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ABSTRACT 

 

 

A Mathematical Approach to the Design of Cellular 

Manufacturing System Considering Dynamic 

Production Planning and Worker Assignments   

 

 

Tariq Aljuneidi, M.A.S.c 

 Concordia University, 2013 

 

 

Due to increasing international competition, shorter product life-cycles, 

variable demand, diverse customer needs and customized products, 

manufacturers are forced from mass production to the production of a large 

product mix. Traditional manufacturing systems, such as job shops and flow 

lines, cannot provide such requirements efficiently coupled with flexibility 

to handle these changes.  Cellular Manufacturing (CM) is an alternate 

manufacturing system combining the high throughput rates of line layouts 

with the flexibility offered by functional layouts (job shops). The benefits 

include reduced set-up times, material handling, in-process inventory, better 
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product quality, and faster response time. The benefits of CM can only be 

achieved by sufficiently incorporating the real-life structural and operational 

features of a manufacturing plant when creating the cellular layout. This 

research presents integrated CM models, with an extensive coverage of 

important manufacturing structural and operational features.  

 

The proposed Dynamic Cellular Manufacturing Systems (DCMSs) model 

considers several manufacturing attributes such as multiperiod production 

planning, dynamic system relocation, duplicate machines, machine 

capacities, available time for workers, worker assignments, and machine 

breakdowns. The objective is to minimize total manufacturing cost 

comprised of holding cost, outsourcing cost, intercell material handling cost, 

maintenance and overhead cost, machine relocation cost as well as salary, 

hiring, and firing costs of the workers. Numerical examples are presented to 

show the performance of the model.  
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Chapter 1  

Introduction 

 

 

 

In the past few decades, there has been an increasing worldwide awareness towards 

productivity improvement. Advanced countries are moving towards the progressive 

concept and philosophies in the manufacturing area. The main interest of such changes 

lies in decentralization of the activities hitherto carried out in an autocratic and 

bureaucratic manner in the production units. A new style of operation and a new 

environment in the work place conductive to improvement in such factors as flexibility, 

efficiency, management-worker relation, team work and job satisfaction  are becoming 

important for survival in the international market. Group Technology (GT) has emerged 

as one of the manufacturing philosophies to address such requirements. 

  

Group Technology (GT) is a manufacturing technique in which the parts having 

similarities in geometry, manufacturing process and/or functions are assembled together. 

The group of similar parts is known as part family and the group of machineries used to 

process an individual part family is known as machine cell (Selim et al. 1998). 
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1.1.  Cellular Manufacturing 

 

Cellular Manufacturing (CM) is an application of group technology in manufacturing in 

which similar parts are classified into part families and different machines are assigned 

into machine cells. Cellular Manufacturing System (CMS) presents a better performance 

in satisfying the demand of mid-volume and mid-variety products mixed rather than job 

shops or flow lines. There are many benefits of cellular manufacturing for a company if 

applied correctly, which will be discussed later in this chapter. CMSs have emerged to 

cope with such production requirements and have been successfully implemented with 

good results. It is important for companies that use CMS to invest sufficient time in the 

design and planning phase of any CMS implementation. The benefits of CMS can only 

occur to the company if strategic decisions are based upon results obtained from models 

that accurately describe its structural and operational features (Greene and Sadowski, 

1984). CM has been applied successfully in different manufacturing fields on numerous 

numbers of products, for example, agriculture and construction equipment, seals, and 

hospital and medical equipment.  

 

A functional or process layout (a job shop) does well in the case where the variety among 

the products is so high (approximately there is no similarity between products) and the 

production volume for each product is low. Figure 1-1 shows the design layout of such a 

configuration, where the machines of the same type are grouped together in one 

department (Work Centre) which will be responsible to make a specific operation for all 

parts that need these or some of these operations. The products have to move between the 

work centers in order to complete all the required operations. From this we can conclude 
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that the job shop system involves considerable material handling which cause rapid 

increases in the production cost as well as the in waiting times. In such systems, just 5-

10% of the whole time that is spent on the product is a productive time and the remaining 

is just waiting (wasted, non-productive) time. Also, this increases the number of work in 

process (WIP) products, hence, low throughput (Wemmerlov and Hyer, 1986).   

 Figure 1-1 : A functional layout (job shop) 
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The concept of a line layout (a flow line) is based on minimizing the distance that people, 

information, and material move. This system deals with the high volume production but 

low variety mix, such a system has low flexibility to deal with the customization 

products. It performs well in mass production industry or assembly industry. A specific 

number of lines is performed such that each line produces a specific product, where the 

arrangement of the machines in each line depends on the operations sequence of the 

product which is assigned to that line (Kusiak, 1987).  

 

For example, if we have a milling machine in the first line we cannot use it just to the 

product which assigned to the first line even though it has available time. Hence, we need 

a specific machine for each line, which means a large investment machine cost. Major 

drawback of flow lines is the lack of flexibility. They are not suitable to produce products 

for which they are not designed for. If the design of the product is changed, a major 

relocation of the line may be required. If new products are introduced, it may be 

absolutely essential to open a new line with additional investment. In Figure 1-2 we can 

see a typical layout of the flow line system. 
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Figure 1-2 : A line layout (flow line) 

 

We conclude that neither the job shop nor the flow line systems perform well in the case 

of mid-volume and mid-variety products mix. CM is an approach that helps to build a 

variety of products with as little waste as possible. A cell is a group of workstations, 

machine tools, or equipment arranged to create a smooth flow so families of parts can be 

processed progressively from one workstation to another without waiting for a batch to 

be completed or requiring additional handling between operations. But simply, cellular 

manufacturing groups together machinery and a small team of staff, directed by a team 

leader, so that all the work on a product or part can be accomplished in the same cell 

eliminating resources that do not add value to the product (Ah kioon, 2007). Figure 1-3 

shows the formulation of the CMS.  Figure 1-4 presents a comparison between the three 

systems (flow line, cellular, and job shop) when perform with regard to the products 

variety and the demand volume. 
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Figure 1-3 : A cellular (group) layout 

 

 

Figure 1-4: Systems comparison  
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Therefore, CM is a manufacturing system which can produce medium-volume and 

medium-variety part types more efficiently and economically than the other types of 

manufacturing systems. The product design and demand characteristics have to justify the 

implementation of any CM system since the latter is not a universal panacea to all of the 

challenges inherent to modern day manufacturing (Selim et al. 1998). For instance, 

products that have very large production volumes are better processed using pure flow 

lines. Moreover, products fetching small production volumes coupled with widely 

varying part processing operations do not warrant the need for CM systems. 

 

1.2.  Benefits of Cellular Manufacturing 

 

Cellular manufacturing offers substantial benefits to companies. These benefits include 

Ahkioon (2007): 

1. Reduction in material handling and transit time. Since all of the operations 

that the product needed will perform in the same cell this means that no material 

handling between the cells and also the product will not wait the whole batch to 

move to the next operation because the movement occur one by one. 

 

2. Reduction in throughput times. In CM systems, parts are moved between cells 

in small batches and within each cell individual parts can be moved to the next 

machine after completing their operation on the previous machine. This 

contributes in significantly reducing the waiting times. Furthermore, CM leads to 
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an easier identification of bottlenecks since the material flow within each cell can 

be better tracked. Therefore, this is conducive in enabling delivery due dates to be 

met and in providing better customer lead times. 

 

3. Reduction in setup times and lot size. Since a manufacturing cell is designed to 

manufacture a part family (parts having the same processing requirements: 

required operations, tolerances, machine tool capacities, similar shapes and sizes), 

it can accommodate the standardization of equipment, tools, jigs and fixtures. The 

parts can, therefore, be quickly processed without the need to redesign tools for 

that matter. Moreover, the use of adapters and generic fixtures significantly 

reduces the time required to change tools and fixtures.  Owing to the considerable 

reduction in setup times, it also becomes more economical to operate using 

smaller lot (batch) sizes. 

 

4. Reduction in WIP and finished goods inventory. The decrease in setup time 

leads to an increase capacity of the machines as well as a decrease in WIP 

inventories. Less WIP is easier to manage and allows the manufacturer to operate 

with shorter lead time this lead to production on just-in-time (JIT), and then a 

reduction in finished goods inventory could be achieved.   

 

5. Reduction in space. Since we got a reduction in WIP and finished goods 

inventory, on the other hand, since we have a similar products need similar tools, 

all of these lead to decreasing in the space required. 
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6. Better production scheduling and response to product design changes. 

Reductions in setup times and lot sizes, simplified material flow and the ability of 

cells to be reconfigured quickly (through standardized equipment) effectively 

make production scheduling and product design changes significantly more 

manageable. When a new part is introduced, the designer can use the database for 

existing part families which are similar in processing requirements. The 

aggregation of machines into cells reduces the number of work centers that have 

to be scheduled. Owing to the relative independence of the cells, changes in the 

production scheduling or design of a particular product line can be better 

addressed within one cell instead of the whole production facility. 

 

7. Better product quality. Since parts are manufactured in small lot sizes, any 

quality defects can be immediately tracked and addressed within a cell, without 

having to stop production in other cells. Also, quality improvement circles within 

each cell can be more effective since the latter consists of a team of operators 

working together on a daily basis and who are aware of their increased job 

responsibility and ownership. 

 

8. A better socio-technical environment. Better employee satisfaction, labor 

relations, worker motivation and reduced employee absenteeism and turnover 

have been achieved as a result of enhanced job enrichment and status         
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(Brandon, 1996). In fact, within a cell, this is made possible thanks to higher 

levels of variety, identity, significance, autonomy and feedback. 

 

CM is also one of the methods of implementing lean manufacturing as it paves the way to 

small manufacturing lot sizes (batch manufacturing) and improved machine changeover 

and setup times. A cellular layout is also a typical pre-requisite for achieving just-in time 

(JIT) production since it helps achieve a decrease in inventory, work-in-progress (WIP). 

 

1.3. Research Objectives and Contributions 

 

The design of a cellular manufacturing system consists of three main phases (Dimopoulos 

and Zalzala, 1998) as shown in figure 1-5.  

  

  

 Figure 1-5 : Main stages in the design of a cellular manufacturing system 
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manufacturing decisions are related to both system structure and system operation, and 

affect the whole system cost and performance (Ahkioon, 2007). As such, manufacturing 

attributes must be incorporated to address these structural (e.g. number of machines, 

machine availability, capacity) and operational (e.g. production planning aspects) issues, 

allowing the cell designer to evaluate cell design using cost-oriented or performance-

oriented objectives.  

 

While cellular manufacturing is a popular research area, there is a singular absence of 

articles that deal with the human element in cellular manufacturing. There are a variety of 

reasons for this, including that these issues are typically difficult to quantify. It has been 

well documented that there is an absence of research in the area of worker placement 

based on both their technical and human skills. Considering human issues is one of the 

main points in cellular manufacturing since ignoring this factor can considerably reduce 

benefits of the utility of the cell manufacturing. Bidanda et al. (2005) state that it is 

important for the successful implementation of cellular manufacturing, to focus both on 

technical issues (cell formation and design) and human issues. Balakrishnan and Cheng 

(2007) claimed that in spite of the fact that several research papers have highlighted the 

importance of interactions between human resources management and operations 

management and the need to incorporate organizational behavior issues in operations 

management in recent years, there has not been much research on organizational behavior 

issues in cellular manufacturing. 
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Therefore, with regards to CM modeling, the following research objectives have been set 

and met in this thesis: 

1. Identify the important manufacturing attributes that make the system more 

realistic and more effective. 

2. Develop a comprehensive mathematical model which integrates worker 

assignments as well as all of our manufacturing attributes. 

3. Develop efficient and exact procedures for solving the proposed integrated model. 

4. Use IBM ILOG CPLEX OPTIMIZATION STUDIO 12.2/OPL to solve the 

proposed integrated model and evaluate its ability by solving various CM 

problems. 

 

1.4. Research Approach 

 

With regards to the development of integrated CM models, a number of steps are taken in 

order to select the important manufacturing aspects to be incorporated and to implement 

some possible solution approaches: 

 

1. Through an extensive literature review of existing models and the manufacturing 

aspects which had been considered in each model, focusing on the previous works 

which considered the human issues in its work, the important manufacturing 

attributes then selected to build a comprehensive model. 
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2. A mathematical model which integrates all of the manufacturing attributes has 

been formulated. 

 

3. A linearization has been made on the existing mathematical model and then it 

converted into a format that can be recognized and solved by CPLEX. 

 

4. Data set of previous work used to formulate several CM problems with various 

sizes to evaluate the ability of CPLEX software. 

 

 

1.5. Outline of Thesis 

 

This thesis is organized in five chapters. Chapter 2 presents a literature review with 

regards to CM systems design methods, including the CM solution procedures and 

modeling approaches. Chapter 3 presents a comprehensive mathematical CM model that 

integrates the important manufacturing attributes that have been identified in chapter 2. 

The properties of the model are discussed followed by the implementation of some 

linearization procedures. In chapter 4 the linearized model is solved using CPLEX 

optimization studio, various numerical examples followed by a detailed discussion of the 

computational results. Chapter 5 presents the summary, conclusions and future research 

directions. This chapter also highlights the research contributions brought to both CM 

modeling and solution methodologies. Future research directions are also discussed.
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Chapter 2  

Literature review 

 

 

 

2.1 Introduction 

 

The literature on the design of cellular manufacturing systems is quite extensive. 

