWDF and EXP/PF are designed to deal with real-time flows, while PF treats every

flow the same. One key difference would therefore be that MLWDF and EXP/PF erase

packets belonging to real-time flows from the queue if those packets cannot be sent within

a reasonable delay; this is done to avoid wasting bandwidth.

6.3.2. Determining the Cell Capacity

We first determine the cell capacity in the set up cellular network by increasing the number

of VoIP users and monitoring each VoIP user’s delay and packet loss ratio (PLR); see Fig.

6.3.2. In each sub-figure, results are reported for all the downlink schedulers. Considering

the VoIP quality metrics, we see that the cell capacity is around 100 simultaneous VoIP

users; these metrics will be elaborated on shortly.

We now need to determine the average number of subscribers that are present in a cell

which has the capacity of serving 100 simultaneous VoIP users. For this, we turn to reports
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(a) Delay (b) PLR

Figure 6.3.2.: Determining cell capacity; increasing number of VoIP users until Delay and
Packet Loss Ratio (PLR) reach maximum acceptable levels.

on user behavior regarding average monthly phone conversations. According to [79], a

typical mobile phone user talks 761.5 minutes on average per month; the daily average

would therefore be about 25 minutes. Assuming that most phone conversations happen

in the period from 8 a.m. to 10 p.m. (i.e., a 14-hour slot in each 24 hours), we have:

25 mins./(14× 60 mins.) ≈ 3%. We can then state that each subscriber is actively using

the system resources (i.e., it becomes one of the 100 simultaneous VoIP users) about 3%

of the time each day1. Therefore, we can now consider that the maximum number of

simultaneous VoIP users is about 3% of the average number of subscribers that are present

in each cell. As our set up network had the capacity of serving 100 simultaneous VoIP

users, then the average number of subscribers at this capacity would be about 3,300. This

1-to-33 relationship between the number of simultaneously-active users and the average

number of subscribers has also been considered to be a reasonable estimate in real-world

LTE deployments by [80].

1Note that assuming a complete 24-hour slot, instead of the 14-hour slot, will lead to a percentage lower than
3%; hence, the needed percentage of botnet spread among subscribers of each cell to cause an outage, as
will be determined later one, will be even lower.
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6.3.3. VoIP Quality Metrics

Before proceeding further, we briefly introduce key VoIP quality metrics, as these will be

needed in order to understand the observed degradation of service. Mean Opinion Score

(MOS) is a subjective measurement of voice quality described in ITU recommendation

P.800. MOS value for a voice communication ranges from 1 (impossible to communicate)

to 5 (very satisfied). The two main VoIP quality metrics affecting MOS are packet loss and

delay. Mouth-to-ear (one-way) delay is usually considered acceptable as long as it is below

150 msec. We, however, measure the packet delays only on the air interface which must

be significantly less than 150 msec in order to satisfy the mouth-to-ear threshold. On the

other hand, as we use the common G.729 voice codec in the simulator, we refer to results

reported in [81] to point out that packet loss for this codec (with replacing the lost packet

by the repetition method) leads to MOS going down from 4.3 (with 1% packet loss) to 2.8

(with 20% packet loss); the decrease is near linear and no results are reported for above

20% loss, as this would be completely unacceptable. Nonetheless, as MOS has degraded in

a linear fashion from 1% packet loss to 20% packet loss, we can expect that at 50% packet

loss, we will have a MOS value of 1 (impossible to communicate).

6.3.4. Determining the Effect of Botnet-launched DDoS Attack

At the maximum capacity, i.e., while 100 VoIP users are being served, we now start adding

an increasing number of botnet nodes which download video while the VoIP users continue

their sessions. The effect of botnet nodes on the VoIP quality of those 100 users is reported

in Fig. 6.3.3. It can be seen that while the PF scheduler keeps the PLR near acceptable

levels, the delay becomes increasingly large which hinders a proper phone conversation.

Note that the shown delays are only the air interface delays which must be a small frac-

tion of the acceptable mouth-to-ear delay of 150 msec. On the other hand, MLWDF and

EXP/PF schedulers are designed for real-time flows and as such, drop many packets due to

large delays to save bandwidth, as those delayed packets are no longer useful. These two
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Figure 6.3.3.: Determining the effect of botnet-launched DDoS attack on 100 VoIP users
that share resources with an increasing number of botnet nodes.

schedulers hence show an acceptable level of delay, however, the PLR reaches 20% with

100 botnet nodes and reaches 50% with 200 botnet nodes. Note that 100 botnet nodes and

200 botnet nodes represent a 3% infection rate and a 6% infection rate, respectively, among

the subscribers in each cell.

We therefore observe that a botnet that has spread to only 3% of subscribers is capable

of lowering the voice quality from 4.3 to 2.8 in Mean Opinion Score (MOS) scale of 1 to

5 for scheduling strategies designed for real-time flows. On the other hand, a botnet that

has managed to spread to 6% of subscribers can cause a MOS value of 1, i.e., a complete

outage. Contrasting these percentages with up to 14.1% botnet spread needed in 2G/3G

networks, reported in Section 6.1.3, 4G/LTE networks seem to be much more vulnerable

to botnet-launched DDoS attacks. The threat identified and the reported results could in-

spire the implementation of new mechanisms to ensure the security and availability of vital

telecommunication services.
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7. Conclusions and Future Work

There is a lack of appropriate analytical models on botnets in the literature. The prior work

on botnets mostly consists of either deterministic analytical or simulation-based models.

The deterministic models have the drawback of treating the botnet size as a deterministic

variable, which neglects the stochastic nature of the evolution of botnets. These models

only lead to determination of the mean botnet population size and not to the probability

distribution of size or its higher moments. Further, the existing models determine the mean

botnet size numerically and they have not obtained closed-form expressions. On the other

hand, simulation-based models can be designed to capture the details of botnet lifecycle,

but their results cannot be easily replicated or used by others.

7.1. Summary of Contributions and Conclusions

The work and the contribution of this thesis were presented in four chapters: Chapter 3

through Chapter 6. Here, we mention the main results, conclusions, and contributions.

In Chapter 3, two stochastic botnet models, SComI and SComF, were presented which

cover both cases of infinite and finite node population sizes. As both models account for

the most important node stages (i.e., Susceptible and Compromised), they are useful and

sufficient models for the prediction and analysis of initial unhindered botnet expansion.

For each of the two models, we derived the probability distribution of botnet size which

allows a comprehensive analysis of botnet expansion phenomenon. These two models are
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especially useful when not enough information is available on detailed operations of an

emerging botnet; hence preventing the use of a three-node-stage model which needs more

parameters to be known for it to be used. Using the developed models, the botnet size

estimation problem has been reduced from having to estimate the global size of the botnet

to the estimation of the model’s parameter (λ ) which requires only local knowledge.

In Chapter 4, we developed the SIC stochastic analytical model that captures the dynam-

ics of a botnet’s lifecycle. We have modeled the lifecycle of a node in the system with

three stages referred to as Susceptible, Infected, and Connected. Considering three stages

for the nodes would allow the proper incorporation of mitigation strategies, i.e., disinfec-

tion of nodes and attacks on botnet’s C&C infrastructure, in the model. Therefore, the

model would be applicable not only to initial unhindered expansion, but also to the later

phases; hence, it can capture the full botnet lifecycle. We have modeled the system using

a two-dimensional Markov process and derived a partial differential equation for the joint

distribution of the number of nodes in each stage (Infected and Connected). Though this

equation could not be solved, we were able to obtain closed-form expressions for the time

dependent mean and variance/standard deviation of the population size in each stage. We

also presented a successful attempt at explaining the size fluctuations of a real-world botnet

using the SIC model. This success raised our confidence level with regard to the accuracy

of the SIC model and its applicability in the real world.

A comparison between the values of mean and standard deviation in the figures regarding

the SIC model suggests that the value of standard deviation is consistently about half of the

mean value in all cases. This has implications with regard to how mean values should be

interpreted in the real world. Inclusion of standard deviation in our analysis helps put the

mean in its proper context; the higher the standard deviation gets, the less should be the

importance of the precise value of the mean. For example, if a critical decision with regard

to the deployment of costly mitigation strategies needs to be made when the predicted mean

value of the botnet size crosses over an important threshold, it may be appropriate to delay
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this decision until the predicated mean value of the botnet size crosses over the threshold

plus the value of the standard deviation. This way, we would be more confident about

the actual size of the botnet and the necessity of the deployment of the costly mitigation

strategies.

In Chapter 5, we proposed and developed the SIC-P2P model which is an extension

of the SIC model. Being the first analytical botnet model capable of doing so, the SIC-

P2P model creates a direct analytical link between botnet size and different parameters

of DHT-based P2P botnet mitigation strategies. This analytical link allows the planning

and fine-tuning of mitigation strategies such as index poisoning and sybil attack with the

granularity that was never possible before. Using the SIC-P2P model, we can examine

the effect of increasing the number of sybils, in the case of sybil attack, or the number of

poisoned nodes, in the case of index poisoning, on the botnet size. We are therefore able to

have a more controlled approach in dealing with a botnet, rather than the existing approach

which is just accelerating the mitigation strategies, at a potentially high cost, while being

in the dark and hoping for the best.

For the SIC-P2P model, we derived closed-form expressions for the time-dependent

means and variances of the number of nodes in Infected and Connected stages. Like the

ones provided for the SIC model, the numerical results accompanying the analysis of the

SIC-P2P model present potential use cases of the model and how P2P botnet mitigation

strategies can be fine-tuned. As DHT-based P2P botnets have been among the most suc-

cessful botnets from the botmasters’ perspective, it is likely that their core operating princi-

ples are carried over to many future generations of botnets. The SIC-P2P model may then

prove to be a valuable asset for a long time to come for the security professionals.

Having developed several analytical botnet models in previous chapters, in Chapter 6,

we focused on how botnets could affect cellular networks. The trend in recent years has

been the full integration of Internet services in the cellular networks, accommodating the

huge demand for Internet access through smartphones. An obvious research item for us was
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the examination of Internet security threats, and botnets in particular, that can now impact

cellular wireless networks. We therefore examined how a 4G network using the LTE air in-

terface could be impacted by botnets. We subsequently identified a potentially devastating

threat against the LTE cellular networks, i.e., the launch of a DDoS attack against the air

interface which is simple to implement and does not require inside knowledge about core

network elements. Through the simulations, we determined that a botnet that has spread to

only 6% of subscribers can effectively cause an outage in cellular services, particularly in

peak hours and especially in emergency situations. We hope the exposed vulnerability and

results shown would lead to the implementation of mechanisms to eliminate such a threat.

7.2. Publications

Matching the four chapters, Chapter 3 through Chapter 6, contributions of this thesis are

presented in four papers, the first two of which have already been peer-reviewed and ac-

cepted for publication:

• “SComF and SComI Botnet Models: The Cases of Initial Unhindered Botnet Expan-

sion”, 25th Annual Canadian Conference on Electrical and Computer Engineering

(CCECE12), Montreal, Canada, April 29-May 2, 2012

• “The SIC Botnet Lifecycle Model: A Step Beyond Traditional Epidemiological Mod-

els”, Accepted paper to appear in Computer Networks (Elsevier), Special Issue on

Botnet Activity: Analysis, Detection and Shutdown, DOI: 10.1016/j.comnet.2012.07.020

• “SIC-P2P: A Lifecycle Model for the Evaluation of Mitigation Strategies Against

P2P Botnets”, Submitted.

• “Botnets in 4G Cellular Networks: Platforms to Launch DDoS Attacks Against the

Air Interface”, Submitted.
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7.3. Future Work

Considering the work done in this thesis, one could consider the following two aspects as

suitable candidates for future work:

• Derivation of the probability distributions for the SIC and SIC-P2P models. The con-

siderable efforts made to derive the probability distributions for these models were

not successful due to certain cases of differential equations remaining unsolved as of

now. The most likely path that could lead to a solution is documented in Section B.2,

as mentioned earlier. By monitoring developments in this branch of mathematics,

one could ultimately obtain closed-form solutions for the probability distributions at

some point in the future. In the meantime, the derivation of means and variances

done in this thesis can serve adequately the practical needs of the security research

community.

• Extension of the work done with regard to the threat of botnet in 4G cellular networks

in two directions:

1. In light of the threat exposed, one could investigate the potential mitigation

techniques in order to reduce and possibly eliminate the threat of the air inter-

face falling victim to a DDoS attack. One possible mitigation technique would

be the enhancement of the call admission control module so that the module is

able to screen, detect, and prevent rogue calls;

2. Following the work reported in [76] and described earlier, it is certainly rele-

vant to determine how a botnet could attack a core network element in 4G sys-

tems. The equivalent of a Home Location Register (HLR) in 2G/3G networks

is the Home Subscriber Server (HSS) of IMS in 4G networks. This research

work could be carried out as soon as IMS implementations reach maturity and

hardware specifications of HSS are known in order to test HSS’s capacity and

overload thresholds.
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7.4. Concluding Remarks

Through an assessment of the recent simulation studies and testbed experiments, we no-

ticed that both these methods are very time-consuming, need extensive resources, and in-

volve some simplifications. Analytical models may achieve a sufficient level of realism,

comparable to the levels achieved by simulation models and testbed experiments, signifi-

cantly faster and less expensive; they are therefore accessible to a larger group of security

researchers.

