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Abstract

In this paper, a new fault tolerant control methodology is proposed for partial loss of
control authority in aircraft using Piecewise Affine (PWA) slab models while minimiz-
ing an upper bound on a quadratic cost function. The proposed controller stabilizes and
satisfies performance bounds for both the nominal and faulty systems. The controller
design criteria is cast as a set of Linear Matrix Inequalities (LMIs) that can be solved
efficiently. The new technique is illustrated in a numerical example for the Beechcraft
99 aircraft model.
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1. Introduction

In order to increase safety and reliability of safety critical systems such as aircraft,
many researchers have worked on the development of fault tolerant control systems
and reconfigurable control. In applications, it is often desirable to design control sys-
tems which are capable of tolerating potential faults in order to improve the reliability
while providing the desired performance. These types of systems are known as Fault
Tolerant Control Systems (FTCS). Fault tolerant and reconfigurable control has been a
subject of research since the initial research on restructurable control and self-repairing
flight control systems in the early 1980s [1]. Reconfigurable control acts on-line in
response to component faults by restructuring the control loop. Reconfigurable con-
trollers use the estimation of the fault from a Fault Detection and Identification (FDI)
component to correct the faulty system once the fault has been detected and identified.
A review on reconfigurable (active) FTCS is presented in [2]. An early review on the
design issues for fault tolerant controller synthesis for aircraft was given in 1985 [3].
In this reference, techniques which may be used to either passively tolerate or actively
detect and compensate for component faults are reviewed, and suggestions are made
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for integrating these techniques into a restructurable flight control system. Reference
[4] presents three different fault tolerant control techniques for maximum allowable
verticle tail damaged aircraft, modeled as a Linear Parameter Varying System (LPV)
for operation around a given setpoint of the state variables. The three techniques are:
quadratic stabilization, guaranteed cost control design and guaranteed cost with robust
pole placement. In this paper we also use guaranteed cost control but our model is PWA
instead of linear and therefore it is a global approximation to the nonlinear dynamics
of the aircraft. Furthermore, we extend the technique of guaranteed cost control orig-
inally developed for linear systems to the case of PWA systems. In [5] an integrated
fault detection, diagnosis, and reconfigurable control scheme based on the Interacting
Multiple Model (IMM) approach is proposed. Fault Detection and Diagnosis (FDD)
are carried out using an IMM estimator. In [6, 7, 8] three overviews are presented. Ref-
erence [6] covers the development of fault tolerant control systems, summarizing some
of the important results in this subject area. A survey of FTCS up to 1997 is covered
in [7]. Reference [8] presents an overview of fault tolerant control, beginning with ro-
bust control, progressing through parallel and analytical redundancy, and ending with
rule-based systems and artificial neural networks.

Among faulty system models, PWA systems pose challenging problems due to their
switched structure [10]. In fact, switching among each closed loop model, either nom-
inal or faulty, may destabilize the system even if each closed loop model is stable in
its allowed working region [11]. PWA systems are a class of hybrid systems. They are
also a good modeling framework for dynamics involving nonlinear phenomena. Each
mode of a PWA system approximates the nonlinear phenomena by affine dynamics
when the switching state is in a certain range. To the best of the knowledge of the
authors, there are no results in the literature on fault tolerant PWA controllers. The
only related work seems to be on reconfigurable control of piecewise linear systems
without affine terms [12], assuming a fault has already been detected. By contrast, this
paper will not address control reconfiguration. It will instead propose a fault tolerant
controller synthesis method where an upper bound on a quadratic cost function is min-
imized for PWA models of both nominal and faulty aircraft systems. The controller
design criteria is cast as a set LMIs and solved with SeDuMi/YALMIP [13].

The paper is organized as follows. Section 2 addresses modeling of the nonlinear
aircraft dynamics on the longitudinal plane. Then, a PWA representation of the plant is
introduced in section 3, followed by the controller synthesis methodology in section 4.
In section 5, numerical example shows the behavior of the controller in the presence of
faults without performance degradation. Finally, conclusions are drawn.