Comprehensive reviews and taxonomies of cellular manufacturing systems and 

classifications can be found [Greene and Sadowski, 1984; Wemmerlov and Hyer, 1986; 

Kusiak, 1987; Singh, 1993; Vakharia and Slim, 1994; Joines et al. 1996; Selim et al. 

1998]. The reminder of this chapter is divided into two main sections. First section 

presents a review of the literature pertaining to the classification and the solution methods 

proposed for the Cell Formation (CF) problem. Figure 2-1 shows Classification of CF 

methods. The second section presents a review for the recently published work, taking 

into consideration the manufacturing attributes to be used during the Cellular 

Manufacturing System design. 
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3.2. Taxonomy of CM Design Methods 

 

 

At the highest level, methods for part family/machine cell formation can be classified as 

design-oriented or production-oriented. Design-oriented approaches group parts into 

families based on similar design features while production –oriented techniques 

aggregate parts requiring similar processing. Classification and coding schemes are 

design-oriented tools that can be used to important GT applications. Analysis of codes 

facilitates the rationalization of the design process, rapid prototyping, the development of 

new parts, and to a certain extent can be used for machine cell formation. Since part 

codes are assigned based upon physical geometry, parts having similar design features 

have similar codes providing a weak connection between part features and machine 

grouping. This makes the application of classification and coding to machine cell 

formation very limited. This can be seen by the fact that the large number of CM 

designed methods proposed during the late decades are not based on classification and 

coding. They are production-oriented approaches (Defersha, 2006). The production-

oriented approaches can be further classified into: Descriptive Procedures, Cluster 

Analysis, Graph partitioning, Artificial Intelligence, Mathematical Programming, and 

Metaheuristic Approach. 
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Figure 2-1: Classification of CF methods 

 

2.2.1. Descriptive Procedures 

 

 
In general, descriptive procedures can be classified into three major classes. The first class, which 

is referred to as part families identification (PFI), begins the cell formation process by identifying 
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referred to as machine groups identification (MGI), follows the reversal of the first class' steps. 

The third class of the descriptive procedures, which is referred to as part families/machine 

grouping (PF/MG), identifies the part families and machine groups simultaneously (Selim et al. 

1998). 
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PFI methods identify part families, and after that machines are allocated to those parts 

families. This category can be sub-classified into both informal systems, and formal 

coding and classification system. An example of informal system is the visual inspection 

method, in which part families are formed based on the experience of experts. In a part 

coding method, parts are coded in relation to shapes, sizes, features, etc. ,and based on 

them part families are formed. A code is a string of characters that stores information 

about a part and is used to either group similar parts or to separate dissimilar parts. It is 

used in three coding systems: monocode (hierarchical code), polycode (attribute code) 

and mixed code. Using polycodes, distance measures (Minkowski, weighted Minkowski 

and Hamming distance measures) can be found between each one of the parts according 

to some selected manufacturing attribute (Ah kioon, 2007). MGI-related descriptive 

procedures consider the cell formation problem as having two- phases. In the first one, 

machines are grouped based on part routings. In the second stage, parts are allocated to 

machine groups. PF/MG methods identify part families and machine groups 

simultaneously. Some of these methods are (1) production flow analysis (PFA) that 

analyzes the information given in route cards to form cells (Burbidge 1963), (2) nuclear 

synthesis in which manufacturing cells are created around “key machines” and (3) 

component flow analysis (CFA) that is similar to PFA except CFA does not divide the 

problem at the outset (Elessaway, 1972). 
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2.2.2. Cluster Analysis Procedures. 

 

 

Cluster analysis is composed of many diverse techniques for recognizing structure in a 

complex data set. The main objective of this statistical tool is to group either objects or 

entities or their attributes into clusters such that individual elements within a cluster have 

a high degree of "natural association" among themselves and that there is very little 

"natural association" between clusters. Clustering procedures can be classified as: 1) 

array-based clustering techniques, 2) hierarchical clustering techniques, and 3) non-

hierarchical clustering techniques (Selim et al. 1998). 

 

 Array based clustering 

Array based clustering is one of the simplest classes of production-oriented cell formation 

method. This class of algorithms utilizes the machine-part incidence matrix. The latter 

has zero and one entries, where a “1” entry in row  i  and column j (aij=1) of the matrix 

means that part  j  requires machine  i  for one of its operations, whilst a “0” entry means 

that it does not need. Rows and columns are permutated to form a set of blocks with high 

densities of 1s along the diagonal, see figure (2-2, 2-3). Any tightly clustered block 

represents the candidate part families and machine cells, which formed simultaneously 

(Albadawi, 2003). 

 

Several array-based clustering algorithms have been proposed: Bond Energy Analysis 

(BEA) by McCormick et al. (1972),which maximize the total ‘ bond energy’ of the 

machine-part incidence matrix,  Rank Order Clustering (ROC) by King (1980a, 1980b), 
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which rearranges the machine-part incidence matrix based on the ‘binary rank orders’ of 

its rows and columns, ROC2 by King and Nakornchai (1982), Modified Rank Order 

Clustering (MODROC) by Chandrasekharan and Rajagopalan (1986a), Direct Clustering 

Algorithm (DCA) by Chan and Milner (1982), which form part and machine families by 

rearranging the rows and columns of the incidence matrix, based on the number of non-

zero elements in each, Cluster Identification by Kusiak and Chow (1987), and the 

Hamiltonian Path Heuristic by Askin et al. (1991).   

 

 

 

                                 

 Products 

 

 

 

 

Machines 

 1 2 3 4 5 6 7 

1 0 1 0 0 1 0 0 

2 1 0 0 0 0 0 1 

3 0 0 1 1 0 1 0 

4 0 0 1 1 0 1 0 

5 1 0 0 0 0 0 1 

6 0 0 1 1 0 1 0 

7 0 1 0 0 1 0 0 

 

Figure 2-2 Machine-Part Matrix 

 Products 

 

 

 

 

Machines 

 1 7 3 4 6 2 5 

2 1 1      

5 1 1      

3   1 1 1   

4   1 1 1   

6   1 1 1   

1      1 1 

7      1 1 

 

Figure 2-3 Parts-Machines Families 
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The array based clustering techniques used in the design of manufacturing cells are both 

efficient and simple to apply to the part-machine matrix. However, this technique ignores 

operation sequence. If a part needs more than one operation, the part-machine matrix 

cannot use to identify all the operations, the only information that the matrix can help 

with it is which machine type each part needs. Ignoring the machine capacity limitations 

is another disadvantages of array-based clustering techniques, the latter assume that each 

machine type has enough capacity to process all parts require this machine. Also this 

technique does not take into account production requirements, machine costs, part 

production costs; maximum cell size and it usually require visual inspection of the output 

to determine the composition of the manufacturing cells. This is unpractical for problems 

of real-life size where large numbers of columns and rows need to be represented and 

visualized (Ah kioon, 2007). 

 

 Hierarchical Clustering 

Hierarchical clustering techniques operate on an input data set described in terms of a 

similarity or distance function and produce a hierarchy or partitions. At each similarity 

level in the hierarchy, there can be a different number of clusters with different number of 

members. Unlike the array-based techniques, hierarchical clustering methods do not form 

machine cells and part families simultaneously. These methods can be described as either 

divisive or agglomerative. Divisive algorithms start with all data (machine or parts) in a 

single group and create a series of partitions until each machine (part) is in a singleton 

cluster.   On the contrary, agglomerative technique start with a singleton clusters and 

proceed to merge them into larger partitions until a partition containing the whole set is 
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obtained (Albadawi, 2003). Hierarchal clustering may be represented by a two 

dimensional diagram known as dendogarm will illustrates the fusion or divisions made at 

each successive stage of analysis. An example of such a dendogram is given in figure 2-

4. The cell designer must choose a similarity level or threshold in order to define the 

number of clusters. As the threshold increases, the number of cells increases while the 

size of each cell decreases.  

 

The most widely used technique is Single Linkage Clustering (SLC) algorithm by 

McAuley (1972), which defines the similarity between two machines in terms of the 

number of parts that visit both machines and the number of visiting either machine. 

McAuley (1972) then aggregated machines with high similarity into manufacturing cells. 

Jaccard’s similarity coefficient is the most commonly used one, defined as the ratio of the 

number of parts processed on both machines (m and n) to the sum of the total number of 

parts processed on machines m and n.  The value of the Jaccard’s coefficient ranges from 

0.0 (maximum dissimilarity when the two machines do not process the same part types) 

to 1.0 (maximum similarity) (Ahkioon, 2007). 

 

Other manufacturing features such as part volume, part operation sequence, tooling 

requirements, setup features, production volume and lead time can be considered while 

computing the similarity measure.  
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The defining feature of SLC is that distance between clusters is defined as the distance 

between the closest pair of objects where the pair of objects is constructed by taking one 

element from each of the two clusters. The major drawback of SLC is the “chaining” 

problem, which may be caused by two clusters joining together. The two machine cells 

may join together just because two of their members are similar, but the other members 

may remain far apart in terms of similarity. In other words, two clusters can be grouped 

based merely upon a single bond between one machine in each cluster. The main 

advantage of SLC is the simplicity and less computational requirement (Albadawi, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: A dendogram showing the hierarchical classifications 
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Complete Linkage Clustering algorithm (CLC) is considered to be the other extreme of 

SLC in that it is the least likely to cause chaining, CLC reduces the chaining problem by 

selecting the minimum similarity coefficient as the in-between cluster relationship instead 

of maximum. To help reduce the chaining problem, (Seifoddini and Wolfe, 1986) applied 

the Average Linkage Clustering algorithm (ALC) where clustering occurs by considering 

the average of all links within cluster. When clusters v and t are merged, the sum of the 

pairwise similarity between the two clusters is (Albadawi, 2003): 

 

   =
           

     
 

 

Where the double summation are the sum of pairwise similarity between all machines of 

the two groups, and   ,    are the number of machines in groups t and v respectively. 

However, ALC produces results that lie between the extremes of SLC and CLC, 

especially with regards to the machine chaining problem. Although the algorithms 

provide different sets of groups, they do not give the best way to group machines (e.g. 

machine chaining problem, no insight for the treatment of bottleneck machines). 

Furthermore, the part families have yet to be formed and get assigned to the machine 

groups.  One of the limitations of SLC and CLC is that the similarity coefficient used in 

these methods does not give importance to the parts that do not need processing by the 

machines pairs. The (Linear Cell Clustering) LCC method overcomes this problem. It 

clusters machines based on the use of commonality score not only considers the parts that 
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require both machines for processing, but also parts, which do not require both machines. 

The commonality score is presented as below (Albadawi, 2003): 

 

C  =       ,     

 

   

 

Where:  

     ,     =   

 p  1 ,       =    = 1

1,                          =    =  

  ,                                      

  

p, q are indexes for parts and m, n are indexes for machines. 

 

 Non-Hierarchical Clustering 

In comparison to the hierarchical techniques, the non-hierarchical procedures allow 

objects to change group membership during the cell formation process. Hierarchical 

Clustering methods are iterative methods and they begin with either an initial partition of 

the data set or the choice of a few seed points. In either case, one has to decide the 

number of clusters in advance. Arbitrariness in the choice of seed points (or initial 

partition of data) could lead to unsatisfactory results (Ah kioon, 2007). Non-hierarchical 

procedures have been developed by Lemoine and Mutel, (1983), Chandrasekharan and 

Rajagopalan, (1986b), and Srinivasan and Narendran, (1991). 
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3.2.3. Graph Theoretic Approaches 

 

 

Graph theoretic approaches can be used to structure the cell formation problem in a 

number of forms through a number of methods including Graph Partitioning Algorithms, 

Bipartite Graphs, Minimum Spanning Tree, and Network Flow.  

 

 Graph Partitioning Algorithms 

Graph partitioning methods treat the machines and/or parts as vertices and the processing 

of parts as arcs connecting these nodes. These models aim at obtaining disconnected 

subgraphs from a machine-machine or machine-part graph to identify manufacturing cells 

(Selim et al. 1998). Rajagoplan and Batra (1975) suggest the use of Jaccard’s similarity 

coefficients and graph theory to form machine groups. Each vertex in the graph 

represents a machine type and the edge connecting vertices j and k is introduced in the 

graph only if the “similarity” between the machine types is greater than a prespecified 

threshold value. After allowable edges have been introduced, cliques are formed. These 

cliques are then merged to create cells so that intercell moves are minimized. An upper 

limit on cell size constraints the number of machines in each partition. During the process 

high and balanced machine utilization are strived for and machine loads are used to 

determine the number of machines of a given type needed for each cell (Selim et al., 

1998). A cost-based mathematical formulation have been proposed by Askin and Chiu 

(1990) and a heuristics graph portioning solution approach. They adapted the Kernighan 

and Lin graph partitioning method and applied a two-phase portioning algorithm. In the 

first phase parts will be assigned to a specific machines and then machines will be 
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grouped into cells in the second phase. Faber and Carter (1986) use a graph theoretic 

algorithm which converts the machine similarity matrix into a cluster network. This is 

used to group the machines and parts into cells. The cluster network is partitioned into 

cells by solving a minimum cost flow problem (Ah kioon 2007). 