Earlier analytical botnet models, however, are mostly based on the simple path of re-

using models initially developed in the context of epidemiology and malware propagation.

Botnets, though, possess key differentiating characteristics. They merit a closer scrutiny

and a ground-up approach to model development; this is the path taken in this thesis. Emer-

gence of botnets, especially the resilient P2P botnets, as formidable threats on the Internet,

and potentially within other Internet-enabled telecommunication infrastructure, motivated

us to develop analytical models that properly capture the stochastic nature of population

size changes and can help security professionals assess both the threat and the deployed

mitigation strategies. With the development of several models each providing an invalu-

able, unique insight, this task has been accomplished.
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A. The SCom Models

A.1. The SComI Model Derivations

Here, we provide the details of solving (3.2.2) on page 36. We define the auxiliary variable

s which represents the scaled distance along a characteristic curve. Based on the Method of

Characteristics [62], z, t and therefore P(z, t) are effectively all functions of s. We therefore

can write the following equations based on (3.2.2):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ t
∂ s = 1

∂ z
∂ s = λ z(1− z)

dP(z,t)
ds = 0

(A.1.1)

With the initial condition P(z,0) = z, we therefore have:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t(s = 0) = 0

z(s = 0) = i1

P(s = 0) = i1

(A.1.2)
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From the previous equations, we have t(s, i1) = s and P(s, i1) = i1 (i1 is an unknown pa-

rameter.). To solve ∂ z
∂ s = λ z(1− z), we proceed as follows:

∂ z
∂ s

= λ z(1− z)

z′ = λ z(1− z)

z′ −λ z = −λ z2 (A.1.3)

z′

z2 −
λ
z

= −λ (A.1.4)

Eq. (A.1.3) is a Bernoulli differential equation [62] which can be solved through taking

some steps including the use of Integrating Factors method (the Integrating Factor being

eλ s) as follows: we define u(s)� 1
z(s) ; therefore u′(s) = −z′(s)

z2(s) . Eq. (A.1.4) can therefore be

written as: −u′(s)−λu(s) =−λ or:

u′(s)+

G(s)︷︸︸︷
λ u(s) =

Q(s)︷︸︸︷
λ (A.1.5)

Solution of (A.1.5) can be found through the method of Integrating Factors as follows:

Integrating Factor = W (s) = exp(
∫ s G(m)dm) = exp(λ s) = eλ s. We multiply (A.1.5) by

the calculated Integrating Factor and derive the solution as follows:

eλ su′(s)+ eλ sλu(s) = eλ sλ

d
(

eλ su(s)
)

ds
= eλ sλ

eλ su(s) = eλ s +C

u(s) = 1+Ce−λ s (A.1.6)

As u(s)� 1
z(s) , from (A.1.6), we finally derive z(s) as follows:

z(s) =
1

1+Ce−λ s
(A.1.7)
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Using the initial condition in (A.1.2), we derive the constant C in (A.1.7): C = 1
i1
− 1. To

summarize, we have: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = s

z = 1
1+( 1

i1
−1)e−λ s

P = i1

(A.1.8)

From (A.1.8), we can eliminate i1 and s and derive P in terms of z and t as shown in (3.2.3)

on page 37.

A.2. The SComF Model Derivations

A.2.1. Laplace Transform of the Probability Distribution

Taking (3.3.1) on page 40 to Laplace domain, we have:

sP∗
1 (s)−P1(0) =−λP∗

1 (s)

P∗
1 (s) =

1
s+λ

n = 1

sP∗
n (s)−Pn(0) = (n−1)λP∗

n−1(s)−nλP∗
n (s) 2 ≤ n ≤ N

2

Since Pn(0) = 0 for n > 1, we can derive:

P∗
n (s) =

(n−1)λ
s+nλ

P∗
n−1(s) 2 ≤ n ≤ N

2
(A.2.1)

Again, since Pn(0) = 0 for n > 1, we proceed as follows for N
2 +1 ≤ n ≤ N :

sP∗
n (s)−Pn(0) = (N −n+1)λP∗

n−1(s)− (N −n)λP∗
n (s)

P∗
n (s) =

(N −n+1)λ
s+(N −n)λ

P∗
n−1(s)

N
2
+1 ≤ n ≤ N (A.2.2)
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To summarize, we have:

P∗
n (s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
s+λ n = 1

(n−1)λ
s+nλ P∗

n−1(s) 2 ≤ n ≤ N
2

(N−n+1)λ
s+(N−n)λ P∗

n−1(s)
N
2 +1 ≤ n ≤ N

(A.2.3)

Using the induction method, from (A.2.3), we can recursively determine P∗
n (s) as follows:

for 2 ≤ n ≤ 5 (assuming that N = 10), we can write:

P∗
2 (s) =

λ
s+2λ

P∗
1 (s) =

λ
(s+λ )(s+2λ )

P∗
3 (s) =

2λ
s+3λ

P∗
2 (s) =

2λ 2

(s+λ )(s+2λ )(s+3λ )

P∗
4 (s) =

3λ
s+4λ

P∗
3 (s) =

6λ 3

(s+λ )(s+2λ )(s+3λ )(s+4λ )

P∗
5 (s) =

4λ
s+5λ

P∗
4 (s) =

24λ 4

(s+λ )(s+2λ )(s+3λ )(s+4λ )(s+5λ )

For N
2 +1 ≤ n ≤ N, we proceed as follows:

P∗
N
2 +1(s) =

N
2 λ

s+(N
2 −1)λ

P∗
N
2
(s)

P∗
N
2 +2(s) =

(N
2 −1)λ

s+(N
2 −2)λ

P∗
N
2 +1(s) =

N
2 (

N
2 −1)λ 2(

s+(N
2 −1)λ

)(
s+(N

2 −2)λ
)P∗

N
2
(s)

P∗
N
2 +3(s) =

(N
2 −2)λ

s+(N
2 −3)λ

P∗
N
2 +2(s) =

N
2 (

N
2 −1)(N

2 −2)λ 3(
s+(N

2 −1)λ
)(

s+(N
2 −2)λ

)(
s+(N

2 −3)λ
)P∗

N
2
(s)

From the structure of the preceding expressions, P∗
n (s) has the general form shown in (3.3.2)

on page 40.
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A.2.2. Probability Distribution

We apply the partial fraction expansion method to the expressions obtained for P∗
n (s) in

order to perform the Laplace inversion to derive Pn(t). From (3.3.2) on page 40 and the

previously derived expressions for P∗
n (s), we can write (assuming that N = 10):

P∗
2 (s) = 1

s+λ + −1
s+2λ

P∗
3 (s) = 1

s+λ + −2
s+2λ + 1

s+3λ

P∗
4 (s) = 1

s+λ + −3
s+2λ + 3

s+3λ + −1
s+4λ

P∗
5 (s) = 1

s+λ + −4
s+2λ + 6

s+3λ + −4
s+4λ + 1

s+5λ

P∗
6 (s) =

5
3

s+λ + −10
s+2λ + 30

s+3λ + −20λ
(s+4λ )2 +

− 50
3

s+4λ + −5
s+5λ

P∗
7 (s) =

10
3

s+λ + −40
s+2λ + 120λ

(s+3λ )2 +
−120
s+3λ + 80λ

(s+4λ )2 +
440
3

s+4λ + 10
s+5λ

P∗
8 (s) = 10

s+λ + −120λ
(s+2λ )2 +

280
s+2λ + −360λ

(s+3λ )2 +
0

s+3λ + −120λ
(s+4λ )2 +

−280
s+4λ + −10

s+5λ

P∗
9 (s) = 20λ

(s+λ )2 +
−235

3
s+λ + 240λ

(s+2λ )2 +
−320
s+2λ + 360λ

(s+3λ )2 +
180

s+3λ + 80λ
(s+4λ )2 +

640
3

s+4λ + 5
s+5λ

P∗
10(s) = 1

s +
−20λ
(s+λ )2 +

175
3

s+λ + −120λ
(s+2λ )2 +

100
s+2λ + −120λ

(s+3λ )2 +
−100
s+3λ + −20λ

(s+4λ )2 +
− 175

3
s+4λ + −1

s+5λ

An an example for the more complicated case of N
2 +1 ≤ n ≤ N, the expression for P∗

6 (s)

has been derived as follows:

P∗
6 (s) =

5λ
s+4λ

P∗
5 (s)

=
5λ ×4!×λ 4

(s+5λ )(s+4λ )2(s+3λ )(s+2λ )(s+λ )

=
A

s+λ
+

B
s+2λ

+
C

s+3λ
+

D
(s+4λ )2 +

E
s+4λ

+
F

s+5λ
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A =
5λ ×4!×λ 4

(4λ )(3λ )2(2λ )(λ )
=

5
3

B =
5λ ×4!×λ 4

(3λ )(2λ )2(λ )(−λ )
=−10

C =
5λ ×4!×λ 4

(2λ )(λ )2(−λ )(−2λ )
= 30

D =
5λ ×4!×λ 4

(λ )(−λ )(−2λ )(−3λ )
=−20λ

E =
d
ds

(
5λ ×4!×λ 4

(s+5λ )(s+3λ )(s+2λ )(s+λ )

)∣∣∣∣∣
s=−4λ

=−50
3

F =
5λ ×4!×λ 4

(−λ )2(−2λ )(−3λ )(−4λ )
=−5

From the preceding expressions, P∗
n (s) has the following general form:

P∗
n (s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
s+λ n = 1

∑n−1
k=0

(
(−1)k

(
n−1

k

)
1

s+(k+1)λ

)
2 ≤ n ≤ N

2

∑
N
2
k=1

k/∈[N−n,N
2 −1]

(
T1
T2

1
s+kλ

)
+ ∑

N
2 −1
k=1

k∈[N−n,N
2 −1]

(
T1
T2

1
(s+kλ )2 +

d( T1
T3
)

ds

∣∣∣∣∣
s=−kλ

1
s+kλ

)
N
2 +1 ≤ n < N

T1
T2|k=0

1
s +∑

N
2 −1
k=1

(
T1
T2

1
(s+kλ )2 +

d( T1
T3
)

ds

∣∣∣∣∣
s=−kλ

1
s+kλ

)
+ T1

T2|k=N
2

1
s+N

2 λ n = N

(A.2.4)

where T1, T2 and T3 are given as follows:

T1 =
N
2 !

(N −n)!
λ (n−N

2 )(
N
2
−1)!λ

N
2 −1

T2 =

N
2

∏
i=1
i�=k

(i− k)λ
N
2 −1

∏
j=N−n

j �=k

( j− k)λ

T3 =

N
2

∏
i=1
i�=k

(s+ iλ )
N
2 −1

∏
j=N−n

j �=k

(s+ jλ )

The Laplace inversion of (A.2.4) gives the probability distribution as shown in (3.3.3) on

page 41.
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A.3. The SComF Model: Simulation Using the GTNetS

simulator

A.3.1. Simulated Topology

Figure A.3.1.: Worm spread in the 20-host simulated topology in GTNetS
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A.3.2. Simulation Scenario

1 // wormsim.cc used for the SComF paper by Masood Khosroshahy
2 // Changes compared to the original wormsim.cc are noted by the term "SComF".
3 // Changes made only correct few problems��they do not affect 
4 // the simulation scenario (except the number of hosts in the network).
5
6 // Worm Demo for GTNetS
7 // Supports command level arguments and log files.
8 // Monirul I Sharif, Georgia Institute of Technology
9

