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Concordia University 

 
Abstract 

 
Planning Like It’s 2099: 

The Use and Distribution of Smartphone Transit Applications in Chicago, Illinois 

 
Jonathan Feakins 

 
Public transit provides an indispensable service to many of those who make major cities 

their home. At the same time, smartphones have become a commonplace but powerful 

piece of consumer technology, whose relevance to its users’ daily lives only promises to 

increase in the years to come. I describe the intersection of these two fields, in the form 

of smartphone applications that provide real-time transit information. I gather data via the 

server logs of two real-time transit applications, AnyStop and TreKing. I present an 

analysis of transit application users in Chicago, Illinois, and compare these users to the 

overall ridership of public transit in Chicago to determine if they are analogous. Using a 

combination of internet surveys and aggregate travel planning data, I attempt to illustrate 

overall patterns in how and why smartphone users utilize their smartphones to navigate 

public transit. Using log odds ratio and scatter plots, I specifically demonstrate how these 

two groups of users ride transit in markedly similar manners, both in space and time: 

smartphone users demonstrate classic usage peaks during both morning and evening rush 

hours, and their ridership across one hundred and thirty transit routes parallels overall 

transit usage with 70-86% accuracy. I also suggest variables that may account for any 

discrepancies in transit ridership between these two populations, and find that smartphone 

usage demonstrates negative correlation to factors such as total hours of service and 

number of stops, positive correlation for spatial complexity, and statistically insignificant 

or inconclusive results for route length, stops per mile, and buses per hour. Finally, I 

propose that smartphone applications may provide transit planners with an incredibly rich 

vein of crowdsourced, real-time travel data, which could be used to augment public 

transit services. 
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Introduction 
 

 
 

1.1 Overview 
 
 
 

 
New technologies will always reorganize society in unpredictable and very often 

completely unforeseen manners. Lasers were originally described as 'a solution looking 

for a problem,' but now underpin much of our digital technology; modern international 

trade was built on the back of shipping containers (Maiman 2000, Levinson 2008). The 

invention of the telegraph transformed society within a generation, to the extent that 

modern historians sometimes refer to as 'the Victorian Internet' (Standage 1999). 

As technology evolves, there has been significant research on how to incorporate it 

into the urban landscape, often referred to as the 'smart city' or 'urban computation.' But 

despite what has been called “an underlying self‐congratulatory tendency,” many 

developments in this field have failed to escape the confines of a computer engineering 

 
lab, and into the everyday, casual experience of the diverse, workaday city (Hollands 

 
2008: 303). One exception, however, has been the 21st  century’s explosion in mobile 

phones. 

Mobile phones can be particularly powerful, because they essentially constitute an 

incredibly powerful, decentralized computer network. Significant research has been 

conducted on how best to utilize mobile technology in places like Kenya, where citizens 

regularly use their phones to conduct online banking, locate sources of clean water, and 

check local pharmaceuticals for counterfeiting (Jack and Suri 2010, Toyama and Dias 

2008, Stanford Design School 2010). By some estimates, there are almost as many 
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Kenyans with mobile phones as those who have access to fresh drinking water (Aker and 

Mbiti, 2010, JMP 2010). And a decentralized communications infrastructure – in the form 

of mobile phones - has significant advantages for a continent where, even in relatively 

developed South Africa, a leading webfirm once demonstrated that they could more 

quickly deliver 4GB of data by carrier pigeon than by ADSL (BBC 2009). 

Smartphones, by comparison, provide "a rich opportunity for planners to enhance 

their understanding of the city, which could lead to better planning and better planning 

outcomes" (Evans-Cowley 2010: 145). Evans-Cowley is here referring to planning on a 

professional level: the white-collar endeavor of orchestrating a city in such a way that its 

residents can go about their lives with a minimum of headaches either through the built 

environment or through a more comprehensive plan that incorporate more intangible 

social and economic development (Goodman and Freund 1968). And in this paper, unless 

otherwise stated, references to planners will largely refer to this 'capital-P' planning, as 

opposed to the everyday people who plan out their day. In fact, these individuals will 

generally be referred to as “users” or “commuters,”  in relation to the application or 

transit modes that they utilize as a matter of course. 

 
As early as 2000, Anthony Townsend saw two primary challenges in the face of 

mobile phones: 

 

 
 

First, mobile phones allow for the broad diffusion of time and space management, 

reinforcing the competitive advantages of the central city business districts by making 

them more efficient. Second, they make automobile-based urban sprawl more 
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manageable and livable. Townsend argues that decentralization of control and 

coordination of urban activities threatens the foundations of city planning because the 

profession is based upon the notion that technicians operating from a centralized 

agency can make the best decisions on resource allocation and management and act 

upon these decisions on a citywide basis. He argues that planning tools intervene at a 

higher level, yet the dynamics of urban systems are determined at the individual level 

through individual behavior (Evans-Cowley 2010: 136). 

 
 

 
These observations become even more true with the advent of real-time smartphone 

transit applications. 
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Broadly speaking, a smartphone transit app allows a mobile user to directly access 

information about their local transit system. Google Maps, while initially designed as a 

web-based application, now comes pre-installed on many smartphones, and allows users 

to request directions from Point A to Point B while utilizing different modes of transit: 

automobile, walking, and transit (if available). By 2011, Google Maps had begun to 

provide real-time info about public transit – a service they initially debuted in Boston, 

San Diego, San Francisco, Portland (Oregon), Madrid and Turin (Goldmark 2011). 

Many cities and developers have also created transit applications that cater to 

particular transit agencies -such as TreKing in Chicago, Bart Rider in San Francisco, or 

OneBusAway in Seattle (City-Go-Round 2012). These transit apps (in addition to those 

apps decided explicitly for walking and driving purposes) provide three primary types of 

transit information: trip planning from one place to another, arrival times for selected bus 

and rail routes, and the location of routes and stops in a given area (Portland Afoot 2011). 

Some transit agencies initially opposed outside attempts to make their services 

more accessible and user-friendly: in 2008 and 2009, transit services in Germany, 

Australia and the United Kingdom accused independent developers of ‘copyright 

infringement’ by making use of their timetables in the production of popular transit apps 

(in Europe, an organization can copyright public facts based on 'database rights') 

(Masnick 2008, Masnick 2009, Masnick 2009, Cellan-Jones 2009). But the versatility of 

smartphones, and their widespread adoption, has already significantly altered the 

experience of urban travel. 

The underlying IT infrastructure of smartphones allows for data to be gathered from 
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tens of thousands of participants at a time, while also avoiding many pitfalls of selection 

bias. Smartphones can effectively obtain data about the movements of the masses, much 

like an injection of radiocontrast agent into the human body can reveal aberrations or 

blockages. Using this data, this thesis will argue that city planners have the opportunity to 

utilize smartphone technology, instead of competing or running parallel to it: 

 

 
 

“For all that BART and the MBTA have done to share data... there is still a 

disconnect between transit apps and services that might be useful to riders. For 

example, MBTA and BART have teamed up with car sharing services to allocate 

parking for shared cars. Ideally, an app would meld the two services, allowing transit 

riders to have a car reserved the moment their train arrives. Another example is a new 

parking app in San Francisco that shows how many spaces are available at a given 

location. If it included transit schedules and other data, it could quickly and easily tell 

commuters whether they’re better off driving or taking a bus.” (Barry 2011) 

 
 

 
But especially in relation to urban transportation, the whole principle of private 

phone ownership can still run counter to the very idea of ‘public’ transit. Why should 

commuters have to depend on private property in order to optimize their journey on a 

public system? And it’s true: transit planners should be incredibly wary of deferring to 

easy, free-market solutions that conveniently allow them to avoid thorny public policy 

choices. 
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But it needn’t be either/or. Transit agencies and services need not demand univer- 

sal acceptance of a technological norm in order to provide an essential service. Instead, 

these planners can also provide additional services based purely on the valuable data that 

these users have indirectly provided them. Transit planning does not require uniformity 

from its users – as a matter of fact, an effective transit plan must provide versatility and 

options in order to remain effective and competitive. But statistically, even the current 

rates of one-third market penetration provide planners with an incredibly deep and 

powerful set of data – and this from applications that were designed explicitly for users, 

and not planners. If planners were to coordinate with smartphone market developers, the 

information gathered could prove to be even richer. 

Whatever their visions of the future, urban planners will need to analyze the claims 

of smart cities ‘in the wild,’ where lofty rhetoric and plans can be tested in the laboratory 

of citizens' everyday needs and experiences. While efforts to augment the cities of the 

future have been technically remarkable, very few of these technologies has seen 

widespread distribution and use. Widespread adoption of smartphones by the general 

populace, however, may allow researchers to finally take a serious look the reality of ‘the 

smart city.’ 

 

 
 
 
 
 

1.2 Research Questions 
 
 
 

 
I am interested in how cities evolve, and how city planning can live up to its name 
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- not simply playing catch-up, but rather planning ahead to allow a city's future potential 

to take root and flourish. As such, my master's research aims to address how an 

increasingly powerful and eventually ubiquitous technology - not only mobile phones, 

but 'smartphones' - can become incorporated into urban transportation infrastructure. 

 

 
 

1)  Does use of a smartphone transit app, in both time and space, parallel ridership 

numbers of the transit system as a whole? 

 

 
 

Since their introduction in 2006 as a luxurious gadget, smartphones have quickly 

become the new standard in pocket computing. In the first few years of their existence, 

smartphones remained a staple of the relatively well-off and gadget-friendly consumer; as 

such, a sample of their user base could not adequately represent the population of a whole 

city. But current estimates suggest that as many as forty percent of  American and Cana - 

dians with mobile phones now utilize smartphones (comScore 2011, comScore 2012). 

And in addition to its more infamous uses as a purveyor of angry cartoon birds and 

current celebrity gossip, smartphones have provided discerning consumers with a growing 

array of indisputably useful applications. As many as twenty percent of smart- phone 

users make daily use of applications related to maps and navigation (Ericsson Con - 

sumerLab 2012). In particular, Put together, a single transit app can record thousands of 

queries from all across a city, as its users query their ideal route, consider alternatives, 

measure their prospective wait time, and more. 
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As smartphones become increasingly accessible, they may eventually become as 

standard as basic cell phones five years ago. If and when smartphones become evenly 

spread throughout the general populace,  the data from these users effectively could serve 

as a representative sample of the population as a whole. 

By extension, users of real-time transit apps may provide transit planners with a 

richer vein of travel information than they’ve ever had before; in fact, one objective of 

this thesis is to instill in transit planners and city government an appreciation for the kind 

of data to which they now have access. 

 

 
 

2)  What transit system variables most encourage use of a smartphone transit app? 
 
 
 
 

Wide-scale use of transit applications provides a fascinating insight into the dy - 

namics of commuter trip planning. A smartphone app can effectively measure com - 

muters’ casual frustrations and formulations of their travel plans. On a wide enough scale, 

the data can provide planners with insight as to which routes are on the minds of the 

populace, based purely on their search queries for particular routes and their arrival times. 

As such, what spatial and complexity variables appear to be most important when 

commuters utilize their transit apps? Will a user most often turn to their smartphone to 

navigate more complex routes, or are they above all concerned about how long they can 

expect to wait for the next bus? 

Based on these variables, how might considerate transit planners best incorporate 

the use of smartphone transit apps into the coordination of their system? For example: if 
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an app measures that users examine maps of longer bus routes more often than shorter 

but more complex routes, then planners might take into account a user’s variable ability 

to navigate these routes. A user’s dependence on the app in relation to different routes 

may provide planners with insights as to the relative success or shortcoming of those very 

routes. 

On as wide a scale as possible, what can we learn about how people utilize 

smartphone transit applications? Based on their usage, what might city agencies and 

planners do to increase the efficiency of public transit? Meanwhile, which groups benefit 

from ubiquitous technology more than others? And if, ideally, city residents are to shift 

from private automobiles to public transit, what role if any might smartphones play in 

that transition? 

 

 
 
 
 
 

Literature Review 
 
 
 

 
Smartphone transit applications fall into an unusual middle ground between top- 

down urban planning, and more exploratory research in urban computing. But in concert 

with social networking, widespread adoption of smartphones has paved the way for the 

collection of previously unimaginable datasets. And by virtue of having become not only 

powerful, but popular, smartphone applications may successfully thread the needle 

between the everyday pragmatism of urban design and the more speculative visions of 

the ‘smart city.’ 
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2.1 Urban Computing 
 
 
 

 
Urban computing investigates the possibilities of incorporating “computing, 

sensing, and actuation technologies” into the urban experience (Kindberg, Chalers and 

Paulos 2007: 18). The purposes of this technology can range as widely as the technology 

itself, from monitoring important variables (i.e., traffic flow and air pollution) to making 

city services more transparent to the city’s residents. 

 

 
 
 
 

i. Smart Infrastructure 
 

 
 
 
 

Barring certain outliers (Dubai, and a number of factory cities in China), the vast 

majority of any major city’s built environment was constructed prior to the age of mobile 

computing. If any sensory equipment did exist, it was usually in the form of traffic 

detection, which began with simple pressure plates as early as the 1930s, and has since 

evolved to utilize video imaging and laser radar (Klein, Mills and Gibson 2006). 

But more generally, technological revolution has progressed with impressive 

fealty to Moore’s Law (Schaller 1997). Moore’s Law, coined in 1970, suggested that the 

number of transistors inexpensively installed onto a microprocessor would double every 

eighteen months (since updated to every two years). Thus, in the past forty years, the 

number of transistors has progressed steadily from a couple thousand, to a couple billion. 
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In turn, the sheer computing power that surrounds our everyday lives is nothing short of 

astounding: 

 

 
 

“The total number of transistors in this global network is now approximately the same 

number of neurons in your brain. And the number of links among files in this network 

(think of all the links among all the web pages of the world) is about equal to the 

number of synapse links in your brain. Thus, this growing planetary electronic 

membrane is already comparable to the complexity of a human brain. It has three 

billion artificial eyes (phone and webcams) plugged in, it processes keyword searches 

at the humming rate of 14 kilohertz (a barely audible high-pitched whine), and it is so 

large a contraption that it now consumes 5 percent of the world’s electricity” (Kelly 

2010: 13) 
 

 
 
 
 

The sheer scale of this ‘global network’ – both in the microscopic scale of its 

integral parts, and its macrocosmic spread across the globe – now allows for the 

distribution of complex computational devices throughout the built environment. And 

urban planners are beginning to make efforts to utilize this technological edge in both 

organizing the city, and making a resident’s urban experience more efficient: 

 

 
 

“Urban planning is well into an undeclared crisis of thought leadership – despite it 

being one of the best avenues for dealing with global challenges like climate change 

and migration. Information science is poking its head out of the burrow and seeing the 
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enormous intellectual challenge of expanding what worked on the desktop of the 

elites, to a diverse and mobile urban population” (Townsend 2009: xxv). 

 
 

 
The use of ‘smart’ parking meters has increased in the past decade, largely in 

Europe but increasingly in North America (Shaheen and Kemmerer 2008). San Francisco 

debuted a pilot program in 2007 in which parking meters could be paid by cell phone, 

and by 2010 the city was planning on incorporating sensors into parking spaces to 

determine occupancy, which commuters could view on their phones (Wilson 2007, Repas 

2009, Ford 2010). Ultrasonic sensors have been field-tested to measure and relay 

information on open parking spaces: by attaching a $20 sensor to the side of a car and 

relaying its readings to a $100 GPS receiver, the researchers’ algorithm could detect open 

parking spaces with up to 95% accuracy (Jonietz 2010). Researchers supposed that if the 

city’s fleet of taxi cabs could be fitted with these sensors, then a constant stream of 

parking space information could be made available in the whole of downtown for only 

$200,000, or one-fifteenth of what a fixed sensor system might cost (Jonietz 2010). 

 
One of the most extensive studies in community bicycles has been performed by 

the Intermodi Research Project at Wissenschaftszentrum Berlin für Sozialforschung 

(WZB) (i.e., the Social Science Research Center Berlin). The Call-A-Bike program 

launched in Munich on Easter Sunday 2000, and provided 2,000 bikes that could be 

rented via cell phone. One of the major strengths of Intermodi’s research was its 

partnership with Call-a-Bike’s parent company, and therefore their ability to make use of 

“subjective data as well as broad access to and analysis of customer data [emphasis in 
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original];” Call-A-Bike’s raw data allowed for incredibly deep research on bicycle- 

sharing, including analyses of ridership levels throughout the day, mode-share and trip 

purpose among customers, and demographic info (WZB 2008). Meanwhile, the 

“Copenhagen Wheel” has been designed to attach to the rear wheel of a bicycle in order 

to not only provide electric pedal assistance, but to gather valuable traffic data via the 

user’s smartphone (Oatram, Ratti and Biderman 2010). 

In more recent years, various systems have introduced SmartCards: credit card- 

sized, tamper-resistant card with embedded circuitry, which typically connects to a 

central database for purposes as diverse as health insurance, debit transactions and, 

indeed, transit fares (Chira-Chavala and Coifman 1996, Montreal Gazette 2007). In 2004, 

South Korea introduced smart cards that used ‘T-money’ to pay for buses, taxis and even 

books (Hartvig 2010) With each new development, researchers investigate how trip 

information, collected by the smart cards, can provide planners with valuable data; 

although smart cards typically don’t contain personal information, planners can chart the 

movements of roughly-defined demographics through the distribution of student, elderly 

and adult transit passes. (Morency, Trépanier , and Agard 2007, Trépanier, Tranchant and 

Chapleau 2007, Chu and Chapleau 2008, Chapleau, Trépanier and Chu 2008). 

Continual innovation in mobile computing need not limit itself to the small and 

portable. Wide-scale sensing networks have been proposed, for example, in the form of 

geotextiles, “a computational fabric that structurally strengthens and physically monitors 

the landscapes it is buried within” (Manaugh 2012). Many of these developments lend 

themselves to a greater vision for urban planning and design that has been called a ‘robot- 
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readable world’: “What if, instead of designing computers and robots that relate to what 

we can see, we meet them half-way – covering our environment with markers, codes and 

RFIDs” (Jones 2011). 

To no small extent, this is already happening: while society tends to have a very 

limited idea of robots (Bladerunner, Short Circuit, Wall-E), pocket-sized Androids seem 

to have been welcomed with open arms. 

 
 

 
ii. Smartphones as Data 

 

 
 
 
 

Wide-scale smartphone use provides an immense amount of data from an 

increasing number of users. If a sample of these users can be considered statistically 

representational of a greater urban whole, then transit agencies can make use of their 

anonymous, aggregate data to both improve and target their services. 

 

 
 

As of September 2010, an estimated 58.7 million people owned smartphones in the 

United States alone - about 30% of the available market, and growing (comScore 2010, 

Privat 2010). And while talking and texting remains the most popular uses of mobile 

phones, third-party applications make up the fastest-growing use category (Yin 2010). As 

such, smartphones can serve as an ideal tool for research: 

 

 
 

"The device is willingly carried by a large fraction of people in developed countries, 

integrates a number of technologies for automatic observation, can be programmed to 
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interact with the user, and can communicate with remote researchers. This allows 

unobtrusive and cost-effective access to previously inaccessible sources of data on 

everyday social behavior, such as physical proximity of people, phone calls, and 

patterns of movement" (Raento, Oulasvirta and Eagle 2009: 426). 

 
 

 
Meanwhile, widespread distribution of individual apps allows for potential of 

collecting uniform data across multiple regions: for instance, the AnyStop transit 

application is available (as of November 2010) in one hundred and twenty-five distinct 

agencies. Furthermore, smartphone applications can measure a range of data, not even 

including data entered by the user: smartphones can passively and continually measure 

factors such as noise pollution, air quality, and even seismology (Kim 2009, 

Maissonneuve 2009, Takeuchi and Kennelly 2009). Developers are currently working on 

turning smartphones into proximity sensors, capable of locating everything from 

groceries to lost toys (decaWave 2010). Some researchers have gone so far as to start 

explicitly designing software to gather a range of data (Hasu 2010). 

Prior to the widespread distribution of smartphones, many researchers conducted 

relatively small-scale experiments with self-selected participants. But the potential of 

cellular phones as a data gathering tool was demonstrated in 2006, in a joint project with 

MIT’s SENSEable City Laboratory and Telecom Italia, who conducted approximately 

forty percent of all mobile phone traffic in Italy. While limited in terms of data, the user 

base remained massive, and researchers collected four months of data over a forty-seven 

square kilometer area. Researchers were then able to chart the topography of mobile use 
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in 3-D, in one instance displaying a virtual volcano of activity during a Madonna concert 

in Rome. Researchers also plotted out chronotypes of mobile use in six different areas in 

the city, and could clearly observe how cellular use ebbed and flowed over the course of 

the day and throughout the city (Reades 2007). 
 
 
 

 

 
 

 

Figure 2.1: 3-D Map of Cell Phone Activity, Rome, August 2006 (Reades 2007) 
 

 
 
 
 

In contrast, smartphones allow individuals to actively contribute to the collection of 

data, in what’s been called ‘participatory urbanism’ (Paulos et al. 2009). In essence, its 

proponents remind us that this device – which many people carry with them in every 

waking moment – can do vastly more than most realize. 

 

16 | 



 

 

We carry mobile phones with us nearly everywhere we go; yet they sense and tell us 

little of the world we live in. Look around you right now. How hot is it? Which 

direction am I facing? Which direction is the wind blowing and how fast? How 

healthy is the air I’m breathing? What is the pollen count right now? How long can I 

stay outside without getting sunburned? Is the noise level safe here? Were pesticides 

used on these fruits? Is this water safe to drink? Are my children’s toys free of lead 

and other toxins? Is my new indoor carpeting emitting volatile organic compounds 

(VOCs)? Now look to your phone for answers about the environment around you. 

What is it telling you? For all of its computational power and sophistication it provides 

us with very little insight into the actual conditions of the atmospheres we traverse 

with it. In fact the only real-time environmental data it measures onboard and reports 

to you is a signal to noise value for a narrow slice of the electromagnetic spectrum 

(Paulos 2009: 415) 

 
 

 
Researchers can utilize a smartphone platform to gather both objective data (such 

as temperature, location and other variables measured directly by the phone) and subject - 

ive data (entered by the user) (Ter Hofte 2007). Smartphone use could also serve a natural 

role in longitudinal studies, in which a user’s ever-present phone can collect data over the 

course of years; a 2010 study estimated the average duration of mobile phone ownership 

at twenty and a half months. A one-time study of the use of smartphones by doctors and 
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nurses in healthcare found that smartphone adoption was positively correlated to per - 

ceived usefulness (Park and Chen 2007). 

