
ON DEVELOPMENTAL FORMATION OF PATTERNS

Mo Alian

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy (Computer Engineering)

Concordia University

Montréal, Québec, Canada

April 2013

c© Mo Alian, 2013

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Mo Alian

Entitled: On Developmental Formation of Patterns

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining commitee:

Dr. Chair

Dr. D. Precup External Examiner

Dr. P. Grugono Examiner

Dr. L. Varin Examiner

Dr. A. Agrawal Examiner

Dr. N. Karma Supervisor

Approved

Chair of Department or Graduate Program Director

20

Dr. Robin A.L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

On Developmental Formation of Patterns

Mo Alian, Ph.D.

Concordia University, 2013

The constantly increasing amount of resources available to engineers and scientists have

allowed them to target larger problems whose size and complexity introduce new chal-

lenges: the time required to find the solution is longer, the solutions are more error prone,

and the tests and repairs are more expensive. Self-organizing methods have recently been

the promising pioneers in dependable robust design. Distributed self-organizing patterns

can emerge to demonstrate the desired characteristics, either in form or functionality. At

the same time, being inspired by the natural development of multicellular organisms, re-

searchers have started using artificial development to improve features such as scalability

or fault tolerance of the solution. However, the current solutions resulting from artificial

development are either very small in size or very simple in architecture.

The first part of this thesis introduces a method to emerge patterns that demonstrate

given functionality whose architecture is not known in advance. The notable achievement

is the innovative fitness function in the evolutionary algorithm used there, which increases

the density of the solutions in the search space and more importantly, makes the often-

extremely-rough search space smoother.

The second and major part of this thesis studies formation of given large patterns from

simpler initial patterns. This problem is solved in the framework of Cellular Automata.

We push our methods to their limits by targeting large non-periodic patterns that have not

been originally created by developmental methods. We use patterns for which the similar

existing methods take a long time to find the solution, and their solutions are often large

and seldom scalable. We suggest improvements to the existing methods to allow them find

more efficient solutions, and also present two new methods to improve the results even

further. In the end, we show that our suggested method also contributes to scalability.

More specifically, our second suggested method decreases the growth rate of the solution to

be slower than the growth rate of the problem size.

iii

To Rezvan and Reza, my dearest parents who never stopped believing in me,

and to Jaleh, Ghazal and Bahareh, the best sisters one can ever have.

iv

Contents

List of Figures ix

List of Tables xii

List of Algorithms xx

1 Introduction and Background 1

1.1 Introduction . 1

1.1.1 Forming Patterns of Known Functionality 3

1.1.2 Forming Large Patterns of Known Architecture 3

1.2 Background . 4

1.2.1 Evolvable Hardware Design and Developmental Description of Digital

Circuits . 4

1.2.2 Pattern Formation in Cellular Automata 8

1.3 Problem Statement . 12

1.4 Thesis Contribution . 13

1.5 Thesis Organization . 14

2 Using Developmental Encoding to Emerge Given Functionalities 15

2.1 Problem Definition . 16

2.1.1 The Framework . 16

2.1.2 Developmental Program . 19

2.2 Methodology . 21

2.2.1 User Interface and Problem Statement 21

v

2.2.2 Evolutionary Algorithm . 22

2.2.3 Fitness Function and Sensitivity Analysis 25

2.3 Experiments and Results . 26

2.4 Conclusion . 30

3 Development of Large Patterns on Cellular Automata 32

3.1 Problem Definition . 32

3.1.1 Cellular Automata . 32

3.1.2 Cellular Automata With Memory . 37

3.1.3 Applications of Cellular Automata: A More Detailed Review 37

3.1.3.1 Simulation Problems . 37

3.1.3.2 Classification Problems . 38

3.1.3.3 Pattern Generation Problems 39

3.1.3.4 Challenges of the Inverse Problems 40

3.1.4 Problem Statement . 42

3.2 Methodology . 45

3.2.1 Expanding Neighborhood . 45

3.2.1.1 Complexity analysis . 46

3.2.1.2 Improvements to the Existing Method 47

3.2.2 First Suggested Method: Storing Individual Exceptions 56

3.2.2.1 Hidden Cell States and Hidden Transition Functions 56

3.2.2.2 Main Transition Function 61

3.2.2.3 Complexity Analysis and Memory Requirement 63

3.2.3 Second Suggested Method: Using Range of Values to Store Exceptions 68

3.2.3.1 Exhaustive Search of Minimum Irregular Regions 76

3.2.3.2 Top-Down Heuristic Search Algorithm 77

3.2.3.3 Analysis of Top-Down Heuristic Search Algorithm 78

3.2.3.4 Bottom-up Heuristic Search Algorithm 79

3.2.3.5 Analysis of Bottom-Up Heuristic Search Algorithm 80

3.2.3.6 Using Evolutionary Algorithm 82

vi

3.3 Experiments and Results . 91

3.3.1 Experiment Setup . 91

3.3.2 Results - Expanding Neighborhood 94

3.3.2.1 Removing Oldest Elements First 96

3.3.2.2 Removing Newest Elements First 98

3.3.2.3 Removing Least Gainful Elements First, Dynamically Up-

dating Gains . 99

3.3.2.4 Removing Most Gainful Elements First, Dynamically Up-

dating Gains . 101

3.3.2.5 Removing Least Gainful Elements First, No Update in Gains 101

3.3.2.6 Removing Most Gainful Elements First, No Update in Gains 104

3.3.2.7 Removing Row by Row, Top Left First 104

3.3.2.8 Removing Row by Row, Bottom Right First 106

3.3.2.9 Removing in Random Order 107

3.3.3 Analysis of the results - Expanding Neighborhood 108

3.3.3.1 Neighborhood Sizes . 110

3.3.3.2 Number of Rules in the Transition Function 111

3.3.3.3 The Storage Size of the Transition Function 113

3.3.3.4 The Calculation Time . 114

3.3.3.5 The Effects of Removing Unimportant Neighbors According

to Their Age . 118

3.3.3.6 The Effects of Removing Unimportant Neighbors According

to Their Information Gain and Updating Their Information

Gain After Each Removal 120

3.3.3.7 The Effects of Removing Unimportant Neighbors According

to Their Information Gain Without Updating Their Infor-

mation Gain After Each Removal 122

3.3.3.8 The Effects of Updating the Information Gains After Each

Removal When Sorting By Information Gain 123

vii

3.3.3.9 The Effects of Removing Unimportant Neighbors According

to Their Location in the CA 123

3.3.3.10 Comparison of the Most Successful Orders 126

3.3.3.11 Improvements to the Current Existing Methods 126

3.3.4 Results - Storing Individual Exceptions 126

3.3.5 Analysis of Results - Storing Individual Exceptions 128

3.3.5.1 Storage Size . 128

3.3.5.2 Calculation Time . 129

3.3.6 Results - Using Ranges of Values to Store Exceptions 130

3.3.6.1 Using the Top-Down search in the Using Ranges of Values

to Store Exceptions method 131

3.3.6.2 Using the Bottom-Up search in the Using Ranges of Values

to Store Exceptions method 133

3.3.6.3 Using the Evolutionary search in the Using Ranges of Values

to Store Exceptions method 133

3.3.7 Analysis of Results - Using Ranges of Values to Store Exceptions . . 133

3.3.7.1 Number of Rules in the Transition Function 135

3.3.7.2 The Storage Size of the Transition Function 136

3.3.7.3 The Calculation Time for Each Search Method 138

3.3.8 Comparison of the Results . 140

3.3.9 A Note on Scalability . 140

3.3.9.1 Growths of the Storage Size of Transition Functions 142

3.3.9.2 Analysis of Results of Growths of the Storage Size of Tran-

sition Functions . 145

3.3.9.3 Growths of the Calculation Time of Transition Functions . 148

3.3.9.4 Analysis of Results of Growths of the Calculation Time of

Transition Functions . 148

3.4 Conclusion . 153

viii

4 Summary 156

4.1 Generating Patterns When the Functionality is Known 156

4.2 Generating Patterns When the Architecture is Known 157

4.3 Conclusion and Future Steps . 157

Bibliography 159

A Used Images From the Extended Yale Face Database B 166

A.1 The 20-by-25 images . 166

A.2 The 40-by-50 images . 170

ix

List of Figures

1.1 2-D Von Neumann neighborhoods of radius r = 0 (left), r = 1 (middle) and

r = 2 (right) . 9

1.2 2-D Moore neighborhoods of radius r = 0 (left), r = 1 (middle) and r = 2

(right) . 9

1.3 An example of a free-form 2-D neighborhood 9

2.1 The grid of cells in a circuit . 17

2.2 Potential inputs to a cell . 17

2.3 Naming conventions of the neighbors . 18

2.4 Abstract of the architecture of a cell in the grid 18

2.5 Structure of a single rule in the cell’s rule base 20

2.6 The genomic and phenomic diversity in one run of evolutionary algorithm . 24

2.7 The full adder developed by the genome of Table 2.6. 28

2.8 The 2-bit multiplexer developed by the genome of Table 2.7. 28

2.9 The 4-bit parity generator developed by the genome of Table 2.8. 29

2.10 The highest and average fitness in the population for the evolution of the

circuit in Figure 2.7. 30

2.11 Improvement in evolutions performance by introducing the solutions of the

smaller size problems in the initial population. 31

3.1 A 2-D cellular space with cyclic dimensions. 33

3.2 The neighborhood defined in Example 3.1 35

x

3.3 The neighborhood configurations that set the cell’s next state to 1 (black) in

Example 3.2 . 37

3.4 a 32 × 32 binary pattern generated from a blank (all white) pattern by the

CA in Example 3.3 . 42

3.5 The distance between the configuration of the CA in Example 3.3 to the final

pattern in the Figure 3.4 over time . 42

3.6 Resizing the image to reduce the computation time. The pixels of the right

image are 100 times larger than the pixels of the left image. 43

3.7 The growth of Bell numbers. Source: OEIS [53] 77

3.8 The irregular regions found by the Algorithm 3.5 for the 5th rule in the

transition function of Equation 3.43 . 82

3.9 The flowchart of the evolutionary algorithm used in EAMIRP. 88

3.10 The irregular regions found by EAMIRP for the 5th rule in the transition

function of Equation 3.49 . 90

3.11 The arrangement of the bars where all the removing orders are bundled

together in one plot. 110

3.12 The overview of the neighborhood size for all transition functions resulting

from different removing orders in the Expanding Neighborhood method. . . 112

3.13 The overview of the number of rules in each transition functions resulting

from different removing orders in the Expanding Neighborhood method. . . 113

3.14 The storage size (in bits) required to store each of the transition functions re-

sulting from different removing orders in the Expanding Neighborhood method.115

3.15 The time required for Step 4 of the Algorithm 3.1 to find the transition

functions using each of the removing orders in the Expanding Neighborhood

method. 116

3.16 The time required for Step 4 of the Algorithm 3.1 to find the transition

functions using each of the removing orders in the Expanding Neighborhood

methods, except the least dynamic information gain first and most dynamic

information gain first. 117

xi

3.17 The comparison of the storage sizes the transition functions after using Re-

move Oldest First (right), Random (middle) and Remove Newest First (left)

orders. 119

3.18 The comparison of the storage sizes of the transition functions after using

Remove Most Dynamic Information Gain First (right), Random (middle)