10 #include <iostream>
11 #include <stdio.h>
12 #include <string>
13 #ifndef WIN32
14 #include <sys/time.h>
15 #else
16 #include <time.h>
17 #include <winsock.h>
18 #endif
19 #include "validation.h"
20
21 //#define DEBUG_MASK 0x01
22
23 #include "debug.h"
24 #include "common-defs.h"
25 #include "simulator.h"
26 #include "node.h"
27 #include "dumbbell.h"
28 #include "tcp-tahoe.h"
29 #include "randomtree.h"
30 #include "tree.h"
31 #include "ratetimeparse.h"
32 #include "linkp2p.h"
33 #include "routing.h"
34 #include "routing-static.h"
35 #include "args.h"
36 #include "bfs.h"
37
38 #include "wormtcp.h"
39 #include "wormudp.h"
40 #include "wormtargetvector.h"
41 #include "wormhelper.h"
42
43 #ifdef HAVE_QT
44 #include <qnamespace.h>
45 #endif
46
47
48 // ------------ Define worm types    ---------------
49 #define TCPWORMTYPE  1
50 #define UDPWORMTYPE  2
51 #define WORMTYPE     UDPWORMTYPE
52
53 // ------------ Define the topology  ---------------
54 //SComF commented out:
55 //#define TREES        4
56 #define TREES        2
57 //SComF commented out:
58 //#define DEPTH        4 
59 #define DEPTH        2 
60 //SComF commented out:
61 //#define FANOUT       8
62 #define FANOUT       10
63 //SComF commented out:
64 //#define TREELEGPROB  0.85
65 #define TREELEGPROB  1
66
67 // SComF:
68 // The above changes to the topology is such that we will ALWAYS 
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69 // have 20 real hosts in the network (if not altered at the command line).
70 // This is to make sure we can set N=20 for SComF.
71
72 #define LINKBW       "10Mb"
73 #define HLINKBW      "10Mb"
74 #define BLINKBW      "100Mb"
75
76 // change the following if you want to have 
77 #define DEPTH_FS   0
78 #define FANOUT_FS  0
79
80 // ------------ Define Addressing   ----------------
81 #define BASEIP    "10.0.0.0"
82
83 // ------------ Worm parameters -----------------------
84 #define VULNERABILITY  1.0
85 #define THREADS        3
86 #define SCANRATE       100
87 #define SCANRANGE      0
88 #define PAYLOAD        1000
89
90 // ------------ File names ----------------------------
91 #define DEFFILENAME "wormsimdata"
92
93
94 // ----------- Simulation settings -------------------
95 #define SIMTIME        10.0
96 #define SIMINTERVAL    0.05
97 #define SIMSHOW        0
98 #define SIMRANDOM      1
99

100 using namespace std�
101
102 // SComF: commented out due to compilation problem 
103 // (not important: used only for the calculation of simulation run time)
104 //#ifdef WIN32
105 //void          gettimeofday(struct timeval *tv,int dummy)
106 //{
107 //SYSTEMTIME SystemTime�
108 //GetSystemTime(&SystemTime)�
109 //tv->tv_sec = SystemTime.wSecond �
110 //tv->tv_usec = SystemTime.wMilliseconds �
111 //}
112 //#endif
113
114
115 FILE *tracefile, *infofile�
116 Count_t wormtype�
117
118
119 // SComF: commented out due to compilation problem
120 // (not important: used only for the calculation of simulation run time)
121
122 // returns time since January 1, 1970 in useconds
123 //unsigned long long int get_time()
124 //{
125 //  struct timeval tp�
126 //  unsigned long long int result�
127 //  gettimeofday(&tp, NULL)�
128 //  
129 //  result = tp.tv_sec�
130 //  result = (result * 1000000L) + tp.tv_usec�
131
132 //  return result�
133 //}
134
135 double in_seconds(unsigned long long int time)
136 {
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137   return ((double)time)/1000000.0�
138 }
139
140
141 // Progress hook
142 static void Progress(Time_t now)
143 {
144   int infected�
145   if (wormtype == UDPWORMTYPE)
146     infected = WormUDP::TotalInfected()�
147   else
148     infected = WormTCP::TotalInfected()�
149
150   fprintf(tracefile, "%6.2lf %6ld\n", Simulator::Now(), infected)���
151   fflush(tracefile)�
152
153   cout 
154     << "Prog " << Simulator::Now() 
155     << " infected "<<infected
156     << " mem " << Simulator::instance->ReportMemoryUsageMB() << "MB"
157     << " bfs calls " << bfs_calls
158     << " bfs avg searches " << (float)bfs_nodessearched/bfs_calls
159     << endl�
160
161   bfs_calls = 0�
162   bfs_nodessearched = 0�
163 }
164
165
166 int main(int argc, char** argv)
167 {
168   Validation::Init(argc, argv)�
169   string filename, tracefilename, infofilename�
170   Simulator s�
171   Count_t nd,nf,nt,ndfs, nffs�
172   string hlinkbw, linkbw, blinkbw, baseip�
173   Count_t threads, scanrange, scanrate�
174   Size_t payload�
175   double vulnerability, treelegprob�
176   double simtime, siminterval�
177   unsigned long long int start_time, end_time�
178   Count_t showsim,randomsim�
179
180   cout << "Worm Toolkit Demo on GTNetS  Version 2.0"<<endl�
181   cout << "CoC G.Tech, (c)2003"<<endl<<endl�
182
183   if (argc==1) {
184 // SComF correction:
185 //    cout << "Usage:  wormtcpsim <option1=...> <option2=...> ..."<<endl�
186     cout << "Usage:  GTNetS.exe <option1=...> <option2=...> ..."<<endl�
187     cout << "       Options:"<<endl����
188 // SComF correction:
189 //    cout << "             wormtype   : type of worm 1=UDP or 2=TCP"<<endl<<endl�
190     cout << "             wormtype   : type of worm 1=TCP or 2=UDP"<<endl<<endl�
191     cout << "             tracefile  : name portion of trace files "<<endl<<endl�����
192     cout << "             trees      : number of trees"<<endl�
193     cout << "             depth      : depth of each tree"<<endl�
194     cout << "             fanout     : maximum fanout"<<endl�
195     cout << "             depthfs    : depth of first stage in tree"<<endl�
196     cout << "             fanoutfs   : maximum fanout in first stage of tree"<<endl�
197     cout << "             treelegprob: probability that a leg will be created"<<endl�
198     cout << "             linkbw     : bandwidth of links in the tree"<<endl�
199     cout << "             hlinkbw    : bandwidth of links in first stage"<<endl�
200     cout << "             blinkbw    : backbone link bandwidth"<<endl�
201     cout << "             nbaseip    : base IP address of nodes in network"<<endl�
202     cout << "             baseip     : base ip address of worm scan"<<endl�
203     cout << "             scanrange  : IP scanrange of worm (0 scans only the network

 space)"<<endl�
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204     cout << "             threads    : (for  TCP) number of parallel TCP connection 
each TCP worm makes"<<endl�

205     cout << "             scanrate   : (for  UDP) number of packets per second"<<endl
�

206 // SComF: "vulnerability" added to command line help:
207  cout << "             vulnerability   : The probability that a host is vulnerable

 to the worm attack"<<endl�
208  cout << "             simtime    : the total time of the simulation"<<endl�
209     cout << "             siminterval: the interval for producing trace information"<

<endl<<endl�
210     
211     cout << "Please provide atleast one argument to begin"<<endl<<endl�
212     return 0�
213   }
214
215   Arg("tracefile", filename, DEFFILENAME)�
216
217   Arg("wormtype", wormtype, WORMTYPE)�
218
219   Arg("trees", nt, TREES)�
220   Arg("depth", nd, DEPTH)�
221   Arg("fanout", nf, FANOUT)�
222   Arg("depthfs", ndfs, DEPTH_FS)�
223   Arg("fanoutfs", nffs, FANOUT_FS)�
224   Arg("linkbw", linkbw, LINKBW)�
225   Arg("hlinkbw", hlinkbw, HLINKBW)�
226   Arg("blinkbw", blinkbw, BLINKBW)�
227   Arg("baseip", baseip, BASEIP)�
228   Arg("scanrange", scanrange, SCANRANGE)�
229   Arg("threads", threads, THREADS)�
230   Arg("scanrate", scanrate, SCANRATE)�
231   Arg("payload", payload, PAYLOAD)�
232   Arg("vulnerability", vulnerability, VULNERABILITY)�
233   Arg("treelegprob", treelegprob, TREELEGPROB)�
234   Arg("simtime", simtime, SIMTIME)�
235   Arg("siminterval", siminterval, SIMINTERVAL)�
236   Arg("show", showsim, SIMSHOW)�
237   Arg("random", randomsim, SIMRANDOM)�
238
239   Arg::ProcessArgs(argc, argv)�
240
241   // Set the random number generated
242   //  Random::GlobalSeed(30,40,450,60,20,30)�
243   if (!randomsim) {
244     Random::GlobalSeed(31731,44543,425345,19367,48201,72333)�
245   }
246
247   tracefilename = filename+".dat"�
248   infofilename = filename+".inf"�
249   cout << "Data:"<< tracefilename <<", Info:"<< infofilename<<endl�
250   
251   tracefile = fopen(tracefilename.c_str(), "wt")�
252   infofile = fopen(infofilename.c_str(), "wt")�
253   // Calculate number of HOST IP's
254
255   Count_t rangeTotalHosts = AddressRangeOfRandomTreeNetworks(nt, nd, nf, ndfs, nffs)�
256
257   if (scanrange==0) 
258     scanrange = rangeTotalHosts�
259
260   // Now let us set the worm application defaults
261   if (wormtype==UDPWORMTYPE) {
262     WormUDP::SetBaseIP(IPAddr(baseip))�
263     WormUDP::SetVulnerability(vulnerability)�
264     WormUDP::SetPayloadLength(payload)�
265     WormUDP::SetScanRate(scanrate)�
266     WormUDP::SetTargetVector(WTVUniform(scanrange))�
267   } else {
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268     WormTCP::SetBaseIP(IPAddr(baseip))�
269     WormTCP::SetVulnerability(vulnerability)�
270     WormTCP::SetPayloadLength(payload)�
271     WormTCP::SetConnections(threads)�
272     WormTCP::SetTargetVector(WTVUniform(scanrange))�
273   }
274
275   // Set node shape to a circle for animation
276   Node::DefaultShape(Node::CIRCLE)�
277   
278   // Trace* tr = Trace::Instance()��// Get a pointer to global trace object
279   //  tr->Open("testworm.txt")�
280   //  TCP::LogFlagsText(true)��������// Log TCP flags in text mode
281   //  IPV4::Instance()->SetTrace(Trace::ENABLED)�
282   
283   Linkp2p lk(Rate(linkbw.c_str()), Time("20ms"))�
284   Linkp2p blk(Rate(blinkbw.c_str()), Time("20ms"))���
285   Linkp2p hlk(Rate(hlinkbw.c_str()), Time("20ms"))�
286   
287   if (wormtype == UDPWORMTYPE)
288     CreateRandomTreeNetworksWithWorms(nt, nd, nf, lk, ndfs, nffs, 
289           hlk, treelegprob, blk, IPAddr(baseip), WormUDP())�
290   else
291     CreateRandomTreeNetworksWithWorms(nt, nd, nf, lk, ndfs, nffs, 
292           hlk, treelegprob, blk, IPAddr(baseip), WormTCP())�
293
294   // Specify animation
295
296   int TotalInstances, TotalVulnerable�
297
298   if (wormtype == UDPWORMTYPE) {
299     TotalInstances = WormUDP::TotalInstances()�
300     TotalVulnerable = WormUDP::TotalVulnerable()�
301   } else {
302     TotalInstances = WormTCP::TotalInstances()�
303     TotalVulnerable = WormTCP::TotalVulnerable()�
304   }
305
306   cout<<"--------------------------------------------"<<endl�
307   cout<<"Topology used: trees="<<nt<<" depth="<<nd<<" fanout="<<nf<<endl�
308   cout<<"Link bandwidths "<<linkbw<<", "<<hlinkbw<<", "<<blinkbw<<endl�
309
310   if (wormtype==UDPWORMTYPE) {
311     cout<<"Worm type : UDP"<<endl�
312     cout<<"Scan rate "<<scanrate<<endl�
313   } else {
314     cout<<"Worm type : TCP"<<endl�
315     cout<<"TCP Connections "<<threads<<endl<<endl�
316   }
317
318   cout<<"Worm scans from "<<baseip<<" scan range "<<scanrange<<endl���
319   cout<<endl�
320   cout<<"Total Possible Hosts  : "<<rangeTotalHosts<<endl�
321   cout<<"Total Real Hosts      : "<<TotalInstances<<endl�
322   cout<<"Total Vulnerable hosts: "<<TotalVulnerable<<endl�
323   
324
325   fprintf(infofile, "Topology used: trees=%ld depth=%ld fanout=%ld fs_depth=%ld 

fs_fanout=%ld\n",
326    nt, nd, nf, ndfs, nffs)�
327
328   fprintf(infofile, "Link bandwidths %s, %s, %s\n", linkbw.c_str(), hlinkbw.c_str(), 

blinkbw.c_str())�
329
330   if (wormtype==UDPWORMTYPE) {
331     fprintf(infofile, "UDP worm.\n")�
332     fprintf(infofile, "UDP Scanrate    :%ld\n", scanrate)�
333   } else {
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334     fprintf(infofile, "TCP worm.\n")�
335     fprintf(infofile, "TCP Connections :%ld\n", threads)�
336   }
337   fprintf(infofile, "Payload length  :%ld\n", payload)�
338   fprintf(infofile, "Worm scan range :%ld\n", scanrange)�
339   fprintf(infofile, "Possible hosts  :%ld\n", rangeTotalHosts)��
340   fprintf(infofile, "Real hosts      :%ld\n", TotalInstances)�
341   fprintf(infofile, "Vulnerable hosts:%ld\n", TotalVulnerable)�
342 // SComF: "vulnerability" added:
343   fprintf(infofile, "Vulnerability:%lf\n", vulnerability)���
344   
345   s.ProgressHook(Progress)�
346
347   if (showsim && !Validation::noAnimation) {
348     s.StartAnimation(0, true)�
349     s.AnimationUpdateInterval(Time("10us"))��// 10us initial update rate
350   }
351
352   s.Progress(siminterval)�
353   s.StopAt(simtime)�
354
355 // SComF: commented out due to compilation problem (not important)
356 //  start_time = get_time()�
357
358   s.Run()�
359
360 // SComF: commented out due to compilation problem (not important)
361 //  end_time = get_time()�
362
363 // SComF: changed due to compilation problem (not important)
364 // fprintf(infofile, "Total run time :%0.6lf seconds\n", in_seconds(end_time-

start_time))��
365
366   fclose(infofile)�
367   fclose(tracefile)�
368 }
369
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B. The SIC Model