2. Nonlinear Aircraft Model on the Longitudinal Plane

Assuming that the thrust is aligned with the velocity vector, the longitudinal dy-
namic equations of motion in wind axis of a fixed wing aircraft for a nonzero velocity
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can be written as

V̇ =
g
W

(T cos(α)−D−W sin(γ)) (1)

γ̇ =
g

WV
(T sin(α)+L−Wcos(γ)) (2)

θ̇ = q (3)

q̇ =
M
Iy

(4)

ẋ = V cos(γ) (5)

ḣ = V sin(γ) (6)

θ = α + γ (7)

where

V = aircraft speed

γ = flight path angle

α = angle of attack

θ = angle of pitch

q = angular velocity

x = position projection on Earth

h = altitude

L = Lift

D = Drag

T = Thrust

W = Weight

M = Moment

The aerodynamic forces and moments are described in terms of the dynamc pressure
as

L =
1
2

ρV 2SCL(α, α̇ ,q,δe) (8)

D =
1
2

ρV 2SCD(α, α̇ ,q,δe) (9)

M =
1
2

ρV 2c̄SCM(α, α̇ ,q,δe) (10)

(11)
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where

ρ = air density

S = wetted surface of the wing

c̄ = wing mean aerodynamic chord

CL = coefficient of lift

CD = coefficient of drag

CM = coefficient of moment

δe = deflection of elevator

Following [14], we will make the following assumption.

Assumption 1: The time evolution of the angle of attack can be well approximated
by a piecewise affine function, which has second derivative with respect to time equal
to zero almost everywhere (a.e.) described as

α̈ = 0 a.e. (12)

Note that this assumption is not very stringent given the fact that the evolution of
the angle of attack versus time in an interval [t0, t f ], where t0 is the initial time and
t f is the final time, is a continuous function. Continuous functions can be uniformly
approximated by a piecewise affine function over a compact set [t 0, t f ]. Regarding the
lift, drag and pitch moment coefficients, the following assumption will be made.

Assumption 2: The coefficients of lift, drag and pitch moment are affine functions
given by

CL(α, α̇ ,q,δe) = CL0 +CLα α +CLα̇ α̇ +CLqq+CLδeδe (13)

CD(α, α̇ ,q,δe) = CD0 +CDαα +CDα̇ α̇ +CDqq+CDδeδe (14)

CM(α, α̇ ,q,δe) = CM0 +CMα α +CMα̇ α̇ +CMqq+CMδeδe (15)

(16)

The idea of the methodology described in this paper is to approximate the nonlinear
trigonometric functions of the aircraft model by PWA functions and thus obtain a PWA
model. The next section will describe PWA model representations.

3. Piecewise Affine Representation

Consider a nominal PWA system

ẋ(t) = Aix(t)+Biu(t)+mi ∀x ∈ Ri (17)

where x(t) ∈ R
n is the state vector of the system and u(t) ∈ R

m is the input to the
system. For example, for the case of the longitudinal model of the aircraft considered
in section 5, one has x =

[
h γ ω

]T
and u is the deflection of the elevator after the
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aerodynamics have been cancelled by dynamic inversion. The collection of regions
Ri, i ∈ {1, ...,M} form a polytopic partition of the state space defined as [10]

Ri = {x | H̄ix̄ > 0} (18)

where H̄i =
[
Hi hi

0 1

]
, x̄ =

[
x
1

]
.

For the regions containing the equilibrium points, one has

Ri = {x | Hix > 0} (19)

The vector mi is the affine term for each model and mi = 0 for the regions whose
open loop equilibrium point is the origin.

Ellipsoidal Covering: An exact approximation of the polytopic partitioning of the
state space with ellipsoidal cell boundings can be built for slab systems of the form
[10]

Ri = {x | di < cT x < di+1} (20)

where c is a nonzero vector. This bounding enables a convex formulation of the
quadratic stabilization problem for PWA systems [10]. The description of the ellip-
soidal cells is

Ri ⊆ εi, and εi ⊆ Ri

where
εi = {x | ‖ Eix+ fi ‖≤ 1} (21)

and Ei and fi follow directly from the polytopic partitioning. More precisely, if (20)
is the definition of the regions, then the associated ellipsoidal cell is described by E i =
2cT/(di+1 −di) and fi = −(di+1 +di)/(di+1 −di). A PWA representation for a faulty
system with partial loss of control authority is descibed as

ẋ(t) = Aix(t)+Bf iu(t)+mi ∀x ∈ Ri (22)

