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Abstract

Neural Network-based Fault Diagnosis of Satellites Formation Flight

Shima Mousavi Mirak

The main objective of this thesis is to develop a methodology for detecting and isolat-

ing faults (i.e. fault diagnosis) in any of multiple reaction wheels that are commonly

employed as actuators in a consensus-based virtual structure controlled formation of

satellites. In order to accomplish this objective, a two-level fault diagnosis system

is developed based on Dynamic Neural Networks (DNNs). In the lower-level of the

formation flight system hierarchy, a local fault diagnosis module is available in each

individual satellite. In this level, the fault diagnosis system may consist of a dynamic

neural network that is trained by using absolute measurements and states of each

single satellite. Unfortunately, a local fault diagnosis system may fail to detect the

presence of low severity faults. In an individual satellite these low severity faults

may not cause any serious complications with the specifications of the overall mis-

sion, however they can cause significant impact on the satellite’s attitude or rates in

a given precision formation flight of a network of satellites. Consequently, in order

to detect these low severity faults a fault detection system is required to be designed

and developed at the higher-level or the formation-level of the mission hierarchy. To-

wards this end, the highly nonlinear dynamics of the formation flight and the reaction

wheels are modeled by using dynamic multilayer perceptron neural networks. The

proposed formation-level DNNs invoke the extended back propagation learning algo-

rithm and are trained based on sets of input/output data that are collected from the

relative attitude determination sensors of the 3-axis attitude control subsystems of

the satellites. The DNN parameters are adjusted to minimize certain performance

indices (representing the output estimation errors).

The capabilities of the proposed DNNs are investigated under various faulty situ-

ations, including single and multiple actuator fault scenarios and under high severity

and low severity faulty situations. Using a Confusion Matrix evaluation method, it is

demonstrated that by using the proposed fault detection and isolation (FDI) scheme,

iii



one can achieve a high level of accuracy and precision in detecting faults. The pro-

posed formation-level FDI system has capabilities in efficiently detecting and isolating

actuator low severity faults simultaneously.

iv



�� �� �����	 
����� �� �����
�� ����� ��� �� ��� ��������


�� ���� ���� ��� ��� ������

v



Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Khorasani, for

his professional guidance and continuous encouragement throughout my thesis work.

It has been my great honor and privilege to work under his supervision.

I am also thankful to all my colleagues at Concordia University, especially Farshid

Faal, for their help and support throughout my research. I owe my deepest gratitude

to my dear friends, Maysam Mokarian, Shahrzad Farzin and Behnam Dashtipour for

changing my life in their own ways. They have contributed to this work simply by

being-in-the-world. I am so lucky for having them in my life.

More than anyone else, I would like to thank my beloved family, especially my

beautiful mother and my beloved father who have always been my role model and my

inspiration in my life. No word can express how grateful I am for their boundless love

and unceasing encouragement and support in every single moment of my life. This

work is dedicated to them.

vi



Contents

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Fault Detection and Isolation . . . . . . . . . . . . . . . . . . 4

1.1.2 Neural Networks for Fault Diagnosis . . . . . . . . . . . . . . 8

1.1.3 Formation Flying of Spacecraft . . . . . . . . . . . . . . . . . 12

1.1.4 Objective of the Research . . . . . . . . . . . . . . . . . . . . 16

1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 21

2 Background Information 22

2.1 The Architecture of the Multilayer Perceptron . . . . . . . . . . . . . 24

2.1.1 The Generalized Delta Rule . . . . . . . . . . . . . . . . . . . 24

2.1.2 The Multilayer Perceptron Learning Algorithm Using The Gen-

eralized Delta Rule . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Dynamic Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Extended Dynamic Back-propagation Algorithm . . . . . . . . 29

2.3 Spacecraft Attitude Representation . . . . . . . . . . . . . . . . . . . 34

2.3.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Attitude Representation . . . . . . . . . . . . . . . . . . . . . 36

2.4 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Formation Flying of Satellites . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Formation Flying Control Architectures . . . . . . . . . . . . 43

vii



2.5.2 Dynamics of Earth Orbiting Formations . . . . . . . . . . . . 44

2.5.3 Formation Dynamics: Linearized Equations of Motion . . . . . 45

2.5.4 Formation Flying Architecture and Controller Design . . . . . 46

2.5.5 Formation Control Strategies for Each Spacecraft . . . . . . . 49

2.5.6 Formation Control Strategies for Each Virtual

Structure Instantiation . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Modeling of the Attitude Control Subsystem of a Spacecraft . . . . . 52

2.6.1 ACS Sensors and Actuators . . . . . . . . . . . . . . . . . . . 52

2.7 Mathematical Model of Nearly Ideal Reaction Wheel . . . . . . . . . 56

2.7.1 Mathematical Model of High Fidelity Reaction Wheel . . . . . 57

2.7.2 Reaction Wheel Dynamics . . . . . . . . . . . . . . . . . . . . 57

2.8 Reaction Wheel Fault Types . . . . . . . . . . . . . . . . . . . . . . . 61

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Actuator Fault Detection for Formation Flight of Satellites 63

3.1 Fault Detection for a Single Spacecraft . . . . . . . . . . . . . . . . . 63

3.1.1 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.3 Reaction Wheel Fault Detection Strategy . . . . . . . . . . . . 67

3.2 Actuator Fault Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Single Fault Scenarios . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 Multiple Fault Scenarios . . . . . . . . . . . . . . . . . . . . . 77

3.3 Confusion Matrix Analysis . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 Confusion Matrix Analysis for FD System of a Single Satellite 88

3.4 Problem Definition and Motivation for a Formation of Satellites . . . 90

3.5 Fault Detection System for Formation of Satellites - First Scheme . . 92

3.6 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.8 Fault Detection Threshold Determination . . . . . . . . . . . . . . . . 96

3.9 Actuator Fault Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.10 Actuator Multiple Fault Scenarios . . . . . . . . . . . . . . . . . . . . 110

3.11 Fault Detection in Case of Low Severity Faults . . . . . . . . . . . . . 119

3.12 FD System for a Formation of Satellites - Second Scheme . . . . . . . 125

3.13 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

viii



3.14 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.15 Actuator Fault Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.16 Confusion Matrix Analysis for Formation Flying FD Method . . . . . 142

3.16.1 Confusion Matrix - Formation Flying FD - First Scheme . . . 142

3.16.2 Confusion Matrix - Formation Flying FD - Second Scheme . . 146

3.17 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4 Fault Isolation, Fault Type Determination and Fault Severity Esti-

mation Scheme for a Formation Flight of Satellites 153

4.1 Fault Isolation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.1.1 Fault Isolation Results for a Formation Flying of Satellites . . 154

4.2 A Dynamic Neural Network-Based Methodology for Fault Type Clas-

sification and Fault Severity Estimation . . . . . . . . . . . . . . . . . 158

4.2.1 Fault Type Classification Using Dynamic Neural Classifier . . 158

4.2.2 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.2.3 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.4 Fault Type Classification Results . . . . . . . . . . . . . . . . 162

4.2.5 Dynamic Neural Network-Based Fault Severity Estimation Method164

4.2.6 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.2.7 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.2.8 Fault Severity Estimation Results Using Dynamic Neural Network-

Based Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.3 A Static Neural Network-Based Methodology for Fault Type Classifi-

cation and Fault Severity Estimation . . . . . . . . . . . . . . . . . . 175

4.4 A Static Neural Network-Based Fault Type Classification and Fault

Severity Estimation Method . . . . . . . . . . . . . . . . . . . . . . . 177

4.4.1 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.4.2 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.4.3 Fault Type Determination and Fault Severity Estimation Re-

sults Using Static Neural Network-Based Method . . . . . . . 183

4.5 Analysis of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.5.1 Analysis of the Results for the Dynamic Neural Network-Based

Method for Fault Type Classification and Fault Severity Esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

ix



4.5.2 Analysis of the Results for the Static Neural Network-Based

Method for Fault Type Classification and Fault Severity Esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5 Conclusion and Future Work 197

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 202

x



List of Figures

1.1 Classification of diagnostic algorithms [9]. . . . . . . . . . . . . . . . . 5

1.2 General structure of neural network-based FDI scheme. . . . . . . . . 8

1.3 The influence of the disturbing forces at different altitudes [143]. . . . 13

1.4 Structure of a two-level FDI system for a formation flying of satellites. 17

2.1 Multilayer perceptron architecture [86]. . . . . . . . . . . . . . . . . . 24

2.2 Structure of a dynamic neuron model with P inputs [53]. . . . . . . . 27

2.3 Structure of a second order IIR filter [34]. . . . . . . . . . . . . . . . 28

2.4 scale=0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Earth centered inertial frame [153]. . . . . . . . . . . . . . . . . . . . 35

2.6 Earth centered Earth fixed frame [153]. . . . . . . . . . . . . . . . . . 35

2.7 Satellite body fixed frame [153]. . . . . . . . . . . . . . . . . . . . . . 36

2.8 Local orbit frame [153]. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Decentralized control architecture via the virtual structure approach [31]. 47

2.10 Attitude control operation [80]. . . . . . . . . . . . . . . . . . . . . . 52

2.11 Ideal reaction wheel model. . . . . . . . . . . . . . . . . . . . . . . . 56

2.12 Detailed high fidelity reaction wheel block diagram [84]. . . . . . . . . 58

3.1 Neural network based FD system of a single satellite. . . . . . . . . . 64

3.2 The performance index (mean squared error of the output reaction

torque) curve for the dynamic neural network- satellite #1 (a) x-axis,

(b) y-axis (c) z-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Testing curve (actual and estimated outputs) for the DNN - (a) x-axis,

(b) y-axis, and (c) z-axis of the satellite #1. . . . . . . . . . . . . . . 68

3.4 Residual error signals in case of a bus voltage fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 1. . . . . . . . . . . . . . . . . . . . . 70

3.5 Residual error signals in case of a bus voltage fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 2. . . . . . . . . . . . . . . . . . . . . 71

xi



3.6 Residual error signals in case of a bus voltage fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 3. . . . . . . . . . . . . . . . . . . . . 72

3.7 Residual error signals in case of a motor current fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 1. . . . . . . . . . . . . . . . . . . . . 74

3.8 Residual error signals in case of a motor current fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 2. . . . . . . . . . . . . . . . . . . . . 75

3.9 Residual error signals in case of a motor current fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 3. . . . . . . . . . . . . . . . . . . . . 76

3.10 Residual error signals in case of a temperature fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 1. . . . . . . . . . . . . . . . . . . . . 78

3.11 Residual error signals in case of a temperature fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 2. . . . . . . . . . . . . . . . . . . . . 79

3.12 Residual error signals in case of a temperature fault: (a) x-axis, (b)

y-axis, and (c) z-axis - Scenario 3. . . . . . . . . . . . . . . . . . . . . 80

3.13 Multiple fault scenarios - scenario #1: residual error signal in the x-axis. 81

3.14 Multiple fault scenarios - scenario #2: residual error signal in the x-axis. 82

3.15 Multiple fault scenarios - scenario #3: residual error signal in the x-axis. 83

3.16 Multiple fault scenarios - scenario #4: residual error signal in x-axis. 84

3.17 Multiple fault scenarios - scenario #5: residual error signal in x-axis. 85

3.18 Communication links among the four spacecraft in the formation - first

scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.19 Structure of the fault detection (FD) system in a formation flying of

satellites - first scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.20 The performance index (mean squared error of the output reaction

torque) curve for the dynamic neural network- x-axis of (a) satellite

#1, (b) satellite #2 (c) satellite #3 (d) satellite #4. . . . . . . . . . . 95

3.21 Testing curve (actual and estimated outputs) for the DNN - (a) x-axis,

(b) y-axis, and (c) z-axis of the satellite #1. . . . . . . . . . . . . . . 97

3.22 Residual signals corresponding to bus voltage fault - scenario 1: (a)

x-axis satellite #2, (b) x-axis satellite #1. . . . . . . . . . . . . . . . 100

3.23 Residual signals corresponding to bus voltage fault - scenario 2: (a)

z-axis satellite #2, (b) z-axis satellite #1. . . . . . . . . . . . . . . . 101

xii



3.24 Residual signals corresponding to motor current fault - scenario 1: (a)

x-axis satellite #3, (b) x-axis satellite #2. . . . . . . . . . . . . . . . 102

3.25 Residual signals corresponding to motor current fault - scenario 2: (a)

x-axis satellite #4, (b) x-axis satellite #3. . . . . . . . . . . . . . . . 104

3.26 Residual signals corresponding to temperature fault - scenario 1: (a)

x-axis satellite #2, (b) x-axis satellite #1. . . . . . . . . . . . . . . . 105

3.27 Residual signals corresponding to temperature fault - scenario 2: (a)

x-axis satellite #1, (b) x-axis satellite #4. . . . . . . . . . . . . . . . 106

3.28 Residual signals corresponding to multiple fault scenario 1: (a) along

the x-axis of satellite #2 (b) along the y-axis of satellite #2. . . . . . 112

3.29 Residual signals corresponding to multiple fault scenario 2: (a) along

the z-axis of satellite #3 (b) along the y-axis of satellite #3. . . . . . 113

3.30 Residual signals corresponding to multiple fault scenario 3: (a) along

the x-axis of satellite #1 (b) along the y-axis of satellite #1. . . . . . 115

3.31 Residual signals corresponding to multiple fault scenario 4: (a) along

the y-axis of satellite #2 (b) along the z-axis of satellite #4. . . . . . 116

3.32 Residual signals corresponding to multiple fault scenario 5: (a) along

the y-axis of satellite #1 (b) along the z-axis of satellite #4. . . . . . 118

3.33 Residual signals corresponding to multiple fault scenario 6: (a) along

the y-axis of satellite #4 (b) along the z-axis of satellite #2. . . . . . 120

3.34 Residual error signals corresponding to low severity faults along the

z-axis of satellite #2, scenario 1: (a) formation flying (b) single satellite.121

3.35 Residual error signals corresponding to low severity faults along the

y-axis of satellite #3, scenario 2: (a) formation flying (b) single satellite.123

3.36 Residual error signals corresponding to low severity faults along the

x-axis of satellite #1, scenario 3: (a) formation flying (b) single satellite.124

3.37 Communication links among the spacecraft in the formation - second

scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.38 Structure of the FD system in a formation flying of satellites - second

scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.39 The performance index (mean squared error of the output reaction

torque) curve for the dynamic neural network- x-axis of (a) satellite

#1, (b) satellite #2 (c) satellite #3 (d) satellite #4. . . . . . . . . . . 129

xiii



3.40 Testing curve (actual and estimated outputs) for the DNN (second

approach) - (a) x-axis, (b) y-axis, (c) z-axis of satellite #1. . . . . . . 130

3.41 Residual signals corresponding to bus voltage fault - scenario 1: (a)

x-axis of satellite #4, (b) x-axis of satellite #1, (c) x-axis of satellite #3.132

3.42 Residual signals corresponding to bus voltage fault - scenario 2: (a)

z-axis of satellite #2, (b) z-axis of satellite #1, (c) z-axis of satellite #3.133

3.43 Residual signals corresponding to motor current fault - scenario 3: (a)

y-axis of satellite #3, (b) y-axis of satellite #2, (c) y-axis of satellite #4.134

3.44 Residual signals corresponding to motor current fault - scenario 4: (a)

x-axis of satellite #1, (b) x-axis of satellite #2, (c) x-axis of satellite #4.136

3.45 Residual signals corresponding to temperature fault - scenario 5: (a)

x-axis of satellite #2, (b) x-axis of satellite #1, (c) x-axis of satellite #3.137

3.46 Residual signals corresponding to temperature fault - scenario 6: (a)

x-axis of satellite #1, (b) x-axis of satellite #4, (c) x-axis of satellite #2.138

4.1 Dynamic neural network-based scheme for fault type determination. . 159

4.2 The performance index (mean squared error of the fault classes) curve

for the dynamic neural network classifier- satellite #1 (a) x-axis, (b)

y-axis (c) z-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.3 Testing curve (actual and estimated fault classes) for the DNN - (a)

x-axis, (b) y-axis, and (c) z-axis of the satellite #1. . . . . . . . . . . 163

4.4 First scenario: (a)Residual signal from the formation level fault detec-

tion system (b) Output of DNN-based fault type classifier. . . . . . . 164

4.5 Second scenario: (a)Residual signal from the formation level fault de-

tection system (b) Output of DNN-based fault type classifier. . . . . 165

4.6 Third scenario: (a)Residual signal from the formation level fault de-

tection system (b) Output of DNN-based fault type classifier. . . . . 165

4.7 Dynamic neural network-based scheme for fault severity estimation. . 166

4.8 The performance index (mean squared error of the fault severity) curve

for the dynamic neural network in fault severity estimation- satellite

#1 (a) x-axis, (b) y-axis (c) z-axis. . . . . . . . . . . . . . . . . . . . 170

4.9 Testing curve (actual and estimated fault severity) for the DNNs in

fault severity estimation level- Motor current fault. . . . . . . . . . . 171

xiv



4.10 Testing curve (actual and estimated fault severity) for the DNNs in

fault severity estimation level- Temperature fault. . . . . . . . . . . . 172

4.11 Testing curve (actual and estimated fault severity) for the DNNs in

fault severity estimation level- Bus voltage fault. . . . . . . . . . . . . 172

4.12 First scenario: (a) Residual signal from the formation level fault de-

tection system (b) o utput of DNN-based fault severity estimator. . . 173

4.13 Second scenario: (a) Residual signal from the formation level fault

detection system (b) output of DNN-based fault severity estimator. . 174

4.14 Third scenario: (a) Residual signal from the formation level fault de-

tection system (b) output of DNN-based fault severity estimator. . . 175

4.15 General structure of the fault type classification and fault severity es-

timation system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.16 Learning curve for the static neural classifier network. . . . . . . . . . 179

4.17 Fault classification results for 10000 different motor current fault sce-

narios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.18 Fault classification results for 10000 different temperature fault scenarios.181

4.19 Fault classification results for 10000 different bus voltage fault scenarios.182

4.20 First scenario: (a) Residual signal from the formation level fault de-

tection system (b) Fault type(c) Fault severity. . . . . . . . . . . . . . 184

4.21 Second scenario: (a) Residual signal from the formation level fault

detection system (b) Fault type(c) Fault severity. . . . . . . . . . . . 185

4.22 Third scenario: (a) Residual signal from the formation level fault de-

tection system (b) Fault type(c) Fault severity. . . . . . . . . . . . . . 186

xv



List of Tables

2.1 Typical values of type A reaction wheel [84]. . . . . . . . . . . . . . . 59

3.1 Summary of the bus voltage fault detection results for a single satellite. 85

3.2 Summary of the motor current fault detection results for a single satellite. 86

3.3 Summary of the temperature fault detection results for a single satellite. 86

3.4 Actual and Detection results in case of the first multiple fault scenario. 88

3.5 Actual and Detection results in case of the second multiple fault scenario. 88

3.6 Actual and Detection results in case of the third multiple fault scenario. 89

3.7 Actual and Detection results in case of the fourth multiple fault scenario. 89

3.8 Actual and Detection results in case of the fifth multiple fault scenario. 89

3.9 Confusion matrix parameters for a single satellite. . . . . . . . . . . . 90

3.10 Confusion matrix results for a faulty satellite. . . . . . . . . . . . . . 90

3.11 DNN characteristics in the learning phase. . . . . . . . . . . . . . . . 95

3.12 Fault detection time delays in case of 60% drop of nominal value in the

bus voltage of x-axis satellite #1. . . . . . . . . . . . . . . . . . . . . 108

3.13 Fault detection time delays in case of 50% drop of nominal values in

the motor current of x-axis satellite #2. . . . . . . . . . . . . . . . . 108

3.14 Fault detection time delays in case of 10% increase in nominal values

of the viscous friction of y-axis satellite #3. . . . . . . . . . . . . . . 109

3.15 Fault detection time delays in case of 50% increase in nominal value of

the viscous friction of y-axis satellite #3. . . . . . . . . . . . . . . . . 110

3.16 Comparison between single satellite and formation flying FD systems. 122

3.17 DNN characteristics in the learning phase. . . . . . . . . . . . . . . . 128

3.18 Fault detection time delays in case of 60% drop of nominal value in the

bus voltage of x-axis satellite #1. . . . . . . . . . . . . . . . . . . . . 140

3.19 Fault detection time delays in case of 50% drop of nominal value in the

bus voltage of x-axis satellite #2. . . . . . . . . . . . . . . . . . . . . 140

xvi



3.20 Fault detection time delays in case of 10% increase in nominal value of

the viscous friction of y-axis satellite #3. . . . . . . . . . . . . . . . . 141

3.21 Fault detection time delays in case of 50% increase in nominal value of

the viscous friction of y-axis satellite #3. . . . . . . . . . . . . . . . . 142

3.22 Actual and detection results in case of 45% drop from the nominal

value of the bus voltage (VBUS) along the z-axis of satellite #2 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 142

3.23 Actual and detection results in case of 50% drop from the nominal

value of the motor current(Im)) along the x-axis of satellite #3 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 143

3.24 Actual and detection results in case of 50% drop from the nominal

value of the viscous friction (τv) along the x-axis of satellite #1 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 143

3.25 Actual and detection results in case of 10% drop from the nominal

value of the viscous friction (τv) along the y-axis of satellite #3 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 144

3.26 Actual and detection results in case of 15% drop from the nominal value

of the motor current(Im) along the y-axis of satellite #3 by using 10000

time samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.27 Actual and detection results in case of 70% drop from the nominal

value of the bus voltage (VBUS) along the x-axis of satellite #2 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 145

3.28 Confusion matrix parameters for faulty satellite(#i) and its nearest

neighbor(#(i− 1)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.29 Confusion matrix results for faulty satellite(#i) and its nearest neighbor(#(i−
1)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.30 Actual and detection results in case of 45% drop from the nominal

value of the bus voltage (VBUS) along the z-axis of satellite #2 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 147

3.31 Actual and detection results in case of 50% drop from the nominal

value of the motor current (Im) along the x-axis of satellite #3 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 147

xvii



3.32 Actual and detection results in case of 50% drop from the nominal

value of the motor current (Im) along the x-axis of satellite #1 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 147

3.33 Actual and detection results in case of 10% drop from the nominal

value of the motor current (Im) along the y-axis of satellite #3 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 148

3.34 Actual and detection results in case of 15% drop from the nominal

value of the motor current (Im) along the y-axis of satellite #3 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 148

3.35 Actual and detection results in case of 70% drop from the nominal

value of the bus voltage (VBUS) along the x-axis of satellite #2 by

using 10000 time samples. . . . . . . . . . . . . . . . . . . . . . . . . 148

3.36 Confusion matrix parameters for the faulty satellite (#i) and its two

nearest neighbors (#(i− 1) and #(i+ 1)). . . . . . . . . . . . . . . . 149

3.37 Confusion matrix results for the faulty satellite (#i) and its two nearest

neighbors (#(i− 1) and #(i+ 1)). . . . . . . . . . . . . . . . . . . . 149

4.1 Fault detection time delays in case of 60% drop from nominal value in

the bus voltage of x-axis of satellite #1. . . . . . . . . . . . . . . . . 155

4.2 Fault detection time delays in case of 50% drop of nominal values in

the motor current of x-axis of satellite #2. . . . . . . . . . . . . . . . 156

4.3 Fault detection time delays in case of 10% increase in nominal values

of the viscous friction of y-axis of satellite #3. . . . . . . . . . . . . . 157

4.4 Reaction wheel fault types assignments. . . . . . . . . . . . . . . . . . 159

4.5 Motor current fault severity at the time of fault occurrence. . . . . . 167

4.6 Motor current fault severity at the time of fault occurrence. . . . . . 168

4.7 Motor current fault severity at the time of fault occurrence. . . . . . 168

4.8 Actual and classification results under 30 different motor current fault

cases - DNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.9 Actual and classification results under 30 different temperature fault

cases - DNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.10 Actual and classification results under 20 different bus voltage fault

cases - DNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

xviii



4.11 Actual fault type and classification results under different fault cases -

DNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.12 Actual fault severity and estimated fault severity under different fault

cases - DNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.13 Actual fault severity and estimation results under different fault cases

- DNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.14 Actual and classification results under 30 different motor current fault

cases - SNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.15 Actual and classification results under 30 different temperature fault

cases - SNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.16 Actual and classification results under 20 different bus voltage fault

cases - SNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.17 Actual and classification results under different fault cases - SNN method.195

4.18 Actual fault severity and estimated fault severity under different fault

cases - SNN method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.19 Actual fault severity and estimation results under different fault cases

- Static neural network (SNN) method. . . . . . . . . . . . . . . . . . 196

xix



Chapter 1

Introduction

Spacecraft formation flight is one of the key technologies for many future space mis-

sions. According to the definition in [1] formation flight is a set of vehicles whose

dynamics are coupled through common control laws. In the early years of spacecraft

flights, only one individual spacecraft was involved in most of the space flight mis-

sions and it was controlled via specialized commands from distant ground stations [2].

In order to fulfill multi-task requirements of an individual spacecraft, multiple on

board instruments and payloads had to be designed and embedded in the spacecraft

structure and this single complex spacecraft was common in spacecraft missions for

scientific observations, weather monitoring, global navigation and civil relay commu-

nications [3].

One of the main disadvantages of developing a large complex spacecraft is that the

cost of design and developing the life cycle of a complex single spacecraft is normally

exceedingly high that many nations in the world cannot afford the manufacturing and

launch costs of rockets and satellites. On the other hand, increasing the complexity

of satellite increases the likelihood of instability of the spacecraft in the mission, such

that a minor failure in the spacecraft may lead to a catastrophe in the entire flight
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mission [3]. As a solution to these problems, researchers from the US National Aero-

nautics and Space Administration (NASA) defined the concept of formation flight

as grouping of multiple spacecraft such that they can communicate with each other,

share payloads and transmit measurements and data in order to accomplish the ob-

jective of a single complex spacecraft, which is normally more expensive and less

reliable than a group of coordinated but less complex spacecraft [3].

Replacing a single large spacecraft with a group of multiple spacecraft has many

advantages: The multiple satellite approach is simpler and less expensive to man-

ufacture and it provides a high degree of reconfigurability and redundancy in case

of single vehicle failure or malfunction. Formation flying of spacecraft approach is

adaptive to the failure in any of individual satellites and the failed satellite can be

replaced incrementally. Using a group of multiple spacecraft in the formation flight

also provides more flexibility in the mission, such that new technology can be included

in the preexisting missions [4].

One of the essential problems in formation flying missions is control. In formation

flight controller design, the size of the formation must be defined firstly, and the task

also requires collision avoidance calculations, minimum amount of fuel consumption

and minimum sensor measurements and data communication. The essential part of

control problem in a group of spacecraft is developing control architectures and ad-

vance trajectory planning techniques [3].

In [87] five basic formation control architectures are defined namely: Multiple-

Input, Multiple-Output (MIMO), Leader Follower (L/F), Virtual Structure (VS),

Cyclic and Behavioral. In the Multiple-Input, Multiple-Output architecture, the for-

mation is considered as a multiple-input, multiple-output plant and the formation

controller is designed by using the dynamic model of this formation plant. In the

L/F architecture, using a hierarchical approach, the problem of formation control

2



is reduced to the individual tracking problem [1]. In the VS, the group of multiple

satellites behaves like a rigid body. Motions of the virtual structure and constant

specified orientations and positions of the virtual structure are used to determine the

trajectory that each individual satellite needs to follow. The formation control in

cyclic architecture is obtained by connecting individual controllers using cyclic algo-

rithms. In Behavioral architecture, the output of multiple controllers is combined to

achieve the desired different behaviors.

One of the essential problems that are being investigated recently in the literature

is the problem of Fault Detection and Isolation (FDI) for formation flight of satellites.

By definition, fault detection is the process of detecting the fault occurrence in the

system based on malfunctions or abnormalities in the system behavior. Once the

fault is detected, the next step is fault isolation. In this step, the faulty component

is identified. There are two main FDI methods available in the literature, namely:

model-based approach and process history-based approach using either qualitative or

quantitative modeling [9], [152].

Development of intelligent and learning-based methods for autonomously detect-

ing faults in a formation flight, with minimal support and intervention of ground-based

operators is indeed a challenging research field. The faulty component (either a faulty

actuator or sensor) must be detected and isolated as early as possible, before it could

lead to and result in serious damage or fatal failure in the formation control subsys-

tem. In learning-based approaches [10] such as neural networks and fuzzy systems,

a realistic model of component does not need to be provided. Due to capabilities

of neural networks to cope with nonlinearity, complexity, uncertainty and noisy and

corrupted data, they have been widely applied in domain of fault detection [149], [23].

Static nonlinear systems can be modeled by standard multilayer perceptron net-

works, but, in order to represent dynamic properties of a system, one needs to employ
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a dynamic neural network [46]. Dynamic neural networks are responsive to time vary-

ing signals due to their capabilities of internally generating and embedding memory.

In recent years, dynamic neural networks have been widely used in different fault

identification and fault detection and isolation applications [5], [6], [7], [8].

Attitude control subsystem of a satellite is responsible for orienting satellite to-

ward the desired attitude and stabilizing it despite the external disturbance torques.

The propulsion system plays an important role in formation flying missions. Gyros

and reaction wheels can play the role of attitude control in most of formation flight

missions. The actuators which are responsible for the satellite attitude control are

three reaction wheels on three axes of each satellite. Their main functionality is to

provide reaction torques for a spacecraft and store angular momentum [82].