B.1. Deriving a PDE from the Differential-Difference

Equations

We can write (4.3.1.a) on page 55 as follows:

∞

∑
n1=1

∞

∑
n2=1

dPn1,n2(t)
dt

zn1
1 zn2

2 = (B.1.1)

∞
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∞

∑
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2 +
∞
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And write (4.3.1.b) as follows:
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Finally, we write (4.3.1.c) as follows:

∞
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We now add together (B.1.1), (B.1.2), (B.1.3), and (4.3.1.d). Here is the result:
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We write (B.1.4) as follows:
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And (B.1.5) as follows:
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And (B.1.6) as follows:
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And (B.1.7) as follows:
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And (B.1.8) as follows:
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Finally, (B.1.9) as follows:
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(B.1.15)

Replacing (B.1.4) through (B.1.9) with the ones derived in (B.1.10) through (B.1.15), after

simplification, we arrive at (4.3.2) on page 56.
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B.2. Attempt to Solve the PDE Using Method of

Characteristics

We describe our efforts to solve the partial differential equation (4.3.2) on page 56 describ-

ing the system. Following the Method of Characteristics [62, p.432] to solve PDEs, based

on (4.3.2), we can write:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ t
∂ s =−1 (a)

dP
ds = 0 (b)

∂ z1
∂ s = λr1 +λ2z2 −λr1z1 −λ2z1 (c)

∂ z2
∂ s = λ1z1z2 +λr2 +λaz1 −λ1z2 −λr2z2 −λaz2 (d)

(B.2.1)

where s is a parametric variable and P = P(z1,z2, t) is the PGF. With the initial condition

P(z1,z2,0) = zk1
1 zk2

2 , we therefore have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(s = 0) = 0 (a)

z1(s = 0) = i1 (b)

z2(s = 0) = i2 (c)

P(s = 0) = ik1
1 ik2

2 (d)

(B.2.2)

From (B.2.1.a) and (B.2.2.a), we have:

t =−s (B.2.3)

Likewise, from (B.2.1.b) and (B.2.2.d), we have:

P = (i1(z1,z2, t))
k1 (i2(z1,z2, t))

k2 (B.2.4)
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Equations (B.2.1.c) and (B.2.1.d) are “non-separable”, i.e., we cannot derive z1 and z2 from

1st order ordinary differential equations (ODEs). We therefore proceed as follows: from

(B.2.1.c), we derive z2:

z2 =
1
λ2

[
dz1

ds
+(λr1 +λ2)z1 −λr1] (B.2.5)

Replacing z2 in (B.2.1.d) with the expression given in (B.2.5), after some simplifications,

we can write (B.2.1.d) as follows:

d2z1

ds2 +(λr1 +λ2 +λ1 +λr2 +λa)
dz1

ds
−λ1z1

dz1

ds
−λ1(λr1 +λ2)z2

1

+((λ1 +λr2 +λa)(λr1 +λ2)+λ1λr1 −λaλ2)z1

−(λ1 +λr2 +λa)λr1 −λr2λ2 = 0 (B.2.6)

Equation (B.2.6) has the form of a second order Lienard equation [82] given below:

d2z1

ds2 +(A+Bz1)
dz1

ds
+Cz2

1 +Dz1 +E = 0 (B.2.7)

Equation (B.2.7) is not in the form of solvable cases presented in [82, Sec.2.2.3-2], [83,

pp.204-5], and [84]. As a further attempt to solve (B.2.7), we have used the following

substitution suggested in [82, Sec.2.2.3-1]:

w =
dz1

ds
,

d2z1

ds2 = w′
s = w′

z1

dz1

ds
= w′

z1
w (B.2.8)

The above substitution transformed (B.2.7) into an Abel equation of the 2nd kind given

below:

ww′
z1
+(A+Bz1)w+Cz2

1 +Dz1 +E = 0 (B.2.9)

Equation (B.2.9) is also not among the solvable cases presented in [82, Sec.1.3.3-2].
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B.3. Derivation of Means from the PDE of the PGF

We take the derivative of (4.3.2) on page 56 with respect to z1 as follows:

(−λr1 −λ2)
∂P(z1,z2, t)

∂ z1

+(λr1 +λ2z2 −λr1z1 −λ2z1)
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∂ z2
1
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∂ z2

+(λ1z1z2 +λr2 +λaz1 −λ1z2 −λr2z2 −λaz2)
∂ 2P(z1,z2, t)

∂ z2∂ z1
−∂ 2P(z1,z2, t)

∂ t∂ z1
= 0 (B.3.1)

Setting z1 = z2 = 1 in (B.3.1) gives us the following equation:

dE1(t)
dt

+(λ2 +λr1)E1(t)− (λ1 +λa)E2(t) = 0 (B.3.2)

We then take the derivative of (4.3.2) with respect to z2 as follows:

λ2
∂P(z1,z2, t)

∂ z1
+(λr1 +λ2z2 −λr1z1 −λ2z1)

∂ 2P(z1,z2, t)
∂ z2∂ z1

+(λ1z1 −λ1 −λr2 −λa)
∂P(z1,z2, t)

∂ z2

+(λ1z1z2 +λr2 +λaz1 −λ1z2 −λr2z2 −λaz2)
∂ 2P(z1,z2, t)

∂ z2
2

−∂ 2P(z1,z2, t)
∂ t∂ z2

= 0 (B.3.3)

Setting z1 = z2 = 1 in (B.3.3) gives us the following equation:

dE2(t)
dt

−λ2E1(t)+(λr2 +λa)E2(t) = 0 (B.3.4)

Re-arranging (B.3.2) and (B.3.4) gives us (4.3.4).

Taking (4.3.4) to Laplace domain, we can write:

⎧⎪⎪⎨
⎪⎪⎩

sE1(s | k1,k2)− k1 +(λr1 +λ2)E1(s | k1,k2)− (λ1 +λa)E2(s | k1,k2) = 0

sE2(s | k1,k2)− k2 −λ2E1(s | k1,k2)+(λr2 +λa)E2(s | k1,k2) = 0
(B.3.5)
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where k1 and k2 are values of n1 and n2 at t = 0, respectively. Note that k1 and k2 are

variables themselves and their means are obtained as follows:

⎧⎪⎪⎨
⎪⎪⎩

k̄1 = ∑∞
k1=0 ∑∞

k2=0k1Pk1,k2(t = 0)

k̄2 = ∑∞
k1=0 ∑∞

k2=0k2Pk1,k2(t = 0)
(B.3.6)

k̄1 and k̄2 are therefore the values of the means at t = 0. We then proceed to uncondi-

tion (B.3.5), i.e., we take ∑∞
k1=0 ∑∞

k2=0 {X}Pk1,k2(t = 0), with X being each element of the

equation set. After simplification, we have:

⎧⎪⎪⎨
⎪⎪⎩

sE1(s)− k̄1 +(λr1 +λ2)E1(s)− (λ1 +λa)E2(s) = 0

sE2(s)− k̄2 −λ2E1(s)+(λr2 +λa)E2(s) = 0
(B.3.7)

E1(s) and E2(s) are then obtained as follows:

E1(s) =
k̄1s+ k̄2(λ1 +λa)+ k̄1(λr2 +λa)

s2 +(λr2 +λa +λr1 +λ2)s+(λr2 +λa)(λr1 +λ2)−λ2(λ1 +λa)
(B.3.8)

E2(s) =
s+λ2 +λr1

λ1 +λa
E1(s)− k̄1

λ1 +λa
(B.3.9)

Finally, the inverse Laplace of E1(s) and E2(s) are obtained as shown in (4.3.5) and (4.3.6)

on page 57. Note that another method to derive the differential equations of means is

documented in Section B.6.
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B.4. Derivation of Variances from the PDE of the PGF

Taking the derivative of (B.3.1) with respect to z1 (i.e., deriving the 2nd derivative of (4.3.2)

on page 56 with respect to z1), we have:

(−λr1 −λ2)
∂ 2P(z1,z2, t)

∂ z2
1

+(−λr1 −λ2)
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∂ t∂ z2

1
= 0 (B.4.1)

Likewise, taking the derivative of (B.3.3) with respect to z2 (i.e., deriving the 2nd derivative

of (4.3.2) with respect to z2), we have:

λ2
∂ 2P(z1,z2, t)

∂ z1∂ z2
+λ2

∂ 2P(z1,z2, t)
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∂ 2P(z1,z2, t)

∂ z2
2
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2
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∂ z3
2
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∂ t∂ z2

2
= 0 (B.4.2)
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Finally, taking the derivative of (B.3.1) with respect to z2, we have:

(−λr1 −λ2)
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∂ 3P(z1,z2, t)

∂ z2
1∂ z2

+λ1
∂P(z1,z2, t)

∂ z2
+(λ1z2 +λa)

∂ 2P(z1,z2, t)
∂ z2

2

+(λ1z1 −λ1 −λr2 −λa)
∂ 2P(z1,z2, t)

∂ z2∂ z1

+(λ1z1z2 +λr2 +λaz1 −λ1z2 −λr2z2 −λaz2)
∂ 3P(z1,z2, t)

∂ z2
2∂ z1

−∂ 3P(z1,z2, t)
∂ t∂ z1∂ z2

= 0 (B.4.3)

Setting z1 = z2 = 1 in (B.4.1), (B.4.2), and (B.4.3) gives us (4.3.12).

In (4.3.12), we have three ODEs and three variables (ψ1(t), ψ12(t), and ψ2(t)); therefore,

we can find a unique solution by solving this system of linear ODEs. Taking (4.3.12) to

Laplace domain, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sψ1(s | k1,k2)− k2
1 + k1 =2(λ1 +λa)ψ12(s | k1,k2)−2(λr1 +λ2)ψ1(s | k1,k2)

sψ2(s | k1,k2)− k2
2 + k2 =2λ2ψ12(s | k1,k2)−2(λr2 +λa)ψ2(s | k1,k2)

sψ12(s | k1,k2)− k1k2 =−(λr1 +λ2 +λr2 +λa)ψ12(s | k1,k2)+λ2ψ1(s | k1,k2)

+λ1E2(s | k1,k2)+(λ1 +λa)ψ2(s | k1,k2)

(B.4.4)

Like before, we then proceed to uncondition (B.4.4). After simplification, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sψ1(s)− k̄2
1 + k̄1 =2(λ1 +λa)ψ12(s)−2(λr1 +λ2)ψ1(s)

sψ2(s)− k̄2
2 + k̄2 =2λ2ψ12(s)−2(λr2 +λa)ψ2(s)

sψ12(s)− ¯k1k2=−(λr1 +λ2 +λr2 +λa)ψ12(s)+λ2ψ1(s)

+λ1E2(s)+(λ1 +λa)ψ2(s)

(B.4.5)
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The solution of (B.4.5) (i.e., the expressions for ψ1(s) and ψ2(s)) is provided in Section

B.5. On the other hand, the expressions for σ2
1 (t) and σ2

2 (t) are extremely lengthy; hence,

they are provided in [85] instead. Note that another method to derive the variances is

documented in Section B.6.