Mobile devices have evolved so much that they can often replace custom-built 

measurement devices; urban planners, who once required subjects to carry single-purpose 

GPS devices, could today achieve superior functionality with a ready-made smartphone 

application. Many phones also encode their actions with a geotag, which allows third- 

parties to determine the precise location that the action occurred. Working purely with 

public information, a self-described ‘map geek’ successfully charted followed individual 

Twitter users as they traveled through cities, purely through the succession of their public 

tweets (Fischer 2012). 

Smartphone data can easily become a double-edged sword, however. While wide- 

spread technology may allow for thousands of participants, diverse participation brings 

with it a lack of uniformity that may undermine the results; in one early study on smart - 

phone applications designed for pedestrian navigation, researchers suggested that the 

users’ “technical proficiency ranged from sketchy to profound” (Rehrl et al., 2005). 

Without the controlled conditions that science relies upon in order to replicate experi - 

ments, many of these data sets might not be considered scientifically valid. If participants 

have an active hand in gathering this data, it’s entirely within reason to wonder if the res - 

ults might be biased, and how distant researchers would go about monitoring for and 

eventually removing erroneous data. 

Smartphone activity, at a minimum, comes with latitudes and longitudes, 

timestamps down to the second, and the ability to aggregate this information for little to 
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no cost. Developers have been quick to collect this information to improve their product, 

understand their market, and generate more profit. But while the profit motive originally 

inspired this data collection, the data is as accurate as any scientist can hope for; if proper 

steps can be taken to analyze it in a methodologically sound manner, the potential is im - 

mense. 

 
 

 
iii. Smartphone-Based Transit 

 

 
 
 
 

In an average weekday, the City of Portland gathers as many as 500,000 entries 

through its bus dispatch system, which allows them to track passenger load and variation; 

smartphones, by comparison, have the potential to capture the time-stamped travel 

planning behavior of these passengers (Berkow et al. 2009). 

It has been proposed that "Traffic information systems are one of the first 

instantiations of the potential of participatory sensing for large scale cyberphysical 

infrastructure systems" (Work and Bayen 2008: 1). But urban computing has been 

criticized for having wide rhetoric, but narrow application. Most development in mobile 

phones fall into two genres: either mobilizing desktop applications, such that users can e- 

mail, chat or perhaps link to their home computers; or providing the user with resources 

and information (Dourish, Anderson and Nafus 2007). Smartphone-based transit often 

falls neatly into that second camp. 

At its most basic, ubiquitous communications technology increases a user’s ability 

to plan their journeys by increasing coordination between independent parties, 
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consequentially altering travel behavior: in one study, the seventy-seven kilometers 

generated from altered travel plans did not quite match the eighty-eight kilometers saved 

from cancelations and other changes (Ling and Haddon 2006). This behavior gives 

additional power to independent agents, and therefore builds on the "models based on 

individual decision-making processes [that] have dominated transportation research" 

(Timmermans and Zhang 2009: 187). 

But what originally began as a convenient consumer device can also serve as the 

digital backbone on which to build a city-wide information network. In the original 

designs for Intelligent Transportation Systems, no one seriously considered the potential 

of cell phones (Zhao 1997). Roadways and transit systems were expected to gain 

intelligence through dedicated sensors that had been designed for the purpose, and then 

installed directly into the roads or cars themselves. But the rise of smartphones has 

outpaced those earlier plans; in 2006, Atlanta resorted to an alternative solution to traffic 

monitoring that they called ‘floating car data’ (Schäfer, Thiessenhusen and Wagner 2002, 

Fouladvand and Darooneh 2005, Rass 2008): 

 

 
 

“Cellint has been delivering cellular-based traffic information to GDOT since 2006 on 

Georgia 400 and nearby arterials, after fiber communications to the current sensors 

was disabled due to massive construction work along the freeway. Mark Demidovich, 

GDOT's Assistant State Traffic Engineer said ‘Deploying a replacement fiber 

backbone, from plan creation to completion, would have taken over two years. Cellint 

was able to have an alternative in place in four months, which demonstrates another 
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potential advantage of the cellular systems - speed of deployment.’” (Cellint 2007) 
 

 
 
 
 

A similar study was conducted successfully in Bangalore in 2008, in which 

researchers demonstrated the smartphones’ ability to detect everything from braking to 

honking to potholes (Mohan, Padmanabhan and Ramjee 2008). And this sort of 

innovation stands as a powerful example of what’s known as ‘leapfrogging’: the ability 

for developing nations to skip less efficient technologies outright, and move directly to 

the 21st  century (Worldchanging Team 2007). 

To those users who do not currently use mobile internet, getting traffic information 

has actually been found to be the most compelling reason to adopt the technology 

(Essential Research 2010). And while smartphones and wireless technology get 

developed with their own visions in mind – most often, simply as a tool for socializing 

and entertainment - it’s up to planners to anticipate relevant uses. 

Many developers and planners initially used smartphone transit applications to aid 

commuters with physical or cognitive disabilities, as with Mobility Agents or Travel 

Assistant Device (Repenning and Ioannidou 2006, Barbeau et al. 2006). In Finland, home 

of telecommunications giant Nokia, the Finnish real-time transit system NOPPA (in 

English, "Dice") was originally developed to provide real-time transit information to the 

visually impaired, and similar efforts have been made to connect smartphones and Braille 

displays (Azenkot and Fortuna 2010). But over time, NOPPA expanded its user base, in 

direct response to “Finland's high interest in mobile technologies, relatively low 

population density, lack of automobile industry and winter weather" (Koskinen and 
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Koskinen 2006: 1). 

 
Many cities and developers, operating both independently and in tandem, have 

developed a substantial range of options for the average commuter; TriMet, out of 

Portland, lists dozens of transit applications on their website, and the number of iPhone 

applications alone had crested into the six-digits by the end of 2009 (TriMet 2010, Apple 

2009). Portland has been very proactive in providing open data for their transit system, 

going so far as to contact Google in 2005, and working to interface their transit data with 

Google Transit Trip Planner (Roth 2010). Transit agencies have become increasingly 

aware that opening their data, and allowing developers to build upon it, can directly and 

dramatically benefit their own services (Press 2010, Eaves 2011). 

Planners have begun to make increasing use of technology. In San Francisco, the 

city government has introduced and promoted CycleTracks, an iPhone application that 

individual bicyclists can use to record their bicycle trips and submit them to 

transportation planners. By March 2010 – less than six months after its introduction - the 

San Francisco County Transportation Authority reported that they participating bicyclists 

had submitted almost 4,000 trips (Johnson 2010). Thanks in no small part to its gigantic 

tech industry, San Francisco has been in an ideal position to experiment with the 

possibilities of smartphones: 

 

 
 

Since March [2010], San Francisco residents have been able to let city hall know 

 
about potholes, trash and graffiti problems by using mobile apps or the Web, as well as 

through the more traditional (and expensive) call centers. Perhaps more important, the 
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city encouraged developers to dive into its trove of data. The results: more than 50 

privately produced mobile apps, which work on gadgets such as iPhones and Android 

cell phones, that track everything in San Francisco from restaurant health codes to the 

most popular biking routes. (Feldman 2010) 

 
 

 
A smartphone application in New York City, known as "Weeels," suggests that it is 

the first application for "social transit." Weeels provides a means for smartphone users to 

coordinate the use of taxi cabs, such that strangers can share and split the fare for taxi 

cabs. The stated purpose of Weeels is to "[provide] urban citizens a middle-ground in 

their mass transit options between the bus and subway, which for most New Yorkers are 

affordable but not always 100% reliable, and conventional cabs, which may be 

unaffordable or unavailable in their neighborhoods" (Weeels 2010). And in 2011, a 

“deprivation study” in Boston and San Francisco found that eighteen people, deprived of 

their cars, were able to regain a sense of autonomy and independence from information 

that they derived from their smartphone applications (Latitude 2011). 

When the Chicago Bus Tracker debuted in 2008, many Chicagoans heralded it as 

a one of the Chicago Transit Authority’s few successes after years of setbacks and 

political stagnation – and by the end of 2009, ‘Chicago Bus Tracker’ was the second most 

popular Google search term in the city (O’Neil 2009). After transit service cuts in 

Chicago (heralded by cries of ‘Doomsday’ in the local media), one local commentator 

proposed that the increasing ubiquity of smartphones had lessened the transit cuts’ 

impact: 
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“In 2010, thanks to CTA Bus Tracker and the widespread use of smart phones, anyone 

with a home or mobile Internet connection now has the easy ability to find out when 

the next bus is getting to the nearest stop. Or, really, to find out when any bus on any 

route is getting to any stop in Chicago – not to mention where on its route any bus is 

right now. Cue communal sigh of relief. And exit one of the most important public 

points of pressure labor unions have been able to count on up to now to force 

concessions from transit agencies. 

 
 
 
 

Short of bus drivers going out on strike (which would be illegal and, judging by the 

experience of New York City’s striking transit workers in 2007, would likely break the 

union financially), short-term service disruptions no longer have the power to take 

riders by surprise, confuse their journeys, or force them to fear finding alternate 

routes. Instead, a few seconds of surfing on the CTA website, or clicking on popular 

transit tracker apps like iPhone’s (phenomenal) Buster or Android’s TreKing, is all it 

takes for riders to plan their bus stops in real time” (Doyle 2010). 

 

 

Doyle may be overstating his point for sake of politics. Many of these devices – 

iPhones, Androids, Blackberries, etc. - still exist outside the price range of a significant 

percentage of transit commuters. But the progress always drives down costs eventually - 

an original 8GB iPhone, which cost $599 when introduced in 2007, could be had only 

three years later for $95 at a Radio Shack, or even as low as $49 for a refurbished unit. 
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There will come a time, most likely within five years, when smartphones and their 

attendant applications will become as standard and accessible as text messaging today. 

To date, most real-time traffic monitoring systems have depended upon the use of 

inductive loop detectors (the street-embedded coils which detect automobiles) and traffic 

cameras. Increasingly, research suggests that an alternative traffic monitoring system can 

function on the back of common cell phones: the Mobile Century study in Union City, 

California suggests that an accurate monitoring system can be gleaned from 2-3% 

network penetration (Herrera, Work, Herring et al. 2010). Researchers at the University 

of Minnesota have even worked to develop a smartphone-based application that would 

offer advice to teenage drivers, and "prevent vehicle operation in the presence of alcohol 

or unfastened seat bels [sic]." (Warzala 2010). 

The increasing ubiquity of smartphone use has significant potential for future transit 

behavior - not only as commuters receive data from phones, but also provide it. 

Smartphone use could also provide a means for transit agencies to monitor and improve 

their services. In current generations of transit service, transit controllers monitor a transit 

network by means of, for example, automatic vehicle location (AVL) (Wilson et al. 1992, 

Hammerle, Haynes and McNeil 2005). By comparison, smartphone data provides a 

source of instant feedback from the perspective of the commuter, instead of the provider’s 

own monitoring services. 

Smartphones have also garnered attention for their potential in providing a 

framework for novel systems of traffic monitoring, although research has suggested that 

the effectiveness of such a decentralized network can vary widely (Lee and Geria 2009). 
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At least one study in Chicago proposed the development of "cooperative transit tracking," 

in which the GPS and accelerometers in smartphones would function as a decentralized 

tracking service for city transit, in cases where installing a top-down system may prove 

prohibitively expensive. By their estimates, even 5-20% smartphone use by transit riders 

could effectively reduce wait times by 2-6 minutes (Thiagarajan et al. 2010). 

As of the end of 2011, these hypothetical rates of smartphone market penetration 

has been far exceeded by every major developed country, with the United States and 

Canada tied for 16th and 21st, respectively, for smartphones per capita (with the United 

States at 34%, and Canada at 30%). But from an urban planning perspective, the rates 

become even more remarkable when you consider the top two rankings are occupied by 

city-states: Singapore has achieved a smartphone per capita rate of 90%, followed by 

Hong Kong at 61% (Sterling 2011). Obviously, those nations have the benefit of 

affluence, but even relatively poorer countries have developed significant user bases: 

Romania and Brazil are tied with Japan, at 14%. 

This widespread expansion of smartphone utilization and capability may generate 

behavior that, rather than simply modifying or expanding on current trends in behavior, 

instead produces entirely new and novel means of trip planning and activity. "Jigsaw," a 

smartphone app scheduled to be released sometime in 2011, "figures out what you are 

doing by monitoring your phone's microphone, GPS and accelerometer for patterns 

characteristic of routine activities - and it could be set to send the results to social 

networking sites,” in essence functioning as a “continuous sensing engine” (Graham- 

Rowe 2010, Lu et al. 2010). 
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2.2 Travel Behavior 
 
 
 

 
One of the difficulties in planning for transit users has been determining how 

transit users make decisions along their journey. Planners have expended considerable 

effort, often through laborious surveys or idiosyncratic travel journals, in an attempt to 

better understand the priorities of their transit commuters. 

Public transit riders do not appear to express a distinct preference of bus versus rail 

travel, unless a distinct benefit (like diminished travel time) is provided by one mode or 

another (Ben-Akiva and Morikawa 2002). In fact, factors that seem to discourage bus 

travel could dissuade all sorts of behavior: feeling unsafe, lack of service, or preference 

for another mode (Stradling et al. 2007). Smartphone transit applications, however, have 

already been demonstrated to directly alleviate these factors (Ferris, Watkins and Borning 

2010). Consequentially, continued and/or growing use of these applications could 

increase the viability of public transit not only logistically, not psychologically. 

The pros and cons of taking the light rail in Phoenix differ widely from the same 

thought process when considering the same options in Seattle, let alone when exported to 

scenarios that draw upon vastly different traditions of land use (such as in much of 

Europe) or social conditions (such as mainland Asia). But in the context of AnyStop use 

in Chicago, some of the most complicating factors include: 

 
 

 
i. Automobile Option 
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Decisions about potential travel behavior often operate in two stages: firstly, 

accessing the options available; and secondly, choosing the option that best fits the 

commuter's need (Zhang 2006). In much of North America - or anywhere where land use 

makes dense transit corridors infeasible, or where a lack of political will stunts any transit 

development - the automobile has effectively become the sole, viable transit mode. This 

dependency has a spill-over effect to other parts of the continent, where alternative transit 

options might be available but people continue driving out of habit, familiarity, or 

perceived benefit. 

The challenge of transitioning commuter behavior from private automobile use to a 

more sustainable mode has been one of the most pressing questions in transportation 

research. Multiple attempts have been made to proactively shift users from one mode to 

the other, particularly with direct engineering or policy measures such as traffic calming, 

congestion pricing, reduced street parking, and gasoline taxes, ideally accompanied by 

additional investment into alternative transit modes. And indeed, several European cities 

such as Amsterdam and Copenhagen have had remarkable success over several decades 

of progressive transit planning. But in cities with minimal transit networks, otherwise 

interested commuters may discard public transit as a viable option, out of concern for 

time, cost of traveling, safety, or simply a sense of personal independence (Beirão and 

Cabral 2007). And even in cities with significant transit investment, psychological 

motives born out of a general ‘car culture’ can significantly impede the transition from 

one viable mode to another (Tertoolen, Kreveld and Verstraten 1998, Sheller and Urry 
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2002, Steg 2005). 
 
 
 
 

One of the biggest questions about widespread smartphone use is whether the 

wealth of real-time information about public transit can prompt a shift of users from 

automobiles to transit (Multisystems 2003). In previous decades, obtaining transit 

information – such as expected arrival times - demanded significant time and resources 

from the traveler, in exchange for static information that could not adequately account for 

inevitably delays from weather, equipment malfunctions, or detours; there’s something 

ridiculous in spending ten minutes scrutinizing a transit schedule, in order to save five 

minutes later on (albeit five minutes that might be spent waiting in the cold). Especially 

in transit systems where delays may last as long as the gap between one bus and the next, 

obtaining more analog information may have provided just as much of a vicarious sense 

of comfort and familiarity as any solid ability for commuters to plan their trips. 

Immediate access to real-time information, however, may alter that assessment. 

Whereas mode choice itself may hinge heavily upon variables of land use and urban 

planning, availability of information about different modes may more profoundly alter 

the choice set formation. That is to say, public transit may be mentally re-categorized as 

a viable option, as compared to driving. And with access to real-time information on both 

traffic conditions and arrival times, these options can actually be weighed on their 

respective merits. 

 
 

 
ii. Walk Shed 
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This directly challenges the prevailing notion of a rigid walkshed, through which 

planners have long maintained that residents will almost never walk more than a third of 

a mile to a transit stop. In fact, researchers have found that transit ridership can rapidly 

diminish as the distance between the origin and the transit stop reaches as little as 300 

feet (Zhao 2003). Recent studies have gone so far as to suggest that “the average survey 

respondent walked a half mile, far farther than the quarter to a third of a mile assumed by 

many to be the maximum distance that Americans will walk.” (Agrawal, Schlossberg, 

and Irvin 2007: Abstract).  In Chicago, where eight city blocks fit correspond to one mile, 

this suggests that the vast majority of people will not walk as much as three or four 

blocks to a transit stop. 

 
The methods used to calculate these walksheds, however, have often had severe 

limitations. The network ratio method, for instance, assumes that population is spread 

evenly throughout a study area (Zhao 1998). These methods have been deployed 

regardless of complicating factors like land use and population density, which has been 

demonstrated to have significant impacts on active transport and motorized commuting, 

respectively (Cervero 1995). Furthermore, the ridership of adjacent bus stops can overlap 

with one another, which can lead to cases of ‘double-counting’ (Kimpel, Dueker, and El- 

Geneidy 2007). In Detroit, a Monte Carlo simulation of random addresses suggested that 

transit riders walk an average of 0.8 miles, round-trip (Hoback, Anderson and Dutta 

2008). 
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iii. Wait Times 
 

 
 
 
 

Of all the uses of one's time, waiting can be one of the worst; in planning one's day, 

five or fifteen minutes spent waiting for the next bus or train can seem like a black hole 

of productivity. Waiting for transit from place to place extends far beyond one's daily 

commute: in 2010, an IBM study suggested that NYC office workers collectively spent 

over sixteen years simply waiting for the elevator (Bednarz 2010). But perception of 

travel times can vary, depending on the purpose of travel (Ory, Mokhtarian and Collantes 

2007). 

 
Research has demonstrated that wait times have a disproportionately negative effect 

on the commuter experience: a study of commuters on the Boston subway system 

revealed "an asymmetry in perceptions: although they were quick to sense a decline in 

service quality, they were far slower to recognize when the problem had been corrected" 

(Katz, Larson and Larson 1991: 13). Individuals have been found to value their ‘wait 

time’ at half to two-thirds of their wage rate (Hess et al. 2004). So when commuters 

consider travel options, it turns out that time spent waiting for transit can become far 

more influential than the time actually spent on transit, and many transit agencies have 

provided service accordingly: 

 

 
 

"In current practice, almost every travel demand model used in the United States (and 

elsewhere) considers waiting for a transit vehicle to be substantially more onerous 

than riding in a transit vehicle (it is typical for the negative coefficient of wait time in 
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a utility function to be 2 to 3 times larger in magnitude than the coefficient of in- 

vehicle travel time). As a result, proposed transit alternatives that have more frequent 

service may be favored by demand models over faster alternatives with less frequent 

service. Thus, the psychological impact of waiting for a transit vehicle is directly 

reflected in transportation policy decision making" (Ory, Mokhtarian and Collantes 

2007: 495). 
 

 
 
 
 

A transit-related study on smartphones can depend as much on psychology as 

planning: prior to widespread smartphone penetration, studies suggested that previously 

underutilized time spent on public transit could one day double as (paid) telecommuting, 

particularly for "knowledge workers" whose physical presence at work was not a constant 

requirement (Hayton and Malos 2005). On a more benign level, users may simply browse 

their favorite websites or social media, thereby making some decent use of their time 

(although perhaps at the cost of introspective, stimulation-less contemplation). If 

positively utilizing wait time can significantly decrease perception of duration, 

smartphones and other forms of digital technology may provide more than real-time 

information – they might also help replace otherwise idle time with - if not productivity - 

distraction, which can similarly reduce the perception of wait time. 

 
 

 
iv. Habits 

 

 
 
 
 

Efforts to modify travel behavior to a more sustainable model must deal not only 
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with weighty, infrastructural concerns, but also that of human habit: "Habits may be a 

more efficient way of dealing with changes in the environment. Rather than finding out 

what is the best behavioral option, doing what has always been done in many cases turns 

out to be efficient in economic terms. In doing so, one does not have to invest in any 

information costs to find the best options" (Davidov 2007: 319). The idea is that 

individual trips involve more costs than just the time spent traveling from Point A to 

Point B, but also all the time consumed while collecting information on that trip and 

comparing alternative options. 

As a result of minimizing energy expenditure, habits form. This natural human 

tendency towards efficiency (or, perhaps more descriptively, autopilot) can run counter to 

many behavioral models: "there is a growing body of literature that suggests that 

individuals do not deliberately reappraise all aspects of their travel decisions on an almost 

trip-by-trip basis as, in crude terms, the utility maximization theory-based mode choice 

step of the conventional four-step model assumes" (Behrens and Del Mistro 2010: 255- 

256). 

 
The effect of information on transit choice is of central importance for smartphone 

transit apps. Smartphones can reduce the time spent collecting information, by porting 

appropriate information directly and in real-time to individual travelers. Using a phone's 

GPS to determine the transit routes closest to the user, for example, can radically reduce 

the labor spent manually examining maps and locating timetables. These actions can also 

be performed in convenient periods of 'down time' throughout the day. 

But increased access to information has its limitations, when it comes to 
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influencing travel choice. Moderate or temporary alterations in the transit network, such 

as road closures or weather conditions, may not disrupt travel habits to the point of 

encouraging commuters to seriously modify their behavior to a more efficient or 

sustainable mode. Indeed, one theory has posited that commuters may take lesser-known 

routes for the express purpose of obtaining more information with which to make future 

decisions: 

 

 
 

"A dilemma for  any individual that has limited knowledge about current 

circumstances, for  example because he or she has entered a new life cycle (e.g., 

getting married   or children) or moved to another city or country, is the choice 

between  exploration and exploiting current knowledge. Selecting actions that have 

not been tried before gives the opportunity of discovering new choices that yield 

higher rewards than the currently best action" (Arentze and Timmermans 2003: 38- 

39). 
 

 
 
 
 

But true as this may be, human beings on the whole remain incredibly predictable. 