Developing an FDI system for detecting and isolating faults in reaction wheels of

a formation flying of spacecraft is a challenging problem. The desirable autonomous

FDI system must be capable of detecting faults and isolating the faulty reaction wheel

in the group of satellites.

1.1 Literature Review

1.1.1 Fault Detection and Isolation

Development of fault detection and isolation methods for autonomously detecting

faults in a formation flight mission, with minimal support and intervention of ground-

based operators is indeed a challenging research field. The faulty component (either

a faulty actuator or sensor) must be detected and isolated as early as possible, before

it could lead to and result in serious damage or fatal failure in the formation control

subsystem.

Detecting and isolating faults can be achieved by two main approaches, namely

4



model-based and history-based approaches [10], [11] and [12]. In model-based ap-

proaches, a normal operating model of the system is constructed based on the prior

mathematical knowledge about the system. The output of this model is compared

with the actual output of the system, to generate the residual signal. This residual

signal is used as a fault indicating signal, that is, if the residual signal is close to zero,

the system is healthy and if the residual signal is distinguishably greater than zero,

the system is faulty. In history-based approach it is assumed that a large amount of

historical information is available. This data can then be presented as a prior knowl-

edge to the diagnostic system through feature extraction methods [12]. A detailed

classification of fault diagnosis methods is depicted in Fig. 1.1.

In quantitative models, the physical understanding of the process is expressed in

Figure 1.1: Classification of diagnostic algorithms [9].

terms of mathematical input-output relationships in the system [10]. In parameter

estimation method, it is assumed that the model structure is known, however the

model parameters are unknown and time varying. This method is especially suitable

for multiplicative faults and additive faults on the input and output signals. Using

this method, very small changes such as slowly developing and fast developing faults

are detectable [12]. In state estimation methods, model structure and model param-

eters must be known accurately. This method is especially suitable for additive fault
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detection, however using this method only relatively large faults are detectable. In

parity equations method, model structure and model parameters must be known and

must be fit the process well. This method is especially suitable for additive faults.

Using this method some low severity faults can be detected. In case of abrupt faults,

state estimation and parity equation methods react faster than parameter estimation

method.

In qualitative methods, the physics of the process is expressed in terms of qual-

itative functions such as causalities or IF-THEN rules centered on different units in

a process. The prior knowledge of physics of the system in the causal models can be

represented in different forms, such as digraphs, fault trees, qualitative physics and

abstraction hierarchies [10]. In [13] fault detection in a satellite system is performed

based on a fault tree approach and the causes of a fault is determined by using the

same method. In [14] two correlation models are proposed to approximate the com-

plex correlation among sensor measurements of general systems.

The problem of fault detection and isolation in the attitude control subsystem of

a satellite has been studied in [15], [16], [17], [88] and [18] recently. In [17] a Multi-

Hypothesis Extended Kalman Filter (MEKF) for detection and identification of sensor

and actuator failures is proposed. In [15] the FDI is accomplished by using the In-

teractive Multiple Models (IMM) approach. Towards this end, a bank of interactive

multiple Unscented Kalman Filters (UKFs) is developed. In [88] a fault diagnosis

technique is developed based on the interacting multiple model (IMM) algorithm for

partial (soft) or total (hard) reaction wheel failures in the spacecraft attitude control

system (ACS). In [20] a decentralized state estimation method is applied to estimate

the states of the formation flying mission. In [18] a set of detection filters are designed

whereby through a combination of residuals the reaction wheel FDI decision making

is accomplished successfully. Since many modeling errors appear in the mathematical
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model of the system, the model-based FDI problem may result in having false alarms

or missing the fault effects [19].

The process history-based methods are classified into two categories, namely: qual-

itative and quantitative. Qualitative history features can be extracted by expert sys-

tems and Qualitative Trend Analysis (QTA). Most faults in the system leave a trend

in the faulty actuator or sensor. This trend can be used to detect the underlying faults

in the system, before they lead to major failures in the system [11]. Expert systems

need an extensive detailed database and process experts. These methods are time

consuming to develop due to large amount of information and rules and their main

disadvantage is the uniqueness of knowledge and the necessity for updating rules [21].

Statistical and non-statistical classifiers are used to extract quantitative histori-

cal information. There are three main statistical feature extraction methods namely

Principle Component Analysis (PCA), Partial Least Squares (PLS), and statistical

pattern classifiers [11]. Quantitative feature extraction approaches essentially formu-

late the fault diagnosis problem as a pattern recognition problem. More details on

quantitative history-based approaches have been provided in [9], [10], [11].

In [90] a robust fault detection and isolation (FDI) scheme for a general nonlinear

system using a neural network-based observer is developed. Both actuator and sensor

faults are considered. Two recurrent neural networks are employed to identify general

unknown actuator and sensor faults. In [91] a practical solution to the problem of ro-

bust fault detection and isolation (FDI) for faults affecting the thrusters of a satellite

system is proposed. This approach is based on both state estimation of an accurate

linear model of the satellite system and unknown input de-coupling to achieve robust

FDI in presence of severe dynamic uncertainty during main engine deployment.
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In [92] a systematic and transparent methodology within a hierarchical fault diag-

nosis framework for multi-platform space systems is proposed. A Bayesian network-

based hierarchical fault diagnosis methodology is proposed in [92] that allows fuzzy

rule-based reasoning at different components in the hierarchy. In [100] a multi-level

fault diagnosis methodology utilizing fuzzy rule-based reasoning is proposed to en-

hance the level of autonomy in the fault diagnosis at the ground station. In [89] a

state space approach is used and a nonlinear-in-parameters neural network (NLPNN)

is employed to identify the additive unknown reaction wheel faults. This FDI scheme

is based on a hybrid model (composed of an analytical nominal model and a neural

network model) of the nonlinear system. In [94] a fault tolerant diagnosis system

for the RADARSAT-1 attitude control system (ACS) telemetry is developed. The

proposed system is using computational intelligence to detect and isolate faults and

determine the cause of failures from the telemetry data time series history using func-

tional models of the satellite ACS.

Figure 1.2: General structure of neural network-based FDI scheme.

1.1.2 Neural Networks for Fault Diagnosis

An important class of non-statistical classifiers is neural networks. In learning-based

approaches such as neural networks and fuzzy systems, a realistic model of compo-

nent does not need to be provided. Due to capabilities of neural networks to cope
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with nonlinearity, complexity, uncertainty and noisy and corrupted data, they have

been widely applied in the domain of fault identification [36], [37], [38], [39] or fault

detection [22], [23], [42], [48], [24].

The general structure of neural network-based FDI is depicted in Fig. 1.2. Gen-

erating residual signals is the key part in detecting faults in a process. The dynamic

model of behavior of the system is generated by using a neural network. The differ-

ence between the output of the neural network and the actual output of the system is

considered as the fault indicating signal (i.e. the residual signal). Generally, instead

of developing multiple linear models of the system for several operating points, it is

more advantageous to develop a nonlinear model of the system that works in a wider

range of operating conditions [9].

Sorsa in [23] utilized a multilayer perceptron network with hyperbolic tangent as

the nonlinear element for detecting faults in a realistic heat exchanger-continuous

stirred tank reactor system. In [25] the application of artificial neural networks for

detecting and isolating faults in robotic manipulators is discussed. In [25] the dy-

namics of the robotic manipulator is reproduced by using two neural network-based

approaches namely: multi-layer perceptron (MLP) neural network and radial basis

function network (RBFN). In [26] the FDI scheme proposed in [25] is applied to

generate and analyze the fault indicating residual signals in multiple cooperative ma-

nipulators.

The application of neural networks as a solution for the problem of fault detection

and isolation has been widely discussed in the literature. Neural networks have been

proposed for classification and function approximation problems. In general, neural

networks that have been used for fault diagnosis can be classified into two groups,

based on: (i) the architecture of the network such as radial basis functions; and (ii)
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the learning strategies such as supervised and unsupervised learning [11]. In the su-

pervised learning algorithms, using a predefined topology for the neural network, the

connection weights have to be determined using the mismatch between the actual

and the desired output values. In that sense, supervised learning algorithms are suit-

able choices for fault classification applications. The most popular neural network

learning strategy in the literature is the back-propagation algorithm. The problem

of fault diagnosis based on back-propagation learning method has been addressed

in [139], [140], [141], [142].

Most of the work on improvement of performance of standard back-propagation

algorithm are based on explicit presentation of features to the network. In [143] the

performance gains of neural networks are determined through the incorporation of

functional inputs in addition to the normal inputs to the neural networks. In [144]

the performance of the network is improved and the network training time is reduced

through data processing and filtering. In [145] a combination of feedforward neural

networks and a recurrent neural network is used for better performance. In [146] the

integration of neural networks and expert systems is applied for better fault diagnosis.

As an improvement to the standard back-propagation learning method, basis func-

tions generating bounded decision regions could be better suited to the problem of

fault diagnosis [11]. In [147] radial basis neural networks are considered as a solution

for the fault diagnosis problem.

In [148] a wavenet is proposed as an improvement for standard back-propagation

method for the problem of fault diagnosis. Wavenet is a neural network with one

hidden layer and its basis functions are drawn from a family of orthonormal wavelets.

One important advantage of the wavenet is that due to the orthogonality property of

the wavelet basis functions, the nodes may be added or removed without retraining

the network.
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During recent decades, most of the work in the domain of neural networks has fo-

cused on static feed-forward neural networks. These networks have many applications

in the field of pattern recognition where both input and output vectors represent the

spatial patterns and they are independent of time. The main motivation to develop

dynamic neural structures is that the signal delays are omnipresent in the brain and

play an important role in neurobiological information processing. In addition to bet-

ter representation of neurobiological neurons, the dynamic neuron also offers better

computational capabilities as compared to the static neuron.

In [149] a neural network approach to design of a robust fault diagnosis system

is proposed. In this work a neural observer scheme is developed based on dynamic

multi-layer perceptrons with a mixed structure. In [150] a fault detection and isolation

(FDI) strategy based on a Dynamically Driven Recurrent Neural Network (DDRNN)

architecture is proposed This fault diagnosis method is applied for detecting and iso-

lating faults in case of actuator/thruster failure in a satellite.

In [28] the dynamics of the attitude control subsystem of a satellite is modeled by

using a recurrent neural network called Elman’s network. In this network, there is a

feedback from the output of the hidden layer to the input of the hidden layer. This

dynamic feedback allows the Elman’s network to learn the time-varying patterns and

dynamic features of the ACS model. In [30] an adaptive nonlinear parameter estima-

tion technique is used based on a highly accurate dynamic model of a reaction wheel.

The well-known standard back-propagation algorithm and back-propagation through-

time algorithm were employed inside the neural adaptation algorithms to obtain the

required performance. To make the optimization feasible for on-line application, the

optimal estimation functions are approximated by MLP neural networks. In [95] a

hierarchical dynamic neural network-based fault detection and isolation (FDI) scheme
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for pulsed plasma thrusters (PPTs) that are employed in the attitude control subsys-

tem (ACS) of satellites tasked to perform formation flying (FF) missions is developed.

In [27] a Dynamic Multi-Layer Perceptron (DMLP) neural network that is pro-

posed in [32], [33], [34], [35] is used to detect faults in the attitude control subsystem

of a satellite. In this work, a generalized architecture of the same dynamic neuron

model is considered. In this type of neural network, instead of using of a global

feedback structure, dynamic neurons are used in feed-forward neural network archi-

tecture. In [151] the same dynamic neural network architecture is used to detect

faults in a highly nonlinear dynamic system corresponding to an aircraft jet engine.

1.1.3 Formation Flying of Spacecraft

The concept of formation flight of satellites is a critical technology for future space

missions. One of the main problems in the field of formation flying of satellites is

guidance. Based on its definition, formation flight guidance is the generation of any

reference trajectory that is used as an input for a formation member’s relative state

tracking control law [1]. The problems in the field of formation flying guidance are

divided into two main categories, namely deep space (DS) formation flight missions

and planetary orbital environments (POE) missions. In deep space, relative spacecraft

dynamics reduce to a double integrator form [100], but in the POE the spacecraft are

subject to environmental disturbances and significant orbital dynamics. A satellite

orbiting around the Earth is affected by many perturbing forces, torques and distur-

bances. Due to the non-symmetric and non-homogenous characteristic of the Earth,

gravitational perturbation (J2) [134], [135], and gravitational torque [55] highly affect

satellites in lower altitudes. In lower altitude the atmospheric drag, is one of the

dominating forces [134], [55]. Other major perturbing factors could be listed as solar
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radiation [136] and solar wind [134], the magnetic field of the Earth, and the gravi-

tational force of the Moon and the Sun [137], [138]. Fig. 1.3 shows these perturbing

forces and torques and compares them in terms of severity.

In [96] the problem of formation reconfiguration is precisely defined and it is

Figure 1.3: The influence of the disturbing forces at different altitudes [143].

reduced to the problem of permutation groups. In this case the fuel optimal re-

configuration trajectories are straight lines with ”bang-coast-bang” control law and

collision avoidance is addressed by sequentially moving the spacecraft. Given a

new configuration optimal, collision avoidance-constrained reconfiguration trajecto-

ries are developed in [97], [98], [99]. In the POE dynamics are more complicated

and as a result, other methods are proposed for solving the reconfiguration prob-

lem. In [101], [102], [103], [104] the problem of formation flying reconfiguration is

solved by using optimal control including linear programming and primer vector the-

ory. In [105] Hohmann transfers method and in [106] and [107] Lambert’s solution is

applied for solving the problem of reconfiguration in formation flights. Gauss’ varia-

tion of parameters equation [107], [108], [109], [110] and multi-impulse, sub-optimal

methods [111], [112], [113] have also been investigated.
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One of the other problems in the field of formation flying of satellites is developing

and designing of formation control techniques associated with stability analysis of the

tracking control laws. In general the formation size, precision and dynamic environ-

ment all affect the formation flying controller development [87]. The first problem

in the field of formation flying controller development is the formation controller ar-

chitecture. In [87] five different controller architectures are defined namely: Leader/

Follower (L/F), Multi-Input/ Multi-Output (MIMO), Virtual Structure (VS), Cyclic

and Behavioral structure.

In the leader follower architecture, a hierarchical arrangement of individual space-

craft controllers is used that reduces the problem of formation flying control to an

individual tracking problem [87]. Most of leader/follower algorithms in the literature

discuss a single leader/follower control algorithm in which all spacecraft in the for-

mation follow the same leader. The other common architecture is the one in which

each satellite follows its preceding satellite. It is normally assumed that if the follower

control laws are stabilizing, then the leader/follower connection of these controllers

becomes stable too. The problem of leader/follower deep space formation controller

design is studied in the following papers. In [114] and [115] feedback linearization

method and linear matrix inequalities (LMI) are combined to design a robust and

switched controller for avoiding control saturation. In [116] and [117] a variety of

control techniques including proportional/derivative (PD), time-optimal and mixed

fuel-time optimal are applied. [118] develops a rule-based control law for synchroniz-

ing the rotational motion of multiple spacecraft in the mission.

The problem of leader/follower controller design in the POE is discussed in the fol-

lowing papers. In [119] separate discrete-time controllers are designed for in-orbital

plane motion and out of plane motion. In [120] a similar decoupled controller is
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designed for GEO orbits. In [121] a discrete-time LQ controller is designed for distur-

bance rejection and a feedforward controller is designed for providing non-equilibrium

point control offsets. Considering nonlinear control, [122] and [123] design position

feedback and output feedback controllers, respectively, for Keplerian relative orbital

dynamics.

In the virtual structure architecture, the overall network of satellites is considered

as a whole virtual rigid body. The motion of the virtual structure and the positions

and orientations of individual spacecraft within the formation are used to generate

reference trajectories for the spacecraft to track by using individual spacecraft con-

troller.

Two types of virtual structures are studied in literature:, namely Iterated Vir-

tual Structure (IVS) and Guidance Virtual Structure (GVS). In the IVS a forma-

tion structure is fit to the current spacecraft positions at each time. The spacecraft

then track desired states with respect to the fitted structure. The GVS consists of

an initial structure fitting step, followed by the prescribed motion of the structure

to generate desired spacecraft trajectories [87]. Different fitting algorithms are dis-

cussed in [124], [125], [126] and [127]. Similar to the L/F, a formation controller in

the cyclic architecture is formed by connecting individual spacecraft controllers. In

Cyclic architecture, unlike leader/follower architecture, the controller connections are

not hierarchical [87]. In [128] a multi-neighbor strategy is proposed, in which each

spacecraft controls itself with respect to the center-of-mass (COM) of a subset of

neighboring spacecraft. A similar approach has been used in [129] and [130].

In the behavioral architecture the outputs of multiple controllers designed for

achieving different and possibly competing behaviors are combined. A behavior is

defined to be an objective such as collision avoidance or move-to-goal functions that

the spacecraft must individually or collectively perform [87]. Formation maintenance
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is one of the behaviors that must be fulfilled during the formation [129], [130].

In the multiple-input, multiple-output (MIMO) architecture, formation controllers

are designed by using a dynamic model of the entire formation system. In this ap-

proach, the formation is treated as a multiple-input, multiple-output plant. Within

this problem formulation, all the methods of modern control may be applied to for-

mation control. In [131] a minimal state space realization of formation relative states

is developed and a LQR controller is designed. In [132] each spacecraft has a full-state

LQC estimator that requires communicated information to function. In this paper a

local estimator is augmented so that less information communication is needed among

satellites in the formation. Nonlinear and constrained model predictive control (MPC)

for MIMO architecture has been developed in [133].

1.1.4 Objective of the Research

The main objective of this work is to propose a method for detecting and isolating

faults in reaction wheels of the formation flying satellites. In order to design the

desirable dynamic neural network-based FDI system, different FDI methods that are

used in the literature are reviewed and analyzed. Then the dynamics of each satellite

and the interactions among satellites are modeled. The group of satellites is controlled

based on the decentralized formation flying control via virtual structure method [31].

Finally, a reliable FDI scheme is proposed in order to detect and isolate faults in

a formation flying of satellites and the capabilities of the proposed FDI method is

evaluated under different faulty conditions. the general structure of our proposed FDI

scheme is depicted in Fig. 1.4. In the last part of this thesis, a neural network-based

method is used to determine fault type and the severity of the fault that occurs in

the reaction wheels of spacecraft in formation flight.
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Figure 1.4: Structure of a two-level FDI system for a formation flying of satellites.
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1.2 Contributions of the Thesis

The contributions of the work developed in this thesis are detailed as follows:

• A novel Fault Detection and Isolation (FDI) scheme for the Reaction Wheels

(RWs) of the Attitude Control Subsystem (ACS) of formation flying satellites

is proposed. Single satellite fault detection systems (i.e. local FD systems),

can detect high severity faults and attitude deviations, however, they fail to

detect low severity faults. These low severity faults may not cause any serious

difficulties with the specifications of the overall single satellite missions, how-

ever they can cause significant impact on the satellite’s attitude or rates in a

given precision formation flight of a network of satellites. Therefore, in order

to improve the fault diagnosis system in a network of satellites, a novel fault

detection scheme is proposed. Using this FD scheme, even low severity faults

can be detected and isolated before they cause any catastrophic failure in the

formation system. The capabilities of the proposed method have been investi-

gated through different faulty scenarios. By means of proposed Dynamic Neural

Networks (DNNs) the proposed FDI system is capable to detect and isolate the

fault occurrence in any of multiple actuators (i.e. RWs).

• The results obtained show high level of accuracy (98%) and precision (100%) and

the mis-classification rate and false faulty parameters are small (2%). Therefore,

the proposed DNN technique fulfills the expected requirements of accuracy and

precision with minimum false alarms and mis-classifications.

• In this work a decentralized FDI scheme is proposed. The previous actuator

fault diagnosis systems developed for a single satellite in the literature [43],

[150], [13], [18], [29] use the absolute local measurements of an individual satel-

lite to detect fault occurrence in the actuators. In those methods, each satellite
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is only capable of detecting its own faults. In formation flying missions, fault

occurrence in any of the satellites in the formation may influence the orientation

of the other satellites as well, and even when the fault is too severe it may re-

sult in a failure in the whole mission. Therefore, in a formation flying missions,

developing a decentralized fault diagnosis method, in which each agent in the

formation is capable of detecting faults in its own actuators or actuators in the

neighboring satellites is the major contribution of this thesis. A formation flying

of satellites including n satellites, #1, #2, . . .#i . . . #n having ring topology

are tasked to perform a formation flying mission. In the first fault diagnosis

scheme, a DNN-based fault diagnosis system is implemented along each axis of

each spacecraft in the formation and the DNN-based fault diagnosis system in

each spacecraft is trained using relative attitude measurements of that space-

craft with respect to its adjacent neighbor (for example DNNs in satellite #i

are trained based on relative attitude measurements of satellite #i and satellite

#(i+ 1)). Two fault detection schemes are investigated in this work.

In the first scheme, when a fault occurs in one of the actuators of any of the

satellites (for example satellite #i) in the formation, the DNN-based fault diag-

nosis system in the faulty spacecraft can detect the faulty actuator immediately.

Since the DNNs in the neighboring satellite (satellite #(i− 1)) is trained based

on the relative attitude measurements of satellite #(i − 1) with respect to the

satellite #i, when a fault occurs in satellite #i it affects the attitude of satellite

#i and consequently the relative attitude of satellite #i with respect to the

satellite #(i − 1). Hence, the DNN-based fault diagnosis systems in satellite

#(i− 1) also gets an impact of the fault after a time delay.

In the second fault diagnosis scheme, the DNN-based fault diagnosis system

along each axis of each spacecraft in the formation is trained by using relative
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attitude measurements of that spacecraft with respect to its two adjacent neigh-

bors in the formation. In this scheme, the DNNs in satellite #i are trained by

using the relative attitude measurements of satellite #i with respect to its two

adjacent neighbors #(i − 1) and #(i + 1). Therefore, when a fault occurs in

one of the actuators of satellite #i, the DNN-based fault diagnosis system in

satellite #i can detect the fault immediately, but since the DNNs in satellite

#(i− 1) are trained based on relative attitude of satellite #(i− 1) with respect

to satellite #i and satellite #(i−2), when a fault occurs in satellite #i it affects

the attitude of satellite #i and consequently the relative attitude of satellite #i

with respect to satellite #(i−1). Therefore, DNNs in satellite #(i−1) can also

detect the fault occurrence in satellite #i after a time delay. Also, since the

DNN in satellite #(i+ 1) is trained using relative attitude of satellite #(i+ 1)

with respect to satellite #i and satellite #(i+2), when a fault occurs in satellite

#i, it affects the attitude of satellite #i and consequently the relative attitude

of satellite #i with respect to satellite #(i+1). As a result, when a fault occurs

in one of the actuators of satellite #i, the DNNs in satellite #(i + 1) can also

see the effect of fault after a time delay. This second scheme requires more

information exchange among spacecraft in the formation, but it enhances the

precision and accuracy of fault detection and decreases the false alarms and in

the second scheme, the neighboring satellites in the formation can detect the

fault with smaller time delay.

• In this work, after detecting the health status of the reaction wheel and the

fault occurrence time, a neural classifier is proposed to determine the fault type

(bus voltage fault, motor current fault or viscous temperature fault) and fault

severity.
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1.2.1 Outline of the Thesis

The organization of this thesis is as follows: In Chapter 2, a classification of available

fault diagnosis methods in the literature is provided and the structure of the Dynamic

Neuron (DN) and Dynamic Neural Network (DNN) that are used in this work are

described. In the next section, the detailed model of the formation flying of satellites

and the decentralized control algorithm that is incorporated is briefly described. In

Chapter 3, the decentralized fault detection scheme for the formation of flying satel-

lites is described and the capability of the proposed scheme in detecting and isolating

faults is evaluated under different faulty cases. In Chapter 4, a method for fault type

classification and fault severity estimation is proposed. Finally, the conclusion and

recommendations for future work is provided in Chapter 5.
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Chapter 2

Background Information

During recent years, the problem of developing fault detection and isolation (FDI)

strategies for dynamical systems has been widely researched. A traditional approach

in fault diagnosis is based on hardware redundancy that requires additional sensors

or actuators to measure and control a specific variable. This method usually employs

a voting technique to determine the health status of the system. Although the hard-

ware redundancy method is very reliable and has been widely used in many systems,

its main disadvantage is the need for multiple equipment and hardware that leads to

extra maintenance cost and additional space to accommodate the redundant compo-

nents [40].

Recently, much research has been performed on developing mathematical/analytical

based approaches for fault detection and isolation in dynamical systems. These model-

based approaches are mainly based on developing a mathematical model of the sys-

tem. Constructing mathematical models for nonlinear and complex systems is quite

time consuming and complex [27]. Due to limitations and difficulties of model-based

FDI schemes [21], [41], [42] in this thesis an artificial neural network-based method

is employed for fault detection and isolation purposes.

22



Specifically, during recent years a great deal of attention has been paid on devel-

oping dynamic neural networks, due to their capabilities in modeling and identifica-

tion of nonlinear dynamical systems, control and filtering applications [39], [44], [45].

Dynamic neural networks can eliminate some of the shortcomings of static neural

networks. The first drawback of static neural networks is that the information flows

only in one direction. This implies that the information flows from the input neuron

A to B, to C never comebacks to A in feedforward networks. On the other hand the

structure of static neuron is mainly based on a simple summation operation and it

is not dynamic in nature. Hence, it cannot provide a complete model for dynamic

systems. Time delays are one of the inherent characteristics of biological neurons.

This property is not taken into account in static neuron models.

In the structure of dynamic neural networks feedback is employed between the

neurons of a layer, and/or between the layers of the network. The feedback paths

from the outputs to the inputs, implies that the network has a local memory and its

response is recursive. This implies that the network receives the inputs, calculates

output and adjusts the weights, and then the output is recalculated. After successive

iterations, the weight parameters are adjusted such that the error between the ac-

tual output and the network output becomes smaller and smaller. Different types of

dynamic neural network approaches have been discussed in literature, including re-

current neural networks [46], [47], brain-state-in-a-box (BSB) neural model [46], [50],

time-delay neural networks (TDNNs) [46], [48] and dynamic neural unit [49], [33].

The common feature of all types of dynamic neural networks is their capability of

internally generating and embedding memory. This adds dynamic properties to the

network, so that it will be responsive to time-varying signals. One way to introduce

dynamic properties to a standard multilayer perceptron (MLP) network is by adding

multiple recurrent connections with time delay units. An alternative approach is
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Figure 2.1: Multilayer perceptron architecture [86].

to add dynamic properties to a MLP network by embedding dynamic neurons that

contain infinite impulse response (IIR) filters in the structure of a static feedforward

MLP network.

2.1 The Architecture of the Multilayer Perceptron

A multilayer perceptron (MLP) neural network is a static neural network that receives

the input data and maps the input data set into appropriate output data set [86].

The structure of a feed-forward multilayer perceptron network is depicted in Fig. 2.1.

2.1.1 The Generalized Delta Rule

The learning rule for the multilayer perceptron is known as ”the generalized delta rule”

or the ”back-propagation rule”. The generalized delta rule repetitively calculates an

error function for each input and backpropagates the error from one layer to the

previous one. The weights for a particular node are then adjusted in direct proportion

to the error in the units to which it is connected.

Let
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Ep= error function for pattern p ;

tpj = target output for pattern p on node j ;

opj = actual output for pattern p on node j ;

oij = weight from node i to node j ;

The error function Ep is defined to be proportional to the square of the difference

tpj − opj:

Ep =
1

2

∑
(tpj − opj)

2 (2.1)

The activation of each unit j, for pattern p, can be written as:

netpj =
∑

wijopi (2.2)

The output from each unit j is determined by the nonlinear transfer function fj:

opj = fj(netpj) (2.3)

We assume fj is a sigmoid function:

f(net) =
1

1 + e−k.net
(2.4)

where k is a positive constant that controls the ”spread” of the function. The delta

rule implements weight changes that follow the path of a steepest descent on a sur-

face in the weight space. The height of any point on this surface is equal to the error

measure Ep. This can be shown by verifying that the derivative of the error function

with respect to each weight is proportional to the weight change dictated by the delta

rule, with a negative constant of proportionality, i.e.,
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Δpwi =∝ − ∂Ep

∂wij

(2.5)

2.1.2 The Multilayer Perceptron Learning Algorithm Using

The Generalized Delta Rule

In order to train a multilayer perceptron neural network, the following three steps

must be followed:

• Initialize weights (to small random values) and transfer function.

• Present input.

• Adjust weights by starting from output layer and working backwards.

wij(t+ 1) = wij(t) + ηδpjopi (2.6)

where wij(t) represents the weights from node i to node j at time t, η is a learning

gain term, and δpj is an error term for pattern p on node j.

• For output layer units:

δpj = k.opj(1− opj)(tpj − opj) (2.7)

• For hidden layer units:

δpj = k.opj(1− opj)
∑

(δpkwjk) (2.8)
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Figure 2.2: Structure of a dynamic neuron model with P inputs [53].

where the sum is over the k nodes in the following layer. The learning rule in a

multilayer perceptron is not guaranteed to produce convergence, and it is possible for

the network to fall into a situation (the so called local minima) in which it is unable

to learn the correct output.

2.2 Dynamic Neuron Model

A Dynamic neuron is constructed by adding an Infinite Impulse Response (IIR) filter

to a conventional of static neuron. The structure of an IIR filter is depicted in Fig.