B.5. ψ Formulas (Laplace Domain)

Ψ1�s� �
�k2 � k22� �Λ1 � Λa�
Λ2 �s � 2 �Λa � Λr2��

�

Λ1 �k1 Λ2 � k2 �s � Λ2 � Λr1�� � k1 k2 �s2 � Λ1 Λ2 � Λa Λr1 � Λ2 Λr2 � Λr1 Λr2 � s �Λ2 � Λa � Λr1 � Λr2��
Λ2 �s2 � Λ1 Λ2 � Λa Λr1 � Λ2 Λr2 � Λr1 Λr2 � s �Λ2 � Λa � Λr1 � Λr2��

�

�

s � Λ2 � Λa � Λr1 � Λr2

Λ2
�

2 �Λ1 � Λa�
s � 2 �Λa � Λr2�

���k2 � k22� �Λ1 � Λa� �s � 2 �Λ2 � Λr1�� � �s � 2 �Λa � Λr2�� ���k1 � k12� Λ2 � ��s � 2 �Λ2 � Λr1��
�Λ1 �k1 Λ2 � k2 �s � Λ2 � Λr1�� � k1 k2 �s2 � Λ1 Λ2 � Λa Λr1 � Λ2 Λr2 � Λr1 Λr2 � s �Λ2 � Λa � Λr1 � Λr2�����

�s2 � Λ1 Λ2 � Λa Λr1 � Λ2 Λr2 � Λr1 Λr2 � s �Λ2 � Λa � Λr1 � Λr2���� 	
��s � Λ2 � Λa � Λr1 � Λr2� �s2 � 2 s �Λ2 � Λa � Λr1 � Λr2� � 4 ��Λ1 Λ2 � Λa Λr1 � �Λ2 � Λr1� Λr2���

Ψ12�s� �
���k2 � k22� �Λ1 � Λa� �s � 2 �Λ2 � Λr1�� � �s � 2 �Λa � Λr2�� ���k1 � k12� Λ2 � ��s � 2 �Λ2 � Λr1�� �Λ1 �k1 Λ2 � k2 �s � Λ2 � Λr1�� �

k1 k2 �s2 � Λ1 Λ2 � Λa Λr1 � Λ2 Λr2 � Λr1 Λr2 � s �Λ2 � Λa � Λr1 � Λr2�����
�s2 � Λ1 Λ2 � Λa Λr1 � Λ2 Λr2 � Λr1 Λr2 � s �Λ2 � Λa � Λr1 � Λr2����


��s � Λ2 � Λa � Λr1 � Λr2� �s2 � 2 s �Λ2 � Λa � Λr1 � Λr2� � 4 ��Λ1 Λ2 � Λa Λr1 � �Λ2 � Λr1� Λr2���

Ψ2�s� �
1

s � 2 �Λa � Λr2�
��k2 � k22 � �2 Λ2 ���k2 � k22� �Λ1 � Λa� �s � 2 �Λ2 � Λr1�� � �s � 2 �Λa � Λr2�� ���k1 � k12� Λ2 � ��s � 2 �Λ2 � Λr1��

�Λ1 �k1 Λ2 � k2 �s � Λ2 � Λr1�� � k1 k2 �s2 � Λ1 Λ2 � Λa Λr1 � Λ2 Λr2 � Λr1 Λr2 � s �Λ2 � Λa � Λr1 �
Λr2����� �s2 � Λ1 Λ2 � Λa Λr1 � Λ2 Λr2 � Λr1 Λr2 � s �Λ2 � Λa � Λr1 � Λr2�����


��s � Λ2 � Λa � Λr1 � Λr2� �s2 � 2 s �Λ2 � Λa � Λr1 � Λr2� � 4 ��Λ1 Λ2 � Λa Λr1 � �Λ2 � Λr1� Λr2����
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B.6. Direct Derivation of Means and Variances from

Probability Flow Differential-difference

Equations

B.6.1. Derivation of Means

We derive the means directly from the probability flow differential-difference equations of

(4.3.1) on page 55.

B.6.1.1. Deriving E1(t)

As E1(t) =Et [n1] =∑∞
n1=0 ∑∞

n2=0 n1Pn1,n2(t), we proceed as follows: we multiply (4.3.1.a,c)

by n1 and sum over n1 and n2:

∞

∑
n1=1

∞

∑
n2=1

n1
dPn1,n2(t)

dt
= (B.6.1)

∞

∑
n1=1

∞

∑
n2=1

n1λ1n2Pn1−1,n2(t)+
∞

∑
n1=1

∞

∑
n2=1

n1λr1(n1 +1)Pn1+1,n2(t)+

∞

∑
n1=1

∞

∑
n2=1

n1λr2(n2 +1)Pn1,n2+1(t)+
∞

∑
n1=1

∞

∑
n2=1

n1λ2(n1 +1)Pn1+1,n2−1(t)+

∞

∑
n1=1

∞

∑
n2=1

n1λa(n2 +1)Pn1−1,n2+1(t)−
∞

∑
n1=1

∞

∑
n2=1

n1(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t)

∞

∑
n1=1

n1
dPn1,0(t)

dt
=

∞

∑
n1=1

n1λr1(n1 +1)Pn1+1,0(t)+
∞

∑
n1=1

n1λr2Pn1,1(t)+ (B.6.2)

∞

∑
n1=1

n1λaPn1−1,1(t)−
∞

∑
n1=1

n1(λr1n1 +λ2n1)Pn1,0(t)

Adding the previous two equations together, after some manipulations, we have:
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dE1(t)
dt

= λ1Et [n1n2]+λ1E2(t)+λr1Et [n2
1]−λr1E1(t) (B.6.3)

+λr2Et [n1n2]+λ2Et [n2
1]−λ2E1(t)

+λaEt [n1n2]+λaE2(t)

−(λr1 +λ2)Et [n2
1]− (λ1 +λr2 +λa)Et [n1n2]

The preceding equation simplifies to the following:

dE1(t)
dt

= (λ1 +λa)E2(t)− (λr1 +λ2)E1(t) (B.6.4)

Equation (B.6.4) is the same as (B.3.2). The equation for dE2(t)
dt can also be derived fol-

lowing a similar procedure. Therefore, this method is also a feasible method to derive the

equations for means.

B.6.2. Derivation of Variances

Here, we derive the variances directly from the probability flow differential-difference

equations of (4.3.1). We know:

σ2
1 (t) = Et [n2

1]− (E1(t))
2 (B.6.5)

We derived E1(t) and E2(t) earlier1; we now need to derive Et [n2
1] and Et [n2

2].

1E1(t)≡ Et [n1] and E2(t)≡ Et [n2] .
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B.6.2.1. 2nd Moment DEs

Derivation of dEt [n2
1]

dt : As Et [n2
1] = ∑∞

n1=0 ∑∞
n2=0 n2

1Pn1,n2(t), we proceed as follows: we

multiply (4.3.1.a,c) by n2
1 and sum over n1 and n2:

∞

∑
n1=1

∞

∑
n2=1

n2
1

dPn1,n2(t)
dt

= (B.6.6)

∞

∑
n1=1

∞

∑
n2=1

n2
1λ1n2Pn1−1,n2(t)+

∞

∑
n1=1

∞

∑
n2=1

n2
1λr1(n1 +1)Pn1+1,n2(t)+

∞

∑
n1=1

∞

∑
n2=1

n2
1λr2(n2 +1)Pn1,n2+1(t)+

∞

∑
n1=1

∞

∑
n2=1

n2
1λ2(n1 +1)Pn1+1,n2−1(t)+

∞

∑
n1=1

∞

∑
n2=1

n2
1λa(n2 +1)Pn1−1,n2+1(t)−

∞

∑
n1=1

∞

∑
n2=1

n2
1(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t)

∞

∑
n1=1

n2
1

dPn1,0(t)
dt

=
∞

∑
n1=1

n2
1λr1(n1 +1)Pn1+1,0(t)+

∞

∑
n1=1

n2
1λr2Pn1,1(t)+ (B.6.7)

∞

∑
n1=1

n2
1λaPn1−1,1(t)−

∞

∑
n1=1

n2
1(λr1n1 +λ2n1)Pn1,0(t)

Adding the previous two equations together, after some manipulations (see Sub-section

B.6.3), we have:

dEt [n2
1]

dt
= λ1Et [n2

1n2]+2λ1Et [n1n2]+λ1E2(t) (B.6.8)

+λr1Et [n3
1]−2λr1Et [n2

1]+λr1E1(t)+λr2Et [n2
1n2]

+λ2Et [n3
1]−2λ2Et [n2

1]+λ2E1(t)

+λaEt [n2
1n2]+2λaEt [n1n2]+λaE2(t)

−(λ1 +λr2 +λa)Et [n2
1n2]− (λr1 +λ2)Et [n3

1]
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The preceding equation simplifies to the following:

dEt [n2
1]

dt
= 2(λ1 +λa)Et [n1n2]−2(λr1 +λ2)Et [n2

1]+ (λr1 +λ2)E1(t)+(λ1 +λa)E2(t)

(B.6.9)

Derivation of dEt [n1n2]
dt : As Et [n1n2] = ∑∞

n1=0 ∑∞
n2=0 n1n2Pn1,n2(t), we proceed as follows:

we multiply (4.3.1.a) by n1n2 and sum over n1 and n2:

∞

∑
n1=1

∞

∑
n2=1

n1n2
dPn1,n2(t)

dt
= (B.6.10)

∞

∑
n1=1

∞

∑
n2=1

n1n2λ1n2Pn1−1,n2(t)+
∞

∑
n1=1

∞

∑
n2=1

n1n2λr1(n1 +1)Pn1+1,n2(t)+

∞

∑
n1=1

∞

∑
n2=1

n1n2λr2(n2 +1)Pn1,n2+1(t)+
∞

∑
n1=1

∞

∑
n2=1

n1n2λ2(n1 +1)Pn1+1,n2−1(t)+

∞

∑
n1=1

∞

∑
n2=1

n1n2λa(n2 +1)Pn1−1,n2+1(t)−
∞

∑
n1=1

∞

∑
n2=1

n1n2(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t)

After some manipulations (see Sub-section B.6.3), we have:

dEt [n1n2]

dt
= λ1Et [n1n2

2]+λ1Et [n2
2]+λr1Et [n2

1n2]−λr1Et [n1n2] (B.6.11)

+λr2Et [n1n2
2]−λr2Et [n1n2]+λ2

(
Et [n2

1n2]+Et [n2
1]−Et [n1n2]−E1(t)

)
+λa

(
Et [n1n2

2]−Et [n1n2]+Et [n2
2]−E2(t)

)
−(λr1 +λ2)Et [n2

1n2]− (λ1 +λr2 +λa)Et [n1n2
2]

The preceding equation simplifies to the following:

dEt [n1n2]

dt
= λ2Et [n2

1]+(λ1+λa)Et [n2
2]−(λr1+λr2+λ2+λa)Et [n1n2]−λ2E1(t)−λaE2(t)

(B.6.12)
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Derivation of dEt [n2
2]

dt : As Et [n2
2] = ∑∞

n1=0 ∑∞
n2=0 n2

2Pn1,n2(t), we proceed as follows: we

multiply (4.3.1.a,b) by n2
2 and sum over n1 and n2:

∞

∑
n1=1

∞

∑
n2=1

n2
2

dPn1,n2(t)
dt

= (B.6.13)

∞

∑
n1=1

∞

∑
n2=1

n2
2λ1n2Pn1−1,n2(t)+

∞

∑
n1=1

∞

∑
n2=1

n2
2λr1(n1 +1)Pn1+1,n2(t)+

∞

∑
n1=1

∞

∑
n2=1

n2
2λr2(n2 +1)Pn1,n2+1(t)+

∞

∑
n1=1

∞

∑
n2=1

n2
2λ2(n1 +1)Pn1+1,n2−1(t)+

∞

∑
n1=1

∞

∑
n2=1

n2
2λa(n2 +1)Pn1−1,n2+1(t)−

∞

∑
n1=1

∞

∑
n2=1

n2
2(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t)

∞

∑
n2=1

n2
2

dP0,n2(t)
dt

=
∞

∑
n2=1

n2
2λr1P1,n2(t)+

∞

∑
n2=1

n2
2λr2(n2 +1)P0,n2+1(t) (B.6.14)

+
∞

∑
n2=1

n2
2λ2P1,n2−1(t)−

∞

∑
n2=1

n2
2(λ1n2 +λr2n2 +λan2)P0,n2(t)

Adding the previous two equations together, after some manipulations (see Sub-section

B.6.3), we have:

dEt [n2
2]

dt
= λ1Et [n3

2]+λr1Et [n1n2
2] (B.6.15)

+λr2
(
Et [n3

2]−2Et [n2
2]+E2(t)

)
+λ2

(
Et [n1n2

2]+2Et [n1n2]+E1(t)
)

+λa
(
Et [n3

2]−2Et [n2
2]+E2(t)

)
−(λr1 +λ2)Et [n1n2

2]− (λ1 +λr2 +λa)Et [n3
2]
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The preceding equation simplifies to the following:

dEt [n2
2]

dt
= 2λ2Et [n1n2]−2(λr2 +λa)Et [n2

2]+λ2E1(t)+(λr2 +λa)E2(t) (B.6.16)

Taking (B.6.9), (B.6.12) and (B.6.16) to Laplace domain, we can arrive at the solutions as

done in Section B.4.