In a wide-scale study of human predictability, researchers monitored 50,000 anonymous 

cell phone users over the course of a three-month period, and tracked their movements 

between the ranges of different cell phone towers (Song et al. 2010). Human movement 

proved unnervingly consistent: the researcher’s model could predict a user’s whereabouts 

93% of the time, and not a single user could be predicted with less than 80% accuracy. 
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2.3 A Case Study: OneBusAway 
 
 
 

 
A significant amount of research must be conducted so that crowd-sourced, real- 

time transit information can be most effectively utilized by the public at large. One such 

study of a transit app in Seattle, known as OneBusAway, credited the app with significant 

improvement in the usability of the Seattle bus network. 

 
 

 
i. The App 

 

 
 
 
 

As a system, OneBusAway takes several forms in order to provide information to 

users. OneBusAway could originally be accessed via website, phone interactive-voice- 

response (IVR), SMS text-messaging, iPhone application, and an “Explore” tool that 

displayed areas of the city that can be easily accessed by public transit. The researchers 

also released their API (application programming interface), which allowed developers to 

code additional uses for OneBusAway, including functionality on different platforms. 

On the phone interface, users can receive arrivals times at individual bus stops, 

search for transit options based on route and address, look at routes charted on a map, and 

receive alerts about approaching buses. 

 
 

 
ii. The Research 
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OneBusAway was first evaluated by small samples of self-selected participants, 



recruited either from the computer science department at University of Washington- 

Seattle or from the OneBusAway Twitter feed. 

A larger study of 488 OneBusAway users revealed that 91% of them reported a 

reduction in wait time. Similarly, 92% of these users reported an increase in transit 

satisfaction – 48% “much more satisfied” and 44% “somewhat more satisfied” - 

indicating an incredibly high correlation (χ2=40.467, p < 10^-5) between the two factors 

(Ferris, Watkins and Borning 2010). The results are immense, for such a low-cost 

remedy. 

In follow-up internet surveys, users were provided with space to provide free- 

form answers as to how OneBusAway changed their transit experience. A majority of 

these responses could be classified as describing a psychological change – 38% who 

spoke about the reduced uncertainty of waiting for a bus, and 35% who spoke about the 

increased flexibility and ease of planning their journey. One comment cited as “typical” 

included: “The biggest frustration with taking busses is the inconsistency with being able 

to adhere to schedules because of road traffic. Onebusaway solves all of that frustration” 

(Ferris, Watkins and Borning 2011: 8). By comparison, only 25% of users made com- 

ments that could be classified as being about “saving time.” The other 10% spoke about 

the convenience of tools provided by the OneBusAway application. 

Access to their real-time transit app resulted in all types of stress reduction. While 

 
79% of users reported no change in their perceptions of safety, the remainder (particularly 

amongst women) described themselves as feeling “somewhat safer” or “much safer.” 
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These feelings stemmed largely from both decreased wait time and increased certainty 

about a bus’s arrival – particularly at night or at “unsavory” stops. 

OneBusAway also contributed significantly to changes in travel behavior. There 

was an overall increase in the number of trips taken per week, particularly for trips not 

related to the users’ commutes. More surprisingly to the authors was the finding that a 

full 78% of users reported an increase in walking activity, averaging an additional 6.9 

blocks per week. These users most commonly walked to a stop on a different route 

altogether (reported by about 70% of users), although walking further down their initially 

selected route rated a close second (reported by 50%). One respondent explained that, 

“Before OneBusAway, I played what I like to call Metro Roulette: start walking to the 

next stop for exercise, and hope my bus didn’t pass me by. Now, though I miss out on the 

adrenaline rush elicited by Metro Roulette, I can make an informed decision about 

whether or not to walk to the next stop...” (Ferris, Watkins and Borning 2011: 10). 

The users’ primary gripe was about the reliability of the data, which the application 

itself does not generate – rather, it simply relays information provided by the city’s transit 

agency – although the researchers did suggest that the users themselves might help 

improve the city’s tracking, by being able to crowdsource user-generated corrections. But 

users also had a number of helpful suggestions for improvement, “including requests for 

native apps tailored to specific mobile devices, location-aware search, real-time trip 

planning, better management of frequently accessed stop information, and easier search 

all recurrent suggestions” (Ferris, Watkins and Borning 2010: 7). 

A follow-up study determined that use of OneBusAway decreased not just actual 
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wait-time, but perceived wait-time; previous studies have shown that providing real-time 

arrival information can reduce perceived wait time fell by as much as 20% (Dziekan and 

Kottenhoff 2006). Via interviews with transit commuters at eight bus stops around the 

University of Washington, the researchers found that OneBusAway users report waiting 

an average of 7.5 minutes for a bus - compared to 9.9 for those who use traditional travel 

information – and furthermore, that OneBusAway users perception of their wait time 

more accurately represents their actual wait time (Watkins et al. 2011). And of the 156 

respondents surveyed by researchers, the researchers also found that real-time 

information users did, as a matter of fact, wait two minutes less than their counterparts 

who utilized traditional means. 

In addition to their findings on real and perceived wait-time, researchers also 

found that OneBusAway users reported similar levels of aggravation when using the bus, 

as compared to those who did not have access to real-time information. After this follow- 

up study, the researchers did voice a concern “real-time information users are a self-se- 

lecting group, which has a naturally higher level of aggravation with waiting for the bus 

and real-time information brings their aggravation down to the level of a typical rider” 

(Watkins et al. 2011: 847). The researchers have announced plans to conduct a longitud- 

inal study in the future. The question of equal distribution of real-time transit apps has 

yet to be closely or definitively examined. 

 
Seattle inaugurated their light rail system in 2009, after the initial debut of OneB - 

usAway. To that end, OneBusAway researchers partnered with Transportation Choices 

Coalition (TCC) to conduct a study in which participants would be provided with “ a sub- 
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sidized transit pass, initial training in the use of public transit, email reminders, and a re - 

wards program with local businesses” (Ferris 2011: 144). Half of those participants 

would also be trained in the use of OneBusAway, and the other half used as a control. 

Temporary free bus passes have been previously shown as to boost bus traffic, by simply 

introducing drivers to a public transit system with which they were not previously famili - 

ar (Fujii and Kitamura 2003). 

While the group who used OneBusAway did report higher usage of transit, the 

difference did not qualify as statistically significant; rather, the most important factor for 

increased transit use was the provision of the subsidized transit card. Trip planning tools, 

however, did qualify as the most important factor for promoting modal shift from auto - 

mobile to transit. Researchers concluded that OneBusAway provided an easier user ex- 

perience to existing users of public transit – to the detriment of new users who possess 

less familiarity with the system – and that future versions of OneBusAway should carry 

trip planning features. 

Of course, third-party apps are only as strong as their data feed. When a severe 

snowstorm hit Seattle in 22 November 2010, for instance, the altered routes and delays 

prompted Seattle Metro to cancel their data feed: "The technology hit its limitations at the 

very time people needed it most — when slick roads turned icier and numerous traffic 

accidents left much of the region in gridlock Monday night." For lack of real-time 

information, local third-party app OneBusAway instead displayed the equally erroneous 

scheduled arrival times (Long 2010). Increased reliance on real-time information can 

actually generate a disproportionate amount of grief when that real-time information 
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turns out to be incorrect. 
 

 
 

2.4 Limitations 
 
 
 

 
As amazing as technology has become, there appears to be a large gap between its 

record and its rhetoric. Sci-fi novels of an earlier era expected human society to transform 

in a flurry of jetpacks and travels to other worlds; instead, the 21st  century has been 

largely characterized by a renaissance of interconnectivity and transparency throughout 

our own single, familiar globe. But even in the middle of the current mobile computing 

gold rush, research has already pinpointed a number of concerns to keep in mind. 

 
 

 
i. Universality 

 

 
 
 
 

Smartphone ubiquity is not guaranteed. Granted, users of once cutting-edge 

technologies do eventually begin to better resemble the population as a whole: three years 

after its public debut in 2006, the makeup of U.S. Facebook users finally began to mirror 

the country’s actual internet population (Axon 2009). But the steady march of technology 

can often find itself subject to hyperbole, and the idea that the latest gadget can 

essentially rework society is usually an idea propagated by a privileged few: 
 

 
 

“A majority of mobile Internet users are young, affluent, urban-dwelling 

professionals. They are on average between the ages of 16 and 34, living in a city and 

making more than $65,000 a year. Nearly three quarters of daily users are 

40 | 



professionals…Overall, the study seems to contrast the general hype around mobile 

Internet and serve as a gentle reminder that, while we may surround ourselves with the 

technologically affluent, this isn't yet the norm for the whole of society. There is a 

definite demographic that uses the Internet on their mobile phones and, outside of that, 

it remains a costly, unusable and unavailable option in the public's eyes” (Melanson 

2010). 
 

 
 
 
 

Furthermore, the cost of a smartphone and its data plan may provide an extra 

hurdle for many public transit users. Users of public transit - particularly in the United 

States and Canada, where automobile use can constitute a substantial component of 

middle-class affluence - tend to be economically-marginalized. In the past, transit agen - 

cies have expended a disproportionate amount of capital in an attempt to lure middle- and 

upper-class commuters (as opposed to the lower-income commuters whose transit use can 

largely be taken for granted). The ridership of these two classes tends to forward distinct 

economic ends: 

 

 
 

“Due to financial constraints and auto unavailability, these disadvantaged riders could 

be counted on in spite of poor service and inequitably high fares. In contrast, the 

middle-income and upper-income segments of the market, primarily in the suburbs or 

outer portions of central cities, were seen as constituting a very demand-elastic 

submarket requiring high-quality service at heavily subsidized fares to woo them away 

from their automobiles. Discrimination in service distribution and fare structure might 
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also result from efforts to enhance transit’s effectiveness at promoting energy 

conservation, downtown revitalization, roadway congestion relief, and pollution 

abatement. The success of transit in contributing to the achievement of these 

environmental and economic goals depends primarily on the extent to which former 

auto drivers can be converted to transit riders. Because auto use is strongly correlated 

with income, transit programs aimed at reducing auto use almost inevitably involve 

preferential treatment for affluent riders. Given these incentives, one would expect to 

observe a pattern of unequal subsidization where those types of transit most relied on 

by the poor were the least subsidized and where those services used most frequently 

by the affluent were the most heavily subsidized…[and] this is indeed the case.” 

(Pucher 1982: 316) 

 
 

 
One study found that smartphone users could be correlated to an extraverted 

personality (although respondents were recruited off social networking sites, which may 

over-represent extraverts in the first place) (Lane and Manner 2011). A Finnish study 

found that self-perception can have a significant impact on smartphone use, as users who 

don’t consider themselves tech-savvy hesitate to adopt a smartphone at all (Verkasalo et 

al. 2009) And despite widespread, even constant use, technological expertise also tends to 

become device-specific, rather than systemic: "Experienced users (casual users and 

experts) exhibited superior performance for representative tasks. This is mainly 

attributable to faster navigation and better knowledge of interface terminology, not to 

deeper conceptual representation of the problems" (Oulasvirta, Wahlström and Ericsson 
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2010: 155). Increased access to knowledge need not lead to wisdom. 

 
But with regard to demographics, one of the relatively rare longitudinal studies on 

digital technology found that individuals of lower socioeconomic status actually 

demonstrate more reliance on their iPod Touch than their peers who possess higher status 

(Tossell 2011). And actually, while a higher level of income was one of the most reliable 

predictors for smartphone ownership, the demographic distribution often trended in a 

different direction: while 30% of non-Hispanic whites owned smartphones, that number 

was actually 44% for African-Americans, Hispanics, and Asian/Pacific Islanders (Smith 

2011, Quick 2009, Sage 2011). This may stem from the additional finding that, in cases 

where the smartphone served as a primary means of internet access, the correlation 

between income and usage became negative (Moss et al. 2011). That is, individuals 

without regular internet access at home may make up for it with increased mobile internet 

use. 

Considering that minority populations and poverty have both been on the rise, it 

behooves researchers to focus more attention on these classes. And in fact, different 

demographic groups have utilized technology in different ways, such as lower 

socioeconomic classes who display higher levels of sharing (Yardi and Bruckman 2012). 

And whereas white populations have statistically higher ownership of desktop computers 

and broadband internet access, African-Americans have actually become the most active 

and fastest-growing population of mobile internet users (Yardi and Bruckman 2012). As 

such, one should consider the very real possibility that smartphone transit use might 

actually over-represent poorer, transit-reliant populations. 
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More than any other demographic group, however, smartphones have been adopted 

by the younger generation, which risks the possibility of a new digital divide. At the same 

time, older populations may have the most to gain from user-centric transit information: 

not only do many studies suggest that the elderly actually become more mobile with age 

(Scott et al. 2009), but elderly citizens that lose their ability to operate an automobile may 

increasingly rely on efficient, wait-minimal public transit. 

OneBusAway researchers did suggest, however, that there are ways to work 

around such a digital divide, including “implement[ing] a free-511 program similar to the 

free-911 program in which inactive cell phones can still make emergency calls. Such a 

program could distribute older cell phones and chargers to the transit-dependent popula - 

tion to enable access to real-time information at every stop in a system without the use of 

expensive real-time arrival signage” (Ferris et al. 2011). Of course, these programs have 

yet to grant universal access to individuals in need of emergency assistance; one could 

reasonably question the ability to achieve similar distribution just to save time while 

waiting for a bus. 

 
 

 
ii. Open Data 

 

 
 
 
 

In 2009, the City of Vancouver passed a resolution to “freely share with citizens, 

businesses and other jurisdictions the greatest amount of data possible” (CBC 2009). 

Instituting data transparency – ‘open data’ - comes with serious logistical challenges, as 

all the data gathered in the process of governmental duty has to be gathered, catalogued, 
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uploaded, and then continually updated. But beyond the technical aspects, City Hall had 

 
to undergo a fundamental transformation: “The initiative doesn’t just involve a handful of 

techies toiling in the bowels of city hall, but depends on every one of the city’s 9,000 

employees buying into the notion of constantly feeding the data they collect into this 

common database” (Jordan 2011) Two years later, the City of Vancouver won the title of 

“Most Innovative Organization in B.C.” from BCBusiness. 

One of the leading proponents for open source software, Tim O’Reilly, has often 

spoken of ‘Gov 2.0,’ or “government as platform,” which proposes “a new compact 

between government and the public, in which government puts in place mechanisms for 

services that are delivered not by government, but by private citizens” (O’Reilly 2009). 

This philosophy evolved directly out of innovations from the tech community, best 

summed up by a mantra known as ‘Linus’ Law.’: “Given enough eyeballs, all bugs are 

shallow.” Essentially, open data proposes to utilize the pro-active curiosity and ambition 

– of both common citizens and free market denizens alike – to crowdsource away the 

inefficiencies and deficiencies of government. 

These sorts of measures prompt another concern, as to both the strength of the local 

mobile network, and the accessibility of that city’s transit data. A study on data 

accessibility pinpointed Boston/Cambridge as the metro region that provided the most 

easily accessible transit data, with Poughkeepsie, Portland, Washington D.C., and San 

Diego rounding out the top five. And while New York City and Los Angeles displayed 

significant openness, their overall score was reduced by a lack of coordination between 

their multiple transit agencies. And when compared to the strength of a city’s mobile 
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network, no cities placed in the top five for both categories; rather, first place for 

strongest mobile network  went (unsurprisingly) to San Jose, followed by Philadelphia, 

Milwaukee, Salt Lake City, and Phoenix (Moss, Mandel and Qing 2011) 

It also bears mentioning that outside observers have suggested that Gov 2.0 “is 

predicated on a positive notion of liberty that shares little with the contemporary 

expectations of government as a pro-active provider of services, and agent of last resort,” 

going so far as to describe ‘Gov 2.0’ as a “neo-liberal Trojan horse” (Chen 2011). The 

ability to utilize data requires significant cultural capital, and brings with it the risk of a 

‘data divide’ that runs parallel to the better-known ‘digital divide’ (Gurstein 2010). As a 

stand-alone tactic of civil engagement, open data can essentially amount to an 

‘empowerment of the empowered,” as evidenced by ‘Bhoomi,’ Bangladesh’s program to 

computerize and publish its twenty million land records: 

 
 

 
“[Bhoomi] allowed the well to do to take the information provided and use that as the 

basis for instructions to land surveyors and lawyers and others to challenge titles, 

exploit gaps in title, take advantage of mistakes in documentation, identify 

opportunities and targets for bribery, among others. They were able to directly 

translate their enhanced access to the information along with their already available 

access to capital and professional skills into unequal contests around land titles, court 

actions, offers of purchase and so on for self-benefit and to further marginalize those 

already marginalized.” (Gurstein 2010). 
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Despite its many laudable goals, Gov 2.0 does not appear capable of engineering 

corruption or unfairness out of existence. Although it might reorganize the playing field 

in new and perhaps fairer ways, the game itself can still have winners and losers – and 

some winners may simply have found new ways to cheat. 

 
 

 
iii. Privacy 

 

 
 
 
 

Ubiquitous computing can lead to serious concerns about privacy and cybersecur- 

ity: "Cisco has seen the emergence of so-called ‘smishing’ campaigns – phishing attacks 

aimed at previous smartphones term where the user can click on a link. More common, 

however, is the use of SMS messages, apparently from a trusted source, such as a bank, 

that encourage the user to call a number and reveal personal information – in other words, 

social engineering" (Network Security 2009). Smartphone users have also been found to 

be especially vulnerable to new scams, due to "to the ‘always on’ nature of smartphones, 

the fact that many of these platforms use push email technology and that users are always 

likely to be near their phone" (Computer Fraud and Security 2011). And just as desktop 

computers can struggle with computer viruses, smartphone viruses can pose an even 

greater risk, precisely due to the smartphone’s direct access to the user’s social networks, 

personal information, and even its sensing capacity (Li and Im 2011). 

Users may have reason to worry about more than intrepid hackers. In early 2011, 

news reports surfaced that both Apple and Google regularly collected location data on 

their users, ostensibly to create maps of wi-fi spots; Google later defended their actions 
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by reiterating that users could manually opt-out of their phone’s location-awareness 

(although this would disable any use of maps) (Angwin and Devries 2011, Devries 2011). 

In the United States, law enforcement has increasingly turned to tracking suspect’s 

phones, often without a warrant; these procedures may run counter to the Fourth 

Amendment’s protection against “unreasonable searches and seizures” (Vanentino- 

Devries 2011). In 2012, the United States Supreme Court ruled that secretly installing a 

GPS device on a car to track subjects did, in fact, violate the Fourth Amendment. But 

they skirted around any more comprehensive ruling about modern technology’s threats to 

personal privacy; while voting with the majority, Justice Sotomayor urged further 

consideration: 

 

 
 

In the pre-computer age, the greatest protections of privacy were neither constitutional 

nor statutory, but practical. Traditional surveillance for any extended period of time 

was difficult and costly and therefore rarely undertaken. The surveillance at issue in 

this case—constant monitoring of the location of a vehicle for four weeks—would 

have required a large team of agents, multiple vehicles, and perhaps aerial 

assistance…Devices like the one used in the present case, however, make long-term 

monitoring relatively easy and cheap. In circumstances involving dramatic 

technological change, the best solution to privacy concerns may be legislative (United 

States of the Supreme Court 2012). 

 
 

 
On a more utilitarian level, users who carry their lives in their wallets are at risk of 
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having those lives stolen; when even an average, non-specialist mugger steals a victim’s 

phone, they are no longer just stealing a quick buck, but access to their victim’s social 

networks, e-mail, and other sensitive information. Relatively few users take 

precautionary measures to protect this information from others, outside of password 

protection (provided that they haven’t logged in permanently, or selected a password such 

as ‘password’). One consumer study determined that only half of the participating 

smartphone users know how to turn off location tracking, and only a third know how to 

disable geotagging (PR Newswire 2012). In recruiting participants online, this survey 

may even have overrepresented respondents’ technological literacy. 

 
As late as March 2012, applications for both Google and Android phones had the 

capacity to access and upload a smartphone’s private photos without explicit permission 

(Chen and Bilton 2012). A Google spokesperson attributed the design flaw to a holdover 

from earlier generations of smartphones, when photos were stored on removable SD 

(“Secure Digital”) cards. This explanation provides little comfort: 

 

 
 

“…[W]e carry around location-sensitive, accelerometer-equipped A/V recording 

devices at all times (our phones). Adding network capability to these things means that 

design flaws, vulnerabilities and malicious code can all conspire to expose us to 

unprecedented privacy invasions. Unless you're in the habit of not undressing, going to 

the toilet, having arguments or intimate moments, and other private activities in the 

presence of your phone, you're at risk of all that leaking online. 

 

[But] neither the devices' designers nor their owners have gotten to grips with this yet. 
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The default should be that our sensors don't broadcast their readings without human 

intervention. The idea that apps should come with take-it-or-leave-it permissions 

‘requests’ for access to your camera, mic, and other sensors is broken. It's your device 

and your private life. You should be able to control -- at a fine-grained level -- the 

extent to which apps are allowed to read, store and transmit facts about your life.” 

(Doctorow 2012) 

 
 

 
Public embarrassments such as these have prompted increasing interest in how a 

user can either limit the amount of public information generated by their smartphone use, 

or reinstitute the privacy that many users have inadvertently and unknowingly 

relinquished (Cristofaro et al. 2011, Gilbert et al. 2011). 

 
 

 
iv. Negative Impacts 

 

 
 
 
 

Technological development has always generated pushback, from English textile 

workers taking direct action against their looms to modern disregard for daily e-mails and 

social media fads. Critics point to catastrophic instances in which technology has played 

a fatal role: in 2008, an engineer on a Los Angeles commuter train sent a text message 

only twenty-two seconds before running a red light and colliding head-on with a freight 

train on the same track, killing twenty-five people and injuring 125 others; on the third 

anniversary of the tragedy, local city officials declared “Don’t Text and Drive Day” 

(Deng 2011). 
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In many instances, personalized technology has been likened to a 'social shield' that 

removes people from societal interaction, rather than integrates them (Bassoli et al. 2007) 

A parallel study found that sixteen pedestrians in the United States had been killed or 

injured while wearing headphones in 2004, compared to forty-seven in 2011 (Lichenstein 

et al. 2012) The National Traffic Safety Commission, in 2009, published findings that 6% 

of all auto accidents can be traced to personal use of cell phones (Dossey 2009). 

Smartphones have also been subject to criticism because of their impact on human 

psychology: 

 

 
 

“The smartphone, said [Dr. David E.] Meyer, a cognitive psychologist [at University 

of Michigan], can be seen as a digital ‘Skinner box,’ a reference to the experiments of 

the behavioral psychologist B. F. Skinner in which rats were conditioned to press a 

lever repeatedly to get food pellets. With the smartphone, he said, the stimuli are 

information feeds. ‘It can be powerfully reinforcing behavior,’ he said. ‘But the key is 

to make sure this technology helps you carry out the tasks of daily life instead of 

interfering with them. It’s about balance and managing things’” (Lohr 2009). 