2.3. By adding this IIR filter to the general structure of the static neuron, the neuron

activity depends on its internal states and therefore, the neuron does indeed process

past values of its own activity y(k) and its inputs up(k), for p = 1, 2, . . . P ; where P is

the number of inputs and k is the discrete time samples. The structure of a dynamic

neuron is depicted in Fig. 2.2. The dynamic neuron receives P inputs and in the first

step, the weighted sum of the inputs is calculated according to equation 2.9 [53]:

x(k) = wTu(k) =
P∑

p=1

wpup(k) (2.9)

where w = [w1, w2 . . . wp]
T denotes the weight vector and u = [u1(k), u2(k) . . . up(k)]

T
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Figure 2.3: Structure of a second order IIR filter [34].

denotes the input vector.

In the next step, the calculated weighted sum of the inputs x(k) is passed through

the embedded IIR filter. The characteristics of the filter can be described by following

expression:

ỹ(k) =
n∑

i=1

bix(k − i)−
n∑

i=1

aiỹ(k − i) (2.10)

where n denotes the filter order, a = [a1, a2 . . . ap]
T is the feedback weight vector,

b = [b1, b2 . . . bn]
T is feedforward weight vector, and x(k) and ỹ(k) denote the input

and output of the filter respectively. Finally, the neuron output is expressed as:

y(k) = F (g.ỹ(k)) (2.11)

where g is the slop parameter of the activation function and F (.) is the nonlinear

activation function. In this structure the slop parameter g has an adaptive nature

thus the dynamic neuron can model the biological neuron better. In case of a nonlinear

squashing activation functions i.e. hyperbolic tangent or sigmoidal, the undesirable

saturation effect can be compensated by application of the slop parameter g [52].
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2.2.1 Extended Dynamic Back-propagation Algorithm

Dynamic multilayer perceptron (DMLP) is obtained by embedding proposed dynamic

neurons in feed-forward multilayer perceptron architecture. Since there are no recur-

rent links in dynamic multi-layer perceptron network, the DMLP can be trained based

on the back-propagation rule. In an Extended Dynamic Back-Propagation (EDBP)

algorithm [52], the calculated output of the network is propagated back to the net-

work, through the hidden layers, containing dynamic neurons. This method can work

in both on-line and off-line training modes [52].

Consider a dynamic neural network with M -layer of dynamic neurons described

by the differentiable activation function F (.). Fig. 2.4 shows the structure of an M -

layered feedforward neural network. In this figure, Sm denotes the number of neurons

in the m-th layer and ums denotes the output of the s-th neuron of the m-th layer at

discrete time k (m=1,2. . . ,M,s=1,2. . . ,Sm). The activity of the s-th neuron of the

m-th layer is defined according to equation (2.12):

ums (k) =F (ỹ1(k)) = F (gms .ỹ(k)) = F (gms (
n∑

i=1

bix(k − i)−
n∑

i=1

aiỹ(k − i))

=F (gms (
n∑

i=0

bmisx(k)

Sm−1∑
p=1

wm
spu

m
p (k − i)−

n∑
i=1

amis ỹ
m
s (k − i)))

(2.12)

The main objective of the learning process is to adjust the parameters of the

network, based upon a given set of an input-output data. Starting from a small

number of hidden layers and neurons, number of hidden layers can be increased until

that a desired performance index (J) is satisfied:

J =
1

2

N∑
k=0

e(k)2 =
1

2

N∑
k=0

(yd(k)− y(k))2 (2.13)
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Figure 2.4: The M-Layered feedforward neural network [7].

Where e(k) denotes the output error as a difference between the actual output of the

system (y(k)) and the desired output of the system yd(k). The unknown network

parameters that must be adjusted are:

• Weight matrix [wm
sp] : m = 1 . . .M, s = 1 . . . Sm, p = 1 . . . Sm−1.

• Filter feedback parameter matrix [amis ] : m = 1 . . .M, s = 1 . . . Sm, i = 1 . . . n.

• Filter feedforward parameter matrix [bmis ] : m = 1 . . .M, s = 1 . . . Sm, i = 1 . . . n.

• Slope parameter matrix [gms ] : m = 1 . . .M, s = 1 . . . Sm.

According to the Extended Dynamic Back-Propagation (EDBP) algorithm, the pa-

rameters of the s-th neuron of the m-th layer are adjusted according to equation

(2.14):

vms (k + 1) = vms (k) + ηδms (k)S
m
vs(k) (2.14)
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where v = [w, a, b, g] represents the parameter vector (i.e. weight vector, filter pa-

rameters or slop parameter), η is the learning rate, δms is the generalized output error

and Sm
vs denotes the sensitivity function for the elements of the parameter vector v.

The generalized output error is described as follows [5]:

• Hidden layers generalized output error:

δms (k) =

Sm+1∑
z=1

(δm+1
s (k)gm+1

z bm+1
0z wm+1

zs )F ′(ỹm1s(k)) (2.15)

• Output layer generalized output error:

δMs (k) = es(k)F
′(ỹM1s (k)) (2.16)

The sensitivity function is defined as follows:

• Sensitivity with respect to the weight parameter wm
sp:

Sm
wps

= gms (
n∑

i=0

bmisu
m
p (k − i)−

n∑
i=1

amisS
m
wps

(k − i)) (2.17)

• Sensitivity with respect to the feedback parameter amis :

Sm
ais
(k) = −gms ỹms (k − i) (2.18)

• Sensitivity with respect to the feedforward parameterbmis :

Sm
bis
(k) = gms x

m
s (k − i) (2.19)
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• Sensitivity with respect to the slope parameter gms :

Sm
gs(k) = ỹms (k) (2.20)

Based on equations (2.14) to (2.20) the updating laws for the network parameters

may be rewritten as follows:

• Hidden layers parameters:

– Weight parameter wm
sp:

wm
sp(k + 1) =wm

sp(k) + η(

Sm+1∑
z=1

(δm+1
s (k)gm+1

z bm+1
0z wm+1

zs )F ′(ỹm1s(k)))

gms (
n∑

i=0

bmisu
m
p (k − i)−

n∑
i=1

amisS
m
wps

(k − i))

(2.21)

– Filter feedback parameter amis :

ams (k + 1) = ams (k)−η(
Sm+1∑
z=1

(δm+1
s (k)gm+1

z bm+1
0z wm+1

zs )F ′(ỹm1s(k)))

gms ỹ
m
s (k − i)

(2.22)

– Filter feedforward parameter bmis :

bms (k + 1) = bms (k)+η(

Sm+1∑
z=1

(δm+1
s (k)gm+1

z bm+1
0z wm+1

zs )F ′(ỹm1s(k)))

gms x
m
s (k − i)

(2.23)
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– slope parameter gms

gms (k + 1) = gms (k)−η(
Sm+1∑
z=1

(δm+1
s (k)gm+1

z bm+1
0z wm+1

zs )F ′(ỹm1s(k)))

gms ỹ
m
s (k)

(2.24)

• Output layer parameters:

– Weight parameter wm
sp:

wm
sp(k + 1) = wm

sp(k) + η(es(k)F
′(ỹM1s (k)))g

m
s (

n∑
i=0

bmisu
m
p (k − i)

−
n∑

i=1

amisS
m
wps

(k − i))

(2.25)

– Filter feedback parameter amis :

ams (k + 1) = ams (k)− η(es(k)F
′(ỹM1s (k)))g

m
s ỹ

m
s (k − i) (2.26)

– Filter feedforward parameter bmis :

bms (k + 1) = bms (k) + η(es(k)F
′(ỹM1s (k)))g

m
s x

m
s (k − i) (2.27)

– Slope parameter gms :

gms (k + 1) = gms (k) + η(es(k)F
′(ỹM1s (k)))ỹ

m
s (k) (2.28)
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2.3 Spacecraft Attitude Representation

Representation of the orbital and translational motion of a rigid body in space de-

pends on its reference coordinate system. Many different coordinate systems are used

to analyze process and display data, because in various physical processes, calcula-

tions may be easier to perform or better understood in one coordinate system rather

than another. In this thesis, four coordinate systems and two different attitude rep-

resentation techniques that are mostly used in the field of aerospace attitude control

are presented.

2.3.1 Coordinate Systems

Representation of position and orientation of a spacecraft depends on its reference

coordinate system. In this section, three coordinate systems that are commonly used

in the field of aerospace attitude control are introduced. Specifically,

• Earth Centered Inertial Frame (ECI). This is a non-accelerated reference frame

in which Newton’s laws are valid. The origin of this frame is located at the center

of Earth. The z-axis is oriented toward the North Pole, the x-axis points towards

to the first point of Aries. This axis is in the equatorial and ecliptic planes and

the y-axis completes the right-handed orthogonal set. This coordinate system

is shown in Fig. 2.5 [54].

• Earth Centered earth Fixed (ECF). This coordinate system has its origin in the

center of the Earth. The x-axis points to Greenwich meridian and it is located

in the equatorial plane. The z-axis coincides with the Earth’s rotational axis

and is positive towards to North Pole and the y-axis completes the right-handed

orthogonal set. This coordinate system is shown in Fig. 2.6 [54].

• Satellite Body Fixed. In this coordinate system, the origin is located in the
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Figure 2.5: Earth centered inertial frame [153].

Figure 2.6: Earth centered Earth fixed frame [153].
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Figure 2.7: Satellite body fixed frame [153].

center of gravity (mass) of the satellite. The x-axis is parallel to the Orbiter

structural body axis, the z-axis is parallel to the Orbiter plane of symmetry and

perpendicular to the x-axis and y-axis completes the right-handed orthogonal

set [54]. This coordinate system is shown in Fig. 2.7.

• Local Orbital Frame. In this coordinate system, the origin is located in the

center of mass of the vehicle. The x-axis lies in the vertical orbital plane,

perpendicular to the z-axis and it is positive in the direction of the motion of

the vehicle. The z-axis lies along the geocentric radius vector to the vehicle and

is positive towards the center of the Earth and y-axis completes the right-handed

orthogonal set. Fig. 2.8 shows the local orbit reference frame.

2.3.2 Attitude Representation

The formulation of spacecraft attitude dynamics and control problems involves rep-

resentation of the satellite kinematics. The orientation of a rigid body in space can

be represented either by using Euler angles or the unit quaternions [55].

• Euler Angles In this scheme, the deviation angles with respect to a reference
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Figure 2.8: Local orbit frame [153].

frame are used to represent the attitude of the satellite. These deviation angles

are given as roll angle ϕ, pitch angle θ, and yaw angle ψ, about the satellite

body fixed coordinate system. One scheme for orienting a rigid body to a

desired attitude is called a body-axis rotation. This representation involves

successively rotating the rigid body about the axes of the rotated, body-fixed

reference frame [56]. The most common sequence of rotation is defined by a

first rotation about z-axis (yaw angle), a second rotation about y-axis (pitch

angle) and a final rotation about x-axis (roll angle).

Consider three successive body-axis rotations that describe the orientation of a

reference frame B relative to a reference frame A. Suppose that the following

rotation sequence is considered:

C3(ψ) : A
′ ← A (2.29)

C2(θ) : A” ← A′ (2.30)
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C1(ϕ) : B ← A” (2.31)

where each of these rotations is described as follows:

⎡
⎢⎢⎢⎢⎣
	a1

′

	a2
′

	a3
′

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cosψ sinψ 0

−sinψ cosψ 0

0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
	a1

	a2

	a3

⎤
⎥⎥⎥⎥⎦ = C3(ψ)

⎡
⎢⎢⎢⎢⎣
	a1

	a2

	a3

⎤
⎥⎥⎥⎥⎦ (2.32)

⎡
⎢⎢⎢⎢⎣
	a1

”

	a2
”

	a3
”

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
	a1

′

	a2
′

	a3
′

⎤
⎥⎥⎥⎥⎦ = C2(θ)

⎡
⎢⎢⎢⎢⎣
	a1

′

	a2
′

	a3
′

⎤
⎥⎥⎥⎥⎦ (2.33)

⎡
⎢⎢⎢⎢⎣
	b1

	b2

	b3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 cosϕ sinϕ

0 −sinϕ cosϕ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
	a1

	a2

	a3

⎤
⎥⎥⎥⎥⎦ = C1(ϕ)

⎡
⎢⎢⎢⎢⎣
	a1

”

	a2
”

	a3
”

⎤
⎥⎥⎥⎥⎦ (2.34)

In equations (2.29) and (2.31), A′ and A” are two intermediate reference frames.

By combining the preceding equations of rotation, we obtain:

⎡
⎢⎢⎢⎢⎣
	b1

	b2

	b3

⎤
⎥⎥⎥⎥⎦ = C1(ϕ)C2(θ)C3(ψ)

⎡
⎢⎢⎢⎢⎣
	a1

	a2

	a3

⎤
⎥⎥⎥⎥⎦ (2.35)

These three angles θ, ϕ and ψ are called the Euler angles [56]. In order to avoid

singularity that may occur in the Euler angles representation, another attitude

representation, namely the quaternions representation, is introduced next [57].
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• Euler Parameters or the Quaternions. The four Euler parameters are defined

as follows:

q1 = e1sin(θ/2) (2.36)

q2 = e2sin(θ/2) (2.37)

q3 = e3sin(θ/2) (2.38)

q4 = cos(θ/2) (2.39)

e21 + e22 + e23 = 1 (2.40)

where θ represents the rotation angle and e = [e1, e2, e3]
T represents the rotation

axis. We define a vector q = [q1, q2, q3]
T such that:

q = esin(θ/2) (2.41)

qTq+ q24 = q21 + q22 + q23 + q24 = 1 (2.42)

The Euler parameters are also called quaternions [56]. Suppose that qa and

qb represent attitude of satellite a and b in unit quaternions, respectively. By

definition, the relative attitude of satellite a with respect to satellite b is [58]:

qa/b = qa∗qb (2.43)

where qa∗ is the conjugate of a unit quaternion qa and according to the definition
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[59]:

q∗ = [−q̂T q̄]T ∈ R4 (2.44)

The product of two quaternions is defined as:

qp =

⎡
⎢⎣ q̄p̂+ p̄q̂ + q̂ × p̂

q̄p̄− q̂T p̂

⎤
⎥⎦ (2.45)

where for vectors v = [v1, v2, v3]
T and w = [w1, w2, w3]

T , the cross product is

defined as [59]:

v × w = v×w (2.46)

v× =

⎡
⎢⎢⎢⎢⎣

0 −v3 v2

v3 0 −v1
−v2 v1 0

⎤
⎥⎥⎥⎥⎦ (2.47)

2.4 Equations of Motion

The equations of motion that describe the rotational dynamics of a satellite can be

described by a set of nonlinear dynamic and kinematic equations as follows.

• Attitude Dynamic Equations of a Satellite. In order to provide a modeling of the

satellite dynamics, it is assumed that each spacecraft acts as a rigid body and as

a point mass model for orbital dynamics. With these assumptions, according to

the Newton-Euler’s rotational equations of motion of a rigid body, the attitude
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dynamics of the spacecraft becomes [60]:

	T = 	̇h+ 	ω × 	h = I.	̇ω + 	ω × (I.	ω) (2.48)

	T b = 	T b
grav + 	Taero + 	Treact (2.49)

where I is the matrix of inertia, ω is the rotational rates of body frame, h is

the angular momentum, T is the torques acting on the satellite in the body

frame, 	T b
grav is the gravitational torque working on the satellite body, 	Taero is

the aerodynamic torque and 	Treact is the reaction wheel torque.

A satellite orbiting the Earth is influenced by many perturbing forces,

torques and disturbances and noise. Gravitational perturbation (J2) and grav-

itational torque highly affect a satellite in the lower altitudes due to the non-

symmetric and non-homogenous characteristics of the Earth. The atmospheric

drag is a dominating force at low altitudes whereas for high altitude orbits it

may be ignored. Other major perturbing factors could be listed as solar radia-

tion and solar wind, the magnetic field of the Earth, and the gravitational force

of the Moon and the Sun [60].

• Attitude Kinematic Equations of a Satellite. The kinematic equations of the

spacecraft are represented by using the quaternion attitude representation tech-

nique, namely:

d

dt
q =

1

2
[Ω]q (2.50)
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where Ω is defined as:

[
Ω

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.51)

2.5 Formation Flying of Satellites

During the recent decade, spacecraft formation flying has become an exciting field of

research. Spacecraft formation missions have several benefits over the single-satellite

mission, namely:

• There is a lower launch risk if the system is distributed across several launch

platforms.

• The greater range of structural configurability may offer a lower launch cost for

a fleet of vehicles.

• Although the initial design cost for several spacecraft may be higher than a

single spacecraft, the benefits of mass production can eventually result in lower

per-vehicle cost.

• Using a group of spacecraft provides a level of redundancy in a high risk environ-

ment. If a fault occurs in one spacecraft in the formation, the mission will not

be entirely compromised. In such a case the other spacecraft in the formation

will be able to operate until the faulty spacecraft is replaced or repaired.

• The reconfigurability of the spacecraft in the formation is also beneficial for

technology upgrades. This allows the new vehicles in the formation to be dy-

namically introduced to the system.
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• The inherent redundancy in the formation flying system allows each individual

spacecraft to be less robust- and thereby less expensive- with less risk to the

mission.

Considering all these benefits, teams of space vehicles have been suggested for a

variety of scientific and strategic space missions [61].

2.5.1 Formation Flying Control Architectures

Five formation control architectures are reported in the literature [1], namely Leader/Follower,

virtual structure, Multi-Input/Multi-Output, Behavioral and Cyclic.

• Leader/Follower. In the leader/follower approach one spacecraft is designated

as the leader and the rest of spacecraft in the formation are designated as

the followers. In this architecture, the leader satellite tracks a prescribed

state profile (i.e. attitude and position) and each spacecraft in the forma-

tion tracks the attitude and position of the leader spacecraft with a (possibly

time varying) prescribed offset [62]. Numerous variations on the leader/follower

architecture, including designating multiple leaders or forming a chain is stud-

ied in the literature [67]. Several leader/following approaches are discussed

in [62], [64], [65], [66].

• Virtual Structure. In the virtual structure architecture the entire formation

flying of spacecraft is treated as a single rigid body. In this scheme, the desired

state profile of the virtual structure is defined and in the next step the motion

dynamics of the virtual structure is translated into the desired motion of each

single spacecraft in the formation and finally the tracking control laws for each

spacecraft are derived. The application of virtual structure control architecture

in multi-agent systems is studied in [68], [69], [70].
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• Behavioral. In the behavioral approach several desired behaviors including col-

lision avoidance, obstacle avoidance, goal seeking and formation keeping behav-

iors are prescribed to each agent and the control action of each agent is the

weighted average of the control for each behavior. This formation flying control

approach is reported in [71], [129], [72], [73], [74].

• Multi-Input/Multi-Output. In the Multi-Input/ Multi-Output approach, the

entire formation flying dynamics is modeled as a multi-input/multi-output plant.

In this approach, all the modern control techniques may be applied to control

the formation. In [84], [85], [86] different multi input/multi-output formation

control methods are studied.

• Cyclic. In the cyclic approach, the formation controller is designed by con-

necting individual spacecraft controllers. The cyclic formation flying control

approach is similar to leader-follower control architecture; however in the cyclic

approach the spacecraft controller connections are not hierarchical. This ap-

proach is studied in [75], [76], [77].

The main advantage of the virtual structure control approach is that it is easy to

prescribe the behavior for the group of agents and the virtual structure can maintain

a tight formation during the mission [31]. Motivated by advantages of this approach,

a decentralized formation flying control scheme via the virtual structure is used in

this thesis.

2.5.2 Dynamics of Earth Orbiting Formations

One of the problems in modeling of a formation flight is providing a dynamic model

of multiple spacecraft in space. The three-body problem describes the motion of

three point masses under their mutual gravitational interactions. From astronomical
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point of view the moon’s traveling around the Earth, or the motion of stars together

with their planets in a specific constellation or even the Universe can be considered

as an N -body problem. In order to simplify this problem, necessary steps are made

according to the order of the magnitude of certain objects in the original dynamic

motion equation. In a three-body system of the Earth, the Moon and the man-

made spacecraft, the size of man-made spacecraft is obviously much smaller that the

Earth and the Moon. The Hill problem [154] and the linearization model studying

spacecraft rendezvous and docking with a short separation distance in between by

the Clohessy and Wiltshire [83] has become the basis of formation flight dynamic

equations. The Hill- Clohessy-Wiltshire (HCW) equations have high fidelity because

the perturbations do not affect it so much and the relative motions and the time

scales are small [3].

2.5.3 Formation Dynamics: Linearized Equations of Motion

The linearized equations of motion for a formation flying are given by:

ẍi − 2ω0ẏi − 3ω2
0xi =

Qxi

mi

(2.52)

ÿi + 2ω0ẋi =
Qyi

mi

(2.53)

z̈i + ω2
0zi =

Qzi

mi

(2.54)

where in case of a circular reference orbit, the angular rate of the orbital frame (called

the mean motion) is constant and satisfies the relationship:

ω2
0 =

μ

R3
0

(2.55)
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Further Ṙ0 = R̈0 = 0 where R0 is the radius of the earth-centered orbit and

μ = 3.986× 105[Km3

s2
] denotes the gravitational parameter of the Earth. In equations

(2.52) to (2.54) the parameters xi, yi and zi represent the position of the i-th spacecraft

in the rotating frame F0 and Qxi, Qyi and Qzi represent the generalized force vector

components that also contain all disturbance forces acting on the formation. These

equations are called the Hill-Clohessy-Wiltshire (HCW) equations [83].

2.5.4 Formation Flying Architecture and Controller Design

In this work the formation flying virtual structure architecture consists of four space-

craft that are located on a plane. In this structure, instead of using a set of desired

location and orientation for each spacecraft, we take advantage of virtual structure

approach to define the desired pattern of the virtual structure.

The state of the virtual structure is defined by using a coordination vector as

ξ = [rF
T , vF

T , qF
T , ωF

T , λF
T , λ̇TF ]

T where rF , vF , qF and ωF represent the position,

velocity, attitude and angular velocity of the virtual structure with respect to the iner-

tial frame and λ represents the expansion or contraction rate of the virtual structure.

If each satellite has knowledge of the state of the formation, ξ and its own desired po-

sition and orientation with respect to the virtual structure, then the formation flying

control problem is transformed to the individual satellite control problem. Therefore

the virtual structure state parameter, ξ is the minimum amount of information needed

by each spacecraft in the formation to coordinate itself with the group. In this ap-

proach, the desired formation pattern is defined by ξd = [rd
T

F , vd
T

F , qd
T

F , ωdT

F , λd
T

F , λ̇d
T

F ]T .

This vector defines the desired states of the formation flying. In this work it is assumed

that the formation is a piecewise rigid structure, implying that vdF = ωd
F = λ̇dF = 0. In

this approach the formation maneuver goal can be achieved through a set of forma-

tion patterns [31]. In [31] the formation pattern is defined such that each spacecraft
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Figure 2.9: Decentralized control architecture via the virtual structure approach [31].

tracks a trajectory specified by the state of the virtual structure. In this approach the

certain shape of the formation is preserved and collision avoidance is handled more

efficiently.

Each spacecraft in the formation instantiates a local copy of the coordination

vector. We represent the coordination vector instantiated in the i-th satellite with

ξi = [rTFi, v
T
Fi, q

T
Fi, ω

T
Fi, λ

T
Fi, λ̇

T
Fi]

T . The satellites in the formation communicate their

instantiation of the coordination vector using a bidirectional ring topology. In this

decentralized approach, instead of a discrete-event supervisor and formation control

module at a centralized location, each spacecraft has a local copy of the discrete-event

supervisor, G and the formation control module F , denoted by Gi and Fi for the i-th

satellite, respectively. The structure of the decentralized controller architecture via

the virtual structure is depicted in Fig. 2.9.

Before the group maneuver starts, a sequence of formation patterns is prescribed

to each discrete-event supervisor Gi. The goal of Gi is the transition through a set

of formation patterns so that the group maneuver goal can be accomplished sequen-

tially. When the group maneuver starts, each discrete-event supervisor, Gi, outputs
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the current formation pattern, yGi to the formation control module, Fi. The local

formation control module instantiates a local copy of the coordination vector, ξi. The

goal of Fi is to evolve the coordination vector ξi to the desired formation pattern ξd

and synchronize ξi with the coordination vector instantiations in other spacecraft.

In [58], it is assumed that the spacecraft communicate the coordination vector

instantiations using a bidirectional ring topology. That is, spacecraft #i sends its

instantiation, ξi, to its two adjacent neighbors, spacecraft #(i+ 1) and #(i− 1) and

it receives the coordination vector instantiations of spacecraft #(i+1) and #(i− 1).

The formation control module, Fi, sends its coordination vector instantiation, ξi to

the local spacecraft controller, Ki.

In the local spacecraft controller module, Ki, the desired states of the spacecraft

#i is derived from equations (2.56) and (2.57) based on ξi:

[rdi ]0 = [rF ]0 + C0FΛ[r
d
iF ]F (2.56)

[vdi ]0 = [vF ]0 + C0F Λ̇[r
d
iF ]F + [ωF ]0 × (C0FΛ[r

d
iF ]F ) (2.57)

[qdi ]0 = [qF ]0[q
d
iF ]F , [ωd

i ]0 = [ωF ]0 (2.58)

where C0F is the rotational matrix from the initial frame F0 to the formation frame

FF . The reference frame FF is fixed at the virtual center of the formation, that is,

the virtual structure, as a formation frame and Λ = diag(λF ).

Unlike the desired states of the formation, (rdiF , q
d
iF , q

d
iF , ω

d
iF ) relative to the forma-

tion frame, the desired states of each individual spacecraft in the formation (rdi , v
d
i , q

d
i , ω

d
i )

relative to the initial frame are time varying and their evolution equations are given
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by:

[ṙdi ]0 = [vdi ]0 (2.59)

[v̇di ]0 = [v̇F ]0 + 2[ωF ]0 × (C0F Λ̇[r
d
iF ]F ) + C0F Λ̈[r

d
iF ]F + [ω̇F ]0 × (C0FΛ[r

d
iF ]) (2.60)

[q̇di ]0 = [q̇F ]0[q
d
iF ]F , [ω̇d

i ]0 = [ω̇F ]0 (2.61)

where the local controller Ki, is designed to guarantee that each spacecraft will track

its desired states zFi and zi indicate the formation and local controller feedback

respectively [58].

2.5.5 Formation Control Strategies for Each Spacecraft

The desired states of each spacecraft in the formation must satisfy the translational

and rotational dynamics of the spacecraft. The translational dynamics of each space-

craft relative to F0 are given by:

drdi
dt0

= vdi , mi
dvdi
dt0

= fd
i (2.62)

where mi and fi are the mass and the control force of the i-th spacecraft, respectively.

The rotational dynamics of each satellite relative to F0 are given by:

dq̂di
dt0

= −1

2
ωd
i × q̂di +

1

2
q̄di ω

d
i (2.63)

dq̄di
dt0

= −1

2
ωd
i .q̂

d
i (2.64)
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Ji
dωd

i

dt0
= −ωd

i × (Jiω
d
i ) + τ di (2.65)

The control force, fi and the control torque, τi for the i-th spacecraft are given by:

fi = mi[v̇
d
i −Kri(ri − rdi )−Kvi(vi − vdi )] (2.66)

τi = Jiω̇
d
i +

1

2
ωi × Ji(ωi + ωd

i )−Kqiq̂d∗i qi −Kwi(ωi − ωd
i ) (2.67)

where Ji is the moment of inertia for the i-th spacecraft, Kvi, Kri and Kwi are

symmetric positive definite matrices, Kqi is a positive scalar, and q̂ represents the

vector part of the quaternion.

2.5.6 Formation Control Strategies for Each Virtual

Structure Instantiation

In [58] a behavior-based approach is applied to synchronize the coordination vector

instantiations during the maneuver as well as to evolve it to its desired goal at the

end of the maneuver. The goal seeking error, EG is defined as the total difference

between the current instantiation ξi and the desired goal ξd:

EG(t) =
N∑
i=1

||ξi − ξd||2 (2.68)

The synchronization error, ES is also defined as the total difference between neigh-

boring instantiations:

ES(t) =
N∑
i=1

||ξi − ξi+1||2 (2.69)
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Defining the total error as E(t) = EG(t) + ES(t), the control objective is to

drive E(t) to zero asymptotically. In the virtual structure method, the coordination

vector represents the states of the virtual structure and it is supposed that the i-th

coordination vector satisfies the following rigid-body dynamics:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṙFi

mF v̇Fi

q̇Fi

JF ω̇Fi

λ̇Fi

λ̈Fi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vFi

fFi

1
2
Ω(ωFi)qFi

−ωFi × JFωFi + τFi

λ̇Fi

vFi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.70)

The proposed control force, fFi and the control torque, τFi are given by:

fFi =mF{−KG(rFi − rdF )− ΓGivFi −KS[rFi − rF (i+1)]−DS[vFi−

vF (i+1)]−KS[rFi − rF (i−1)]−Ds[vFi − vF (i−1)]}
(2.71)

τFi =− kGq̂d∗F qFi − ΓGiωFi − kS ̂q∗F (i+1)qFi −DS[ωFi − ωF (i+1)]

− kS ̂q∗F (i−1)qFi −DS[ωFi − ωF (i−1)]

(2.72)

where ΓGi is the formation feedback term, and it is a positive definite matrix, mF

and JF are the virtual mass and the virtual inertia of the virtual structure, KG is

a symmetric positive definite matrix, KS and DS are positive semidefinite matrices,

and q̂ represents the vector part of the quaternion.
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Figure 2.10: Attitude control operation [80].