B.6.3. Derivation of 2nd Moment DEs

B.6.3.1. Derivation of dEt [n2
1]

dt

Here, we provide the detailed derivation of the expression for dEt [n2
1]

dt (B.6.8) from (B.6.6)

and (B.6.7). Here is the result of addition of (B.6.6) and (B.6.7):

∞

∑
n1=1

∞

∑
n2=0

n2
1

dPn1,n2(t)
dt

=

∞

∑
n1=1

∞

∑
n2=1

n2
1λ1n2Pn1−1,n2(t) (B.6.17)

+
∞

∑
n1=1

∞

∑
n2=0

n2
1λr1(n1 +1)Pn1+1,n2(t) (B.6.18)

+
∞

∑
n1=1

∞

∑
n2=0

n2
1λr2(n2 +1)Pn1,n2+1(t) (B.6.19)

+
∞

∑
n1=1

∞

∑
n2=1

n2
1λ2(n1 +1)Pn1+1,n2−1(t) (B.6.20)

+
∞

∑
n1=1

∞

∑
n2=0

n2
1λa(n2 +1)Pn1−1,n2+1(t) (B.6.21)

−
∞

∑
n1=1

∞

∑
n2=0

n2
1(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t) (B.6.22)

We write (B.6.17) as follows:

∞

∑
n1=1

∞

∑
n2=1

n2
1λ1n2Pn1−1,n2(t) =

∞

∑
n1=0

∞

∑
n2=1

λ1(n1 +1)2n2Pn1,n2(t)

= λ1Et [n2
1n2]+2λ1Et [n1n2]+λ1E2(t) (B.6.23)
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And (B.6.18) as follows:

∞

∑
n1=1

∞

∑
n2=0

n2
1λr1(n1 +1)Pn1+1,n2(t) =

∞

∑
n1=2

∞

∑
n2=0

λr1(n1 −1)2n1Pn1,n2(t)

= λr1

∞

∑
n1=0

∞

∑
n2=0

n1(n1 −1)2Pn1,n2(t)

= λr1Et [n3
1]−2λr1Et [n2

1]+λr1E1(t) (B.6.24)

And (B.6.19) as follows:

∞

∑
n1=1

∞

∑
n2=0

n2
1λr2(n2 +1)Pn1,n2+1(t) =

∞

∑
n1=1

∞

∑
n2=1

λr2n2
1n2Pn1,n2(t) = λr2Et [n2

1n2] (B.6.25)

And (B.6.20) as follows:

∞

∑
n1=1

∞

∑
n2=1

n2
1λ2(n1 +1)Pn1+1,n2−1(t) =

∞

∑
n1=2

∞

∑
n2=0

(n1 −1)2λ2n1Pn1,n2(t)

= λ2

∞

∑
n1=0

∞

∑
n2=0

(n1 −1)2n1Pn1,n2(t)

= λ2Et [n3
1]−2λ2Et [n2

1]+λ2E1(t) (B.6.26)

And (B.6.21) as follows:

∞

∑
n1=1

∞

∑
n2=0

n2
1λa(n2 +1)Pn1−1,n2+1(t)

=
∞

∑
n1=0

∞

∑
n2=1

(n1 +1)2λan2Pn1,n2(t)

= λaEt [n2
1n2]+2λaEt [n1n2]+λaE2(t) (B.6.27)

Finally, (B.6.22) as follows:

−
∞

∑
n1=1

∞

∑
n2=0

n2
1(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t)

= −(λ1 +λr2 +λa)Et [n2
1n2]− (λr1 +λ2)Et [n3

1] (B.6.28)
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Replacing (B.6.17) through (B.6.22) with the ones derived in (B.6.23) through (B.6.28),

we arrive at (B.6.8).

B.6.3.2. Derivation of dEt [n1n2]
dt

In this section, we provide the detailed derivation of the expression for dEt [n1n2]
dt (B.6.11)

from (B.6.10). Here is (B.6.10) again:

∞

∑
n1=1

∞

∑
n2=1

n1n2
dPn1,n2(t)

dt
=

∞

∑
n1=1

∞

∑
n2=1

n1n2λ1n2Pn1−1,n2(t) (B.6.29)

+
∞

∑
n1=1

∞

∑
n2=1

n1n2λr1(n1 +1)Pn1+1,n2(t) (B.6.30)

+
∞

∑
n1=1

∞

∑
n2=1

n1n2λr2(n2 +1)Pn1,n2+1(t) (B.6.31)

+
∞

∑
n1=1

∞

∑
n2=1

n1n2λ2(n1 +1)Pn1+1,n2−1(t) (B.6.32)

+
∞

∑
n1=1

∞

∑
n2=1

n1n2λa(n2 +1)Pn1−1,n2+1(t) (B.6.33)

−
∞

∑
n1=1

∞

∑
n2=1

n1n2(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t) (B.6.34)

We write (B.6.29) as follows:

∞

∑
n1=1

∞

∑
n2=1

n1n2λ1n2Pn1−1,n2(t) =
∞

∑
n1=0

∞

∑
n2=1

λ1(n1 +1)n2
2Pn1,n2(t)

= λ1Et [n1n2
2]+λ1Et [n2

2] (B.6.35)

And (B.6.30) as follows:

∞

∑
n1=1

∞

∑
n2=1

n1n2λr1(n1 +1)Pn1+1,n2(t) =
∞

∑
n1=2

∞

∑
n2=1

λr1(n1 −1)n1n2Pn1,n2(t)

=
∞

∑
n1=0

∞

∑
n2=0

λr1(n2
1n2 −n1n2)Pn1,n2(t) = λr1Et [n2

1n2]−λr1Et [n1n2] (B.6.36)
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And (B.6.31) as follows:

∞

∑
n1=1

∞

∑
n2=1

n1n2λr2(n2 +1)Pn1,n2+1(t) =
∞

∑
n1=1

∞

∑
n2=2

λr2n1(n2 −1)n2Pn1,n2(t)

= λr2

∞

∑
n1=0

∞

∑
n2=0

(n1n2
2 −n1n2)Pn1,n2(t)

= λr2Et [n1n2
2]−λr2Et [n1n2] (B.6.37)

And (B.6.32) as follows:

∞

∑
n1=1

∞

∑
n2=1

n1n2λ2(n1 +1)Pn1+1,n2−1(t)

=
∞

∑
n1=2

∞

∑
n2=0

(n1 −1)(n2 +1)λ2n1Pn1,n2(t)

= λ2

∞

∑
n1=0

∞

∑
n2=0

(n2
1n2 +n2

1 −n1n2 −n1)Pn1,n2(t)

= λ2
(
Et [n2

1n2]+Et [n2
1]−Et [n1n2]−E1(t)

)
(B.6.38)

And (B.6.33) as follows:

∞

∑
n1=1

∞

∑
n2=1

n1n2λa(n2 +1)Pn1−1,n2+1(t)

=
∞

∑
n1=0

∞

∑
n2=2

(n1 +1)(n2 −1)λan2Pn1,n2(t)

= λa

∞

∑
n1=0

∞

∑
n2=0

(n1n2
2 −n1n2 +n2

2 −n2)Pn1,n2(t)

= λa
(
Et [n1n2

2]−Et [n1n2]+Et [n2
2]−E2(t)

)
(B.6.39)

Finally, (B.6.34) as follows:

−
∞

∑
n1=1

∞

∑
n2=1

n1n2(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t)

= −(λr1 +λ2)Et [n2
1n2]− (λ1 +λr2 +λa)Et [n1n2

2] (B.6.40)
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Replacing (B.6.29) through (B.6.34) with the ones derived in (B.6.35) through (B.6.40),

we arrive at (B.6.11).

B.6.3.3. Derivation of dEt [n2
2]

dt

Here, we provide the detailed derivation of the expression for dEt [n2
2]

dt (B.6.15) from (B.6.13)

and (B.6.14). Here is the result of addition of (B.6.13) and (B.6.14):

∞

∑
n1=0

∞

∑
n2=1

n2
2

dPn1,n2(t)
dt

=

∞

∑
n1=1

∞

∑
n2=1

n2
2λ1n2Pn1−1,n2(t) (B.6.41)

+
∞

∑
n1=0

∞

∑
n2=1

n2
2λr1(n1 +1)Pn1+1,n2(t) (B.6.42)

+
∞

∑
n1=0

∞

∑
n2=1

n2
2λr2(n2 +1)Pn1,n2+1(t) (B.6.43)

+
∞

∑
n1=0

∞

∑
n2=1

n2
2λ2(n1 +1)Pn1+1,n2−1(t) (B.6.44)

+
∞

∑
n1=1

∞

∑
n2=1

n2
2λa(n2 +1)Pn1−1,n2+1(t) (B.6.45)

−
∞

∑
n1=0

∞

∑
n2=1

n2
2(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t) (B.6.46)

We write (B.6.41) as follows:

∞

∑
n1=1

∞

∑
n2=1

n2
2λ1n2Pn1−1,n2(t) =

∞

∑
n1=0

∞

∑
n2=0

λ1n3
2Pn1,n2(t) = λ1Et [n3

2] (B.6.47)

And (B.6.42) as follows:

∞

∑
n1=0

∞

∑
n2=1

n2
2λr1(n1 +1)Pn1+1,n2(t) =

∞

∑
n1=1

∞

∑
n2=1

λr1n2
2n1Pn1,n2(t) = λr1Et [n1n2

2] (B.6.48)
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And (B.6.43) as follows:

∞

∑
n1=0

∞

∑
n2=1

n2
2λr2(n2 +1)Pn1,n2+1(t) =

∞

∑
n1=0

∞

∑
n2=2

λr2(n2 −1)2n2Pn1,n2(t)

= λr2

∞

∑
n1=0

∞

∑
n2=0

(n3
2 −2n2

2 +n2)Pn1,n2(t)

= λr2
(
Et [n3

2]−2Et [n2
2]+E2(t)

)
(B.6.49)

And (B.6.44) as follows:

∞

∑
n1=0

∞

∑
n2=1

n2
2λ2(n1 +1)Pn1+1,n2−1(t) =

∞

∑
n1=1

∞

∑
n2=0

λ2(n2 +1)2n1Pn1,n2(t)

= λ2
(
Et [n1n2

2]+2Et [n1n2]+E1(t)
)
(B.6.50)

And (B.6.45) as follows:

∞

∑
n1=1

∞

∑
n2=1

n2
2λa(n2 +1)Pn1−1,n2+1(t) =

∞

∑
n1=0

∞

∑
n2=2

λa(n2 −1)2n2Pn1,n2(t)

= λa

∞

∑
n1=0

∞

∑
n2=0

(n3
2 −2n2

2 +n2)Pn1,n2(t)

= λa
(
Et [n3

2]−2Et [n2
2]+E2(t)

)
(B.6.51)

Finally, (B.6.46) as follows:

−
∞

∑
n1=0

∞

∑
n2=1

n2
2(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λan2)Pn1,n2(t)

= −(λr1 +λ2)Et [n1n2
2]− (λ1 +λr2 +λa)Et [n3

2] (B.6.52)

Replacing (B.6.41) through (B.6.46) with the ones derived in (B.6.47) through (B.6.52),

we arrive at (B.6.15).
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B.7. Calculation of Basic Reproduction Number

B.7.1. “Next Generation Matrix” Method: Introduction

In this section, we introduce the “Next Generation Matrix” method to calculate the Basic

Reproduction Number (R0). The introduction is based on the information provided in [52,

pp.160-165], albeit some aspects including the terminology and variable names have been

adapted to the current document.

Let fi denote the rate at which secondary infections increase the number of nodes in the

ith stage. On the other hand, vi would denote the rate at which the number of nodes in

the ith stage decreases. We then define F and V (two square matrices) with the following

entries:

Fi j =
∂ fi

∂E j(t)

∣∣∣∣∣
t=0

Vi j =
∂vi

∂E j(t)

∣∣∣∣∣
t=0

(B.7.1)

We can then write the following equation:

⎡
⎢⎣ dE1(t)

dt

dE2(t)
dt

⎤
⎥⎦= (F −V )×

⎡
⎢⎣ E1(t)

E2(t)

⎤
⎥⎦ (B.7.2)

The mean time a hypothetical node spends in a stage can be expressed by the integral∫ ∞
0 E∗(t)dt, where E∗(t) is the solution to (B.7.2) with F = 0; the solution to this equation

would be: E(t)∗ = e−Vt . Therefore, we have:
∫ ∞

0 e−Vtdt =V−1. The (i, j) entry of V−1 can

be interpreted as the mean time a node, which is intially in stage j, will spend in stage i. On

the other hand, the (i, j) entry of F is the rate of arrival of nodes to stage i caused by a node

in stage j. Therefore, the mean of number of secondary infections caused by a hypothetical

infective node is given by
∫ ∞

0 Fe−Vtdt = FV−1. The matrix K = FV−1 is referred to as the

“Next Generation Matrix” for the system. The (i, j) entry of K is the mean number of nodes

in stage i produced by nodes which were intially in stage j. The largest eigenvalue of the
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matrix K is defined as R0, the Basic Reproduction Number. The associated eigenvector can

be interpreted as the distribution of nodes in the stages that produces the greatest number

(i.e., R0) of secondary infections per generation.