 
 

 
In a society that increasingly enables multi-tasking, the human brain rarely does it 

very well – in fact, that a multi-tasking person can take more time and generate more 

errors than those individuals who simply focus on each task one at a time (Ophir, Nass 

and Wagner 2009). And yet, mobile phone technology strongly appeals to capitalist- 

friendly notions of efficiency and productivity, even if the data suggests that these 
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achievements are largely an illusion (Nafus and Tracey 2002). Users may also process 

digital media so quickly that the brain doesn’t have time to develop admiration or 

compassion – as opposed to responding to images of pain, which happens almost 

instantly (Immordino-Yang et al. 2009). The human brain spent millions of years learning 

to think in a manner that modern, digital society no longer demands. 

There is also a question of the human cost. Eighty percent of the global supply of 

coltan - a heat-resistant mineral ore whose refined state can hold a high electrical charge, 

and which features in a wide variety of electronics - can be found in the Democratic 

Republic of the Congo, and its extraction has helped to fuel the war and devastation in 

the region (Rogerson 2003, Carmody 2009). Furthermore, Chinese factories that produce 

iPhones and iPads possess such harsh working conditions that some migrant workers 

have been driven to suicide as a form of protest (Chan and Pun 2010). 

 

 
 
 
 
 

Methodology 
 
 
 

 
Smartphone transit data can provide a second-by-second, city-wide picture of 

transit use by the smartphone-owning population. By analyzing this data, we can 

determine if users of smartphones ride public transit at the same times, and on the same 

routes, as the general commuter population. 

A general web-survey might also provide a qualitative overview of why and how 

people utilize their smartphone applications. And for those routes that prompt more or 
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less application use than statistically expected, we can attempt to determine factors that 

influence smartphone usage across the transit system. 

 

 
 
 
 
 

3.1 Chicago Transit System 
 
 
 

 
Chicago's transit system combines both rail and bus transit in order to serve a city 

population of approximately 2.6 million people. The rail transit operates under a hub-and- 

spoke model, circling around the downtown (known locally as “the Loop”) before 

leaving the Loop to the further reaches of the city. The rail lines are labeled by color, and 

include the Red Line, Blue Line, Green Line, Brown Line Pink Line, Orange Line, Purple 

Line, and Yellow Line. Two of these lines – the Red and Blue – run non-stop. The rest of 

the lines typically run about 20-22 hours per day. The Purple Line runs as an express 

route to downtown during morning and evening rush periods, but otherwise reach from 

the northernmost neighborhood of Chicago to the nearest northern suburb of Evanston. 

The Yellow Line, also known as the “Skokie Swift,” travels non-stop between Chicago’s 

Far North Side and a northern suburb, Skokie. 

The City of Chicago is further served by over 2,000 buses that travel one hundred 

and forty bus lines, which aim to serve the 227 square miles of land that rest within 

Chicago city limits (CTA 2012). By 2009, the CTA transported almost one and a half 

million riders a day, while the L alone averages over 150 million riders every year 

(Chicago Sun Times 2010). Upon reaching city limits, the suburbs are served by a 
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separate bus system, known as Pace. AnyStop does not record any use of the suburban 

bus system. 

 
3.2 Data Collection 

 
 
 

 
For the purposes of this thesis, data was collected in two stages. 

 

 
 
 
 

i. Quantitative Data 
 

 
 
 
 

Much like OneBusAway (as explained in Section 2.3), real-time transit apps 

allows users to query arrival times for city buses to particular stops, access maps of local 

stops and routes, and receive directions on how to navigate from one place to the other 

via public transit. This thesis collected data from two apps: 

Firstly, 'raw data' was collected from event logs for users of AnyStop, a real-time 

transit application available for Droid smartphones. Upon personal request, AnyStop's 

developers provided me with access to their account on Flurry, a website platform which 

collects and aggregates user data of various smartphone applications. On the aggregate 

level, Flurry recorded the amount of use that AnyStop received, the average length of a 

session, the geographic distribution of said sessions, and the users' navigation of the 

program itself. Flurry also recorded every session of AnyStop ever used, tracked by nine 

distinct variables. 

From 10pm EST on Monday, 13 December 2010 to 12:30am EST on Tuesday, 28 

 
December 2010, I manually saved the records of AnyStop use. My data files also show an 
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absence of activity from 11:40:12PM EST on Sunday, 19 Dec 2010 to 1:38:59AM EST 

on Monday, 20 Dec 2010, most likely as a result either of AnyStop maintenance or errors 

in downloading the data. Downloads had to be conducted manually, file-by-file, and in 

deference to a full-time work schedule – so while a two-week holiday period may not 

constitute an ideal time for collecting transit data, it was the only foreseeable period 

where a solo researcher could consistently collect data for several hours a day without 

foregoing other responsibilities. 

As a secondary source of data, I also received three months of data for TreKing, a 

real-time transit application local to Chicago. In this instance, the developer went into 

TreKing's use history and downloaded use data for the months of April, May and June 

2011, and delivered summary files directly to the author. Unlike the AnyStop data, use 

data for TreKing did not include time-stamps, individual program actions, or model 

information. TreKing data consisted purely of total route ridership per month. As a result, 

the analysis of TreKing data could not provide insight into the distribution of app use 

throughout the day, or any information on how users navigated their app. 

For the purposes of this thesis, AnyStop data served as the primary source of 

analysis. When analyzing log odds ratio and complexity variables, however, I did analyze 

TreKing data as additional data sets. 

 
 

 
ii. Qualitative Data 

 

 
 
 
 

In order to obtain a general picture of the users and psychology behind real-time 
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transit applications, qualitative surveys were distributed in online forums. While such 

information does not directly bolster the analysis of quantitative variables, it may benefit 

the reader to hear from commuters in their own words. 

From January to March 2010, an online survey was posted on Craigslist in 

twenty-seven cities: twenty-five cities in the United States, one in Canada (Edmonton), 

and one in Australia (Perth). Cities were chosen based on having averaged 1,000 or more 

‘active users’ of AnyStop, in which ‘active users’ represents the number of people who 

have used AnyStop over the course of the past month. Although AnyStop debuted in San 

Francisco (whose residents, as of Feb 2012, make up approximately 7.3% of all active 

AnyStop use), the application has since expanded into dozens of cities across the world. 

These cities were surveyed: 

Edison, New Jersey; Denver, Colorado; Dallas, Houston and Austin, Texas; Fort 

Lauderdale, Florida; Las Vegas, Nevada; Honolulu, Hawaii; St. Louis, Missouri; 

Philadelphia, Pennsylvania; Albany and New York, New York; San Francisco, Los 

Angeles, and San Diego, California; Chicago, Illinois; Seattle, Washington; Boston, 

Massachusetts; Atlanta, Georgia; Portland, Oregon; Washington D.C.; Cleveland, Ohio; 

Durham, North Carolina; Minneapolis, Minnesota; Milwaukee, Wisconsin; Edmonton, 

Canada; and Perth, Australia. 

The survey attempted to gather information that couldn't otherwise be determined 

from the data collected by AnyStop. Comprised of twenty-five questions, survey queries 

fell into five general categories: 
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1) How frequently individual respondents use public transit and/or their transit 
 

apps, 
 

2) The purposes of their trips on public transit and/or their transit apps, 

 
3) How users travel behavior may have changed since they began to use their 

transit app (including whether there had been any modal shift from driving to public 

transit), 

4) What factors might increase or decrease their use of the transit app, and 

 
5) Respondent's basic demographic information. 

 
 
 
 

The survey accepted respondents who used smartphone transit apps of any type, 

in addition to AnyStop. Respondents were required to be at least fourteen years old, and 

were enticed into participating with the promise of two $25 Amazon gift cards, to be 

distributed at random upon completion of the survey. 

Because smartphone users have access to a vast ecosystem of transit and 

navigation apps, actual users of TreKing or AnyStop would not necessarily make up the 

majority of those who might complete the survey. As such, the survey accepted users of 

any transit app, many of which share strong similarities to the likes of TreKing, AnyStop, 

and OneBusAway. Results from the survey should not be considered definitive. 

For the full survey, refer to Appendix A. 
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3.3 AnyStop Data 
 
 
 

 
The original collection resulted in 4,278 individual .csv files, which collectively 

catalogued nearly 100,000 AnyStop sessions, and over a million individual events. 

Efforts were made to divide the bulk data into a handful of distinct cities - Chicago, 

Perth, Philadelphia, Portland, San Diego, San Francisco, and St. Louis - in the hopes of 

analyzing these cities individually, and going so far as to investigate factors – weather, for 

example - that might promote use of smartphone transit apps. Upon further consideration, 

however, it was decided to focus explicitly on Chicago, my hometown and a city whose 

public transit I know rather well. 

AnyStop Chicago recorded 120,808 individual events, which comprised 9,150 

individual sessions. Any sessions recorded on 13 December 2011 and 28 December 2011, 

because they provided information for only partial days, whereas the information for 

December 14-27 lasted from midnight to midnight. After trimming the data in this 

manner, I was left with 8,231 individual AnyStop sessions for Chicago, Illinois. 

 
For any use of AnyStop, the program had the capacity to record nine distinct 

variables, of which only seven record any information at all, and one of which recorded 

four sub-variables: 

 
 

 
i. Timestamp 
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Timestamp recorded the day and time at which an AnyStop sessions begins, in the 

format MM/DD/YR HR:MN:SC AM/PM PST; for example, 12/26/10 11:58:51 PM PST. 

All sessions were recorded in Pacific Standard Time, because AnyStop debuted and 

remains based in San Francisco, California. 

 
 

 
ii. Session Index 

 

 
 
 
 

Session Index indicates the sequence of actions taken by a user during their 

AnyStop Session. The original program action is labeled as 1, and each subsequent is 

labeled as 2, 3, 4 and so on, until the end of the session. 

 
 

 
iii. Event 

 

 
 
 
 

Event designates the action taken by the user. Possible actions include: 
 
 
 
 

AllRoutes: AnyStop provides a list of all routes in the user's current city. 

 
ByLocation: AnyStop provides a list of routes convenient to the user's current 

location. 

ErrorItem: An error has occurred when processing a specific request. 

 
FavRoutes: AnyStop displays a collection of the user's saved routes 
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FavStops: AnyStop provides links to the individual bus stops that the user most 



frequents. 

 
GeneralError: A system error has occurred. 

 
LocationMap: AnyStop displays a map around the user’s current location. 

NotFoundItem: AnyStop could not find the requested search query. 

PredictionItem: AnyStop queries the arrival time for a bus or train on a  particular 

transit route. 

 
StopList: AnyStop displays a list of potential stops where the user can arrive or 

depart. 

StopMap: AnyStop displays a map of potential stops where the user can arrive or 

depart. 

 
 

 
iv. Description 

 

 
 
 
 

This field, although present, remains blank throughout all AnyStop sessions. 
 

 
 
 
 

v. Version 
 

 
 
 
 

This field records the version of AnyStop being used by that particular user. 
 

 
 
 
 

vi. Platform 
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This field lists the computing platform on which AnyStop is operating. Since 

AnyStop exists purely as an Android application, this field lists “Android” in every 

instance. 

 
 

 
vii. Device 

 

 
 
 
 

This field identifies the phone model of the current user. 
 

 
 
 
 

viii. User ID 
 

 
 
 
 

This field remains blank for all sessions of AnyStop. While AnyStop does record 

the individual actions of all users, it does not collect individual user histories. 

 
 

 
ix. Params 

 

 
 
 
 

This field identifies four distinct sub-variables: 
 
 
 
 

RealTime: This variable is listed only “true” or “false.” If the program is being 

used in a city that exists in PST, then it is labeled as “true.” In all other cases, it is listed 

as “false.” 

Route: The program identifies the route which is being queried by the user. 
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Direction: Although present, AnyStop does not record the direction the user is 

traveling. 

Agency: AnyStop lists the transit agency providing the information; for example, 

“slippery-rock” for Slippery Rock University in Slippery Rock, Pennsylvania, or “vail” 

for Vail, Colorado. 

 
 
 
 

3.4 Complexity Variables 
 
 
 

 
Not all transit lines are made equal. For the purposes of this thesis, routes of 

Chicago’s public transit system were measured according to a series of complexity 

measures. In addition to charting the use of smartphone transit apps throughout the day 

and the city as a whole, complexity measures might give some insight as to why 

commuters use their apps for some routes more than others. These measures included: 

 
 

 
i. Route Length 

 

 
 
 

The CTA does not provide the length for Chicago-area bus routes. Lengths were 

calculated manually, via Google Maps, by requesting directions from the beginning to the 

end of a single route. The Google Maps Distance Calculator was then used to trace the 

route from one to the other. Efforts were made to trace bus routes as accurately as 

possible, and to achieve a route measurement to plus/minus 5% accuracy. 
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If the return trip took an identical route, the initial measurement was simply 



doubled. If the return trip took a slightly different route, the length of the return trip was 

also calculated separately. 

 
 

 
ii. Number of Stops 

 

 
 
 
 

Each bus and rail line in Chicago provides a list of stops on the CTA website. The 

number of stops included stops made in both directions, because the return route does not 

always make identical stops. 

 
 

 
iii. Stops Per Mile 

 

 

This metric combines the previous two variables into a measure that more 

 
accurately describes the accessibility of the route, based on the average distance along the 

whole route between individual stops. 

 
 

 
iv. Buses Per Hour 

 

 
 
 
 

This measure determines the average number of buses that a commuter can expect 

while standing at any given stops along that route. The average is determined in relation 

to the number of hours active per week. 

 
 

 
v. Hours Active 

 
 

63 | 



 

 

The Chicago Transit Association regularly publishes a schedule brochure that 

outlines the routes and hours of all bus and rail routes. According to the brochure for 

December 2010, I calculated the number of hours that each route was active during 

weekdays, Saturdays and Sunday/Holidays. Because total run-time varies according to 

the direction of the route (e.g., twenty hours going north, but nineteen hours going south), 

were measured in both directions. So for the purposes of the metric, a bus could be 

active for forty-eight hours a day – and over a two-week period, buses could be active for 

a maximum of 672 hours. 

 
 

 
vi. Corners 

 

 
 
 
 

As a measure of spatial complexity, I counted the number of turns that each bus or 

rail line made over the course of its route. Some routes had no such corners, as they 

simply went down one straight road for the entire length of their journey. I opted to count 

corners not geometrically, but systemically: for example, turning around via one-way 

streets did not count as four corners, but only one. Geometric turns along the same street, 

such as turning southeast while going south along Lake Shore Drive, did not qualify as 

corners. Similarly, turning around at the end of a route, without additional stops, did not 

count as a corner. 
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3.5 Standardization 
 
 
 

 
CTA releases Monthly Ridership Reports, which outlines the number of commuters 

per bus and rail line. For rail lines, the CTA can measure ridership by individual station – 

whereas for buses, CTA can only measure ridership as a whole. Although CTA does not 

release ridership numbers by the day, they do release the number of riders per average 

weekday, Saturday, and Sunday/Holiday. 

Using CTA's monthly ridership figures, I calculated how many riders rode the CTA 

over the course of December 14-27, both per route and for the system as a whole. I then 

calculated the percentage of CTA riders who rode each line – in that time, for example, 

2.00% of all CTA riders rode the #36 Broadway, a bus that travels north-south between a 

neighborhood in the Far North Side (Roger’s Park) and downtown. 

In an identical fashion, I calculated the percentage of AnyStop users who requested 

information for each line, in relation to the number of sessions that AnyStop registered as 

a whole. So while 2.00% of CTA ridership involved the #36 Broadway, 3.06% of all 

AnyStop use involved the same route. 

These numbers will help determine, firstly, if the system distribution of AnyStop 

corresponds to the regular ridership across the whole city. If AnyStop use were 

considered representative of CTA use as a whole, then percentage of AnyStop use per line 

should correspond to percentage of CTA use for that same line. If AnyStop use 

demonstrates statistically significant departures from that baseline, then we can 
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conceivably pinpoint those routes that have more or less ridership than expected. 
 

 
 
 
 

i. Discarded Routes 
 

 
 
 
 

As analysis progressed, ten bus routes (out of one hundred and forty-one) were 

discarded from AnyStop analysis. This left one hundred and thirty-one routes bus routes, 

not including the eight rail routes. 

Two routes – the 154 Wrigley Field Express and the 168 UIC/Pilsen Express – were 

not running during the period of data collection. The Wrigley Field Express only runs 

during baseball season (which does not include December), and the UIC/Pilsen Express 

did not run at all in December and would be eliminated entirely in May 2011. 

Six routes – the 54A North Cicero/Skokie Blvd., the 55N 55th/Narragansett, the106 

 
East 103rd, the 128 Solider Field Express, the 130 Museum Campus, and the 169 69th- 

UPS Express - were excluded due to zero AnyStop ridership, which prevented the 

calculation of an log odds ratio (due to “Dividing By Zero” errors). Four of these routes – 

the 54A, 55N, 106, and 169 – had low ridership routes on the edges of the CTA system. 

The remaining two – the 128 and 130 – provided transit either to special events (football 

games at Soldier Field) or to major tourist attractions (Museum Campus). 

Two routes – the 201 Central/Ridge and 201N Central/Sherman – were otherwise 

healthy data sets, except that AnyStop Chicago did not differentiate between the 201 and 

the 201N (the night bus). Each route has significantly different complexity measures, so 

the data for “201/201N” could not be connected to one or the other. Both sets of data 
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were discarded in order not to skew the dataset as a whole. 

 
When calculating TreKing data, these same routes were discarded, plus two 

additional routes for which TreKing had no data during one or more of the three sampled 

months. These routes included the 98X Avon Express, and the 122 Illinois Center/Ogilvie 

Express. 

 

 
 
 
 
 

Results 
 

 
 

4.1 Web-Survey Results 
 
 
 

 
Over the course of January-March 2011, the survey received 242 responses, of 

which 110 completed the survey in full. Twenty-nine respondents began the survey, but 

did not use transit apps. Personal identifiers were not collected, and participants received 

a full explanation of the research before providing consent. 

Twenty-nine of the initial respondents identified their transit app as “AnyStop.” 

Of those twenty-nine, twenty-four completed the survey. Half of them were students 

(65% were aged 14-30 and 37.5% of them made under $20,000/year), two-thirds were 

female, and 68.9% of them said that they lived within five minutes of a transit stop. 

While respondents used the app the most often to travel to work (25% used AnyStop five 

or more times per week), the largest share of them used AnyStop for leisure (41.7% of 

respondents used AnyStop for this purpose 3-5 times a week). In addition, a number of 

these respondents replied that they used multiple transit apps, most commonly NextBus 
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and TransitGuru. And yet, a majority of them (72%) reported that they’d only started 

using transit apps within the past five months. 

Only seven people responded that they used the TreKing application. Of these, 

 
five were female, all were between the ages of eighteen and thirty-five, and a majority (4) 

 
made between $20-40,000/year. 

 
Of the 110 responses, 27.5% replied that they were a student; besides this obvious 

outlier, personal professions appeared well distributed: 6.5% in 

Construction/Manufacturing, 7.2% in Education/Teaching, 8% in 

Technology/Programming, 13.8% in Science/Research, 9.4% in 

Office/Administrative/Retail, 2.2% in Civil/Government, and 25.4% in “Other.” During 

travel, only six people (5.4%) reported an increase in wait-time, while 13.6% reported 

that they saved as much as ten or more minutes, and another 30.9% who reported they 

saved 5-10 minutes. 56.4% reported using their app at least daily, and a third of them 

(31.8%) reported using it to get to work five or more times a week. Of all trip purposes – 

work, school, shopping and leisure – only 8.2% of respondents said that they never used 

their transit app for leisure purposes, followed by only 14.5% for shopping; 23.6% 

replied that they never even used it for work. 

Almost three-fifths of respondents also drove a private vehicle (63 of 110). Of those 

respondents, transit inaccessibility and time considerations ranked equally high for those 

who opted to drive (69.8% reported inaccessibility as the first or second most likely 

factor, compared to 73% who cited time). However, 42.8% of users also said that 

knowing real-time transit information was the first or second most likely factor why they 
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might choose to take public transit instead of drive (compared to 65.1% who cited 

 
‘driving conditions,’ and 54% who cited the reduced cost). 

 
In a section for freeform responses about how their travel behavior has changed, 

most respondents cited increased ease, comfort and confidence with their travel plans. 

Most of their thoughts were couched in positive terms - “I feel more comfortable taking 

the bus because I know exactly when my bus is going to be there (even though my line is 

notoriously late). It allows me to spend less time waiting and more time ‘doing’ ” – 

whereas only a single respondent focused on the general unpleasantness that they may 

have avoided: “I DONT HAVE TO CALL THE LOUSEY TRANSIT CUSTOMER 

SERVICE NUMBER AND WAITIN ONHOLD TO TALK TO A RUDE EMPLOYEE 

WITH USELESS INFO [sic].” 

A handful of respondents credited the app with increasing their public transit, or 

simply their “spontaneity” when making trips. One respondent – a user of OneBusAway, 

in Seattle - credited the application with their continued use of public transit: “ Bus 

service here has degraded under our economic conditions, but real-time transit apps allow 

me to keep riding the bus. Without these apps, I would not risk what might be a 15- 

minute wait for a late bus.” This response bears out the hypothesis put forward during 

transit cuts in Chicago, that smartphone apps make even reduced service more accessible 

(Doyle 2010). 

When asked how they might improve their apps, a few did request additional 

features, like “There is now [sic] way to tell the system how much walking is one willing 

to do... option to optimize for time vs walking distance,” or “THEY SHOULD USE A 
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GPS SYSTEM TO GUIDE YOU TO ELEVATORS OR ESCELATORS( IM 

DISABLED) [sic].” More than anything, users criticized perceived inaccuracies in the 

program. Some lamented how the phone had a difficult time ascertaining their location 

(“Cell towers do not always properly locate me and so the app will misjudge where I am 

in relation to a stop, sometimes by a considerable distance”). But most users criticized 

inaccurate transit information, although only some of the respondents acknowledged that 

this information was provided by the local transit agency. And a few complained they 

could not use their application underground (which, again, cannot fault the app). 

 
 

 
i. Limitations 

 

 
 
 
 

Firstly, the recruitment of participants off an internet website introduces the 

potential for selection bias. In relation to the use of smartphone applications, users of an 

online message board may be able to navigate digital technology at an above-average 

level. Posting the advertisements in the section for “Volunteering,” meanwhile, may have 

self-selected for helpful participants, whereas offering a reward in the form of an Amazon 

gift certificate may entice additional but not completely altruistic or truthful participation. 