The state space partitioning for the faulty system is the same as the nominal system.
The matrix B f i encapsulates the fault in the system in each affine model, valid for
Ri, i∈ {1, ...,M}. Partial loss of control authority is a common type of fault that occurs
in certain actuator channels [15, 16, 17]. It can be modeled as a factor that multiplies
the B matrix for the nominal system and reduces the amount of control authority. The
faulty B matrix modeling partial loss of control authority can be written as

Bf i = Bi(I−
m

∑
j=1

e je
T
j δ j) = BiΣ (23)

where e j is the jth unit vector and δ j is the amount of failure in the jth actuator. The
case of δ j = 0 corresponds to the nominal system and δ j = 1 corresponds to 100% loss
of control authority [15, 16, 17]. The diagonal matrix Σ is thus composed of unknown
values of partial loss of control authority for j ∈ {1,2, ...,m} actuators in the system

Σ = diag[σ1,σ2, ...,σm] (24)
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The coefficient σ j is a nonzero real number in the unit simplex, i.e, σ j ∈ (0,1]. The
case σ j = 0 corresponding to total loss of control authority is not addressed in this
paper.

4. Controller Synthesis

In this section we will design a controller to asymptotically stabilize all states to a
desired setpoint (assumed to be zero without loss of generality). We make the following
assumption.

Assumption 3: The state of the system (positions, angles, velocities and angular
velocities) is available for feedback control and the parameters for computation of the
drag force and weight are known.

To synthesize a controller one needs to find control laws for the two inputs: thrust
and elevator deflection. Under Assumption 3, one can design the thrust so that the
velocity of the aircraft is kept constant. The thrust command for constant velocity can
be obtained from equation (1) and is equal to

T =
D+W sin(γ)

cosα
(25)

Using Assumption 1 and equation (7), one can derive the relation

θ̈ = γ̈ a.e. (26)

Using equations (25) and (26), for maneuvers corresponding to changes of altitude
with no concern to the position over the surface of the Earth (i.e, the ẋ equation can
be neglected), the equations of motion used for the design of the elevator deflection
become

ḣ = V sin(γ) (27)

γ̇ = ω (28)

ω̇ =
M
Iy

(29)

Note that, under Assumption 3, the set of time values for which these equations are not
valid has measure zero, which does not affect the obtained solution by integration of
the differential equations (27)–(29). The design of the elevator deflection will consist
of the sum of two control signals: one that cancels the dynamics of the aircraft (also
called dynamic inversion) and one that is a PWA signal. More especifically, the elevator
deflection is given by

δe = −CM0 +CMα α +CMα̇ α̇ +CMqq
CMδe

+
2Iy

ρV 2c̄SCMδe
u (30)

Using the definition of aerodynamic moment and Assumption 2, one can substitute
(30) into equation (29) and approximate the sine function in equation (27) by a PWA
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function of the form aiγ +ni yielding a PWA system of the form (17), i.e,

ḣ = V (aiγ +ni)
γ̇ = ω

ω̇ = u

Regarding the design of u for this new PWA system, the state feedback controller will
be parameterized by Ki, i ∈ {1, ...,M} as

u = Kix, x ∈ Ri. (31)

For the synthesis of u, a performance criterion will be added to the design consid-
erations to synthesize a guaranteed cost controller [19, 20]

J =
∫ ∞

0
(x̄T ϒ̄x̄+uT Ξu)dt =

∫ ∞

0
x̄T (ϒ̄+ K̄i

T ΞK̄i)x̄dt ∀x ∈ Ri (32)

where x̄ =
[
x 1

]T
, x ∈ R

n is the state vector of the system, u = K̄ix̄, K̄i =
[
Ki 0

]
,

ϒ̄ =
[

ϒ 0
0 0

]
, ϒ ≥ 0 and Ξ > 0 are weighting matrices.

Remark: Please note that the guaranteed cost is only with respect to the controller
term u whereas the deflection of the elevator also has a term that cancels the aerody-
namics whose magnitude is not penalized. In other words, the guaranteed cost only
ensures a penalty on the control signal that is active in performing the stabilization of
the aircraft after the aerodynamic terms have been cancelled.