and Remove Least Dynamic Information Gain First (left) orders. 121

3.19 The comparison of the storage sizes of the transition functions after using

Remove Most Static Information Gain First (right), Random (middle) and

Remove Least Static Information Gain First (left) orders. 122

3.20 The comparison of storage sizes of the transition functions after using Re-

move Least Dynamic Information Gain First (right), Random (middle) and

Remove Least Static Information Gain First (left) orders. 124

3.21 The comparison of the storage sizes of the transition functions after using

the Linear (right), Random (middle) and Reverse Linear (left) orders. . . . 125

3.22 The comparison of the storage sizes of the transition functions after using

the Oldest First (right), Least Static Information Gain First (middle) and

Linear (left) orders. 127

3.23 The overview of the number of rules in the transition functions in the Us-

ing Ranges of Values to Store Exceptions method using Top-Down (right),

Bottom-Up (middle) and evolutionary (left) searches. 136

3.24 The overview of the storage size of the transition functions in the Using

Ranges of Values to Store Exceptions method using Top-Down (right), Bottom-

Up (middle) and evolutionary (left) searches. 137

3.25 The overview of the calculation time of the transition functions in the Us-

ing Ranges of Values to Store Exceptions method using Top-Down (right),

Bottom-Up (middle) and evolutionary (left) searches. 138

3.26 The overview of the calculation time of the transition functions in the Using

Ranges of Values to Store Exceptions method using Bottom-Up (right) and

evolutionary (left) searches only. 139

xii

List of Tables

1.1 Comparison of the problem solver and pattern generator CAs 10

2.1 The cell properties and the range of valid Integer values of each 20

2.2 Cell’s output according to its function, Input 1 (I1) and Input 2 (I2) properties 20

2.3 Possible values of r in a rule and their corresponding relations 20

2.4 Possible values of s in a rule and their corresponding actions 20

2.5 The 4 pre-defined rules in the genome . 21

2.6 The genome to develop a binary full adder after 2 time steps on a 5× 5 grid 27

2.7 The genome to develop a 2-bit multiplexer after 2 time steps on a 5× 5 grid 27

2.8 The genome to develop a 4 bit parity generator after 2 time steps on a 6× 4

grid . 27

3.1 8 black and white images created from the image in the Figure 3.6 44

3.2 Representing the transition function in the Equation 3.23 as a set of instances.

The parameters of each instance are the 4 neighbors n0 to n3 and the label. 53

3.3 An example image (left) and the patterns generated from its 1st bit (middle)

and 2nd (right) bits . 55

3.4 Comparison of the transition functions for the same CA using different orders

in step 4 of the Algorithm 3.1. 56

3.5 Comparing the best results of the existing methods (Expanding Neighbor-

hood) and the results of the Storing Exceptions method. 68

3.6 Parameters of the Evolutionary Algorithm in EAMIRP. 90

3.7 The template of the result tables . 92

xiii

3.8 The number of times the Expanding Neighborhood method fails to find the

transition function. 96

3.9 The average of neighborhood sizes resulting from remove oldest first (the

current existing method). 96

3.10 The average of number of rules in the transition function resulting from

remove oldest first (the current existing method). 96

3.11 The average number of bits required to store the transition function resulting

from remove oldest first (the current existing method). 97

3.12 The average time in milliseconds required to find the transition function

resulting from remove oldest first (the current existing method). 97

3.13 The average of neighborhood sizes resulting from the remove newest first order. 98

3.14 The average of number of rules in the transition function resulting from the

remove newest first order. 98

3.15 The average number of bits required to store the transition function resulting

from the remove newest first order. 98

3.16 The average time in milliseconds required to find the transition function

resulting from the remove newest first order. 99

3.17 The average of neighborhood sizes resulting from the least dynamic informa-

tion gain first order. 99

3.18 The average of number of rules in the transition function resulting from the

least dynamic information gain first order. 99

3.19 The average number of bits required to store the transition function resulting

from the least dynamic information gain first order. 100

3.20 The average time in milliseconds required to find the transition function

resulting from the least dynamic information gain first order. 100

3.21 The average of neighborhood sizes resulting from the most dynamic infor-

mation gain first order. 101

3.22 The average of number of rules in the transition function resulting from the

most dynamic information gain first order. 101

xiv

3.23 The average number of bits required to store the transition function resulting

from the most dynamic information gain first order. 102

3.24 The average time in milliseconds required to find the transition function

resulting from the most dynamic information gain first order. 102

3.25 The average of neighborhood sizes resulting from the least static information

gain first order. 102

3.26 The average of number of rules in the transition function resulting from the

least static information gain first order. 103

3.27 The average number of bits required to store the transition function resulting

from the least static information gain first order. 103

3.28 The average time in milliseconds required to find the transition function

resulting from the least static information gain first order. 103

3.29 The average of neighborhood sizes resulting from the most static information

gain first order. 104

3.30 The average of number of rules in the transition function resulting from the

most static information gain first order. 104

3.31 The average number of bits required to store the transition function resulting

from the most static information gain first order. 105

3.32 The average time in milliseconds required to find the transition function

resulting from the most static information gain first order. 105

3.33 The average of neighborhood sizes resulting from the linear order. 106

3.34 The average of number of rules in the transition function resulting from the

linear order. 106

3.35 The average number of bits required to store the transition function resulting

from the linear order. 106

3.36 The average time in milliseconds required to find the transition function

resulting from the linear order. 107

3.37 The average of neighborhood sizes resulting from the reverse linear order. . 107

3.38 The average of number of rules in the transition function resulting from the

reverse linear order. 107

xv

3.39 The average number of bits required to store the transition function resulting

from the reverse linear order. 108

3.40 The average time in milliseconds required to find the transition function

resulting from the reverse linear order. 108

3.41 The average of neighborhood sizes resulting from the random order. 108

3.42 The average of number of rules in the transition function resulting from the

random order. 109

3.43 The average number of bits required to store the transition function resulting

from the random order. 109

3.44 The average time in milliseconds required to find the transition function

resulting from the random order. 109

3.45 Saving in the storage size of the transition function if our suggested Least

Static Information Gain First order is used in Step 4 of the Algorithm 3.1

instead of the currently used Oldest First order. 127

3.46 The average of number of rules in the transition function resulting from the

Algorithm 3.2. 128

3.47 The average number of bits required to store the transition function resulting

from the Algorithm 3.2. 129

3.48 The average time in milliseconds required to find the transition function

resulting from the Algorithm 3.2. 129

3.49 Savings in the storage size of the transition function when using the Storing

Individual Exceptions instead of the best case of the Expanding Neighborhood

method. 130

3.50 The ratio of the time needed to find the transition function in Storing Individ-

ual Exceptions method to the equivalent time in the Expanding Neighborhood

method that uses the Least Static Information Gain First order. 130

3.51 The ratio of the time needed to find the transition function in Storing Individ-

ual Exceptions method to the equivalent time in the Expanding Neighborhood

method that uses the Random order. 131

xvi

3.52 The average of number of rules in the transition function resulting from using

the Top-Down search in Section 3.2.3. 131

3.53 The average number of bits required to store the transition function resulting

from using the Top-Down search in Section 3.2.3. 132

3.54 The average time in milliseconds required to find the transition function

resulting from using the Top-Down search in Section 3.2.3. 132

3.55 the number of times using the Top-Down search in Section 3.2.3 exceeded

the available resources. 132

3.56 The average of number of rules in the transition function resulting from using

the Bottom-Up search in Section 3.2.3. 133

3.57 The average number of bits required to store the transition function resulting

from using the Bottom-Up search in Section 3.2.3. 133

3.58 The average time in milliseconds required to find the transition function

resulting from using the Bottom-Up search in Section 3.2.3. 134

3.59 the number of times using the Bottom-Up search in Section 3.2.3 exceeded

the available resources. 134

3.60 The average of number of rules in the transition function resulting from using

the Evolutionary search in Section 3.2.3. 134

3.61 The average number of bits required to store the transition function resulting

from using the Evolutionary search in Section 3.2.3. 134

3.62 The average time in milliseconds required to find the transition function

resulting from using the Evolutionary search in Section 3.2.3. 135

3.63 the number of times using the Evolutionary search in Section 3.2.3 exceeded

the available resources. 135

3.64 Improvement of Using Ranges of Values to Store Exceptions method over

the Storing Individual Exceptions method in Storage Size of the transition

functions. 141

3.65 Improvement of Using Ranges of Values to Store Exceptions method over the

best case of Expanding Neighborhood method (using the LeastStatic Informa-

tion Gain First in Storage Size of the transition functions. 141

xvii

3.66 The ratio of the time needed to find the transition function in Using Ranges

of Values to Store Exceptions method to the equivalent time in the Expanding

Neighborhood method that uses the Least Static Information Gain First order.141

3.67 The ratio of the time needed to find the transition function in Using Ranges

of Values to Store Exceptions method to the equivalent time in the Expanding

Neighborhood method that uses the Least Static Information Gain First order.142

3.68 The average storage size of transition functions in a 40 × 50 CA resulting

from using the Oldest First order in the Expanding Neighborhood method. . 142

3.69 The average storage size of transition functions in a 40 × 50 CA resulting

from using the Linear order in the Expanding Neighborhood method. 143

3.70 The average storage size of transition functions in a 40 × 50 CA resulting

from using the Least Static Information Gain First order in the Expanding

Neighborhood method. 143

3.71 The growth rate in the average storage size of transition functions resulting

from using the Oldest First order in the Expanding Neighborhood method. . 143

3.72 The growth rate in the average storage size of transition functions resulting

from using the Linear order in the Expanding Neighborhood method. 144

3.73 The growth rate in the average storage size of transition functions resulting

from using the Least Static Information Gain First order in the Expanding

Neighborhood method. 144

3.74 The average storage size of transition functions in a 40 × 50 CA resulting

from the Storing Individual Exceptions method. 144

3.75 The growth rate in the average storage size of transition functions resulting

from the Storing Individual Exceptions method. 144

3.76 The average storage size of transition functions in a 40 × 50 CA resulting

from using the Bottom-Up search in the Using Ranges of Values to Store

Exceptions method. 145

3.77 The average storage size of transition functions in a 40 × 50 CA resulting

from using the Evolutionary search in the Using Ranges of Values to Store

Exceptions method. 145

xviii

3.78 The growth rate in the average storage size of transition functions resulting

from using the Bottom-Up search in the Using Ranges of Values to Store

Exceptions method is used. 146

3.79 The growth rate in the average storage size of transition functions resulting

from using the Evolutionary search in the Using Ranges of Values to Store

Exceptions method is used. 146

3.80 The average growth of the storage size of the transition functions when the

CA grows 4 times larger (4 times more cells in the CA) 147

3.81 The average calculation time of transition functions in a 40×50 CA resulting

from using the Oldest First order in the Expanding Neighborhood method. . 149

3.82 The average calculation time of transition functions in a 40×50 CA resulting

from using the Linear order in the Expanding Neighborhood method. 149

3.83 The average calculation time of transition functions in a 40× 50 CA result-

ing from using the Least Static Information Gain order in the Expanding

Neighborhood method. 149

3.84 The average calculation time of transition functions in a 40×50 CA resulting

from using the Storing Individual Exceptions method. 150

3.85 The average calculation time of transition functions in a 40×50 CA resulting

from using the Bottom-Up search in the Using Ranges of Values to Store

Exceptions method. 150

3.86 The average calculation time of transition functions in a 40×50 CA resulting

from using the Evolutionary search in the Using Ranges of Values to Store

Exceptions method. 150

3.87 The growth in the average calculation time of transition functions resulting

from using the Oldest First order in the Expanding Neighborhood method,

when the number of cells in the CA grows by a factor of 4. 151

3.88 The growth in the average calculation time of transition functions resulting

from using the Linear order in the Expanding Neighborhood method, when

the number of cells in the CA grows by a factor of 4. 151

xix

3.89 The growth in the average calculation time of transition functions resulting

from using the Least Static Information Gain order in the Expanding Neigh-

borhood method, when the number of cells in the CA grows by a factor of

4. 151

3.90 The growth in the average calculation time of transition functions resulting

from using the Storing Individual Exceptions method, when the number of

cells in the CA grows by a factor of 4. 152

3.91 The growth in the average calculation time of transition functions resulting

from using the Bottom-Up search in the Using Ranges of Values to Store

Exceptions method, when the number of cells in the CA grows by a factor of 4.152

3.92 The growth in the average calculation time of transition functions resulting

from using the Evolutionary search in the Using Ranges of Values to Store

Exceptions method, when the number of cells in the CA grows by a factor of 4.152

3.93 The average growth of the calculation time of the transition functions when

the CA grows 4 times larger (4 times more cells in the CA) 153

A.1 The set of 20× 25 images used in the experiments of Chapter 3 166

A.2 The set of 20× 25 images used in the experiments of Chapter 3 170

xx

List of Algorithms

3.1 Expanding Neighborhood Algorithm . 46

3.2 Forming the Rule Base In the Storing Exceptions Method 62

3.3 Exhaustive Search For the Minimum Irregular Regions Problem 76

3.4 Top-Down Search For Minimum Irregular Regions Problem 78

3.5 Bottom-Up Search For Minimum Irregular Regions Problem 79

3.6 The Mutation Merge in the Evolutionary Algorithm Search For Minimum

Irregular Regions Problem . 85

3.7 The Mutation Split in the Evolutionary Algorithm Search For Minimum

Irregular Regions Problem . 86

3.8 The Vertical version of Mutation Split in the Evolutionary Algorithm Search

For Minimum Irregular Regions Problem . 86

3.9 The Vertical version of Mutation Split in the Evolutionary Algorithm Search

For Minimum Irregular Regions Problem . 86

xxi

Chapter 1

Introduction and Background

1.1 Introduction

The improvements of the engineering tools and computational resources has made re-

searchers eager to tackle larger and more complicated problems, for which large designs

are a necessity. Such large designs enable researchers to target new problems in new scales

and in a vast domain of applications. Large designs, however, come with large complica-

tions. Designs get more error prone, tests become more difficult, and maintenance becomes

more expensive as the size grows. Finding, storing and running algorithms become com-

plicated. Applying even minor modifications to the design in order to adapt to a slightly

different problem can become extremely expensive when the size and complexity grow. It is

not a surprise anymore if the costs of test and maintenance of modern products exceed the

cost of the resources required for the product itself. One can find many examples where dis-

carding a whole faulty product and replacing it with a fresh one costs less than performing

diagnostics and doing repairs.

On the other hand, natural designs do not seem to suffer from such complications. This is

while the most sophisticated artificial designs still look astonishingly simple when compared

to natural designs. Mimicking even small parts of the behavior of a natural design in a

controlled environment is considered to be an important achievement for engineers. Even

the simplest life forms have features such as adaptability, fault tolerance, or scalability that

has long been a major target for the artificial designs. Expectedly, there has been a trend

1

in artificial design to follow the fundamentals of natural designs to deliver such features to

the artificial products.

Two simple yet fundamental elements that contribute to the robustness of natural de-

signs are modularity and self organization. Modularity makes it possible to find relatively

simple designs that can be added together to form complex architectures or perform com-

plex behaviors. Modularity also contributes to fault tolerance in a way that only the faulty

module - and not the whole product - gets replaced by another modules. Moreover, in

the case of re-programmable modules, the faulty module can be corrected by reloading the

module configuration from a healthy module. Modularity contributes to scalability and

flexibility where similar modules can be added to the existing architecture to address a

larger use case or a slightly different one. Self organization contributes tremendously to

the fault tolerance of the design by removing the single points of failure. There are always

chances for a centrally organized system to fail if the central organizer module fails. Self

organization also dissolves the necessity of complex central algorithms for which expensive

resources are usually required. Avoiding complex algorithms results in easier testing and

maintenance which contribute to the efficiency of the design.

In this thesis we study the performance of self organizing, locally connected modules to

emerging global behaviors or architectures for two different types of problems. In the first

problem we generate patterns that demonstrate certain given functionalities while there is

no restriction on the architecture. In the second problem we generate much larger patterns

- for which the precise architecture is given - from simple initial patterns. Both problems

use two dimensional grids of homogeneous modules with limited local connections. To

demonstrate the problem and the solution intuitively we use two common applications,

each of which used for one of the above-mentioned problems. The first problem deals with

finding feed-forward gate-level digital circuits to implement given binary functions, and the

second deals with finding descriptions of given gray-scale 8-bit images so that they can be

re-generated on a grid of self organizing locally connected modules. Although they target

different applications, both problems are cases of a bigger problem, i.e. developmental

formation of patterns. Although we only study two dimensional patterns, the methods are

easily extendable to patterns of higher dimensions. Each problem is defined in details in its

2

own chapter.

1.1.1 Forming Patterns of Known Functionality

There are certain pattern formation problems when the concern is the global emerged

behavior of the pattern. In other words, there is no restriction on the architecture of the

pattern as long as the specific functionality has emerged. An example is digital circuits

where only the interface is defined as the mapping between the input and output, and the

internal architecture of the circuit is to be found.

In the first section, we present a new method to find developmental descriptions for

gate-level feed forward combinatorial circuits. In contrast to the traditional description of

FPGA circuits in which an external bit stream explicitly describes the circuit (including

the internal architecture and the connections), developmental descriptions form the circuit

by synchronously running an identical developmental program in each building block of the

circuit. Unlike some previous works, the connections are all local here. Evolution is used to

find the developmental code for the given problem. We use an innovative fitness function to

increase the performance of evolution in search for the solutions. We also relax the position

and order of the inputs and output(s) of the circuit to increase the density of the solutions

in the search space. The results show that the chance of finding a solution can be increased

up to 375% compared to the use of traditional fitness function. We show that this method

is capable of describing basic circuits and is easily scalable for modular circuits.

1.1.2 Forming Large Patterns of Known Architecture

The other problem in pattern formation is the case where the precise architecture is given

and the task is to find the simple local rules that starting from a simple configuration (i.e.

a configuration with small amount of information) that once executed on the basic modules

of the pattern, the complex configuration can be formed. The found local rules along with

the simple configuration can be stored to generate the complex configuration. The reasons

for being interested in such descriptions - instead of storing the final detailed configuration

- is often to benefit from the products of developmental descriptions, mainly scalability and

fault tolerance.

3

In the second chapter we present methods to find local rules that form gray scale, 256-

level images from only the most significant bit of each pixel in the image. Cellular Automata

is used as the framework to achieve this goal.

Despite its well suited properties for generating patterns, Cellular Automata has been

mainly studied for its dynamic behavior and has been usually applied to solve dynamic prob-

lems. There are few known algorithms to solve the inverse problem of Cellular Automata;

i.e. given a final configuration, what rules take the Cellular Automata from certain initial

configuration to that final configuration. Chapter 3 offers improvements on the existing

methods and also proposes several new methods for this task. The comparison of the re-

sults show that the methods represented in this thesis can outperform the existing methods

in terms of taking both shorter time and less memory to find and store the solution.

1.2 Background

1.2.1 Evolvable Hardware Design and Developmental Description of Digital Circuits

Computer Automated Design has been successful for simple and novel artifacts but it usually

faces difficulties when it comes to more complex designs. Scalability of the design can

be a solution to the complex designs problem[58]. Hornby [31] states that by employing

regularity, modularity and hierarchy in the design we can empower evolution to find larger

and more complex designs in the search space using the same computing power. Also

Bentley [5] states that generative encoding (or embryogeny design, as he uses in his book)

can reduce the search space in the evolutionary search because of its compact genome.

Above that, it is also claimed to be capable of finding more complex designs in the solution

space. On the other hand, he ensures that such developmental solutions are difficult to

design and evolve, and will suffer from issues such as bloat, pleiotropy and disruption of

child solutions if not designed very carefully.

Evolvable Hardware Design (EHW) uses Evolutionary Algorithms (EAs) to find an

optimum design of digital circuits in terms of surface, speed and fault tolerance. They

can also use the physical characteristics of the underlying chip to improve its performance

[60] [61] [63]. Miller [44] [41] [42] showed that EHW is also capable of finding innovative

4

designs which outperform the traditional human design in terms of used resources. While

EHW can address issues like efficient surface usage, fault tolerance and innovation, they

suffer from an instinctively drawback of Evolutionary Algorithms: the solution is usually

not scalable. This means that having the solution to the problem of the smaller size usually

does not help to find the solution to the problem of the bigger size any faster. Instead,

the runtime of the EA usually exponentially grows by the linear increase of the problem

size. A solution to overcome the scalability issue in EAs is to break the direct mapping

between the genotype and the phenotype. If the genotype has a one-to-one mapping to the

phenotype, searching for more complex individuals will be equal to searching a larger and

probably higher dimensional space. This eventually will make the EAs to fail finding the

solutions to the large problems unless there exists a very efficient encoding. Developmental

Programs that grow into a final circuit do not have this problem. The size of the circuit

is not bounded by the size of the developmental program (DP), and it is possible to have

one DP growing into fully functional circuits of vastly different sizes. In approaches like

CGP [43] [40], although the solution is a developmental code which defines the connections

between the cells but still needs an external module to do the routing between cells on a

physical configurable circuit.

Gordon and Bentley in [7] define the external, explicit and implicit embryogenies. The

growth process is fixed and external to the genome in the first type, and only the parameters

are optimized. In the explicit embryogeny, the growth rules are optimized in the same way a

program is evolved in genetic programming. The last one includes a highly interactive chain

of rules which are running in parallel and affect each other to develop the phenotype. The

implicit embryogeny is closest to the biological process of development and is claimed to be

the most successful type of embryogeny in scalable designs. The same authors introduce

two implicit embryogeny models to find 2-bit adders in 2 by 5 CLB FPGAs [22]. Neither

can find a perfect solution but the close-to-optimum solutions exhibit good scalability and

cell differentiation. They conclude that developmental evolution in that experiment is

outperformed by naive genome representation. To understand the reason of failure in that

experiment, they hand designed a functional 2-bit adder in a circuit composed of 2 by 5

cells [21], and found its parameters (which were named proteins there). By studying the

5

results, they noticed that the lack of cellular communication and low resolution has been

preventing them to find the optimum solution. The lack of communication existed because

each cell detected the proteins only if it is created by the majority of the surrounding cells,

and did not detect proteins created by specific neighbor cell. Also it had only two levels for

amount of each protein: either on or off.

Evolution however failed to find an answer to their problem even after the above issues

was fixed. They had to try different circuit size as well as different evolutionary parameters

to make it work. This shows that despite all the advantages, the design even for a 2-bit adder

is a non-trivial task. Gordon states that because of the cells protein sensing mechanism and

the D4 symmetry of the circuit structure, the design has a strong bias to be D4 symmetrical

[23]. He lists the symmetrical circuits, the not large and highly irregular circuits and the

circuits which do not use absolute but relative positional information as the ideal candidates

for this approach. Another advantage of this method other than finding the pattern is that

it maintains the found pattern, i.e. the design can return to its original configuration after

small perturbation in the design.

Stanley et. al. [59] show that they can achieve reuse of the modules by copying or

updating genome parts, but this type of reuse leaded to inflexible structures. Their approach

was different from the nature’s approach toward reuse. Nature evolves repeating elements

simultaneously based on its bilateral rules and not by discovering parts separately and then

combining them together. It was concluded that their conventions and encoding has not

been the best choice for their designs. The encoding can be of extreme importance when

looking for a scalable design, because the characteristics of evolved design are limited and

biased by the representation [32]. Hornby then focuses on the representation for evolutionary

algorithm and look for the possible properties for design representation. By comparing

Angelines classification [4] (translative, generative and adaptive) of the representation with

of Bently and Kumars [7] he suggests 3 properties for the evolutionary design to address the

scalability: Hierarchy, Modularity and Regularity. Hierarchy is done by combination, and

creating more powerful expressions from simpler ones. Modularity is done by abstraction, for

example using labeled procedures and functions instead of using only low level instructions.

Although scaling up a developmental design is expected to help us solving more complex

6

problems, we need to know what parameters are scalable. Tufte [64] lists 3 domains of

developmental design which can be scaled:

• Phenotypic resources: number of cells available for development to exploit

• Developmental resources: number of possible cell types (functions of a cell), number

of developmental steps, etc.

• Computational resources: number of neighbors or cell states, number of clock pulses

to flip flops in a cell, etc.

He also provides some results to show that scaling the above resources can impact

the scale of the design to solve bigger and more complex problems. While he shows that

regularity in the design can lead the search to find more complex problems, Hartmann et. al.

[26] shows the other way around. They claim that regularity in a functional digital circuit is

more than random circuits. Their scale for regularity is the compressibility of the description

of the circuit, and they claim that the compressibility is higher in the bit string describing a

functional digital circuit than a random bit string. This argument however seems to be very

dependant on the representation of the circuit, and does not sound very convincing. There

have been researches other that scalability of evolvable hardware studying the robustness

of the design. Sipper et. al. [52] show the ability of replication and re-generation of the

systems (usually automata in their work) in ontogenetic design. This ability leads to self-

repair and also creation of identical organism by duplicating the genome of the zygote to

another cell. As examples of ontogenetic systems, he lists the following researches:

• Von Neumanns self replicating automata has universal computing power, universal

construction power (i.e. it can construct any automaton) but it is so complex that it

did not have any physical implementation until 2000. [9]

• Langtons self replicating automata is much simpler but it has only self-replicating

power, with no computational power.

• Tempestis self replicating automata has finite or universal computational power.

7

• Manges embryonics is a Cellular Automata, capable of universal computation and

simple enough for physical implementation.

In Chapter 2 we present a method to implement any combinatorial digital circuit in gate

level on a grid of configurable hardware elements. The main contribution of this work is that

the resulting circuit includes sufficient information to build the functional circuit, including

the gate arrangement and the routings. Keeping in mind that a considerable amount of

resources on the configurable hardware (e.g. FPGAs) and the circuit compilation time is

dedicated to the routing and connections, this property of our method tends to be attractive

for practical problems. Also we try to improve the traditional fitness function used in EHW

(for example the fitness function used in [42] and [[27] or the basic component of the fitness

function in [15]) to move toward the optimum solution more efficiently.

1.2.2 Pattern Formation in Cellular Automata

Cellular Automata (CA) is a grid of cells with local connections and limited number of valid

states. The state of the cells are updated synchronously and in discrete time steps. The

state of each cell at each time step is determined according to the state of its surrounding

cells at the previous time step. It was first introduced by the computer scientist Janson Von

Neumann, and the mathematician Stanislaw Ulam in 1940s. It was originally of interest of

those researchers because of its simple model and its self replication feature when placed

in a suitable environment. The problem Von Neumann was trying to solve was finding the

logical organization sufficient for an automaton to make a copy of itself [65].

CA is known for its potentials to perform relatively complicated global tasks using simple

local rules. The tasks passed to the CA usually involve encoding the input in a form of

initial CA configuration (i.e. the combination of the states of all the cells) and letting the

CA to run either for a certain number of steps or until it reaches a stable state, where

there is no further changes in the states of the cells. At this point the configuration of the

CA is decoded and is interpreted as the answer of the CA to the given input. The main

challenge will be designing or finding the rules that given the initial configuration of the

CA can generate the final configuration.

8

Figure 1.1: 2-D Von Neumann neighborhoods of radius r = 0 (left),
r = 1 (middle) and r = 2 (right)

Figure 1.2: 2-D Moore neighborhoods of radius r = 0 (left), r = 1
(middle) and r = 2 (right)

CAs mentioned in the literature often own a one or two dimensional structure where

each cell has a binary state. In more general cases, the cells can posses a state from

a larger reference set. It is also possible to have an n-dimensional CA as explained in

[69]. The neighborhood of a cell can be either Von Neumann neighborhood with radius r

(Figure 1.1), Moore neighborhood with radius r (Figure 1.2) or a free form neighborhood

(Figure 1.3) [70]. The cell whose neighborhood is demonstrated is colored in black, and the

neighborhood is colored in gray.

One can divide the CAs into two types from an applicational perspective: problem solver

CAs [24] and pattern generator CAs. Table 1.1 lists the main differences between the two

types.

Figure 1.3: An example of a free-form 2-D neighborhood

9

Table 1.1: Comparison of the problem solver and pattern generator
CAs

CA type Problem Solver Pattern Generator

Number or valid initial states Many One
Number of acceptable final configurations Many One
Input and Output format Encoded Raw
Final Configuration Unknown Known
Basis of validation Outputs Configuration

The problem solver CAs are used to solve a wide range of problems where every and each

of the valid inputs should map to a correct output after finite number of steps. Both inputs

and outputs can have a many-to-one mapping to the CA configuration. In other words,

a specific input can be encoded with more than one CA configuration and the CA should

produce a valid correct output disregarding which of the many possible configurations the

input has been encoded to. Similar for the output, more than one CA configuration can be

decoded to the same output. We call this set the Computational Problems.

It has been shown that some versions of CA have the universal computational properties

equivalent to the Touring Machine. One of the most famous examples of the computational

powers of CA is Conway Game of Life [8], were each cell in a 2D CA is either in the on or

off state. Complicated entities and interactions between them can emerge from a constant

set of simple local rules and appropriate initial configuration, eventually forming concepts

such as message transmission or performing logical and mathematical functions.