 

 Bipartite Graphs 

King and Nakornchai (1982) suggested the use of a bipartite graph. The processing 

requirements of components on machines can be represented in graph-theoretic 

terminology as a bipartite graph G(Vms V" A) where Vm and Vc are the two sets of 

vertices of the graph which correspond respectively to the machine and components. A is 

a set of arcs of the graph such that: 

 If an arc exists between machine vertex i and component vertex j (aij= I) 

component j requires processing on machine i. 

 If an arc does not exist between machine vertex i and component vertex j (aij=O) 

then component j does not require processing on machine i. 

Each vertex of the graph can be viewed as a compound element if so desired and 

components, which require exactly the same set of machines, may be depicted as one 

vertex. Similarly, machines of the same type can, if required, be represented as one 

vertex. Such devices can be used to reduce the overall size of the graph. 

The processing requirements of the components on the machines are also specified by the 

incidence matrix representation of the bipartite graph. It is easy to see that in this form 

the problem of allocating machines to groups and components to associated families 
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reduces to that of finding, by appropriately rearranging the order of rows and columns, a 

block diagonal form of the aij= 1 entries in the incidence matrix.  

 

 Network Flow 

Vohar et al., (1990) proposed a network-based algorithm. The algorithm operates with 

the objective of identifying cells that yield a minimum interaction. Wu and Salvendy 

(1993) developed a network model to partition the machine-machine graph into cells by 

considering operation sequences. Lee and Garcia Diaz (1996) represented the clustering 

problem as a capacitated circulation network that measures the functional similarity 

between machines. Bertsekas and Tseng (1988) proposed a new class of algorithms for 

linear cost network flow problems with and without gains. These algorithms are based on 

iterative improvement of a dual cost and operate in a manner that is reminiscent of 

coordinate ascent and Gauss-Seidel relaxation methods. Nsakanda et al. (2006) integrated 

several other manufacturing issues to the cell formation problem. A model was 

mathematically formulated and solved using a hybrid genetic approach. The solution 

methodology involves partially solving the main model by applying mutation operators 

that determine the values for the decision variables related to the machine assignment to 

cells. The partially solved model is further modified by relaxing the machine capacity 

constraints. It is then observed that the fully modified model has a min-cost flow 

structure that readily lends itself to a Dantzig-Wolfe decomposition approach (Ah kioon, 

2007). 
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2.2.4. Artificial Intelligence-based Approaches 

 

 

Researchers have increasingly applied artificial intelligence (AI) techniques to the 

cellular manufacturing system design problem.  The techniques developed include 

syntactic pattern recognition, expert system/knowledge base, fuzzy mathematics, 

artificial neural networks. 

 

 Syntactic Pattern Recognition 

Syntactic pattern recognition borrows most of its analytical methods from formal 

language theory. In syntactic pattern recognition, complex patterns are represented in 

terms of simple subpatterns and relations among subpatterns. This is analogous to natural 

language. Syntactic pattern recognition approach is developed for formation of machine 

cells by classification of machining sequences. There are four steps in this approach: (1) 

primitive selection, (2) cluster analysis, (3) grammar inference, and (4) syntactic 

recognition. Wu et al. (1986) applied syntactic pattern recognition approach to cell 

manufacturing design, using the machine sequence data of the parts to be produced.  

 

 Expert System 

Elmaghraby and Gu (1989) presented an approach for using domain specific knowledge 

rules and a prototype feature based modeling system to automate the process of 

identifying parts attributes and assigning the parts to the most appropriate manufacturing 

cell. The expert assignment system is based on the geometric features of parts, 

characteristics of formed manufacturing cells, parts functional characteristics and 
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attributes, as well as domain specific manufacturing knowledge. Kusiak (1988) 

developed a pattern recognition based parts grouping which is similar to the grouping in 

GT. The basic difference between these two approaches is in the degree of automation. 

Luong et al., (2002) developed a knowledge-based system that attempts to make 

recommendations of system feasibility, cell formation techniques and cell types during 

the conceptual design of CM. The recommendation of system feasibility is based on the 

production quantity and product variety ratio. 

 

 Fuzzy Logic 

Most clustering methods assume that part families are mutually exclusive and 

collectively exhaustive. While some parts definitely belong to certain part families, it is 

not always clear which family is appropriate. Xu and Wang (1989) applied fuzzy 

mathematics to the cell formation problem where part features are transformed by 

membership functions into fuzzy numbers. The membership function of each feature is 

designed such that the resulting fuzzy number is able to differentiate parts according to 

the feature’s processing needs. The fuzzy numbers are then used to construct a similarity 

coefficient matrix. A threshold value is used to specify the minimum value of similarity 

coefficient for a part to be in the same family. Chu and Hayya (1991) applied a fuzzy c-

means clustering algorithm to production data. The fuzzy c-means clustering can be 

classified as a non-hierarchical method and suffers from the same problems associated 

with those methods. The number of part families, c, must be specified a priori. The 

authors stated that if c is underestimated, the result is far from optimal. Also, a poor 

stopping criterion leads to inferior clusters. However, the technique is unaffected by 
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exceptional elements. The workload among machine cells can be balanced better by 

using a reallocation scheme that utilizes the degree of membership a part has in particular 

family. Chu and Hayya (1991) compared the fuzzy approach to the optimal 0-1 integer-

programming model and a heuristic approach. The fuzzy approach was clearly better than 

the integer programming (IP) approach in both execution time and the quality of the 

solution. It was not as efficient as the heuristic but provided more information than is 

available from a “crisp” definition of families and cells (Albadawi, 2003).  

 

Further work reporting the use of fuzzy mathematics in CM design can be found in Josien 

and Liao (2002), Lozano et al. (2002). Gungor and Arikan (2000) used fuzzy set theory 

for CM design through an algorithm that treats design and manufacturing attributes and 

operation sequences as input parameters when formulating the cell formation problem. 

Membership functions are used to fuzzy if such parameters so that they can be used 

together with some IF-THEN decision rules with a view to determining the part 

relationships s fuzzy sets. The defuzzification step follows where crisp values for the part 

relationships are obtained. A traditional cell formation procedure, e.g. Single Linkage 

Clustering (SLC), can thus be applied by using the defuzzified part relationships chart as 

input (Ah kioon, 2007). 

 

 Neural Networks 

Artificial Neural Networks (ANN) have been applied successfully to many 

manufacturing areas. Several researchers have applied a supervised learning approach to 

the classification and coding problem based on the back-propagation learning algorithm. 
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This method can also be applied to a production-oriented method to determine the 

machine cells and part families. Unsupervised learning techniques are better suited for 

the general clustering problem. It is not necessary to specify a priori the number of 

clusters or the representative members of these clusters. Once the part families and 

machine cells are determined, a supervised model can be trained to assign new parts to 

the existing cells (Albadawi, 2003). By taking a design-oriented approach Kaparthi and 

Suresh (1992) have applied artificial neural networks for classification and coding of 

rotational parts, using a three-digit part description whilst Liao and Lee (1994) have 

developed an automated GT coding and part-based computer-aided design (CAD) 

system. Malave and Ramachandran (1991) applied a modified version of the Hebbian 

learning rule to the cell formation problem. This technique belongs to the supervised 

learning category but is also a production-oriented method for forming part families and 

machine cells. Unsupervised learning approaches have also been applied to the cell 

formation problem and the methods include Adaptive Resonance Theory (ART) and its 

numerous variants, fuzzy ART, competitive learning (Chu, 1993; Venugopal and 

Narendran, 1992a) and Kohenen nets (Venugopal and Narendran, 1992a). Several 

researchers used the neural network classifier based on an unsupervised learning model 

by Carpenter and Grossberg (1987) called adaptive resonance theory (ART1) and its 

variants. Unsupervised learning techniques such as ART Cluster the input vectors into 

separate groups based upon similarities (Kusiak and Chung, 1991; Dagli and Sen, 1992; 

Kaparthi and Suresh, 1992; Rao and Gu, 1992, 1994; Liao and Chen, 1993; Chen and 

Cheng, 1995). The artificial neural network technique executed quickly and obtained 

good clusters. The real advantage is its ability to solve large data sets (10,000 parts and 
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100 machine types). ART and its variants can be classified as non-hierarchical methods 

(Ah kioon, 2007). Another variant of ART called fuzzy ART, implements fuzzy logic 

into ART’s pattern recognition and enhances generalization. It also handles both 

analogue and binary inputs while assimilating and utilizing new learning laws (Suresh 

and Kaparthi, 1994; Burke and Kamal, 1992).  

 

2.2.5. Mathematical Programming Method 

 

 

Mathematical programming approaches are widely employed in the design of cellular 

manufacturing systems. These techniques can be classified as linear programming (LP), 

linear and quadratic programming (LQP), dynamic programming (DP) and goal 

programming (GP). They offer distinct advantages over other cell formation techniques 

as they can easily incorporate a number of design logics in their objectives and constraint 

functions. These formulations also suffer from critical limitation of being 

computationally intractable for realistically sized problem (Defersha, 2006). 

 

Kusiak (1987) proposed the p-median model to identify part families, this was the first 

model to form part families using mathematical programming. The p-median model is 

used to cluster n parts (machines) into p part families (machine cells). Constraints specify 

that each part can belong to only one part family and the required number of part families 

is p. A part can only be assigned to a part family that has been formed. Similarity 

between two parts is defined as the number of machines the two parts have in common. 

This procedure identifies only the part families, and an additional procedure is needed to 
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identify the machine groups (Albadawi, 2003). Subsequently, several authors further 

modified the generalized p-median model and reported successful applications (Ribeiro 

and Pradin, 1993; Viswanathan, 1996; Lee and Garcia-Diaz, 1996; Wang and Roze, 

1997; Deutsch et al., 1998). 

 

However, only small-scale problems were solved. Medium-sized problems required 

prohibitive computational time while there has been little reported about large-scale 

problems that represent real-life industrial instances. Also, off-the-shelf optimization 

software do not have enough solving capabilities to solve the cell formation problem 

since the latter is NP-hard (Ahkioon, 2007). To avoid the problem of having to determine 

the optimal value of f, Srinivasan et al. (1990) proposed an assignment model for the part 

families and machine grouping problem. They provided a sequential procedure to identify 

machine groups followed by identification of part families. The objective of assignment 

model is to maximize the similarity. This approach is reported to be superior both in 

terms of quality of solution and computational time in comparison with the p-median 

model. Shtub (1989) show that the group formation problem and its extension, the 

generalized group formation problem, are equivalent to the Generalized Assignment 

Problem (GAP). In the Generalized Assignment Problem II tasks have to be assigned to 

m agents, so that each task is assigned to exactly one agent and the total resources 

available for each agent are not exceeded. Purcheck (1974; 1975) was among the first 

researchers to apply linear programming to group technology. A mathematical 

classification has been developed and tested which overcomes the shortcomings of 

conventional methods of workpiece classification and workflow analysis. The Cranfield 
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method facilitates the construction of a combinatorial Programming model. A hand-

method of solution has been developed which may be used to program a computer. This 

has been achieved since cluster analysis represents a linear programming problem where 

the objective is to maximize the total sum of similarities between each pair of individuals 

(parts or machines) or to minimize the distances between each pair (Ah kioon, 2007). 

  

The discussion so far on CM design methods considers indirect measures, for example 

similarity/dissimilarity, bond energy, ranking, distance, when solving the cell formation 

problem to obtain a block diagonal form. Part families and machine cells are identified 

while minimizing the number of exceptional elements and voids. However, one needs to 

better consider the costs related to voids and exceptional elements, as such costs vary for 

different part/machine combinations. The procedures so far also decouple the cell 

formation process and any cell evaluation procedure (Ah kioon, 2007). Boctor (1991) 

developed a CM model which simultaneously assigns machines and parts to cells. The 

model objective function minimizes the number of exceptional elements. Choobineh 

(1988) developed a linear programming model that uses a similarity measure based on 

part operations and sequence, taking into account machine cost and capacity but ignoring 

the presence of alternate process routings. Adil et al. (1993) proposed a nonlinear 

mathematical model to identify part families and machine groups simultaneously without 

manual intervention. The objective of the model is to explicitly minimize the weighted 

sum exceptional elements and voids. These parts can be considered to have potential for 

subcontracting or developing alternative process plans before allocating them to cells. By 

changing weights for voids and exceptional elements the user has the flexibility to form 
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large loose cells, or small tight cells to suite the situation. Ballakur and Steudel (1987) 

presented a heuristic problem. The distinguishing feature of this heuristic is its 

consideration of several practical criteria such w within-cell machine utilization, work 

load fractions, maximum number of machines that are assigned to a cell, and the 

percentage of operations of parts completed within a single cell.  Heragu and Chen 

(1998) presented a mathematical model for Cellular Manufacturing System (CMS) design 

which incorporates three critical aspects - resource utilization, alternate routings, and 

practical constraints; Benders’ decomposition algorithm also presented. Song and Hitomi 

(1996) presented a flexible cellular layout design. The method integrates production 

planning and cellular layout in a long-run planning horizon. The integrated planning 

model is formulated as a Mixed-Integer Problem (MIP), which contains two types of 

integer programming problems: determining (1) the production quantity for each product 

and (2) the timing of adjusting for the cellular layout in a finite planning horizon with 

dynamic demand situation. This decision problem is solved so as to minimize the sum of 

inventory-holding costs, group-setup costs, material-handling costs and layout-adjusting 

costs subject to the capacity constraint and the demand requirement. The Benders 

decomposition is used to solve the MIP.  Rajamani et al. (1996) develop a mixed integer 

program for the design of cellular manufacturing systems. They assumed that there are 

alternate process plans for each part and that each operation in these plans can be 

performed on alternate machines. The objective of the model is to minimize the sum of 

investment, processing and material handling costs. Processing times, capacities of 

machines and cell size restrictions are considered in the process. Part families, machine 

groups and part plans are identified concurrently.  
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Goal programming (GP) has been applied mostly for multi-criteria CM design. Sankaran 

(1990) presented a mathematical model of goal programming that addresses the issue of 

developing alternate solutions with respect to conflicting objectives and preferential 

ordering of different goals.  Shafer and Rogers (1991) developed a cell formation 

procedure that directly addressed these design objectives. I) reduce setup times, 2) 

produce parts cell complete, i.e., minimize intercellular movements of parts, 3) minimize 

investment in new equipment, and 4) maintain acceptable machine utilization levels. To 

achieve this, three goal programming models were developed corresponding to three 

unique situations: (1) setting up an entirely new system and purchasing all new 

equipment, (2) reorganizing the system using only existing equipment, and (3) 

reorganizing the system using existing equipment and some new equipment. A heuristic 

solution procedure was presented. The heuristic solution procedure involved partitioning 

the goal programming formulations into two subproblems and solving them in successive 

stages.  