This research does not, however, primarily focus on qualitative or behavioral data. 

This survey was designed to develop a general overview of how a populace, even self- 

selected, uses smartphone transit applications. 
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4.2 Decision-Making Tree 
 
 
 

 
By gathering transit information via smartphone, researchers have the compelling 

capacity to watch decision models as they unfold. AnyStop records “User Paths,” the 

step-by-step decision-making process of its users as they navigate the app. This user-path 

is handily represented as a decision-tree, tracking three actions deep into the start of 

AnyStop, over the course of millions of sessions (links in green can be further expanded, 

whereas links in grey effectively mark the end of AnyStop’s user-path data). 
 
 
 

 

 
 

Figure 4.1: AnyStop User-Path, Start Session-->AllRoutes-->PredictionItem 
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Upon the activation of the program, the first act of a near majority of users – 

 
43.3% - is to immediately request a ‘PredictionItem,’ in order to determine the arrival 

time of their particular route. The second-most common choice, making up slightly less 

than a quarter of all initial actions, is to request ‘FavStops,’ indicating a regular user’s 

desire to query their regular routes. The third-most common choice is ‘ByLocation,’ the 

action taken by about one-sixth of all users attempting to locate a route convenient to 

their current position, as determined by the smartphone’s GPS. The four-most common 

action is ‘AllRoutes,’ in which a user would peruse the entire selection of their city’s 

transit routes, in order to choose the appropriate route (and, by extension, one which has 

not already been saved in ‘FavRoutes’). 

In the vast majority of instances where a user does not initially request a 

 
‘PredictionItem,’ the vast majority of them do so within the first three actions. Over the 

course of millions of sessions, by volume, ‘PredictionItem’ makes up the lion’s share of 

all uses of the app. This dovetails quite well with prior research on the subject, which 

suggests that minimizing wait time is one of the primary goals of commuters who already 

possess both a functional transit system, and a familiarity with that system. 

When conceptualizing how commuters utilize their transit apps, this decision tree 

offers a wide-scale snapshot of what might be on the mind of transit users. The 

prevalence of ‘PredictionItem’ suggests a primary, overriding interest in immediate 

concerns over wait time, and not necessarily future navigation. 

‘PredictionItem’ can, by itself, not necessarily determine whether commuters are 
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or are not already familiar with their route – although it does require the user to identify 

the route in question, the program cannot determine whether the user is recalling this 

route from memory or from reading it off a transit schedule or bus stop. On the other 

hand, the fifth of users who initially request ‘FavRoutes’ at the very beginning of the 

program are taking an action that strongly suggests prior familiarity, to the point of 

having saved that route; 96% of users who start their session with ‘FavRoutes’ then 

proceed straight to ‘PredictionItem.’ 
 
 
 

 

 
 

Figure 4.2: AnyStop User-Path, Start Session-->FavStops 
 
 

 
The next most popular choice, ‘ByLocation,’ suggests quite the opposite, as users 

who use this function are requesting information about their environment; indeed, 56% of 

users who start their session with “ByLocation” then request a Location Map, while 

another 38% request a StopList. 
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Figure 4.3: AnyStop User-Path, Start Session-->ByLocation 
 
 

 
It still remains impossible to determine the relative degree of that user’s 

knowledge; users may just as easily use the function when turned around in a familiar 

neighborhood as when lost in a completely foreign one. 

Nevertheless, and of the options provided to users of AnyStop, the question of 

wait-time seems to demand a disproportionate amount of attention. It caters to a sense of 

instant gratification, as well as soothing the uncertainty that comes with relying on others 

to transport you from one place to another. 

 

 
 
 
 
 

4.3 Daily Use Analysis 
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AnyStop data was first analyzed by use level throughout the course of the day. It 

was hypothesized that AnyStop use would peak in evening times, as users would travel 

from work to recreation, or from work or recreation to home. The null hypothesis 

proposed no discernible pattern throughout the day. 

Using Microsoft Excel, I counted the number of AnyStop sessions that occurred in 

hour intervals (0:00:00am-0:59:59am, 1:00:00am-1:59:59am, et cetera). Those counts 

were then plotted on a line graph, so as to visually plot the use of AnyStop over the 

course of the day. These fourteen days consisted of ten weekdays, one Saturday, and three 

Sunday/Holiday schedules (including Christmas, on December 25). Of the fourteen days 

calculated, this resulted in data for six distinct plots: Weekdays, Saturday, Sundays, 

Weekends Without Christmas, Sundays Without Christmas, and Christmas Day. 
 
 
 

 

 
 

 

Figure 4.4: AnyStop Hourly Use, Weekday 
 

 
 
 
 

Upon viewing the graph for use during Weekdays, AnyStop usage demonstrates a 

classic weekday transit pattern: a peak during morning and evening rush hours (Park, 

Kim and Lim 2008, Currie and Loader 2009)). It also includes a smaller but significant 
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peak between 12pm and 1pm, the traditional lunch hour, which has also been found in 

 
previous studies of travel behavior (Hunt et al., 2005). 

 
 
 

 

 
 

 

Figure 4.5: AnyStop Hourly Use, Sundays (Left) 

Figure 4.6: AnyStop Hourly Use, Saturday (Right) 

 

 
Saturday shows a significant peak in the mid-afternoon from 3-4pm, which made 

up 13.6% of all AnyStop use that day. More broadly, Saturday displays a relatively 

evenly elevated period of transit use that lasts throughout the day, from 6am to 7pm. 

Sundays, by contrast, demonstrated more varied use throughout the day. Previous studies 

of weekday travel behavior in Calgary and San Francisco have found plateaus in transit 

use around 12-5pm on Saturday, and 11-5pm on Sunday (Hunt et al., 2005). AnyStop 

usage suggests a similar trend, albeit while fluctuating more erratically, and subsiding an 

hour or two later (around 6-7pm). 

However, that the study period only gathered data for one ‘normal’ Saturday 

(December 18th), because Christmas Day fell on Saturday of the next week, thereby 

prompting the CTA to run on a Sunday/Holiday schedule. To that end, a measure of 
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“Weekends” may not be considered wholly representative. 
 
 
 

 

 
 

 

Figure 4.7: AnyStop Hourly Use, Weekends w/o Christmas (Left) 

Figure 4.8: AnyStop Hourly Use, Christmas Day (Right) 

 

 
Nevertheless, activity during Christmas Day does display similar ebbs and flows 

throughout the course of the day, as are found in an otherwise Christmas-less weekend. 

Weekends displays a daytime peak between 3-5pm, and a gentle ebbing of traffic from 5- 

9pm (plus an additional end-of-day peak that likely corresponds to Saturday nightlife). In 

comparison, Christmas Day experienced a more dramatic drop-off around dinner, and 

sustained activity thereafter which could represent post-dinner departure traffic. 

Although Christmas Day could have disrupted overall travel behavior, it does 

nevertheless display similar peaks as Sundays and Weekend. Sundays and Christmas Day 

display significantly more activity during the morning hours, which may correspond to 

either brunch or church services. 
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Figure 4.9: AnyStop Hourly Use, Sundays w/o Christmas 
 

 
 
 
 

These findings effectively refute both the hypothesis and null hypothesis. Not only 

does smartphone transit use display a distinct pattern, but these patterns occur generally 

in line with use of the transit system as a whole. It remains to be determined whether the 

accumulation of additional data, over a longer period of time, would bring the use of 

smartphone transit apps even more in line with the trend of the overall city. 

There may be indications, however, that smartphone transit use may peak slightly 

after the peak in the general population. This observation may dovetail with the next set 

of findings, which attempts to correlate AnyStop use with certain complexity variables in 

the local transit lines. 

 
 
 
 

4.4 Log Odds Ratio 
 
 
 

 
An odds ratio was calculated in order to compare ridership between lines on 

 
AnyStop and the CTA system as a whole. An odds ratio, as per its name, calculates the 
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relative chances that similar results would occur in a comparable data set: in this instance, 

relative ridership users of a smartphone transit app versus the ridership on the transit 

system itself. Commonly used in public health studies, it serves well in this type of 

research, in which ridership numbers collected by the CTA can serve as the “control” 

population, and numbers gathered from AnyStop and TreKing data can serve as the test 

group (Bland and Altman 2000). By taking the natural logarithm of this ratio, one can 

arrive to the confidence interval: any result between 1 and -1 falls within the bounds of 

expected probability. In this particular instance, anything above 1 or below -1 would 

suggest a relatively positive or negative departure from statistically expected ridership. 

Of 131 bus routes and eight rail lines, the average log odds ratio comes to 

approximately .109, with a standard deviation of 1.081 across the entire sample. As a 

whole, the data set trends closely to the prediction. Across the 139  lines, only twenty-five 

showed ridership above 1, and only sixteen showed less than statistically expected use (- 

1); approximately 29.5% of all routes do not display similar AnyStop use as they did 

ridership levels. That leaves 70.5% of all routes whose ridership levels closely align with 

that of the overall distribution of hundreds of thousands of passengers using public transit 

across the city. 

Those routes with higher ridership than expected include: #1 Indiana/Hyde Park, #2 

 
Hyde Park Express, #5 South Shore Night Bus, #10 Museum of Science and Industry, 

 
#11 Lincoln/Sedgwick, #19 United Center Express, #33 Mag Mile Express, #55A 

 
55th/Austin, #56A North Milwaukee, #64 Foster-Canfield, #65 Grand, #84 Peterson, #120 

 
Ogilvie/Wacker Express, #121 Union/Wacker Express, #122 Illinois Center/Ogilvie, #124 
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Navy Pier, #129 West Loop/South Loop, #132 Goose Island Express, #134 

 
Stockton/LaSalle Express, #136 Sheridan/LaSalle Express, #143 Stockton/Michigan 

 
Express, #144 Wilson/Michigan Express, #148 Clarendon/Michigan Express, #165 West 

 
65th, and the #206 Evanston Circular. 

 
Those routes with lower ridership than expected include: #9 Ashland, #17 

 
Westchester, #18 16th/18th, #47 47th, #52A South Kedzie, #57 Laramie, #63 63rd, #67 67th- 

 
69th-71st, #71 71st/South Shore, #79 79th, #86 Narragansett/Ridgeland, #87 87th, #95E 93rd- 

 
95th, #95W West 95th, #103 West 103rd, and #119 Michigan/119th. 

 
A comprehensive analysis of the geographic distribution – comparing higher or 

lower AnyStop usage to demographic information, census tract data, et cetera - falls 

outside the scope of this thesis. But at a glance, the majority of those lines with higher 

than predicted AnyStop use include lines to major tourist attractions or sites of special 

event sites (Navy Pier, Museum of Science and Industry, and United Center), a high 

number of express routes (typically to, from, or around downtown), and a few scattered 

across the north side of the city (#11, #56A, #64, #65, #84, and #206). By comparison, 

the lines with lower-than-predicted ridership reside almost exclusively on the South Side 

– particularly the Far South Side, a section of the city that has suffered a disproportionate 

share transit-deprivation. Recent calls to expand transit in Chicago have centered on the 

extension of the Red Line from 95th to 130th St., and for a stalled bid to convert Metra’s 

South Chicago Branch into a full-time transit line (Wronski 2009, CTA 2011). 

Reduced levels of smartphone usage may stem from more than just relative transit 

inequity. In neighborhoods suffering from a shortage of local job opportunities, 
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commuters may have less reason to precisely budget their time while riding local (and 

largely east-west) bus routes. If Chicagoans had greater reason to commute to these 

neighborhoods – thereby generating higher needs for real-time transit information during 

morning and evening rush hours - smartphone usage may begin to better represent the 

higher levels of overall ridership. 

From April-June, TreKing displayed similar tendencies. Routes with above- 

expected use included: #10 Museum of Science and Industry, #17 Westchester, #19 

United Center Express, #36 Broadway, #49A South Western, #144 Marine/Michigan 

 
Express, #170 U. of Chicago/Midway, and #205 Chicago/Golf. 

 
Routes with less-than-expected ridership included: #4 Cottage Grove, #34 South 

 
Michigan, #47 47th, #52A South Kedzie, #57 Laramie, #63 63rd, #67 67th-69th-71st, #79 

 
79th, #106 East 103rd, #111 Pullman/111th/115th. 

 
Over the course of three months, use of the TreKing application across all city bus 

lines demonstrates even less divergence from the overall ridership levels of Chicago: 

eight routes show higher-than-expected ridership, and ten routes show the opposite. Of 

the one-hundred and twenty-nine bus routes surveyed, ridership levels fall within 

expected parameters for 86% of all routes. 

For routes that do display statistically remarkable ridership numbers, the 

 
geographic spread appears very similar to what we found in AnyStop: overrepresentation 

to special destinations like museums and sports facilities (MSI and United Center), an 

express route, one north side route, and a university/airport route. TreKing also 

demonstrates larger ridership for two routes that reach and service Chicago-adjacent 
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suburbs (#17 Westchester into Forest Park, and #205 Chicago/Golf into Evanston), and 

one route on the far south-west side that reaches suburbs in that region (#49A South 

Western into Blue Island). Lower-than-predicted ridership, meanwhile, occurs almost 

exclusively on the far south side, plus two routes on the far west or southwest side (#52A 

South Kedzie and #57 Laramie). 

Interestingly, the TreKing data demonstrates remarkably different results for 

ridership on Chicago’s rail lines. Whereas AnyStop demonstrated no significantly above- 

or below-expected use on any rail line, TreKing use proved far more varied. TreKing 

users made significantly less use of the Red Line, which travels north-south for twenty- 

four hours a day, and the Brown Line, which heads back and forth between the Loop and 

the Northwest Side until 2am. Meanwhile, TreKing users display significantly higher use 

of the Pink and Purple Lines, which service the near-west side and near-northern suburbs, 

respectively. One possibility is that TreKing has developed a substantial user base around 

the vicinity of University of Illinois-Chicago, whose campus (and adjacent medical 

hospitals) are served largely by the Pink Line. 

For all Ridership Numbers and Log Odds Ratios, refer to Appendix B. 
 

 
 
 
 
 
 

4.5 Pearson's r for Log Odds Ratio and Complexity Variables (Bus) 
 
 
 

 
The size of the data set allows for Pearson's product-movement correlation 

coefficient. The odd ratio stands as Variable X, and the relative complexity variable (as 
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designated earlier) stands as Variable Y. 

 
For all scatter plots, refer to Appendix C. 

 

 
 
 
 

i. Log Odds Ratio and Route Length 
 

 
 
 
 

Route Length (ranging from 2.4 to 35.62 miles) was found to be of minor negative 

correlation (r = -.20), in that longer routes led to less use of the AnyStop application. The 

longest routes appear to have been fairly evenly distributed, although none of them crest 

over a correlation of approximately 1.5, and routes with a higher correlation do not occur 

until their full route length measures less than twenty-five miles. 

To sample the five longest routes, the two negative x-values represent Routes #9 

and #49, both of which are direct north-south lines with a substantial number of stops. 

The three routes with positive-x values are all express lines: Route #2 Hyde Park 

Express, Route #14 Jeffery Express, and #169 69th-UPS Express. 

This correlation with express lines will be further examined in Log Odds Ratio and 

 
Hours Active. 

 
By comparison, however, the same metric when compared to TreKing data does not 

show steady, significant correlation over the course of three months: r = -0.05 in April, 

-0.02 in May, and -0.21 in June. 
 

 
 
 
 

ii. Log Odds Ratio and Number of Stops 
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Number of Stops (ranging from 3 to 329) was also found to be negatively correlated 

with AnyStop use (r = -.40), and moreso than route length. By comparison, TreKing also 

demonstrate negative correlation over the period of April-June, albeit to a lesser extent: r 

= -0.19 in April, -0.12 in May, and -0.30 in June. 
 
 
 
 

Express routes, as suggested in the previous section, may promote a higher level of 

app use; by virtue of their being express, these express routes also tend to have fewer 

stops. An increased number of stops can decrease the overall speed of the line, which 

may dissuade riders from riding this line, and may prompt them to consider alternative 

options. This variable may illustrate this. 

 

 
 

iii. Log Odds Ratio and Stops Per Mile 
 
 
 
 

Buses in Chicago range from 0.14 to 16.04 Stops Per Mile, which produces an r- 

value of -0.34. This comes despite significant clustering in a y-value of 5-10 Stops/Mile, 

which appears to serve as the common range for bus lines across the city. In addition, 

especially high and low values of Stops Per Mile appear to all promote increased 

AnyStop use; the negative correlation stems from the bulk of the routes, which are more 

evenly distributed across increased and decreased AnyStop use. 

By comparison, no reliable correlation could be found among TreKing use. The r- 

value in April came to -0.08, but retreated to insignificant values of 0.02 in May and 

-0.05 in June. 
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iv. Log Odds Ratio and Buses Per Hour 
 

 
 
 
 

Of all the measures calculated, “Buses Per Hour” (ranging from 0.51 to 9.19) was 

determined to be the least influential (r = 0.05), and the only variable to confirm the null 

hypothesis; i.e., the frequency of the bus has no significant bearing on the use of the 

AnyStop application. This refutes the hypothesis that diminished bus frequency would 

result in increased application use, in order to diminish a user’s wait-time. 

This finding is particularly surprising in light of how much urban planning has 

focused on optimizing route frequency as a means of reducing wait time and system cost 

and increasing customer satisfaction. 

However, TreKing data suggests a stronger correlation: r = -0.24 in April, -0.21 in 

 
May, and -0.19 in June. 

 
One possibility is that the AnyStop sample period (December 14-27) may have 

skewed the available data. Because this period occurred over a significant holiday period, 

commuters may have had less pressing time concerns (and overall, less work days) that 

prompted them to strictly budget their time. 

 
 

 
v. Log Odds Ratio and Hours Active 

 
 

 

“Hours Active” serves as a primary, negative factor when determining app use. The 

strongest negative correlation comes from AnyStop, which recorded an r-value of -0.60. 
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While not as strong, these values remained significant in the TreKing data, with April- 

June r-values of -0.30, -0.19, and -0.33, respectively. 

While sixteen bus routes run all day and night, routes operated for as little as 25.42 

hours over two weeks. As a bus reduces its number of active hours, app use rises 

significantly. Bus routes with the least active hours often serve only morning and evening 

rush hours, such that their service begins and ends around peak use. Routes that run 

twenty-four hours a day actually trend towards significantly less app use than the system 

as a whole, by virtue of the user knowing that they’ll come eventually, even if not 

immediately. 

 
 

 
vi. Log Odds Ratio and Corners 

 

 
 
 
 

Bus routes in Chicago possess anywhere from zero to twenty-two corners, but 

rarely crest above fifteen. 

Pearson’s r for the corners variable was found to be reasonably positive for 

 
AnyStop, with an r-value of 0.30. TreKing figures, however, varied considerably more: r 

 
= 0.12 in April, 0.6 in May, and .10 in June. So while there may appear to be consistent 

correlation between application use and geographic complexity of individual bus lines, its 

influence may range from distinctly influential to barely significant. 

 
 
 
 

4.6 Pearson's r for Log Odds Ratio and Complexity Variables (Rail) 
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Research has already demonstrated that commuters utilize bus and rail transit in 

distinct ways. One should keep in mind, however, the smaller number of rail lines in 

Chicago (8), as compared to bus lines (141) – an as as a result, any analysis of app use 

will need to clear a higher hurdle to qualify as statistically significant. 

When calculating Pearson’s r for the AnyStop data, no complexity variables were 

found to be significant, as determined by a critical value of 0.707, for six degrees of 

freedom and with 95% certainty: Trains Per Hour (r = -0.20), Number of Stops (r = 0.28), 

Route Length (r = 0.18), Corners (r = 0.56), Hours Active (r = 0.14), and Stops Per Mile 

(r = 0.54). This finding might be particular valid because the complexity measures for 

Chicago’s rail lines (excluding the express suburban Yellow Line) do not significantly 

differ from one another: the seven remaining lines vary from 4.78-7.45 trains per hour, 24 

to 64 Stops, 22.4 to 69.2 Miles in Length, 2 to 5 Corners, 567.25 to 672 Hours Active, 

and 0.96 to 2.02 Stops Per Mile. 

 
When calculating Pearson’s r for TreKing data, the month of April recorded no 

activity on the Yellow Line (the least used line, which makes only two stops and typically 

comprises three-quarters of a percent of overall rail transit), and so that month had only 

five degrees of freedom, and a critical value of 0.754. 

The same calculations consistently found positive correlation between TreKing use 

and two complexity variables: Corners (r = 0.87 in April, 0.83 in May, and 0.92 in June) 

and Stops Per Mile (r = 0.77 in April, 0.81 in May, and 0.89 in June). These numbers 

actually compare nicely to the AnyStop data, for which Corners and Stops Per Mile were 

also the most influential complexity variables (r = 0.56 and 0.54, respectively), albeit not 
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influential enough to be deemed statistically significant in that particular data set. 

 
TreKing did also indicate negative correlation for Route Length in April (r = -0.81), 

but this correlation did not continue into May (r = -0.42) and June (r = -0.14). Otherwise, 

no other variables demonstrated significance: Buses Per Hour (r = 0.11 in April, 0.21 in 

May, and 0.40 in June), Number of Stops (r = -0.48 in April, 0.05 in May, and 0.30 in 

June), or Hours Active (r = 0.49 in April, -0.06 in May, and 0.22 in June). 

 
Conclusions and Discussions 

 

 
 

5.1 Findings 
 
 
 

 
The depth of data provides a few solid findings, in relation to where and why 

commuters might make user of real-time transit applications. These findings do not 

definitively represent travel behavior itself, as we have no data to directly correlate the 

trip plan itself, and the actions actually taken by the user; that is, we cannot assume that a 

user requesting a bus or train’s arrival time actually embarked on that route. 

In addition, the available data sets – however massive they may seem for a single 

researcher – could become more definitive if they increased their sample size and period. 

Courtesy of collecting research over a holiday weekend, AnyStop data – for weekend 

periods especially – cannot be considered as technically “pure.” But the data provides 

enough insight that future researchers – perhaps even with access to a staff greater than 

one, or a budget greater than zero – could pursue similar questions over a larger scale. 
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i. Distribution 
 

 
 
 
 

It appears that distribution of smartphone transit application in Chicago roughly 

corresponds to general ridership numbers, both by time of day and by line. And based on 

the data sets provided to us, a longer sample period (three months of TreKing data from 

April-June 2011) displays greater overall representation then the deeper but shorter data 

provided by AnyStop (during two weeks in December 2010). If one were to analyze 

similar numbers over a six-month or year-long period, such representation may increase 

further. 