Another type of the computational problems to be solved by CA are the synchronization

problems such as the famous Firing Squad problem [45]. This problem is defined as follows:

At time step 0, all cells are in the quiescent state. At some time step t = ti, the

general (responding to an external input) goes into a special state, interpreted

as a command to fire. Then at some later time step t = tf , all of the soldier cells

must go into the firing state, and none of them can have been in the firing state

at any previous time step. The problem is to devise states and state transitions

for the soldiers that will accomplish this behavior. [24].

In the original CA used for this problem, they needed 15 different states for the cells

but there has been a comprehensive research on finding the optimum or close-to-optimum

10

number of states and time steps needed to synchronize the firing squad [38] [39].

Another example of the computational problems is the parallel formal-language recogni-

tion, in which a finite string of characters should be decided if belongs to a formal language

or not [54], where it is proved that the class of languages that can be accepted by Binary

CAs is the class of context-sensitive languages. Cellular Automata has also been used for

image processing. Rosin in [48] finds rules of the Cellular Automata that can perform tasks

such as noise removal, thinning and convex hulls. Another example is to perform logic or

mathematical functions on binary inputs, where the combination of two or more input is

encoded into an initial state and the CA will produce the configuration that decodes to the

correct answer [16].

On the other side there are the pattern generator CAs, those who do not accept encoded

inputs and are not expected to provide encoded outputs. A CA of this type is designed

to start from a certain initial configuration and is expected to emerge to a pre-designed

configuration (i.e. pattern). The final pattern can be either a steady configuration that

emerges after a finite number of time steps, or a transient configuration at a certain time.

Unlike the research on computational aspects of CA - which goes back to 1940s - the

research on using CA and its variants for pattern formation did not start before 1990s.

Kauffman [34] had one of the first studies on applying evolution to find self-organizing

patterns in CA, and the idea was followed by emerging studies such as modeling the self-

assembly processes of electro-statics [56], testing and growing digital circuits [13], growing

patterns [47] and modeling the developmental process [35] [6]. Ozturkery [46] suggests a

method to form stable patterns (either random or regular) on a 2D CA. The unique feature

is his method is that each cell updates itself and all of its 8 adjacent neighbors, and cells get

updated not simultaneously but sequentially one after the other. Also Yang and Billings

[72] use genetic algorithm to find both 1D and 2D CAs. Although they find both rules and

the neighborhood, the rules are very simple and the neighborhoods contain the adjacent

cells only. As we will see in Chapter 3, we try to solve that problem for any set of rules

and any neighborhood. Also unlike their methods, the patterns used in this work are not

a result of running a certain rule on an initial pattern. Instead, we try to suggest methods

that work for any arbitrary pattern.

11

The size of the CA in the works we have seen so far has been very limited, usually much

less than 100 cells. Despite the strong computational abilities of CA, it has been observed

that controlling their behavior and making them to emerge specific patterns are extremely

hard. This is believed to be due to the extreme sensitivity of CA to small changes in the

initial condition or the rule set. The second problem to be studied in this thesis is generating

large patterns on CA, where the CA contains at least 500 cells.

1.3 Problem Statement

In the first part of this thesis we deal with the patterns that accept inputs and provide

outputs to such inputs. We present a method to find the developmental description that

generates a pattern, which maps the given inputs to appropriate outputs. We chose digital

gate-level feed forward combinatorial circuits as our application for this. More specifically,

we solve the problem of finding a combinatorial gate-level digital circuit with m inputs

and n outputs and the given mapping between the inputs and the outputs. The task of

our method is to find the developmental program that once executed on a specific sized

circuit for a known number of time steps, a circuit with the given functionality emerges

from a simple, well-defined initial state. The developmental program, size of the circuit,

the number of time steps and the simple initial state are to be found by our method.

There is no input or output defined for the patterns that we deal with in the second

part of the thesis. There we study the formation of patterns from simple initial configura-

tions, where only the form of the pattern is important. The form of the pattern is already

known in this part and we solve the problem of finding the developmental description that

generates the given complex pattern from a simple initial pattern. This way one can store

the simple initial configuration and the developmental description to generate the more

complex pattern.

We evaluate the success of our methods in several measures and comparing them with

existing methods. Among those measures we can name evolvability (the success of evo-

lutionary algorithms in finding the solution), memory efficiency (the amount of memory

required to store the developmental descriptions), algorithm complexity (time required to

12

find the solutions) and scalability (the ratio of the growth rate of the problem size to the

growth rate of the solution size). Our objective is to improve these measures in our methods

comparing to of existing methods.

1.4 Thesis Contribution

We provide a method to emerge the patterns that demonstrate the given functionality in

Chapter 2. The most important contribution of this chapter is the innovative fitness function

explained in Section 2.2.3. That fitness function increases the density of the solutions in

the search space and more importantly smooths the space of solutions. In our experiments,

this resulted in 375% increase in the chance of evolution to find a solution for the given

problem.

In Section 3.2.1.2 we improve the efficiency of the existing methods for solving the

inverse problem of Cellular Automata. We reduce the amount of memory required to store

the transition function by 8.36% on average for all CAs, and by 12.65% for memoryless

CAs in our experiments. These results are provided in Section 3.3.3.11. We suggest two

band new methods to solve the inverse problem by adding hidden states to the Cellular

Automata in Sections 3.2.2 and 3.2.3. This reduces both time and memory requirement of

the transition function. The first method reduces the memory requirements for storing the

transition function by 3.31% on average for all the CAs and by 39.5% on average for the

memoryless CAs (Section 3.3.5.1). The calculation time is decreased to only 4.84% of the

shortest version of the existing method. In Section 3.3.8 we will see that the best variation

of our second suggested method requires slightly larger memory to store its discovered

transition function comparing to our first suggested methods (0.38% larger on average) and

takes slightly longer time, but as we will explain, it is more scalable than both existing

methods and our first suggested method.

The scalability of each methods is measured and analyzed in Section 3.3.9. We will

show that our suggested methods are more scalable than the current results, at least for

our test data. We will see that while the rate of growth of the memory required to store the

transition function is faster then the rate of the growth of input in the existing method, the

13

results of our first suggested grow almost as fast as the input size, and our second method

grows even slower than the input size.

1.5 Thesis Organization

We target the problem of Forming Patterns of Known Functionality in Chapter 2. We

introduce the framework and define the problem to be solved in Section 2.1 and present our

method to solve it in Section 2.2. The results and their analysis are provided in 2.3.

Chapter 3 forms the major part of this thesis. We review the cellulat automata in

Section 3.1.1 and its applications in Section 3.1.3. We review the current existing methods

to solve the inverse problem of Cellular Automata and suggest our improvements in Section

3.2.1. We present our first new method to solve the problem in Section 3.2.2 and our second

new method in Section 3.2.3. Sections 3.2.3.2 to 3.2.3.6 explain the variation of our second

method along with the analysis of each variation. We evaluate and analyze the results of

our improvements to the existing method, and both our new methods in Section 3.3, with a

note on scalability of our methods in Section 3.3.9. The summary of this thesis is presented

in Chapter 4.

14

Chapter 2

Using Developmental Encoding to Emerge

Given Functionalities

In this chapter we propose a method to generate patterns on grids of homogeneous cells with

defined local connection, while the architecture of the solution is not known in advance. As

we mentioned in Chapter 1, the majority of existing methods solve the problem from the

perspective of a global designer, a unit who has full access and complete control over each

cell in the grid. In contrast, we use self organizing cells and find developmental programs

that emerge the given global functionality once they are ran synchronously on all the cells

for a certain number of time steps.

A functionality is defined as the ability to generate outputs from the given inputs ac-

cording to explicit logic functions. The unique characteristic of this method is the freedom

of the algorithm to choose the the location of the inputs and the outputs on the pattern.

This gives the algorithm a higher chance to succeed than the methods who fix the location

of the inputs and outputs. We will show that as expected for a developmental formation,

this method exhibits both scalability and fault tolerance, two important properties of robust

design.

To give our method a realistic touch, we define our application in the field of digital

design. On a network of locally connected cells each of which can be configured to be one of

the many possible simple 2-variable binary functions, our goal is to find the developmental

15

program that is ran in all the cells simultaneously to let the cell chose its inputs and function.

The combination of the inputs and functions of the cells enables the global circuit to perform

the given multi-input multi-output binary function. The location to read the global inputs

and the location to write the global output as well as the number of time steps to run the

program is determined by the same algorithm.

We define the problem in details and explain the structure of our framework in Section

2.1 and present the algorithm to find the solution in Section 2.2. Section 2.3 provides results

for test problems and Section 2.4 provides the conclusion and prepares us to switch to the

other case of generating patterns, fully explained in Chapter 3.

2.1 Problem Definition

The problem to be solved in this chapter is to design a framework to find developmental

programs that develop feed-forward gate-level digital circuits that implement given binary

functions. Such programs start development from a simple homogeneous configuration of a

certain size. The main challenge will be finding such developmental program that develops a

non-previously-known architecture which exhibits the given functionality. The inputs to the

problem are therefore the number of inputs, number of outputs and the mapping between

them (e.g. in form of a truth table). The output of our method will be a developmental

program, and the certain number of steps to let that developmental program run on an

initially clear configuration.

2.1.1 The Framework

A circuit in our method is a two dimensional array of configurable cells. The inputs to the

circuit are provided through the left-most cells and the outputs are read from the rightmost

cells. This means that the direction of the signals is from left to right in a high level

abstract view (Figure 2.1). To implement this, each cell ci,j (a cell in row i and column j

of the circuit) can only accept inputs from either ci−1,j−1, ci,j−1 or ci+1,j−1 (Figure 2.2).

Such limitation on the connections lets the circuit form without the need of any external

processing module for the routings, as in Cartesian Genetic Programming (CGP) [43]. In

16

Figure 2.1: The grid of cells in a circuit

Figure 2.2: Potential inputs to a cell

CGP the cells form a one dimensional array and each cell cm can be connected to any cell

cn as long as n < m. While that condition lets equivalent circuits to ours to be formed, it

needs to have a routing mechanism for the circuit to physically connect the cell inputs to the

other cell outputs. The circuit resulting from our method do not have such a demand. This

means that once each cell sets its own function and input connection to the adjacent cells,

the routing is already done and there will be no need for any external routing mechanism.

Each cell in the circuit has an identical developmental program in form of set of rules, and

also 5 properties, each taking an integer for their value. Figure 2.4 represents an abstract

view of the cell. Being inspired by the CPU architecture and its OpCodes, GPR stands for

General Purpose Register. This name was chosen because this property is available to be

17

Figure 2.3: Naming conventions of the neighbors

Figure 2.4: Abstract of the architecture of a cell in the grid

18

modified and used in any way the developmental program wants. The cells at the borders

of the circuit are named border cells and all their properties are permanently set to −1.

For all other cells, the initial values of all properties are 0. Table 2.1 lists the cell properties

and their possible assigned values for non-border cells and table 2.2 lists the equivalent cell

function for each value of the function property.

2.1.2 Developmental Program

The developmental program is stored in form of set of rules in what we call the a genome

in this method. The circuit size is fixed to a certain size at the beginning, and there is

no growth in terms of increasing the number of cells in the circuit. The genome is sim-

ply a variable number of ordered IF-THEN rules (Figure 2.5). The IF part can put any

condition on any property of any neighborhood cell. Based on the values of that property,

the rule can set or update any property of itself. The rule shown in Figure 2.5 is read follows:

IF the property p of the neighbor n has the relation r to the value a

THEN according to s, assign either the value a, b, b+1 or b-1 to the property

p′ of the cell.

In which p and p′ can be any property of a cell (e.g. function, first input, etc), n is

the index of the neighbor (0 to 7, for any of the 8 adjacent cells in Figure 2.3), r is one

of the possible relation from Table 2.3 and a and b are the possible values for p and p′,

respectively. The list of possible actions on the parameter b is listed in Table 2.4. Only the

parameters n, p, r, a, s, b, p′ are stored in the genome. For example, the third rule in Table

2.5 (1 0 1 − 1 3 0 0) reads as follows:

If the function of the neighbor 1 is equal to −1,

then set the GPR1 property of the cell to 0.

There are 4 pre-written rules in the genome which affect theGPR1 andGPR2 properties

of the cell. These rules are manually designed and added to the genome (Table 2.5). These

rules aim to simulate the protein gradient along the embryo of multicellular organisms at

19

Figure 2.5: Structure of a single rule in the cell’s rule base

Table 2.1: The cell properties and the range of valid Integer values
of each

Parameter Function Input 1 Input 2 GPR 1 GPR 2

Range of Values [0, 7] [0, 2] [0, 2] Z Z

Table 2.2: Cell’s output according to its function, Input 1 (I1) and
Input 2 (I2) properties

Function Value 0 1 2 3 4 5 6 7

Cell’s output 0 I1 ¬I1 I1 ∧ I2 I1 ∨ I2 I1 ⊕ I2 ¬(I1 ⊕ I2) ¬(I1 ∧ I2)

Table 2.3: Possible values of r in a rule and their corresponding
relations

Value of r in the rule 0 1 2 3

Interpreted relation = �= < >

Table 2.4: Possible values of s in a rule and their corresponding
actions

Value of s in the rule 0, 1, 2 3 4 5

Interpreted action Assign b Assign a Assign a+ 1 Assign a− 1

20

Table 2.5: The 4 pre-defined rules in the genome

Rule Index Rule

0 1 3 3 -2 3 4 0

1 3 4 3 -2 4 4 0

2 1 0 1 -1 3 0 0

3 3 0 1 -1 4 0 0

the axis specification step [20]. The rest of the rules in the genome are generated randomly

using an even distribution random generator, and are tuned during the course of evolution.

The number of rules in a genome is limited to 25 plus the 4 pre-written rules, a total of 29

rules. We need to remind that similar to any rule in the genome, the pre-designed rules are

prone to evolution as well. It is up to evolution to keep them or modify them in any manner

that contributes to the fitness of the individual. During the development of the circuit, cells

update their structure synchronously. A developmental step is composed of updating all the

columns of the circuit, starting from the leftmost column and moving to the next column at

the right until reaching the rightmost column. Updating each column is done by updating

the topmost cell in the column and then move to the next cell at the bottom, until reaching

the lowest cell in the column. A solution is a genome (i.e. rule base) which leads the desired

behavior to emerge in the circuit after going through a certain number of developmental

steps. The number of developmental steps needed for this is determined by the evolution,

as is the genome itself.

2.2 Methodology

2.2.1 User Interface and Problem Statement

We use evolution to find the solution to the given circuit design problem. As explained in

Section 2.1, the solution is a developmental program of the format mentioned in Section

2.1.2, necessary number of steps for the circuit development, and the size of the circuit.

Note that the developmental program itself does not provide or care about the size of the

circuit. Any developmental program can be run on any circuit of any size. It is evolution’s

job to find the appropriate circuit size for the developmental program.

To define a specific problem user has to state the number of inputs, number of outputs,

21

and the mapping between the input patterns and the output(s). The latter one is done by

telling the program the set of minterms created on each output pin. No information about

the circuit’s possible internal architecture is provided from the user. For example, Equation

2.1 defines a full adder.

Numberofinputs : 3

Numberofoutputs : 2

output[0] = 3, 5, 6, 7(carry)

output[1] = 1, 2, 4, 7(sum)

(2.1)

Evolution also gives the exact position of each input and output signal on the circuit.

Unlike previous works in which user had to fix the position and the order of input and output

signals, evolution is free to find the optimum placement of the I/O signals on the circuit.

It is easy to realize that relaxing the I/O interface in this manner increases the density

of the solutions in the search space. The easiest support of this is that the horizontal flip

of a solution circuit is now a solution circuit itself, something which will not be the case

if the inputs are fixed. The inputs are always provided on the left border (ci,0) and the

outputs are read from the right border of the circuit (ci,N−1, where N is the number of

columns in the grid). Figure 2.7 shows a sample full adder found by the program for the

above description. It is important to remember that the program does not directly find the

circuit in that figure, but a generative code which makes the circuit after going through the

developmental process.

2.2.2 Evolutionary Algorithm

Evolution starts by creating a fixed sized population of random individuals. The population

size was 500 in most of our experiments. As explained in [25], for evolution of cooperative

rule base systems for static problems in which all the training instances are available, the

Pittsburgh approach [55] with the individual having the whole rule-base works better than

the Michigan approach [30] in which each individual is only one rule and the whole popu-

22

lation together form the rule-base system. Each individual then is a complete circuit here,

including the developmental program, the number of developmental steps for that program

and the size of the circuit. To create a random individual first we create a random sized

circuit with the restrictions of Equation 2.2.

Numberofinputs+ 2 ≤Numberofrows ≤ 2×Numberofinputs+ 2

3 ≤Numberofcolumns ≤ 2×Numberofinputs+ 3

(2.2)

This is because the minimum number of rows needed to provide the inputs is equal to

the number of inputs and we also need two rows for border cells. The minimum number of

columns is one column for the functional cells plus two columns for the border cells. The

higher limit for the number of rows and columns is limited in regard to available processing

power. The number of rows and columns in the initial population are evenly distributed

between the two limits. After setting the size of a circuit, a random genome is created

and assigned to the circuit. The random genome is composed of a random number of rules

(limited to 29), with the first 4 pre-designed rules listed in the Table 2.5. The rest of the

rules are filled with evenly distributed random parameters.

The fitness function is one of the main contributions of this work and is described in

details in Section 2.2.3. We use fixed population size with 2% elitism. Parent selection is a

tournament selection of size 3, and each parent goes through either mutation or cross-over

with another parent to create the new individuals.

The main reason that tournament parent selection is used is to maintain the diversity of

the population. Diversity can be measured in both genome and phenome level. When fitness

proportional parent selection used, both genomic and phenomic diversities drop quickly.

Figure 2.6 shows both diversities during one run of the evolutionary algorithm for the full

adder. It is observed that the genomic diversity maintains its value much higher than the

phenomic diversity. The reason is believed to be that redundant rules in the genome which

never get activated. If two genomes have the same effective rules and different redundant

rules, they will be translated to the same phenome while the genomes differ. The redundant

23

Figure 2.6: The genomic and phenomic diversity in one run of evo-
lutionary algorithm

rules can be removed once the solution is found. That will make the implementation of the

physical circuit cheaper and more efficient.

The ratio of mutation to cross-over is 1 in this experiment. There are 4 types of mutation

which either add, delete or swap rules, or change the parameters of a rule in the genome.

The different mutation types have equal chance to happen, and so is the chance of each

parameter to be changed in the parameter level mutation. Cross-over can be either single

point or shuffle and is always in rule level. Each individual on average creates two children

and adds them to the intermediate pool, which is then sorted and the rest 98% of the next

generation population are selected trough the fitness proportional selection. It is important

to remember that the fitness of a circuit is only a measure of the behavior of the circuit

(i.e. its response to the provided inputs) and reflects neither the circuit size nor the genome

size. The effect of the circuit and genome size is in the tournament parent selection. If the

two randomly selected individuals have the same fitness in the parent selection step, the

one with smaller circuit size is selected. If this does not break the tie, the one with smaller

genome size is selected. Because the smallest possible size of the circuit or the genome are

not known to the user, finding an individual with fitness equal to 1 is not enough to stop

evolution. The evolution stops if a smaller solution with fitness equal to 1 is not found after

a certain number of generations, or after 20000 iterations.

24

2.2.3 Fitness Function and Sensitivity Analysis

The fitness function is a critical and arguably the most important part of any evolutionary

algorithm. It is the fitness function which forms the search space to be smooth or sharp,

conducts the search in a more evolvable search space [73] and eventually guides evolution

to the optimum solution. A good fitness function not only maximizes at the target solution

point but also increases gradually as we get close to the solution. This however is not always

a trivial task to pick up a suitable fitness function. The distance of two solutions is not

always very clear, keeping in mind that we usually have no information of the structure

of the optimum solution. We usually can rate the fitness based on the performance of

individuals and not their structure. This makes our job a bit difficult in problems of digital

circuit design.