2.6 Modeling of the Attitude Control Subsystem

of a Spacecraft

The Attitude Control Subsystem (ACS) of a spacecraft deals with the orientation

of the spacecraft with respect to one of the reference frames. The attitude control

task requires sensors to measure the current attitude of the vehicle, actuators such

as reaction wheels or thrusters to correct the attitude of the spacecraft and a control

algorithm to determine the magnitude and direction of the torque in response to

disturbances.

The block diagram of the attitude control operation of a spacecraft is depicted in

Fig. 2.10. If the spacecraft drifts off from the desired attitude, the error is detected

by sensors that are implemented in the spacecraft. The control law determines the

response force or torque that is required to correct the attitude orientation and directs

the proper actuator to correct it [80].

2.6.1 ACS Sensors and Actuators

Depending on the mission requirements and environmental situations the spacecraft

must be equipped with specific sensors and actuators.
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• Sensors. The sensors in the spacecraft determine the complete attitude infor-

mation (i.e. angles and angular velocities) of a spacecraft with respect to a

reference frame. Some of the commonly used sensors in the spacecraft systems

are listed below:

– Sun sensors: When the sun sensors are illuminated by sun radiation, the

specific material in them produces an output current signal. Measuring

this electric signal, the Sun incidence angle with the surface illuminated

can be determined. These sensors have been designed with different accu-

racies and normally the sun sensors can be calibrated based on the mission

requirements. In addition to attitude determination purpose, the sun sen-

sors can be used for instrument pointing, solar panel pointing and thermal

requirement verification [81].

– Horizon sensor (Earth sensor): When the spacecraft is rotating close

to a planet, in order to determine the satellite attitude, the precise position

of the center of the planet has to be evaluated. These sensors work based

on analyzing the area in Field of View (FOV) of a satellite that are not

illuminated (deep space), compared to the illuminated area (planet). In

general, in order to reduce the effects of interference, the infrared sensors

are designed for which the ratio of the Earth radiation to the Sun radiation

is ”1 to 400” [81]. The accuracy level of the Earth sensor is almost in the

same level as that of the Sun sensor.

– Magnetic field sensor: In order to provide attitude information, this

sensor measures the magnetic field vector. The measurement of this sensor

must be coupled with mathematical model of the magnetic field and the

position of the satellite. It is not simple to measure a constant magnetic

field and there is always uncertainty in the direction and the amount of
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the magnetic field that is determined by these sensors. That is the reason

why the magnetometers must always be coupled with other measurements

to provide reliable attitude determination [81].

– Star sensor: This sensor determines the attitude of the vehicle based on

the position of the stars in the space. The maximum attitude determi-

nation accuracy that is attainable using the sun sensors is 1
8
of a degree.

If the orbit has a phase in the eclipse, sun is not always visible and sun

sensors cannot be used for attitude determination. Using the star sensors

the accuracy of the attitude determination is improved and by selecting

the appropriate star to observe, no eclipse problem arises. Due to these

advantages, sun sensors are more expensive in terms of construction and

operation on board of a satellite.

– Gyroscopes: The gyroscopes are used to measure the angular velocity

of the spacecraft. They provide information on the rotational rates of the

spacecraft in the inertial frame.

• Actuators. The main responsibility of actuators in a spacecraft is generating

torques or forces that are required to change the orientation or position of the

spacecraft. Some of the most known actuators in spacecraft attitude stabiliza-

tion is presented below:

– Reaction Wheel: Reaction wheels work based on acceleration and decel-

eration of spinning rotors. The actuators which are responsible for satellite

attitude control are three reaction wheels on three axes of each satellite.

Their main functionality is to provide reaction torque for a spacecraft and

store angular momentum [82]. The advantage of using reaction wheels as
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actuators in attitude control subsystem of a satellite over other types of ac-

tuators (like magnetic actuators) is that their capability of controlling the

satellite is independent from their geographical location and altitude [82].

The disadvantage is mainly in moving parts, the weight and the expense.

In general, a reaction wheel structure consists of a rotating flywheel that

is driven by an internal brushless DC motor [82].

– Magnetotorquer: Magnetic actuators produce a torque by inducing a

magnetic dipole in a coil that is surrounded by the magnetic field of Earth.

Due to the variation in the Earth’s magnetic field, the effectiveness of these

actuators depends on their height from the Earth. As the spacecraft moves

in its orbit, the direction of the magnetic field changes and the attitude

control system gains controllability about the three axes. Magnetotorquers

can normally provide torques in the range of 10−3 to 10−6Nm.

– Thrusters: The simplest way to create torques is to create a set of forces

with directions not aligned with the center of mass, and this can be ob-

tained by mass explosion techniques. In thrusters, acceleration of a propel-

lant is used to generate a force in the direction of which the propellant is

discharged. Due to ignition transient, jet thrusters are not used for precise

attitude control. The torque needed in control purposes is in the order

of milli-Newton-meters, but the force generated in chemical thrusters is

in the order of at least one Newton. In order to make it compatible with

attitude control, they are switched on and off with a given modulation, but

this even increases the problem due to ignition transients and mechanical

problems in the thruster. Using chemical thrusters it is not possible to

control the magnitude of the force. These problems can be solved by using

electric thrusters. Electric thrusters can be easily modulated in amplitude,
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Figure 2.11: Ideal reaction wheel model.

they have reduced propellant consumption and they are well suited for fine

attitude control. Due to the large power consumption of electric thrusters,

these actuators are always coupled with large solar panels [81].

2.7 Mathematical Model of Nearly Ideal Reaction

Wheel

The fundamental block diagram of a nearly ideal reaction wheel is depicted in Fig.

2.11. An ideal reaction wheel does not have any friction torque, and the only loss

that is subtracted from the motor torque is the friction torque. In this block diagram,

the torque command voltage is the only input which controls the motor current and

the motor torque. The angular momentum stored in the flywheel, Hz is calculated

from the equation (2.73):
	Hz = J	ω (2.73)

According to the Newton’s third law, the reaction torque applied to the spacecraft

is the opposite of the net torque on the flywheel. The reaction torque, τz, can be
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derived according to the Newton’s second law and is given by:

τz = −τn =
−∂H
∂t

=
∂(Jω)

∂t
= −J dω

dt
(2.74)

The net torque is the motor torque, τm, less any frictional losses, τd or :

τn = τm − τd (2.75)

2.7.1 Mathematical Model of High Fidelity Reaction Wheel

In general, reaction wheel structure consists of a rotating flywheel that is driven by

an internal brushless DC motor. A detailed block diagram of a high fidelity reaction

wheel is depicted in Fig. 2.12. This model consists of five main sub-blocks: (1) motor

torque control, (2) speed limiter, (3) EMF torque limiting, (4) motor disturbances,

and (5) bearing friction and disturbances. Table 2.1 provides the typical parameters

for the ITHACO’s standard type A reaction wheel [84].

2.7.2 Reaction Wheel Dynamics

The fundamental relationships for a high fidelity mathematical model of a reaction

wheel system are provided in the section below.

• Motor Torque Control: The motor driver is basically a voltage controlled current

source with a gain, Gd. The motor current is proportional to the torque com-

mand voltage. The motor torque control block generates a motor current that

is proportional to the torque command voltage and converts this current into

torque through the motor current constant, Kt according to equation (2.76):

Kt =
τm
Im

(2.76)
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Figure 2.12: Detailed high fidelity reaction wheel block diagram [84].
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Table 2.1: Typical values of type A reaction wheel [84].
Variable Nomenclature Unit Value

J Flywheel inertia N.m.s2 0.0077
Gd Driver gain A/V 0.190
Kt Motor torque constant N.m/A 0.029
Ke Motor back-EMF constant V/rad/s 0.029
Ks Over-speed circuit gain V/rad/s 95
ωs Over-speed circuit threshold rad/s 690
τc Coulomb friction N.m 0.002
N Number of motor poles - 36
B Motor torque ripple coefficient - 0.22
Rin Input resistance Ω 2.00

Torue command range V ±5
Kf Voltage feedback gain V/V 0.50
Pq Quiescent power W 3.00
ωa Torque noise high pass filter frequency rad/sec 0.20
θa Torque noise angle deviation rad 0.05
Rb Bridge resistance Ω 2.00

• EMF Torque Limiting: In low bus voltage conditions, due to the increasing

back-EMF, Ke of the motor, the motor torque may be limited at high speeds.

Once the back-EMF increases to the motor driver’s saturation point, this may

result in eliminated voltage headroom and reduced torque capacity. The back-

EMF limiting is coupled to power consumption based on equation (2.77):

PINPUT =
VBUS

VBUS − 1
[
τ 2m
k2t
RB +

0.04|τm|VBUS

kt
+ Pq + ωτm

ke
kt
] (2.77)

If we substitute the equation (2.76) into equation (2.77) it yields:

IBUS = (
1

VBUS − 1
)(I2mRB + 0.04|Im|VBUS + Pq + ωImke) (2.78)

In the schematic model of a high fidelity reaction wheel, a heavyside function

Hb is included in the block diagram. The main responsibility of this function

is to eliminate the voltage drop when the power is not being drawn from the
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bus [84].

• Speed Limiter: The main responsibility of speed limiter circuit is to prevent the

flywheel from reaching unsafe speeds. Once the speed of the wheel exceeds the

established threshold, ωs, speed limiter circuit measures the wheel speed with

an analog tachometer circuit and provides it as a high-gain negative feedback,

ks, into the torque command. A heavyside function Hs is included in the block

diagram of the speed limiter that enables the negative feedback by comparing

the wheel speed with the threshold, ωs [84].

• Motor Disturbances: Due to the motor excitation and the magnetic construc-

tion, the torque motor in the reaction wheel can be a source of high frequency

disturbances. In the most current reaction wheels, brushless DC motors are

employed. These motors generate torque ripple disturbances at the commu-

nication frequency and cogging at a frequency corresponding to the number

of motor poles and rate of rotation. Torque ripple is the amount of variation

in motor torque, depending on the communication method and the back-EMF

shape. Codding is a type of disturbance that is always present in conventional

brushless DC motors that may lead to undesirable behavior specially when op-

erating near zero speed. Cogging is due to the change in reluctance of the iron

stator as the magnets in DC motor are rotated [84].

• Bearing Friction and Disturbances: The drag friction in the reaction wheels of

a satellite generally can be broken into two components, including the viscous

friction, τv and the coulomb friction, τc. The viscous friction in the bearings

is due to the bearing lubricant and it varies with speed and temperature. The

viscous drag friction has been characterized for the ITHACO’s Type A and B
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reaction wheels to be given by:

τv = (0.049− 0.0002
◦C

(T + 30◦C))
mN −m

rad/sec
(2.79)

The coulomb friction, τc, is independent of the temperature or speed of the

wheel and it is mainly caused by rolling friction and its polarity depends on the

direction of rotation of the wheel [84].

• Torque Noise: Torque noise is the very low frequency torque variation of the

bearings and it is a function of lubricant dynamics. This noise is present in

typical band-width of the spacecraft controllers and it has the most significant

effect on spacecraft pointing. Torque noise is specified as the deviation from

the ideal location of the rotor at any constant speed. This specification can be

translated into a torque disturbance by the following equation:

τa = Jθaω
2
asinωat (2.80)

2.8 Reaction Wheel Fault Types

In general, there are three types of faults that occur in reaction wheels of a satellite

and may result in serious damage or catastrophic failures:

• Bus Voltage Fault: The bus voltage must be high enough to avoid elimination

of the voltage headroom. When the bus voltage drops down, the motor torque

may be limited due to the increasing amount of back-EMF of the motor and it

will lead to reduced torque capacity of the wheel and instability in the attitude

of the satellite. For very low values of bus voltage, the entire attitude control

system will break down and the attitude of the satellite will be out of control.
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• Motor Current Fault: Motor torque is directly related to the motor current

through a constant parameter kt. When the motor current drops from its nom-

inal value, the corresponding motor torque will drop down accordingly. When

the current loss becomes serious, the reaction wheel cannot provide enough re-

action torque and the attitude control loop of the satellite tends to become

unstable.

• Temperature Fault: The viscous friction in a satellite’s reaction wheel is the

main friction factor and is highly related to the temperature. When the tem-

perature becomes too high, this implies that the bearings have been damaged

and this results in increased viscous friction. The temperature fault may lead

the satellite into abnormal operating condition.

2.9 Conclusion

In this chapter the structure of static and dynamic neural networks that will be used

for FDI purposes in the next chapters is presented in detail. In this thesis, a Dynamic

Multilayer Perceptron (DMLP) network will be utilized as a fault detection tool and

a static multi layer perceptron network is applied as a fault type recognition tool.

in the next section. A review on the attitude control subsystem (ACS) of a satellite

was also provided and various attitude representations and coordinate systems are

explained.

A list of actuators and sensors has also been provided in detail. The concept of

fomration flying system and five different control approaches for formation flight con-

trol are introduced. The decentralized control architecture via the virtual structure

that will be used in the following chapters of this thesis to simulate attitude maneuvers

under healthy and faulty actuator situations is also described in this chapter.
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Chapter 3

Actuator Fault Detection for

Formation Flight of Satellites

In order to develop a fault detection (FD) system that has the capability of detect-

ing and isolating low severity faults, a decentralized dynamic neural network-based

approach is proposed in this chapter. Details on the structure of the dynamic neural

structure, the neuron’s dynamic model and the extended dynamic back-propagation

(EDBP) training algorithm have already been provided in chapter 2.

3.1 Fault Detection for a Single Spacecraft

In [43] the dynamic neural network (DNN) that was introduced in Section 2.2 is ap-

plied for detecting and isolating faults on a three-axis ACS model. The components

of the developed neural fault detection scheme are depicted in Fig. 3.1. This DNN

is specially developed for fault detection purposes in the attitude control subsystem

of a satellite. where Vtorquecommand and τ estimated
reaction represent the normalized command

voltage and estimated reaction torque, respectively and τactualreaction represents the nor-

malized desired value of the output reaction torque. The proposed DNN needs only
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Figure 3.1: Neural network based FD system of a single satellite.

one input in order to construct a suitable identification model and produce an output.

3.1.1 Training Phase

In this thesis, the modeled ACS actuator, that is the reaction wheel, has one input

(torque command voltage) and one output (reaction torque) along each satellite axis.

These input/output data pairs are collected under healthy operating condition of the

spacecraft and are used for training purposes. Preprocessing steps are performed on

the input/output data pairs so that all the data used for DNN training are normalized

in the range of [-1, +1]. The training process is then carried out based on an extended

dynamic back-propagation algorithm for each axis.

The network parameters are initialized with small random values and the IIR

filter’s denominator coefficients are initialized to zeros. The structure of the dynamic

neural network contains one hidden layer of hyperbolic tangent activation functions

and one output layer of linear activation functions. The neurons embedded in the

structure of the dynamic neural network have second order IIR filters. The training

process is started from a relatively small network structure and the optimum structure

is obtained by incrementally increasing the number of hidden neurons until required

performance specifications are met. The training phase is conducted for each DNN
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that is employed along each axis of the satellite. The best results are obtained using

a N1−8−1 structure, which implies that there is one neuron in the input layer, 8

neurons in the hidden layer and one neuron in the output layer. The learning rate

parameter is set to 0.01. The training process is accomplished by using Monte Carlo’s

simulations under different noisy conditions for 50000 steps and each step is 0.001 sec.

The networks are trained for 100 different pairs of input/output data in presence of a

normally distributed noise with zero mean and standard deviation of 0.01 differences

between the maximum and the minimum values in the input/output data intervals.

The average value of the mean square error in the 100 training iterations is 0.0141

and its standard deviation is 0.0002, which is quite acceptable. The performance of

the networks during the training phase for 3 axis of satellite #1 is depicted in Fig.

3.2.

3.1.2 Testing Phase

The representation capability of the trained DNNs is evaluated in the testing phase.

In the testing phase another input/output data set is used to evaluate the capabil-

ities of the trained DNNs to model the reaction wheel system. The testing step is

accomplished for 100 different pairs of input/output data in presence of a normally

distributed noise with zero mean and standard deviation of 0.01 differences between

the maximum and the minimum values in the input/output data intervals. The aver-

age value of the mean square error in the 100 testing samples is 0.16 and its standard

deviation is 0.02, which is quite acceptable. Fig. 3.3 shows the output of the actual

and the neural model in the testing phase in the three axes of the satellite #1. The

results indicate that the trained DNNs have the ability to represent dynamic model

of the reaction wheels, and therefore they can detect malfunctions that could occur in

actuators of the spacecraft system. the testing phase for the other axes of the satellite
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(a) (b)

(c)

Figure 3.2: The performance index (mean squared error of the output reaction torque)
curve for the dynamic neural network- satellite #1 (a) x-axis, (b) y-axis (c) z-axis.
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can be accomplished in a similar way.

3.1.3 Reaction Wheel Fault Detection Strategy

The trained dynamic neural networks are to be used to detect reaction wheel faults

in the satellite. After training and testing the proposed DNNs, they will be used to

generate residual signals. The difference between the actual output of the reaction

wheel that is measured by using the torque sensors in the satellites and the estimated

output that is obtained from the DNN is called residual signal. This signal is used

for health status determination of actuators in the satellites.

The general fault detection scheme is depicted in Fig. 3.1. In this thesis a simple

threshold technique is used for each axis. In this method, a lower and upper threshold

bounds are determined for each axis of a satellite and any deviation from this range

is considered as a fault. In order to determine the threshold boundaries, first the

residual signals that are generated during various healthy operating conditions are

analyzed. The mean value (X̄) and the standard deviation (σ) of these signals are

calculated, and the threshold value is then calculated by using the following formula:

t.h = X̄ ± 3σ (3.1)

3.2 Actuator Fault Scenarios

3.2.1 Single Fault Scenarios

In order to investigate fault detection capabilities of the constructed residual genera-

tors, different faulty cases under various noisy situations are considered. Specifically,

• Bus voltage (VBUS) Fault. In the low bus voltage conditions, the motor torque

may be limited at high speeds due to the increasing back-EMF (ke) of the motor
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(a) (b)

(c)

Figure 3.3: Testing curve (actual and estimated outputs) for the DNN - (a) x-axis,
(b) y-axis, and (c) z-axis of the satellite #1.
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[49]. In this thesis, three different bus voltage fault scenarios are considered and

the fault indicator signals that are produced in residual generators are shown in

Figs. 3.4- 3.6. The fault diagnosis is carried out in the steady state response of

the satellite so that if the monitored output (i.e. reaction torque) exceeds the

predefined threshold value it can be detected as a fault.

– First scenario: In this case, a low bus voltage (80% drop in nominal value)

fault is injected in the x-axis of the satellite at the time sample of 5000.

Fig. 3.4 shows the residual signal that is generated along the x-axis of

the satellite. This figure clearly shows that the proposed dynamic neural

network along the x-axis is capable of detecting the fault successfully.

– Second scenario: In this case, a low bus voltage (60% drop in nominal

value) fault is injected in the y-axis of the satellite at the time sample

of 5000. Fig. 3.5 shows the residual signal that is generated along the

y-axis of the satellite. This figure shows that the proposed dynamic neural

network along y-axis has the ability of detecting the fault successfully.

– Third scenario: In this case, a low bus voltage (50% drop in nominal value)

fault is injected in the z-axis of the satellite at the time sample of 5000.

Fig. 3.6 shows the residual signal that is generated along the z-axis of

the satellite. This figure clearly shows that the proposed dynamic neural

network along the z-axis of the satellite is capable of detecting the fault

successfully.

• Motor current (Im) fault. As given in equation (2.76), the motor torque in a

reaction wheel is proportional to the motor current through the motor torque

constant, kt. Therefore, when a fault occurs in the motor driver gain, it influ-

ences the motor current directly and eventually its effects will be reflected in
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(a)

(b)

(c)

Figure 3.4: Residual error signals in case of a bus voltage fault: (a) x-axis, (b) y-axis,
and (c) z-axis - Scenario 1.
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(a)

(b)

(c)

Figure 3.5: Residual error signals in case of a bus voltage fault: (a) x-axis, (b) y-axis,
and (c) z-axis - Scenario 2.
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(a)

(b)

(c)

Figure 3.6: Residual error signals in case of a bus voltage fault: (a) x-axis, (b) y-axis,
and (c) z-axis - Scenario 3.
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the motor torque. In this thesis, three different motor current fault scenarios

are considered and the fault indicator signals that are produced in the residual

generator are shown in Figs. 3.7- 3.9.

– First scenario: In this case, a low motor current (60% drop in nominal

value) fault is injected in the x-axis of the satellite at the time sample

of 5000. Fig. 3.7 shows the residual signal that is generated along the

x-axis of the satellite. This figure shows that the proposed dynamic neural

network for the x-axis is capable of detecting the fault successfully.

– Second scenario: In this case, a 50% drop of nominal value of motor current

fault is occured in the y-axis of the satellite at the time sample of 5000.

Fig. 3.8 shows the residual signal that is generated in the y-axis of the

satellite. This figure clearly shows that this dynamic neural network can

detect the fault occurence successfully.

– Third scenario: In this scenario, a 70% drop of nominal value of motor

current fault is injected in the z-axis of the satellite at the time sample of

5000. The residual signal that is generated in the z-axis of the satellite is

depicted in Fig. 3.9. This figure clearly shows that the fault occurrence

in the z-axis can be detected using the proposed dynamic neural network

successfully.

• Viscous temperature (τv) fault. The friction model of the spacecraft is designed

for a limited range of temperatures. Since in the friction model of the reaction

wheel the bearing viscosity depends on the operating temperature, any fluctu-

ations in the normal temperature will be reflected as fluctuation in the drag

torque. In this thesis, three different temperature fault scenarios are considered

and the fault indicator signals that are produced in the residual generator are
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(a)

(b)

(c)

Figure 3.7: Residual error signals in case of a motor current fault: (a) x-axis, (b)
y-axis, and (c) z-axis - Scenario 1.
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(a)

(b)

(c)

Figure 3.8: Residual error signals in case of a motor current fault: (a) x-axis, (b)
y-axis, and (c) z-axis - Scenario 2.
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(a)

(b)

(c)

Figure 3.9: Residual error signals in case of a motor current fault: (a) x-axis, (b)
y-axis, and (c) z-axis - Scenario 3.
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shown in Figs. 3.10-3.12.

– First scenario: In the first scenario, a temperature fault that results in an

increase of 50% in the nominal produced viscous torque is injected in the

x-axis of the satellite at the time sample of 5000. Fig. 3.10 shows the

residual signal that is generated in the x-axis of the satellite. This figure

shows that the proposed dynamic neural network is capable of detecting

the fault occurrence successfully.

– Second scenario: In the second case, a high temperature fault (60% increase

in the nominal produced viscous torque) is injected in the y-axis of the

satellite at the time sample of 5000. Fig. 3.11 shows the residual signal

that is generated by the residual generator in the y-axis of the satellite.

This figure clearly shows that using this dynamic neural network the fault

occurrence can be detected successfully.

– Third scenario: In this case, a temperature fault that results in an increase

of 70% in the nominal produced viscous torque is injected in the z-axis

of the satellite at the time sample of 5000. The residual signal that is

generated by the residual generator in the z-axis of the satellite is shown

in Fig. 3.12. This figure clearly shows that the proposed dynamic neural

network in z-axis is capable of detecting the fault successfully.

3.2.2 Multiple Fault Scenarios

In order to further evaluate the capabilities of a single satellite fault detection system,

the following multiple fault scenarios are considered:

• First scenario: In this scenario, a motor current fault (60% drop in nominal

value) has occurred in the x-axis of the satellite at the time sample of 5000
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(a)

(b)

(c)

Figure 3.10: Residual error signals in case of a temperature fault: (a) x-axis, (b)
y-axis, and (c) z-axis - Scenario 1.
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(a)

(b)

(c)

Figure 3.11: Residual error signals in case of a temperature fault: (a) x-axis, (b)
y-axis, and (c) z-axis - Scenario 2.
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(a)

(b)

(c)

Figure 3.12: Residual error signals in case of a temperature fault: (a) x-axis, (b)
y-axis, and (c) z-axis - Scenario 3.
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Figure 3.13: Multiple fault scenarios - scenario #1: residual error signal in the x-axis.

and then it is followed by a viscous friction fault (60% increase in nominal

value) in x-axis of satellite at the time sample of 10000. Fig. 3.13 shows the

residual signals generated by the DNN in the x-axis of the satellite. This figure

shows that when the motor current fault occurs at the time sample of 5000, the

residual signal passes the threshold and indicates a faulty situation. When the

temperature fault occurs at the time sample of 10000, the residual signal still

stays unhealthy, but it generates false alarms (actual faulty signal, estimated

healthy) in some points.

• Second scenario: In this scenario, a motor current fault (60% drop in nominal

value) has occurred in the x-axis of the satellite at the time sample of 5000 and

then at the time sample of 10000, a bus voltage fault (60% drop in nominal

value) has occurred in the x-axis of the satellite at the time sample of 10000.

The residual signal that is generated by the DNN in the x-axis of the satellite

is depicted in Fig. 3.14. This figure shows that when the motor current fault
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Figure 3.14: Multiple fault scenarios - scenario #2: residual error signal in the x-axis.

occurs at the time sample of 5000, the residual signal exceeds the threshold

and indicates the fault occurrence. When the bus voltage fault occurs at the

time sample of 10000, the residual signal still remains faulty, however some false

alarms (actual faulty signal, estimated as a healthy signal) are also generated.

• Third scenario: In the third scenario, a high temperature fault (70% increase in

nominal value of viscous friction) has occurred in the x-axis of the satellite at

the time sample of 5000 and then it is followed by a bus voltage fault (70% drop

of nominal value) in the x-axis of the satellite at the time sample of 10000. Fig.

3.15 shows the residual signal that is generated by the DNN in the x-axis of the

satellite. This figure clearly shows that when the temperature fault occurs at

the time sample of 5000, the residual signal passes the threshold and becomes

faulty. The residual signal still remains faulty when the bus voltage fault occurs

at the time sample of 10000. Some false alarms (actual faulty signals that are

estimated to be healthy signals) are also generated in some points.

82



Figure 3.15: Multiple fault scenarios - scenario #3: residual error signal in the x-axis.

• Fourth scenario: In this scenario, a high temperature fault that results in 80%

increase in the nominal value of the viscous friction has occurred in the x-axis

of the satellite at the time sample of 5000 and then it is followed by a motor

current fault (60% drop in nominal value) in the x-axis of the satellite at the

time sample of 10000. The residual signal that is generated by the DNN in

the x-axis of the satellite is depicted in Fig. 3.16. When the temperature

fault occurs at the time sample of 5000, the residual signal passes the threshold

boundaries and becomes faulty. When the bus voltage fault occurs at the time

sample of 10000, the residual signal still stays out of the threshold boundaries

and indicates the reaction wheel to be faulty, but in some points the DNN fails

to detect the fault occurrence and the actual faulty residual signal is estimated

to be fault-free which generates some false alarms.

• Fifth scenario: In this scenario, a bus voltage fault (90% drop in nominal value)

has occurred in the x-axis of the satellite at the time sample of 5000 and then

83



Figure 3.16: Multiple fault scenarios - scenario #4: residual error signal in x-axis.

it is followed by a temperature fault (60% increase in nominal value of viscous

friction) in the x-axis of the satellite at the time sample of 10000. Fig. 3.17

shows the residual signal generated by the DNN in the x-axis of the satellite.

This figure shows that when the bus voltage fault occurs at the time sample of

5000, the residual signal passes the threshold and indicates the fault occurrence.

When the temperature fault occurs at the time sample of 10000, the residual

signal still stays in faulty situation.

The results of fault detection for the above five fault scenarios are summarized in Table

3.1. This table shows that the fault detection system designed for a single satellite

has the capability of detecting bus volltage actuator faults without a significant time

delay. The proposed single satellite FD system however fails to detect bus voltage

faults smaller than 50% drop in the nominal value. Table 3.2 summarizes the results

of the fault detection process for a single satellite under different motor current fault
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Figure 3.17: Multiple fault scenarios - scenario #5: residual error signal in x-axis.

Table 3.1: Summary of the bus voltage fault detection results for a single satellite.
Faulty Fault Fault Injection Detection Time
Axis Type Severity Time x y z
x Bus Voltage 80% 5000 5000 - -
y Bus Voltage 60% 5000 - 5000 -
z Bus Voltage 50% 5000 - - 5000
x Bus Voltage 40% 5000 - - -
y Bus Voltage 30% 5000 - - -
z Bus Voltage 20% 5000 - - -
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Table 3.2: Summary of the motor current fault detection results for a single satellite.
Faulty Fault Fault Injection Detection Time
Axis Type Severity Time x y z
x Motor Current 60% 5000 5000 - -
y Motor Current 50% 5000 - 5000 -
z Motor Current 70% 5000 - - 5000
x Motor Current 40% 5000 - - -
y Motor Current 30% 5000 - - -
z Motor Current 20% 5000 - - -

Table 3.3: Summary of the temperature fault detection results for a single satellite.
Faulty Fault Fault Injection Detection Time
Axis Type Severity Time x y z
x Viscous Temperature 50% 5000 5000 - -
y Viscous Temperature 60% 5000 - 5000 -
z Viscous Temperature 70% 5000 - - 5000
x Viscous Temperature 40% 5000 - - -
y Viscous Temperature 30% 5000 - - -
z Viscous Temperature 20% 5000 - - -

scenarios. Once a fault occurs in one axis of a single satellite, the dynamic neural

network along the faulty axis can detect the fault immediately. However, this method

fails to detect motor current faults smaller than a 50% drop of the nominal values.