 

However, because of the way the CM models are formulated, certain limitations apply to 

the mathematical programming approaches. First, because of the resulting nonlinear form 

of the objective function, most approaches do not concurrently group machines into cells 

and parts into families. Second, the number of machine cells must be specified a priori, 

affecting the grouping process and potentially obscuring natural cell formations in the 

data. Third, since the variables are constrained to integer values, most of these models are 

computationally intractable for realistically sized problem. It has been shown that large 
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scale problems typically require that the model be subject to model-specific linearization 

procedures and/or be solved using approximate methods such as Lagrangian relaxation 

with subgradient optimization, simulated annealing, genetic algorithms, Tabu search or a 

hybrid of any of these methods. Therefore, the major drawback of mathematical 

programming approaches in CM design is the adverse computational time and effort 

required to solve real-life sized problems (Albadawi, 2003). 

 

2.2.6. Meta-heuristic Approaches 

 

A heuristic method is a procedure that is likely to discover a very good feasible solution, 

but not necessarily an optimal solution, for the specific problem being considered. No 

guarantee can be given about the quality of the solution obtained, but a well-designed 

heuristic method usually can provide a solution that is at least nearly optimal (or conclude 

that no such solutions exist). The procedure also should be sufficiently efficient to deal 

very large problems. The procedure often is a full-fledged iterative algorithm, where each 

iteration involves conducting a search for a new solution that might be better than the 

best solution found previously. When the algorithm is terminated after a reasonable time, 

the solution it provides is the best one that was found during any iteration. Heuristic 

methods often are based on relatively simple common-sense ideas for how to search for a 

good solution. These ideas need to be carefully tailored to fit the specific problem of 

interest. Thus, heuristic methods tend to be ad hoc in nature. That is each method usually 

is designed to fit a specific problem type rather than a variety of applications (Fredrick 

and Gerald, 2010). 
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For many years, this meant that an operation research team would need to start from 

scratch to develop a heuristic method to fit the problem at hand, whenever an algorithm 

for finding an optimal solution was not available. This all has changed in relatively recent 

years with the development of powerful metaheuristic. A metahuristic is a general 

solution method that provides both a general structure and strategy guidelines for 

developing a specific heuristic method to fit a particular kind of problem. Methaheuristics 

have become one of the most important techniques in the toolkit of operation research 

practitioners (Fredrick and Gerald, 2010). 

 

The popularity of meta-heuristics is further explained by the fact that they have been 

successfully used to solve a wide range of optimization problems, especially 

combinatorial problems, whilst yielding an approximate solution in an acceptable 

computational time (Ah kioon, 2007). Jones et al. (2002) reviewed 115 articles concerned 

with the theory and application of meta-heuristics. They concluded that theoretical papers 

account for only 20.9% of the articles concerned. This healthy ratio indicates that these 

techniques have a lot of real-world applications rather than having just theoretical value. 

70% of the work surveyed utilize Genetic Algorithm (GA) as the primary meta-heuristic, 

24 % use Simulated Annealing (SA) whilst only 6% draw on Tabu Search (TS).  TS is 

more frequently used in conjunction with either GA or SA as a secondary meta-heuristic 

refinement in order to strengthen the avoidance of convergence at local optima 

(enhancing global optimization). A possible disadvantage is that there are a larger 

number of parameters to be set by the modeler in meta-heuristics. The solution is 
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sensitive to these parameters; so a number of executions of the meta-heuristics (with 

different parameter settings) might be required before a good solution is produced. In 

other words, meta-heuristics can be considered to be “poor black boxes”; they become 

more difficult to apply when only a single run is allowed due to time or other pressures. It 

has to be also noted that these meta-heuristics might be sensitive to the initial solution 

(size and diversity of the initial population), the ‘groupability’ of the input machine-part 

matrix and the number of cells specified (Ah kioon, 2007). The meta-heuristics that have 

been extensively adapted to solve the CM design problem are, namely, genetic algorithm 

(Venugopal and Narendran 1992b; Gupta et al. 1995; Joines et al. 1996; Nsakanda et al. 

2006), simulated annealing (Venugopal and Narendran 1992c; Chen et al. 1995; 

Mungwattana 2000) and tabu search (Logendran et al. 1994; Dake et al. 1995; Vakharia 

and Chang 1997; Lozano et al. 1999). 

 

 

2.3. Manufacturing Attributes considered in CM Design  

 

 
Lokesh and Jain (2010) presented an algorithm with important production data for single 

period. Lokesh and Jain (2010) also presented an algorithm with important production 

data for single period. As reported by several other researchers like Rheault et al., (1995), 

Chen (1998), Cao and Chen (2004), Defershah and Chen (2006a, 2006b, 2007, 2008), 

etc., Lokesh Kumar and Jain (2009, 2010) also reaffirmed the need of CMS relocation 

with change in product mix and demand. In most of the published articles, the cell 
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formation problem has been considered under statistic conditions, in which cells are 

formed for a single time period with constant demand and product mix. 

Today, the dynamic business environment needs shorter time periods with variable 

demand and product mix from period to period. Consequently, the best cell formation for 

one period may not be efficient for subsequent periods. A promising technique to 

overcome this problem is dynamic relocation. Therefore, there is increasing thrust for 

research to develop models and solution procedures for dynamic cell relocations over 

multiple times periods (Saxena and Jain, 2011). 

 

A number of factors are typically included in solving manufacturing cell formation and 

part-family identification problems. A list of some of these attributes is given in table 2-1 

(Saxena and Jain, 2011). 
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Table 2-1 : List of Manufacturing Attributes 

 Alternative routing 

 Selecting the best route 

 Allowing alternative routing 

coexist 

 Demand fluctuation 

 Deterministic 

 Probabilistic 

 Dynamic cell relocation  Workload balancing 

 Intercell workload 

 Intracell workload 

 Types of tools required by a part  Types of tools available on a 

machine 

 Machine proximity constraint 

 Separation constraint 

 Collection constraint 

 Sequence of operation 

 Used as input for determine 

magnitude of material flow 

 Used as similarity measure 

between parts 

 Setup cost/time 

 Setup cost 

 Setup time  

 Cell/part-family size constraint 

 Cell size constraint  

 Part-family size constraint 

 Movement of parts(material 

handling cost) 

 Intercell movement 

 Intracell movement 

 Facility layout 

 Intercell layout 

 Intracell layout 
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 Operator allocation  Machine capacity 

 

 

 Identical machines 

 Within a cell 

 In the entire system 

 

 

 Machine investment cost 

  

 Subcontracting cost  Tool consumption cost 

 Unit operation time  Machine operation cost 

 Lot splitting  Transfer batch size 

 Intercell movement 

 Intracell movement 

 Part holding  Breakdown effect to incorporate 

 Reliability modeling 

 Machine repair cost 

 Maintenance overhead cost 

 Production time increase on 

machine due to machine 

downtime 

 

 Human Issues 

 Salary cost  

 Hiring cost 

 Firing cost 

 Multiperiod planning  Machine relocation cost 

 Process batch size  Internal production overhead cost 
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 Intracell movements and intercell movements 

Many researchers included intercell movement in their model such as Defersha and Chen 

(2006a, 2006b, 2007, 2008), Cao and Chen (2004), Naskanda et al. (2006), Ahkioon et 

al., (2009a, 2009b), Safaei and Saidi-Mehrabad (2006), and Safaei et al., (2008). The 

impact of considering the cost of intracellular movement as a function of cell size was 

shown by Nsakanda et al., (2006) to be critical for quality of solution, highlighting the 

importance of this dimension in cell formation problem. 

 

The sum of intercell and intracellular movement cost has been defined as one of the most 

effective in the performance evaluation of CMS since it directly affects various 

operational issues. In addition, these costs allow the consideration at the cell design level 

of the trade-off between the material movement and operational control costs on one 

hand and the number and sizes of cells on other hand (Saxena and Jain, 2011).. It also 

presents the trade-off between intercell cost and intercell movement cost (Nsakanda et 

al., 2006). Intracell movements are included in their model by Nsakanda et al., (2006), 

Ahkioon et al. (2009a, 2009b), Safaei and Saidi-Mehrabad (2006), and Safaei et al. 

(2008). 

 

 Process batch size, transfer batch size for the intracellular, and 

intercellular movements 

Alhourani and Seifoddini (2007) in their paper emphasized that a major portion of 

consumer goods is manufactured in batch-type production systems. According to one 
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recent study Alhourani and Seifoddini (2007), about 75% of all manufacturing units are 

engaged in batch production of a large variety of parts in small batches. 

 

In real world production systems, the parts to be produced do not move individually 

between machines; instead, they move in the form of batches. Therefore, it is misleading 

to consider the intracellular and intercellular movements of individual parts instead of the 

intracellular and intercellular movements of batches, Alhourani and Seifoddini (2007). 

Therefore, process Lokesh and Jain (2010) batch size and transfer batch sizes for the 

intracellular and intercellular movements should be included in DCMS model. Between 

20% and 50% costs within manufacturing are related to material handling. Effective and 

innovative facility planning can reduce material handling costs by 10-30% (Tompkins et 

al. 2003). Very few batch sizes for intracellular movement and intercellular movement 

costs in their model. 

 

 Alternative routings 

A vast majority of the models assume a single process routing. Several authors have 

argued that by taking the flexibility offered by the multiple process routes (or routings) 

into account at design phase, several benefits can be realized such as allowing for a 

smaller number of machines, higher machine utilization, a reduced interdependence 

between cells, and improved system throughput Kusiak (1987). The presence of 

alternative routing is typical in many discrete, multi-batch, small lot size production 

environments. Defersha and Chen (2006) considered alternative routing feature. They 

also studied influence of this feature in cell formation model to conclude its importance 
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for inclusion in cell formatin. Alternative routing is considered by Defersha and Chen 

(2006a, 2006b, 2007, 2008), Ahkioon et al. (2009a, 2009b), and Nsakanda et al. (2006). 

 

 

 Multiple copies of identical machines 

With multi-functional machines and multiple copies of each machine type allowed in the 

system, alternative routings give more flexibility in deciding upon cell formation (Lokesh 

and Jain 2010). Defersha and Chen (2006a, 2006b, 2007, 2008), Ahkioon et al. (2009a, 

2009b), considered multiple copies of identical machine feature. 

 

 Dynamic cellular relocation of cells 

Due to Lokesh and Jain (2010) product mix and demand variation in a period in the 

multiperiod planning horizon, cell relocation is a promising strategy to make a 

manufacturing system efficient. With increased demand for flexibility, this strategy 

becomes more prominent in designing manufacturing cells (Chen 1998). Further, Lokesh 

and Jain (2010), Defersha and Chen (2006) presented a model with dynamic relocation of 

cell consideration. They studied the influence of dynamic relocation of cell feature to 

conclude importance of this feature for inclusion in cell formation problem. Dynamic 

relocation of cell attribute is also included in their models by Defersha and Chen (2006b, 

2007, and 2008), Ahkioon et al. (2009a, 2009b), Wicks and Reasor (1999), Safaei and 

Saidi-Mehrabad (2006), and Safaei et al. (2008). 
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 Machine procurement 

In multiperiod planning horizon, machine procurement feature improves manufacturing 

flexibility to respond to variations in part mix and demands through machine purchases to 

increase the internal production capacity (Lokesh and Jain 2010). This feature is included 

in their models by Defersha and Chen (2006b, 2007, and 2008), Ahkioon et al., (2009a, 

2009b), Safaei and Saidi-Mehrabad (2006), Safaei et al., (2008), etc. Ahkioon et al. 

(2009a, 2009b) also studied the impact of this feature in cell formation model and 

concluded that the importance of this feature be included in the cell formation models. 