Some general geographic locations, however, appear to demonstrate over- or under- 

representation in the sample of app users. The Far South Side, in particular, seems to 

contain a cluster of underrepresented routes, and half a dozen individual routes appeared 

underrepresented in both the AnyStop and TreKing samples (47 47th, #52A South Kedzie, 

#57 Laramie, #63 63rd, #67 67th-69th-71st, and #79 79th). 

 
Similarly, North Side and express routes both seemed more likely to receive more 

than their fair share of smartphone use, although only three such routes appeared in both 

sets of data (#10 Museum of Science and Industry, #19 United Center Express, and the 

#144 Wilson/Michigan Express). In fact, the relatively large number (25) of 

overrepresented buses in the AnyStop data included eleven express routes, which makes 

up nearly half of the overrepresented routes. 

This discrepancy becomes far more prominent, however, when you consider the 

ridership of these particular lines. While the number of lines overrepresented by AnyStop 
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does outnumber the number of underrepresented ones, the same cannot be said for these 

routes’ ridership: overrepesented routes display significantly lower ridership than 

underrepresented ones. The smaller sample sizes would also make these  routes more 

likely to present as overrepresented, and therefore less significant. 

Tallied together, those twenty-five bus routes with higher-than-average AnyStop 

use makes up only 3.94% of ridership on all CTA buses. The underrepresented lines, in 

contrast, represent 18.78% of all bus ridership in Chicago.  Each overrepresented line 

carries an average of 0.15% of the city’s ridership (or a median of 0.09%), compared to 

the underrepresented average of 1.17% (and a median of 0.89%). By whatever measure, 

the underrepresentation actually outweighs overpresentation by a factor of five to ten. 

TreKing displays similar trends, albeit to a lesser extent on a system-wide basis: 

overrepresented routes accounted for 2.30% of all bus traffic in Chicago (with an average 

of 0.32%, and a median of 0.08%), and underrepresented ones accounted for 12.74% (an 

average of 1.27%, and a median of 0.92%).  TreKing’s user base for rail transit, 

meanwhile, appears incredibly skewed: when requesting rail information, 56-60% of 

TreKing users requested information for the Pink Line, which makes up 4% of CTA’s rail 

ridership. Furthermore, TreKing’s paucity of traffic on the Red Line – the city’s primary 

line, which makes up more than a third of rail transit ridership across the city – cannot be 

easily explained in the scope of this thesis. 

That said, these figures may only slightly change the overall picture. While use of 

AnyStop and TreKing adequately represented 70.5% and 86% of all bus routes, 

respectively, ridership figures suggest that AnyStop equitably represented 77.28% of all 
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bus passengers, compared to TreKing’s 84.96%. 
 

 
 
 
 

ii. Accessibility 
 

 
 
 
 

More frequent stops appear to have most discouraged users from using AnyStop. In 

Chicago, this makes particular sense when considering the popularity of express routes 

that do not make any stops at all for miles on end, particularly along Lake Shore Drive in 

and out of downtown. But this also speaks to a recognized tradeoff in public transit 

design, in which additional stops increase access, but decrease speed (Murray and Wu 

2003). AnyStop transit users may prioritize, or self-sort into using, faster bus lines. 

 
But conceivably, access to real-time transit information may have begun to function 

as surrogate access. In previous eras - when no real-time arrival information had been 

available - transit agencies could only provide static timetables that would still leave 

commuters at the whim of delays or uncertainty. And having immediate access to transit 

information may decrease a user’s reliance on tightly-packed transit stops, as users can 

now plan to arrive at particular stops at particular times without risking increased wait 

time. 

In addition, planners have long accounted for a predicted walk-shed, in which 

they essentially expected transit users to reduce their transit use when required to walk 

more than half a mile. If the OneBusAway study is any indication, this walk-shed may 

turn out to be a product not of human laziness or disinterest, but rather a reasonable 

response to the lack of real-time, actionable information. 
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Commuters will gladly walk to a more distant stop if they have the information to 

guide them: a study on commuter tendency suggested that transit maps, waiting time and 

operating hours were the most important factors when considering one’s commute, 

whereas the walking time to the station was almost universally considered one of the 

lowest (Abdel-Aty, Kitamura, and Jovanis 1996). While using OneBusAway, users 

demonstrated a marked increase in the amount of trips, and 78% actually walked to a 

different route or further down the same route – at an average of 6.9 additional blocks 

every week. Some riders, upon seeing a long wait time, opted to walk all the way to their 

destination (Ferris, Watkins and Borning 2010). 

When provided with clear options – walk for eight minutes, or wait for ten - 

commuters may willingly exert themselves, rather than submit themselves to the stress of 

waiting. Psychologically, this may also attest to an increased sense of control, as users 

utilize a transit network’s timetable without feeling subservient to it. 

 
 

 
iii. Frequency 

 

 
 
 
 

Upon first glance, the relative unimportance of route frequency in relation to 

smartphone use might suggest a quandary. When wait-time has been found to be one of 

the most influential variables in commuter behavior, why would more or less wait time 

not influence how a commuter accesses real-time travel information? 

But more or less smartphone use may not benefit the user, regardless of the route’s 

relative frequency. A single session typically provides the user with arrival times for all 

92 | 



the buses in the next twenty or thirty minutes; additional or refreshed sessions would not 

provide any additional information to the user. Individual sessions may grow longer in 

direct relation to wait time, but the number of sessions need not increase unless the user 

exit the program entirely, and then launch it again for the very same trip. 

Although AnyStop does record the average length of a session, the length of 

individual sessions cannot be accurately determined with the available data. While the 

program can auto-refresh into a new Session Index, these auto-refreshes cannot be 

differentiated from user actions; that is, two equally long sessions, as measured by 

Session Index, may have lasted for different periods of time. If one could accurately 

measure individual session lengths, however, one could correlate these sessions to a 

route’s average wait-time. 

The length of each route's service, however, proved to be the most influential factor 

of all those that were measured. If commuters intend to travel near the beginning or end 

of their route’s running hours, it would certainly behoove them to determine whether their 

preferred route remains running at all. As per the AnyStop data, users don’t query route 

lines based on how often their buses run, but whether they run at all. 

In fact, further research could be conducted to determine AnyStop use on individual 

bus lines throughout the day. Such an analysis could more definitively determine if usage 

experienced statistically significant peaks around the beginning and end of these routes’ 

hours, suggesting that users might be confirming whether they had started or stopped 

running. Alternatively, no such relationship might be found, making it more likely that 

the routes’ popularity had more to do with many of these routes running express. 
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Furthermore, additional conclusions might be reached if the measure were 

calculated more precisely. Calculating the average number of buses per hour across 

across a whole week may obscure correlation, by essentially diluting high-traffic periods 

or glossing over differences between weekdays and weekends. 

 
 

 
iv. Spatial Complexity 

 

 
 
 
 

A basic measure of route complexity did suggest that users made greater use of 

their smartphone transit application as the routes grew more spatially complex. Users 

may utilize their app to better navigate the twists and turns of a particular route, such that 

they don’t wind up missing their destination or getting lost entirely. This variable alone 

held true not only for buses, but for rail as well. Rail lines that ran consistently in one 

direction or the other – such as the Red and Purple Lines (which run straight north and 

south) and the Blue Line (which runs directly west or northwest) – received the least 

TreKing use. 

However, the metric used to gauge complexity – corners – may not adequately 

describe the complexity of these routes. For a more definitive determination, additional 

research might require more comprehensive parameters – including not just corners of a 

network, but also edges, degrees, clustering, and distance between stops, routes, or 

transfers (Lu 2007). And for an additional correlation, future research could also search 

for correlations between queries for individual routes, and queries for maps of those 

routes. Future researchers might even be able to determine which points of a route are 
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most often scrutinized. 

 
A user’s perception of complexity, meanwhile, may actually correspond to the 

structure of the application and how it relays spatial information, rather than the relative 

complexity of the route itself. Prior research has found that commuters have the most 

difficulty comprehending spatial information when presented with an alphabetical list of 

buses, less difficulty when the bus list is presented sequentially, even less when presented 

with a road map, and the least difficulty when presented with a schematic map (Bantram 

1980). Depending on the application’s unique user interface, users may find themselves 

making more use of the application’s navigation tools as a response to the program’s 

usability, and not the routes themselves (Thorndyke and Hayes-Roth 1982). 

 
5.2 Future Work 

i. Anonymity 

 

 
 

The analyzed data used anonymous data, and did not track individual users from 

session to session. Even if two AnyStop sessions were to register daily activity that 

requested the same line and used the same model phone, it is impossible to definitively 

determine whether these sessions stem from the same user. 

This also prohibits the possibility of longitudinal studies. Research cannot 

determine how a user’s behavior or application use changes over time, or even whether 

an individual session comes from a long-term user, or whether this session is the user’s 

first and last use of the application. One-time users may request info on certain bus lines 

without intending to use this information, thereby skewing the greater whole. 
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Furthermore, these users were not contacted in order to better explain their actions. 
 

 
 
 
 

ii. Demographics 
 

 
 
 
 

Even if AnyStop use appears to have become evenly distributed across all bus and 

rail lines, there is no data on whether the applications have become as distributed across 

the populations who use those lines. Even if half of the city used a particular line, and 

half of AnyStop also used that particular line, it cannot be considered representative if 

smartphone users of real-time transit apps differ significantly from public transit users 

who either don’t own smartphones, or don’t utilize smartphone transit apps; i.e., if every 

AnyStop user on the #81 bus turned out to be young, white, middle-upper-class, car- 

owning IT workers. 

These groups may differ in both in background and behavior. By virtue of 

downloading a real-time transit application in the first place, AnyStop users may be more 

reliant on public transit, more proactive when budgeting their time, more prone to getting 

lost, or more unfamiliar with the city’s public transit system. By owning smartphones and 

knowing that real-time transit applications exist in the first place, they may have more 

access to disposable income, or may be more comfortable with modern technology. 

 
 

 
iii. Precise Location 
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This data does not provide the location of the user when requesting information. 



While this location might be roughly inferred by the user’s queries for particular 

bus and rail lines, one cannot determine whether the user was waiting at a stop and 

inquiring about their wait time, pulling up the wait times in advance well before leaving 

work, sitting in their apartment around the corner and waiting to leave three minutes 

before a bus’s scheduled arrival, or even checking arrival time for a friend across town 

who does not happen to have the same access to real-time transit information. Or one 

single individual – such as the author - can cite having used their application for all these 

purposes, sometimes in one session. 

 
 

 
iv. Scope 

 

 
 
 
 

The author originally intended to analyze and compare the use of smartphone 

transit apps across multiple cities, including Chicago. But the sheer amount of data – and 

the time spent simply trying to organize it, let alone analyze - prompted the author to 

focus specifically on Chicago. Future research could be conducted on the author’s 

dataset, which will be available on USB. One could not only perform the same analysis 

as this thesis has done for AnyStop use in Chicago, but determine how these cities might 

differ. 

Future research could also analyze data over a longer period of time than two 

weeks. The use of smartphone transit apps might show statistical variation over the 

course of the seasons, or in relation to a city’s particular climate and its daily road 

conditions (Guo, Wilson and Rahbee 2007). 
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5.3 Final Thoughts 
 
 
 

 
By studying urban transportation, I was able to successfully chart the geographic 

distribution of smartphone usage in one of America’s largest cities. But as much as public 

transportation affects the lives of millions of people on a daily basis, the lessons of this 

research could be applied far beyond that. 

Rather than simply providing top-down transit information to the consumer, the 

consumers' use of local transit applications might provide data that can flow back up the 

chain: for example, what neighborhoods most elicit use of a map function, or for which 

bus routes travelers might compare arrival times. With real-time information comes real- 

time feedback, and transit agencies could use that to their great benefit. 

Many of these applications provide access to access to existing information about 

public transit, but do not necessarily encourage commuters to engage in the larger-scale 

planning that creates that transit in the first place. Transit agencies and developers could 

conceivably create a direct bridge between transit application users and the transit 

agencies themselves: for example, allowing users to send in notice of potholes or 

malfunctioning equipment. While transit agencies have bolstered their transparency to the 

benefit to commuters and developers, and may be able to receive valuable data in return, 

these same agencies could also benefit by opening up direct lines of dialogue. 

Mobile phones have become the norm rather than the exception, and transit 

 
agencies and planners should consider how to make the most of these changes in new and 
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innovative ways. By counting the number of cell phone signals in individual train cars, 

for example, one could estimate just how packed each of those cars had become, and 

provide that information to commuters at the next station; passengers could then 

distribute themselves along the platform accordingly. Or the act of riding public transit 

could be tied to a city-run rewards program, thereby incentivizing the use of transit. 

Smartphones will not become any less relevant. For more and more users, their 

phones now serve as an almost visceral cornerstone of their social lives, and a near- 

indispensable means of obtaining information. These users can serve as embodied data, 

whose existence can provide researchers with unparalleled insight into how cities operate 

on a macroscopic scale. This novel ability has the potential to enable planners to discern 

deep, complicated, and heretofore-unseen patterns within cities and amongst their 

inhabitants. And it is incumbent upon us, as citizens, to plan accordingly. 
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Appendix A: Web Survey 
 
 
 

 
We are researchers at Concordia University who are trying to better understand how people use smartphone apps that provide real-time public transit 

information. This survey will take about 25-30 minutes. All responses will be confidential. 

 

 
At the end of the survey, you will be invited to enter a drawing for a $25 Amazon gift certificate. Entrance is optional. 

 

 
If at any time during the survey you want to terminate your participation, you are free to do so. Your responses will not be recorded. Also, if there is any 

particular question you don't want to answer, just skip it and go on to the next. 

 

 
You must be 14 years or older to participate in this survey. 

 

 
Question 1 

 
Approximately how often do you take the following forms of transit each week, on average? (If your trip involves a transfer, please count that as just one 

trip. However, count going to and returning from a destination as two trips.) 

I don't regularly ride the train I don't regularly ride the bus I don't regularly drive/I don't own a car 

 
1-4 times/week 1-4 times/week 1-4 times/week 

 
5-8 times/week 5-8 times/week 5-8 times/week 

 
9-12 times/week 9-12 times/week 9-12 times/week 

 
13-16 times/week 13-16 times/week 13-16 times/week 

 
16+ times/week 16+ times/week 16+ times/week 

 

 
Question 2 

 
For what purposes do you take these forms of transit? (Please check all that apply.) 

 
I don't regularly ride the train I don't regularly ride the bus I don't regularly drive/I don't own a car 

 
Work Work Work 

 
School School School 

 
Personal business Personal business Personal business 

 
Shopping Shopping Shopping 

Leisure Leisure Leisure 

Other: Other: Other: 

 

 
Question 3 

 
Approximately how far of a walk, in minutes, is the nearest public transit stop from your home, workplace and/or school? 

 
Live: 

 
   Work:    

 
School:    

 

 
Question 4 
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If you own a smartphone - which transit apps, if any, do you use? 

RouteShout 

NextBus 

 
AnyStop 

 
Other:    

 
None of the above 

 

 
Question 5 

 
If you clicked ‘none of the above’: would you consider using a real-time transit app? Why or why not? 

 
 
 
 

 
(If respondent selected “None of the above” for Question 4, jump to demographic information) 

 

 
We would now like to ask some questions about real-time transit apps and how you use them. 

 

 
Question 6 

 
What model of mobile phone do you own? Please be as precise as you can. 

 

 
 
 

Question 7 

 
How often do you use your smartphone transit app? 

Multiple times a day 

Once or twice a day 

 
Once a week or more (but less than once a day) 

Less than once a week 

Once a month or less 

 

 
Question 8 

 
How long have you been an regular user of AnyStop? 

 
0-1 Months 

 
1-3 Months 

 
3-5 Months 

 
5-8 Months 

 
8 Months+ 

 

 
Question 9 

 
What public transit routes do you take on a regular basis, at what times, and for what purpose (work, school, etc.)? 
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Route: Time: Days: Purpose: 

Route: Time: Days: Purpose: 

Route: Time: Days: Purpose: 

Route: Time: Days: Purpose: 

Route: Time: Days: Purpose: 

 

 
Question 10 

 
For what trips are you most likely to use your transit apps? Rank 1-5, where '1' is 'most often' and 5 is 'least often.' 

 
Trips that you make on a regular basis 

 
Trips that you make only infrequently 

 
Trips that you are undecided about taking 

 
Trips that you have never taken before 

 
Other 

 

 
Question 11 

 
How often do you use the following features of your transit apps? Rank the same as above. 

 
Planning out your journeys 

 
Determining immediate wait-time 

 
Locating nearby transit stops 

 
Comparing travel options (i.e., driving vs. public transit) 

 
Other 

 

 
Question 12 

 
Has the number of trips you take per week changed as a result of using real-time transit apps? 

 
Rail (If Not Available, Click 'No Change') Bus Car 

 
3 or more additional trips 3 or more additional trips 3 or more additional trips 

 
2 additional trips 2 additional trips 2 additional trips 

 
1 additional trip 1 additional trip 1 additional trip 

 
No change No change No change/Do not own 

 
1 fewer trip 1 fewer trip 1 fewer trip 

 
2 fewer trips 2 fewer trips 2 fewer trips 

 
3 or even fewer trips 3 or even fewer trips 3 or even fewer trips 

 

 
Question 13 

 
Is there a change in your wait-time on public transit, on average, as a result of using your smartphone? 

 
10+ minutes less wait-time 

 
5-10 minutes less wait-time 

 
1-5 minutes less wait-time 
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No change 

 
1-5 minutes more wait-time 

 
5-10 minutes more wait-time 

 
10+ minutes more wait-time 

 

 
Question 14 

 
On average, how many times do you use this app for trips involving... 

 
Work School? Shopping? Leisure? Other? 

 
5+ trips/week 5+ trips/week 5+ trips/week 5+ trips/week 5+ trips/week 

 
3-5 trips/week 3-5 trips/week 3-5 trips/week 3-5 trips/week 3-5 trips/week 

 
1-2 trips/week 1-2 trips/week 1-2 trips/week 1-2 trips/week 1-2 trips/week 

 
0-1 trips/week 0-1 trips/week 0-1 trips/week 0-1 trips/week 0-1 trips/week 

 
Never Never Never Never Never 

 

 
Question 15 

Imagine that you used your real-time transit app, and decide not to travel on that route or line (i.e., because of wait-time). In the past, what alternative 

means of transport have you taken? Rank 1-5, where '1' is 'most likely' and 5 is least. 

 
   _Walk to my destination 

 
   _Walk to an alternative line or route 

 
   _Opt not to make the trip 

 
   _Drive to destination (taxi or private auto) 

 
     Other 

 

 
Question 16 

 
In addition to taking public transit, do you also drive a private vehicle? 

Yes/No 

 

 
Question 17 

 
What factors have prompted you to drive instead of riding public transit? Rank 1-5, where '1' is 'most likely' and 5 is least. 

 
   _Destination is inaccessible by public transit 

 
   _Driving takes less time than public transit 

 
   _Desire for private space or personal control 

 
   _Require storage capacity (i.e., groceries) 

 
     Other 

 

 
Question 18 

 
What factors has convinced you to take public transit when you would ordinarily drive? Rank the same as above. 

 
   _Driving conditions: weather, traffic, etc. 
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   _Knowing real-time public transit information 

 
   _Reduced overall cost in fuel and parking fees 

 
   _Desire to read or work while in transit 

 
     Other 

 

 
Question 19 

 
What factors have prompted you to drive instead of riding public transit? Rank 1-5, where '1' is 'most likely' and 5 is least. 

 
   _Destination is inaccessible by public transit 

 
   _Driving takes less time than public transit 

 
   _Desire for private space or personal control 

 
   _Require storage capacity (i.e., groceries) 

 
     Other 

 

 
Question 20 

 
Please describe, in one or two sentences, how your use of real-time transit apps has changed your travel behavior. 

 
 
 
 

 
Question 21 

 
Are there any problems you've had with using real-time transit apps, or do you have suggestions for improving them? 

 
 
 
 

 
Demographic Questions 

 

 
Question 22 

 
What is your age? 

 
14-18 

 
19-24 

 
25-30 

 
31-35 

 
36-40 

 
41-45 

 
46-50 

 
51 or older 

 

 
Question 23 

 
Gender? 
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Female 

 
Male 

 

 
Question 24 

 
In what industry do you work? 

Construction/Manufacturing 

Education/Teaching 

Technology/Programming 

Science/Research 

Office/Administrative/Retail 

Civil/Government 

Student 

 
Other: 

 

 
Question 25 

 
Annual household income? 

Under $20,000 

$20,000 - $40,000 

 
$40,000 - $60,000 

 
$60,000 - $80,000 

 
$80,000 - $100,000 

 
Over $100,000 

 

 
Thanks for helping out! In appreciation for your participation, would you like to enter a drawing for one of two $25 Amazon gift certificates? If so, please 

enter your e-mail below. There will no link between your survey data and your email address. 

Yes/ No 

 

 
If the researchers have any addition questions for you, would you consent to being contacted by them? As before, all your responses will be kept 

completely confidential. If you are contacted, you will be entered into a second raffle, for an additional $25 Amazon gift certificate. If you select 'no,' you 

will not be contacted. Thank you again for your time. 