The results of the fault detection process for temperature faults in the actuator of

a single satellite are summarized in Table 3.3. This table shows that by using the

fault detection system in a single satellite, the DNN located in the faulty axis of the

satellite can detect the faults without a significant time delay, but the system fails to

detect temperature faults smaller than a 50% drop of the nominal values.

3.3 Confusion Matrix Analysis

To evaluate the performance of the proposed FD scheme, we use the confusion matrix

method [85]. The structure of this matrix is shown below. The specific evaluation

terms are: Accuracy, True Healthy, False Healthy, True Faulty, False Faulty and
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Precision, respectively. These are given in more detail below:

⎡
⎢⎣ A B

C D

⎤
⎥⎦ (3.2)

A: Actual Faulty/Predicted Faulty

B: Actual Faulty/Predicted Healthy

C: Actual Healthy/ Predicted Faulty

D: Actual Healthy/ Predicted Healthy

Accuracy =
A+D

A+B + C +D
(3.3)

Truehealthy =
D

C +D
(3.4)

Falsehealthy =
B

A+B
(3.5)

Truefaulty =
A

A+B
(3.6)

Falsefaulty =
C

C +D
(3.7)

Precision =
D

B +D
(3.8)
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Table 3.4: Actual and Detection results in case of the first multiple fault scenario.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-1 10000 samples 10000 samples 10190 samples 9810 samples

Table 3.5: Actual and Detection results in case of the second multiple fault scenario.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-1 10000 samples 10000 samples 10640 samples 9360 samples

3.3.1 Confusion Matrix Analysis for FD System of a Single

Satellite

In order to investigate the capabilities of the proposed FD system in the formation

flying mission, various faulty scenarios have been considered. In the first scenario, a

motor current fault (60% drop of nominal value) has occurred in the x-axis of the

satellite at the time sample of 5000 and then it is followed by a viscous friction fault

(60% increase in nominal value) in the x-axis of the satellite at the time sample of

10000. Table. 3.4 shows the actual healthy and actual faulty output signals and

the classification that is obtained by using the FD scheme. In the second scenario

a motor current fault (60% drop of nominal value) has occurred in the x-axis of the

satellite at the time sample of 5000 and then it is followed by a bus voltage fault (60%

drop in nominal value) in the x-axis of the satellite at the time sample of 10000. The

actual healthy and actual faulty output signals and the classification that is obtained

by using the FD scheme are depicted in Table. 3.5. In the third scenario, a viscous

friction fault (70% increase in nominal value) has occurred in the x-axis of the satel-

lite at the time sample of 5000 and then at the time sample of 10000 a bus voltage

fault (70% drop in nominal value) has occured in the x-axis of the satellite at the time

sample of 10000. Table. 3.6 shows the actual healthy and actual faulty output signals

and the classification results that are obtained by using the proposed FD scheme. In

the fourth scenario, first a viscous friction fault (80% increase in nominal value) has
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Table 3.6: Actual and Detection results in case of the third multiple fault scenario.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-1 10000 samples 10000 samples 9910 samples 10090 samples

Table 3.7: Actual and Detection results in case of the fourth multiple fault scenario.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-1 10000 samples 10000 samples 10300 samples 9700 samples

occurred in the x-axis of the satellite at the time sample of 5000 and then a motor

current fault (60% drop in nominal value) has occured in the x-axis of the satellite at

the time sample of 10000. The actual healthy and actual faulty output signals and

the classification results that are obtained by using the proposed DNNs is provided

in Table. 3.7. In the fifth scenario, first a bus voltage fault (90% drop in nominal

value) has occurred in the x-axis of the satellite at the time sample of 5000 and then

at the time sample of 10000 a temperature fault that results in a 60% increase in the

nominal value of the viscous friction has occured in the x-axis of the satellite. Table.

3.8 shows the actual healthy and actual faulty output signals and the fault detection

results that are obtained by using the proposed DNNs.

According to Tables. 3.4 to 3.8 the confusion matrix parameters depicted in

Table 3.9 are obtained for a single satellite. The results obtained from the confusion

matrix is depicted in Table 3.10. According to Table 3.10 dynamic neural network

located in faulty axis of the faulty spacecraft can classify 99% of healthy signals and

98% of faulty signals successfully. The accuracy level (98%) and the precision level

(97%) of this method are highly acceptable.

Using the dynamic neural network that is developed for a single satellite, bus

Table 3.8: Actual and Detection results in case of the fifth multiple fault scenario.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-1 10000 samples 10000 samples 9920 samples 10080 samples
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Table 3.9: Confusion matrix parameters for a single satellite.
DNN # A B C D

DNN x-1 48870 samples 1130 samples 170 samples 50000 samples

Table 3.10: Confusion matrix results for a faulty satellite.
Accuracy 98%

True healthy 99%
False healthy 2%
True faulty 98%
False faulty 1%
Precision 97%

voltage faults greater than 50% drop of nominal values, motor current faults greater

than 50% drop of nominal values and temperature faults greater than 60% drop of

nominal values can be detected in a single satellite. The proposed fault detection

system may fail to detect the presence of low severity faults. In an individual op-

erating satellite these low severity faults may not cause any serious difficulties with

the specifications of the overall mission, however they can cause significant impact on

the satellite’s attitude or rates in a given precision formation flight of a network of

satellites. Consequently, in order to detect these low severity faults a novel fault de-

tection system is required to be designed and developed for a formation of spacecraft.

The development and design of such a computationally intelligent-based scheme and

strategy are the main contributions of this thesis.

3.4 Problem Definition and Motivation for a For-

mation of Satellites

In the previous section the capabilities of a dynamic neural network-based fault de-

tection method for a single satellite that is proposed in [43] is investigated through

90



various single and multiple fault scenarios. It is shown that the proposed single satel-

lite fault detection method has the capability of detecting major actuator faults in a

single satellite, but it fails to detect low severity faults in the actuators of a satellites.

These low severity faults usually do not cause any serious problem in a single satellite

space missions, but in a formation flying mission, they may affect the attitude of a

satellite and even result in serious damage in the formation.

On the other hand, in single satellite fault diagnosis methods in the literature,

each satellite can only detect the actuator faults of itself, therefore, if the local fault

diagnosis system fails, there is no way to detect the fault. In order to increase the re-

liability of the fault diagnosis system in a formation flying of satellites it is important

to propose a decentralized fault diagnosis system, by which a fault in one satellite

can be also detected by its neighboring satellites.

One of the main contributions of this thesis is to propose a decentralized fault

detection methodology that can detect both high severity and low severity faults in a

formation flying of satellites. In this thesis, two fault detection schemes are studied.

In the first scheme, the data exchange and communication links are assumed to be

unidirectional, implying that the DNNs in the fault diagnosis system in each satellite

use the relative attitude measurements of that satellite with respect to its adjacent

satellites. In the second scheme, the data exchange and communication links are

bidirectional, implying that the DNNs in the fault diagnosis system in each satellite

uses the relative attitude of that satellite with respect to its two adjacent neighbors.

The capabilities of these two schemes are studied in this chapter and it is shown

that although the second scheme requires more data exchange, but it has the ability

to detect faults with shorter time delays and it can improve the precision and the

accuracy performance merits.
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3.5 Fault Detection System for Formation of Satel-

lites - First Scheme

The schematic representation of the proposed fault detection (FD) system based on

the formation flying relative attitudes is depicted in Fig. 3.19. In this scheme, one

dynamic neural network is located in each axis of a spacecraft. A three level system is

shown in this figure, namely: attitude control subsystem (ACS) of the i-th satellite,

attitude control subsystem (ACS) of the (i + 1)-th satellite, and the FD scheme for

the x-axis of of the i-th satellite. In this chapter, a four spacecraft formation flying

mission is studied and in the first scheme it is assumed that each satellite receives

attitude information from its adjacent neighbor, i.e. the (i + 1)-th satellite. The

data communication flow among the satellites in this mission are depicted in Fig.

3.18 where q = [qi1, q
i
2, q

i
3, q

i
4]

T represents the attitude vector of the i-th satellite.

Each dynamic neural network is trained based on set of input/output data that are

collected from the relative attitude determination sensors of the 3-axis attitude control

subsystem of satellites. In this scheme, u = [q
i+1/i
1 , q

i+1/i
2 , q

i+1/i
3 , V i

command] is used as

an input vector for the training the dynamic neural network and y = [τ ireaction] is used

as the output vector for training phase in which q
i+1/i
1 , q

i+1/i
2 , and q

i+1/i
3 are relative

attitude of the i-th satellite with respect to the (i+1)-th satellite and V i
command denotes

the commanded voltage of the i-th satellite and τ ireaction denotes the reaction torque

of the i-th satellite.

3.6 Training Phase

The training phase is carried out by using an extended dynamic back-propagation

method for about 50000 time samples for each axis and each time sample is equal

to 0.01 seconds. All the input and output vectors are normalized in the range [-1
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Figure 3.18: Communication links among the four spacecraft in the formation - first
scheme.

Figure 3.19: Structure of the fault detection (FD) system in a formation flying of
satellites - first scheme.
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+1]. Table 3.11 shows the dynamic neural network parameters for the FD system in

each spacecraft of the formation where n is the number of hidden layers, N1 is the

number of neurons in the first hidden layer and η is the learning rate. The dynamic

neural networks are trained until a termination criterion is satisfied. In this sec-

tion, the termination criterion that is used is the mean squared error (mse) criterion.

Adaption laws are based on the steepest descent gradient method and conventional

back-propagation learning law. The parameters are updated so that the norm of the

identification error is minimized. Generally, an identification error can be defined as:

E(t) =
1

2

K∑
k=1

(yk(t)− ydesiredk (t))2 (3.9)

The training process is accomplished by using the Monte Carlo simulations un-

der different noisy conditions for 50000 samples and each sample is 0.001 seconds.

The network is trained for 100 different pairs of input/output data in presence of a

normally distributed noise with zero mean and standard deviation of 0.01 differences

between the maximum and the minimum values in the input/output data intervals.

The performance of the network during the training phase along the x-axis of the

four satellite in the formation is shown in Fig. 3.20. The mean square error (mse) for

the other axes of other satellites are obtained in a similar way. The average value of

the mean square error in 100 training simulations is 0.058 and its standard deviation

is 0.0008, which is quite acceptable.

3.7 Testing Phase

The representation capability of the trained networks is evaluated through general-

izing them with other healthy data sets. Fig. 3.21 shows the actual output of the
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(a) (b)

(c) (d)

Figure 3.20: The performance index (mean squared error of the output reaction
torque) curve for the dynamic neural network- x-axis of (a) satellite #1, (b) satellite
#2 (c) satellite #3 (d) satellite #4.

Table 3.11: DNN characteristics in the learning phase.
Spacecraft # Network Size Number of Performance Learning

Iterations Index Rate
1 N1−10−1 50000 0.011 0.05
2 N1−8−1 50000 0.035 0.01
3 N1−8−1 50000 0.067 0.01
4 N1−6−1 50000 0.0273 0.03
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reaction wheel and the neural network output in the testing phase for the three axes

of the satellites #1 in the formation. This figure shows that the output of the trained

dynamic neural network follows the actual output of the system quite closely; there-

fore it has the capability of detecting faults and deviations in the input signal.

The testing phase is accomplished for 100 different pairs of input/output data in

presence of a normally distributed noise with zero mean and standard deviation of

0.01 differences between the maximum and the minimum values in the input/output

data intervals. The average value of the mean square error in 100 testing samples is

0.08 and its standard deviation is 0.001, which is quite acceptable. The testing curves

for other axes of each satellite can be obtained similarly.

3.8 Fault Detection Threshold Determination

After training and testing the dynamic neural networks by using healthy input/output

data set, this network can now be used for generating residual signals. In this step,

the output of the neural network is compared with the actual output of the reaction

wheel and their differences are considered as the residual signals. The residual signal

has to be compared with a predefined threshold value to determine the health status

of the system. If the residual signal exceeds the threshold value, this implies that

a fault has happened in the corresponding axis of the satellite. The residual signals

that are collected during various fault free formation flying missions can be used to

determine the thresholds. The mean values of generated residual signals (X̄) and their

standard deviation (σ) are calculated, and the threshold values can be calculated by

using the following formula:

t.h = X̄ ± 3σ (3.10)
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(a) (b)

(c)

Figure 3.21: Testing curve (actual and estimated outputs) for the DNN - (a) x-axis,
(b) y-axis, and (c) z-axis of the satellite #1.
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3.9 Actuator Fault Scenarios

In this chapter, the following formation flight mission is simulated. Four satellites

having bi-directional ring topology are controlled by using consensus-based virtual

structure controller that is proposed in [16] are considered. These four satellites

are located on a plane and distributed equally along a circle with diameter of 0.7

kilometer. It is assumed that the four spacecraft formation evolves as a rigid body and

the formation shape is preserved, and in the healthy situation each satellite preserves

a fixed relative orientation within the formation throughout the maneuvers. Different

types of faulty scenarios under worst case noisy conditions are considered and have

been injected to the closed-loop attitude controlled system in each satellite’s axis.

The process of fault detection can be accomplished by using the simple threshold

technique described in previous section. Any deviation from the threshold ranges

will be considered as a fault. The thresholds are selected after performing different

simulations under different operating conditions to make sure that the proposed fault

detection technique will work successfully with minimum false alarms. the types of

actuator faults considered are as follows:

• Bus voltage (VBUS) fault

In order to investigate the capabilities of the proposed DNNs in formation flying

of satellites missions, the following bus voltage fault scenarios are considered:

– First scenario: In this case, a low bus voltage (70% drop from the nominal

value) fault is injected in the x-axis of the satellite #2 at the time sample

of 5000. Fig. 3.22 shows the residual signal that is generated in the x-axis

of the satellite #2 and the satellite #1 (its neighbor). This figure clearly

shows that the proposed dynamic neural network along the x-axis of the

satellite #2 and the DNN along the x-axis of the satellite #1 can detect
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the fault successfully.

– Second scenario: In this scenario, a low bus voltage (45% drop from the

nominal value) fault has occured in the z-axis of the satellite #2 at the

time sample of 10000. The residual signals that are generated along z-axis

of the satellite #2 and the satellite #1 (its neighbor) are shown in Fig.

3.23. This figure clearly shows that the proposed dynamic neural network

along z-axis of satellite #2 and the DNN along x-axis of satellite #1 are

capable of detecting the fault successfully.

• Motor current (Im) fault

In order to evaluate the capabilities of the trained DNNs in formation flying of

satellites, the following motor current fault scenarios are considered:

– First scenario: In this case, a low motor current (50% drop of nominal

value) fault is injected in the x-axis of satellite #3 at the time sample of

10000. Fig. 3.24 shows the residual signals that are generated along the

x-axis of the satellite #3 and the satellite #2 (its neighbor). This figure

clearly shows that the proposed dynamic neural network along the x-axis

of the satellite #3 and the DNN along the x-axis of the satellite #2 can

detect the fault successfully.

– Second scenario: In the second scenario, a 80% drop from the nominal

value of motor current fault has occured in the x-axis of the satellite #4 at

the time sample of 10000. The output of DNN-based residual generators

is shown in Fig. 3.25 for the x-axis of the satellite #4 and the satellite #3

(its neighbor). This figure shows that the fault occurrence can be detected

by using the proposed dynamic neural network along the x-axis of the

satellite #4 and the DNN along the x-axis of the satellite #3 successfully.
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(a)

(b)

Figure 3.22: Residual signals corresponding to bus voltage fault - scenario 1: (a)
x-axis satellite #2, (b) x-axis satellite #1.
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(a)

(b)

Figure 3.23: Residual signals corresponding to bus voltage fault - scenario 2: (a)
z-axis satellite #2, (b) z-axis satellite #1.
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(a)

(b)

Figure 3.24: Residual signals corresponding to motor current fault - scenario 1: (a)
x-axis satellite #3, (b) x-axis satellite #2.
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• Viscous temperature (τv) fault

The capabilities of the trained DNNs in detecting actuator faults in the forma-

tion flying of satellites is investigated through the following viscous temperature

fault scenarios:

– First scenario: In this case, a temperature fault that results in a 50%

increase in the nominal value of the viscous friction is injected in the x-

axis of the satellite #2 at the time sample of 5000. Fig. 3.26 shows the

residual signals that are generated along x-axis of the satellite #2 and

satellite #1 (its neighbor). This figure clearly shows that by using the

proposed dynamic neural network along the x-axis of the satellite #2 and

the DNN along x-axis of satellite #1 are capable of detecting the fault

successfully.

– Second scenario: In this case, a 50% increase in nominal value of viscous

friction fault has occured in the x-axis of the satellite #1 at the time

sample of 10000. The residual signal that is generated along x-axis of the

satellite #1 and the satellite #4 (its neighbor) is shown in Fig. 3.27. This

figure clearly shows that by using the proposed fault detection scheme, the

DNNs located along x-axis of satellite #1 and the x-axis of the satellite

#4 can see the effect of fault clearly.

The ability of the proposed method for detecting faults is evaluated in different fault

scenarios. Once a fault occurs in the i-th satellite, the fault detection system in

satellite #i can detect it immediately and the FD system in satellite #(i − 1) can

detect the fault with a time delay. Therefore, the first advantage of the proposed

formation flying FD scheme is that when a fault occurs in a satellite, it can be
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(a)

(b)

Figure 3.25: Residual signals corresponding to motor current fault - scenario 2: (a)
x-axis satellite #4, (b) x-axis satellite #3.
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(a)

(b)

Figure 3.26: Residual signals corresponding to temperature fault - scenario 1: (a)
x-axis satellite #2, (b) x-axis satellite #1.
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(a)

(b)

Figure 3.27: Residual signals corresponding to temperature fault - scenario 2: (a)
x-axis satellite #1, (b) x-axis satellite #4.
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detected by using local diagnoser immediately and then, after a time delay, the fault

can be detected by using DNNs that are embedded in the nearest neighbor of the

faulty satellite. When the severity of fault increases, even the next neighbor (satellite

#(i − 2)) can detect the fault after longer time delay too. Tables 3.12-3.15 show

the capabilities of the formation flying FD system in detecting faults under different

faulty conditions.

In Table 3.12 a 60% drop of nominal value of the bus voltage fault along the x-

axis of the satellite #1 is considered. According to this table, once this fault occurs

along the x-axis of satellite #1, the DNN embedded along the x-axis of the satellite

#1 can detect the fault immediately, and the DNNs embedded along other axes of

satellite #1 can detect the fault after a short time delay (approximately 5 seconds).

The attitude information of satellite #1 is transmitted to its adjacent neighbor (i.e.

satellite #4). Once a fault occurs in satellite #1 it affects the attitude of satellite #4

and satellite #3. Since the DNNs embedded in satellite #4 are trained based on the

relative attitude of satellite #4 with respect to satellite #1, the DNNs embedded in

satellite #4 and satellite #3 can detect the fault after a time delay. Since satellite #4

is the closest satellite to satellite #1 in the formation (as far as communication delay),

the DNNs in satellite #4 detect the fault in a shorter time delay and since satellite #2

is the farthest satellite from satellite #1 in the formation (as far as communication

delay), the DNNs in satellite #2 cannot detect the fault that has occured in satellite

#1.

Fault detection time delays in a faulty scenario in which 50% drop of nominal

value of the motor current along the x-axis of satellite #2 faulty is happened is

depicted in Table 3.13. Once the fault happens along the x-axis of satellite #2, the

DNN along the x-axis of satellite #2 can detect the fault immediately and the DNNs

along the y and z-axes of satellite #2 can detect the fault after a short time delay.
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Table 3.12: Fault detection time delays in case of 60% drop of nominal value in the
bus voltage of x-axis satellite #1.

Dynamic Neural Network # Fault Detected Detection Time Delay

DNN x-1 YES 0 sec
DNN y-1 YES 5 sec
DNN z-1 YES 5 sec
DNN x-2 NO -
DNN y-2 NO -
DNN z-2 NO -
DNN x-3 YES 15 sec
DNN y-3 YES 17 sec
DNN z-3 YES 15 sec
DNN x-4 YES 11 sec
DNN y-4 YES 7 sec
DNN z-4 YES 8 sec

Table 3.13: Fault detection time delays in case of 50% drop of nominal values in the
motor current of x-axis satellite #2.

Dynamic Neural Network # Fault Detected Detection Time Delay

DNN x-1 YES 13 sec
DNN y-1 YES 10 sec
DNN z-1 YES 10 sec
DNN x-2 YES 0 sec
DNN y-2 YES 6 sec
DNN z-2 YES 2 sec
DNN x-3 NO -
DNN y-3 NO -
DNN z-3 NO -
DNN x-4 YES 15 sec
DNN y-4 YES 20 sec
DNN z-4 YES 15 sec
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Table 3.14: Fault detection time delays in case of 10% increase in nominal values of
the viscous friction of y-axis satellite #3.

Dynamic Neural Network # Fault Detected Detection Time Delay

DNN x-1 NO -
DNN y-1 NO -
DNN z-1 NO -
DNN x-2 YES 14 sec
DNN y-2 YES 16 sec
DNN z-2 YES 14 sec
DNN x-3 YES 7 sec
DNN y-3 YES 0 sec
DNN z-3 YES 8 sec
DNN x-4 NO -
DNN y-4 NO -
DNN z-4 NO -

DNNs in satellite #1 and satellite #4 can also detect the effects of this fault after

longer time delays. Since satellite #3 is the farthest satellite from satellite #2 in the

formation, the attitude deviations in the satellite #1 cannot affect the attitude of

satellite #3, and the DNNs in satellite #3 fail to detect the fault.

A low severity viscous friction fault (10% increase from the nominal value along

the y-axis of satellite #3) detection results are shown in Table 3.14. According to this

table, once a fault is injected along the y-axis of satellite #3, the DNN embedded along

y-axis of satellite #3 can detect the fault immediately, and then the fault is detected

by DNNs along the x and z-axes of satellite #3. The closest agent to the satellite #3

in the formation is satellite #2. Therefore, the attitude deviations in satellite #3 will

affect the orientation of satellite #2 as well, hence the DNNs embedded in satellite

#2 can detect the fault after a time delay. In this case the severity of temperature

fault is very low (10% increase from the nominal value), therefore, this fault affects

the attitude of satellite#3 (and satellite #2 consequently) slightly. However it has

no effect on orientation of satellite #1 in the formation. Therefore only DNNs in

satellite #3 and satellite #2 can detect the fault. In Table 3.15, the severity of the
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Table 3.15: Fault detection time delays in case of 50% increase in nominal value of
the viscous friction of y-axis satellite #3.

Dynamic Neural Network # Fault Detected Detection Time Delay

DNN x-1 YES 20 sec
DNN y-1 YES 14 sec
DNN z-1 YES 20 sec
DNN x-2 YES 10 sec
DNN y-2 YES 10 sec
DNN z-2 YES 10 sec
DNN x-3 YES 5 sec
DNN y-3 YES 0 sec
DNN z-3 YES 5 sec
DNN x-4 NO -
DNN y-4 NO -
DNN z-4 NO -

fault is increased (50% increase from the nominal value of viscous temperature along

the y-axis of satellite #3), and therefore it affects the attitude of satellite #1 as well,

so that the DNNs embedded in satellite #1 can also detect the fault.

3.10 Actuator Multiple Fault Scenarios

In this section in order to evaluate the capability of the proposed FD scheme in

detecting multiple faults in a formation flying of spacecraft, different faulty scenarios

are considered.

• Multiple faults in different axes of a spacecraft

– First scenario: In this scenario, a 20% increase in nominal viscous friction

(τv) fault occurs in the x-axis of satellite #2 at the time sample of 5000,

and a low motor current (Im) fault (10% drop from the nominal value)

is injected in the y-axis of satellite #2 at the time sample of 10000. Fig.

3.28 shows the residual signals that are generated along (a) x-axis of the

satellite #2 and (b) y-axis of satellite #2 by using the proposed FD system
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for formation flying. This figure clearly shows that the proposed formation

flying dynamic neural network along the x-axis of satellite #2 can detect

the viscous friction fault immediately at the time sample of 5000, and

when the motor current fault occurs at the time sample of 10000, the

output signal still remains above the threshold value. The DNN along the

y-axis of satellite detects the temperature fault in the x-axis after a short

time delay, and when the current fault occurs in the y-axis another jump

happens in the residual signal curve at the time sample of 10000.

– Second scenario: In this scenario, a bus voltage (VBUS) fault (50% drop

from the nominal value) has occured along the z-axis in satellite #3 at

the time sample of 5000, and it is followed by a low motor current (Im)

fault (50% drop from the nominal value) in the y-axis of satellite #3 at

the time sample of 10000. Fig. 3.29 shows the residual signals that are

generated along (a) z-axis of the satellite #3 and (b) y-axis of satellite #3

using the proposed formation flying FD system. This figure clearly shows

that when a bus voltage fault occurs in z-axis of satellite #3, the residual

signal generated in corresponding axis detects the fault immediately at

time samples 5000. Also, the dynamic neural network along y-axis of

satellite #3 can see the effect of fault in z-axis after a short time delay.

When a motor current fault occurs in y-axis of satellite #3, another jump

happens in output signal of satellite #3 at time samples 10000, and it still

remains in faulty zone.

– Third scenario: In this scenario, first a low motor current (Im) fault (10%

drop of nominal value) is injected in the x-axis of the satellite #1 at the

time sample of 5000, and then a 10% increase of nominal viscous friction

(τv) fault has occured in the y-axis of satellite #1 at the time sample of
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(a)

(b)

Figure 3.28: Residual signals corresponding to multiple fault scenario 1: (a) along
the x-axis of satellite #2 (b) along the y-axis of satellite #2.
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(a)

(b)

Figure 3.29: Residual signals corresponding to multiple fault scenario 2: (a) along
the z-axis of satellite #3 (b) along the y-axis of satellite #3.
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10000. The residual signals that are generated along (a) x-axis of the satel-

lite #1 and (b) y-axis of satellite #1 using the proposed formation flying

FD system are shown in Fig. 3.30. This figure shows that when the motor

current fault occurs along the x-axis of satellite #1 it can be detected im-

mediately using the corresponding DNN at time samples 5000. The DNN

that is embedded along y-axis of satellite #1 can detect the motor current

fault after a considerable time delay and when the temperature fault oc-

curs in y-axis of satellite #1 at the time sample of 10000, a jump occurs

in the residual error signal and the fault can be detected immediately.

• Multiple faults in two separate spacecraft

• Fourth scenario: In this scenario, a low motor current (Im) fault (50% drop of

nominal value) is injected in the y-axis of satellite #2 at the time sample of

5000, and it is followed by another low motor current (Im) fault (50% drop of

nominal value) that is injected in the z-axis of satellite #4 at the time sample

of 10000. Fig. 3.31 shows the residual signals that are generated along (a) the

y-axis of the satellite #2 and (b) the z-axis of satellite #4 using the proposed

formation flying FD system. This figure shows that the fault occurrence along

y-axis of satellite #2 can be detected without a significant time delay using the

corresponding DNN at the time sample of 5000. The DNN along the z-axis of

satellite #4 can detect the motor current fault after a time delay and when the

next motor current fault occurs in the z-axis of satellite #4 at the time sample

of 10000, a jump occurs in the residual error signal and the fault is detected

immediately.

• Fifth scenario: In this scenario, a low bus voltage (VBUS) fault (50% drop of

nominal value) occurs in the y-axis of satellite #1 at the time sample of 5000,
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(a)

(b)

Figure 3.30: Residual signals corresponding to multiple fault scenario 3: (a) along
the x-axis of satellite #1 (b) along the y-axis of satellite #1.
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(a)

(b)

Figure 3.31: Residual signals corresponding to multiple fault scenario 4: (a) along
the y-axis of satellite #2 (b) along the z-axis of satellite #4.
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and then at the time sample of 10000 a low motor current (Im) fault (50% drop

from the nominal value) has occured in the z-axis of satellite #3. The residual

signals that are generated using the proposed formation flying FD system along

(a) the y-axis of the satellite #1 and (b) the z-axis of satellite #3 are shown

in Fig. 3.32. This figure shows that when a bus voltage fault happens in the

y-axis of satellite #1, the corresponding DNN along the y-axis of satellite #1

can detect the fault immediately at the time sample of 5000. When the motor

current fault occurs in the z-axis of satellite #3, the residual signal in the y-axis

of satellite #1 still remains faulty. The DNN in the z-axis of satellite #3 detects

the bus voltage fault in satellite #1 after a time delay and when the second fault

happens in the z-axis of satellite #3 at time samples 10000, a jump happens in

the residual error signal and the error signal still remains in the faulty zone.