 

 Lot splitting 

Lot splitting is a process used primarily in batch manufacturing scheduling for dividing 

large orders into smaller batches providing the opportunity for simultaneous processing 

of orders to more than one work center (i.e., onto two machines within the same cell or 

even in different cells) (Saxena and Jain, 2011). This may result in better due date 

performance and in reduced flow time (Lokesh and Jain 2010). Defersha and Chen 

(2006a) included lot splitting in their model for improved machine utilization, reduced 

intercell movement, decreased operation cost, reduced machine investment, and evenly 

distributed workload  They also studied the impact of lot splitting in their work to 

recommend its inclusion in cell formation models. Lot splitting is used by Defersha and 

Chen (2006a, 2006b, 2007, and 2008) and Ahkioon et al., (2009a, 2009b). 
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 Workload balancing 

Work load balancing feature results a smooth running of the system and better 

performance in terms of throughput, make span, flow tome, and tardiness (Lokesh and 

Jain 2010). It also decreases work-in-process inventory, improves material flow through 

system, and prevents heavy utilizations of some cells and lower utilization of other cells 

(Baykasoglu et al, 2001). Defersha and Chen (2006) included this featured in their work 

to conclude importance of this feature for inclusion in cell formation models. 

 

 Machine proximity and separation requirements 

Some machines must be separated from each other while others must be kept together. A 

number of authors included these feature in CMS design phase (Defersha and Chen 

(2006a, 2006b, 2007, 2008), Heragu and Chen (1998), Plaquin and Pierreval (2000), 

Sofianopoulou (1999). 

 

 Outsourcing 

Finished part outsourcing is an important production planning feature. This feature 

improves manufacturing flexibility to respond product mix and demand variation. Due to 

limited machine capacity or high cost of capacity addition, outsourcing can be used to 

procure some of the required parts to meet the market demands (Lokesh and Jain 2010). 

This feature is included in the models of Defersha and Chen (2006a, 2006b, 2007, 2008), 

Nasakanda et al. (2006), Ahkioon et al. (2009a, 2009b). Ahkioon et al. (2009a) also 
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studied the impact of this feature in cell formation model and concluded that the 

importance of this feature be included in the model. 

 

 Part inventory held 

Finished part inventory held is also an important option of production planning. This 

feature also enhances manufacturing flexibility to respond product mix and demand 

variations. Depending on the demand and total cost of meeting that demand, the system 

could produce some surplus parts in a time period which can be used to provide part or 

all the demand for the same part in the future planning periods (Lokesh and Jain 2010). 

This feature is included in the models of Cao and Chen (2004), Defersha and Chen 

(2006a, 2006b, 2007, 2008), and Ahkioon et al. (2009a, 2009b). Ahkioon et al. (2009a, 

2009b) also studied the impact of this feature in cell formation model and concluded that 

the importance of this feature be included in the model. 

 

 Breakdown effect to model reliability 

Among the factors influencing the performance of CMS is the reliability of the machines 

in manufacturing cells. An important aspect of CM systems that can be improved is the 

effect of machine breakdowns. Traditional CMS design models create CM systems that 

are vulnerable to disruption in the part routings. Machines are key elements of 

manufacturing systems. Generally, it is not possible to handle their breakdowns as 

quickly as production requirements. Traditionally, cell formation and work allocation are 

done with the assumption of 100% reliability of machines. In practice, machines fail 

during operations. Machines failure creates the greatest impact on due dates and other 
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performance criteria, even if there is an existence of alternative routes of the parts to 

alternative workstation (Saxena and Jain, 2011). 

 

Machine reliability lives consideration may help in realistic selection of process routing 

for parts in case of CF problems with alternative process routings. Avery small amount of 

research has considered machine breakdown or reliability or breakdown effects at the 

design stage of cells, it will enhance the solution by selection of process plans with lower 

machine failure leading to reduced overall cost of the CMS (Lokesh and Jain 2010). 

The reliability of manufacturing systems, in general, is defined as the probability of a 

system or systems that will perform a required function for a given period of time using 

understated operating conditions (Lokesh and Jain 2010). Jabal Ameli et al. (2007, 2008) 

in their paper proposed that the reliability effect may be modeled as machine repair costs 

and production time delay costs. 

 

 Human Issues 

 To get a full comprehensive model, the consideration of human issues should take into 

consideration in the model as well as technical issues (cell formation and design), since 

ignoring human issues will reduce the benefits of the proposed model and its 

implementation. Unfortunately, human issues are typically not examined as rigorously as 

often as technical issues. Nembhard (2001) discussed a heuristic worker-task assignment 

based on individual worker learning rates is examined for two tasks, one with a long 

production run, the other with a short production run. Norman et al. (2002) developed a 

mixed integer programming model for worker assignment in manufacturing cells that 
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considers both human and technical skills and their impact on system performance, their 

model considers the case where there are different workers skill levels for each skill. 

Bidanda et al., (2005) presented an overview and evaluation of the diverse range of 

human issues involved in cellular manufacturing based on an extensive literature review. 

Further, a survey to determine the importance of eight different human issues in cellular 

manufacturing was administered to a sample of academics, managers, and workers 

involved in cellular design and implementation results are presented and discussed. 

Wirojanagud et al. (2007) used General Cognitive Ability (GCA) as the measure for 

individual differences, they developed a mixed integer programming model to determine 

the amount of hiring, firing, and cross-training for each GCA level to minimize total 

costs, which include training costs, salary costs, firing costs and missed production costs 

over multiple time periods. Aryanezhad et al. (2009) developed a nonlinear integer 

programming model to deal with a simultaneous dynamic cell formation and worker 

assignment problem (SDCWP). Part routing flexibility and machine flexibility and also 

promotion of workers from one skill level to another are considered. 

 

However, the model ignores machine procurement, internal part production, machine 

operating, intracell movement and outsourcing. Mahdavi et al. (2010) presented the latest 

model in CMS design that aims at incorporating various aspects of technical issues in 

addition to consideration of human issues. They take into consideration multi-period 

production planning, dynamic system relocation, duplicate machines, machine capacity, 

available time of workers, and worker assignment. They have developed an integer non-

linear mathematical programming model and have followed some linearization steps in 
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order to obtain an integer linear problem and solve two examples. Their model is also a 

well-integrated model but it does not take into consideration certain issues that are 

addressed: machine procurement cost, internal part production cost, machine operating 

cost, and outsourcing cost instead of backorder cost. 

 

2.4. Findings of the literature review 

 

 

In this chapter, a review of recent literature on CM models that integrate various 

production aspects is presented, allowing the identification of several important 

manufacturing attributes. The design of CM systems is a multi-criteria and multi-step 

process. Before implementing a CM system, a company needs to invest adequate effort 

during the planning and design phase because the benefits of CM are only possible by 

sufficiently incorporating the structural and operational features of a manufacturing plant 

within the CM design decisions. Therefore, integrated models can be used by designers to 

evaluate cellular layouts considering various aspects of the manufacturing operations. 

The models developed in this research are briefly presented in this section so as to 

demonstrate the manufacturing attributes that are covered herein. Such attributes are used 

to represent the important structural and operational aspects that the cell designer has to 

take into consideration when forming machine cells and part families. As already 

mentioned, the design of a cellular manufacturing system consists of three main stages 

(Dimopoulos and Zalzala 1998). This research deals with the first phase of the CM 

design problem, namely, the cell formation problem. Wu and Salvendy (1993) draw 

attention upon the fact that the design of CM systems must address the need for many 
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important production factors to be considered when the cells are created. Table 2-2 shows 

a survey of 16 recently published articles together with the manufacturing attributes 

(referenced by the caption) that are incorporated within each one of the developed 

models. The models developed in this research are also presented in table 2-2, showing 

that the proposed models in this research cover an extensive amount of the manufacturing 

attributes that are important in CM design and integrate more of these than previous 

models. A review of a few key models is now presented in more detail to not only 

describe the manufacturing criteria that were considered but to also discuss the solution 

approaches used. 

 

Most of the researchers had minimization of cost objective function with a sum of the 

various cost terms combinations. For instance, Cao and Chen (2004) used the objective 

function in their model to minimize the sum of intercell material handling cost, setup 

cost, and product inventory cost. Nsakanda et al., (2006) used the objective function in 

their model to minimize the sum of intercell material handling cost, intracell material 

handling cost, and outsourcing cost. Safaei and Saidi-Mehrabad (2006) and Safaei et al., 

(2008) used the objective function in their model to minimize the sum of intercell 

material handling cost, intracell material handling cost, constant and variable production 

cost, relocation cost, and machine procurement cost. Defersha and Chen (2006a, 2006b, 

2007, and 2008) used the objective function to minimize the sum of intercell material 

handling cost, intracell material handling cost, setup cost, machine procurement cost, and 

machine maintenance and overhead cost. 
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Ahkioon et al., (2009a) used the objective function in their model to minimize the sum of 

intercell material handling cost, intracell material handling cost, internal part production 

cost, outsourcing cost, inventory holding cost, relocation cost, machine maintenance, and 

overhead cost. Ahkioon et al., (2009b) used the objective function in their model to 

minimize the sum of intercell material handling cost, intracell material handling cost, 

internal part production cost, outsourcing cost, inventory holding cost, relocation cost, 

machine procurement cost, and machine maintenance, and overhead cost.  Mahdavi et al., 

(2010) used the objective function in their model to minimize the sum of intercell 

material handling cost, backorder cost, inventory holding cost, relocation cost, and 

machine maintenance and overhead cost, workers hiring, firing, and salary cost. 

 

It is obvious that minimization of some of various cost criteria as objective function is 

used by various authors to identify machine cell (i.e., machine similarities) and part 

families (i.e., part similarities). It is also obvious that most authors did not take into 

consideration the human issues (workers cost and workers assignments).  

 

In the existing research works, each researcher/research group included few design 

attributes of their interests individually or simultaneously, and excluding the most of the 

design attributes in their models. CM design is currently being researched with emphasis 

on development of more integrated models by including various issues. The proposed 

model in this research deals with multi-period planning where the part demand and 

production requirements vary from one period to the next. The CM model is designed so 

as to achieve an agile cell configuration, that is, machine relocation can occur to change 
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the overall CM layout as well as workers. At the same time, various features about the 

machines are integrated namely: machines can have identical copies, have limited 

capacities, multifunctional, can be procured and can be relocated. Machine operating, 

maintenance and overhead costs, and overhead costs are minimized in the objective 

function.  Other costs that are minimized include both intercellular and material handling, 

internal part production, subcontracting and inventory holding. The proposed model also 

considers the human issues: worker available time, cell size limits of workers, salary cost, 

hiring cost, firing cost. 
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Table 2-2 : Review of manufacturing attributes used in CM design      

Models/Manufacturing 

Attributes 
1 2 3 4 5 6 7 8 9 10 11 12 13 

  a b    a b  a b a b c d e f a b    a b c d e 

Proposed model X  X X X  X X  X X X X X X X  X   X X X X X X 

Saxena and Jain (2011) X X X X X  X X  X X X X X X X  X X X X      

Mahdavi et al. (2010) X    X  X X  X X X  X X X  X   X X X X X X 

Ahkioon et al.  (2009a) X X X X X  X X  X X X X X X   X  X X      

Ahkioon  et al. (2009b) X X X X X  X X  X X X X X X X  X X X X      

Aryanezhad et al. 

(2009) 
X      X X  X X X X  X X  X   X X X X X X 

Caux et al. (2000) X          X X X    X   X X      

Chen (2001) X    X  X      X              

Cao and Chen (2005) X     X     X X X        X      

Chen and Cao (2004) X    X  X    X X X        X      

Das et al. (2006) X      X X    X X       X X      

Defersha and Chen 

(2006) 
X   X   X X  X X X X X X X X   X X      

Jayaswal and 

Adil(2004) 
X          X X X    X   X       

Gupta et al. (1996) X X          X               

Mungwattana (2000) X    X X X X  X X X X  X  X   X X      

Nsakanda et al. (2006) X X  X       X X     X   X X      

Safaei et al. (2007) X X     X X  X X X X X X  X   X X      

Caption to Table 2-2: Important design attributes for CMS design 

1a.  Intercellular  material 

handling cost 

1b. Intracellular  material 

handling cost 

4. Inventory holding 

in production 

planning 

7a. Robust cell configuration 

7b. Agile cell configuration 
10. Formation of part contingency routings. 

2. Part internal production cost 

 

5a. Stochastic 

demand requirements 

5b. Deterministic 

demand requirements 

 

8a. Machines with multiple copies; 8b. Machine with limited 

capacities; 8c. Machine operating cost; 8d. Machine maintenance 

and overhead cost; 8e. Machine  relocation and cost; 

8f. Machine procurement 

11. Part operation sequence and processing times 

3. Subcontracting cost 

 
6. Multi-period 

planning 

9. Alternate routings: a. Chosen from user-specified routings; b. 

Chosen from all possible options based on operation and machine 

type 
12. Cell size limits of machines – upper and lower bound 

13a. Worker available time 13b. Cell size limits of workers – upper bound 13c. Salary cost 13d. Hiring cost 14e. Firing cost 
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Chapter 3  

Integrated Model with Production Planning, Dynamic System Relocation and 

Human Issues Considerations 

 

3.1. Introduction 

 

 

 

 

The design of Cellular Manufacturing System (CMS) involves many structural and 

operational issues. One of the first important design steps is the formation of part families 

and machine cells. The effectiveness of this design step heavily depends on the proper 

consideration of the relevant aspects. To this end, a model that incorporates various 

pragmatic issues is essential. In this chapter, a comprehensive mathematical model for the 

design of cellular manufacturing systems is proposed. The Model incorporates dynamic 

system relocation (machine relocation as well as workers), machine procurement and 

production planning with the options of internal production of parts, inventory holding, 

and subcontracting. The CM model is first formulated as a non-linear Mixed Integer 

Programming (MIP) model. Some linearization procedures are then proposed and 

implemented on the model, resulting in a linear mixed integer formulation of the model. 