Theorem 1: An upper bound of the expected value of the cost function (32) over
random initial conditions verifying

E{x(0)xT (0)} = I, E{x(0)} = 0 (33)

is minimized for the PWA system (17) in closed loop with the controller (31) if there
is a solution to

min Trace(P)
s.t. P > 0 and (34) ∀x ∈ Ri

where, ∀x ∈ Ri, (34) is given by
[
x
1

]T [
(Ai +BiKi)T P+P(Ai +BiKi) Pmi

mT
i P 0

][
x
1

]
< −

[
x
1

]T [
ϒ+KT

i ΞKi 0
0 0

][
x
1

]

(34)
Proof: We define a quadratic candidate Lyapunov function as

V (x) = xT Px (35)

where P > 0. The derivative of (35) for the PWA system (17) in closed loop with the
controller (31) is

V̇ (t) = [(Ai +BiKi)x(t)+mi]T Px(t)+ xT (t)P[(Ai +BiKi)x(t)+mi], ∀x ∈ Ri (36)
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which can be written in matrix form as

V̇ (t) =
[
x
1

]T [
(Ai +BiKi)T

i P+P(Ai +BiKi) Pmi

mT
i P 0

][
x
1

]
, ∀x ∈ Ri (37)

It is required that

x̄T
[
(Ai +BiKi)T

i P+P(Ai +BiKi) Pmi

mT
i P 0

]
x̄ < −x̄T (ϒ̄+ K̄i

T ΞK̄i)x̄ ≤ 0, ∀x ∈ Ri

(38)
therefore,

d
dt

(xT Px) < −x̄T (ϒ̄+ K̄i
T ΞK̄i)x̄ ∀x ∈ Ri (39)

Multiplying both sides of (39) by minus one yields,

x̄T (ϒ̄+ K̄i
T ΞK̄i)x̄ < − d

dt
(xT Px) ∀x ∈ Ri

Integrating both sides yields

∫ ∞

0
x̄T (ϒ̄+ K̄i

T ΞK̄i)x̄dt ≤
∫ ∞

0
− d

dt
(xT Px) ∀x ∈ Ri (40)

Note that limt→∞ x(t) = 0. In fact, the Lyapunov function (35) is positive definite and
V (x) → ∞ as ||x|| → ∞. The derivative of the Lyapunov function V̇ (x(t)) is required to
be negative definite in inequality (38). Therefore, for the system (17) the equilibrium at
the origin is globally asymptotically stable and therefore lim t→∞ x(t) → 0. Using this
fact in (40) yields

J ≤ xT (0)Px(0) (41)

For random initial conditions note that [19]

E{J} ≤ E{xT (0)Px(0)} (42)

where E is the expected value operator over random initial conditions x(0) verifying
(33). We now show that E{xT (0)Px(0)} is equal to Trace(P). Following the reasoning
in [21],

E{xT (0)Px(0)} = Trace(E{xT (0)Px(0)}) = Trace(PE{x(0)xT (0)})

Since,
E{x(0)xT (0)} = I

one gets the result
E{xT (0)Px(0)} = Trace(P)

Since K̄i =
[
Ki 0

]
and ϒ̄ =

[
ϒ 0
0 0

]
, the inequality (38) can be rewritten as

∀x ∈ Ri
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[
x
1

]T [
(Ai +BiKi)T

i P+P(Ai +BiKi) Pmi

mT
i P 0

][
x
1

]
< −

[
x
1

]T [
ϒ+KT

i ΞKi 0
0 0

][
x
1

]

which is the same as (34). This completes the proof. �

To formulate the synthesis of u as a convex problem one needs the following result.

Theorem 2: For PWA slab systems the inequality (34) is implied by the following
set of LMIs

Q = QT > 0, μi < 0, i = 1, ...,M

⎡
⎢⎢⎣

Γi + μimimT
i Qϒ1/2 YT

i Ξ1/2 μimi f T
i +QET

i
ϒ1/2Q −In 0 0
Ξ1/2Yi 0 −Im 0

(μimi f T
i +QET

i )T 0 0 −μi(1− fi f T
i )

⎤
⎥⎥⎦ < 0 (43)

where Γi = AiQ+QAT
i +BiYi +YT

i BT
i .