• Sixth scenario: In this case, a low bus voltage (VBUS) fault (45% drop of nominal

value) is injected in the y-axis of satellite #4 at the time sample of 5000, and

then it is followed by another bus voltage (VBUS) fault (50% drop of nominal

value) in the z-axis of satellite #2 at the time sample of 10000. Fig. 3.33

shows the residual signals that are generated along (a) the y-axis of the satellite

#4 and (b) the z-axis of satellite #2 using the proposed formation flying fault

detection system. Using the proposed method, a bus voltage fault in the y-axis

of the satellite #4, can be detected by using the corresponding DNN along the

y-axis of satellite #4 at time samples 5000 (without time delay). When the

next bus voltage fault occurs in the z-axis of satellite #2, the residual signal in

the y-axis of satellite #4 still remains faulty. The DNN in the z-axis of satellite

#2 detects the bus voltage fault in satellite #4 after a time delay and when

the second fault happens in the z-axis of satellite #2 at the time sample of

10000, a jump occurs in the residual error signal and this signal still exceeds
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(a)

(b)

Figure 3.32: Residual signals corresponding to multiple fault scenario 5: (a) along
the y-axis of satellite #1 (b) along the z-axis of satellite #4.
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the threshold boundaries and indicates the faulty situation.

3.11 Fault Detection in Case of Low Severity Faults

Another motivation for developing the formation flying FD system is that it has the

capability of detecting low severity faults when the local FD systems can not ac-

complish this goal. In order to evaluate capability of the proposed formation flying

DNN-based scheme in detecting low severity faults, various faulty scenarios are con-

sidered and the capability of the formation flying FD system in detecting low severity

faults is compared with the single satellite FD system that is previously developed

in [43].

• First scenario: In this case, a bus voltage fault (45% drop from the nominal

value) is injected in the z-axis of satellite #2 at the time sample of 10000. Fig.

3.34 shows the residual signals that are generated along the z-axis of satellite

#2 using (a) formation flying FD system, and (b) single satellite FD system.

This figure clearly shows that the proposed formation flying dynamic neural

network along the z-axis of satellite #2 can detect the fault immediately, while

the single satellite DNN along the z-axis of satellite #2 fails to detect the fault.

• Second scenario: In this case, a low motor current (5% drop from the nominal

value) fault has occured in the y-axis of satellite #3 at the time sample of

10000. The residual signals that are generated along the y-axis of satellite #3

using (a) formation flying FD system, and (b) single satellite FD system are

shown in Fig. 3.35. This figure clearly shows that by using the proposed DNN-

based fault detection scheme,the fault occurrence along the y-axis of satellite
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(a)

(b)

Figure 3.33: Residual signals corresponding to multiple fault scenario 6: (a) along
the y-axis of satellite #4 (b) along the z-axis of satellite #2.
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(a)

(b)

Figure 3.34: Residual error signals corresponding to low severity faults along the
z-axis of satellite #2, scenario 1: (a) formation flying (b) single satellite.
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Table 3.16: Comparison between single satellite and formation flying FD systems.
Single satellite FD system Formation flying FD system

Bus Voltage Fault ≥ 50% drop from the ≥ 45% drop from the
nominal value nominal value

Motor Current Fault ≥ 50% drop from the ≥ 5% drop from the
nominal value nominal value

Viscous Friction Fault ≥ 50% drop from the ≥ 5% drop from the
nominal value nominal value

#3 can be detected immediately, while the local DNN in the y-axis of satellite

#3 cannot detect the fault.

• Third scenario: In this scenario, a temperature fault that results in a 5% increase

in viscous friction of the reaction wheel is injected in the x-axis of satellite #1

at the time sample of 10000. Fig. 3.36 shows the residual signals that are

generated along the y-axis of satellite #3 using (a) formation flying FD system,

and (b) single satellite FD system. This figure clearly shows that the proposed

formation flying dynamic neural network along the y-axis of satellite #3 can

detect the fault without a significant time delay, while the single satellite DNN

along the y-axis of satellite #3 fails to detect the fault occurence.

The second advantage of the formation flying FD system that is proposed in this

thesis, compared to the single satellite FD system approach that is proposed in [43]

is its ability to detect low severity faults. Using this scheme, bus voltage faults

greater than 45% drop from the nominal values and temperature and motor current

faults greater than 5% drop from the nominal values can be detected. A qualitative

comparison between the single satellite and the formation flying DNN-based fault

detection systems is provided in Table 3.16.
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(a)

(b)

Figure 3.35: Residual error signals corresponding to low severity faults along the
y-axis of satellite #3, scenario 2: (a) formation flying (b) single satellite.
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(a)

(b)

Figure 3.36: Residual error signals corresponding to low severity faults along the
x-axis of satellite #1, scenario 3: (a) formation flying (b) single satellite.
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3.12 FD System for a Formation of Satellites - Sec-

ond Scheme

In the second scheme, a consensus-based virtual structure controlled formation flight

having bi-directional ring topology is considered. In this architecture each satellite

receives information from its two adjacent neighbors. The formation flying dynamic

neural network-based FD system is trained based on sets of input/output data that are

collected from the relative attitude determination sensors of the 3-axis attitude control

subsystem of the satellites. In this scheme, u = [q
i+1/i
1 , q

i+1/i
2 , q

i+1/i
3 , q

i/i−1
1 , q

i/i−1
2 , q

i/i−1
3 ,

V i
command]

T is used as input vector for training the dynamic neural network and y =

[τ ireaction] is used as the output vector for the training phase in which q
i+1/i
1 , q

i+1/i
2 ,and

q
i+1/i
3 denote the relative attitude of satellite #i with respect to the satellite #(i+1)

and q
i/i−1
1 , q

i/i−1
2 ,and q

i/i−1
3 are the relative attitude of satellite #i with respect to

satellite #(i − 1) and V i
command denotes the commanded voltage of satellite #i and

τ ireaction denotes the reaction torque of satellite #i.

Fig. 3.37 shows the bi-directional connection links among four satellites in the for-

mation flight scenario and Fig. 3.38 shows the proposed formation flying FD scheme.

3.13 Training Phase

Similar to the previous scheme, the DNNs in this scheme are trained by using an

extended dynamic back-propagation method. The training phase is carried out for

50000 time samples and each time sample is equal to 0.01 sec. The input/output data

set is normalized into the range of [-1,+1]. Table 3.17 shows the network parameters

for which the best network performance is obtained. In this table n is the number

of hidden layers, N1 is the number of neurons in the first hidden layer and η is the
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Figure 3.37: Communication links among the spacecraft in the formation - second
scheme.

learning rate. The dynamic neural networks are trained until a termination criterion

is satisfied. In this section, the termination criterion is the mean squared error (mse)

criterion. Similar to the first scheme, in this approach, the adaption laws are based on

the steepest descent gradient method and extended back-propagation learning law.

The network parameters are updated so that the norm of the identification error is

minimized where the identification error is defined as:

E(t) =
1

2

K∑
k=1

(yk(t)− ydesiredk (t))2 (3.11)

The training process is accomplished by using the Monte Carlo simulations under

different noisy situations for 50000 time samples and each time sample is 0.001 sec.

The network is trained for 100 different pairs of input/output data in presence of a

normally distributed noise with zero mean and standard deviation of 0.01 differences

between the maximum and the minimum values in the input/output data intervals.

The performance of network during the training phase along the x-axis of the four

satellites is shown in Fig. 3.39. The average value of the mean square error in

100 training simulations is 0.046 and its standard deviation is 0.0006, which is quite
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Figure 3.38: Structure of the FD system in a formation flying of satellites - second
scheme.
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Table 3.17: DNN characteristics in the learning phase.
Spacecraft # Network Size Number of Performance Learning Rate

Iterations Index Rate
1 N1−5−1 50000 0.047 0.01
2 N1−5−1 50000 0.062 0.02
3 N1−6−1 50000 0.0547 0.01
4 N1−6−1 50000 0.0483 0.01

acceptable. The mean square error (mse) for other axes of other satellites can be

obtained in a similar way.

3.14 Testing Phase

In order to evaluate the capability of the trained DNNs in representing dynamic model

of the reaction wheels of a spacecraft, the output of the neural network is obtained

for another healthy input data set and it is compared with the actual output of the

system. Fig. 3.40 shows the estimated output and the actual output of the system

in the testing phase for the three axes of the satellite #1 in the formation. This

figure shows that the output of the trained dynamic neural network can follow the

actual output of the system. The testing step is accomplished for 100 different pairs

of input/output data in presence of a normally distributed noise with zero mean

and standard deviation of 0.01 differences between the maximum and the minimum

values in the input/output data intervals. The average value of mean square error

in 100 testing samples is 0.078 and its standard deviation is 0.0009, which is quite

acceptable.
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(a) (b)

(c) (d)

Figure 3.39: The performance index (mean squared error of the output reaction
torque) curve for the dynamic neural network- x-axis of (a) satellite #1, (b) satellite
#2 (c) satellite #3 (d) satellite #4.
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(a) (b)

(c)

Figure 3.40: Testing curve (actual and estimated outputs) for the DNN (second
approach) - (a) x-axis, (b) y-axis, (c) z-axis of satellite #1.
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3.15 Actuator Fault Scenarios

In order to evaluate the representation characteristics of the proposed DNN-based

method FD scheme, several fault scenarios are considered as described below.

• Bus voltage (VBUS) fault

– First scenario: In this scenario, a low bus voltage (60% drop from the

nominal value) fault is injected in the x-axis of satellite #4 at the time

sample of 5000. Fig. 3.41 shows the residual signal generated in local

fault diagnosis DNN and in the corresponding DNNs in its two adjacent

neighbors.

– Second scenario: In the second scenario, a low bus voltage (45% drop from

the nominal value) fault has occurred in the z-axis of satellite #2 at the

time sample of 10000. The residual error signals generated in the z-axis of

satellite #2 and the corresponding axes of its two adjacent satellites are

shown in Fig. 3.42.

• Motor Current (Im) Fault

– Third scenario: In this case, a low motor current (15% drop of nominal

value) fault is injected at the y-axis of satellite #3 at the time sample of

10000. The residual error signals on the y-axis network of satellites #3,

#2 and #4 are shown in Fig. 3.43.

– Forth scenario: In this scenario, a low motor current (60% drop from

the nominal value) fault is injected in the x-axis of satellite #1 at the

time sample of 5000. Fig. 3.44 shows the residual error signals that are

generated in the x-axis of satellite #1, #2 and #4. In this case, when

the current fault occurs at the time sample of 5000, the residual error
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(a)

(b)

(c)

Figure 3.41: Residual signals corresponding to bus voltage fault - scenario 1: (a)
x-axis of satellite #4, (b) x-axis of satellite #1, (c) x-axis of satellite #3.
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(a)

(b)

(c)

Figure 3.42: Residual signals corresponding to bus voltage fault - scenario 2: (a)
z-axis of satellite #2, (b) z-axis of satellite #1, (c) z-axis of satellite #3.
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(a)

(b)

(c)

Figure 3.43: Residual signals corresponding to motor current fault - scenario 3: (a)
y-axis of satellite #3, (b) y-axis of satellite #2, (c) y-axis of satellite #4.
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signal generated in the x-axis of satellite #1 detects the fault immediately

and the residual error signal exceeds the threshold at the time sample of

5000. In this case a misclassification has occured at the time sample of

9000. Although the system is still faulty, the residual error crosses the

healthy zone at the time sample of 9000 for a short period of time. In

Section 3.16 these residual error are classified as ”Actual faulty/Predicted

Healthy” signals.

• Viscous Temperature (τv) Fault

– Fifth scenario: In this case, a high viscous temperature (50% increase from

the nominal value) fault is injected at the x-axis of satellite #2 at the time

sample of 5000. The residual error signals on the x-axis dynamic neural

network of satellite #2, #3 and #1 are shown in Fig. 3.45.

– Sixth scenario: In this case a high temperature fault that results in a

10% increase from the nominal value of viscous friction has occured at

the x-axis of satellite #1 at the time sample of 10000. The residual error

signals on the x-axis networks of satellites #1, #2 and #4 are shown in

Fig. 3.46. In this case a misclassification has occured at the time sample

of 11500. Although the system is still faulty, the residual error signal

crosses the healthy zone at the time sample of 11500 for a short period of

time. In Section 3.16 these residual error signals are classified as ”Actual

faulty/Predicted Healthy” signals.

Figs. 3.41 to 3.46 show that once a fault occurs in a reaction wheel of one of the

satellites in the formation, it can be detected by using local DNN immediately. DNNs

in the corresponding axes of the two adjacent neighbors of the faulty spacecraft can

also detect the fault after a short time delay.
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(a)

(b)

(c)

Figure 3.44: Residual signals corresponding to motor current fault - scenario 4: (a)
x-axis of satellite #1, (b) x-axis of satellite #2, (c) x-axis of satellite #4.

136



(a)

(b)

(c)

Figure 3.45: Residual signals corresponding to temperature fault - scenario 5: (a)
x-axis of satellite #2, (b) x-axis of satellite #1, (c) x-axis of satellite #3.
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(a)

(b)

(c)

Figure 3.46: Residual signals corresponding to temperature fault - scenario 6: (a)
x-axis of satellite #1, (b) x-axis of satellite #4, (c) x-axis of satellite #2.
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In this scheme, once a fault occurs in satellite #i, it can be detected by local

diagnoser immediately. However, since there are communication links between each

satellite and its two nearest neighbors, the DNN based FD systems that are embedded

in two adjacent nearest neighbors of satellite #i (i.e. satellite #(i − 1) and satellite

#(i + 1)) can detect the fault occurrence after a short time delay too. However,

depending on the fault severity, the second nearest neighbors of satellite #i might be

able to detect the fault after longer time delays. Similar to the first scheme, in this

scheme the bus voltage faults greater than 45% drop from the nominal value, motor

current faults greater than 5% drop from the nominal value and viscous temperature

faults greater than 5% drop from the nominal value can be detected successfully.

In order to provide a quantitative study on fault detection time delays, different

fault scenarios are considered. Table 3.18 shows the fault detection times for the

DNNs employed in the formation in case of a low bus voltage fault (60% drop from

the nominal value) along the x-axis of satellite #1. This table shows that the local

diagnoser (DNN x-1) can detect the fault immediately, while the DNNs in adjacent

neighbors can detect the fault after a short time delay.

In the second case, a low motor current fault (50% drop from the nominal

value) is injected in the reaction wheel of the x-axis of satellite #2. Table 3.19 shows

the fault detection times for the DNNs embedded in different axes of spacecraft in

the formation. In this case fault is injected in the x-axis of satellite #2, so the

corresponding DNN in the x-axis of satellite #2 can detect the fault immediately,

and the DNNs in adjacent satellites can detect the fault after a time delay. Table

3.20 shows the fault detection times for a 10% increase in the nominal value of viscous

friction fault in the y-axis of satellite #3. In this case the DNN along the y-axis of

satellite #3 detects the fault without a significant time delay and the other DNNs

detect the fault after a time delay. In the fourth scenario, a high temperature fault
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Table 3.18: Fault detection time delays in case of 60% drop of nominal value in the
bus voltage of x-axis satellite #1.

Dynamic Neural Network # Fault Detected Detection Time Delay

DNN x-1 YES 0 sec
DNN y-1 YES 2 sec
DNN z-1 YES 1 sec
DNN x-2 YES 5 sec
DNN y-2 YES 5 sec
DNN z-2 YES 5 sec
DNN x-3 YES 1 sec
DNN y-3 YES 1 sec
DNN z-3 YES 1 sec
DNN x-4 YES 8 sec
DNN y-4 YES 6 sec
DNN z-4 YES 5 sec

Table 3.19: Fault detection time delays in case of 50% drop of nominal value in the
bus voltage of x-axis satellite #2.

Dynamic Neural Network # Fault Detected Detection Time Delay

DNN x-1 YES 2 sec
DNN y-1 YES 4 sec
DNN z-1 YES 5 sec
DNN x-2 YES 0 sec
DNN y-2 YES 8 sec
DNN z-2 YES 5 sec
DNN x-3 YES 5 sec
DNN y-3 YES 5 sec
DNN z-3 YES 6 sec
DNN x-4 YES 15 sec
DNN y-4 YES 14 sec
DNN z-4 YES 15 sec
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Table 3.20: Fault detection time delays in case of 10% increase in nominal value of
the viscous friction of y-axis satellite #3.

Dynamic Neural Network # Fault Detected Detection Time Delay

DNN x-1 YES 20 sec
DNN y-1 YES 15 sec
DNN z-1 YES 18 sec
DNN x-2 YES 11 sec
DNN y-2 YES 8 sec
DNN z-2 YES 10 sec
DNN x-3 YES 5 sec
DNN y-3 YES 0 sec
DNN z-3 YES 5 sec
DNN x-4 YES 12 sec
DNN y-4 YES 14 sec
DNN z-4 YES 12 sec

that results in a 50% increase from the nominal value of viscous friction is injected in

the reaction wheel of the y-axis of satellite #3. Table 3.21 shows the fault detection

times in the DNNs that are embedded in different axes of spacecraft in the formation.

In this case fault is injected in the y-axis of satellite #3, so the corresponding DNN

in the y-axis of satellite #3 can detect the fault immediately, and the DNNs in the

neighboring satellites can detect the fault after a time delay.

A comparative study of Tables 3.12- 3.15 (i.e. fault detection times using the

first fault detection scheme) and Tables 3.18- 3.21 (i.e. fault detection times using

the second fault detection scheme) shows that in the second fault detection scheme,

the neighboring spacecraft can detect the fault earlier than the neighboring satellite

in the first scheme. That is due to the fact that the DNNs in the second scheme

are trained based on the attitude information obtained from two adjacent neighbors

of the faulty spacecraft and they can provide better estimate of the output of the

system.
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Table 3.21: Fault detection time delays in case of 50% increase in nominal value of
the viscous friction of y-axis satellite #3.

Dynamic Neural Network # Fault Detected Detection Time Delay

DNN x-1 YES 10 sec
DNN y-1 YES 9 sec
DNN z-1 YES 9 sec
DNN x-2 YES 6 sec
DNN y-2 YES 5 sec
DNN z-2 YES 6 sec
DNN x-3 YES 5 sec
DNN y-3 YES 0 sec
DNN z-3 YES 5 sec
DNN x-4 YES 10 sec
DNN y-4 YES 8 sec
DNN z-4 YES 10 sec

Table 3.22: Actual and detection results in case of 45% drop from the nominal value
of the bus voltage (VBUS) along the z-axis of satellite #2 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN z-2 5000 samples 5000 samples 4590 samples 5410 samples
DNN z-1 5000 samples 5000 samples 6400 samples 3600 samples

3.16 Confusion Matrix Analysis for Formation Fly-

ing FD Method

3.16.1 Confusion Matrix - Formation Flying FD - First Scheme

In order to investigate the capability of the fault detection (FD) system in formation

flying various faulty scenarios have been considered. In the first scenario, a 45% drop

from the nominal value of bus voltage (VBUS) along the z-axis of the satellite #2 is

considered. Table 3.22 shows the actual healthy and the actual faulty output signals

and the classification that is obtained by using the FD scheme. In this case, the

reaction wheel is operating under a healthy area of operation for 5000 steps and then

a bus voltage fault occurs and reaction wheel operates in the faulty area of operation
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Table 3.23: Actual and detection results in case of 50% drop from the nominal value of
the motor current(Im)) along the x-axis of satellite #3 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty
DNN x-3 5000 samples 5000 samples 4820 samples 5180 samples
DNN x-2 5000 samples 5000 samples 5700 samples 4300 samples

Table 3.24: Actual and detection results in case of 50% drop from the nominal value of
the viscous friction (τv) along the x-axis of satellite #1 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-1 5000 samples 5000 samples 4630 samples 5370 samples
DNN x-4 5000 samples 5000 samples 6900 samples 3100 samples

for 5000 steps.

Using the proposed FD scheme, the DNN embedded along the z-axis of the satel-

lite #2 estimates that the reaction wheel is working fault-free for 4590 steps and it

works faulty for 5410 steps. The DNN embedded along the z-axis of the satellite

#1 can also detect the effects of the fault. Using this dynamic neural network it is

estimated that the satellite operates healthy for 6400 steps and it operates faulty for

3600 steps.

In the second faulty scenario, satellite works fault-free for 5000 time samples and

then a motor current fault (50% drop from the nominal value of the motor current

(Im) along the x-axis of satellite #3) occurs and satellite works faulty for 5000 steps.

Table 3.23 shows that by using the proposed formation flying FD scheme for the x-

axis of satellite #3, it is estimated that the satellite works healthy for 4820 steps and

it then operates under a faulty situation for 5180 steps. The dynamic neural network

embedded along the x-axis of satellite #2 can detect the effects of the fault after a

time delay. This DNN estimates that the satellite is in the healthy status for 5700

steps and it is in the faulty status for 4300 steps.

In the third scenario, the satellite operates in its fault-free operating zone for

5000 time samples and then a temperature fault (50% increase from the nominal
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Table 3.25: Actual and detection results in case of 10% drop from the nominal value of
the viscous friction (τv) along the y-axis of satellite #3 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN y-3 5000 samples 5000 samples 4950 samples 5050 samples
DNN y-2 5000 samples 5000 samples 5830 samples 4170 samples

Table 3.26: Actual and detection results in case of 15% drop from the nominal value
of the motor current(Im) along the y-axis of satellite #3 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN y-3 5000 samples 5000 samples 4940 samples 5060 samples
DNN y-2 5000 samples 5000 samples 6100 samples 4900 samples

value of viscous temperature (τv) along the x-axis of the satellite #1) occurs and the

satellite starts operating in the faulty zone for 5000 steps. Table 3.24 shows that by

using the proposed formation flying FD scheme in the x-axis of the satellite #1, it is

estimated that the satellite is operating healthy for 4630 time samples and is working

in the faulty zone for 5370 steps. The DNN embedded in the x-axis of the satellite

#4 can detect the fault after a time delay as well. According to Table 3.24 this DNN

estimates that the reaction wheel is healthy for 6900 steps and is then faulty for 3100

steps.

In the fourth scenario, the spacecraft is working in the healthy status for 5000

steps and then a 10% increase in nominal value of the viscous friction (τv) fault occurs

along the y-axis of the satellite #3 and spacecraft works in this faulty situation for

5000 steps. The proposed formation flying FD system for the y-axis of the satellite

#3 estimates that the spacecraft is healthy for 4950 steps and operates in the faulty

zone for 5050 steps. The DNN embedded along the y-axis of satellite #2 is also capa-

ble of detecting the fault after a time delay. This DNN estimates that the satellite is

operating healthy for 5830 steps and is operating faulty for 4170 steps. The analytical

results for the fourth scenario are depicted in Table 3.25.

A 15% drop from the nominal value of motor current (Im) fault along the y-axis
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Table 3.27: Actual and detection results in case of 70% drop from the nominal value
of the bus voltage (VBUS) along the x-axis of satellite #2 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-2 5000 samples 5000 samples 5000 samples 5000 samples
DNN x-1 5000 samples 5000 samples 6950 samples 3050 samples

of satellite #3 is considered in the fifth scenario. In this case, satellite operates in its

healthy status for 5000 steps and then a fault occurs and satellite operates faulty for

5000 steps. Using the DNN in the y-axis of satellite #3 in the proposed FD scheme

for the formation flying of spacecraft, it is estimated that the satellite is healthy for

4940 steps and it operates faulty for 5060 steps. The DNN embedded along the y-

axis of satellite #2 can detect the fault after a short time delay as well. According

to Table 3.26 this DNN estimates that the satellite is healthy for 6100 steps and it is

operating faulty for 4900 steps.

In the sixth scenario, it is assumed that the spacecraft is working under the

healthy status for 5000 steps and then a 70% drop from the nominal value of the

bus voltage (VBUS) fault is injected along the x-axis of the satellite #2 and space-

craft works in this faulty situation for 5000 steps. The proposed formation flying FD

system along the x-axis of the satellite #2 estimates that the spacecraft is fault-free

for 5000 steps and operates in the faulty zone for 5000 steps. The DNN embedded

along the x-axis of the satellite #1 is also capable of detecting the fault after a time

delay. This DNN estimates that the satellite is operating under the healthy zone for

6950 steps and is operating faulty for 3050 steps. The analytical results for the sixth

scenario are depicted in Table 3.27.

Considering the above six faulty scenarios for the satellite #i the following values

in Table 3.28 for the confusion matrix are obtained.

According to Table 3.29 the dynamic neural network embedded along the faulty
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Table 3.28: Confusion matrix parameters for faulty satellite(#i) and its nearest
neighbor(#(i− 1)).

DNN # A B C D

DNN of 30000 samples 0 samples 1070 samples 28930 samples
satellite #i
DNN of 23000 samples 7000 samples 420 samples 29580 samples

satellite #(i− 1)

Table 3.29: Confusion matrix results for faulty satellite(#i) and its nearest
neighbor(#(i− 1)).

DNN of satellite #i DNN of satellite #(i− 1)

Accuracy 98% 87%
True healthy 96% 98%
False healthy 0% 23%
True faulthy 100% 76%
False faulty 4% 2%
Precision 100% 82%

axis of the satellite #i can classify 96% of healthy signals and 100% of faulty sig-

nals successfully; however 4% of healthy signals are misclassified as faulty using this

method. The accuracy level (98%) and the precision level (100%) of this method are

highly acceptable. The dynamic neural network embedded along the corresponding

axis of satellite #(i−1) which is the nearest neighbor to satellite #i can classify 98%

of the healthy signals and 76% of faulty signals correctly. The accuracy level (87%)

and the precision (82%) are acceptable.

3.16.2 Confusion Matrix - Formation Flying FD - Second

Scheme

In order to investigate the fault detection capabilities of the proposed FD system in

formation flying, various faulty scenarios have been considered. In the first scenario,

a bus voltage fault (45% drop from the nominal value) along the z-axis of the satellite

#2 at the time sample of 5000 is considered. Table 3.30 shows the actual healthy and
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Table 3.30: Actual and detection results in case of 45% drop from the nominal value
of the bus voltage (VBUS) along the z-axis of satellite #2 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN z-2 5000 samples 5000 samples 5000 samples 5000 samples
DNN z-1 5000 samples 5000 samples 5570 samples 4430 samples
DNN z-3 5000 samples 5000 samples 3550 samples 3450 samples

Table 3.31: Actual and detection results in case of 50% drop from the nominal value
of the motor current (Im) along the x-axis of satellite #3 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-3 5000 samples 5000 samples 5100 samples 4900 samples
DNN x-2 5000 samples 5000 samples 6100 samples 3900 samples
DNN x-4 5000 samples 5000 samples 5200 samples 4800 samples

the actual faulty output signals and the detection results that are obtained by using

the proposed FD scheme. In the second faulty case, a 50% drop from the nominal

value of the motor current fault is injected in the x-axis of the satellite #3 at the time

sample of 5000. Table 3.31 shows the actual healthy and the actual faulty output

signals and the fault detection results that are obtained by using the proposed FD

scheme. In the third scenario a high viscous temperature fault (50% increase from

the nominal value of the viscous friction) is injected in the x-axis of the satellite #1

at the time sample of 5000. The actual healthy and the actual faulty output signals

and the classification results that are obtained by using the proposed FD scheme are

shown in Table 3.32. In the fourth scenario a high temperature fault that results in

a 10% increase in the nominal value of the viscous friction is injected in the y-axis

of the satellite #3 at the time sample of 5000. Table 3.33 shows the actual healthy

Table 3.32: Actual and detection results in case of 50% drop from the nominal value
of the motor current (Im) along the x-axis of satellite #1 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-1 5000 samples 5000 samples 5050 samples 4950 samples
DNN x-4 5000 samples 5000 samples 5850 samples 4150 samples
DNN x-2 5000 samples 5000 samples 6050 samples 3950 samples
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Table 3.33: Actual and detection results in case of 10% drop from the nominal value
of the motor current (Im) along the y-axis of satellite #3 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN y-3 5000 samples 5000 samples 5000 samples 5000 samples
DNN y-2 5000 samples 5000 samples 6500 samples 3500 samples
DNN y-4 5000 samples 5000 samples 6200 samples 3800 samples

Table 3.34: Actual and detection results in case of 15% drop from the nominal value
of the motor current (Im) along the y-axis of satellite #3 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN y-3 5000 samples 5000 samples 5000 samples 5000 samples
DNN y-2 5000 samples 5000 samples 6400 samples 3600 samples
DNN y-4 5000 samples 5000 samples 5900 samples 4100 samples

and the actual faulty output signals and the classification results that are obtained

by using the proposed formation flying FD scheme. A low motor current fault (15%

drop of nominal value) is injected in the y-axis of the satellite #3 at the time sample

of 5000 and the satellite remains faulty for 5000 steps in the fifth scenario. Table 3.34

shows the actual healthy and the actual faulty output signals and the classification

results that are obtained by using the proposed FD scheme. A low bus voltage fault

(70% drop of nominal value) has occured in the x-axis of the satellite #2 at the time

sample of 5000 and it lasts for 5000 steps in the last scenario. Table 3.35 shows the

actual healthy and the actual faulty output signals and the fault detection results

that are obtained by using the proposed FD scheme.

Considering the above six faulty scenarios for the satellite #i the following values

in Table 3.36 are obtained for the confusion matrix.

Table 3.35: Actual and detection results in case of 70% drop from the nominal value
of the bus voltage (VBUS) along the x-axis of satellite #2 by using 10000 time samples.
DNN # Actual Healthy Actual Faulty Estimated Healthy Estimated Faulty

DNN x-2 5000 samples 5000 samples 5000 samples 5000 samples
DNN x-1 5000 samples 5000 samples 5300 samples 4700 samples
DNN x-3 5000 samples 5000 samples 5700 samples 4300 samples
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Table 3.36: Confusion matrix parameters for the faulty satellite (#i) and its two
nearest neighbors (#(i− 1) and #(i+ 1)).