Yes/No 
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Appendix B: 
 

 

Ridership Percentages 
 
 

Event Label 

001 - 

AnyStop- 

Dec 

CTADec 

14-27 TreKingApril 

CTAAp 

ril TreKingMay CTAMay TreKingJune CTAJune 

Indiana/Hyde 

Park 

002 - Hyde Park 

1.39249 0.23548  
0.424722 0.24067 0.378384 0.23899 0.29098 

0.238381 

Express 
0.85816 0.20572 

0.541886 0.23575 0.368681 0.23585 0.29098 
0.234635

 

003 - King Drive 
2.47733 2.20189 

1.508494 2.25146 1.106044 2.29921 1.216824 
2.308518

 

004 - Cottage 

Grove 
1.48964 2.47295 

1.244874 2.43342 0.747065 2.41398 0.696588 
2.432561

 

005 - South 

Shore Night Bus 
0.43718 0.06167 

0.161101 0.06337 0.194043 0.06167 0.158716 
0.069452

 

006 - Jackson 

Park Express 
1.3601 1.15248 

1.698887 1.24643 1.232172 1.23731 1.446081 
1.238549

 

007 - Harrison 
0.61528 0.52499 

0.248975 0.61425 0.203745 0.52914 0.299797 
0.531278

 

008 - Halsted 
1.63536 2.09243 

3.617458 2.47461 3.463665 2.25973 3.624019 
2.213712

 

008A - South 

Halsted 
0.16192 0.39948 

0.424722 0.41717 0.456001 0.46049 0.264527 
0.427835

 

009 - Ashland 
0.74482 3.18447 

2.768014 3.22148 2.561366 3.28597 2.42483 
3.214702

 

010 - Museum of 

S & I 
0.80959 0.09241 

0.26362 0.11927 0.261958 0.03648 0.299797 
0.148641

 

011 - 

Lincoln/Sedg- 

wick 

2.41256 0.52064  
1.537786 0.55287 1.406811 0.53465 1.305 

0.543025 

012 - Roosevelt 
0.76101 1.58198 

1.010545 1.5835 0.708257 1.54323 0.890574 
1.535134

 

014 - Jeffery Ex- 

press 
1.89443 1.2178 

0.541886 1.21094 0.95081 1.19429 0.864121 
1.206609

 

015 - Jeffery 

Local 
0.84197 0.85927 

0.878735 0.85208 0.776172 0.92807 0.820034 
0.858782

 

017 - Westchester 
0.01619 1.30766 

0.073228 0.04211 0.213447 0.04482 0.467331 
0.039591

 

018 - 16th/18th 
0.03238 0.34323 

0.717633 0.36889 0.620937 0.36135 0.917027 
0.354978

 

019 - United 

Center Express 
0.40479 0.05326 

0.087873 0.02153 0.048511 0.00974 0.03527 
0.003524

 

020 - Madison 
1.92681 2.19753 

1.230228 2.06437 0.824682 2.07754 0.925844 
2.069952

 

021 - Cermak 
1.24676 0.97174 

0.527241 0.98939 0.417192 0.98957 0.449696 
1.049526

 

022 - Clark 
2.96308 2.43815 

5.741066 2.44566 6.578054 2.43687 6.428005 
2.458549

 

024 - Wentworth 
0.29145 0.27945 

0.117165 0.27795 0.097021 0.30096 0.220439 
0.288843

 

026 - South 

Shore Express 
0.29145 0.24367 

0.380785 0.24467 0.203745 0.24566 0.158716 
0.250732

 

028 - Stony Is- 

land 
0.29145 0.53958 

0.483304 0.5632 0.184341 0.5583 0.282162 
0.547402

 

028X - Stony Is- 

land Express 
0.71244 0.34391 

0.205038 0.34293 0.291064 0.35789 0.238074 
0.346279

 

029 - State 
1.70013 1.46212 

1.596368 1.51354 1.600854 1.54795 1.208006 
1.567343

 

030 - South 

Chicago 
0.17811 0.32711 

0.278266 0.33251 0.329873 0.36276 0.273345 
0.336791

 

033 - Mag Mile 

Express 
0.55052 0.05481 

0.073228 0.05805 0.048511 0.05495 0.070541 
0.058147

 

034 - South 

Michigan 
0.24288 0.62978 

0.161101 0.63741 0.203745 0.6615 0.238074 
0.631225

 

035 - 35th 
0.21049 0.49862 

0.512595 0.5265 0.475405 0.52795 0.220439 
0.525679

 

036 - Broadway 
3.06023 1.9972 

5.33099 1.94363 5.297371 1.86923 4.673309 
1.879307

 

039 - Pershing 
0.22668 0.18452 

0.322203 0.17478 0.242554 0.17772 0.211622 
0.180096

 

043 - 43rd 
0.27526 0.20238 

0.175747 0.21044 0.155234 0.21938 0.061723 
0.226561
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054 - Cicero 
1.05246 1.37966 

0.527241 1.33259 0.882895 1.32371 0.996385 
054A - North      
Cicero/Skokie 0 0.08349     
Blvd. 0.175747 0.08755 0.13583 0.08209 0.167534 
 

044 - Wal- 

lace-Racine 
0.40479 0.46296 

0.336848 0.4624 0.281362 0.49304 0.211622 
0.454929

 

047 - 47th 
0.27526 1.17272 

0.483304 1.1959 0.329873 1.22199 0.352703 
1.206578

 

048 - South Da- 

men 
0.04858 0.09157 

0.058582 0.09486 0.077617 0.10551 0.096993 
0.093295

 

049 - Western 
1.23057 2.87032 

2.870533 2.96544 2.93975 3.02718 3.280134 
2.978396

 

049A - South 

Western 
0.06477 0.04938 

0.205038 0.0488 0.164936 0.05259 0.273345 
0.052567

 

049B - North 

Western 
1.11723 0.55066 

0.454013 0.57343 0.533618 0.59778 0.546689 
0.591377

 

050 - Damen 
1.3763 0.96878 

2.504394 0.99583 2.891239 0.98488 2.319019 
0.991986

 

051 - 51st 
0.46956 0.21599 

0.102519 0.20842 0.067915 0.22365 0.079358 
0.213489

 

052 - 

Kedzie/California 
1.27915 1.3372 

1.02519 1.37465 0.960512 1.42181 0.793581 
1.400481

 

052A - South 

Kedzie 
0.12953 0.44555 

0.146456 0.45715 0.126128 0.46166 0.079358 
0.468417

 

053 - Pulaski 
1.08484 2.22042 

1.25952 2.24046 0.795576 2.29281 0.855304 
2.243738

 

053A - South Pu- 

laski 
0.37241 0.71919 

0.981254 0.79166 0.95081 0.82912 0.414426 
0.802514

 

1.340682 

 
0.0922 

 
054B - South 

Cicero 
0.71244 0.44433 

0.292912 0.43688 0.291064 0.43286 0.299797 
0.443267

 

055 - Garfield 
0.56671 1.36685 

0.995899 1.4274 0.785874 1.47583 1.366723 
1.458151

 

055A - 55th/Aus- 

tin 
0.06477 0.02021 

0.043937 0.02095 0.019404 0.02132 0.026453 
0.020366

 

055N - 55th/Nar- 

ragansett 
0 0.0535 

0.087873 0.05006 0.038809 0.05398 0.079358 
0.053651

 

056 - Milwaukee 
1.21438 1.1657 

1.435267 1.127 1.387407 1.12535 1.428445 
1.123927

 

056A - North 

Milwaukee 
0.22668 0.07314 

0.190393 0.06392 0.038809 0.06319 0.123446 
0.065455

 

057 - Laramie 
0.09715 0.27952 

0.014646 0.28712 0.038809 0.30642 0.176351 
0.284497

 

059 - 59th/61st 
0.16192 0.3377 

0.351494 0.35176 0.27166 0.35901 0.193986 
0.344476

 

060 - Blue 

Island/26th 
1.21438 1.19823 

0.673697 1.28546 0.785874 1.15283 0.493784 
1.193467

 

062 - Archer 
0.53433 1.22657 

0.820152 1.22589 0.620937 1.243 0.423243 
1.237527

 

062H - 

Archer/Harlem 
0.08096 0.12023 

0.13181 0.12679 0.048511 0.1229 0.052905 
0.124866

 

063 - 63rd 
0.29145 2.11528 

0.410076 2.11911 0.417192 2.15948 0.423243 
2.120183

 

063W - West 

63rd 
0.27526 0.15445 

0.248975 0.15877 0.155234 0.16355 0.149899 
0.170574

 

064 - Foster-Can- 

field 
0.08096 0.01587 

0.029291 0.01646 0.058213 0.01502 0.017635 
0.017934

 

065 - Grand 
2.5421 0.8168 

1.274165 0.84182 1.338896 0.85084 1.878141 
0.879709

 

066 - Chicago 
2.88212 2.67296 

2.226128 2.63747 2.17328 2.61524 2.689357 
2.670474

 

067 - 67th-69th- 

71st 
0.43718 1.50561 

0.322203 1.47711 0.242554 1.50527 0.282162 
1.478648

 

068 - Northwest 

Highway 
0.17811 0.11895 

0.248975 0.12512 0.155234 0.13904 0.39679 
0.121466

 

069 - Cumber- 

land/East River 
0.09715 0.03864 

0.058582 0.03823 0.067915 0.03514 0.03527 
0.037908

 

070 - Division 
1.68394 1.04058 

1.171646 1.02199 1.125449 1.04747 1.305 
1.015492

 

071 - 71st/South 

Shore 
0.34003 1.13674 

0.702988 1.07407 0.485107 1.06642 0.837669 
1.080163

 

072 - North 
1.48964 1.76169 

2.065026 1.73166 2.17328 1.71132 2.42483 
1.817714

 

073 - Armitage 
0.76101 0.56354 

0.732279 0.59706 0.892597 0.62391 1.119831 
0.608377

 

074 - Fullerton 
1.19819 1.31259 

2.372583 1.40387 2.590472 1.40188 1.983952 
1.389145

 

075 - 74th-75th 
1.29534 0.88893 

0.205038 0.83106 0.329873 0.85826 0.608412 
0.829651
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1.903925 1.21387 2.765111 1.21166 1.728243 

2.899824 2.43291 3.871156 2.4369 3.571114 

0.951963 0.92434 1.076938 0.8876 1.490168 

1.010545 3.31804 1.251577 3.3042 0.97875 

1.464558 1.58319 1.824003 1.57361 1.560709 

1.845343 1.54444 1.542641 1.52848 1.728243 

0.102519 0.16777 0.164936 0.17054 0.202804 

0.951963 1.95462 0.921704 1.98919 1.075743 

0.278266 0.42459 0.320171 0.4334 0.299797 

0.512595 1.16384 0.611235 1.20103 0.987567 

0.058582 0.0838 0.077617 0.08387 0.132263 

 
0.13181 

 
0.20243 

 
0.067915 

 
0.21005 

 
0.193986 

0.483304 1.65207 0.727661 1.69699 0.749493 

0.219684 0.13483 0.329873 0.13297 0.238074 

0.424722 0.56577 0.485107 0.55131 0.458513 

0.043937 0.03788 0.038809 0.03995 0.052905 

0.644405 0.78502 0.533618 0.79921 0.432061 

1.405975 0.78505 1.144853 0.806 1.119831 

0.600469 0.31322 0.727661 0.31919 0.925844 

0.424722 0.9657 0.465703 1.04016 0.608412 

0.248975 0.52019 0.27166 0.50025 0.29098 

0.322203 0.48956 0.329873 0.5053 0.32625 

0.146456 0.07851 0.194043 0.0765 0.079358 

0.556532 0.42618 0.417192 0.40901 0.599594 

0 0.01234 0 0.00817 0.026453 

0.073228 0.0774 0.038809 0.0848 0.052905 

0.146456 0.33594 0.281362 0.34338 0.176351 

0.029291 0.18445 0.097021 0.20196 0.03527 

0.146456 0.16583 0.281362 0.1795 0.246892 

 
0.161101 

 
0.59344 

 
0.252256 

 
0.63307 

 
0.176351 

0.219684 0.26633 0.13583 0.29006 0.096993 

0.424722 0.63956 0.368681 0.63466 0.308615 

 
0.014646 

 
0.07001 

 
0.009702 

 
0.06237 

 
0.105811 

 
0.102519 

 
0.09213 

 
0.067915 

 
0.08785 

 
0.202804 

 
0.043937 

 
0.04486 

 
0 

 
0.04191 

 
0.061723 

 
0.014646 

 
0.04373 

 
0.009702 

 
0.04358 

 
0.03527 

 

 

076 - Diversey 
1.18199 1.19781 

077 - Belmont 
1.9592 2.37189 

078 - Montrose 
1.19819 0.84957 

079 - 79th 
0.69624 3.48519 

080 - Irving Park 
0.84197 1.58445 

081 - Lawrence 
1.61917 1.56213 

081W - West 

Lawrence 
0.3886 0.15546

 

082 - Kim- 

ball-Homan 
1.3763 1.90576

 

084 - Peterson 
1.3601 0.42944 

085 - Central 
0.92293 1.19895 

085A - North 

Central 
0.12953 0.0832

 

086 - Nar- 

 

1.243805 
 

2.421814 
 

0.927676 
 

3.267331 
 

1.57 
 

1.559466 
 
0.170936 

 
1.946638 
 

0.436653 
 

1.201079 
 
0.087312 

ragansett/Ridge- 

land 

0.01619 0.18275 0.189891 

087 - 87th 
0.46956 1.67153 

088 - Higgins 
0.1943 0.12542 

090 - Harlem 
0.51813 0.57125 

090N - North 

Harlem 
0.03238 0.04045

 

091 - Austin 
0.85816 0.79218 

092 - Foster 
1.29534 0.73853 

093 - 

California/Dodge 
0.21049 0.30087

 

094 - South Cali- 

fornia 
0.37241 0.95843

 

095E - 93rd-95th 
0.09715 0.47308 

095W - West 

95th 
0.17811 0.50459

 

096 - Lunt 
0.12953 0.08635 

097 - Skokie 
0.56671 0.4101 

098X - Avon Ex- 

press 
0.03238 0.01444

 

100 - Jeffery 

Manor Express 
0.08096 0.07038

 

103 - West 103rd 
0.08096 0.31533 

106 - East 103rd 
0 0.15567

 

108 - 

Halsted/95th 
0.06477 0.1725

 

111 - 

1.635377 
 

0.128536 
 

0.548282 
 
0.040148 
 
0.774912 
 

0.788815 
 
0.314431 

 
1.023365 
 
0.499415 
 
0.489586 
 
0.081337 
 

0.435758 
 
0.009368 

 
0.070266 
 
0.322497 
 

0.173326 
 
0.164591 

Pullman/111th/11 

5th 

112 - 

0.56671 0.61083 0.594624 

Vincennes/111th 
0.12953 0.26437

 

119 - 

Michigan/119th 
0.04858 0.65906

 

120 - 

0.27645 

 
0.64512 

Ogilvie/Wacker 

Express 

121 - 

Union/Wacker 
Express 

122 - Illinois 

Center/Ogilvie 

Express 

123 - Illinois 

Center/Union Ex- 

press 

0.59909 0.08349 
 

 
0.50194 0.10754 
 

 
0.14573 0.05352 
 

 
0.11334 0.0486 

0.06549 
 

 
0.096093 
 

 
0.042757 
 

 
0.046527 
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124 - Navy Pier 
1.3601 0.11845 

0.161101 0.11162 0.232851 0.11929 0.273345 
0.163431

 

125 - Water 

Tower Express 
0.37241 0.17684 

0.175747 0.17269 0.291064 0.15617 0.246892 
0.171892

 

126 - Jackson 
0.72863 0.68409 

0.746924 0.71344 0.485107 0.71078 0.546689 
0.679273

 

128 – Soldier 

Field Express 
0 0.05471 

0 0 0 0 0 
0
 

129 - West 

Loop/South Loop 
0.85816 0.09965 

0.058582 0.09715 0.038809 0.0948 0.044088 
0.088707

 

130 - Museum 

Campus 
0 0 

0.087873 0 0.038809 0.01161 0.185169 
0.115886

 

132 - Goose Is- 

land Express 
0.29145 0.02592 

0.13181 0.02978 0.038809 0.03101 0.044088 
0.030211

 

134 - 

Stockton/LaSalle 

Express 

135 - 

Clarendon/LaS- 

alle Express 

136 - 

Sheridan/LaSalle 

Express 

143 - 

Stockton/Michiga 
n Express 

144 - 

Marine/Michigan 

Express 

145 - 

Wilson/Michigan 

Express 

146 - Inner 

Drive/Michigan 

Express 

147 - Outer Drive 

1.10104 0.23125 
 

 
0.55052 0.30508 
 

 
1.26295 0.17161 
 

 
0.93912 0.11405 
 

 
0.82578 0.09739 
 

 
1.58679 0.72691 
 

 
1.53821 1.11631 

 
0.161101 0.2519 0.174639 0.24631 0.158716 
 

 
0.307557 0.32692 0.339575 0.30284 0.29098 
 

 
0.175747 0.18845 0.349277 0.18337 0.238074 
 

 
0.161101 0.11589 0.145532 0.11288 0.282162 
 

 
0.278266 0.09043 0.145532 0.08404 0.343885 
 

 
1.25952 0.70594 1.319492 0.69148 1.357905 

 

 
2.28471 1.08936 2.182982 1.06046 1.931047 

0.262452 
 

 
0.334278 
 

 
0.195432 
 

 
0.124355 
 

 
0.091608 
 

 
0.710183 
 

 
1.13275 

Express 
2.38018 1.63255 

2.533685 1.6389 2.192685 1.56283 1.869324 
1.618243

 

148 - 

Clarendon/Michi 

gan Express 

0.64767 0.19271  
0.26362 0.20048 0.417192 0.19544 0.299797 

0.20442 

151 - Sheridan 
2.7364 2.43155 

3.837141 2.37158 4.327156 2.31616 4.214796 
2.550484

 

152 - Addison 
1.02008 0.95092 

1.552431 1.04275 1.90162 1.09297 1.719425 
1.034029

 

154 – Wrigley 

Field Express 
0 0 

0 0.02556 0 0.03101 0 
0.018314

 

155 - Devon 
0.35622 0.83399 

0.541886 0.86055 0.620937 0.84801 0.476148 
0.83475

 

156 - LaSalle 
0.66386 0.73179 

0.922671 0.67409 1.028427 0.65918 0.740675 
0.735829

 

157 - 

Streeterville/Tayl 

or 

0.51813 0.43943  
0.908026 0.51058 0.630639 0.37545 0.696588 

0.399365 

165 - West 65th 
0.01619 0.00542 

0.014646 0.00589 0.009702 0.00585 0.008818 
0.006044

 

168 – UIC/Pilsen 

Express (Elimin- 0 0 

ated May 11) 

169 - 69th-UPS 

0 

0 0 0 0 0 

Express 
0 0.03517 

0.014646 0.03021 0.019404 0.02844 0.008818 
0.031955

 

170 - U. of 

Chicago/Midway 
0.06477 0.02661 

0.043937 0.02448 0.029106 0.02598 0.158716 
0.022902

 

171 - U. of 

Chicago/Hyde 

Park 

172 - U. of 

Chicago/Ken- 

wood 

192 - U. of 

Chicago Hospit- 

als Express 
201 - 

0.09715 0.1204 
 

 
0.09715 0.15571 
 

 
0.08096 0.06545 

 
0.146456 0.16356 0.126128 0.14942 0.070541 
 

 
0.292912 0.23835 0.145532 0.21275 0.176351 
 

 
0.073228 0.07347 0.009702 0.07027 0.026453 

0.081383 
 

 
0.122284 
 

 
0.072034 

Central/Ridge 
0.79339 0.19439 

0.278266 0.21819 0.27166 0.20706 0.299797 
0.201204

 

205 - 

Chicago/Golf 
0.11334 0.09019 

0.336848 0.09177 0.40749 0.09145 0.555507 
0.090986

 

206 - Evanston 

Circulator 
0.17811 0.06151 

0.117165 0.06119 0.058213 0.07351 0.123446 
0.046865
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Blue Line 
25.4501 22.6073 13.5476 22.2533 12.2485 22.2683 13.5 22.2775 

Brown Line 
14.4526 13.6127 0.57405 14.1698 0.17498 14.3551 0.5625 14.88585 

Green Line 
10.9976 9.20624 12.3995 8.63863 11.986 8.75319 7.9375 8.838535 

Orange Line 
8.51582 7.33439 12.2847 7.0758 11.5486 7.39323 13.9375 7.446188 

Pink Line 
6.08273 4.11017 57.0608 4.02229 56.4304 4.04251 59.6875 4.075675 

Purple Line 
6.08273 4.93063 1.60735 5.31038 2.62467 5.29769 1.6875 5.443519 

Red Line 
28.0292 37.489 0 37.7854 1.5748 37.1555 0.1875 36.34427 

Yellow Line 
0.38929 0.70959 2.52583 0.74437 3.41207 0.73444 2.5 0.688457 

 

Log Odds Ratios 
 

 
Event Label 

001  - 
Dec  (Any) OR DecNatLog Apr(Trk)OR AprNatLog May(Trk)OR MayNatLog June(Trk)OR June  Nat Log 

Indiana/Hyde 
        Park 5.982660468 1.78886536 1.767985326 0.56984066 1.585458109 0.46087339 1.221293347 0.199910418 

002  - Hyde Park         Express 4.199021274 1.43485147 2.305620663 0.83534991 1.565297649 0.448076 1.240838158 0.215787085 

003  - King Drive 1.128272806 0.12068797 0.66495362 -0.408038 0.475249664 -0.743915 0.521276544 -0.65147458 
004  - Cottage         Grove 0.596360966 -0.51690915 0.505416795 -0.6823719 0.304277564 -1.18981495 0.281353767 -1.26814244 
005  - South         Shore Night Bus 7.116195854 1.96237329 2.544620162 0.93398139 3.150873175 1.14767961 2.287307269 0.827375261 
006  - Jackson         Park Express 1.18264213 0.16775103 1.369278534 0.31428398 0.995794209 -0.00421466 1.17001887 0.157019877 

007  - Harrison 1.173066966 0.15962166 0.403848282 -0.906716 0.383796007 -0.9576441 0.562984231 -0.57450366 

008  - Halsted 0.777928366 -0.25112083 1.479163242 0.39147655 1.551895739 0.43947724 1.661033919 0.507440252 
008A - South         Halsted 0.404358799 -0.90545268 1.018176043 0.01801283 0.990209189 -0.00983906 0.617279554 -0.48243327 

009  - Ashland 0.22814226 -1.4777859 0.855228397 -0.1563867 0.773689623 -0.25658449 0.748187932 -0.29010109 
010  - Museum of         S  & I 
011 - 

8.824161924 2.17749363 2.213471911 0.79456228 7.197009802 1.97366563 2.019979149 0.703087189 
Lincoln/Sedg- 

wick 
 

4.723687279 
 

1.5525897 
 

2.809281294 
 

1.03292868 
 

2.654559739 
 

0.97627882 
 

2.421757388 
 

0.88449347 

012  - Roosevelt 0.477070688 -0.74009061 0.634476625 -0.4549548 0.455084492 -0.78727218 0.576355002 -0.55103149 
014  - Jeffery 

Ex- press 
 

1.566347688 
 

0.4487466 
 

0.444482366 
 

-0.8108449 
 

0.794171249 
 

-0.23045616 
 

0.713682746 
 

-0.33731675 
015  - Jeffery 

Loc- al 
 

0.97969646 
 

-0.02051249 
 

1.031562541 
 

0.03107468 
 

0.835044594 
 

-0.18027015 
 

0.954506649 
 

-0.04656067 

017  - Westchester 0.012222308 -4.40449248 1.739372071 0.55352417 4.770249876 1.56239869 11.85469601 2.472724077 

018  - 16th/18th 0.094055064 -2.36387488 1.952220935 0.66896767 1.722856625 0.54398374 2.597987921 0.954737269 
019  - United 