Unlike the most of biological organisms in which a slight change in their DNA usually

leads to a non-fatal and slight change in their functionality, a slight change in the develop-

mental or non-developmental description of a digital circuit very often drastically change

the behavior of the circuit. The reason for this is the crisp nature of the digital circuits in

which changing one single gate might inverse the whole final outputs. An example of this

is when an AND gate from which the final output is produced is replaced with a NAND

gate. In the fitness function often used in EHW with a fitness scale between 0.0 to 1.0, such

change will instantly drop the fitness from 1.0 to 0.0.

The fitness function often used in EHW is the number of correct outputs for all possible

combinations of inputs [41] [27]. This method suffers from the issue mentioned above, i.e. a

small change in the architecture of the circuit might drastically drop the fitness even if the

architecture is very close to the correct architecture. This will form the search space to be

extremely crisp with sharp changes, in which evolution needs to be very lucky to not miss

the optimum solution. To help this, we have changed the fitness function to not only reflect

the number of correct outputs to the combination of inputs, but also the sensitivity of the

outputs to the change of each input. The effect of the latter part is most obvious in the given

AND NAND example. While the AND and NAND gates have complementary outputs,

their sensitivity to their corresponding inputs are the same. To explain this, consider a

25

combination of the inputs in which the first input is 0 and the second is 1. The change of

the first input from 0 to 1 will change the output in both gates (i.e. the gates are sensitive

to the first input in this input combination). The change of the second input from 1 to 0

will not change the output in either of the gates, so they have the same sensitivity on both

inputs. This holds true for all other combinations of inputs. Thus if the final output gate

is changed from AND to NAND gate, our fitness function still rewards the individual. The

traditional fitness function used so far does not consider this similarity and only takes the

net outputs into the account. Note that our method only examines the sensitivity of the

circuit to the primary inputs and not any intermediate signal.

Our experiments show that adding the sensitivity analysis to the circuits improves the

efficiency of the search in term of decreasing the iterations needed to find the optimum

solution. To support this, we tried 50 runs of the evolutionary algorithm with population

set to 500 and for a maximum of 20000 generations to find a full adder. Using the traditional

fitness function, evolution could find a solution in only 4 runs. Applying our described fitness

function, this number was increased to 15. Improving the chance of finding a solution by

375 percent clearly shows the advantage of this new fitness function over the traditional

for EHW. The other property of our method is that it sets development free to locate the

inputs and outputs at any desired row. This is in contrast to other works that fix the

position of the inputs and outputs and force the development to read the input from and

make the input to those fixed positions. The fitness function here examines any possible

combination of input and output positions and accepts the best combination as the input

/ output positions. The density of the solutions is thus increased in the search space.

2.3 Experiments and Results

We tried to find the developmental code for 3 different circuits including full adder, 2-bit

multiplexer and 4-bit parity generator. Evolution was able to find the solution for all these

circuits. Tables 2.6 to 2.8 present the found genomes, and Figures 2.7 to 2.9 illustrate the

found solutions. The number of developmental steps for all shown circuits is 2.

Figure 2.10 illustrates the fitness of the fittest individual and also the average fitness in

26

Table 2.6: The genome to develop a binary full adder after 2 time
steps on a 5× 5 grid

Rule Index Rule

0 6 1 3 0 0 2 4

1 4 0 2 3 0 4 7

2 5 2 0 1 1 3 0

3 3 4 3-2 4 4 0

4 3 4 1 0 1 5 1

5 4 1 1 1 0 1 5

6 0 0 2 5 1 0 1

7 0 4 2 1 2 3 1

Table 2.7: The genome to develop a 2-bit multiplexer after 2 time
steps on a 5× 5 grid

Rule Index Rule

0 7 2 0 1 0 2 7

1 0 0 1 7 0 0 1

2 5 0 2 0 0 2 5

3 1 2 0 2 1 0 1

Table 2.8: The genome to develop a 4 bit parity generator after 2
time steps on a 6× 4 grid

Rule Index Rule

0 5 3 2 0 2 2 1

1 5 1 0 0 1 1 2

2 0 0 0 1 0 1 5

3 0 2 3 2 4 4 0

27

Figure 2.7: The full adder developed by the genome of Table 2.6.

Figure 2.8: The 2-bit multiplexer developed by the genome of Table
2.7.

the population for the run evolutionary algorithm whose result was depicted in Table 2.6.

We can observe from that figure that the average fitness in the population quickly follows

the highest fitness in the population. This means that in each population there are lots of

equally fit individuals. The two or three randomly selected parents therefore have a high

chance to have the same fitness, leading the individual size to play an important role in

parent selection. The experiments showed that considering the individual size in survival

selection highly favors the small individuals and the EA eventually fails to find the desired

circuit.

The scalability of the found solution for larger problem sizes was also studied. For

this, first we ran the evolution 20 times to find 30 3-bit parity generators in a separate

28

Figure 2.9: The 4-bit parity generator developed by the genome of
Table 2.8.

experiment. Then we included those solutions in the initial population of the 4-bit parity

generator problem, and ran the evolution 20 times to find 20 4-bit parity generators. We

repeated the experiment 20 more times from the scratch, i.e. without including the solutions

of the smaller sized problem in the initial population and measured the average of the best

fitness in each generation. The results show that the performance of the evolution was

incredibly increased when it included the solution to the smaller sized problem.

AdjustedF itness = k × fitness+
CSMAX − CS

CSMAX − CSmin
+

GSMAX −GS

GSMAX −GSmin
(2.3)

To compare the results of the two case studies we defined a new measure that includes

all three parameters of circuit fitness, circuit size and genome size. The formula to adjust

the fitness is shown in Equation 2.3, In Which k is a coefficient to enable the minimum

increments of fitness to overcome the negative effect of resulting growth of the circuit and

the genome size, and according to the fitness function explained in Section 2.2.3, as well

as the implementation details is 128/3. CS and GS are the Circuit Size and Genome

29

Figure 2.10: The highest and average fitness in the population for
the evolution of the circuit in Figure 2.7.

Size of the current individual. CSMAX and CSmin are the maximum and minimum of the

Circuit Size, equal to 110 and 18 respectively (Equation 2.2) for a 4-bit parity generator.

GSMAX and GSmin are the maximum and minimum Genome Size, equal to 29 and 4

respectively (Section 2.1.2). Figure 2.11 shows the normalized performance of evolution

when it already has the knowledge about the smaller sized solutions, compared to the

performance of evolution when it starts from scratch - without any knowledge about the

solutions of smaller sized problem.

2.4 Conclusion

The method presented here uses multiple properties per cell, including two general purpose

registers. The amount of information available in these properties enables evolution to

find developmental descriptions for the small digital circuits. Also , the sensitivity analysis

introduced in thesis for the first time makes the evolutionary search considerable more

successful. The found solutions also contribute to the scalability of the search for larger

circuits of the same nature, as the population fitness has a noticeable improvement and the

30

Figure 2.11: Improvement in evolutions performance by introducing
the solutions of the smaller size problems in the initial population.

bigger solution is found in less generations if we already know the solution for the smaller

size problem.

However, while the population is benefiting from containing the solution for the smaller

problem, the evaluation of the individuals still takes an exponential time considering the size

of individual. At the same time that the innovative fitness functions in this chapter increases

the density of solutions in the search space, it also makes the evaluation time longer. PArt

of the reason is that the evaluation of individual involves growing the solution first and then

calculating the fitness. This requirement prevents us to examine larger patterns, where the

growth can take a considerable time. For this reason, in the next chapter we study the

pattern generation problem where the architecture is known in advance. That will let us to

solve the pattern generation problem for considerable larger sizes, were there are at least

twenty times more cells in the grid.

31

Chapter 3

Development of Large Patterns on Cellular

Automata

3.1 Problem Definition

3.1.1 Cellular Automata

Cellular Automata is a grid of connected cells in a discrete space and discrete time, and is

defined by the quadruple 〈C, S,N, f〉 where:

• C is a discrete connected cellular space of known dimension whose size can be either

limited or unlimited in each dimension. Each individual cell in D-dimensional C can

be represented as c�i where �i = [i1, i2 . . . , iD]. The CA can be either bounded or

cyclic on any of its limited dimensions. A D−dimensional CA is cyclic on its limited

dimension d (d ≤ D) if:

∃T ∈ N, ∀id ∈ I : c[i1,i2,...,id+T,...,iD] = c[i1,i2,...,id,...,iD] (3.1)

Figure 3.1 shows a 2-D cellular space whose both dimensions are cyclic.

The combination of the states of all the cells in C at a specific time tk is called the

configuration or state of the CA at time tk. The union of all possible configuration of

the CA is called the State Space. The number of cells in C is denoted as ς throughout

32

Figure 3.1: A 2-D cellular space with cyclic dimensions.

this chapter.

• S is the reference set for the state of the cells. This set is always non empty and

countable, and usually of a limited cardinality. If we show the state of a cell c�i at

time t is shown by c�i(t) then S will be as shown is Equation 3.2

S =
⋃

t≥0,c�i∈C
{c�i(t)} (3.2)

S = {0, 1} forms a binary CA. The size of S is denoted as σ in this work. The state of

each and every cell is updated simultaneously in a discrete time. CA is deterministic

if the state of each cell at any discrete time ti can be uniquely calculated starting from

a certain initial configuration. In a probabilistic CA the probability of each cell c�i to

be at the state Sj at the time tk is a known value p�ijk, such that ∀�i, j, k : 0 ≤ p�ijk ≤ 1

and forall�i, k :
∑σ

j=1 p�ijk = 1.

• N is the function that defines the cells’ neighborhood as an ordered tuple of cells in

C. For a neighborhood of size n, C
N→ Cn and N(c�i ∈ C) =

〈
c1�i , c

2
�i
. . . , cn�i

〉
such that:

33

∀c�i ∈ C, �Δ = [δ1, δ2, . . . , δD] : N(c�i) =
〈
c1�i , c

2
�i
. . . , cη�i

〉
⇐⇒

N(c�i+�Δ) =
〈
c1�i+�Δ

, c2�i+�Δ
. . . , cn�i+�Δ

〉 (3.3)

In other words if N(c�i) is the neighborhood of c�i then N(c�j), where c�j is a linear

transform of the cell c�i in the cellular space C with the D-dimensional vector Δ, is an

ordered tuple of the same length as of N(c�i)that includes the transformed of each and

all members in N(c�i) with the same vector Δ and in the same order. The nth element

in the neighborhood of a cell is called the nth neighbor of the cell. Although not

necessary, the neighbors of a cell are usually the cells with a short euclidean distance

to that cell. It is common to define a neighborhood radius r [67],[33] such that:

∀c�i, c�j ∈ C :
∣∣∣�i−�j

∣∣∣ ≤ r ⇐⇒ c�i ∈ N(c�j) ∧ c�j ∈ N(c�i) (3.4)

η is the number of elements in the output ordered n-tuple of neighborhood function

are fixed for all the cells and is called the Neighborhood Size. Each cell in the CA can

read the state of all and only the cells in its neighborhood. If C is not circular on all

its dimensions, it is possible that the neighborhood function returns one or more cell

that are not located inside C. The state of such neighbors are decided in advance to

be a fixed value in S. For example a binary CA with limited non-cyclic dimensions

can assume that the state of any cell placed outside the boundaries of C is always

zero.

The ‘is a neighbor of’ relation in its general form is neither symmetric nor anti-

symmetric. However, relying solely on a neighborhood radius to define N makes it

a symmetric relation. The neighborhood of a cell can include the cell itself. The

neighborhood configuration of a cell at any specific time is a n-tuple in ση where the

nth element is the state of the nth neighbor of the cell.

Example 3.1.

34

Figure 3.2: The neighborhood defined in Example 3.1

Assume a binary 2-D CA with the neighborhood N(c[i,j]) =
〈
c[k,l] | (i− k)2 + (j − l)2 ≤ 1

〉
and

∀c[k,l], c[m,n] ∈ N(c[i,j]) : c[k,l] ≺ c[m,n] ⇐⇒ k < m ∨ (k = m ∧ l < n)

where ≺ defines the order in the output 5-tuple 〈n1, n2, n3, n4, n5〉 of N . Figure 3.2

illustrates this neighborhood.

• Finally, f is the transition function that inputs the configuration of neighborhood of

a cell and outputs the state of the cell in the next time step: Sη f→ S, ci(t + 1) =

f(Ni(t)), where ci(t) is the state of the cell ci at time t and Ni(t) is the neighborhood

configuration of ci at time t. In case of a probabilistic CA, f assigns a probability pi

to each state si such that
∑

pi = 1. However, our focus will only be on deterministic

CA. We can define the function F : C
F→ C, C(t) = F(C(t − 1)), where C(t) is

the configuration of the CA at time t where the state of each cell has been updated

according to f .

The transition function is commonly expressed in a list of If-Then rules where the if

part is a η-tuple of states in S and the then part is a single member of S. η = |N | and each

rule tells if the neighborhood configuration of a cell is the given η-tuple in the if part at

time t, the state of the cell will be what is given in the then part at time t+1. If we denote

35

the ith element in S as si and σ = |S|, then f can be expressed as in Equation 3.5.

f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈s1s1 . . . s1〉 −→ s1out

〈s1s1 . . . s2〉 −→ s2out

. . .

〈s1s1 . . . sσ〉 −→ sσout

. . .

. . .

〈sσsσ . . . sσ〉 −→ s
(ση)
out

(3.5)

Given that all the possible configuration appear in the if part, one can omit them and

store only siouts with the specific order of Equation 3.5. Another acceptable form to store f

for a binary CA (where S = 0, 1), is to store only the neighborhood configurations whose

corresponding output is 1, usually in a decimal format (e.g. 19 instead of 〈010011〉). The

former will take ση bits to be stored for a binary CA and the latter takes ι.η, where ι is the

number of neighborhood configurations for which sout is 1.

Example 3.2.

Suppose a binary 2-D CA with the neighborhood defined in the Example 3.1 that sets the

state of each cell to 1 if its neighborhood in the previous time step has been one of the 3

configurations depicted in the Figure 3.3. Given that a black square represents a cell in

state 1 and a white square represents a cell in state 0, these neighborhood configurations can

be translated to 25, 21 and 10 in order from left to right. This transition function can be

written in either of the following forms:

1.
∑

25, 21, 10

2. (00000010001000000000010000000000)2 = 35652608

36

Figure 3.3: The neighborhood configurations that set the cell’s next
state to 1 (black) in Example 3.2

3.1.2 Cellular Automata With Memory

Cellular Automata introduced above is an memoryless or ahistoric. However, there has

been studies that shows adding memory to the Cellular Automata might be helpful for

specific tasks [3]. In short, a Cellular Automata with m-step memory can use the last m

configurations (C(t − m), C(t − m + 1), . . . , C(t)) in its transition function to create the

configuration of the CA at the next step (C(t+1)). If expressed as a rule set, the transition

function will have m neighborhood configurations in each of its rules, each neighborhood

configuration expressing a specific neighborhood configuration for one specific time step.

The neighborhood of the cell (not to be mistaken with neighborhood configuration) does

not change over time. Adding history to Cellular Automata makes more data available

to the transition function and has a good chance to make the neighborhood smaller for

an f expressed in form of Equation 3.5, because even a smaller neighborhood might have

enough data to form f . In Section 3.3 we study the effects of adding memory to the Cellular

Automatas for specific problems.

3.1.3 Applications of Cellular Automata: A More Detailed Review

We briefly reviewed some applications of the Cellular Automata in Chapter 1. Here we dive

into more details necessary for a better understanding of the problem to be solved in this

chapter.

3.1.3.1 Simulation Problems

Cellular Automata has been studied for simulating many complexed systems where global

behaviors emerge from local simple interactions. One of the most prominent examples is

the Conway’s famous Game of Life [29, 2] whose patterns, rules and variations has been

37

used for studying of dynamic systems [10, 50, 49, 67]. The transition function f in this

class of applications is manufactured to model the local interactions in the system being

studied. The initial configuration (C(0)) as well is manually designed to simulate the start

point of the system. The CA then starts to go through its state space and in most cases

human intelligence is involved to analyze the visualization or the statistical features of the

CA over time. The other purpose of such experiment can be finding initial patterns with

certain property such as self replication or interacting with other patterns to form a desired

high-level behavior. The transition function nevertheless is pre-set in all problems of this

class.

There exists another class of problems in the field of Cellular Automata where the final

configuration of the CA (or set of the acceptable final configurations) is known and the

transition function is searched for. This problem is usually referred to as the inverse problem

of Cellular Automata. The initial state can be either preset or variable, according to the

specific problem being solved. Two common cases of the inverse problem are classification

and pattern generation in Cellular Automata as explained in Sections 3.1.3.2 and 3.1.3.3.

3.1.3.2 Classification Problems

The set of all ςσ possible configurations of the CA〈C, S,N, f〉 (ς = |C|, σ = |S|) is forms

the state space of the CA. For any CA:

∃c, s, tn ∈ N; |C| < c ∧ |S| < s ∧ t > tn ⇒ ∃ti, tj : C(ti) = C(tj), ti �= tj (3.6)

Keeping in mind that C(t) = F(C(t − 1)), it can be concluded from Equation 3.6 that

starting from any configuration in the state space, the CA with a finite C and S either

settles down in a steady configuration or repeats a cycle of fixed configurations after a

certain number of steps. These steady cycles are named basins of attraction[71] of CA.

The transition function forms the basins of attraction in the state space. Let’s define the

relation ≺ as in the the Equation 3.7:

C(i) ≺ C(j) ⇐⇒ ∃n ∈ N : C(j) = Fn(C(i)) (3.7)

38

Then ≺ partitions the state space into sets where all the elements have the same basin

of attraction. This means that CA can solve classification problems as long as there is a

mechanism to detect at least one configuration in the basin of attraction. the challenge will

be to find a transition function f that forms the basins of attractions such that instances

of two distinct class do not fall in the same basin of attraction, and ideally each class will

have only one basin of attraction.

We remember from Section 3.1.1 that f is commonly represented as an ordered n-tuple

of states where n = ση. The reference set of each element in this ordered n-tuple is S. For

a known N and C(0) (i.e. the initial state), the size of the search space for any single f will

be σση
. In practice this number grows so quickly that finding the right transition function is

feasible for only small η and σ. To make the problem even harder, the neighborhood function

is not always known in advance and it is up to the algorithm to find the appropriate N .

Examples of classification problems for which CA has been used are [54], [37], [12] and [18].

3.1.3.3 Pattern Generation Problems

In contrast to the computational applications of CA described in Section 3.1.3.1 and 3.1.3.2,

pattern generation is an example of memory (in contrast to computation) applications for

the CA. The dimension of the CA matches the dimension of the pattern to be generated,

and the target configuration is a preset point in the state space. This point in the state

space is not necessarily a basin of attraction. The initial configuration and the number

of time steps for the CA to reach to the target configuration are either preset or is up to

the algorithm to be set. Nevertheless, the initial configuration has often very low or no

complexity (e.g. all the cells can be in the same initial state). One advantage of applying

CA for pattern generation is data compression. The data size required to store a pattern

is tied to the complexity of the pattern, and for certain patterns storing the pattern in

the transition function of a Cellular Automata can save a considerable amount of memory.

Cellular Automata has the ability of creating complex patterns from a simple initial config-

uration and an acceptable sized transition functions. This however is not the sole benefit of

employing CA in pattern formation problems. Studies have shown that patterns that are

described by providing simple initial configurations and transition functions demonstrate

39

interesting features such as scalability and fault tolerant [14] .Similar to the discussion in

Section 3.1.3.2 the search space for f can be extremely large for even moderate sized CAs.

The inverse problem of pattern generation in Cellular Automata has not been studied thor-

oughly and the application of most of current methods is limited to one dimensional or

very small 2-D CAs. We will suggest a new method for solving this type of problems; i.e.

pattern generation on large 2-D Cellular Automata in this thesis. However, to verify the

extents of the methods explained here we puch them to their limits by testing them on very

complex patterns that have not been the result of a developmental method. This will help

us to study and compare the ability of each method in more general cases. We talk more

about the test cases in Section 3.1.4.

3.1.3.4 Challenges of the Inverse Problems

The main challenge of the inverse problem of the Cellular Automata is the very large

search space for finding the appropriate transition function. Moreover, in order to reach

a final configuration from an initial one, one should decide whether to get to the target

configuration in fewer number of time steps, or with a more simple transition function.