Proof:
Letting Ai = (Ai +BiKi), (34) can be rewritten as

[
x
1

]T [
A T

i P+PAi Pmi

mT
i P 0

][
x
1

]
< −

[
x
1

]T [
ϒ+KT

i ΞKi 0
0 0

][
x
1

]
∀x ∈ Ri (44)

Using (44) and (21) and the S-procedure with multiplier λ i < 0 we observe that (44) is
implied by

[
x
1

]T [
A T

i P+PAi + ϒ+KT
i ΞKi Pmi

mT
i P 0

][
x
1

]
< −λi

[
x
1

]T [
ET

i Ei ET
i fi

f T
i Ei f T

i fi −1

][
x
1

]

(45)
Using new variables Q = P−1 and μi = λ−1

i , the sufficient conditions for quadratic
stabilization are transformed to

Q = QT > 0, μi < 0, i = 1, ...,M
[

Πi Q−1mi + μ−1
i ET

i fi
(Q−1mi + μ−1

i ET
i fi)T −μ−1

i (1− f T
i fi)

]
< 0 (46)

where
Πi = A T

i Q−1 +Q−1Ai + μ−1
i ET

i Ei + ϒ+KT
i ΞKi

Applying Schur complement to the inequality (46) yields

1− f T
i fi < 0

Πi +(Q−1mi + μ−1
i ET

i fi)μi(1− f T
i fi)−1(Q−1mi + μ−1

i ET
i fi)T < 0

(47)
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Left multiplying the above inequality by Q, right multiplying it by Q = Q T and rear-
ranging yields

AiQ+QA T
i +QϒQ+QKT

i ΞKiQ+ μ−1
i QET

i EiQ+

(mi + μ−1
i QET

i fi)μi(1− f T
i fi)−1(mi + μ−1

i QET
i fi)T < 0 (48)

It was shown in [10] using the Matrix Inversion Lemma that

(1− f T
i fi)−1 = 1+ f T

i (I− fi f
T
i )−1 fi

Thus, inequality (48) can be rewritten as

AiQ+QA T
i +QϒQ+QKT

i ΞKiQ

+ μ−1
i QET

i EiQ+ μimim
T
i + μ−1

i (QET
i fi)(QET

i fi)T

+mi(QET
i fi)T +QET

i fim
T
i +(μimi f

T
i +QET

i fi f T
i )μ−1

i

× (I− fi f
T
i )−1(μimi f T

i +QET
i fi f T

i )T < 0

(49)

Inequality (49) can be rewritten as

AiQ+QA T
i +QϒQ+QKT

i ΞKiQ+ μimim
T
i

+ μ−1
i (EiQ)T (I + fi f

T
i )(EiQ)+mi f

T
i (QET

i )T

+(QET
i )(mi f

T
i )T

+(μimi f
T
i +QET

i −QET
i (I− fi f

T
i ))μ−1

i

× (I− fi f
T
i )−1(μimi f

T
i +QET

i −QET
i (I− fi f

T
i ))T < 0

(50)

Inequality (50) can be rearranged as

AiQ+QA T
i +QϒQ+QKT

i ΞKiQ+ μimim
T
i

+(μimi f
T
i +QET

i )μ−1
i (I− fi f

T
i )−1(μimi f T

i +QET
i )T

+ μ−1
i (EiQ)T (I + fi f

T
i )(EiQ)+mi f

T
i (QET

i )T

+(QET
i )(mi f

T
i )T + μ−1

i (QET
i )(I− fi f

T
i )(QET

i )T

− (μimi f
T
i +QET

i )μ−1
i EiQ− μ−1

i QET
i (μimi f

T
i +QET

i )T < 0

(51)

which, after simplification, yields

AiQ+QA T
i +QϒQ+QKT

i ΞKiQ+ μimim
T
i

+(μimi f
T
i +QET

i )μ−1
i

× (I− fi f
T
i )−1(μimi f

T
i +QET

i )T < 0

(52)

Using Schur complement and the fact that 1− f T
i fi < 0 is equivalent to I − fi f T

i < 0
since fi is a scalar for PWA slab systems yields

[
Λi μimi f T

i +QET
i

(μimi f T
i +QET

i )T −μi(1− f T
i fi)

]
< 0 (53)