The linearized Model is solved through small, medium and large problem instances, 

using IBM ILOG CPLEX Optimization Studio 12.2/OPL. The computational results are 

discussed. 
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3.2. Model assumptions 

 

The CM model has been developed under the following assumptions:  

 

 

 The demand for each part type in each period is known and deterministic. 

 Each machine type has a limited capacity expressed in hours during each time 

period. 

 Relocation involves the addition and removal of machines to any cell and 

relocation from one cell to another between periods; also, it involves the addition 

and removal of worker to any cell and relocation from one cell to another between 

periods. 

 Maintenance and overhead costs of each machine type are known. These costs are 

considered for each machine in each cell and period no matters that the machine is 

active or idle. 

 Salary of each worker type is known. This cost is considered for each worker in 

each cell and period no matter that the worker is active or idle. 

 The available time for each worker is known. 

 The number of cells is known and constant during all periods. 

 Only one worker is allotted for processing each part on each corresponding 

machine. 

 The demand for each part in each period can be satisfied by production, inventory 

from the last periods and/or purchasing. 
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3.3. The proposed mathematical model 

 

 

In this section, we present the problem definition, the mathematical model, and the 

explanations of the objective function and the constraints. 

 

3.3.1. Problem definition 

 

 

The proposed model is formulated as a single objective nonlinear mixed integer 

programming which is converted to a linear one. The objective function consists of two 

separate components. The first part of the objective function is related to machine-based 

costs such as production cost, intercell material handling cost, machine costs in the 

planning horizon. The second part is related to human issues and consists of hiring cost, 

firing cost, and salary cost 

 

 Classical cell formation problem commonly represented in a matrix called the part-

machine matrix with 0 or 1 entry. A 1 indicates that part P requires machine m for an 

operation, and 0 indicates otherwise. As an example figure (3.1) shows the part-machine 

matrix for a small problem of seven parts and seven machines. Within a manufacturing 

environment there are machine types which have different operational capabilities, 

limited capacities and multiple copies. There are also different part types, each of which 

requires a certain sequence of specific operations and processing capacity to complete 

production. 
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The overall strategy of forming a CM layout; is to group parts that require similar 

operations into the same cell whilst assigning machines to these cells so that they are 

capable of performing these operations. In other words, the part-machine matrix is 

rearranged to a new matrix such that each part family is completely processed within a 

cell of machines and each part in part family processed by every machine in the 

corresponding machine group. For example, the rearrangement of the matrix in figure 

(3.1) is shown in figure (3.2), where three different machine cells are indicated within 

blocks. Cell 1 consists of machines 2 and 5; cell 2 consists of machines 3, 4 and 6, while 

cell 3 consists of machines 1 and 7. Obviously, three part families are formed, parts 1 and 

7 constitute the first family, parts 3, 4 and 6 constitute the second family, and the rest of 

the parts constitute the third family. However, in real life the nature of data sets are such 

 Products 

 

 

 

 

Machines 

 1 2 3 4 5 6 7 

1 0 1 0 0 1 0 0 

2 1 0 0 0 0 0 1 

3 0 0 1 1 0 1 0 

4 0 0 1 1 0 1 0 

5 1 0 0 0 0 0 1 

6 0 0 1 1 0 1 0 

7 0 1 0 0 1 0 0 

 

Figure 3-1 Machine-Part Matrix 
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that a perfect decomposition is hardly ever obtained. In this situation the goal is to obtain 

a near perfect decomposition considering the following objectives while partitioning the 

matrix:  

 

1. To have a minimum number of zeros inside the diagonal block (Voids). 

2. To have a minimum number of ones outside the diagonal blocks (Exceptional). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.3) shows a representation of a solution to the classical CFP where four 

machines have been grouped into two cells, e.g. machines 2 and 4 are in cell I, and where 

 Products 

 

 

 

 

Machines 

 1 7 3 4 6 2 5 

2 1 1      

5 1 1      

3   1 1 1   

4   1 1 1   

6   1 1 1   

1      1 1 

7      1 1 

 

Figure 3-2 Parts-Machines Families 
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five part types are grouped into two part families in such a way that each of these part 

families are assigned to a cell containing the machines required for the operations. Part 

type 1 and 3 (belonging to part family I) are thus assigned to machine cell I as they 

require machines 2 and 4 for processing.  

 

The ‘X’, termed an exceptional element, created when part requires processing on 

machine that is not available in the allocated cell of the part, when part needs visit a 

different cell for its processing the intercell material handling cost increase. This also 

requires more coordinating effort between cells; machine cell I does not contain machine 

type 1 required for an operation on part 3. So the latter has to be transferred to machine 

cell II as the latter contains a copy of machine type 1. The ‘O’ represents a void, a void 

indicates that a machine assigned to a cell is not required for the processing of a part in 

the cell. When a part passes a machine without being processed on the machine, it 

contributes to an additional intra-cell material handling cost. This leads to large, 

inefficient cells; machine type 3 is only required to process parts 2 and 4 in cell II and is 

not needed for part type 5. It must be noted that this is a very simple situation as machine 

capacities, availabilities, multiple routings and other manufacturing aspects are ignored.  

Relocation is not restricted on machines, it is applied for workers; to get a full 

comprehensive model the consideration of human issues should take into consideration as 

well as technical issues (cell formation and design), since ignoring human issues will 

reduce the benefit of the proposed model. Since workers have different available time, 

different skills, and different ability to work on different machines; a relocation for the 

workers is important, it means group the workers who have the ability and the skills to 
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work with the machines that exist in that cell, also, when a relocation happened to parts 

and machines, then it should also be applied for the workers. Hiring and firing for the 

workers in each time period for each cell should be considered. 

 

Products 

Machines 

 1 3 2 4 5 

2 1 1    

4 1 1    

1  X 1 1 1 

3   1 1 O 

       

Figure 3-3 Voids and Exceptional  

 

The optimal configuration for the classical cell formation problem is the one that 

minimizes the total cost of material handling in terms of intercellular (from cell to cell) 

and intracellular (within the same cell). With regards to the multi-period production 

planning problem, it is assumed that the demands for parts vary in a deterministic way. 

This allows the model to consider producing more in a period so that inventory can be 

used in future periods or to subcontract parts when internal production is not feasible 

either due to insufficient machine capacity or uneconomical repercussions. 

Simultaneously, the CM environment can respond by undergoing system relocation 

where machines are relocated from one cell to another and/or where new process routings 
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are selected for the part types. Additionally, machines can be procured to increase the 

internal production capacity. Finally, minimizing the salary, hiring, and firing worker’s 

cost while consideration of the workers relocation to give the best production output. The 

notations used for the model are presented followed by the objective function, constraints 

and model properties. 

 

 Sets: 

  p= {1, 2, 3… P}     Index set of part types. 

m= {1, 2, 3... M}     Index set of machine types. 

c= {1, 2, 3… C}     Index set of cells. 

t= {1, 2, 3… T}     Index set of time periods. 

w= {1, 2, 3… W}     Index set of worker types. 

 

 Model Parameters: 

    Demand for part type  p  in time period  t 

  
      Intercell movement cost of part type  p 

     = 1, if machine type m is able to process part type p with worker w, 

= 0, otherwise. 

    = 1, if part type p needs machine type m, 

= 0, otherwise. 
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   Outsourcing cost per unit of part type p in period t. 

     Processing time part type  p  on machine type  m with worker type  w 

    Time capacity of one machine of type  m  for one time period  t 

    Minimum number of machines limit in cell  c 

    Maximum number of machines limit in cell  c 

    Minimum size of cell  c in terms of the number of workers 

  
  Relocation cost of installing one machine of type  m 

  
  Relocation cost of removing one machine of type  m 

   a large positive number 

    Part holding cost per part type  p  per time period  t 

   Quantity of machine type  m  available at time period  t=1 

   Number of worker type  w  available 

     Available time for worker type  w  at time period  t 

    Salary cost of worker type  w  within period  t 

     Hiring cost of worker type  w  within period  t 

    Firing cost of worker type  w  within period  t 

 

    Machine maintenance overhead cost of machine type  m  per unit time in time  

period  t   

    Procurement cost per machine type m 

   Operating cost per unit time per machine type m 

   Internal production cost per part type p 
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 Model Decisions Variables: 

     Number of type  m  machines to present at cell  c at beginning of time period  t 

    
  Number of type  m  machines added in cell  c  at beginning of time period  t 

    
  Number of type  m  machines removed from cell  c  at beginning of time period  t 

     Number of machines of type m procured at time t 

   
  Quantity of machine type m available at time period t after accounting for machines 

 that have been procured  

    Number of part inventory of type  p  kept in time period  t  and carried over to  

period (t+1) 

    Production volume of part type p to be produced in time period t 

    Number of parts to be outsourced  at time period t. 

    
  Number of workers of type  w  added to cell  c during period  t 

    
  Number of workers of type  w  removed from cell  c  during period  t 

     Number of workers of type  w  allotted to cell  c  in period  t 

 

     = 1, if part type p is processed in cell c in period t. 

= 0, otherwise. 

       = 1, if part type p is to be processed on machine type m with worker w in cell c in  

    period t.   

= 0, otherwise. 

 

 

 

 

 



 

 

66 

 

 

3.3.2. Objective function and constraints  

 

 

The objective function and constraints of our model is as follows:  

Minimize  

           

 

   

 

   

 

   

 

 

(1.1) 

      
      

 

 

   

 

   

 

   

 

 

(1.2) 
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(1.8) 
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(1.10) 

       

 

   

 

   

   

 

(1.11) 

            

 

   

 

 

   

 

   

 

   

 

   

              
 

(1.12) 

 

 

The objective function has several terms. The first term (1.1) represents machines 

maintenance overhead cost. The second term (1.2) represents relocation cost of machines 

installation. The third term (1.3) represents relocation cost of machines removal. The 

fourth term (1.4) represents part holding cost. The fifth term (1.5) represents outsourcing 

cost. The sixth term (1.6) represents the salary worker cost. Term (1.7) represents the 

hiring worker cost. Term (1.8) represents the firing worker cost. The ninth term (1.9) 

represents part intercellular movement cost. Tenth term (1.10) represents machine 

procurement cost. Term (1.11) represents the internal production cost. Term (1.12) 

represents machine operating cost. 

 

Subject to 

 

                   =         ,    

constraints (2) shows that demand of part type p, in each time period t is satisfied  

(2) 
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through internal part production    , and/or part inventory carried over from previous 

 period        , and/or by outsourcing option    , subtracting the inventory volume 

 which will be kept to satisfy the demand for the coming period      

 

    =      1,          

 

   

 

   

      ,  ,    

Equation (3) is to determine whether part type p is processed within cell c in period t. 

 

(3) 

       

 

   

           , , ,    
 

(4) 

        =        , ,   

 

   

 

   

 

Constraints (4) and (5) are to make sure that only one worker is assigned for each part 

on each machine type. 

 

(5) 

    =              
      

      ,  ,    

Constraint(6) is to ensure that the number of machines type m in current period       

is equal to the number of machines in the previous period         , adding the 

number of machines moved in     
  and subtracting the number of machines moved 

out of that cell     
 . 

(6) 

                  ,    

 

   

 

By constraint (7), lower and upper bounds on sizes of cell in terms of the number of 

machines are enforced. 

 

(7) 
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         ,

 

   

    ,    

Constraint (8) ensures that the minimum number of workers will be assigned to cell k 

in each period. 

The cell size constraint is a customer defined, by making the lower bound of these 

constraints equal to zero; there is a probability of forming a cells with no machines or 

workers exist in it, so it is required to put the lower bound greater than zero. 

 

(8) 

                           

 

   

 

   

  ,    ,  ,    
 

(9) 

                          

 

   

 

   

 ,    ,  ,    

  

Constraints (9) and (10) ensure that the available time for workers and capacity of 

machines are not exceeded, respectively. 

 

(10) 

 

             
      

 =       ,    ,  ,    

Equation (11) balances the number of workers between consecutive time periods. 

Where the number of worker of type w in cell c at time t (       is equal to the 

number of worker in the previous period         , plus the number moved to that cell 

    
 ,  minus the number moved out     

 . 

(11) 

         

 

   

 ,    ,    

Constraint (12) guarantees that the total number of workers of each type assigned to 

different cells in each period will not exceed total available number of workers of that 

 

(12) 
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type. 

 

          

 

   

 

   

 

   

     
     ,    

Constraint (13) ensures that If    =  , no machines, worker and cell should be 

considered. 

 

(13) 

       
 =                 ,      

Constraint (14) relates to the machine availability constraint for period 1, taking into 

consideration the extra machines introduced through the machine procurement option. 

In period 1, the total number of machine of each type available is equal to the machine 

availability (before procurement) plus the number of machines procured in the same 

period 1. Therefore, if        =  , there are no machines present in the system 

initially, meaning that a CM system is being designed and implemented from no 

existing manufacturing layout. If          , there are machines already available in 

the system, meaning that the existing manufacturing layout is being reconfigured to 

form a CM layout.   

(14) 

       
 =    

          ,      

Constraint (15) relates to the machine availability constraint for the subsequent time 

periods. It takes into consideration the extra machines introduced through the machine 

procurement option in the period under consideration as well as those procured in all 

of the previous periods. 

(15) 

     

 

   

    
     ,    

 

(16) 
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Constraint (16) ensures that the total number of machines in each cell will not exceed 

the number of available machines. 