The answer might not always be the same for different problems. Even validation of a

given transition function is not always a trivial task itself. We have to advance the CA in

time for an exact number of times if we know the number of time steps. A considerable

computation time is needed for this if the number of time steps, the size of cellular space

and the neighborhood size are not small. Validation can be even harder when the number

of required time steps to get to the final configuration is not known in advance. It is not

always easy to tell if the CA’s configuration is getting closer to the target configuration. A

common distance measure for two configuration of a CA is the number of cells that are not

in the same state in the two configuration. Equation 3.8 shows the distance function for a

binary CA of size m × n. However, it cannot be guaranteed that this measure makes the

distance of the configurations of CA to the future configuration a descending function over

40

time.

distance(C(t1), C(t2)) =
m∑
i=1

n∑
j=1

∣∣c[ij](t1)− c[ij](t2)
∣∣ (3.8)

Example 3.3.

Suppose the task of generating the 32 × 32 binary pattern in Figure 3.4 from an all white

pattern. During the search for the transition function f that does this in a CA such as

CAex3.3 = 〈C, S,N, f〉, where:

• C =
{
c[i,j] | 0 ≤ i, j < 32

}

• ∀c[i,j] ∈ C : c[i,j](0) = 0

• ∀t : i ≥ 32 ∨ j ≥ 32 ⇒ c[i,j](t) = 0

• S = {0, 1} (0 : white, 1 : black)

• N(c[i,j]) =
{
c[k,l] | (i− k)2 + (j − l)2 ≤ 2

}

Given the transition function shown in Equation 3.9 enough time, it will generate the target

pattern in 32 time steps. Although this transition function achieves the goal perfectly, as

depicted in the Figure 3.5 the distance of the CA configuration to the final pattern is not a

descending function. If the search algorithm assumes that a good transition function should

make the CA configuration closer to the target in each time step, it will miss the the valid

transition function of Equation 3.9 (N0 and N1 are defined in the Equation 3.10).

c�i(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0; N�i(t− 1) ∈ N0

1; N�i(t− 1) ∈ N1

c�i(t− 1); otherwise

(3.9)

41

Figure 3.4: a 32 × 32 binary pattern generated from a blank (all
white) pattern by the CA in Example 3.3

Figure 3.5: The distance between the configuration of the CA in
Example 3.3 to the final pattern in the Figure 3.4 over time

N0 = {〈1, 1, 1, 1, 1, 1, 0, 0, 0〉 , 〈0, 1, 0, 1, 1, 0, 0, 1, 0〉}

N1 = {〈0, 0, 0, 1, 1, 1, 0, 1, 0〉 , 〈1, 1, 1, 0, 0, 0, 0, 0, 0〉 ,

〈1, 1, 0, 0, 0, 0, 0, 0, 0〉 , 〈1, 1, 1, 0, 1, 0, 0, 0, 1〉}

(3.10)

3.1.4 Problem Statement

This thesis targets the pattern generation problem explained in Section 3.1.3.3. This prob-

lem is often studied for two consequent configurations of the CA because of the challenges

42

Figure 3.6: Resizing the image to reduce the computation time. The
pixels of the right image are 100 times larger than the pixels of the
left image.

mentioned in the Section 3.1.3.4. The problem statement is, in a CA〈C, S,N, f〉 with given

C, C(t) and C(t+ 1) and S =
⋃t≤t́≤t+1

c�i∈C c�i(t́), what are the f and N that produce C(t+ 1)

from C(t). We review the current method, suggested improvements and our suggested

methods in Section 3.2. We do not aim to reverse engineer and find a CA to generate

an artificial pattern that already has been created by a well defined CA, but we prefer to

have our method applicable to generate real life patterns that have not been resulting from

applying any known CA. Such pattern will let us to measure and compare the performance

of different methods without having a bias for any specific form of CA.

The pattern set to be generated here uses the Extended Yale Face Database B used in

[19]. The images are resized to 20× 25 pixels to keep the computation time acceptable, so

we can repeat the experiments for a large number of images. 128 images are converted to

8-bit, 256-level gray scale images (Table A.1). Each image is divided to 8 layers, where each

layer in presented as a binary black and white image. The pixel p is white in the coordinate

(rowp, colp) of layer l if the lth bit in the 8-bit value of pixel located in the coordinate

(rowp, colp) of the reference 256-level gray scale image is one. Pixel p is black otherwise.

Table 3.1 shows the resulted eight black and white image resulting from the image in Figure

3.6. Each black and white image is called a layer in this work.

Given the first layer (i.e. the layer visualizing the most significant bit, the upper left

image in Table 3.1), the problem is to store the consequent layers in a format where the

value of each pixel in any of the layers is determined according to the local information

43

Table 3.1: 8 black and white images created from the image in the
Figure 3.6

available to the pixel in the previous layer (or the previous layers, in case of a CA with

memory). Provided with the layer l, this format should be able to restore the layer l + 1

with absolutely no error. The whole 256-level gray scale image can then be restored from

the first black and white layer in the layer sequence.

This problem is translated to the CA domain by setting C to a 2-D, non cyclic cellular

space with its size equal to the image size. The CA configuration at time t is equivalent to

the pattern on layert, where layer0 is the layer that visualizes the most significant bit of

the 256-level gray scale image. S is the binary set 0, 1 and we search for the N and f for

each pair or consequent CA configurations (or for each combination of a configuration and

its h+ 1 immediately previous configurations, in case of a CA with h steps memory).

The are several criteria for comparing different solutions, among which we can mention

the required time to find the answer, required memory to find the answer and the required

memory to save the answer. Keeping in mind that the answer needs to be found only once

and off-line in most of the cases (i.e. not in real time), the required memory to store the

solution seems to be the most important criteria for comparison. This is supported by the

fact that the answer contains f and N , both of which need to be stored in every single cell

in C. Any small change in the memory requirement of these two will be amplified by the

number of cells who will be storing them. If it takes b1 bits to store f when represented as

44

f1 and b2 bits when represented as f2, There is a difference of ς×|b1 − b2| bits to store only

the transition function. The same argument applies to N , beside if the pattern-generator

is about to get implemented on hardware, smaller the N is less the number of inter-cellular

connections will be. when amplified by the number of cells in C, resulting in a major impact

on the cost of hardware.

The above argument concludes that the memory requirement for storing the solution

(f and N , to be more precise) is a good candidate to compare the outcome of different

suggested methods here. Each suggested method is tried on different sets of inputs and

different parameters are set for each set of input. New methods to solve this problem

as well as improvements to existing methods are introduced in the Section 3.2 and their

performances are compared in the Section 3.3.

3.2 Methodology

3.2.1 Expanding Neighborhood

The inverse problem of Cellular Automata is often studied for two consequent configurations

of the CA because of the challenges mentioned in the Section 3.1.3.4. The problem statement

is, in a CA〈C, S,N, f〉 with given C, C(t) and C(t+1) and S =
⋃t≤t́≤t+1

c�i∈C c�i(t́), what are the

f and N that produce C(t + 1) from C(t). There has been studies such as [1] where N is

known in advance and the focus is on optimizing the algorithm to find f . We remember from

the Section 3.1.1 that the transition function is commonly represented as a set of if-then

rules. To simplify the representation of the transition function depicted in the Equation

3.5, we show each rule as a
〈

�NC, sout

〉
, where �NC is a specific neighborhood configuration

representing the if part of the rule and sout is a specific value from S, representing the then

part of the rule. There are always one or more rule in the rule base and the neighborhood

size is always equal or larger than zero. One of the detailed recent studies where both f

and N are to be found is [62], where a framework for solving the inverse problem for both

deterministic and probabilistic CAs is presented. Algorithm 3.1 expresses the core idea for

deterministic CAs in simple terms.

45

Algorithm 3.1 Expanding Neighborhood Algorithm

1: Initiate the neighborhood to include no cell: N = φ or η = 0

2: For each cell, form a
〈

�NC, sout

〉
pair such that the �NC is the current neighborhood

configuration in C(t) and sout is the state of the cell in C(t + 1). Form f to include

all the created pairs: f =
⋃

c�i∈C
〈
Nc�i

(t), c�i(t+ 1)
〉
. The upper limit for the number of

rules will be the number of cells in C.
3: If there is no conflict in the transition function formed in the Step 2, go to Step 4 (there

is a conflict in f if and only if f includes at least two separate rules with identical �NC
and different souts). Otherwise, extend the neighborhood to include one of the closest

cells to the given cell: N(c�i) ⇐ N(c�i)+
〈
c�j

〉
such that ∀j, k, c�j , c�k ∈ C :

∣∣∣�j −�i
∣∣∣ ≤ ∣∣∣�k −�i

∣∣∣
and go to Step 2

4: Starting from the oldest element in N to the most recently added element, eliminate all
the unimportant elements in all �NCs. An element in N is said to be important for a
conflict-free transition function f if discarding that element from N introduces conflicts
to f . An element Ni ∈ N is older than Nj ∈ N if Ni was added to N before Nj in Step
3.

3.2.1.1 Complexity analysis

For a CA with |C| = ς cells and |N | = η neighborhood size, Algorithm 3.1 needs to verify f

for a total of η times to be conflict free (after adding each neighbor). If S has |S| = σ states,

the number of if-then rules in the rule set of f (denoted by ϕ in the text) is min(ς, ση+1) in

the worst case. Finding conflicts in a rule set of n rules has the time complexity of O(n2).

Forming the rules in Step 2 for ς cells has the time complexity of O(ς). The first 3 steps

of Algorithm 3.1 are then of time complexity O(ς) + O(min(ς2, ση+1)), or in other terms,

O(ης2) if ς < ση+1, or O(ησ2(η+1)) otherwise. Note that η is growing during the algorithm

but that does not effect our worst case analysis. In a realistic problem it is unlikely to have

all the possible neighborhood configurations in C(t). ς is usually smaller than ση+1 and a

good estimation for the number of times two rules in f are checked for conflict in all the η

iterations of the first part of the algorithm is η × ς2.

In Step 4 of the Algorithm 3.1, η elements in the neighborhood are checked one by one

for their importance, adding another O(η) to the time complexity of the algorithm. Note

that each step of the first part involves forming the whole rule base in f by reading ϕ(η+1)

cell states one by one from the CA in each step. A single step of the second part involves

discarding an element from the already formed rule set. The two might take different times

depending on the details of implementation, hence they are expressed separately.

46

3.2.1.2 Improvements to the Existing Method

Following methods are suggested to both speed of the algorithm and reduce the size of the

transition function resulting from the Algorithm 3.1 by modifying steps 3 and 4.

Speeding Up the Algorithm: Algorithm 3.1 resolves the conflicts (i.e existence of

two rules with the same �NC and different souts) by extending N which results in adding

new elements to the �NC. The algorithm blindly picks one of the closest cells and adds it to

the neighborhood. Euclidean distance is used to measure the distance of the cells. However,

it is quite possible that there are two or more cells with the same euclidean distance to the

cell for which the neighborhood is being formed.

∀c�i, c�j ∈ C,�i = [i1, i2, ..., id],�j = [j1, j2, ..., jd] :

max
1≤k≤d

(|ik − jk|) ≤ r ⇐⇒ c�i ∈ N(c�j) ∧ c�j ∈ N(c�i)
(3.11)

Assume that in the step 3 of the algorithm, we have reached the neighborhood radius

(defined in the Equation 3.11) r and there are still conflicting rules. The size of neighborhood

is (2r+ 1)2 at this point, and there are 2((r+ 1) + 1)2 − (2r+ 1)2 = 8(r+ 1) cells with the

distance r + 1 from the center cell. Even if the conflict in the rule base can be resolved by

adding one of them only, the algorithm needs to repeat step 3 on all of them in the worst

case, as there is no guarantee that such conflict resolving cell is picked before the rest. The

number of cells to be tried is 4(r + 1) in the average case and 1 in the best case. In our

modified version all of the closest cells are added to the neighborhood at once. This means

checking for conflicts is done only r times for a neighborhood of radius r. This number

is (2r + 1)2 in the worst case, 4(r + 1) + (2r − 1)2 on average case and (2r − 1)2 + 1 in

the best case for the original algorithm. In all cases the complexity order of step 3 of the

algorithm is decreased from O(n2) to O(n). We could base our calculation on the number

of neighbors (η) instead of r. That way the number of repetitions for step 3 is η for the

original algorithm, and
⌊√

η
⌋
+ 1 for the modified version.

The drawback of this modification is that there will be possibly more unimportant

neighbors added to this neighborhood. However, the number of unimportant neighbors

added to a neighborhood of radius r is 8(r+1)−1 in the worst case, which is a linear factor

47

for any neighborhood size. This drawback is neglectable specially for large neighborhoods.

Reducing the Size of the Results: In practice, it is not rare that ς < ση+1 or in

other terms, that not all the possible neighborhood configurations appear in the if-part of

the rules at the beginning of Step 4 of Algorithm 3.1. Even if no neighborhood configuration

appears twice in the entire binary 2-D CA with η = 25 (a 5×5 neighborhood) ς needs to be

at least 225 = 33554432 to cover all the possible neighborhood configurations (on a square

2-D CA this means there are more than five thousand cells in each dimension). Since this

is barely the case for the problems we are targeting in this thesis, we can safely assume

that not all the possible configurations appear in the rule set of f . An immediate result

of this is that the order of eliminating the unimportant neighbors in Step 4 in Algorithm

3.1 matters, as one or more initially unimportant neighbor(s) can turn into important

neighbor(s). Example 3.4 provides a simplified transition function in which different order

of discarding unimportant neighbors can lead to different results.

f :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈000〉 → 0

〈011〉 → 1

〈101〉 → 1

〈111〉 → 1

(3.12)

Example 3.4.

Assume that the transition function is as depicted in the Equation 3.12 at the beginning

of Step 4 of Algorithm 3.1 for a binary CA with η = 3. All of the three neighbors in this

example are initially unimportant, since discarding any of them does not create any conflict.

This is shown in the Equations 3.13, 3.14, 3.15.

discarding 1st element : 〈00〉 → 0, 〈11〉 → 1, 〈01〉 → 1 (3.13)

48

discarding 2nd element : 〈00〉 → 0, 〈01〉 → 1, 〈11〉 → 1 (3.14)

discarding 3rd element : 〈00〉 → 0, 〈01〉 → 1, 〈10〉 → 1, 〈11〉 → 1 (3.15)

However, eliminating the 3rd element makes the remaining two elements important since

eliminating either of the remaining two elements will result in a conflict (Equation 3.16.

The neighborhood size η is fixed at 2 at this step. Eliminating either of the 1st or the 2nd

elements on the other hand will keep the other one still unimportant. The algorithm enters

another iteration and only the 3rd neighbor will be remaining by the time the algorithm

ends. Equation 3.17 shows the transition function after discarding the first element in the

Equation 3.13.

discarding the 1st element in Equation 3.15 : 〈0〉 → 0, 〈1〉 → 1, 〈0〉 → 1 (3.16)

discarding the 1st element in Equation 3.13 : 〈0〉 → 0, 〈1〉 → 1 (3.17)

Example 3.4 demonstrates that the order of eliminating the neighbors can result in

different neighborhood size and therefore different transition functions. Decreasing the

neighborhood size even by a very small factor can have a major impact on the efficiency of

the solution because all the cells in C should store f . Keeping in mind that f is a rule base

including up to ς number of if-then rules and the if-part of each rule includes η elements,

and that the transition function is stored in every cell in CA, eliminating even one single

neighbor from the neighbor will reduce the total CA memory requirement up to ς2 in a

memoryless CA, or (h+ 1)ς2 in a CA with h memory steps. Moreover, eliminating specific

49

elements might make two initially different rules identical, saving even more in the amount

of information to store the rule base. The first contribution of this section is to improve

the Step 4 in the Algorithm 3.1 to result in a smaller neighborhood. In the most recent

methods [62] the neighbors are examined linearly for being eliminated from the first added

neighbor to the last added one. The reason is claimed to be that the last added element

is always important (or it would not be added in the first place), and also that important

neighbors are tend to be close to each other. While the first part is correct, the conclusion

on the best order is not well-justified. Neither there has been any comparison between the

results of different orders to eliminate the elements.

To reduce the size of the transition function and improve the memory requirement of

the CA, we suggest two specific orders for examining the elements in the neighborhood

in Step 4 of Algorithm 3.1. The first suggestion is to use the information gain of each

element in the neighborhood to estimate its importance and start from the element with the

least estimated importance. [36] describes the information gain of a property of a message

instance as the amount of information that property contributes to the classification of that

instance. According to Shannon’s theory of communication [51], the total information in a

set M of n messages with probability P (mi) for each message mi is as defined in Equation

3.18.

I[M] =

(
n∑

i=1

−P (mi) log2 P (mi)

)
= E[− log2 P (mi)] (3.18)

We can represent the transition function of the Equation 3.23 in the form of set of

instances as depicted in Table 3.2. The instances there can be divided in two subsets M0

and M1 according to any of the neighbors, where the state of that neighbor is always 0

in M0 and always 1 in M1. In general, the expected information to tell the next state of

the cell in all the created subsets can be calculated from the Equation 3.19 [36], η = 4

in this example, |Mi| is the number of instances in the subset Mi and I[Mi] is the total

information of the subset Mi from the perspective of the next state of the cell. The gain

from each neighbor n in a transition function which is represented as a set of instances M

50

is defined in Equation 3.20

E[n] =

η∑
i=1

|Mi|
|M | I[Mi] (3.19)

gain(n) = I[M]− E[n] (3.20)

Example 3.5. Assume the transition function of Equation 3.23 that tells the next state

of the cell to be either 0 or 1. According to Equation 3.18, the total information in the

transition function is: −3
5 × log2

3
5 − 2

5 × log2
2
5 = −0.6(−0.74) − 0.4(−1.32) = 0.97 bits.

E[n] is calculated in Equation 3.21 for each of the four neighbors. Having the E[n], we can

calculate the gain of each neighbor from Equation 3.20. Equation 3.22 shows the informa-

tion gain of each neighbor. From there, we can sort the neighbors from the element with

least information gain to the element with most information gain, resulting in the order

< n1, n2, n3, n0 >. This will be the order according to which we will start examining the

importance of the neighbors in step 4 of the Algorithm 3.1.

51

E[n0] =
3

5
× I[< 0101 >→ 1, < 0101 >→ 1, < 0101 >→ 1]

+
2

5
× I[< 1110 >→ 0, < 1010 >→ 0]

=0.6× 0 + 0.4× 0 = 0

E[n1] =
2

5
× I[< 0011 >→ 1, < 1010 >→ 0]

+
3

5
× I[< 0101 >→ 1, < 0110 >→ 1, < 1110 >→ 0]

=0.4× 1 + 0.6× (−2

3
× log2

2

3
− 1

3
× log2

1

3
)

=0.4 + 0.6× 0.92 = 0.95

E[n2] =
1

5
× I[< 0101 >→ 1]

+
4

5
× I[< 0011 >→ 1, < 0110 >→ 1, < 1110 >→ 0, < 1010 >→ 0]

=0.2× 0 + 0.6× 1 = 0.6

E[n3] =
3

5
× I[< 0110 >→ 1, < 1110 >→ 0, < 1010 >→ 0]

+
2

5
× I[< 0101 >→ 1, < 0011 >→ 1]

=0.6× (−2

3
× log2

2

3
− 1

3
× log2

1

3
) + 0.4× 0

=0.6× 0.92 = 0.55

(3.21)

gain(n0) = 0.97− 0 = 0.97

gain(n1) = 0.97− 0.95 = 0.02

gain(n2) = 0.97− 0.6 = 0.37

gain(n3) = 0.97− 0.55 = 0.42

(3.22)

52

f :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈0101〉 → 1

〈0011〉 → 1

〈0110〉 → 1

〈1110〉 → 0

〈1010〉 → 0

(3.23)

Table 3.2: Representing the transition function in the Equation 3.23
as a set of instances. The parameters of each instance are the 4
neighbors n0 to n3 and the label.