Center Express 
 

7.627482423 
 

2.03175783 
 

4.084021649 
 

1.4070822 
 

4.980428543 
 

1.60551594 
 

10.01176484 
 

2.303760885 

020  - Madison 0.874388556 -0.13423043 0.5909025 -0.5261042 0.39193638 -0.93665575 0.442112976 -0.81618983 

021  - Cermak 1.28659682 0.25200061 0.530421644 -0.634083 0.419168244 -0.8694829 0.425893401 -0.8535662 

022  - Clark 1.221873985 0.20038573 2.429525201 0.88769585 2.819044978 1.03639817 2.725465132 1.002639104 

024  - Wentworth 1.043080168 0.04217804 0.42085615 -0.8654642 0.321713252 -1.13409465 0.762656504 -0.27094754 
026  - South 

Shore Express 
 

1.196680155 
 

0.17955119 
 

1.558446167 
 

0.44368928 
 

0.82904 
 

-0.18748687 
 

0.632427797 
 

-0.45818922 
028  - Stony 

Is- land 
 

0.538795074 
 

-0.61841998 
 

0.857448982 
 

-0.1537936 
 

0.328944631 
 

-1.11186584 
 

0.514085704 
 

-0.66536529 
028X  - Stony 

Is- land Express 
 

2.079249674 
 

0.73200709 
 

0.597075789 
 

-0.5157112 
 

0.812733888 
 

-0.20735154 
 

0.686775754 
 

-0.37574745 

029  - State 1.165603112 0.15323865 1.055614371 0.05412294 1.034732974 0.0341434 0.767931755 -0.26405441 
030  - South 

Chicago 
 

0.543685944 
 

-0.60938351 
 

0.836404462 
 

-0.178643 
 

0.909041872 
 

-0.09536412 
 

0.811098276 
 

-0.20936605 
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033  - Mag Mile 

Express 

034  - South 
10.09507326 2.31204751 1.261571366 0.23235806 0.882726127 -0.12474029 1.213291577 0.193336978 

Michigan 0.384158003 -0.95670134 0.251538843 -1.3801579 0.306593971 -1.18223098 0.375675899 -0.97902848 

035  - 35th 0.420931856 -0.86528432 0.973452651 -0.0269061 0.899998401 -0.10536229 0.418058854 -0.87213306 

036  - Broadway 1.549068292 0.43765365 2.840938635 1.0441345 2.936566728 1.07724112 2.559604575 0.939852784 

039  - Pershing 1.228999296 0.20620026 1.846171005 0.61311377 1.365710473 0.31167479 1.175419812 0.161625371 

043  - 43rd 1.361071308 0.30827212 0.834847748 -0.1805059 0.70716382 -0.34649293 0.271984792 -1.30200913 
044  - Wal- 

lace-Racine 
 

0.87385516 
 

-0.13484064 
 

0.727553503 
 

-0.3180677 
 

0.569461382 
 

-0.56306431 
 

0.46404069 
 

-0.76778304 

047  - 47th 0.232605721 -1.45841045 0.401240495 -0.9131943 0.267531392 -1.31851837 0.289811585 -1.23852427 
048  - South 

Da- men 
 

0.530230426 
 

-0.6344436 
 

0.617315237 
 

-0.4823755 
 

0.735419652 
 

-0.30731399 
 

1.03967845 
 

0.038911482 

049  - Western 0.42160431 -0.86368806 0.967050917 -0.0335041 0.970242605 -0.03020913 1.104744667 0.099614238 
049A - South 

Western 
 

1.311701682 
 

0.27132529 
 

4.208086039 
 

1.43700792 
 

3.140083819 
 

1.14424949 
 

5.211437585 
 

1.650855746 
049B  - North 

Western 
 

2.040499563 
 

0.71319466 
 

0.790806169 
 

-0.2347024 
 

0.892087824 
 

-0.11419069 
 

0.924018616 
 

-0.07902306 

050  - Damen 1.426518151 0.35523662 2.55379665 0.93758113 2.993240969 1.09635674 2.369513535 0.862684675 

051  - 51st 2.17955074 0.77911877 0.491359537 -0.7105792 0.303197897 -1.19336956 0.37122078 -0.9909583 
052  - 

Kedzie/California 
 

0.95602442 
 

-0.04497182 
 

0.743150782 
 

-0.2968563 
 

0.672408601 
 

-0.39688909 
 

0.563182252 
 

-0.57415199 
052A - South 

Kedzie 
 

0.289808766 
 

-1.238534 
 

0.319371185 
 

-1.1414013 
 

0.272284551 
 

-1.30090761 
 

0.168757937 
 

-1.77928992 

053  - Pulaski 0.482967792 -0.72780531 0.55658454 -0.5859362 0.341750974 -1.07367295 0.375857604 -0.97854492 
053A - South 

Pu- laski 
 

0.516015513 
 

-0.66161845 
 

1.241863442 
 

0.21661303 
 

1.148178753 
 

0.13817699 
 

0.51439664 
 

-0.66476064 

054  - Cicero 0.760317803 -0.27401877 0.392447981 -0.9353513 0.664020205 -0.4094427 0.740607951 -0.30028388 
054A - North 

Cicero/Skokie         
Blvd. 

  
2.009144329 0.69770892 1.655604906 0.50416644 1.818439787 0.597978874 

054B  - South         Cicero 1.607736201 0.4748271 0.669499167 -0.4012254 0.671463524 -0.39829558 0.675362218 -0.39250611 

055  - Garfield 0.411274696 -0.88849393 0.694661348 -0.3643308 0.52879409 -0.63715617 0.936429507 -0.06568103 
055A - 55th/Aus-         tin 3.206606697 1.16521327 2.097461014 0.74072757 0.909961921 -0.09435253 1.298944529 0.261552034 
055N  - 55th/Nar-         ragansett 

  
1.756029257 0.56305516 0.718770103 -0.33021372 1.479534364 0.391727419 

056  - Milwaukee 1.042268506 0.04139959 1.27751178 0.24491426 1.236140553 0.21199407 1.274867834 0.242842513 
056A - North         Milwaukee 3.104115932 1.13272895 2.982410089 1.09273173 0.614004359 -0.48775325 1.887061036 0.635020611 

057  - Laramie 0.34693126 -1.05862862 0.050869933 -2.9784832 0.126312602 -2.06899548 0.619198932 -0.47932868 

059  - 59th/61st 0.478622676 -0.73684273 0.99924887 -0.0007514 0.756031844 -0.27967178 0.562285687 -0.57574522 
060  - Blue         Island/26th 1.013640466 0.01354827 0.520861678 -0.6522708 0.679168326 -0.38688628 0.410829584 -0.88957679 

062  - Archer 0.432594265 -0.83795502 0.666287874 -0.4060335 0.496419739 -0.70033346 0.339210418 -1.08113466 
062H  -         Archer/Harlem 0.673119601 -0.39583225 1.039628023 0.03886298 0.394415369 -0.93035069 0.423392247 -0.85945623 

063  - 63rd 0.135263102 -2.00053349 0.190192828 -1.6597168 0.189811287 -1.66172492 0.196223813 -1.62849937 
063W - West         63rd 1.784347366 0.57905273 1.569549528 0.45078865 0.949068273 -0.05227454 0.878607287 -0.12941725 
064  - Foster-Can-         field 5.104731507 1.63016786 1.779361574 0.57625463 3.87735995 1.3551545 0.983332021 -0.01680845 

065  - Grand 3.167346112 1.15289405 1.520217012 0.4188531 1.581403497 0.45831274 2.156681534 0.768570713 

066  - Chicago 1.080572324 0.07749083 0.840487352 -0.1737734 0.827253126 -0.18964455 1.007266527 0.007240253 
067  - 67th-69th-         71st 0.28724799 -1.24740936 0.215603338 -1.534315 0.159096883 -1.83824194 0.188534719 -1.66847311 
068  - Northwest         Highway 1.498168409 0.4042433 1.9923534 0.68931655 1.116642227 0.11032617 3.275708588 1.186534208 
069  - Cumber-         land/East River 2.515738148 0.92256626 1.532501028 0.42690106 1.933247361 0.65920116 0.930392732 -0.07214849 

070  - Division 1.628860128 0.48788046 1.148172194 0.13817128 1.075294156 0.07259426 1.288860559 0.253758541 
071  - 71st/South         Shore 0.296731375 -1.21492801 0.652063551 -0.4276133 0.452236981 -0.79354894 0.773605629 -0.25669306 

111 | 



 

072  - North 0.843237433 -0.17050671 1.196571252 0.17946018 1.275941674 0.24368447 1.342300078 0.294384619 

073  - Armitage 1.353104578 0.30240164 1.228143736 0.20550387 1.434517853 0.3608288 1.850206339 0.615297168 

074  - Fullerton 0.911781825 -0.09235454 1.706795883 0.53461786 1.87039866 0.6261516 1.436848981 0.362452508 

075  - 74th-75th 1.463189549 0.38061868 0.245170496 -1.4058014 0.382314283 -0.96151228 0.731702453 -0.31238133 

076  - Diversey 0.986639971 -0.01345008 1.579513875 0.45711713 2.31854332 0.84093911 1.396329935 0.33384732 

077  - Belmont 0.822529313 -0.19537116 1.197649795 0.18036113 1.612259159 0.4776364 1.492136233 0.400208807 

078  - Montrose 1.415322894 0.3473577 1.030174494 0.0297282 1.21564245 0.1952727 1.615518022 0.479655662 

079  - 79th 0.194161159 -1.63906675 0.297461693 -1.2124698 0.370909616 -0.99179687 0.292632973 -1.22883611 

080  - Irving Park 0.527415708 -0.63976622 0.923954771 -0.0790922 1.16208021 0.15021168 0.990970388 -0.00907063 

081  - Lawrence 1.037112691 0.03644059 1.198490481 0.18106283 1.009412105 0.00936809 1.110130536 0.104477609 
081W - West 

Lawrence 
 

2.505608861 
 

0.91853176 
 

0.610674705 
 

-0.4931909 
 

0.967078347 
 

-0.03347577 
 

1.186811125 
 

0.171269983 
082  - Kim- 

ball-Homan 
 

0.71829917 
 

-0.33086913 
 

0.48210296 
 

-0.7295976 
 

0.4583633 
 

-0.78009318 
 

0.547750742 
 

-0.60193495 

084  - Peterson 3.197024234 1.16222045 0.654418727 -0.4240079 0.737909887 -0.30393357 0.685637503 -0.37740621 

085  - Central 0.767634023 -0.26444219 0.437550772 -0.8265625 0.505907768 -0.6814009 0.820460295 -0.19788976 
085A - North 

Central 
 

1.557555309 
 

0.44311748 
 

0.698882167 
 

-0.3582731 
 

0.925436974 
 

-0.07748925 
 

1.51551908 
 

0.415758008 
086  - Nar- 

ragansett/Ridge-         
land 0.088452918 -2.42528487 0.650688664 -0.429724 0.322875472 -1.13048857 1.021609139 0.021378971 

087  - 87th 0.277523894 -1.28184824 0.28910833 -1.2409538 0.424608306 -0.85658817 0.454209159 -0.78919748 

088  - Higgins 1.550255105 0.4384195 1.630683113 0.48899901 2.485799539 0.91059435 1.854232655 0.617470948 

090  - Harlem 0.906542361 -0.09811752 0.749638994 -0.2881635 0.879324908 -0.12860082 0.835518696 -0.17970255 
090N  - North         Harlem 0.80044878 -0.22258273 1.160073367 0.14848325 0.971486113 -0.0289283 1.317927181 0.276060185 

091  - Austin 1.084009289 0.08066647 0.819713306 -0.1988006 0.665899606 -0.40661636 0.555641042 -0.5876328 

092  - Foster 1.7638353 0.56749059 1.802225424 0.58902225 1.425277861 0.35436678 1.424389113 0.353743029 
093  -         California/Dodge 0.698986206 -0.35812427 1.922599615 0.65367824 2.289059206 0.82814091 2.962678349 1.086093707 
094  - South Cali-         fornia 0.386276249 -0.95120249 0.437416579 -0.8268693 0.445138757 -0.80936923 0.59203889 -0.52418295 

095E  - 93rd-95th 0.204584611 -1.58677364 0.477320902 -0.7395663 0.541799569 -0.61285914 0.581422979 -0.54227677 
095W - West         95th 0.351821424 -1.04463155 0.657036317 -0.420016 0.651678768 -0.42820353 0.665287124 -0.40753657 

096  - Lunt 1.500788891 0.4059909 1.86679182 0.62422135 2.539505792 0.93196949 0.975650806 -0.02465054 

097  - Skokie 1.384050554 0.32501438 1.307584341 0.26818142 1.020076516 0.01987764 1.378248183 0.32081326 
098X  - Avon Ex-         press 2.242932942 0.80778436 

    
2.824211606 1.038229248 

100  - Jeffery         Manor Express 1.150439381 0.14014394 0.946091562 -0.0554159 0.457424656 -0.78214309 0.752799334 -0.28395658 

103  - West 103rd 0.256142628 -1.36202085 0.435127558 -0.8321161 0.818884984 -0.19981164 0.546030216 -0.60508096 

106  - East 103rd   0.158553898 -1.8416607 0.479898062 -0.73418157 0.203209839 -1.59351614 
108  -         Halsted/95th 
111 - 

0.375058905 -0.98067219 0.883021981 -0.1244052 1.569073107 0.45048507 1.501269847 0.406311314 
Pullman/111th/11 

5th 
 

0.927356593 
 

-0.07541711 
 

0.270294109 
 

-1.3082446 
 

0.3969423 
 

-0.92396435 
 

0.295333453 
 

-1.21965021 
112 - 

Vincennes/111th 
 

0.489317171 
 

-0.71474439 
 

0.824455144 
 

-0.1930325 
 

0.467564018 
 

-0.760219 
 

0.350222393 
 

-1.04918692 
119 - 

Michigan/119th 
 

0.073253289 
 

-2.61383214 
 

0.662647893 
 

-0.4115115 
 

0.579364166 
 

-0.54582404 
 

0.476768727 
 

-0.74072376 
120  - 

Ogilvie/Wacker         
Express 

121  - 
7.212921208 1.97587403 0.209079288 -1.5650417 0.155473406 -1.86128058 1.616330493 0.480158452 

Union/Wacker 

Express 
 

4.68598631  
1.54457642 

 
1.112928775  

0.10699508 
 

0.772907876  
-0.25759541 

 
2.112753681  

0.747992159 
122  - Illinois 

Center/Ogilvie         
Express 
123  - Illinois 

2.725144089 1.0025213 0.979341083 -0.0208753 
  

1.443849328 0.367312691 
Center/Union Ex- 

press 
 

2.33387992 
 

0.84753208 
 

0.334840632 
 

-1.0941006 
 

0.222529396 
 

-1.50269607 
 

0.757974653 
 

-0.27710533 
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124  - Navy Pier 

125  - Water 
11.62684397 2.45331656 1.444031186 0.36743864 1.954236252 0.66999945 1.674381043 0.51544357 

Tower Express 2.110100155 0.74673541 1.017709307 0.01755432 1.866329463 0.62397365 1.437399269 0.362835418 

126  - Jackson 1.065583652 0.06352268 1.047287395 0.04620339 0.680947724 -0.38426974 0.803741939 -0.21847703 
128  – Soldier 

Field Express         
129  - West 

Loop/South Loop 
 

8.677221721 
 

2.1607014 
 

0.602753421 
 

-0.5062471 
 

0.409124892 
 

-0.89373481 
 

0.496783147 
 

-0.69960167 
130  - Museum 

Campus      
3.344638119 

 
1.2073585 

 
1.598962641 

 
0.46935507 

132  - Goose 

Is- land 

Express 
 

11.27243461 
 

2.42236033 
 

4.430615386 
 

1.48853849 
 

1.251541882 
 

0.2243763 
 

1.459532741 
 

0.378116344 
134  - 

Stockton/LaSalle         
Express 
135  - 

4.803188987 1.56928007 0.638951094 -0.4479274 0.708523235 -0.34457243 0.604115249 -0.50399029 
Clarendon/LaS- 

alle  Express 
 

1.808984088 
 

0.59276541 
 

0.940594959 
 

-0.0612427 
 

1.121732007 
 

0.11487393 
 

0.870093977 
 

-0.13915405 
136  - 

Sheridan/LaSalle         
Express 

143  - 
7.440733047 2.00696937 0.932494549 -0.069892 1.907984276 0.64604733 1.218715494 0.19779743 

Stockton/Michiga 

n  Express 
 

8.303149071  
2.11663485 

 
1.390737787  

0.32983439 
 

1.289711983  
0.25441892 

 
2.27259538  

0.820922518 
144  - 

Marine/Michigan         
Express 
145  - 

8.541560717 2.14494374 3.082787675 1.12583428 1.732766599 0.54971932 3.763378258 1.325317027 
Wilson/Michigan 

Express 
 

2.202001437 
 

0.78936669 
 

1.794182702 
 

0.5845496 
 

1.920362005 
 

0.65251371 
 

1.924604606 
 

0.654720547 
146  - Inner 

Drive/Michigan         
Express 1.383847729 0.32486783 2.122960856 0.75281174 2.082149304 0.73340068 1.718618995 0.541521059 
147  - Outer Drive         Express 

148  - 
1.469115879 0.38466078 1.560157958 0.44478707 1.412061071 0.34505039 1.158111984 0.146791079 

Clarendon/Michi 

gan  Express 
 

3.376318508  
1.21678592 

 
1.315754401  

0.27441019 
 

2.13935856  
0.76050605 

 
1.467977664  

0.383885715 

151  - Sheridan 1.12890149 0.12124503 1.642627931 0.49629736 1.907516194 0.64580197 1.681261237 0.519544248 

152  - Addison 1.073477815 0.07090367 1.496499676 0.40312883 1.754203999 0.56201519 1.674436737 0.515476832 
154  – Wrigley 

Field Express         

155  - Devon 0.425074155 -0.85549164 0.627676495 -0.4657304 0.730556379 -0.31394887 0.568353211 -0.5650122 

156  - LaSalle 0.906556295 -0.09810215 1.372203952 0.31641817 1.565978333 0.44851076 1.006635495 0.006613577 
157  - 

Streeterville/Tayl         
or 1.180047118 0.16555437 1.785567325 0.57973619 1.684014681 0.52118063 1.74945862 0.55930638 

165  - West 65th 

168  – UIC/Pilsen 
2.986964411 1.09425762 2.488745047 0.91177859 1.657842225 0.50551689 1.458935998 0.377707401 

Express (Elimin- 

ated  May 11)         
169  - 69th-

UPS Express    
0.484668851 

 
-0.7242894 

 
0.682240841 

 
-0.38237254 

 
0.275873079 

 
-1.28781438 

170  - U. of 

Chicago/Midway 
 

2.434489849 
 

0.88973723 
 

1.795352542 
 

0.5852014 
 

1.120469612 
 

0.11374789 
 

6.939658733 
 

1.937252599 
171  - U. of 

Chicago/Hyde         
Park 

172  - U. of 
0.806682519 -0.2148251 0.895254249 -0.1106475 0.843926032 -0.16969043 0.86667809 -0.14308766 

Chicago/Ken- 

wood 
 

0.62354521  
-0.47233401 

 
1.229574679  

0.20666832 
 

0.683605886  
-0.38037372 

 
1.442926373  

0.366673255 
192  - U. of 

Chicago Hospit-         
als  Express 1.237129871 0.21279408 0.996687553 -0.0033179 0.137989997 -1.98057408 0.367057682 -1.00223627 
201  -         Central/Ridge 4.10608056 1.41246894 1.276126119 0.24382902 1.312836406 0.27218999 1.491489555 0.399775322 
205  -         Chicago/Golf 1.256966069 0.22870094 3.679517911 1.30278174 4.469947705 1.49737671 6.133926384 1.813835064 
206  - Evanston         Circulator 2.899085763 1.06439543 1.915866132 0.65016981 0.791732669 -0.23353148 2.636094251 0.969298371 

 
 
 

Blue Line 1.168674889 0.15587053 0.547487843 -0.602415 0.487234169 -0.71901043 0.544500108 -0.60788714 

Brown Line 1.072121725 0.06963961 0.03497254 -3.3531921 0.010457771 -4.5604099 0.032344501 -3.43131125 

Green Line 1.21862042 0.19771942 1.496983966 0.40345239 1.419625846 0.35039335 0.889266606 -0.11735819 

Orange Line 1.176075031 0.16218265 1.839262316 0.60936458 1.635427017 0.49190394 2.012941884 0.699597276 

Pink  Line 1.51100536 0.41277523 31.70892573 3.45659821 30.74384065 3.42568967 34.84759922 3.550984246 

113 | 



 

Purple Line 1.248795496 0.22217948 0.291289032 -1.2334393 0.481836597 -0.73015023 0.298158091 -1.21013143 

Red Line 0.649391986 -0.43171876 #DIV/0! #DIV/0! 0.027062267 -3.6096149 0.003290167 -5.71681707 

Yellow Line 0.54685616 -0.60356947 3.455241018 1.23989221 4.77459717 1.56330961 3.698778312 1.308002579 
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Appendix C: Scatter Plots 
 

 

Log Odds Ratio and Route Length 
 

 
 

Figure C.1: AnyStop, December (Left) Figure C.2: TreKing, April (Right), 
 
 

 

 

Figure C.3: TreKing, May (Left) Figure C.4: TreKing, June (Right) 
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Log Odds Ratio and Number of Stops 
 
 

 
 

Figure C.5: AnyStop, December (Left) Figure C.6: TreKing, April (Right) 
 
 

 

 
 

Figure C.7: TreKing, May (Left) Figure C.8: TreKing, June (Right) 
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Log Odds Ratio and Stops Per Mile 
 

 

 
 

Figure C.9: AnyStop, December (Left) Figure C.10: TreKing, April (Right) 
 
 

 

 
 

Figure C.11: TreKing, May (Left) Figure C.12: TreKing, June (Right) 
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Log Odds Ratio and Buses Per Hour 
 

 

 
 

Figure C.13: AnyStop, December (Left) Figure C.14: TreKing, April (Right) 
 
 

 

 
 

Figure C.15: TreKing, May (Left) Figure C.16: TreKing, June (Right) 
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Log Odds Ratio and Hours Active 
 

 

 
 

Figure C.17: AnyStop, December (Left) Figure C.18: TreKing, April (Right) 
 
 

 

 
 

Figure C.19: TreKing, May (Left) Figure C.20: TreKing, June (Right) 
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Log Odds Ratio and Corners 
 

 

 
 

Figure C.21: AnyStop, December (Left) Figure C.22: TreKing, April (Right) 
 
 

 

 
 

Figure C.23: TreKing, May (Left) Figure C.24: TreKing, June (Right) 
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