 

         
      

                    ,  ,    

    
      

                         ,  ,    

                              ,    

        
                    ,    

     { , 1}    ,  ,    

       { , 1}    , , ,  ,    

 

Constraint (17) is the logical binary and non-negativity integer requirements on the 

decision variable. 

 

 

 

 

(17) 

 

 

 

3.4. Linearization of the model 

 

This section presents the linearization procedures, the linearized model, and the number 

of variables and constraints. 

 

3.4.1. Linearization Procedures 

 

Objective function is a nonlinear integer equation due to nonlinear terms (1.9) and (1.12) 

in the objective function and also constraints (3), (9) and (10). To transform these terms 

to linear terms, the following new variables are defined Mahdavi et al. (2010): 
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    =          

      =            

 

By considering these equations, following constraints must be added to the model: 

            1           ,  ,                                1      

            1           ,  ,                                1      

              1             , , ,  ,            2      

              1             , , ,  ,            21     

                             ,  ,                                22     

                               , , ,  ,                 23     

 

Also to linearize the proposed model, constraint (3) should be replaced by these two 

constraints: 

                

 

   

 

   

,    ,  ,                          2   

             

 

   

 

   

,    ,  ,                                   2   
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3.4.2. The linearized model 

 

Therefore, the proposed linear mathematical programming model is as follows: 

Min =   Eq. (1.1)   to    Eq. (1.8)  

          

 

 =1

         
     

 

 =1

 

 =1

 

 

 

 + Eq. (1.10) + Eq. (1.11) 

            

 

   

 

   

 

   

 

   

 

   

           

 

St.: 

Constraints (2), (4) - (8), (11) - (25) and the new version of constraints (9) and (10) are: 

                   

 

   

 

   

    ,    ,  ,                 2   

                   

 

   

 

   

   ,    ,  ,                 2   

 

To set the value of the beginning inventory and the number of workers in the period time 

(0) since a CM system is being designed and implemented from no existing 

manufacturing layout,  constraints (28) and (29), should be added to the model 

constraints:  
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       =                                2                                  =                      
    2         

 

 

3.5. Number of variables and constraints 

 

 

Table (3-1) and (3-2) show the numbers of variables and the number of constraints in the 

linearized model, respectively. 

 

 

Table 3-1 : Number of Variables 

Variables Count Variables Count Variables Count 

     M×C×T     P×T      W×C×T 

    
  M×C×T     P×T      P×C×T 

    
  M×C×T     P×T        P×M×W×C×T 

     M×T     
  W×C×T      P×C×T 

   
  M×T     

  W×C×T        P×M×W×C×T 

Total = 3(M×C×T) + 2(M×T) + 3(P×T) + 3(W×C×T) + 2(P×C×T) + 2(P×M×W×C×T) 
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Table 3-2 : Number of Constraints 

Constraint Count Constraint Count Constraint Count 

2 P×T 13 P×T 21 P×M×W×C×T 

4 P×M×W×T 14 M 24 P×C×T 

5 P×M×T 15 M×T 25 P×C×T 

6 M×C×T 16 M×T 26 W×C×T 

7 2×(C×T) 18 P×C×T 27 M×C×T 

11 W×C×T 19 P×C×T 28 P 

12 W×T 20 P×M×W×C×T 29 W 

22 P×C×T 23 P×M×W×C×T   

Constraint 17 : 3× (M×C×T) + 3×(W×C×T) + 3×(P×T) + 2×(M×T) + (P×C×T) + 

(P×M×W×C×T) 

Total = 5(P×C×T) + 3(P×M×W×C×T) + 2(M×T) + 2(M×C×T) + 2(W×C×T) + M + P + 

W + 2(C×T) + 2(P×T) + (P×M×W×T) + (P×M×T) + 3(M×C×T) + 3(W×C×T) + 3(P×T) 

+ 2(M×T) + (P×C×T) + (P×M×W×C×T) 
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3.6. Computational results and discussion  

 

The objective of this section is to run and test the comprehensive model developed. This 

section presents the use of 8 numerical examples extracted from existing CM literature to 

solve the proposed CM model. Mahdavi et al. (2010) presented a real-life data size, 

which had been collected from a company running CMS environment. Since their model 

is different from our proposed model, we added some additional cost parameters for the 

features not addressed in their data sets and model (e.g. Machine procurement cost). The 

unknown cost parameters, which proved more difficult to get, were extracted by cross-

referencing between the data sets containing them and then incorporated within the other 

data sets that are missing this information. Therefore, all of the data sets used in each 

solved numerical example contain values within the same range in terms of unit costs. 

 

The models were solved using IBM ILOG CPLEX Optimization Studio 12.2/OPL and 

run with Intel core 5 and 6 GB RAM workstation.  Each one of the numerical examples 

used is solved as an integrated model and the solving ability of CPLEX is being tested as 

the problem size increases (number of variables and constraints).  We compare the 

computational time taken and optimality gap (difference between current feasible 

solution and best bound on optimal solution) with respect to the various problem sizes.  

 

The results are presented in table 3-3, where elapsed time and optimality gap are shown 

for each problem instance. Also shown are the number of time periods for which the 

design is performed, the number of cells c used in each problem, number of parts, number 

of machines and the number of workers. 
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It is evident that the required computational times increase as the problem sizes are 

increased. All of the small-scale problems (problems 1 to 3) were successfully solved in 

less than 10 seconds with the highest number of variables and constraints encountered 

being 605 and 683 respectively. The medium-sized problems (problems 4 to 6) required 

more computational times but were solved within 778.84 seconds. The largest number of 

variables and constraints in these medium-sized problems were 829 and 1013 

respectively. Therefore, the small to medium-scale problems (1 to 6) were solved within 

reasonable computational times. Problems 7 and 8 are considered to be large-scale ones 

with the highest number of variables and constraints being 881 and 1030 respectively. 

Both of these two problems scenarios proved to be too difficult for the CPLEX/ OPL to 

solve since no optimal solution was obtained after 3 hours of computation. In fact, 

CPLEX stopped solving both problems (7 and 8) even before the time limit due to 

insufficient memory. This clearly indicates that the CPLEX/OPL is unable to produce 

good quality solutions in reasonable computational times for large-scale problems of the 

CMS model. 
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Table 3-3 Summary of computational results from selected data sets 

Problem 

scenario 

Classification 

No 

of 

part 

types 

No of 

time 

periods 

No of 

Machines 

No of 

Workers 

No 

of 

cells 

No of 

variables 

No of 

constraints 

Time 

elapsed 

(seconds) 

Optimality 

Gap (%) 

1 Small-Scale 1 2 6 2 2 260 265 0.95 0.00 

2 Small- Scale 1 5 6 2 2 561 649 07.4 0.00 

3 Small- Scale 4 2 3 4 2 605 683 3.62 0.00 

4 

Medium- 

Scale 

4 2 3 3 3 653 758 98.17 0.00 

5 

Medium- 

Scale 

4 2 3 4 3 818 941 648.46 0.00 

6 

Medium- 

Scale 

4 3 3 4 2 829 1013 778.84 0.01 

7 Large- Scale 2 3 4 2 3 857 917 1041.53 3.48 

8 Large- Scale 2 5 6 2 2 881 1030 2249.1 12.38 
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Chapter 4  

Numerical Examples and Discussion 

 

 

 

4.1 Introduction 

 

In this chapter two comprehensive examples are introduced. At the beginning of each 

example a fully input data are presented, as shown in figure 4-1, these input data can be 

divided into three main categories: a) Machine information; b) Products information; and 

c) Workers information, a classification of these input data are shown below. The results 

of solving the proposed model are then discussed. It is clearly shown the production 

planning for each time period; the quantity of internal production, the quantity to be held 

as inventory, and the quantity to be outsourced for each part type, also the results of parts, 

machines and workers assignments for each cell in each time period as well as the cost of 

production and relocation. An explanatory scheme shows the design of our system for the 

first period, actions to be taken during relocation, and the system design after relocation. 

These actions consist of: a) Hiring workers; b) Firing workers; c) Machines relocation; 

and d) Parts relocations. 
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Figure 4-1: Input Data Classifications
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4.2 Example 1   

 

 

This example is a small- scale problem, includes two cells, three machines, four parts, 

two periods, and four workers. As shown in table 3-3 the number of variables for such 

system is 605 and the number of constraints is 683. The related information is given in 

tables 4-1, 4-2, 4-3, and 4-4. 

 

Table (4-1) shows the machine information: quantity available of machine, relocation 

cost, procurement cost, time capacity, operating cost per unit time and overhead and 

maintenance cost, and in this example we assume that the number of available machines 

for all types is equal to zero, in other words we need to establish a new company to show 

the benefits of the new factor (Machine Procurement Cost). Table (4-2) shows the 

processing time per part per hour for each part type on each machine type doing by each 

worker. For example, part type 3 must be processed on machine type 1 with processing 

time 0.02h by worker 1 or with processing time 0.03h by worker 2.  The data set related 

to the machine-part and machine workers incidence matrices are shown in tables (4-3) 

and (4-4), respectively. For instance, as seen in table (4-3), machine types 2 and 3 are 

required for part type 4. Also table (4-3) shows input data: demand per each period for 

each part type, holding cost for each part per each period, outsourcing cost for each part 

per each period and intercell material handling cost. Table (4-4) shows the workers input 

data: available workers for each type, salary cost for each type per each period, hiring 

cost for each type per each period, firing cost for each type per each period and available 
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time for each type per each period. Also it shows workers capabilities in working with 

different machines. For example, worker 3 is able to work with machines type 2 and 3. 

Moreover, the number of cells to be formed is two and the minimum and maximum cell 

sizes for each cell sizes for each cell are 1 and 4, respectively. The minimum size of each 

cell in terms of the number of workers is assumed to be one.  

 

The results are shown in tables (4-5), (4-6), and (4-7). Tables (4-5) and (4-6) show the 

optimal production plan and the objective function value respectively. Table (4-7) shows 

the part families, machine groups, and worker assignments. 

 

As we mentioned above, in this example we need to build a new company that does not 

have any old machines, so that we need to buy new machines, thus we need to buy at the 

beginning of the first period two machines of type 1 and 2, and three machines of type 3, 

the total cost of buying these machines is found in table 6 (Procurement cost = $29,000). 

In table (4-6) we see that the demand of part type 1 in the first period is zero but we need 

to produce some quantity which will be held to the next period to satisfy a portion of 

demand in the coming periods. We can also note that the demand for part type 4 in the 

first period is 1700 but the production is 1500 and the shortage quantity (200 units) will 

be satisfied by outsourcing. 

 

Part type 4 will be processed in cell 2 during the first period, this will done by machines 

type 2 and 3 by workers type 1 and 4. In the second period it will be processed in cell 1 

by the same machines and the same worker types. Moreover part type 2 will be processed 
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in cell 1 during the first and second period by machines type 1 and 2 by workers type 1, 2 

and 4. 

 

 Table (4-7) shows the distribution of the machines between cells in the first period and 

their relocation in the second period; one machine of both type 2 and 3, and 2 machines 

of type 1 are assigned to the first cell during the first period, and the remaining are 

assigned to the second cell (two machines of type 3, and one machine of type 2), the 

relocation  in the second period consist of moving one machine  type 1 from the first cell 

as well as one machine of type 3 from the second cell, also, it consist of installing one 

machine of type 1 in the second cell. Table (4-7) also shows the distribution for the 

workers in the two periods, cell 1 needs in the first period two workers of type 1 and one 

worker of both types 2 and 4, in the second period one worker of type 1 will be fired, on 

other hand, cell 2 needs in the first period one worker of type 4 and two workers of type 

3, in the second period one worker of type 2 will be hired and on worker of type 4 will be 

fired. 