Rule n0 n1 n2 n3 Label

1 0 1 0 1 1

2 0 0 1 1 1

3 0 1 1 0 1

4 1 1 1 0 0

5 1 0 1 0 0

We suggest to use the information gain to sort the neighborhood elements for examining

their importance because in a set of messages in form of binary sequences, those elements

whose information gain is zero can be eliminated without any loss of data. We believe that

the same concept might also hold true in a set of if-then rules of a binary logic function.

If those instances include unimportant elements in the if part with zero information gain

(i.e. constant in all the instances) we can eliminate them right away with no worries of

the conflicts appearing in the rule set. An element with high information gain on the other

hand has less chance to be unimportant so is less likely to be eliminated. Eliminating an

element with high-information gain might force us to keep more than one element with

low-information gain whose elimination might have been possible otherwise.

We will examine the neighbors for elimination according to their information gain (Equa-

tion 3.20) starting from the least informative neighbor to the most informative one. We

need to keep in mind that eliminating one neighbor modifies the information gain of each

remaining neighbor and therefore the information gains need to be updated after each elim-

53

ination. This will be a computationally expansive process and will add a considerable time

to the algorithm’s run time. However, our experiments show that not re-sorting the neigh-

bors dynamically during the Step 3 of the Algorithm 3.1 does not bring us any advantage

for the size of resulted neighborhood. We will show this in details in Section 3.3.

The results confirm our original assumption of the impact of information gain of a

neighbor, as the resulted neighborhood is constantly and considerably smaller if we start

examining for elimination from the least informative rather than the most informative

neighbor. Example 3.6 demonstrates this for a simplified case.

The other idea to be examined is based on an important property of regular images,

i.e. locality. In regular (not randomly generated images) cells (or pixels, in this context)

located close to each other have similar characteristics. This makes us believe that if an

element in the neighborhood is important, there should be a good chance that its adjacent

element is important too. While the idea behind the previous method (sorting according

to the information gain) was not specific to any type of pattern, the idea behind this

suggestion is domain specific, i.e. is true for regular images. A second look at the step 4

of the Algorithm 3.1 shows that there is no guarantee that the physically close cells are

added to the neighborhood at timely close steps. For example, two adjacent neighborhood

elements with different distances from the center cell have a very small chance be added to

the neighborhood at two consequent times.

To address the above issue, we examine sorting the cells according on their location in

the CA. The neighborhood at the end of step 3 of the Algorithm 3.1 is formed as a square

centered at the cell for whom we are finding the neighborhood. We start from one corner of

this square and scan the neighbors either line by line or column by column. Note that we

are building the neighborhood and the transition function in the step. Unlike running the

CA, this step is done on a central processing module who has access to global CA properties

such as the coordinate of the cells. Scanning the cells according to their location is a quite

feasible task then.

The comprehensive results are presented and analyzed in the Section 3.3. It can be

observed that elimination of the unimportant neighbors is considerably more efficient if

they are examined for elimination this way, i.e. according to their location. Example 3.6

54

Table 3.3: An example image (left) and the patterns generated from
its 1st bit (middle) and 2nd (right) bits

compares the effect of different orders explained here in the resulting neighborhood for a

simple case.

Example 3.6.

Assume we are looking for the neighborhood and the transition function that generates the

pattern of the second most significant bit of the right most image of the Table 3.3 from the

pattern of its most significant bit. The patterns of the most and second most significant bits

are depicted in the middle and the left images of the same table respectively. In step 3 of the

Algorithm 3.1 the radius of the neighborhood is 9, i.e. there are (2× 9+1)2 = 361 elements

in the neighborhood, most of them unimportant. We examine them one by one to eliminate

the unimportant ones from the neighborhood. For a specific neighbor to be important or

not depends on the order of examining the neighbors. We also remember from Example

3.4 that two or more initially different rules can merge into the same rule after one or

more unimportant neighbors are eliminated. The number of rules in the transition function

(represented as a rule set) will also depend on the order according to which the unimportant

neighbors are eliminated. Table 3.4 compares the results of different orders for this matter.

The complete results, comparison and analysis of the different orders is presented in the

Section 3.3.

One of the major issues of using the Expanding Neighborhood method is that the storage

size of the resulted transition function is not scalable in general. By this, we mean if the

size of the CA grows by a factor of n, the amount of memory required to store the transition

function grows by a factor larger than n. In Section 3.2.2 and 3.2.3 we suggest two new

formats for the transition function that not only let us to find the transition function much

55

Table 3.4: Comparison of the transition functions for the same CA
using different orders in step 4 of the Algorithm 3.1.

Order of examining
the neighbors

Number of
final important
neighbors

Number of rules
in the transition
function

Transition
function
size (bits)

Newest first 14 130 3640

Oldest first 16 63 2016

Least information-
gain first

16 114 3648

Most information-
gain first

19 110 4180

Linear, from the
upper right corner
down row by row

11 57 1254

Linear, from the
lower left corner
up row by row

12 65 1560

Random 17 150 5100

faster, but also contribute to the scalability, trying to keep the growth rate of the storage

size of the transition function slower than the growth of the size of the CA.

3.2.2 First Suggested Method: Storing Individual Exceptions

3.2.2.1 Hidden Cell States and Hidden Transition Functions

It has been shown that finding the transition function might be easier if the cells have sec-

ondary states in addition to their main state [23] [21]. Such states provide extra information

in addition to the neighborhood configuration to the transition function to determine the

next state. We call such states hidden states here. When speaking of the CA configuration,

it is only the collection of the main states of the cells that comes into account. The hidden

states are invisible from the perspective of the CA configuration (hence the name hidden).

In terms of the inverse problem of the Cellular Automata, the target pattern provides the

cell’s main state only. The problem is considered solve as long as the main states of the

cells match the given pattern, no matter what the states of the hidden cells are.

From a more detailed perspective, the hidden states extend the state of the cell from

a scalar value to a vector. The elements of the vector can be from different reference sets.

However, instead of representing the overall state of the cell with a vector, we prefer to

56

make a distinction between the main state (whose reference set is still S), and the vector

of hidden states �h = [h1, h2, . . . , hϕ] whose reference set is Sh1 × Sh2 × . . . × Shγ where γ

is the number of hidden states in a CA. We show the value of the hidden states of the cell

c�i at time t by h1�i(t), h2�i(t), . . . , hγ
�i(t). Each hidden state is updated according to its own

hidden transition function, which in terms takes input from all the hidden and main states

of the cell itself and of its neighbors. Adding hidden states does not conflict the definition of

CA presented in the Section 3.1.1, but merely provides a different representation to express

complex transition functions in a more organized manner. The state sets of the hidden

states have no obligation to be the same among the hidden or main states. The transition

function still complies with the definition in the Section 3.1.1 as long as no hidden transition

function accepts input from a non-neighbor cell or a neighbor cell in the current time.

Alian and Kharma [16] showed that adding γ = D hidden states with the common

reference set (�hc�i ∈ N
γ) to a D-dimensional CA improves the evolvability of the CA. The

hidden states are updated by simple local rules (i.e. transition functions). Although evolu-

tion was used there to find the transition function, we expect to benefit from such hidden

states in our search as well. We try to find very simple hidden transition functions that

produce enough information in the hidden states which can be used to resolve the conflicts

we discussed earlier. Similar to [16], we set Sh1 = Sh2 = N, and we try to resolve the

conflicts by adding the minimum amount of information from the hidden states, which is

the hidden states of one cell only.

We remember from the previous section that a conflict happens when two cells with

the same state and the same neighborhood configuration at time t have different states at

time t+ 1. To resolve this conflict by the hidden state of the conflicting cells only, we need

to guarantee that �h is unique for each cell. We will use the hidden states only if there

exists a conflict in the rule set of f . No hidden state will be used otherwise. While the

unique combination of the hidden states can easily be used to explicitly determine the next

main state of each cell, we stay cautious to use them as rarely as possible in the description

of transition function. The reason is that relying solely on them will make the transition

function huge, as the number of rules in f will be equal to the number of the cells in CA.

Knowing that the hidden state values are integers and not binary numbers, and that the

57

transition function should be stored in each and every cell of the CA supports this choice.

Also, relying on the states of one cell only and discarding the neighborhood information

defeats the main purpose of Cellular Automata and will most likely take away its major

benefits such as scalability or fault tolerance.

The neighborhood size in the method explained here is always constant with a of radius

1 (η = 9) as defined in the Equation 3.4, so the inverse problem of CA (defined in the

Section 3.1.3) is reduced to finding the transition functions, including the hidden and the

main transition functions. The hidden transition functions are prefered to be as simple as

possible to require minimum amount of memory in the cells. Also as said, they need to

assign unique combination of states to each cell of the CA. Because there exist two hidden

states h1 and h2 in a 2D CA, it will be enough if each hidden transition function generates

unique values in one dimension only (Equations 3.24 and 3.25). The combination of the

two hidden states will uniquely identify each cell.

∀[i, j], [i, k], c[i,j], c[i,k] ∈ C =⇒ h1[i,j] = h1[i,k]

∀[i, j], [k, j], c[i,j], c[k,j] ∈ C =⇒ h2[i,j] = h1[k,j],

(3.24)

h1[i,j] = h1[k,j] =⇒ i = k h2[i,j] = h1[i,k] =⇒ j = k (3.25)

We can tell from the Equation 3.25 that the values of each hidden state should form

a cyclic group [66]. There are limited number of bits in the cell to store the hidden state

values. Because the overflow of the values stored in b bits with the addition operator is

similar to an addition modulo 2b, we can safely assume that the cyclic group is of addition

form with modulo 2b here. Any integer can be the group generator as long as it is relatively

prime to 2b. Example 3.7 shows how the cells in a 2D CA can be uniquely identified using

two hidden states.

Example 3.7.

The cells in a 15×20 CA can have two hidden states, one stored in 4 bits (24 = 16; 16 > 15)

58

and one in 5 bits (25 = 32; 32 > 20). The values of the first hidden state can be generated

as a cyclic group with the generator 13 (gcd(13,16) = 1) and the values of the other can be

generated as a cyclic group with the generator 9 (gcd(9,32) = 1) with addition modulo 16 and

addition modulo 32 respectively: h1[1,j] = 13(j ∈ [1, 20]);h1[i,j] = 13 + h1[i−1,j](i ∈ [2, 15])

h2[i,1] = 9(i ∈ [1, 15]);h2[i,j] = 9 + h2[i,j−1](j ∈ [2, 20]) or in other terms:

h1 =< 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3 >

h2 =< 9, 18, 27, 4, 13, 22, 31, 8, 17, 26, 3, 12, 21, 30, 7, 16, 25, 2, 11, 20 >

The combination of h1 and h2 can uniquely identify any cell in the CA defined above.

We can extend the Example 3.7 to define the two hidden transition functions for a d1×d2

CA as in the Equation 3.26. Note that the hidden states h1 and h2 are stored in �log2 d1�
and �log2 d2� bits respectively, so the normal addition will act similar to addition modulo

�log2 d1� and addition modulo �log2 d2�.

h1[i,j] = h2[i,j] = 0 , c[i,j] /∈ C

h1[i,j] = h1[i−1,j] + p1 , gcd(2�log2 d1�, p1) = 1

h2[i,j] = h2[i,j−1] + p2 , gcd(2�log2 d2�, p2) = 1

(3.26)

Notice the three important feature of the hidden transition functions defined in the

Equation 3.26:

• They need access to only one cell in the neighborhood to create their output,

• They each create unique values in one dimension, so each cell in the CA can be

uniquely tagged using the combination of both, and

• They do not change the value of the hidden states after the time step max(d1, d2) for

any cell in the CA. in other terms, the hidden states stable after a finite number of

time steps.

Unlike the main transition function that is expressed in form of a rule set with a variable

number of rules and is different from a CA to another, the hidden functions can be constant

59

for all CAs[16]. Any pair of functions that demonstrate the above listed characteristics are

acceptable choices for any 2D CA independent of the CA configurations over time. Our

method here adds a preparation phase to the solution of inverse problem, in which the

hidden transition functions update the hidden states for at least max |di| number of steps,

where dis are the dimensions of CA and |di| is the size of the CA in that dimension. There

are different synchronization methods such as the Firing Squad[68] that guarantee all the

cells start to update their main states once the hidden states are stable all over the CA. To

avoid the details that do not directly concern our proposed method here, we can assume

that the hidden states are stable after the preparation phase[16]. We call this new initial

state C ′
0. Replacing the initial CA configuration C0 with C ′

0, the main transition function

can now use the information stored in the hidden states. We expect that this information

prevents N to grow too large. It remains for the future researches to find the effect of

hidden information on the required neighborhood size. Nevertheless, the neighborhood size

is fixed to 9 and the number of hidden states is fixed to 2 for a 2D CA in this method.

Following list highlights the distinctive characteristics of our first proposed model:

• Cells have one main state and two hidden states, named h1c[i,j] and h2c[i,j] . We denote

the states of these hidden states at time t by h1[i,j](t) and h2[i,j](t).

• The hidden state of the cell have integer values (Srow = Scolumn = N)

• The hidden states get stabled to their fixed values in a preparation phase.

• N is always a neighborhood of radius 1 (η = 9), or N(c[i,j]) =
〈
c1[i,j], c

2
[i,j] . . . , c

9
[i,j]

〉
.

• The main states of each c[i,j] ∈ C is updated by the main transition function, whose

output is always either 0 or 1 (S = {0, 1}).

• The main transition function does not take input from any hidden state of any neigh-

bor cell in N other than the cell itself.

• The hidden transition function for each cell c[i,j] accept input from both main states

and hidden states of all the cells in N(c[i,j]).

60

• All the main and hidden states of all cells outside the boundaries of CA are fixed to

a permanent pre-defined state.

3.2.2.2 Main Transition Function

Unlike the rules of the transition function in the existing methods, our type of rule has

three elements and are represented by the ordered triple
〈

�NC, sout, E
〉
. �NC is the main

neighborhood configuration, a vector whose elements are the main states of the neighbor

cells (e.g. 〈s1s2 . . . s9〉). Also sout = c[i,j](t + 1) is the main state of the cell at the next

time step, and E is the set of exceptions to the rule that describes the combinations of the

hidden states in the cell itself (and not in any of its neighbors). For a CA with H number

of hidden states, E will be a set of H-dimensional vectors that specifically determine the

combinations of the hidden states. For a cell with main neighborhood configuration �NC,

the main state of the cell in the next time step (i.e. c[i,j](t + 1)) will be 1 − sout if the

hidden states of c[i,j] at time t match any of the specific vectors mentioned in E. This can

be expressed as in the Equation 3.27 for a 2D CA with two hidden states h1 and h2, where

si, sout ∈ S = 0, 1 and h1is and h2is are integer numbers.

〈s1s2 . . . s9〉 −→ sout

unless : �h ∈ {(h10, h20), (h11, h21), . . . , (h1n, h2n)}

(0 ≤ n ≤ ς)

(3.27)

Algorithm 3.2 explains the method to form the rule base for two consequent CA config-

urations at times t and t+ 1.

For each rule, we call the cells whose neighborhood configuration is �NC and their hidden

states values matches any of the vectors stored in the set E an irregular cell of that rule, in

contrast to the rule’s regular cells who have the same neighborhood configuration �NC and

their hidden state values do not mach any of the vectors in E.

61

Algorithm 3.2 Forming the Rule Base In the Storing Exceptions Method

1: For each cell in C such as c[i,j], form a triplet of the format
〈
�H, �NC, sout

〉
where

�H = (h1[i,j](t), h2[i,j](t)), sout = c[i,j](t+ 1) and �NC is defined in the Equation 3.28

�NC =
〈
c[i,j](t), c[i−1,j](t), c[i−1,j+1](t),

c[i,j+1](t), c[i+1,j+1](t), c[i+1,j](t),

c[i+1,j−1](t), c[i,j−1](t), c[i−1,j−1](t)
〉 (3.28)

h1[i,j](t) and h2[i,j](t) are the hidden states of the cell c[i,j] at time t and c[i,j](t) is the
main state of c[i,j] at time t. There will be ς number of triplets at this point.

2: Divide the triplets to partitions where all the sectors in a partition have the same �NC
part. The number of partitions will be anything between 0 to ς.

3: Create one rule from each partition as follows and put the created rule in the rule set
of transition function:

• If all the triplets in the partition have the same sout, create a rule in form of〈
�NC, sout, φ

〉
(φ is the null set).

• If both
〈
�H, �NC, 0

〉
and

〈
�H, �NC, 1

〉
co-exist in the triplets in the partition, divide

the triplets in the partition to two sets H0 and H1 such that all the triplets in
each set have the sout = 0 and sout = 1 respectively. Create the two sets H0 and
H1 as H0 =

⋃
H∈〈 �H, �NC,0〉H and H1 =

⋃
H∈〈 �H, �NC,1〉H. E will be the set with

the lower cardinality (Equation 3.29).

E =

{
H0; |H0| ≤ |H1|
H1; otherwise

(3.29)

Create a rule of the form
〈

�NC, soutT , E
〉
, where soutT is assigned per Equation

3.30.

soutT =

{
0; |H0| ≤ |H1|
1; otherwise

(3.30)

62

3.2.2.3 Complexity Analysis and Memory Requirement

This main characteristic of the method explained above is to add hidden states to the cells

so they can be used later to create exceptions to the if-then rules. We remember from

the Section 3.2.1 that for a transition function expressed in form of a rule set, a conflict

rises when two individual rule assign different outputs to the same if parts, and in order

to resolve the conflict we need to somehow differentiate between the two if parts. While

the current existing methods try to do so by growing N for all the rules to the point that

the two conflicting rules do not have the same if part anymore, this method differentiates

between the conflicting rules by taking into account their hidden states. It ends up merging

the two or more conflicting rules in one and registering the specific exceptions of that rule

in the set E. The neighborhood size in the current existing methods (Algorithm 3.1) is

increased for all the rules as long as there exists even only one pair of conflicting rules

in the rule set. Keeping in mind that all the cells should store the whole rule set of the

transition function, even small increases in the neighborhood size will result in considerable

memory consumption. On the other hand, the price for keeping the neighborhood small

is to store the exceptions, i.e. set of hidden state values represented as integer pairs of

numbers. This is contrary to the neighborhood elements that are usually binary values

and they require considerably more memory each. However, unlike the current existing

methods that expand the neighborhood for all of the rules, the exceptions are stored only

for the conflicting rules. Different rules can have different number of exception vectors in

E. The comprehensive results and analysis of this method are presented in the Section 3.3.

Meanwhile, Example 3.8 presents the results of using this method for the same problem of

the Example 3.6.

The first step in Algorithm 3.2 is of complexity order O(ς). The partitioning in Step 2

has the complexity of order O(ς2). The maximum number of partitions at the beginning of

Step 3 is ς, making that step of complexity order of O(ς). The whole algorithm will then be

of complexity order O(ς2), which is clearly less than the complexity of the Algorithm 3.1,

i.e. O(ης2) for its first 3 steps only. In addition to that, the Algorithm 3.1 has a final step to

remove the unimportant neighbors. That step adds a considerable time to the running time

63

of the algorithm, something that Algorithm 3.2 is free of. The complexity of the preparation

phase explained in the Section 3.2.2.1 is of a linear order, which is negligible comparing to

the complexity of the final step in the Algorithm 3.1. The actual measured run time for the

two algorithms is presented in Section 3.3, where it can be seen that the run time of the

Algorithm 3.2 has a meaningful advantage over the variations of the Algorithm 3.1.

The memory requirement of the Algorithm 3.2 depends on the specific CA configurations

at time t and t + 1. The memory required for one rule of the form
〈

�NC, sout, E
〉

is

η log2 σ + log2σ + |E| × (log2maxc[i,j]∈C h1[i,j] +maxc[i,j]∈C h2[i,j]), where η = | �NC = 9,

σ = |S| = 2, |E| is the number of vectors stored in the rule, and log2maxc[i,j]∈C h1[i, j]

and maxc[i,j]∈C h2[i, j] are the number of bits required to store the hidden states h1 and

h2 respectively. Five bits will be enough to store the hidden state values for the test CAs

mentioned in the Section 3.1.3.4. As the results in the Section 3.3 show, this method leads

to noticeably smaller transition functions in terms of number of bits needed to be stored.