DNN # A B C D

DNN of satellite #i 29850 samples 150 samples 0 samples 30000 samples
DNN of satellite #(i− 1) 25980 samples 4020 samples 300 samples 29700 samples
DNN of satellite #(i+ 1) 26050 samples 3950 samples 450 samples 29550 samples

Table 3.37: Confusion matrix results for the faulty satellite (#i) and its two nearest
neighbors (#(i− 1) and #(i+ 1)).

DNN of satellite DNN of satellite DNN of satellite
#i #(i− 1) #(i+ 1)

Accuracy 99% 92% 92%
True healthy 100% 99% 98.5%
False healthy 0% 13% 13%
True faulty 100% 87% 87%
False faulty 0% 1% 1.5%
Precision 100% 88% 88%

According to Table 3.37 the dynamic neural network embedded along the faulty

axis of the faulty spacecraft (i.e. satellite #i) can classify 100% of healthy signals and

100% of faulty signals successfully. The accuracy level (99%) and the precision level

(100%) of this method are highly acceptable. The dynamic neural network embedded

along the corresponding axis of satellite #(i − 1) and satellite #(i + 1) which are

the nearest neighbors to satellite #i can classify 99% of healthy signals and 87% of

faulty signals correctly. In comparison to the first scheme, in this method both faulty

and healthy signals are classified more precisely. The accuracy level (92%) and the

precision (88%) are acceptable as well.

3.17 Conclusions

In this chapter a fault detection system methodology that is developed in [43] for a

single satellite is presented and its capabilities and shortcomings in detecting faults

are evaluated under different faulty and fault free situations. A fault detection (FD)
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scheme for detecting actuator faults in a consensus-based controlled formation of

satellites is then proposed. In the single satellite FD system, when a fault occurs in

satellite #i, only the FD system embedded in the satellite #i can detect the fault.

On the other hand, in case of low severity faults, these local FD systems may fail to

detect faults.

For the formation flying system two different FD schemes are investigated in this

chapter and the capabilities of the proposed methods for detecting faults are evalu-

ated under different fault scenarios. In the first scheme, once a fault occurs in satellite

#i, the fault detection system in satellite #i can detect it immediately and the FD

system in satellite #(i − 1) can detect the fault with a time delay. So, the first ad-

vantage of proposed FD scheme is that when a fault happens in a satellite it can be

detected by using local diagnosers immediately and then, after a time delay the fault

can be detected by using DNNs that are embedded in the nearest neighbor of the

faulty satellite. When the severity of fault increases, even the next neighbor (satellite

#(i− 2)) can detect the fault after longer time delay.

In the second scheme, once a fault occurs in satellite #i, it can be detected by

local diagnose immediately. However, since there are communication links between

each satellite and its two nearest neighbors, the DNN based FD systems that are

embedded in the two adjacent nearest neighbors of satellite #i (satellite #(i−1) and

satellite #(i+ 1)) can detect the fault occurrence after a short time delay. However,

depending on the fault severity, the next nearest neighbors of satellite #i might be

able to detect the fault after longer time delays.

The second advantage of the proposed methods (in both first and second schemes)

is their ability to detect low severity faults. Using these schemes, bus voltage faults

greater than 45% drop from the nominal value and temperature and motor current

faults greater than 5% drop/increase from the nominal values can be detected. Using
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the second scheme (bi-directional communication method) the fault can be detected

in shorter time delay and the healthy and faulty signals are classified better (in the

first scheme only 76% of faulty signals are classified correctly, but using the second

scheme almost 87% of faulty signals are classified correctly). The accuracy and pre-

cision levels are almost the same in both schemes.

The only disadvantage of the second scheme is that this scheme requires more

communication links as compared to the first scheme, especially when a large number

of spacecraft are involved in the mission. The communication requirements for each

spacecraft during the formation are estimated as follows: In the decentralized control

approach, each spacecraft transmits its instantiation of r, v, q and ω of the virtual

structure to its two adjacent neighbors (in this thesis we have ignored the group

expansion/contraction and we only consider the group translation and the group ro-

tation). We know that r, v and ω each has 3 components and q has 4 components.

Thus the coordination vector has 13 components. Assume that each component is

encoded as B bits and the sampling rate of the system is L Hz. By communicating

with its two adjacent neighbors, each satellite requires a bandwidth of 26 BL/Hz. In

the single satellite FD system, each satellite only uses its own measurements of the

command voltage and the reaction torque in order to detect local faults. Thus, the

single satellite FD system does not require any additional communication links.

In the formation flying FD system, in the first scheme each satellite only sends

its attitude information to its previous neighbor (satellite #i send its attitude to

satellite #(i − 1)), and this requires 4 BL/Hz more bandwidth for each spacecraft.

In the second scheme, each satellite sends its attitude information to its two nearest

neighbors. Thus, this requires 8BL/Hz more bandwidth for each spacecraft in the

maneuver. Compared to the centralized method, there is no single point of failure
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in this proposed method. Also, compared to the centralized approach, fewer commu-

nication links are required in this method. The decentralized method provides more

flexibility and reliability when compared to the centralized approaches.
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Chapter 4

Fault Isolation, Fault Type

Determination and Fault Severity

Estimation Scheme for a Formation

Flight of Satellites

In Chapter 3, we have developed a decentralized fault detection scheme for a formation

flying of spacecraft. In order to evaluate the capabilities of the proposed scheme, we

have injected various fault scenarios in the attitude control subsystem of the spacecraft

and it was shown that when a fault occurs in an actuator of one of the satellites in the

formation, the fault diagnosis system embedded in the faulty spacecraft can detect

the fault immediately, and the dynamic neural network embedded in its adjacent

spacecraft can detect the fault after a short time delay. The next step in an FDI

process of a system is fault isolation. Fault isolation is the practice of determining

the faulty actuator in the formation and isolating it from other actuators in the

system. Limiting the scope of the problem decreases the possibility of serious damage
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in the entire formation system.

4.1 Fault Isolation Logic

In general, three reaction wheels are embedded in a spacecraft system, and each

of them is located along one of the three axes of the spacecraft. In our proposed

formation flying fault diagnosis system, a dynamic neural network is embedded along

each axis of each satellite in the formation. When a high severity fault occurs in one

of the reaction wheels in the i-th spacecraft in the formation, the dynamic neural

network that is embedded along the corresponding axis of the i-th spacecraft can

detect the fault immediately (without time delay). In this way, one not only can

detect a fault, but also can isolate the faulty actuator in the formation.

4.1.1 Fault Isolation Results for a Formation Flying of Satel-

lites

In Chapter 3, a fault detection scheme is proposed for the reaction wheels of the

satellites in a formation flight mission. The proposed methodology has the capability

of detecting and isolating actuator faults simultaneously. The fault isolation logic

is based on the fault detection time delays in the formation flying system. This

capability has been investigated under various fault scenarios:

• First scenario: In this case, a 60% drop from nominal value of the bus voltage

fault along the x-axis of the satellite #1 has occurred. The fault detection time

delay results are depicted in Table 4.1. According to Table 4.1 once this fault

occurs along the x-axis of satellite #1, the corresponding DNN along the x-axis

of the satellite #1 can detect the fault immediately, and the DNNs embedded

along the other axes of satellite #1 can detect the fault after a short time delay
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Table 4.1: Fault detection time delays in case of 60% drop from nominal value in the
bus voltage of x-axis of satellite #1.
Dynamic Neural Network # Fault Detected Detection Time Delay Faulty Axis

DNN x-1 YES 0 sec ×
DNN y-1 YES 5 sec
DNN z-1 YES 5 sec
DNN x-2 NO -
DNN y-2 NO -
DNN z-2 NO -
DNN x-3 YES 15 sec
DNN y-3 YES 17 sec
DNN z-3 YES 15 sec
DNN x-4 YES 11 sec
DNN y-4 YES 7 sec
DNN z-4 YES 8 sec

(approximately 5 seconds). In our proposed fault detection scheme, the attitude

information of satellite #1 is transmitted to its adjacent neighbor (i.e. satellite

#4) according to Fig. 3.18. Once a fault occurs in satellite #1 it affects the

attitude of satellite #4 and satellite #3. Since the DNNs embedded in satellite

#4 are trained based on the relative attitude of satellite #4 with respect to

satellite #1, the DNNs embedded in satellite #4 and satellite #3 can detect

the fault after a time delay. Since satellite #4 is the closest satellite to satellite

#1 in the formation (as far as communication delay is considered), the DNNs in

satellite #4 detect the fault within a shorter time delay and since satellite #2 is

the farthest satellite from satellite #1 in the formation (as far as communication

delay is considered), the DNNs in satellite #2 cannot detect the fault that has

occurred in satellite #1. Table 4.1 shows that the DNN in the z-axis of the

satellite #1 is the first DNN in the formation-level FD system that can detect

the fault occurrence. This reveals that the reaction wheel along the x-axis of

the satellite #1 is faulty.

• Second scenario: In this case a motor current fault (50% drop from the nominal
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Table 4.2: Fault detection time delays in case of 50% drop of nominal values in the
motor current of x-axis of satellite #2.
Dynamic Neural Network # Fault Detected Detection Time Delay Faulty Axis

DNN x-1 YES 13 sec
DNN y-1 YES 10 sec
DNN z-1 YES 10 sec
DNN x-2 YES 0 sec ×
DNN y-2 YES 6 sec
DNN z-2 YES 2 sec
DNN x-3 NO -
DNN y-3 NO -
DNN z-3 NO -
DNN x-4 YES 15 sec
DNN y-4 YES 20 sec
DNN z-4 YES 15 sec

value) has occurred in the x-axis of the satellite #2 in a formation flight mission.

When this fault occurs in the x-axis of the satellite #2, the DNN in the x-axis

of the satellite #2 can detect the fault immediately and since in our proposed

formation level fault detection system, the attitude information of satellite #2

is transmitted to satellite #1 (the adjacent spacecraft in the ring topology),

therefore, the DNNs in the satellite #1 can detect the fault occurrence after a

short time delay. In the ring topology, the attitude information of the satellite

#2 is then transmitted to the satellite #4, therefor the DNNs in the satellite

#4 can detect the fault within a longer time delay. The fault detection time

delays in the DNNs of the satellites in the formation flight mission are depicted

in Table 4.2.

• Third scenario: In this case a low severity viscous friction fault (10% increase

from the nominal value) has occurred along the y-axis of the satellite #3. The

time delays in the fault detection are shown in Table 4.3. According to this table,

once a fault is occurred along the y-axis of satellite #3, the DNN embedded

along the faulty axis of the faulty spacecraft (satellite #3) can detect the fault
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Table 4.3: Fault detection time delays in case of 10% increase in nominal values of
the viscous friction of y-axis of satellite #3.
Dynamic Neural Network # Fault Detected Detection Time Delay Faulty Axis

DNN x-1 NO -
DNN y-1 NO -
DNN z-1 NO -
DNN x-2 YES 14 sec
DNN y-2 YES 16 sec
DNN z-2 YES 14 sec
DNN x-3 YES 7 sec
DNN y-3 YES 0 sec ×
DNN z-3 YES 8 sec
DNN x-4 NO -
DNN y-4 NO -
DNN z-4 NO -

immediately (0 second time delay), and then the fault is detected by DNNs along

the x-axis and z-axes of satellite #3. The closest agent to the satellite #3 in the

formation is satellite #2. Therefore, the attitude deviations in satellite #3 will

affect the orientation of satellite #2 within a short time delay. Therefore the

DNNs embedded in satellite #2 can detect the fault after a time delay. Due to

the low severity of the temperature fault that is occurred in this scenario (10%

increase from the nominal value) the fault occurrence in satellite #3 does not

affect the second nearest neighbor of satellite #3 in the ring topology. Therefore

only DNNs in the satellite #3 (the faulty satellite) and satellite #2 (the nearest

neghbor of the faulty satellite) can detect the fault, and since according to Table

4.3 the DNN in the y-axis of the satellite #3 can detect fault in the first place,

this reveals that the fault is occured in the y-axis of the satellite #3.
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4.2 A Dynamic Neural Network-Based Method-

ology for Fault Type Classification and Fault

Severity Estimation

In this section a multi dynamic neural network-based method is proposed for fault

type classification and fault severity estimation in actuators of the satellites in the

formation flying mission. In this approach, in the first level, a dynamic neural network

is employed for classifying the actuator faults into one of the three actuator fault type

categories, namely, bus voltage fault, motor current fault and temperature fault. In

the second level, this DNN-based fault type classifier is followed by another dynamic

neural network to estimate the fault severity in the faulty actuator.

4.2.1 Fault Type Classification Using Dynamic Neural Clas-

sifier

In general three types of faults may occur in the reaction wheels of a spacecraft,

namely, a bus voltage fault, a motor current fault and a viscous friction fault as

shown in Table 4.4. These three types of faults have been described in Section 2.8. In

this methodology, after detecting fault occurrence in the formation flying system and

isolating the faulty actuator (determining the location of the faulty reaction wheel

in the formation flying system) in order to determine the type of the fault that has

occurred in the faulty actuator, a dynamic neural network-based method is proposed.

The structure of the proposed scheme is depicted in Fig. 4.1. In this scheme, the

residual signals that are generated in the formation-level fault detection system are

processed such that the magnitudes of the residual signal before and right after the

fault occurrence is applied as the two input to the DNN-based classifier. The output of

158



Figure 4.1: Dynamic neural network-based scheme for fault type determination.

Table 4.4: Reaction wheel fault types assignments.
Reaction Wheel Assigned Fault

Fault Type Type Class
Motor current fault +1
Bus voltage fault -1
Temperature fault 0

the neural classifier determines the fault type that has occurred in the faulty actuator.

4.2.2 Training Phase

In this section, the residual signals which are generated by using the formation level

dynamic neural network-based fault detection scheme are processed as the input data

to train the dynamic neural classifiers. In order to train the DNN-based fault type

classifiers, the residual signals that are collected under various faulty operating con-

dition of the spacecraft and are used for training purposes. The magnitudes of the

residual signal before and right after the fault occurrence are applied as the two

inputs to the dynamic neural classifier. Preprocessing steps are performed on the

input/output data pairs so that all the data used for DNN training are normalized in

the range of [-1, +1]. The training process is then carried out based on an extended

dynamic back-propagation algorithm for each axis.
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The network parameters are initialized with small random values and the IIR fil-

ter’s denominator coefficients are initialized to zeros. The structure of the dynamic

neural network contains one hidden layer of hyperbolic tangent activation functions

and one output layer of linear activation functions. The neurons embedded in the

structure of the dynamic neural network have second order IIR filters. The training

process is started from a relatively small network structure and the optimum structure

is obtained by incrementally increasing the number of hidden neurons until required

performance specifications are met. The training phase is conducted for each DNN

that is employed along each axis of the satellite. The best results are obtained using

a N2−5−1 structure, which implies that there is two neuron in the input layer (the

first input of the network is the magnitude of the residual signal generated in the

formation level fault detection system before fault occurrence and the second input of

the neural classifier is the magnitude of the residual signal after the fault occurrence),

8 neurons in the hidden layer and one neuron in the output layer (the output of the

neural classifier is the corresponding fault type class). The learning rate parameter

is set to 0.001. The training process is accomplished by using Monte Carlo’s simula-

tions under different noisy conditions for 20000 fault scenarios (including 5000 motor

current fault scenarios, 5000 bus voltage fault scenarios and 5000 temperature fault

scenarios and 5000 fault free scenarios). The performance indices (i.e. mean square

error) of the neural classifiers during the training phase for 3 axis of satellite #1 are

depicted in Fig. 4.2.

4.2.3 Testing Phase

The classification capability of the trained DNN-based classifier is evaluated in the

testing phase. In the testing phase another input/output data set is used to evaluate

the capabilities of the trained DNNs to classify the fault types. The testing step is
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(a) (b)

(c)

Figure 4.2: The performance index (mean squared error of the fault classes) curve for
the dynamic neural network classifier- satellite #1 (a) x-axis, (b) y-axis (c) z-axis.
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accomplished for 20000 different pairs of input residual signal data that is generated

under 15000 different faulty scenarios (including 5000 bus voltage fault scenarios, 5000

temperature fault scenarios, 5000 motor current fault scenarios and 5000 fault free

scenarios) are applied to the trained neural classifiers to investigate the classification

capabilities of the trained networks. These residual signals are generated by using

the formation-level fault detection systems of the satellites in presence of normally

distributed noise with zero mean and standard deviation of 0.01 differences between

the maximum and the minimum values in the input/output data intervals. Fig. 4.3

shows the actual fault type class and the output of the neural classifier in the testing

phase in the three axes of the satellite #1. The results indicate that the trained

DNNs have the ability to classify the faults of the reaction wheels correctly. The

testing phase for the other satellites can be accomplished in a similar way.

4.2.4 Fault Type Classification Results

In order to investigate the classification capabilities of the proposed neural classifiers,

these classifiers are applied following the formation level fault detection system in the

formation flying mission. The following three different fault scenarios are considered

in this section:

• First scenario: In this scenario a bus voltage fault (45% drop from the nominal

value) has occurred in the z-axis of the satellite #2 in the formation flying. The

residual signal that is generated in the formation level fault detection scheme

is applied to the neural classifier and Fig. 4.4 shows that the proposed neural

classifier can detect the fault type correctly and assign the actuator fault to the

correct fault class.

• Second scenario: In this scenario a motor current fault (50% drop from the

nominal value) has occurred in the x-axis of the satellite #3 in the formation
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(a) (b)

(c)

Figure 4.3: Testing curve (actual and estimated fault classes) for the DNN - (a) x-axis,
(b) y-axis, and (c) z-axis of the satellite #1.
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(a) (b)

Figure 4.4: First scenario: (a)Residual signal from the formation level fault detection
system (b) Output of DNN-based fault type classifier.

flying. The neural classifier receives the residual signal that is generated in the

formation level fault detection scheme as the input data and determines the

fault type. Fig. 4.5 shows that the proposed neural classifier can detect the

fault type correctly and assigns the actuator fault to the correct fault class.

• Third scenario: In this case, a 50% increase in the nominal value of the viscous

friction occurs in the x-axis of the satellite #1. Fig. 4.6 shows that the proposed

dynamic neural classifier has the capability of classifying the actuator fault

correctly.

4.2.5 Dynamic Neural Network-Based Fault Severity Esti-

mation Method

In this section a dynamic neural network-based scheme is proposed for estimating

fault severity in the faulty actuator in the formation flight mission. When a fault

occurrence in one of the actuators in the formation is detected in the the formation
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(a) (b)

Figure 4.5: Second scenario: (a)Residual signal from the formation level fault detec-
tion system (b) Output of DNN-based fault type classifier.

(a) (b)

Figure 4.6: Third scenario: (a)Residual signal from the formation level fault detection
system (b) Output of DNN-based fault type classifier.
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Figure 4.7: Dynamic neural network-based scheme for fault severity estimation.

level dynamic neural networks, the location of the faulty actuator is determined in

the fault isolation step and the fault type is determined by using the proposed DNN-

based method in Section 4.2.1. The next step is to propose a method for estimating

fault severity in the faulty actuator in the formation. In order to fulfill this objective,

in our proposed scheme, the DNN-based fault type classifier is followed by another

dynamic neural network that is employed for estimating fault severity in the faulty

actuator. This fault estimation DNN is also trained based on the residual signals that

are obtained from the formation level fault detection system. The structure of the

DNN-based fault severity estimation unit is depicted in Fig. 4.7.

The residual signals that are generated in the formation level fault detection

systems under faulty operating conditions are processed such that the input of the

fault severity estimation neural network is the difference magnitude in the residual

signal before and right after the fault occurrence. A quantitative study of the effects

of the motor current, the viscous temperature and the bus voltage fault severities

on the residual signals that are generated in the corresponding faulty axis of the

faulty satellite is provided in Tables 4.5-4.7, respectively. According to these tables,

as the severity of actuator fault increases, the difference magnitude in the steady

state residual signal at the fault occurrence time increases. This property is used

to determine the severity of the fault in the actuators of a satellite in the formation
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Table 4.5: Motor current fault severity at the time of fault occurrence.
Fault Severity Healthy Magnitude Faulty Magnitude Difference

of the residual signal of the residual signal Magnitude
at the fault time at the fault time

5% Im -0.03625 -0.1017 0.06545
10% Im -0.0310 -0.1620 0.131
15% Im -0.0453 -0.2416 0.1963
20% Im -0.0260 -0.2880 0.262
30% Im 0.1120 -0.2815 0.3935
45% Im 0.8807 0.2916 0.5891
50% Im 1.1291 0.47471 0.6544
55% Im 1.089 0.3690 0.72
60% Im 1.188 0.4026 0.7854
75% Im 1.206 0.2240 0.982
80% Im 1.1885 0.1410 1.0475
90% Im 1.200 0.0173 1.1827
95% Im 1.2126 -0.0080 1.2206

structure.

4.2.6 Training Phase

In this section, the residual signals which are generated by using the formation level

dynamic neural network-based fault detection scheme are processed and the difference

between the magnitude of the residual signal before fault occurrence and the magni-

tude of the residual signal right after the fault occurrence is applied as the input data

to train the dynamic neural networks to estimate the fault severity.

In order to train the DNN-based fault type classifiers, the residual signals that

are collected under various faulty operating condition of the spacecraft are used in

training phase. Preprocessing steps are performed on the input/output data pairs so

that all the data used for DNN training are normalized in the range of [-1, +1]. The

training process is then carried out based on an extended dynamic back-propagation

algorithm for each axis.
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Table 4.6: Motor current fault severity at the time of fault occurrence.
Fault Severity Healthy Magnitude Faulty Magnitude Difference

of the residual signal of the residual signal Magnitude
at the fault time at the fault time

5% τv 0.0143 0.0591 0.0448
10% τv 0.0140 0.1038 0.0898
15% τv 0.0140 0.1483 0.1343
20% τv 0.0540 0.2330 0.1790
30% τv -0.0267 -0.2952 0.2685
45% τv 0.0118 0.4147 0.4029
50% τv 0.0670 0.5141 0.4471
55% τv 0.0093 0.5010 0.4917
60% τv -0.015 -0.5520 0.537
75% τv -0.2940 0.3774 0.668
80% τv 0.467 -0.2491 0.7161
90% τv 0.6680 -0.1378 0.8058
95% τv -0.6048 0.222 0.8268

Table 4.7: Motor current fault severity at the time of fault occurrence.
Fault Severity Healthy magnitude Faulty magnitude Difference

of the residual signal of the residual signal magnitude
at the fault occurrence at the fault occurrence

45% VBUS -0.862 0.1075 0.9695
50% VBUS -0.9561 0.1193 1.0754
55% VBUS -1.05 0.13115 1.18115
60% VBUS -1.108 0.1446 1.2526
65% VBUS -1.241 0.1548 1.3958
70% VBUS -1.334 0.1666 1.5006
75% VBUS -1.430 0.1784 1.6084
80% VBUS -1.525 0.191 1.716
85% VBUS -1.620 0.2021 1.8221
90% VBUS -1.715 0.215 1.93
95% VBUS -1.818 0.226 2.044
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The network parameters are initialized with small random values and the IIR fil-

ter’s denominator coefficients are initialized to zeros. The structure of the dynamic

neural network contains one hidden layer of hyperbolic tangent activation functions

and one output layer of linear activation functions. The neurons embedded in the

structure of the dynamic neural network have second order IIR filters. The train-

ing process is started from a relatively small network structure and the optimum

structure is obtained by incrementally increasing the number of hidden neurons until

required performance specifications are met. The training phase is conducted for each

DNN that is employed along each axis of the satellite. The best results are obtained

using a N1−7−1 structure, which implies that there is one neuron in the input layer

(the input of the network is the difference magnitude of the residual signal that is

generated in the formation level fault detection system at the fault occurrence time),

7 neurons in the hidden layer and one neuron in the output layer (The output of the

neural classifier is the fault severity). The learning rate parameter is set to 0.001.

The training process is accomplished by using Monte Carlo’s simulations under dif-

ferent noisy conditions for 30000 fault scenarios (including 10000 motor current fault

scenarios, 10000 bus voltage fault scenarios and 10000 temperature fault scenarios).

The networks are trained for different pairs of input/output data in presence of a

normally distributed noise with zero mean and standard deviation of 0.01 differences

between the maximum and the minimum values in the input/output data intervals.

The performance of the dynamic neural networks during the training phase for 3 axis

of satellite #1 is depicted in Fig. 4.8.

4.2.7 Testing Phase

The capability of the trained DNNs in estimating actuator fault severity is investi-

gated in the testing phase. In this phase another input/output data set is used to
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(a) (b)

(c)

Figure 4.8: The performance index (mean squared error of the fault severity) curve
for the dynamic neural network in fault severity estimation- satellite #1 (a) x-axis,
(b) y-axis (c) z-axis.
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Figure 4.9: Testing curve (actual and estimated fault severity) for the DNNs in fault
severity estimation level- Motor current fault.

evaluate the capabilities of the trained DNNs to estimate the fault severities. The

testing step for the motor current faults is accomplished for 10000 different pairs of

input residual signal data that is generated under 10000 various faulty cases (includ-

ing 10000 motor current fault scenarios) is applied to the trained dynamic neural

networks to investigate the capabilities of the trained networks. The residual sig-

nals that are generated by using the formation-level fault detection systems of the

satellites in the formation in presence of a normally distributed noise with zero mean

and standard deviation of 0.01 differences between the maximum and the minimum

values in the input/output data intervals is applied as the input data to the neural

networks in fault severity estimation level. Fig. 4.9 shows the actual fault severity

and the output of the neural classifier in the testing phase. The results indicate that

the trained DNNs have the ability to estimate the fault severity in the reaction wheels

correctly. The testing phase for the other axes of the satellite can be accomplished

in a similar way.

In order to investigate the capabilities of the proposed DNN-based method in

estimating temperature fault severities in the faulty actuator of the faulty satellite

in the formation, 10000 various temperature fault scenarios are considered and the
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Figure 4.10: Testing curve (actual and estimated fault severity) for the DNNs in fault
severity estimation level- Temperature fault.

Figure 4.11: Testing curve (actual and estimated fault severity) for the DNNs in fault
severity estimation level- Bus voltage fault.

actual fault severity and estimated value for the fault severity is depicted in Fig. 4.10.

In Fig. 4.11 the capabilities of the proposed method is tested for 5500 different

bus voltage scenarios are investigated. The actual fault severities and the estimated

fault severities (by using the DNN-based approach) is depicted in this figure.
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(a) (b)

Figure 4.12: First scenario: (a) Residual signal from the formation level fault detec-
tion system (b) o utput of DNN-based fault severity estimator.

4.2.8 Fault Severity Estimation Results Using Dynamic Neu-

ral Network-Based Method

In order to investigate the capabilities of the proposed dynamic neural networks in

estimating fault severity in the faulty actuator in the formation flight mission, various

fault scenarios are considered. The DNNs for fault severity estimation level are applied

following the fault type determination system in the formation flying mission. In this

section, the following three different fault scenarios are considered:

• First scenario: In this scenario a bus voltage fault (70% drop from the nominal

value) is occurred in the x-axis of the satellite #2 in the formation flying. The

residual signal that is generated in the formation level fault detection scheme

is applied to the neural classifier and Fig. 4.12 show that the proposed neural

classifier can detect the fault type correctly and assign the actuator fault to the

correct fault class.

• Second scenario: In this scenario a motor current fault (80% drop from the
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(a) (b)

Figure 4.13: Second scenario: (a) Residual signal from the formation level fault
detection system (b) output of DNN-based fault severity estimator.

nominal value) is occurred in the y-axis of the satellite #4 in the formation

flying. The neural classifier receives the residual signal that is generated in the

formation level fault detection scheme as the input data and determines the

fault type. Fig. 4.13 shows that the proposed neural classifier can detect the

fault type correctly and assign the actuator fault to the correct fault class.

• Third scenario: In this case, a 50% increase in the nominal value of the viscous

friction occurs in the x-axis of the satellite #2. Fig. 4.14 shows that the

proposed dynamic neural classifier has the capability of classifying the actuator

fault correctly.
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(a) (b)

Figure 4.14: Third scenario: (a) Residual signal from the formation level fault detec-
tion system (b) output of DNN-based fault severity estimator.

4.3 A Static Neural Network-Based Methodology

for Fault Type Classification and Fault Sever-

ity Estimation

In Chapter 3, it is shown that by using the proposed formation flying fault detec-

tion methodology, bus voltage faults greater than 45% drop from the nominal value

can be detected. In addition, the proposed method has the capability of detecting

motor current faults and temperature faults greater than 5% drop/increase from the

nominal values. The proposed method can detect the fault occurrence and isolate

the fault (i.e detect the location of the fault in the formation flying) at the same

time. In this section a multilayer perceptron neural network that is depicted as in

Fig. 2.1 and is directly applied following the dynamic neural network detectors to

classify the residual signals that are generated by using the formation flying fault

diagnosis system. This neural classifier receives information from the residual error
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Figure 4.15: General structure of the fault type classification and fault severity esti-
mation system.

signals and determines the type and the severity of the fult that has occurred in the

faulty actuator.

In order to perform the classification task, the neural classifier has to be trained

on the residual error signals that are generated in the formation level dynamic neural

fault diagnosis system by using the back-propagation method and then the classifier

performs the residual validation task and assigns each of the residual signals to one

of the predefined fault type classes and estimate the severity of fault.