B.7.2. R0 Calculation

Based on the steps of the “Next Generation Matrix” method, we proceed as follows: From

SIC model’s differential equations for means (i.e., (4.3.4) on page 57), we extract the f and

v matrices:

f =

⎡
⎢⎣ (λ1 +λa)E2(t)

λ2E1(t)

⎤
⎥⎦ v =

⎡
⎢⎣ (λ2 +λr1)E1(t)

(λr2 +λa)E2(t)

⎤
⎥⎦ (B.7.3)

F and V matrices would be therefore as follows:

F =

⎡
⎢⎣ 0 λ1 +λa

λ2 0

⎤
⎥⎦ V =

⎡
⎢⎣ λ2 +λr1 0

0 λr2 +λa

⎤
⎥⎦ (B.7.4)

The next generation matrix (K) would be as follows:

K = F ×V−1

=

⎡
⎢⎣ 0 λ1 +λa

λ2 0

⎤
⎥⎦× 1

(λ2 +λr1)(λr2 +λa)

⎡
⎢⎣ λr2 +λa 0

0 λ2 +λr1

⎤
⎥⎦

=
1

(λ2 +λr1)(λr2 +λa)

⎡
⎢⎣ 0 (λ1 +λa)(λ2 +λr1)

λ2(λr2 +λa) 0

⎤
⎥⎦

K =

⎡
⎢⎣ 0 λ1+λa

λr2+λa

λ2
λ2+λr1

0

⎤
⎥⎦ (B.7.5)
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To derive R0, we proceed as follows:

det(K −R0 × I) = 0 (B.7.6)

where I is an identity matrix. We therefore have:

det

⎡
⎢⎣ −R0

λ1+λa
λr2+λa

λ2
λ2+λr1

−R0

⎤
⎥⎦ = 0

R2
0 −

λ1 +λa

λr2 +λa
× λ2

λ2 +λr1
= 0

Basic Reproduction Number (R0) is therefore derived as noted in (4.3.13) on page 59.
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C. The SIC-P2P Model

C.1. Deriving a PDE from the Differential-Difference

Equations

In this appendix, we provide the detailed derivation of the PDE of the PGF in (5.3.2) on

page 78 from the differential-difference equations in (5.3.1). After summing over n1 and

n2 and adding together (5.3.1.a), (5.3.1.b), (5.3.1.c) and (5.3.1.d), we have:

∂P(z1,z2, t)
∂ t

=

∞

∑
n1=1

∞

∑
n2=1

λ1n2Pn1−1,n2(t)z
n1
1 zn2

2 (C.1.1)

+
∞

∑
n1=0

∞

∑
n2=0

λr1(n1 +1)Pn1+1,n2(t)z
n1
1 zn2

2 (C.1.2)

+
∞

∑
n1=0

∞

∑
n2=0

λr2(n2 +1)Pn1,n2+1(t)z
n1
1 zn2

2 (C.1.3)

+
∞

∑
n1=0

∞

∑
n2=1

λ2(n1 +1)Pn1+1,n2−1(t)z
n1
1 zn2

2 (C.1.4)

+
∞

∑
n1=1

∞

∑
n2=0

[λa1 +λa2(n2 +1)]Pn1−1,n2+1(t)z
n1
1 zn2

2 (C.1.5)

−
∞

∑
n1=0

∞

∑
n2=0

(λ1n2 +λr1n1 +λr2n2 +λ2n1 +λa2n2)Pn1,n2(t)z
n1
1 zn2

2 (C.1.6)

−
∞

∑
n1=0

∞

∑
n2=1

λa1Pn1,n2(t)z
n1
1 zn2

2 (C.1.7)
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We write (C.1.1) as follows:

∞

∑
n1=1

∞

∑
n2=1

λ1n2Pn1−1,n2(t)z
n1
1 zn2

2 (C.1.8)

= λ1z1

∞

∑
n1=1

∞

∑
n2=1

n2Pn1−1,n2(t)z
n1−1
1 zn2

2

= λ1z1z2

∞

∑
n1=0

∞

∑
n2=0

n2Pn1,n2(t)z
n1
1 zn2−1

2 = λ1z1z2
∂P(z1,z2, t)

∂ z2

And (C.1.2) as follows:

∞

∑
n1=0

∞

∑
n2=0

λr1(n1 +1)Pn1+1,n2(t)z
n1
1 zn2

2 (C.1.9)

=
∞

∑
n1=0

∞

∑
n2=0

λr1
n1 +1

z1
Pn1+1,n2(t)z

n1+1
1 zn2

2

=
∞

∑
n1=1

∞

∑
n2=0

λr1n1Pn1,n2(t)z
n1−1
1 zn2

2 = λr1
∂P(z1,z2, t)

∂ z1

And (C.1.3) as follows:

∞

∑
n1=0

∞

∑
n2=0

λr2(n2 +1)Pn1,n2+1(t)z
n1
1 zn2

2 (C.1.10)

=
∞

∑
n1=0

∞

∑
n2=0

λr2
n2 +1

z2
Pn1,n2+1(t)z

n1
1 zn2+1

2

=
∞

∑
n1=0

∞

∑
n2=1

λr2n2Pn1,n2(t)z
n1
1 zn2−1

2 = λr2
∂P(z1,z2, t)

∂ z2

And (C.1.4) as follows:

∞

∑
n1=0

∞

∑
n2=1

λ2(n1 +1)Pn1+1,n2−1(t)z
n1
1 zn2

2 (C.1.11)

=
∞

∑
n1=0

∞

∑
n2=1

λ2(n1 +1)
z2

z1
Pn1+1,n2−1(t)z

n1+1
1 zn2−1

2 =
∞

∑
n1=1

∞

∑
n2=0

λ2n1
z2

z1
Pn1,n2(t)z

n1
1 zn2

2

= λ2z2

∞

∑
n1=0

∞

∑
n2=0

n1Pn1,n2(t)z
n1−1
1 zn2

2 = λ2z2
∂P(z1,z2, t)

∂ z1
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And (C.1.5) as follows:

∞

∑
n1=1

∞

∑
n2=0

[λa1 +λa2(n2 +1)]Pn1−1,n2+1(t)z
n1
1 zn2

2 (C.1.12)

=
∞

∑
n1=1

∞

∑
n2=0

[λa1 +λa2(n2 +1)]
z1

z2
Pn1−1,n2+1(t)z

n1−1
1 zn2+1

2

=
∞

∑
n1=0

∞

∑
n2=1

(λa1 +λa2n2)
z1

z2
Pn1,n2(t)z

n1
1 zn2

2

= λa1
z1

z2

∞

∑
n1=0

∞

∑
n2=1

Pn1,n2(t)z
n1
1 zn2

2 +λa2z1

∞

∑
n1=0

∞

∑
n2=0

n2Pn1,n2(t)z
n1
1 zn2−1

2

= λa1
z1

z2

(
P(z1,z2, t)−

∞

∑
n1=0

Pn1,0(t)z
n1
1

)
+λa2z1

∂P(z1,z2, t)
∂ z2

And (C.1.6) as follows:

−
∞

∑
n1=0

∞

∑
n2=0

(λ1n2 +λr1n1 +λr2n2 +λ2n1+λa2n2)Pn1,n2(t)z
n1
1 zn2

2 (C.1.13)

=−
∞

∑
n1=0

∞

∑
n2=0

(λr1 +λ2)n1Pn1,n2(t)z
n1
1 zn2

2 −
∞

∑
n1=0

∞

∑
n2=0

(λ1 +λr2 +λa2)n2Pn1,n2(t)z
n1
1 zn2

2

=−(λr1 +λ2)z1

∞

∑
n1=0

∞

∑
n2=0

n1Pn1,n2(t)z
n1−1
1 zn2

2

−(λ1 +λr2 +λa2)z2

∞

∑
n1=0

∞

∑
n2=0

n2Pn1,n2(t)z
n1
1 zn2−1

2

=−(λr1 +λ2)z1
∂P(z1,z2, t)

∂ z1
− (λ1 +λr2 +λa2)z2

∂P(z1,z2, t)
∂ z2

Finally, (C.1.7) as follows:

−
∞

∑
n1=0

∞

∑
n2=1

λa1Pn1,n2(t)z
n1
1 zn2

2 =−λa1

(
P(z1,z2, t)−

∞

∑
n1=0

Pn1,0(t)z
n1
1

)
(C.1.14)

Replacing (C.1.1) through (C.1.7) with the terms derived in (C.1.8) through (C.1.14), after

simplification, we arrive at (5.3.2).
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C.2. Derivation of Means from the PDE of the PGF

We take the derivative of (5.3.3) on page 79 with respect to z1 as follows:

(−λr1 −λ2)
∂P(z1,z2, t)

∂ z1
+(λr1 +λ2z2 −λr1z1 −λ2z1)

∂ 2P(z1,z2, t)
∂ z2

1

+(λ1z2 +λa2)
∂P(z1,z2, t)

∂ z2

+(λ1z1z2 +λr2 +λa2z1 −λ1z2 −λr2z2 −λa2z2)
∂ 2P(z1,z2, t)

∂ z2∂ z1
− ∂ 2P(z1,z2, t)

∂ t∂ z1

= λa1(− 1
z2
)P(z1,z2, t)+λa1(1− z1

z2
)
∂P(z1,z2, t)

∂ z1
(C.2.1)

Setting z1 = z2 = 1 in (C.2.1) gives us the following equation:

− (λ2 +λr1)E1(t)+(λ1 +λa2)E2(t)− dE1(t)
dt

=−λa1 (C.2.2)

We then take the derivative of (5.3.3) with respect to z2:

λ2
∂P(z1,z2, t)

∂ z1
+(λr1 +λ2z2 −λr1z1 −λ2z1)

∂ 2P(z1,z2, t)
∂ z2∂ z1

+(λ1z1 −λ1 −λr2 −λa2)
∂P(z1,z2, t)

∂ z2

+(λ1z1z2 +λr2 +λa2z1 −λ1z2 −λr2z2 −λa2z2)
∂ 2P(z1,z2, t)

∂ z2
2

− ∂ 2P(z1,z2, t)
∂ t∂ z2

= λa1
z1

z2
2

P(z1,z2, t)+λa1(1− z1

z2
)
∂P(z1,z2, t)

∂ z2
(C.2.3)

Setting z1 = z2 = 1 in (C.2.3) gives us the following equation:

λ2E1(t)− (λr2 +λa2)E2(t)− dE2(t)
dt

= λa1 (C.2.4)

Re-arranging (C.2.2) and (C.2.4), we arrive at (5.3.5) on page 79.
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Taking (5.3.5) to Laplace domain, we can write:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sE1(s | k1,k2)− k1 = −(λ2 +λr1)E1(s | k1,k2)

+(λ1 +λa2)E2(s | k1,k2)+
λa1
s

sE2(s | k1,k2)− k2 = λ2E1(s | k1,k2)

−(λr2 +λa2)E2(s | k1,k2)− λa1
s

(C.2.5)

where k1 and k2 are values of n1 and n2 at t = 0, respectively. Note that k1 and k2 are

variables themselves and their means are obtained as follows:

⎧⎪⎪⎨
⎪⎪⎩

k̄1 = ∑∞
k1=0 ∑∞

k2=0k1Pk1,k2(t = 0)

k̄2 = ∑∞
k1=0 ∑∞

k2=0k2Pk1,k2(t = 0)
(C.2.6)

k̄1 and k̄2 are therefore the values of the means at t = 0. We then proceed to uncondi-

tion (C.2.5), i.e., we take ∑∞
k1=0 ∑∞

k2=0 {X}Pk1,k2(t = 0), with X being each element of the

equation set. After simplification, we have:

⎧⎪⎪⎨
⎪⎪⎩

sE1(s)− k̄1 =−(λ2 +λr1)E1(s)+(λ1 +λa2)E2(s)+
λa1
s

sE2(s)− k̄2 = λ2E1(s)− (λr2 +λa2)E2(s)− λa1
s

(C.2.7)

E1(s) and E2(s) are then obtained as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E1(s) =
k1s(λa2 +λr2 + s)+ k2s(λ1 +λa2)+λa1 (−λ1 +λr2 + s)

s(−(λ1λ2)+λ2λr2 +λa2λr1 +λr1λr2 + s2 + s(λ2 +λa2 +λr1 +λr2))

E2(s) =
k1sλ2 −λa1 (s+λr1)+ k2s(s+λ2 +λr1)

s(s2 −λ1λ2 +λa2λr1 +λ2λr2 +λr1λr2 + s(λ2 +λa2 +λr1 +λr2))
(C.2.8)

Finally, the inverse Laplace of E1(s) and E2(s) are obtained as shown in (5.3.6) and (5.3.7)

on page 80.
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C.3. Derivation of Variances from the PDE of the PGF

Let us define:

ψ1(t)�
∂ 2P(z1,z2, t)

∂ z2
1

|z1=z2=1

ψ2(t)�
∂ 2P(z1,z2, t)

∂ z2
2

|z1=z2=1

ψ12(t)�
∂ 2P(z1,z2, t)

∂ z1∂ z2
|z1=z2=1 (C.3.1)

The variances are then given by:

σ2
1 (t) = ψ1(t)+E1(t)− (E1(t))

2 , σ2
2 (t) = ψ2(t)+E2(t)− (E2(t))

2 (C.3.2)

Considering that E1(t = 0) = k̄1 and E2(t = 0) = k̄2, the functions in (C.3.1) have the

following initial values:

ψ1(t = 0) = k̄2
1 − k̄1, ψ2(t = 0) = k̄2

2 − k̄2, ψ12(t = 0) = ¯k1k2 (C.3.3)