10



where Λi = AiQ+QA T
i + μimimT

i +QϒQ+QKT
i ΞKiQ. Replacing Ai by (Ai +BiKi),

introducing a new variable Yi = KiQ and using Schur complement yields a convex
representation of the sufficient conditions for quadratic stabilization as follows

Q = QT > 0, μi < 0, i = 1, ...,M

⎡
⎢⎢⎣

Γi + μimimT
i Qϒ1/2 YT

i Ξ1/2 μimi f T
i +QET

i
ϒ1/2Q −In 0 0
Ξ1/2Yi 0 −Im 0

(μimi f T
i +QET

i )T 0 0 −μi(1− f T
i fi)

⎤
⎥⎥⎦ < 0

where Γi = AiQ+QAT
i +BiYi +YT

i BT
i . �

Corollary 1: For the faulty system, the inequality (54) is transformed to

Q = QT > 0, μi < 0, i = 1, ...,M

⎡
⎢⎢⎣

Γ f i + μimimT
i Qϒ1/2 YT

i Ξ1/2 μimi f T
i +QET

i
ϒ1/2Q −In 0 0
Ξ1/2Yi 0 −Im 0

(μimi f T
i +QET

i )T 0 0 −μi(1− f T
i fi)

⎤
⎥⎥⎦ < 0 (54)

where Γ f i = AiQ+QAT
i +Bf iYi +YT

i BT
f i.

Proof: It follows trivially by using (22) instead of (17) in the proof of the previous
theorem. �

Remark: For the regions Ri0 where mi = 0, the inequalities (43) and (54) are not
strictly feasible, the S-procedure cannot be used and the inequalities are replaced by

⎡
⎣ Γi Qϒ1/2 YT

i Ξ1/2

ϒ1/2Q −In 0
Ξ1/2Yi 0 −Im

⎤
⎦ < 0 (55)

where Γi = AiQ+QAT
i +BiYi +YT

i BT
i and

⎡
⎣ Γ f i Qϒ1/2 YT

i Ξ1/2

ϒ1/2Q −In 0
Ξ1/2Yi 0 −Im

⎤
⎦ < 0 (56)

where Γ f i = AiQ+QAT
i +Bf iYi +YT

i BT
f i and B f i = BiΛ.

Since the P matrix does not directly appear in the inequalities (43), (54), (55) and
(56), in order to minimize the Trace(P) subject to the mentioned LMIs, it is necessary
to add another inequality to show that when the Trace(P) is minimized, the Trace(Q −1)
is also minimized. This requires that,

[
P In
In Q

]
> 0 (57)
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Table 1: Beechcraft B99 coefficients taken from [22]
Force/Moment C0 Cα Cα̇ Cq Cδe

Lift 0.191 5.48 2.5 8.1 0.601
Drag 0.0298 0.131 0 0 0
Moment 0 -1.89 -9.1 -34 -1.979

According to the Schur complement, this implies

P > Q−1

Thus, this shows that if the Trace(P) is minimized, then Trace(Q−1) is also minimized.
Therefore, to design the controller gains for the guaranteed cost fault tolerant controller,
the following convex problem will be solved.

Definition 4.1. (Fault Tolerant Controllers) are the solution to the following opti-
mization problem

min Trace(P)
s.t. (43), (54) ∀x ∈ Ri

(55), (56) ∀x ∈ Ri0

(57), μi < 0

From the solution of this problem one gets the controller gains Ki = YiQ−1.

5. Example

We consider a longitudinal model for the Beechcraft B99 whose coefficients are
shown in Table 1. The nominal speed is 338ft/sec and the nominal altitude is 5000 feet.
Approximating the sine function by a PWA function, and using X =

[
h γ ω

]T =[
x1 x2 x3

]T
as the state vector, where h is the deviation of the altitude from the

nominal value, and using u as the control input, the following PWA model is obtained
∀X ∈ R1 ⎡

⎣ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣0 338 0

0 0 1
0 0 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦+

⎡
⎣0

0
0

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦u (58)

∀X ∈ R2 ⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣0 306.57 0

0 0 1
0 0 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦+

⎡
⎣−6.084

0
0

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦u (59)

∀X ∈ R3 ⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣0 97.72 0

0 0 1
0 0 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦+

⎡
⎣−137.26

0
0

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦u (60)
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Figure 1: (a) x1 time response with fault tolerant controller (b) x1 time response with LQR controller