The general structure of the fault type classification and fault severity estimation

system is depicted in Fig. 4.15. In this structure, the DNN that is employed along

each axis of each satellite in the formation is followed by a static neural classifier that

is employed for the fault type classification purposes. The classifiers are applied for

classifying residual error signals which are generated during the steady state oper-

ation of the spacecraft and they have the capability of classifying single faults that

have been injected in the reaction wheels of each axis of the spacecraft, including the

voltage fault, motor current fault and viscous temperature fault. Using the proposed

method, the severity of the actuator fault can be estimated too.

When a fault is detected in one of the axes of the satellite #i in the formation,

the neural classifier embedded along the faulty axis of the faulty spacecraft receives
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the magnitude of the residual signal before and after the fault occurrence. The static

neural network is trained based on residual signals (value of the residual signals at

the moment of the fault occurrence as well as before and after of the fault occurrence)

and classifies the residual signals into one of the fault type categories.

In our proposed FDI scheme, when the system is fault free, the residual signal

remains in the threshold boundaries. Once a fault occurs in the reaction wheel of

one of the spacecraft in the formation, the residual signal exceeds the threshold and

the fault is detected. When a severe fault occurs in the actuators, the residual signal

exceeds the threshold, but when the fault severity is low, the residual signal exceeds

significantly the threshold. The increased severity of the fault results in increasing the

difference magnitude of the residual signal at the moment of fault occurrence before

and after the fault occurrence.

4.4 A Static Neural Network-Based Fault Type

Classification and Fault Severity Estimation

Method

A static multilayer perceptron neural classifier is constructed along each axis of each

spacecraft in the formation. These static neural networks receive the residual sig-

nals that are generated in the formation-level fault detection system and process the

residual signal that is generated in the faulty axis of the faulty spacecraft in the for-

mation and use the magnitude of the residual signal right before and after the fault

occurrence as inputs. The first and the second output of the neural network are the

fault type and the fault severity, respectively.
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4.4.1 Training Phase

The proposed static neural networks are trained using the residual signal that is

generated in the formation-level fault detection system of the faulty spacecraft in

the mission, under different faulty conditions (including bus voltage fault scenarios,

motor current fault scenarios and temperature fault scenarios). The learning process

is carried out based on the back-propagation algorithm for 20000 input/output data

set corresponding to motor current faults, 20000 input/output data set corresponding

to the temperature fault cases and 11000 input/output data set corresponding to bus

voltage fault scenarios, and the best results are obtained with the network structure

of N2−5−5−2, which implies that there are two inputs (which are the magnitude of

the residual error signal before and after the fault occurrence), 5 neurons in the

first hidden layer, 5 neurons in the second hidden layer and 2 outputs (the first

output identifies the fault type and the second output determines the fault severity).

The learning rate is set to 0.005. The network is trained for 10000 epochs until

a performance index requirement is satisfied. Fig. 4.16 shows that the required

performance index (i.e. the mean square error) is satisfied during the training phase.

4.4.2 Testing Phase

In order to evaluate the capabilities of the trained neural network, we use the trained

static neural network to classify different fault types and estimate the severities of

the faults that can occur in the reaction wheel of the spacecraft along one axis. In

the testing step, the residual signals that are generated under 10000 different motor

current fault scenarios, 10000 different temperature fault scenarios and 5500 different

bus voltage scenarios are applied to the neural classifier and the output signals are

depicted in Fig. 4.17- Fig. 4.19. These figures show that the proposed classifier can
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Figure 4.16: Learning curve for the static neural classifier network.

classify the fault type and estimate the fault severity with an acceptable accuracy.

In this step, first in order to evaluate the capability of this static neural network-

based method, 10000 different motor current fault scenarios are considered. The

residual signals that are generated using the DNNs in the formation flying level fault

detection system under these 10000 different motor current fault scenarios are applied

to the neural classifier.

The neural classifier receives the residual signal. The magnitude of the residual

signal at the moment of fault occurrence (the magnitude of the residual signal right

before and after of fault occurrence) are applied as the two inputs of the neural

classifier. The output of the neural classifier under these 10000 motor current fault

scenarios is shown in Fig. 4.17. This figure shows that when a motor current fault

has occurred in a reaction wheel in the formation flight system, the proposed static

neural classifier can detect the fault type correctly (the actual fault type class that is

assigned for motor current faults is +1, and the static neural classifier can classify the

fault type correctly. However, there are some miss classifications in some samples).

179



Figure 4.17: Fault classification results for 10000 different motor current fault sce-
narios.

According to Fig. 4.17 the proposed static classifier can estimate the fault severity.

The actual and the estimated fault severities in various 10000 motor current fault

cases are depicted in Fig. 4.17.

In order to evaluate the capability of the proposed neural classifier in classifying

the temperature faults, 10000 different temperature faults are considered. The neural

classifiers process the residual signals generated in DNNs of the formation flying

system. These neural networks employ the magnitude of the residual signal at the

moment right before and after of the fault occurrence as the input signal. Fig. 4.18

shows the actual fault type and fault severity and the estimated outputs of the neural

network classifier for 10000 different temperature fault scenarios. It shows that the
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Figure 4.18: Fault classification results for 10000 different temperature fault scenarios.

proposed static neural network an detect the fault type and it can estimate the fault

severity.

The capabilities of the proposed methodology in classifying the actuator fault

type and the fault severity have been further investigated under 5500 different bus

voltage scenarios. The residual error signals that are generated under 5500 different

bus voltage scenarios have been applied as the input to the neural network classifier.

The actual fault type and fault severity and the estimated values that are obtained

by using static neural network are depicted in Fig. 4.19.
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Figure 4.19: Fault classification results for 10000 different bus voltage fault scenarios.
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4.4.3 Fault Type Determination and Fault Severity Estima-

tion Results Using Static Neural Network-Based Method

In this section, in order to evaluate the capabilities of the proposed static neural

network-based classification method, different fault scenarios is considered. In the

following scenarios, the static neural network receives the residual signal that is gen-

erated under faulty situation in the formation level fault detection system and the

magnitude of the residual signal before fault occurrence and right after the fault oc-

currence is applied as the two inputs to the static neural network. The two outputs

of the static neural network, that are trained using back-propagation method, is the

actuator fault type and actuator fault severity, respectively.

• First scenario: In this case a 45% drop from the nominal value of the bus voltage

fault has occured in the reaction wheel of the z-axis of the satellite #2 in the

formation flight mission. Fig. 4.20 shows the actual and estimated values for

the type and the severity of the fault that has occurred in the faulty actuator

in the formation.

• Second scenario: In the second scenario, a motor current fault (80% drop from

the nominal value) has been injected in the reaction wheel along the y-axis of

the satellite #4 in the formation flight mission. The residual signal generated

in the formation level fault detection system and the estimated and the actual

value of the fault severity and the fault type is depicted in Fig. 4.21.

• Third scenario: In this case a 50% increase in the nominal value of the viscous

friction has occurred in the reaction wheel in the x-axis of the satellite #2 in

the formation flight mission. The residual signals that are generated in the

fault detection system in the formation level and the output of the static neural

network are also shown in Fig. 4.22.
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(a) (b)

(c)

Figure 4.20: First scenario: (a) Residual signal from the formation level fault detec-
tion system (b) Fault type(c) Fault severity.
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(a) (b)

(c)

Figure 4.21: Second scenario: (a) Residual signal from the formation level fault
detection system (b) Fault type(c) Fault severity.
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(a) (b)

(c)

Figure 4.22: Third scenario: (a) Residual signal from the formation level fault detec-
tion system (b) Fault type(c) Fault severity.
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4.5 Analysis of the Results

In this chapter, two different method for fault type detection and fault severity esti-

mation in the actuators of a satellite in a formation flight mission is proposed. In the

first approach, the classification task is performed by using dynamic neural networks

that are introduced in Chapter 2. In the second approach, the conventional static

neural networks are employed to detect the fault type and the fault severity in the

faulty actuator in the formation flight mission. In order to evaluate the classification

capabilities of our proposed schemes, the confusion matrix method is used.

4.5.1 Analysis of the Results for the Dynamic Neural Network-

Based Method for Fault Type Classification and Fault

Severity Estimation

In order to evaluate the fault type classification and the fault severity estimation ca-

pabilities of the proposed dynamic neural network-based method a confusion matrix

analysis is used. The actual and estimated fault type and fault severity for 30 different

motor current scenarios are depicted in Table 4.8. Thirty (30) different temperature

fault scenarios are considered and the actual and the estimated fault type and fault

severity estimation results are depicted in Table 4.9. Finally, in Table 4.10 the actual

and estimated values for fault type and fault severity in the faulty actuator in the

formation flying system under 20 different bus voltage scenarios are listed.

In Tables 4.8-4.10 the classification results for 80 different faulty scenarios,

including 30 temperature fault scenarios, 30 motor current fault scenarios and 20 bus

voltage fault scenarios that are described above are shown. Table 4.11 shows the

number of patterns in each fault class and the number of patterns that are correctly/
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Table 4.8: Actual and classification results under 30 different motor current fault
cases - DNN method.

Fault type Actual Fault Classified Fault Estimated Fault
Severity Type Severity

Motor Current Fault 10% +1 2.8%
Motor Current Fault 12% +1 3.94%
Motor Current Fault 15% +1 10.02%
Motor Current Fault 20% +1 21.32%
Motor Current Fault 30% +1 32.15%
Motor Current Fault 32% +1 33.05%
Motor Current Fault 35% +1 35.98%
Motor Current Fault 38% +1 38.13%
Motor Current Fault 40% +1 40.15%
Motor Current Fault 42% +1 42.05%
Motor Current Fault 45% +1 45.03%
Motor Current Fault 48% +1 48%
Motor Current Fault 50% +1 49.98%
Motor Current Fault 52% +1 52%
Motor Current Fault 55% +1 55%
Motor Current Fault 58% +1 58%
Motor Current Fault 60% +1 60%
Motor Current Fault 62% +1 62%
Motor Current Fault 65% +1 65%
Motor Current Fault 68% +1 68%
Motor Current Fault 70% +1 70%
Motor Current Fault 72% +1 72%
Motor Current Fault 75% +1 75%
Motor Current Fault 78% +1 78%
Motor Current Fault 80% +1 80%
Motor Current Fault 82% +1 82%
Motor Current Fault 85% +1 85%
Motor Current Fault 88% +1 88%
Motor Current Fault 90% +1 90%
Motor Current Fault 95% +1 95%
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Table 4.9: Actual and classification results under 30 different temperature fault cases
- DNN method.

Fault type Actual Fault Classified Fault Estimated Fault
Severity Type Severity

Temperature Fault 10% 0.5 2.8%
Temperature Fault 12% 0.11 3.94%
Temperature Fault 15% 0.07 10.02%
Temperature Fault 18% 0.04 17.82%
Temperature Fault 20% 0.01 21.32%
Temperature Fault 22% 0.01 26.34%
Temperature Fault 25% 0 31.87%
Temperature Fault 28% 0 31.98%
Temperature Fault 32% 0 33.05%
Temperature Fault 35% 0 35.98%
Temperature Fault 38% 0 38.13%
Temperature Fault 40% 0 40.15%
Temperature Fault 42% 0 42.15%
Temperature Fault 45% 0 45.03%
Temperature Fault 48% 0 48%
Temperature Fault 50% 0 49.98%
Temperature Fault 52% 0 52%
Temperature Fault 55% 0 55%
Temperature Fault 58% 0 58%
Temperature Fault 60% 0 60%
Temperature Fault 62% 0 62%
Temperature Fault 65% 0 65%
Temperature Fault 70% 0 70%
Temperature Fault 72% 0 72%
Temperature Fault 75% 0 75%
Temperature Fault 80% 0 80%
Temperature Fault 82% 0 82%
Temperature Fault 85% 0 85%
Temperature Fault 92% 0 92%
Temperature Fault 95% 0 95%
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Table 4.10: Actual and classification results under 20 different bus voltage fault cases
- DNN method.

Fault type Actual Fault Classified Fault Estimated Fault
Severity Type Severity

Bus Voltage Fault 45% -0.97 98.87%
Bus Voltage Fault 50% -0.99 50%
Bus Voltage Fault 53% -0.99 53%
Bus Voltage Fault 55% -0.99 55%
Bus Voltage Fault 58% -1 58%
Bus Voltage Fault 60% -1 60%
Bus Voltage Fault 62% -1 62%
Bus Voltage Fault 65% -1 65%
Bus Voltage Fault 68% -1 68%
Bus Voltage Fault 70% -1 70%
Bus Voltage Fault 73% -1 73%
Bus Voltage Fault 75% -1 75%
Bus Voltage Fault 78% -1 78%
Bus Voltage Fault 80% -1 80%
Bus Voltage Fault 82% -1 82%
Bus Voltage Fault 85% -1 85%
Bus Voltage Fault 88% -1 88%
Bus Voltage Fault 90% -1 90%
Bus Voltage Fault 92% -1 92%
Bus Voltage Fault 95% -1 95%

190



Table 4.11: Actual fault type and classification results under different fault cases -
DNN method.

Fault type Number of faulty scenarios Correctly Wrongly
classified classified

Bus voltage fault 20 20 0
Motor current fault 30 30 0
Temperature fault 30 29 1

Table 4.12: Actual fault severity and estimated fault severity under different fault
cases - DNN method.

Fault type Number of faulty scenarios Correctly Poorly Wrongly
estimated estimated estimated

Bus voltage fault 20 19 0 1
Motor current fault 30 25 5 0
Temperature fault 30 25 5 0

poorly classified. Table 4.12 shows a quantitative analysis of the fault severity esti-

mation results for various actuator fault scenarios.

Table 4.13 shows the error in fault severity estimation under the above 80 faulty

scenarios (including 30 motor current fault scenarios, 30 temperature fault scenarios

and 20 bus voltage scenarios). The average fault severity estimation error is depicted

in Table 4.13 for various actuator fault scenarios.

Table 4.13: Actual fault severity and estimation results under different fault cases -
DNN method.

Fault type Average fault severity estimation error
Bus voltage fault 2.7%

Motor current fault 0.9%
Temperature fault 1.5%
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4.5.2 Analysis of the Results for the Static Neural Network-

Based Method for Fault Type Classification and Fault

Severity Estimation

In order to evaluate the classification capabilities of the proposed static neural network-

based (SNN) method, 30 different motor current fault scenarios are considered and

the 30 fault scenarios and the output of neural network classifier for these scenarios

have been described clearly in Table 4.14. Table 4.15 shows the actual 30 temperature

fault scenarios and the output of the neural classifier for the fault type and the fault

severity values under these 30 scenarios. The estimated values and the actual values

for fault type and fault severity results in 20 different fault scenarios are listed in

Table 4.16.

In Tables 4.14-4.16 the classification results for 80 different faulty scenarios,

including 30 temperature fault scenarios, 30 motor current fault scenarios and 20 bus

voltage fault scenarios that are described above are shown. Table 4.17 and Table

4.18 show the number of patterns in each fault class and the fault type/fault severity

estimation results for various fault scenarios respectively. Table 4.19 shows the fault

severity estimation analysis results for static neural network based method.

Comparing the analysis results in Table 4.18 and Table 4.12 shows that the dy-

namic neural network-based method has higher accuracy in estimating fault severity

(including bus voltage faults, motor current faults and temperature faults) and it has

lower estimation error.

4.6 Conclusion

In this chapter, a fault isolation logic and methodology is developed first and for

the purpose of fault type recognition and fault severity determination two methods
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Table 4.14: Actual and classification results under 30 different motor current fault
cases - SNN method.

Fault type Actual Fault Classified Fault Estimated Fault
Severity Type Severity

Motor Current Fault 10% +1 21.98%
Motor Current Fault 12% +1 29.91%
Motor Current Fault 15% +1 38.04%
Motor Current Fault 20% +1 40.81%
Motor Current Fault 25% +0.78 32.83%
Motor Current Fault 30% +1 40.83%
Motor Current Fault 32% -1.01 50.63%
Motor Current Fault 35% +1 46.32%
Motor Current Fault 38% +1 23.85
Motor Current Fault 42% +1 42.88%
Motor Current Fault 45% +1 46.17%
Motor Current Fault 48% +1 48.08%
Motor Current Fault 50% +1 58.26%
Motor Current Fault 52% +1 52.69%
Motor Current Fault 55% +1 54.37%
Motor Current Fault 58% +1 58.88%
Motor Current Fault 60% +1 65.63%
Motor Current Fault 62% +1 60.25%
Motor Current Fault 65% +1 65.72%
Motor Current Fault 68% +1 68.39%
Motor Current Fault 70% +1 71.03%
Motor Current Fault 72% +1 71.85%
Motor Current Fault 75% +1 75.33%
Motor Current Fault 78% +1 79.66%
Motor Current Fault 80% +1 78.06%
Motor Current Fault 82% -1.01 60.54%
Motor Current Fault 85% -.99 75.07%
Motor Current Fault 88% +1 89.4%
Motor Current Fault 90% +1 88.12%
Motor Current Fault 95% +1 96.36%
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Table 4.15: Actual and classification results under 30 different temperature fault cases
- SNN method.

Fault type Actual Fault Classified Fault Estimated Fault
Severity Type Severity

Temperature Fault 10% 0 25.67%
Temperature Fault 12% 0 31.88%
Temperature Fault 15% 0 38.8%
Temperature Fault 18% 0 41.87%
Temperature Fault 20% 0 44.5%
Temperature Fault 22% -0.02 46.4%
Temperature Fault 25% -0.18 85.5%
Temperature Fault 28% 0 38.76%
Temperature Fault 32% 0 85.6%
Temperature Fault 35% 0 61.9%
Temperature Fault 38% 0 21.8%
Temperature Fault 40% 0 62.5%
Temperature Fault 42% 0 59%
Temperature Fault 45% 0 63.1%
Temperature Fault 48% 0 63.6%
Temperature Fault 50% 0 63%
Temperature Fault 52% 0 64%
Temperature Fault 55% 0 64.1%
Temperature Fault 58% 0 64.8%
Temperature Fault 60% 0 64.3%
Temperature Fault 62% 0 65.7%
Temperature Fault 65% 0 67.2%
Temperature Fault 70% 0 71.2%
Temperature Fault 72% 0 73.7%
Temperature Fault 75% 0 77%
Temperature Fault 80% 0 82%
Temperature Fault 82% 0 79.7%
Temperature Fault 85% 0 95%
Temperature Fault 92% 0 80.8%
Temperature Fault 95% 0 85.2%
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Table 4.16: Actual and classification results under 20 different bus voltage fault cases
- SNN method.

Fault type Actual Fault Classified Fault Estimated Fault
Severity Type Severity

Bus Voltage Fault 45% -1 43.25%
Bus Voltage Fault 50% -1 61.51%
Bus Voltage Fault 53% -1 62.98%
Bus Voltage Fault 55% -1 63.55%
Bus Voltage Fault 58% -1 64.77%
Bus Voltage Fault 60% -1 66.21%
Bus Voltage Fault 62% -1 67.95%
Bus Voltage Fault 65% -1 69.23%
Bus Voltage Fault 68% -1 70.81%
Bus Voltage Fault 70% -1 72.16%
Bus Voltage Fault 73% -1 73.15%
Bus Voltage Fault 75% -1 76.45%
Bus Voltage Fault 78% -1 78.65%
Bus Voltage Fault 80% -1 80.02%
Bus Voltage Fault 82% -1 82.08%
Bus Voltage Fault 85% -1 86.48%
Bus Voltage Fault 88% -1 89.06%
Bus Voltage Fault 90% -1 91.15%
Bus Voltage Fault 92% -1 91.13%
Bus Voltage Fault 95% -1 94.69%

Table 4.17: Actual and classification results under different fault cases - SNN method.
Fault type Number of faulty scenarios Correctly Wrongly

classified classified
Bus voltage fault 20 16 4

Motor current fault 30 26 4
Temperature fault 30 29 1

Table 4.18: Actual fault severity and estimated fault severity under different fault
cases - SNN method.

Fault type Number of faulty scenarios Correctly Poorly Wrongly
estimated estimated estimated

Bus voltage fault 20 19 0 1
Motor current fault 30 18 2 10
Temperature fault 30 9 9 12
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Table 4.19: Actual fault severity and estimation results under different fault cases -
Static neural network (SNN) method.

Fault type Average fault severity estimation error
Bus voltage fault 3.25%

Motor current fault 6.66%
Temperature fault 15.5%

are proposed. In the first methodology, a two-level dynamic neural network-based

method is developed. In the first level, a dynamic neural network is trained by using

the residual signals generated in the formation level fault detection system based

on the extended back-propagation algorithm for the purpose of detecting fault types

that occur in the reaction wheels in the formation flight system. In the second level,

another dynamic neural network is trained based on the analysis of the residual signals

that are generated in the formation level fault detection process for the purpose of

estimating actuator fault severities.

In the second methodology, a static neural-network-based method is proposed

for detecting fault type and estimating the fault severity in the faulty actuator in

the formation flight system. In this methodology, the static neural networks are

trained based on the residual signals that are generated in the formation level fault

detection system by using conventional back-propagation method. The capabilities of

the both proposed schemes (dynamic neural network-based scheme and static neural-

network-based scheme) are evaluated under different fault scenarios. The results

presented demonstrate a reliable approach for fault type classification and severity

determination for actuator faults.
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Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

In this thesis the problem of fault detection and isolation (FDI) for a formation flying

of satellites is investigated. Due to the capability of dynamic neural networks (DNNs)

to cope with nonlinearity, complexity, uncertainty and noisy and corrupted data, in

this work DNNs are employed to solve the problem of fault detection and isolation of

the attitude control subsystem (ACS) of a satellite. In this thesis a dynamic neural

network-based FDI system is designed and developed to detect and isolate the faults

in the reaction wheels of satellites located in any of three axes of the satellites in the

formation. Various FDI systems for single spacecraft missions have been previously

developed in the literature [43], [150], [13], [18], [29]. Unfortunately these local fault

diagnosis schemes fail to detect and isolate low severity faults that occur in the re-

action wheels of a spacecraft. Although these low severity faults may not cause any

serious problem in a single satellite missions, they may cause serious impact on the

satellite’s attitude or rates in a formation flight mission of a network of satellites.

In this thesis, a decentralized FDI system is proposed for detecting and isolating

actuator faults in a formation flight mission. Unlike the local FDI systems (that use
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absolute measurements of a spacecraft) the formation flying FDI systems use relative

attitude measurements collected from sensors of the 3-axes attitude control subsystem

of the satellite in the formation. The formation flying FDI system is developed based

on the DNN approach in order to identify normal and faulty modes of operation. The

DNN is constructed based on the dynamic multilayer perceptron (DMLP) network

in which static neurons are replaced with dynamic neuron model.

Two different FDI topologies have been investigated in this thesis. In the first

topology the DNNs in each satellite are trained based on the relative attitude of that

satellite with respect to its adjacent neighbor in the bidirectional ring topology. In

this approach when a fault occurs in one axis of one of satellites in the formation,

the DNN located along the faulty axis of faulty spacecraft can detect and isolate the

fault immediately, and the DNN in the neighboring satellite can detect the fault after

a time delay.

The capabilities of this approach are evaluated by using a confusion matrix anal-

ysis method. In this fault scheme, the DNN located in faulty axis of faulty spacecraft

can detect 100% of the faulty signals correctly and the DNN of the neighboring

spacecraft can detect 76% of the faulty signals correctly. The accuracey (87%) and

precision (82%) level is also acceptable in this method.

In the second approach, DNNs of each spacecraft use the relative attitude mea-

surements of that spacecraft with respect to its two nearest adjacent neighbors in

the bidirectional ring topology. The capability of this proposed scheme is also in-

vestigated under different faulty scenarios and its capability is evaluated using the

confusion matrix method. In this approach, the DNN located in the faulty axis of

the faulty spacecraft can detect 100% of the faulty signals correctly (without a time

delay) and the DNNs located in its two neighboring satellites can detect the actuator

fault after a short time delay (compared to the first fault detection topology) and
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they can classify 87% of faulty signals correctly. The accuracey (92%) and precision

(88%) levels are improved as compared to the first fault detection topology.

The proposed fault diagnosis scheme has the capability of detecting and isolating

faults at the same time. Fault isolation is the practice of determination of faulty

actuator in the formation and isolating it from other actuators in the system. In

general, three reaction wheels are embedded in a spacecraft system, and each of them

is located along one of the three axes of the spacecraft. In our proposed formation

flying fault detection system, a dynamic neural network is embedded along each axis

of each satellite in the formation. In this way, not only one can detect a fault, but

also isolate the faulty actuator in the formation.

In general three types of faults may occur in reaction wheels of a spacecraft;

namely bus voltage faults, motor current faults and viscous temperature faults. In

order to classify the type of faults in the attitude control subsystem of any of the

satellites in the formation, two neural network-based methodologies (dynamic neural

network-based (DNN) and static neural network-based (SNN)) are employed after

the residual generator in each axis of each satellite. These neural network classifiers

use information from the residual signal generated in the faulty axis of the faulty

satellite (before and after the fault occurrence) to train the neural networks. Finally,

two methodologies for fault severity determination are also proposed and developed.

When the severity of the actuator faults in a satellite increase, the magnitude of the

residual signal in the faulty axis of the faulty satellite in the formation before and

after the fault occurrence increase. This property has been used for developing a fault

severity determination scheme.

5.2 Thesis Contributions

The contributions of the work developed in this thesis are detailed as follows:
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• In this thesis, a DNN-based decentralized fault detection and isolation method

for the reaction wheels of the satellites in a formation flight is developed. In this

method, the DNN located in each axis of a satellite in the formation is trained

based on the relative attitude measurements of that satellite and its neighboring

satellite(s). In this thesis, two different topologies have been investigated: In

the first topology, the DNNs of the satellite #i in the formation is trained using

the relative attitude of satellite #i and satellite #(i+1). In this fault detection

scheme, when a fault occurs in one of the reaction wheels of satellite #i in the

formation, the DNN located in the corresponding axis of the satellite #i can

detect the fault without a time delay, and the DNN located in the corresponding

axis of the satellite #(i−1) can detect the fault after a short time delay. In the

second topology, the DNNs of the satellite #i in the formation are trained using

the relative attitude of satellite #i and its two neighboring satellites, namely

satellite #(i− 1) and satellite #(i+1). In this fault detection method, when a

fault occurs in a reaction wheel in satellite #i, the DNN in the corresponding

axis of satellite #i is capable of detecting the actuator fault immediately, and

the DNNs in satellite #(i−1) and #(i+1) can detect the fault after a short time

delay. By using these two proposed fault detection schemes, the fault occurrence

in a satellite in the formation mission, can be detected either in the local fault

detection system of the faulty satellite or in the fault detection systems of its

neighboring satellite(s).

• The proposed fault detection schemes are capable of detecting low severity faults

that occur in the reaction wheels of satellites in the formation. The single satel-

lite fault detection system can detect high severity faults in the reaction wheels

of the satellite, but it fails to detect low severity faults in the actuators of the

satellite. These low severity actuator faults do not have any serious impact on
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the attitude or rates of a single satellite, but in formation flying missions, low

severity actuator faults can result in serious deviations from mission specifica-

tions and they may lead to catastrophic failure in the entire formation. Devel-

oping a fault detection scheme that is capable of detecting both high severity

and low severity faults in the formation mission is the second contribution of

this thesis.

• The proposed methodology shows a high level of accuracy (98%) and precision

(100%) and the mis-classification rate and false faulty parameters are small (2%)

in the confusion matrix analysis. Therefore, the proposed DNN-based fault

detection method fulfills the expected requirements of accuracy and precision

with minimum mis-classification rate and false alarms.

• The proposed methodology is capable of detecting and isolating the actuator

faults at the same time. In both schemes, a DNN is located in three axes of each

satellite in the formation. Once a fault occurs in one of the actuators of any

of the satellites in the formation, the DNN that is located in the corresponding

axis can detect the fault without a time delay. This property is used for isolation

purpose.

• Two neural network-based methods (DNN-based method and SNN-based method)

are employed to determine the fault type and the fault size in the faulty actu-

ator. The DNN that is located in each axis of each satellite in the formation is

followed by a static/dynamic neural network. These neural networks are trained

based on the residual signal that is generated in the DNN-based residual gener-

ator in the faulty axis and then the trained neural networks are used to classify

the fault type and estimate the fault severity.
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5.3 Suggestions for Future Work

Based on the results obtained in this thesis, the suggested future work can be focused

on the following areas:

• Since in this thesis a decentralized fault diagnosis scheme is proposed, a fault

in one satellite can be observed by its adjacent satellites in the formation as

well. Although this provides a more reliable fault diagnosis approach, in case

of multiple faults a more advanced technique for isolating faulty actuators and

fault type determination is required.

• A fault recovery system may be developed for the formation flight of satellites

that fulfills the mission objective. An automated or operator-initiated fault

recovery procedure can be developed to correct the effect of fault in the system

after detecting and isolating the fault and bring the formation system back to

the normal state.

• Developing a fault detection system that is capable of detecting both the actu-

ator and sensor faults can also be considered as a future work.

• In this thesis, the time delay in the communications among the satellites in

the formation is ignored. By considering the communication time delays, the

precision of the fault detection process can be increased.

• Developing a fault detection system that can continue to work in case of loss/failure

of an agent in the formation flying missions is also suggested for future work.
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