 

System design for this example and the allocation of workers, machines, and parts are 

shown in figure (4-2). The system relocation actions are also shown in this figure. System 

design after relocation shown in figure (4-3) (system design for period 2), in the second 

period we have two fired workers and one unused machine; machine of type 3, in this 

case we can hold the machine to be used in the coming period, or we can sell it.
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Table 4-1: Machine Information 

Machine Type                      Machine Information 

          
    

                 

1 0 400 550 140 30 30 15 3000 

2 0 410 530 130 30 30 13 4000 

3 0 430 560 150 30 40 14 5000 

 

Table 4-2: The Processing Time 

 Part1 Part2 Part3 Part4 

 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 

M1 0.04 0.02   0.04 0.01   0.02 0.03       

M2   0.02 0.03   0.04 0.03       0.03 0.02 

M3 0.01  0.02      0.01  0.02  0.03  0.04  

Table 4-3:  The input data of machine-part incidence matrix 

 

 

 

Part 

Type 

 Machine Type         

 1 2 3                              
      

1 1 1 1 0 1550 20 4 4 80 80 11 

2 1 1 0 900 600 21 6 6 82 82 9 

3 1 0 1 1700 500 23 8 8 90 90 8 

4 0 1 1 1700 300 24 10 10 100 100 10 
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Table 4-4: The input data of machine-worker incidence matrix 

 

 

 

Worker 

Type 

 

Machine 

Type 

 Worker Information 

 1 2 3                                    

1 1 0 1 2 470 490 270 285 145 30 30 

2 1 0 0 2 460 485 260 290 145 30 30 

3 0 1 1 2 455 475 200 250 155 30 30 

4 0 1 0 2 450 480 265 280 140 30 30 

Table 4-5: Optimal Production Plan 

 Period1 Period2 

 Part1 Part2 Part3 Part4 Part1 Part2 Part3 Part4 

Outsourcing    200     

Holding 50        

Productions 50 900 1700 1500 1500 600 500 300 

Demand 0 900 1700 1700 1550 600 500 300 

Table 4-6: Objective Function value and its components 

Total Outsourcing Holding 
Inter-cell 

movement 

Maintenance 

and 

overhead 

Machine 

Procurement 

Production 

cost 

Operating 

cost 

Machine 

relocation 

Salary Hiring Firing 

224662 20000 200 0 5390 29000 156300 2852 840 6100 3695 285 
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Table 4-7: The  result of parts, machines and Workers Assignments 

 Parts assigned to Machines in Workers assigned to 

 Cell1 Cell2 Cell1 Cell2 Cell1 Cell2 

Period1 1,2,3 4 1,1,2,3 2,3,3 1,1,2,4 3,3,4 

Period2 2,3,4 1 1,2,3 1,2,3 1,2,4 2,3,3 
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Figure 4-2: Example 1 System Design in period 1 and Relocation. 
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                              Figure 4-3: Example 1 System Design in period 2. 
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From the above example, the benefit of introducing the human issues in the proposed 

model can be seen clearly; the main actions during the relocation of the system above is 

firing two workers, one worker of type 1 and one worker of type 4, and hiring of one 

worker of type 2, by this action a salary of one worker will be saved, therefore, the 

demands in the second period of all parts type will be satisfied by six workers instead of 

seven workers in the first period. It is shown also that the demand in the second period 

will be satisfied by six machines instead of seven machines, since that one machine of 

type 3 is no longer needed, on the other hand, this machine can be held to the next period 

in case if it is needed or it can be sold. 

 

4.3 Example 2 

 

This example is a Medium-scale problem, includes two cells, three machines, four parts, 

three periods and four workers. As shown in table 3-4 the number of variables for such 

system is 829 and the number of constraints is 1013. Machine Information, processing 

input data of machine-worker incidence matrix, time input data of machine-part incidence 

matrix, are given in tables (4-8), (4-9), (4-10) and (4-11), respectively. Moreover, the 

number of cells to be formed is two and the minimum and maximum cell sizes for each 

cell sizes for each cell are 1 and 5, respectively. The minimum size of each cell in terms 

of the number of workers is assumed to be one. 
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The results have been shown in tables (4-12), (4-13), and (4-14). Tables (4-12) and (4-13) 

show the optimal production plan and the objective function value respectively. Table (4-

14) shows the part families, machine groups, and worker assignments. 

 

We need to buy a new machines, thus we need to buy at the beginning of the first period 

two machines of each type, the total cost of buying these machines is found in table (4-

13) (Procurement cost = 24000). Also, we can see from table (4-12) that not outsourcing 

part will be, we can match this by the zero cost of outsourcing in table (4-13), we can 

conclude that the demand of all parts in each period will satisfy by internal production 

and inventory.  

 

In table (4-13) we can see that the intercell cost is equal to zero, which means that each 

part will be produced completely in its own cell, in other world all operations that the part 

needed will be done in one cell (no moving between cells will occur). 

 

System design for this example and the allocation of workers, machines, and parts are 

shown in figure (4-4). In addition, the system relocation actions are shown in this figure. 

System design after relocation shown in figure (4-5) (system design for period 2), as it is 

three period problems a second relocation should be done, this clearly shown in figure (4-

5). 

 

After the second relocation the system design for the third period has been achieved and 

this can be seen by figure (4-6). It is clearly seen from figure (4-4) that no changes will 
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be done on the system design between period 1 and period 2, which means that this 

system design is the optimal configuration for period 1 and period 2. After the second 

relocation has been made a system design for the third period then achieved see figure (4-

6). Obviously, all the products will produce in the first cell; cell 2 will not be used for the 

third period production, and there are one machine and worker assigned to this cell, just 

to satisfy the conditions that expressed in the model’s constraints, specifically constraints 

number (7) and (8).  

 

Constraint (7)  {                  ,    
 
   }, enforce the number of machines 

assigned to each cell in each period to be not less than the lower limit (in this example it 

is 1) and not more than the upper limit (in this example it is 5).  

Constraint (8)  {         ,
 
       ,   }, enforce the number of workers assigned to 

each cell in each period to be not less than the lower limit (in this example it is 1). So 

these constraints don’t take into account whether the cell will be used for production 

during a specific period or not. 

 

 

 Table 4-8: Machine Information 

Machine Type  Machine Information 

          
    

                             

1 0 520 600 100 40 40 40 18 3000 

2 0 510 650 150 40 40 40 16 4000 

3 0 550 660 200 40 40 40 14 5000 
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Table 4-9: The Processing Time 

 Part1 Part2 Part3 Part4 

 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 

M1 0.04 0.02   0.04 0.01   0.02 0.03       

M2   0.02 0.03   0.04 0.03       0.03 0.02 

M3 0.01  0.02      0.01  0.02  0.03  0.04  

   Table 4-10: The input data of machine-worker incidence matrix  

 

 

 

Worker 

Type 

 

Machine 

Type 

    Worker Information  

 1 2 3                                                      

1 1 0 1 2 400 450 450 230 285 285 110 145 40 40 40 

2 1 0 0 2 420 465 465 220 290 290 120 145 40 40 40 

3 0 1 1 2 415 475 475 200 250 250 115 155 40 40 40 

4 0 1 0 2 430 480 480 245 280 280 120 140 40 40 40 
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Table 4-11: Optimal Production Plan 

 Period 1 Period 2 Period 3 

 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

Outsourcing             

Holding 4 12  82         

Production 4 612 1200 1282 1546 788 1000 818 500 1000 500 900 

Demand 0 600 1200 1200 1550 800 1000 900 500 1000 500 900 

 

Table 4-12: Objective Function value and its components 

Total Outsourcing Holding 

Inter-cell 

movement 

Maintenance 

and 

overhead 

Machine 

Procurement 

Production 

cost 

Operating 

cost 

Machine 

relocation 

Salary Hiring Firing 

291523 0 356 0 5770 24000 225500 28172 200 6255 1125 145 

Table 4-13: The  result of parts, machines and Workers Assignments 

 Parts assigned to Machines in Workers assigned to 

 Cell1 Cell2 Cell1 Cell2 Cell1 Cell2 

Period1 1,2,4 3 1,2,2,3 1,3 1,2,3,4 1 

Period2 1,2,4 3 1,2,2,3 1,3 1,2,3,4 1 

Period3 1,2,3,4  1,2,2,3 1 1,2,3,4 1 
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  Figure 4-4: Example 2 System Design in period 1 and First Relocation. 
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 Figure 4-5: Example 2 System Design in period 2 and Second Relocation. 
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Figure 4-6: Example 2 System Design in period 3. 
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It is clearly shown from the above example that the demand in the third period will be 

satisfied by using of one cell, four workers, and four machines. Instead of two cells, five 

workers, and six machines in the previous two periods (period one and two). In other 

words, the system in the third period no longer needs the second cell, one worker of type 

one, and two machines of both types one and three. So, all of these are cost savings.  

 

It is clearly seen from the above two examples that the human issues consideration 

(worker assignments) are one of the most important factors that should be considered 

when designing a Cellular Manufacturing System (CMS), considering this factor gives a 

comprehensive review of the system, good tracking, and since there is a variety in the 

demand and the variety in the products, the system does not need the same team of 

workers in each period, so, a relocation of the workers should be taken into consideration 

as well as the machines and products; ignoring this factor can considerably reduce 

benefits of the cellular manufacturing. 
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Chapter 5  

Summary, Conclusions and Future Research 

5.1. Introduction 

 

In the past few decades, there has been an increasing worldwide awareness towards 

productivity improvements. A new style of operation and new environment in the 

workplace conductive to improvement in such factors as flexibility, efficiency, 

management-worker relation, team work and job satisfaction are becoming important for 

survival in the international market. CMS has emerged as one of the promising strategies 

to address such requirements. The contributions of this research lie: (1) The development 

of comprehensive mathematical models that integrate several important manufacturing 

aspects; (2) The development and implementation of efficient solution procedures to 

solve the proposed models. 

 

5.2 Contributions of this study 

 

In order to achieve the cellular manufacturing system’s benefits which represented in 

chapter 1, when designing such a system, a number of manufacturing aspects should be 

taken into consideration. In chapter 2, the literature review of the previous works shows 

the important manufacturing attributes to be defined.  The proposed model presented in 

this thesis is a comprehensive model which integrates the important manufacturing 

attributes: 
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 Intercellular material handling cost. 

 Part internal production cost. 

 Subcontracting cost. 

 Inventory holding cost. 

 Deterministic demand. 

 Multi period planning. 

 Cellular manufacturing configurations. 

 Machine characteristics: 

i. Machine with multiple copies. 

ii. Machine with limited capacity. 

iii. Machine operating cost. 

iv. Machine maintenance and overhead cost. 

v. Machine relocation cost. 

vi. Machine procurement. 

 Cell size limits in terms of upper and lower bounds. 

 Human issues: 

i. Workers salary cost. 

ii. Workers hiring. 

iii. Workers firing. 

iv. Cell size limit in terms of lower limit of workers. 

v. Workers available time. 
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From the literature review, it is found even that cellular manufacturing is a popular 

research area; there is a singular absence of articles that deal with the human element in 

cellular manufacturing. Considering human issues is one of the main points in cellular 

manufacturing since ignoring this factor can considerably reduce benefits of the utility of 

the cell manufacturing. Also from the literature review, it is found that recent research on 

CM modeling tends to include only some of the above identified manufacturing 

attributes. Indeed as Ahkioon (2007) noted, a recurring theme is a piecemeal approach 

when formulating CMS models, as many of the existing models include only a limited 

subset of these manufacturing attributes. As such, this present research takes a holistic 

approach in CM design by integrating the identified important manufacturing aspects 

within a proposed CM model focusing on human issues consideration, thus bringing 

several important extensions to previous models.  

 

In chapter 3, a comprehensive mathematical model is presented and solved using an exact 

solution procedure. Numerical examples consisting of small to medium sized problems 

are solved, showing that the proposed model allows better decision-making in CM 

design, especially in terms of multi-period planning, production planning and dynamic 

system relocation.  The CMS solutions generated through the proposed model allow the 

cell designer to determine for a multi-period horizon: 

 

 Worker assignments; the allocation of each worker to a specific cell, hiring 

workers, and firing workers in each time period. 

 The machine to cell composition in each time period and machine relocation. 
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 Optimal values for internal part production, inventory holding and outsourcing. 

 The number of machines to be procured. 

 

In chapter 4, two comprehensive examples with full input data and results analysis are 

presented; also, an explanatory scheme shows the design of our system for the first 

period, actions to be taken during relocation, and the system design after relocation. 

These actions consist of: a) Hiring workers; b) Firing workers; c) Machines relocation; 

and d) Parts relocations. 

 

 

5.3. Future Research 

5.3.1. Multiple Criteria Decision Making for CMS Design 

 

The objectives sought in the proposed model are cost-oriented, with a number of different 

costs being considered. Performance-oriented objectives in CM design form part of future 

research work that are beyond the scope of this thesis, given the limited time frame. As 

such, these possible CM system criteria and objectives include performance measures 

that cannot be expressed in monetary terms and are as follows: 

 

 Maintaining acceptable within-cell machine utilization levels 

 Minimizing setup times 

 Minimizing work-in-progress 

 Maximizing the CM system reliability 
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CM models that address such multiple design criteria can be formulated as a multi-

objective decision making (MODM) problem, which can be solved either via a constraint 

or weighted method. Goal programming is another approach that can be used for solving 

cellular manufacturing MODM problems. 

 

A closer look at and a thorough analysis of overhead costs can give better performance of 

CMS design, overhead is an accounting term that refers to all ongoing business expenses 

not including or related to direct labor, direct materials or third-party expenses that are 

billed directly to customers. Overhead must be paid for on an ongoing basis, regardless of 

whether a company is doing a high or low volume of business. It is important not just for 

budgeting purposes, but for determining how much a company must charge for its 

products or services to make a profit.  

 

5.3.2. Further CM Design Phases 

 

This research deals only with the first phase of CM design, namely the cell formation 

problem. Additional research can be conducted for the two next phases in CM design. 

Further CM design work can center on phase 2, which deals with the layout of the cells 

and equipment within the manufacturing facility (facility layout problem), typical 

decision in this phase include: a) Equipment layout; b) Design/ selection material 

handling equipment; c) Assessment of operators training requirement; d) Machine 
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loading and scheduling; e) Quality control and inspection policies, and phase 3, dealing 

with the layout of machines within the cells.  

 

5.3.3. Development of further efficient solution procedures 

 

By using CPLEX small to medium-sized problems could be solved within up to 1 hour of 

computational time. The large-scale problems proved to be more difficult to solve using 

the proposed exact solution approach with the proposed model as no optimal solution was 

obtained after up to 6 hours of computation. However, the solutions from this integrated 

model show that additional CM structural and operational design decisions that were not 

considered in previous research can be addressed with the proposed model.  The next step 

in research is the investigation of the use of meta-heuristics, especially Tabu Search, 

Simulated Annealing and Genetic Algorithm, to solve problems of larger scale for this 

integrated CM model.  
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