Another issue to be remembered when comparing this method with the Expanding

Neighborhood method is that of inter-cellular communication in the CA. The Expanding

Neighborhood method is superior to the Storing Exceptions method mainly in the cases

where adding one or few non-immediate neighbors can resolve the conflicts in the transition

function rule set. We emphasize on the non-immediate part because the Storing Exceptions

method includes only the immediate neighbors. Although the Expanding Neighborhood

method might appear to need less resources (i.e. no memory is spent on hidden states) we

need to pay attention to the communication cost between the cells. Communication cost

grows very quickly as soon as the distance between the two communicating cells grows on a

real distributed platform. Having distant neighbors in the neighborhood means dedicating

many more resources (e.g. transistors, bus, bus drivers, etc) for routing the signals, less

switching speed and less clock frequency because of larger capacitors and resistance in longer

paths, and more power to drive the circuit on an actual platform. On the other side, the

Storing Exception method guarantees that neither the main state nor the hidden states

need to communicate with any cell other than their immediate neighbors.

Example 3.8.

64

Assume the same problem of finding the transition function that develops the pattern of the

right-most figure in table 3.3 from the middle figure in the same table. Using the Storing

Exceptions method explained here with p1 = p2 = 1 in the Equation 3.26 leads to the

transition function demonstrated in the Equation 3.31. Table 3.5 compares this transition

function with of the best transition function from the Table 3.4. The Storing Exceptions

method in this example finds the transition function faster, and is also superior from the

memory requirement perspective. Note that this method not only keeps the neighborhood size

small, but also the number of rules in the transition function is considerably lower.

65

66

f =

⎧⎪⎪⎨
⎪⎪⎩

〈0, 0, 0, 0, 1, 1, 0, 1, 1〉 −→ 1

〈0, 0, 0, 1, 1, 1, 1, 1, 1〉 −→ 1

〈0, 0, 0, 1, 1, 0, 1, 1, 0〉 −→ 1

〈0, 1, 1, 0, 1, 1, 0, 1, 1〉 −→ 1

〈1, 1, 1, 1, 1, 1, 1, 1, 1〉 −→ 1

unless : �h ∈ {(5, 9), (6, 8), (6, 9), (6, 10), (7, 8), (7, 9),

(7, 10), (8, 7), (8, 8), (8, 9), (8, 10), (8, 11),

(9, 7), (9, 8), (9, 9), (9, 10), (9, 11), (10, 8),

(10, 9), (10, 10), (11, 8), (11, 9), (11, 10),

(12, 9), (15, 8), (15, 9), (15, 10), (16, 6),

(16, 7), (16, 8), (16, 9), (16, 10), (16, 11),

(16, 12) }

〈1, 1, 0, 1, 1, 0, 1, 1, 0〉 −→ 1

〈0, 1, 1, 0, 1, 1, 0, 0, 0〉 −→ 1

〈1, 1, 1, 1, 1, 1, 0, 0, 0〉 −→ 1

〈1, 1, 0, 1, 1, 0, 0, 0, 0〉 −→ 1

(3.31)

67

Table 3.5: Comparing the best results of the existing methods (Ex-
panding Neighborhood) and the results of the Storing Exceptions
method.

Method Number of
final important
neighbors

Number of rules
in the transition
function

Transition
function
size (bits)

Best case of the
Expanding Neighborhood
from the Table 3.4

11 57 1254

Storing Exceptions 9 9 520

3.2.3 Second Suggested Method: Using Range of Values to Store Exceptions

We previously mentioned that the existing method of Expanding Neighborhood has the

drawback of expanding the neighborhood for all rules to resolve a conflict that occurs for

two rules only. Our first suggested method - Storing Exceptions - addresses this issue by

storing the hidden state values of the cells that cause conflicts in the rule set. For some CA

configurations however the number of stored exceptions in the part E of the rule might be

too large. This consequently will make the whole rule set of f too large to be practical. In

this section we propose a new method to keep both the neighborhood (hence �NC) and E

small. For this, we keep the rule format similar to the rule format in the previous method,

i.e.
〈

�NC, sout, E
′
〉
. The first two elements are the same as described in the Equation 3.27.

We look for a method to form E′ from E, such that it represents the same irregular cells

but in an alternative representation that require less memory to be stored. The rest of this

section will be the search for such method. Once found, that method will form an extra

step at the end of the Algorithm 3.2 to convert E to E′ only.

We saw that E in a rule of the previous method stores the set of individual vectors of

hidden state values for which the output of the owning cell will be the complementary to

sout. Each element ei of the set stored in E can be assumed as a condition that reads: if �h

is equal to ei then the cell is an exception. A promising idea will be to group together the

conditions on the individual vectors of hidden states values, and to form conditions that

apply to multiple vectors of hidden states. The new form of conditions can be read: if �h

has the condition ei then it is an irregular cell. For this, E′ should be a set of conditions

on the hidden states that meet the following requirements:

68

• Each condition should apply to more than one vector of hidden state values on average.

• The conditions should apply to the hidden state values of rule’s irregular cells only,

and not the regular cells (i.e. cells whose next main state follows the sout stated in

the rule).

• The memory required to store the new conditions should be less than the memory

required to store the individual vectors of hidden state values.

A closer look at the results of the previous method - such as the transition function

depicted in the Equation 3.31 - shows that it is likely for the irregular cells in a rule there

to be physically close to each other. This also matches the observation of biological devel-

opment of multicellular organisms [20], where physically close cells gain similar properties.

Therefor it seems that we can achieve the target mentioned earlier (to form conditions that

apply to multiple vectors of hidden states) if we can force the hidden transition functions to

assign unique but close values to physically close cells. That way we can have the conditions

that tell the range of each hidden state value, such that if each hidden state value is in the

range mentioned in the condition, the cell will be an irregular cell of that rule. Of course

the limits of each range should be selected carefully so the above-mentioned requirements

to hold true. Our first goal then needs to be to find such hidden transition functions.

For a D-dimensional CA with �H = [hd1, hd2, . . . , hdD], where the values of the hidden

state hdi on the ith dimension are between h1di to hMAXdi
di , suppose the three different cells

cl = c[dcte11 ,dcte22 ,...,dli,...d
cteD
D], cm = c[dcte11 ,dcte22 ,...,dmi ,...dcteDD] and cn = c[dcte11 ,dcte22 ,...,dni ,...d

cteD
D] (d

ctei
i

s are arbitrary constant numbers in the acceptable range of di, the ith dimension) have

the values of their ith hidden states equal to hldi, h
m
di and hndi respectively. We can tell the

physically close cells have close hidden state values if for each dimension di the above values

follow the condition in the Equation 3.32.

|cl − cm| < |cl − cn| ⇐⇒
∣∣∣hldi − hmdi

∣∣∣ < ∣∣∣hldi − hndi

∣∣∣ (3.32)

where |cl − cm| is the Euclidean distance between the two cells cl and cm. We can conclude

69

from the Equation 3.32 that any function that creates an order on the whole sequence of

the hidden states of the cells on a single dimension with the regular algebraic smaller than

relation can be the desired hidden transition function. This function of course should still

follow the Equation 3.24 to be an acceptable hidden transition function.

The hidden transition function in the Equation 3.24 creates an order on the sequence

of cells with the regular algebraic < relation if and only if no overflow happens for any of

the cells in the corresponding dimension. There are two ways to guarantee this, either to

enlarge n in the modulo n addition or to reduce the generator of the cyclic group so that

the hidden state values of all the cells get stable before any overflow happens. The former

will result in using more bits to store the hidden state values, because the modular addition

is simulated by the overflow of integers stored in limited number of bits. We have to pick

the latter method and set the generator of the cyclic group to pi = 1 as the only choice to

keep the number of required bits as low as �log2 dMAX
i � on the ith dimension with the size

dMAX
i .

Having such hidden transition functions, we can form irregular regions by storing the

borders of such regions only. For a d-dimensional CA, in each rule
〈

�NC, sout, E
〉
, E will

be a set of irregular regions, each of which in form of a d-dimensional section of the CA

where the cells with the neighborhood configuration �NC will have their next main state set

to 1 − sout instead of sout. Note that it is not necessary for all the cells in that region to

have the neighborhood configuration �NC. They can have any neighborhood configuration

as long as there is no cell with the neighborhood configuration �NC whose next main state

is sout.

Any limited continues linear section of the space of aD-dimensional CA can be identified

by 2 × D edges in the D-dimensional space and therefore requires only 2 × D number of

D-dimensional points to be stored. To make the memory requirement even less, we consider

the D-dimensional sections in form of hyper-cubes only, where each edge is parallel to one

dimension of the CA. In other terms, we consider the sections that can be described by the

range of their dimensions, such as h1i < hi < h2i , where h1i and h2i are the limits of that

section on the dimension di. Such section of the D-dimensional space can be identified by

D points instead of 2 × D points. For the case of a 2D CA, each section will be either a

70

horizontal or a vertical rectangle identified by its upper-left and lower-right corners. The

format of a rule resulting from this method will be as depicted in the Equation 3.33.

〈s1s2 . . . s9〉 −→ sout

unless :(
hbegin0
1 < h1 < hend01 ∧ hbegin0

2 < h2 < hend02 . . . ∧ hbegin0

D < hD < hend0D

)
∨
(
hbegin1
1 < h1 < hend11 ∧ hbegin1

2 < h2 < hend12 . . . ∧ hbegin1

D < hD < hend1D

)
. . .

∨
(
hbeginn
1 < h1 < hendn1 ∧ hbeginn

2 < h2 < hendn2 . . . ∧ hbeginn

D < hD < hendnD

)

(3.33)

Where h
beginj

i and hendki are integer numbers and 0 ≤ h
beginj

i ≤ h
endj
i ≤ dMAX

i . E′ will be

the disjunction of all conjunctive forms in the Equation 3.33, although in the implementation

only the h
beginj

i and h
endj
i parameters are stored. Each conjunctive form in E′ defines an

irregular region. The union of the irregular regions in a rule should cover all the rule’s

irregular cells, and the rule’s irregular cells only. The number of irregular regions (n in the

Equation 3.33) for a specific rule depends on the selected h
beginj

i and h
endj
i values. Example

3.9 demonstrates this matter for a 2D CA. The main problem to be solved for this method

is to find h
beginj

i and h
endj
i values for each individual rule such that minimize n.

Example 3.9.

The transition function of the CA explained in the Example 3.8 is listed in the Equation

3.31. Of the nine rules in the rule set, E in a null set in eight. The corresponding E′ will

be empty for all of those eight rules; i.e. rules 1, 2, 3, 4, 6, 7, 8 and 9. E in the 5th rule

however contains 34 elements. That rule can be converted to any of the forms presented

in the Equation 3.34 and 3.35. As it can be observed from those equations, the number

of conjunctive forms in E′ can vary for the same rule (8 and 7 in those two equations

respectively).

71

〈1, 1, 1, 1, 1, 1, 1, 1, 1〉 −→ 1

unless :

(5 ≤ h1 ≤ 5 ∧ 7 ≤ h2 ≤ 7) ∨ (6 ≤ h1 ≤ 11 ∧ 8 ≤ h2 ≤ 10)

∨ (8 ≤ h1 ≤ 9 ∧ 7 ≤ h2 ≤ 7) ∨ (8 ≤ h1 ≤ 9 ∧ 11 ≤ h2 ≤ 11)

∨ (12 ≤ h1 ≤ 12 ∧ 9 ≤ h2 ≤ 9) ∨ (15 ≤ h1 ≤ 16 ∧ 8 ≤ h2 ≤ 10)

∨ (16 ≤ h1 ≤ 16 ∧ 6 ≤ h2 ≤ 7) ∨ (16 ≤ h1 ≤ 16 ∧ 11 ≤ h2 ≤ 12)

(3.34)

〈1, 1, 1, 1, 1, 1, 1, 1, 1〉 −→ 1

unless :

(5 ≤ h1 ≤ 5 ∧ 7 ≤ h2 ≤ 7) ∨ (6 ≤ h1 ≤ 11 ∧ 8 ≤ h2 ≤ 10)

∨ (8 ≤ h1 ≤ 9 ∧ 7 ≤ h2 ≤ 7) ∨ (8 ≤ h1 ≤ 9 ∧ 11 ≤ h2 ≤ 11)

∨ (12 ≤ h1 ≤ 12 ∧ 9 ≤ h2 ≤ 9) ∨ (15 ≤ h1 ≤ 15 ∧ 8 ≤ h2 ≤ 10)

∨ (16 ≤ h1 ≤ 16 ∧ 6 ≤ h2 ≤ 12)

(3.35)

Lemma 3.1. The upper limit of the minimum amount of memory required to store E′

generated from E of a rule of the form in the Equation 3.27 in any CA of any dimension

is twice the amount of memory required to store E.

Proof. In any rule of the form as of the Equation 3.27, each vector stored in the set of

irregular cells in E can convert to a conjunctive form as of the Equation 3.33, forming a

one-to-one mapping between the irregular cells and the irregular regions (each irregular

region contains one cell only in this case). We remember from the section 3.2.2 that there

are D elements in each vector of the set in E so a total of D elements need to be stored

there. On the other side, each conjunctive form needs to store one upper limit and one lower

limit for each of the hidden states, where there are D hidden states in a D-dimensional CA.

The total number of elements will be 2 × D, twice the number of elements in the former

case.

72

As said earlier, the main focus of this section will be to come up with feasible algorithms

that find a minimum set of irregular regions that satisfy the above said conditions; i.e. cover

all the irregular cells, and the irregular cells only. We name this problem the Minimum

Irregular Regions Problem and provide the formal definition for the case of a 2D CA in the

Definition 3.1 to have a better understanding of it.

Definition 3.1. Assume a continues finite discrete 2D space P with the dimensions X and

Y and finite arbitrary sizes xMAX and yMAX on those dimension respectively (Equation

3.36).

P ⊂ Z
2, (x, y) ∈ P ⇐⇒ (0 ≤ x ≤ xMAX ∧ 0 ≤ y ≤ yMAX) (3.36)

An object is defined in P with the tuple 〈Label, Coordinate〉 as explained in the Equation

3.37.

∀ o 〈Labelo, Coordinateo〉 :

Labelo ∈ {i, r} ,

Coordinateo = (xo, yo), (xo, yo) ∈ P

(3.37)

Two objects are equal if and only if they have the same Label and the same Coordinate.

Also for any two objects o1 and o2:

∀ o1 〈Label1, Coordinate1〉 , o2 〈Label2, Coordinate2〉 :

Coordinate1 = Coordinate2 ⇐⇒ o1 = o2

(3.38)

In other terms, the coordinate of the objects are unique; i.e. two or more objects cannot

share the same coordinate.

A rectangle c is defined in Z
2 with a pair of coordinates (xul, yul), (xlr, ylr) such that

xulc ≤ xlrc and ylrc ≤ yulc . A rectangle c
〈
(xulc , yulc), (xlrc , y

lr
c)
〉
is in the space P (denoted as

73

P � c) if and only if 0 ≤ xulc ≤ xlrc ≤ xMAX and 0 ≤ ylrc ≤ yulc ≤ yMAX . A rectangle covers

the object o(xo, yo) in P (denoted as c� o) if and only if xul ≤ xo ≤ xlr and ylr ≤ yo ≤ yul.

Given the finite set I of objects whose Label = i and the finite set R of the objects whose

Label = r where 0 ≤ |R ∪ I| ≤ xMAX × yMAX , the Minimum Irregular Regions Problem is

to find the smallest set C of rectangles in P that cover all the objects in I and no object in

R.

The verification of a solution Ti to the above problem has the complexity order of

O (|R ∪ I| × |Ti|); i.e. it can be verified in a polynomial time. This problem is very similar

to the red-blue set cover problem [11], which itself is a special case of the minimum set cover

problem [28], a well-known NP-Complete problem. The red-blue set cover problem is stated

as following[11]:

Definition 3.2. Given a finite set of red elements R, a finite set of blue elements B and

a family U ⊆ P(R ∪ B) (where P(S) = 2S, denoting the power set of set S), the red-blue

set cover problem is to find a subfamily V ⊆ U which covers all blue elements, but which

covers the minimum possible number of red elements.

Lemma 3.2. The Minimum Irregular Regions Problem is a special case of the red-blue

cover set problem.

Proof. It is obvious that the sets I and R in the minimum irregular regions problem are

equivalent to the sets B and R of the red-blue cover set problem. Moreover, we can form

the set C in the Minimum Irregular Regions Problem as in Equation 3.39.

C = {ci
〈
(xulci , y

ul
ci), (x

lr
ci , y

lr
ci)
〉

| 0 ≤ xulci ≤ xlrci ≤ xMAX ,

0 ≤ ylrci ≤ yulci ≤ yMAX ,

∃o ∈ P : ci � o }

(3.39)

Let Γ be a mapping defined in the Equation 3.40. The result of such mapping on the

set C produces a set U ⊆ P(I ∪R), such that the three sets U, I,R will be equivalent to the

three sets U,B,R in the red-blue cover set problem. There is a one-to-one mapping between

74

the elements in the C and U , so any solution to the equivalent red-blue set cover problem

can be mapped to a subset of rectangles in C to produce the solution to the problem in

Definition 3.1 using Γ−1.

Γ :
⋃
P�ci

ci �−→ P (R ∪ I) ; Γ(ci) = {oj |ci � oj} (3.40)

Γ−1

(
U =

n⋃
i=1

oi(xoi , yoi)

)
= c

〈
(xulc , yulc), (xlrc , y

lr
c)
〉
⇐⇒

xulc =
n

min
i=1

xoi , xlrc =
n

max
i=1

xoi , yulc =
n

max
i=1

yoi , ylrc =
n

min
i=1

yoi

(3.41)

Although Γ−1 (Γ(ci)) �= ci, the mapping and its inverse are enough to convert the Min-

imum Irregular Regions Problem to a red-blue set cover problem and convert the solution

of the latter back to the former domain. However, Lemma 3.1 implies a condition on the

set U in the equivalent red-blue set cover problem: there always exist a solution C such

that it contains no red object. The reason is the way the set C is formed in the Equation

3.39, that guarantees for each object with Label = I (equivalent to a blue object) there

exist a rectangle that includes that sole object only. This implies that in the worst case the

solution to the red-blue set cover problem will be the union of the Γ transformed of such

rectangles; i.e. a union of the sets from P(B ∪R) that contain no red object.

It is shown in [17] that the red-blue set cover problem is an NP-hard problem. How-

ever, we know that for any arbitrary input to the Minimum Irregular Regions Problem

has only one rectangle in the best case (a rectangle that covers all the i objects and no r

object), and |I| rectangles in the worse case, where each rectangle covers only on i object.

Moreover, we can form the set C in the Equation 3.39 so that it includes only the rect-

angles that do not cover any r object, and then convert the Minimum Irregular Regions

Problem to a well-studied set cover problem and use a greedy algorithm to find the solu-

tion. Nevertheless, forming C in that way will have a complexity of non linear order itself

(O
(
(xMAX .yMAX)2|I ∪R|)). In Sections 3.2.3.2 to 3.2.3.6we suggest two greedy and one

75

evolutionary algorithm tailor designed for the Minimum Irregular Regions Problem.

3.2.3.1 Exhaustive Search of Minimum Irregular Regions

As a reminder from the Definition 3.1, we are searching for the smallest set of rectangles

that cover all and only the irregular cells. Algorithm 3.3 present the exhaustive search for

this problem in high-level terms:

Algorithm 3.3 Exhaustive Search For the Minimum Irregular Regions Problem

1: Form all the possible combinations of rectangles that cover all the irregular cells.
2: Among the above combinations select only those who do not cover any regular cell.
3: Among the above selection select the combination(s) with the minimum number of

rectangles.

The number of total possible combinations in the first step grows so fast with the size of I

that makes it impractical for even relatively small sets of I. To have a better understanding

of the size of the search space we can impose a restriction on the combinations in the first

step and consider only those combinations where each irregular cell is covered by one and

only one rectangle. The number of combinations for the set I with |I| elements in this case

will form the Bell numbers [57] who can be written as in the Equation 3.42, where �n is

the number of possible partitionings of a set with n elements. Note that �0 = �1 = 1.