The state space partitioning is

R1 = {x ∈ R
3 | x2 ∈ (− π

15
,

π
15

)}

R2 = {x ∈ R
3 | x2 ∈ (−π

5
,− π

15
)}

R3 = {x ∈ R
3 | x2 ∈ (−3π

5
,−π

5
)}

(61)

with R4 symmetric to R2 and R5 symmetric to R3, with respect to origin. The ellip-
soidal covering of the state-space partitioning is

ε1 = {x | ‖ [
0 15

π 0
]
x+0 ‖� 1}

ε2 = {x | ‖ [
0 15

π 0
]
x+2 ‖� 1}

ε3 = {x | ‖ [
0 5

π 0
]
x+2 ‖� 1}

(62)

A guaranteed cost fault tolerant elevator deflection is designed for this system using
SeDuMi/YALMIP [13]. An LQR controller is also designed for the linear model of the
system (58) in region R1 for comparison purposes, with the same weighting matrices
of the cost function (32), namely

ϒ =

⎡
⎣0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦

Ξ =
[
0.1

] (63)

The controller design is based on a maximum of 90% loss of effectiveness in the
control authority. The resulting controller is

13
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Figure 2: Controller in the loop for the nominal system

K1 =
[−1.0408/338 −5.2769 −9.7329

]
K2 = K4 =

[−1.2946/338 −5.0972 −10.1958
]

K3 = K5 =
[−1.3287/338 −5.1018 −10.2580

] (64)

with

P =

⎡
⎣0.7247 1.2181 1.3220

1.2181 3.9754 5.0744
1.3220 5.0744 10.2458

⎤
⎦ (65)

The LQR controller is

KLQR =
[−1.0000/338 −2.4142 −2.4142

]
(66)

Simulations are performed for the nonlinear system in feedback with these con-
trollers where saturation of the input u was considered between the values of −5.8 and
+7.3 to be consistent with the B99 model. Two fault cases were considered: maximum
fault (90%) and less severe fault (60%). The fault occurs at t = 1sec and is maintained
for all future time. The resulting time responses of the system with the guaranteed
cost fault tolerant PWA controller and the LQR controller are plotted in Fig. 1. It is
observed that the guaranteed cost fault tolerant PWA controller, which is designed for
a PWA model of the system, stabilizes the faulty system wih up to 90% failure. As

14



proved in Theorem 1, the controller also keeps the performance of the faulty closed
loop system the same as the performance of the nominal system. However, as it is ob-
served in the simulations, the LQR controller fails to stabilize the PWA system at 90%
failure. Fig. 2 shows the state based switching of the PWA controller in the simulations
performed for the nominal system where it can be seen which controller is in the loop
as time unfolds. The main point of this example was to show that for fault tolerant PWA
models of aircraft in particular, and for PWA systems in general, one really needs new
controller synthesis results because the linear tools will not be effective. The exam-
ple also shows the effectiveness and improvement of the proposed PWA fault-tolerant
controller over conventional linear-model based controllers in the presence of faults in
nonlinear systems.

6. Conclusions

In this paper, a new fault tolerant control methodology was proposed for partial
loss of control authority in aircraft using PWA slab models while minimizing an up-
per bound on a quadratic cost function. A quadratic Lyapunov function was proposed
for stability analysis and controller synthesis for PWA models of nominal and faulty
aircraft systems. An upper bound on the expected value of the quadratic cost function
is minimized for both the nominal and faulty systems. Although quadratic Lyapunov
functions can lead to conservative results, it was shown in a numerical example that
the PWA controller is capable of stabilizing the nominal and faulty aircraft system
with guaranteed cost performance while an LQR controller designed with the same
weighting matrices is not. The main point to be made in this example was that for fault
tolerant PWA models of aircraft in particular, and for PWA systems in general, one
really needs new controller synthesis results as the linear tools will not be effective. A
first step toward developing such new tools that can be very useful in aircraft systems
was proposed in this paper. Future research based on the proposed method will focus
on adding saturation to the thrust for the case of the model of an aircraft on the longi-
tudinal plane. This input limitation is very important in practical applications related
to aircraft.
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