Taking the derivative of (C.2.1) with respect to z1 (i.e., deriving the 2nd derivative of (5.3.3)

on page 79 with respect to z1), we have:

(−λr1 −λ2)
∂ 2P(z1,z2, t)

∂ z2
1

+(−λr1 −λ2)
∂ 2P(z1,z2, t)

∂ z2
1

+(λr1 +λ2z2 −λr1z1 −λ2z1)
∂ 3P(z1,z2, t)

∂ z3
1

+(λ1z2 +λa2)
∂ 2P(z1,z2, t)

∂ z2∂ z1
+(λ1z2 +λa2)

∂ 2P(z1,z2, t)
∂ z2∂ z1

+(λ1z1z2 +λr2 +λa2z1 −λ1z2 −λr2z2 −λa2z2)
∂ 3P(z1,z2, t)

∂ z2∂ z2
1

−∂ 3P(z1,z2, t)
∂ t∂ z2

1

=−λa1

z2

∂P(z1,z2, t)
∂ z1

− λa1

z2

∂P(z1,z2, t)
∂ z1

+λa1(1− z1

z2
)
∂ 2P(z1,z2, t)

∂ z2
1

(C.3.4)
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Setting z1 = z2 = 1 in the preceding equation leads to the following equation:

2(λ1 +λa2)ψ12(t)−2(λr1 +λ2)ψ1(t)− dψ1(t)
dt

=−2λa1E1(t) (C.3.5)

Likewise, taking the derivative of (C.2.3) with respect to z2 (i.e., deriving the 2nd derivative

of (5.3.3) with respect to z2), we have:

λ2
∂ 2P(z1,z2, t)

∂ z1∂ z2
+λ2

∂ 2P(z1,z2, t)
∂ z1∂ z2

+(λr1 +λ2z2 −λr1z1 −λ2z1)
∂ 3P(z1,z2, t)

∂ z2
2∂ z1

+(λ1z1 −λ1 −λr2 −λa2)
∂ 2P(z1,z2, t)

∂ z2
2

+(λ1z1 −λ1 −λr2 −λa2)
∂ 2P(z1,z2, t)

∂ z2
2

+(λ1z1z2 +λr2 +λa2z1 −λ1z2 −λr2z2 −λa2z2)
∂ 3P(z1,z2, t)

∂ z3
2

− ∂ 3P(z1,z2, t)
∂ t∂ z2

2

=−2λa1
z1

z3
2

P(z1,z2, t)+λa1
z1

z2
2

∂P(z1,z2, t)
∂ z2

+λa1
z1

z2
2

∂P(z1,z2, t)
∂ z2

+λa1(1− z1
z2
)

∂2P(z1,z2,t)
∂ z2

2
(C.3.6)

Setting z1 = z2 = 1 in the preceding equation leads to the following equation:

2λ2ψ12(t)−2(λr2 +λa2)ψ2(t)− dψ2(t)
dt

=−2λa1 +2λa1E2(t) (C.3.7)

Finally, taking the derivative of (C.2.1) with respect to z2, we have:

(−λr1 −λ2)
∂ 2P(z1,z2, t)

∂ z1∂ z2
+λ2

∂ 2P(z1,z2, t)
∂ z2

1

+(λr1 +λ2z2 −λr1z1 −λ2z1)
∂ 3P(z1,z2, t)

∂ z2
1∂ z2

+λ1
∂P(z1,z2, t)

∂ z2

+(λ1z2 +λa2)
∂ 2P(z1,z2, t)

∂ z2
2

+(λ1z1 −λ1 −λr2 −λa2)
∂ 2P(z1,z2, t)

∂ z2∂ z1

+(λ1z1z2 +λr2 +λa2z1 −λ1z2 −λr2z2 −λa2z2)
∂ 3P(z1,z2, t)

∂ z2
2∂ z1

−∂ 3P(z1,z2, t)
∂ t∂ z1∂ z2

=
λa1

z2
2

P(z1,z2, t)− λa1

z2

∂P(z1,z2, t)
∂ z2

+λa1
z1

z2
2

∂P(z1,z2, t)
∂ z1

+λa1(1− z1

z2
) ∂2P(z1,z2,t)

∂ z1∂ z2
(C.3.8)
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Setting z1 = z2 = 1 in the preceding equation leads to the following equation:

−(λr1 +λ2 +λr2 +λa2)ψ12(t)+λ2ψ1(t)+λ1E2(t)+(λ1 +λa2)ψ2(t)− dψ12(t)
dt

= λa1 −λa1E2(t)+λa1E1(t) (C.3.9)

Re-arranging (C.3.5), (C.3.7), and (C.3.9) (if written in terms of ψ1(t), ψ2(t), and ψ12(t))

gives us (C.3.10):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dψ1(t)
dt

=2(λ1 +λa2)ψ12(t)−2(λr1 +λ2)ψ1(t)+2λa1E1(t)

dψ2(t)
dt

=2λ2ψ12(t)−2(λr2 +λa2)ψ2(t)+2λa1 −2λa1E2(t)
dψ12(t)

dt
=−(λr1 +λ2 +λr2 +λa2)ψ12(t)+λ2ψ1(t)

+λ1E2(t)+(λ1 +λa2)ψ2(t)−λa1 +λa1E2(t)−λa1E1(t)

(C.3.10)

We have three ODEs and three variables (ψ1(t), ψ12(t) and ψ2(t)); therefore, we can find a

unique solution by solving this system of linear ODEs. Taking the preceding equations to

Laplace domain, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sψ1(s | k1,k2)− k2
1 + k1 =2(λ1 +λa2)ψ12(s | k1,k2)

−2(λr1 +λ2)ψ1(s | k1,k2)+2λa1E1(s | k1,k2)

sψ2(s | k1,k2)− k2
2 + k2 =2λ2ψ12(s | k1,k2)−2(λr2 +λa2)ψ2(s | k1,k2)

+
2λa1

s
−2λa1E2(s | k1,k2)

sψ12(s | k1,k2)− k1k2 =−(λr1 +λ2 +λr2 +λa2)ψ12(s | k1,k2)+λ2ψ1(s | k1,k2)

+λ1E2(s | k1,k2)+(λ1 +λa2)ψ2(s | k1,k2)

−λa1

s
+λa1E2(s | k1,k2)−λa1E1(s | k1,k2)

(C.3.11)

Like before, we then proceed to uncondition (C.3.11). After simplification, we have:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sψ1(s)− k̄2
1 + k̄1 =2(λ1 +λa2)ψ12(s)−2(λr1 +λ2)ψ1(s)+2λa1E1(s)

sψ2(s)− k̄2
2 + k̄2 =2λ2ψ12(s)−2(λr2 +λa2)ψ2(s)+

2λa1

s
−2λa1E2(s)

sψ12(s)− ¯k1k2 =−(λr1 +λ2 +λr2 +λa2)ψ12(s)+λ2ψ1(s)

+λ1E2(s)+(λ1 +λa2)ψ2(s)−λa1

s
+λa1E2(s)−λa1E1(s)

(C.3.12)

The solution of (C.3.12) (i.e., the expressions for ψ1(s), ψ2(s), and ψ12(s)) is provided in

Sections C.4 through C.6. On the other hand, the expressions for ψ1(t), ψ2(t), and ψ12(t)

(which are components of σ2
1 (t) and σ2

2 (t) according to (C.3.2)) are extremely lengthy;

hence, they are provided in [72] instead.
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C.4. SIC-P2P Model: ψ1(s) Formula

Ψ1 �s� � �
��Λ1 � Λa2� k2 � k22 � 2 Λa1

s
�

2 Λa1 �s k1 Λ2�Λa1 �s�Λr1��s k2 �s�Λ2�Λr1��
s �s2��Λ2�Λa2�Λr1�Λr2� s�Λ1 Λ2�Λa2 Λr1�Λ2 Λr2�Λr1 Λr2�

Λ2 �s � 2 �Λa2 � Λr2��
�

1

Λ2
k1 k2 �

Λa1

s
�

Λ1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

Λa1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

Λa1 �s k2 �Λ1 � Λa2� � Λa1 �s � Λ1 � Λr2� � s k1 �s � Λa2 � Λr2��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

2 �Λ1 � Λa2�
s � 2 �Λa2 � Λr2�

�

s � Λ2 � Λa2 � Λr1 � Λr2

Λ2
��Λ1 � Λa2� �s � 2 �Λ2 � Λr1��

k2 � k22 �
2 Λa1

s
�

2 Λa1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

� �s � 2 �Λa2 � Λr2��

��s � 2 �Λ2 � Λr1�� �k1 k2 �
Λa1

s
�

Λ1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

Λa1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

Λa1 �s k2 �Λ1 � Λa2� � Λa1 �s � Λ1 � Λr2� � s k1 �s � Λa2 � Λr2��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

Λ2 k1 � k12 �
2 Λa1 �s k2 �Λ1 � Λa2� � Λa1 �s � Λ1 � Λr2� � s k1 �s � Λa2 � Λr2��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

	

��s � Λ2 � Λa2 � Λr1 � Λr2� �s2 � 2 �Λ2 � Λa2 � Λr1 � Λr2� s � 4 ��Λ1 Λ2 � Λa2 Λr1 � �Λ2 � Λr1� Λr2���
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C.5. SIC-P2P Model: ψ12(s) Formula

Ψ12�s� � ��Λa2 � Λ1� �2 �Λ2 � Λr1� � s�
2 Λa1 �s k2 �Λ2 � Λr1 � s� � Λ2 s k1 � Λa1 �Λr1 � s��

s �Λa2 Λr1 � s �Λa2 � Λ2 � Λr1 � Λr2� � Λ1 Λ2 � Λr1 Λr2 � Λ2 Λr2 � s2�
� k2 � k22 �

2 Λa1

s
�

�2 �Λa2 � Λr2� � s� ��2 �Λ2 � Λr1� � s� �
Λ1 �s k2 �Λ2 � Λr1 � s� � Λ2 s k1 � Λa1 �Λr1 � s��

s �Λa2 Λr1 � s �Λa2 � Λ2 � Λr1 � Λr2� � Λ1 Λ2 � Λr1 Λr2 � Λ2 Λr2 � s2�
�

Λa1 �s k2 �Λ2 � Λr1 � s� � Λ2 s k1 � Λa1 �Λr1 � s��
s �Λa2 Λr1 � s �Λa2 � Λ2 � Λr1 � Λr2� � Λ1 Λ2 � Λr1 Λr2 � Λ2 Λr2 � s2�

�

Λa1 �s k1 �Λa2 � Λr2 � s� � s k2 �Λa2 � Λ1� � Λa1 ��Λ1 � Λr2 � s��
s �Λa2 Λr1 � s �Λa2 � Λ2 � Λr1 � Λr2� � Λ1 Λ2 � Λr1 Λr2 � Λ2 Λr2 � s2�

� k1 k2 �
Λa1

s
�

Λ2 �
2 Λa1 �s k1 �Λa2 � Λr2 � s� � s k2 �Λa2 � Λ1� � Λa1 ��Λ1 � Λr2 � s��
s �Λa2 Λr1 � s �Λa2 � Λ2 � Λr1 � Λr2� � Λ1 Λ2 � Λr1 Λr2 � Λ2 Λr2 � s2�

� k1 � k12 	

��Λa2 � Λ2 � Λr1 � Λr2 � s� �4 �Λa2 Λr1 � Λ1 Λ2 � �Λ2 � Λr1� Λr2� � 2 s �Λa2 � Λ2 � Λr1 � Λr2� � s2��
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C.6. SIC-P2P Model: ψ2(s) Formula

Ψ2�s� �
1

s � 2 �Λa2 � Λr2�
�k2 � k22 �

2 Λa1

s
� 2 Λ2 ��Λ1 � Λa2� �s � 2 �Λ2 � Λr1��

k2 � k22 �
2 Λa1

s
�

2 Λa1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

� �s � 2 �Λa2 � Λr2��

��s � 2 �Λ2 � Λr1�� �k1 k2 �
Λa1

s
�

Λ1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

Λa1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

Λa1 �s k2 �Λ1 � Λa2� � Λa1 �s � Λ1 � Λr2� � s k1 �s � Λa2 � Λr2��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

�

Λ2 k1 � k12 �
2 Λa1 �s k2 �Λ1 � Λa2� � Λa1 �s � Λ1 � Λr2� � s k1 �s � Λa2 � Λr2��
s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�

	

��s � Λ2 � Λa2 � Λr1 � Λr2� �s2 � 2 �Λ2 � Λa2 � Λr1 � Λr2� s � 4 ��Λ1 Λ2 � Λa2 Λr1 � �Λ2 � Λr1� Λr2��� �
2 Λa1 �s k1 Λ2 � Λa1 �s � Λr1� � s k2 �s � Λ2 � Λr1��

s �s2 � �Λ2 � Λa2 � Λr1 � Λr2� s � Λ1 Λ2 � Λa2 Λr1 � Λ2 Λr2 � Λr1 Λr2�
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