�|I| =
|I|∑
k=0

(|I|
k

)
�|I|−1 (3.42)

“There is no known simple closed-form expression for �n” [57] but there are some

asymptotic formulae that try to approximate the Bell numbers. The sequence A000110

in the On-Line Encyclopedia of Integer Sequences (OEIS) [53] is of the Bell numbers

and has the first 27 elements of the series as 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147,

115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869804,

682076806159, 5832742205057, 51724158235372, 474869816156751, 4506715738447323,

44152005855084346, 445958869294805289, 4638590332229999353, 49631246523618756274.

Figure 3.7 provides a logarithmic graph of the number of partitionings per number of el-

ements in |I|. Even if the two next steps take small constant times, an exhaustive search

76

Figure 3.7: The growth of Bell numbers. Source: OEIS [53]

will be practically impossible.

We present three different algorithms in the rest of this section to solve the Minimum

Irregular Regions Problem. The first two are using heuristics to reduce the search space of

the solutions, and the third one uses an Evolutionary Algorithm to find the best answer.

We analyze their complexity and solve the same problem of the Example 3.6 with each of

them. The complete results of applying them on out test data is provided in the Section

3.3.

3.2.3.2 Top-Down Heuristic Search Algorithm

In the top-down search for the optimum combination of rectangles we start from the smallest

single rectangle that covers all the irregular cells. Let nr0 be the number of regular cells

that are covered by this rectangle. We stop if nr0 = 0. If not, we consider all the possible

combinations of breaking this rectangle into two rectangles such that they together cover

all the irregular cells, and also no irregular cell i covered by both rectangles. We call the

number of the regular cells cover by the two rectangle in this step nr01
and nr11

, and we

77

choose the combination for which nr01
+ nr11

is minimized. We repeat this procedure for

each of the new rectangles until there is no regular cells in any of the rectangles. The idea

behind the heuristic of this method is to divide a rectangle only if it is needed, and then

divide it to the minimum (i.e. 2) number of rectangles. The solution of this method for

the Minimum Irregular Regions Problem (Definition 3.1) is presented in Algorithm 3.4. It

is called Top-Down because we start with one rectangle and break it down to as many as

required to satisfy the requirements of the Minimum Irregular Regions Problem.

Algorithm 3.4 Top-Down Search For Minimum Irregular Regions Problem

1: Create two queues named C and NC. Initialize both to empty queues.
2: Enqueue the rectangle Γ−1(I) in NC.
3: If the queue NC is empty, the set of the rectangles in C is the answer. If not, go to the

Step 4.
4: Dequeue one rectangle from the queue NC, call it c

• Queue c in C if it does not cover any object of R.

• If there is any object in R that is covered by c, find the partitioning of Γ(c) in two
partitions (named s1 and s2) where the total number of objects in R covered by
c1 = Γ−1(s1) or c2 = Γ−1(s2) is minimized. Enqueue both rectangles c1 and c2 in
NC.

5: Go to the Step 3.

3.2.3.3 Analysis of Top-Down Heuristic Search Algorithm

The Top-Down Search algorithm imposes a condition on the irregular regions to decrease

the search space: it only searches for the solutions where each irregular cell (i.e. an object

in P whose label are i) is covered by one rectangle only. However, this algorithm still

evaluates all the possible ways of breaking down a rectangle into two in Step 4. This means

that the algorithm should evaluate 2|I| cases at the very beginning, up to 2|I−1| cases in

the next iteration and so on. In the worst case, we have to go through 2|I| + 2|I−1|+...+1

cases. Checking to see if one rectangle is not covering any regular cell (i.e. objects in P

whose label are r) itself has the complexity order of O(|R|). Algorithm 3.4 therefore has

the complexity of O
(
m× 2

n(n+1)
2

)
, where m = |R| and n = |I|. This exponential order

means that the algorithm is still impractical for large Is. In the C++ implementation of the

algorithm compiled using VC11 and running on an Intel R©coreTMi7 processor, the largest

78

size of |I| for which the solution could be found in order of few hours was |I| = 32. This

means that the Storing Ranges of Exception method using the Top-Down Heuristic Search

Algorithm cannot find the transition function for the CA defined in the Example 3.6 in less

than few days. Section 3.3 provides the results only for the inputs who had less than 32

irregular cells in their transition from any layer of the image to the next.

3.2.3.4 Bottom-up Heuristic Search Algorithm

Algorithm 3.4 adds all the irregular cells to a large rectangle at once in the first step.

In contrast, the Bottom-Up Heuristic Search starts from a rectangle that covers only one

irregular cell, and then adds the rest of irregular cells one by one, either expanding an

existing rectangle or creating a new one in each step. Moreover, the Bottom-Up Heuristic

Search does not impose the condition that each irregular cell is covered by one rectangle

only. The idea behind the algorithm is to avoid creating a new rectangle unless non of the

existing ones can be expanded to cover the new object without covering any regular cell.

Algorithm 3.5 explains the Bottom-Up search. It works incredibly faster than the Al-

gorithm 3.4 but it searches only a small section of the search space. As we will see in the

Section 3.3 using this algorithm can find the answer to all the test data in an acceptable

time and the results are still superior to of the first Storing Exceptions method explained

in the Section 3.2.2.

Algorithm 3.5 Bottom-Up Search For Minimum Irregular Regions Problem

1: Enqueue all element in I in an initially empty queue named O. Create two empty sets
named C and C ′.

2: Dequeue one element from O and name it o1. Add Γ−1(o1) to C.
3: If O is empty, C is the solution. If not, dequeue the next element from O and name it

onext
4: For each rectangle c

〈
(xulc , yulc), (xlrc , y

lr
c)
〉

in C, form c′
〈
(xulc′ , y

ul
c′), (x

lr
c′ , y

lr
c′)
〉

=
Γ−1(Γ(c) + onext), and put all the c′s in C ′.

5: Remove from C ′ any rectangle c′ that ∃or ∈ R, c′ � or.
6: Of the remaining c′s in C ′, select the one that minimizes (xulc′ − xulc)2 + (yulc′ − yulc′)

2 +
(xlrc′ − xlrc′)

2 + (ylrc′ − ylrc′)
2. Replace its corresponding c

〈
(xulc , yulc), (xlrc , y

lr
c)
〉
in C with

c′
〈
(xulc′ , y

ul
c′), (x

lr
c′ , y

lr
c′)
〉
.

7: Go to the Step 3.

79

3.2.3.5 Analysis of Bottom-Up Heuristic Search Algorithm

Algorithm 3.5 has an important behavior: it considers only one order of enqueuing I in

O in Step 1. this means we are searching one of possible |I|! sections of the whole search

space, with the guarantee that the algorithm always finds a possibly not optimum solution

(Lemma 3.1). However it doesn’t mean that this algorithm is less successful that the Top-

Down algorithm in finding close to optimum solutions. The reason is that unlike Algorithm

3.4, it does not limit the search to the cases where each object in I is covered by one

rectangle only. Moreover, the same solution can be found by searching in many different

paths so the chance of finding the optimum solution is considerably more than 1
|I|! . The

restriction of the search space is the compromise to make the Algorithm 3.5 find a solution

in acceptable time, in order of seconds (instead of hours) on the same machine mentioned in

Section 3.2.3.3 for the same test inputs. Step 3 of the Algorithm 3.5 iterates |I|−1 elements

and each iteration in the worst case processes |I| rectangles in Step 5, where processing each

rectangle is equivalent of checking its coverage of |R| objects. Step 6 processes |I| in the

worst case. Algorithm 3.5 therefore has the complexity of O (n(nm+ n)) = O(mn2), where

m = |R| and n = |I|. This polynomial order makes the runtime is short enough to be

practical for even large inputs. Example 3.10 demonstrates using this algorithm for the

Storing Ranges of Exceptions method to find the transition function for a CA.

Example 3.10.

Assume the same problem of Example 3.8; i.e. finding the transition function that develops

the pattern of the right-most figure in table 3.3 from the middle figure in the same table.

Using the Storing Ranges of Exceptions method that uses the Top-Down Heuristic Search

to find the set of rectangles representing the irregular regions results in the transition func-

tion demonstrated in the Equation 3.43. Figure 3.8 depicts the five irregular regions the

Algorithm 3.5 finds for the rule 〈1, 1, 1, 1, 1, 1, 1, 1, 1〉 −→ 1.

80

f =

⎧⎪⎪⎨
⎪⎪⎩

〈0, 0, 0, 0, 1, 1, 0, 1, 1〉 −→ 1

〈0, 0, 0, 1, 1, 1, 1, 1, 1〉 −→ 1

〈0, 0, 0, 1, 1, 0, 1, 1, 0〉 −→ 1

〈0, 1, 1, 0, 1, 1, 0, 1, 1〉 −→ 1

〈1, 1, 1, 1, 1, 1, 1, 1, 1〉 −→ 1

unless :

(5 ≤ h1 ≤ 12 ∧ 9 ≤ h2 ≤ 9)

∨ (6 ≤ h1 ≤ 11 ∧ 8 ≤ h2 ≤ 10)

∨ (8 ≤ h1 ≤ 9 ∧ 7 ≤ h2 ≤ 11)

∨ (15 ≤ h1 ≤ 16 ∧ 8 ≤ h2 ≤ 10)

∨ (16 ≤ h1 ≤ 16 ∧ 6 ≤ h2 ≤ 12)

〈1, 1, 0, 1, 1, 0, 1, 1, 0〉 −→ 1

〈0, 1, 1, 0, 1, 1, 0, 0, 0〉 −→ 1

〈1, 1, 1, 1, 1, 1, 0, 0, 0〉 −→ 1

〈1, 1, 0, 1, 1, 0, 0, 0, 0〉 −→ 1

(3.43)

81

Figure 3.8: The irregular regions found by the Algorithm 3.5 for the
5th rule in the transition function of Equation 3.43

3.2.3.6 Using Evolutionary Algorithm

The Minimum Irregular Regions Problem is an NP-Complete problem that is almost im-

possible to be solved using an exhaustive search for the CAs containing more than few

cells. Both Top-Down and Bottom-Up Heuristic Searches impose limiting conditions on the

search space to approximate the original problem and find close-to-optimum solutions. On

the other hand, evolutionary algorithms are known to be very effective tools to find the

solution in large search spaces, where other heuristic searches often fail to find the solution

in acceptable time. In this section we present an evolutionary algorithm to find the solution

to the Minimum Irregular Regions Problem. For the ease of future references we call this

evolutionary algorithm EAMIRP : the Evolutionary Algorithm for the Minimum Irregular

Regions Problem.

• Representation

The individuals in EMIRP should represent solutions to the Minimum Irregular Re-

gions Problem. As defined in the Definition 3.1 each individual should be a set of

82

rectangles. The same definition defines each rectangle as a pair of integer values in

P , therefor each individual in EAMIRP is a set of vectors of four integers. To be

consistent with the notation of Definition 3.1 we name this set C. C(i) will denote

the set of rectangles for the individual i, and cn(i) denotes the nth rectangle in C(i).

The lower bound of the size of C is always 1 and there is no upper bound. The size

of individual i is defined as the number of vectors in C(i).

• Initialization

EAMIRP starts with a fixed number of individuals in the first generation, and the

population size stays constant in course of evolution. All the individuals are initialized

to Γ−1(I). This means the first generation in EAMIRP contains identical copies of

the same genotype.

• Penalty Function

EAMIRP uses penalty instead of fitness function. The penalty assigned to each indi-

vidual is calculated according to the Equation 3.44, where Penalty(i) is the penalty

of the given individual i, Size(i) is the size of the individual i as defined in the

Representation and d1 and d2 are the size of the dimensions D1 and D2 of the CA.

Penalty(i) = Size(i)×
(
nr(i) +

√
d1 + d2

2

)2

(3.44)

nr(i) in the Equation 3.44 is the number of times a member of R is covered by a

rectangle in C(i), and is defined in the Equation 3.45.

nr(i) =

|R|∑
m=0

Size(i)∑
n=0

W (m,n, i) (3.45)

83

where W (m,n, i) is defined in the Equation 3.46

W (m,n, i) =

⎧⎪⎪⎨
⎪⎪⎩
1, cn(i)� omr

0, otherwise

(3.46)

omr is the mth element of the set R in the the Definition 3.1.

EAMIRP is searching for the smallest set of irregular regions that cover zero element in

R. The penalty function of the Equation 3.44 therefore is reflecting this requirement.

It has two main parts, one representing the effect of number of irregular regions

(Size(i)) and another one represents the effect of objects in R located inside the

irregular regions. The latter participates in its square form because there exists a

harder condition on the number of objects in R covered in the solution. It also gets

added to a constant (a function of size of the CA, therefore constant during the

algorithm) because we do not want to stop evolution as soon as we found a solution

that does not cover any element in R. The penalty will be calculated as zero for

such solution no matter what Size(i) is. We should avoid such termination point so

we can keep looking for potentially smaller sets. The penalty function does not take

into account the number of elements in I that are not covered by any member of C,

because as we will see later, EAMIRP guarantees that each individual always covers

all the elements in I.

• Parent Selection

EAMIRP uses a tournament parent selection with the tournament size set to 3. Three

individuals are selected using a random uniform probability density function. The

selection does not prevent an individual from being selected more than once in one

tournament. The individual with the lowest fitness in the tournament is selected as a

parent. In case of a tie, the individual with the lowest index in the tournament pool

is selected as the parent. If the size does not break the tie the individual who was

selected to the tournament first is selected as the parent. We repeat this for a fixed

84

Nc number of times to fill in the parent pool.

• Reproduction

EAMIRP uses asexual reproduction and each parent generates exactly one child using

mutation. There are two types of mutation: Merge and Split. Only one type of

mutation is applied on a parent to create a child. The probability of each mutation

type is presented in the Equations 3.47 and 3.48.

P (μmerge) =
Size(i)

|I| (3.47)

P (μsplit) = 1− P (μmerge) (3.48)

as it can be observed from the Equation 3.47, when an individual has one irregular per

each object of I, Size(i) = |I| and a merge mutation will be applied on the individual.

On the other hand, when there is only one irregular region that covers all the elements

of I, Size(i) = 1 and the split mutation has a very high chance (close to %100, when

I grows large) to be applied. The merge and split mutations are explained in the

Algorithm 3.6 and 3.7 respectively. It can be observed in those algorithms that it is

guaranteed that all the members of I are always covered by one or more member of

C for any individual at any time. All the created child are added to the population.

Algorithm 3.6 The Mutation Merge in the Evolutionary Algorithm Search For Minimum
Irregular Regions Problem

1: Stop if |C| = 1.
2: Choose two random member c1 and c2 from C with replacement and uniform distribu-

tion. The same member can be selected twice.
3: Remove c1 and c2 from C.
4: Add Γ−1 (Γ(c1) ∪ Γ(c2)) to C.

• Survival Selection

EAMIRP uses elitism, so a fixed number of the best individuals (i.e. the individuals

with the lowest penalty before the children were added) are directly transfered to

85

Algorithm 3.7 The Mutation Split in the Evolutionary Algorithm Search For Minimum
Irregular Regions Problem

0: Let C ′ =
{
c〈(xulc , yulc), (xlrc , y

lr
c)〉 ∈ C | xulc = xlrc =⇒ yulc �= ylrc

}
. We know C ′ �= φ

because if otherwise, Size(i) = |I| and P (μsplit) would be zero.
1: Select a random member of C ′ with uniform probability and call it c.
2: If xulc = xlrc go to the Step 5.
3: If yulc = ylrc go to the Step 6.
4: With an equal chance, go to either Step 5 or Step 6.
5: Perform the Vertical Split defined in the Algorithm 3.8 on c to produce two new rect-

angles c1 and c2. Go to the Step 7.
6: Perform the Horizontal Split defined in the Algorithm 3.9 on c to produce two new

rectangles c1 and c2.
7: Remove c from C. If Gamma(ci)i=1,2 �= φ then add ci to C.

Algorithm 3.8 The Vertical version of Mutation Split in the Evolutionary Algorithm
Search For Minimum Irregular Regions Problem

1: Pick a random ot 〈i, (xt, yt)〉 from Γ(c) (note that all the members in Γ(c) have Label =
i).

2: Set T1 = {o〈i, (x, y)〉 | x ≤ xt} and T2 = Γ(c)− T1.
3: Set c1 = Γ−1(T1) and c2 = Γ−1(T2).

Algorithm 3.9 The Vertical version of Mutation Split in the Evolutionary Algorithm
Search For Minimum Irregular Regions Problem

1: Pick a random ot 〈i, (xt, yt)〉 from Γ(c) (note that all the members in Γ(c) have Label =
i).

2: Set T1 = {o〈i, (x, y)〉 | y ≤ yt} and T2 = Γ(c)− T1.
3: Set c1 = Γ−1(T1) and c2 = Γ−1(T2).

86

the next generation. For filling in the population of the next generation EAMIRP

uses fitness proportional selection. Each individual is assigned the fitness equal to

Fitness(i) = max
Np

j=0 Penalty(j) − Penalty(i), and Np − Ne number of individuals

are selected once at a time (Np is the population size before adding the children and

Ne is the number of elites in the algorithm). In each time the chance of each individual

for being transfered to the next generation is Fitness(i)
∑Np+Nc

j=0 Fitness(j)
. EAMIRP does not

prevent an individual to be copied to the population of next generation more than

once.

• Termination Criteria

EAMIRP stops when it exhausts a fixed number of generation or if there is no de-

creasing of the penalty of the population’s lowest penalty over a certain number of

generations. The individual with the lowest penalty in the last generation is returned

as the solution. The solution is checked to have no element in R covered by any

element of C.

The evolutionary algorithm of EAMIRP is illustrated in Figure 3.9. Example 3.11

demonstrates using EAMIRP with the parameters listed in the Table 3.6 for the Storing

Ranges of Exceptions method to find the transition function for a CA.

Example 3.11.

Using EAMIRP with the parameters listed in the Table 3.6 to solve the same problem of

Example 3.8 will result in the transition function presented the Equation 3.49. This solution

is found after only 22 generations since the input problem is rather simple. Figure 3.10

depicts the five irregular regions EAMIRP finds for the rule 〈1, 1, 1, 1, 1, 1, 1, 1, 1〉 −→ 1.

As it can be observed, the solution found by the EAMIRP is very similar to of the Bottom-

Up Heuristic Search algorithm. They both have the same number of rectangles, although the

latter has been searching a subset of the search space. The performance of both methods is

measured on a large test data in Section 3.3.

87

Figure 3.9: The flowchart of the evolutionary algorithm used in
EAMIRP.

88

f =

⎧⎪⎪⎨
⎪⎪⎩

〈0, 0, 0, 0, 1, 1, 0, 1, 1〉 −→ 1

〈0, 0, 0, 1, 1, 1, 1, 1, 1〉 −→ 1

〈0, 0, 0, 1, 1, 0, 1, 1, 0〉 −→ 1

〈0, 1, 1, 0, 1, 1, 0, 1, 1〉 −→ 1

〈1, 1, 1, 1, 1, 1, 1, 1, 1〉 −→ 1

unless :

(16 ≤ h1 ≤ 16 ∧ 6 ≤ h2 ≤ 12)

∨ (5 ≤ h1 ≤ 12 ∧ 9 ≤ h2 ≤ 9)

∨ (8 ≤ h1 ≤ 9 ∧ 7 ≤ h2 ≤ 11)

∨ (15 ≤ h1 ≤ 16 ∧ 8 ≤ h2 ≤ 10)

∨ (6 ≤ h1 ≤ 11 ∧ 8 ≤ h2 ≤ 10)

〈1, 1, 0, 1, 1, 0, 1, 1, 0〉 −→ 1

〈0, 1, 1, 0, 1, 1, 0, 0, 0〉 −→ 1

〈1, 1, 1, 1, 1, 1, 0, 0, 0〉 −→ 1

〈1, 1, 0, 1, 1, 0, 0, 0, 0〉 −→ 1

(3.49)

89

Figure 3.10: The irregular regions found by EAMIRP for the 5th rule
in the transition function of Equation 3.49

Table 3.6: Parameters of the Evolutionary Algorithm in EAMIRP.

Parameter Value

Population size 200

Maximum Generation 2000

Number of steady generations before stopping the Algorithm 100

Parent Pool Size 100

Tournament Size 3

Number of Elites 2

90

3.3 Experiments and Results

3.3.1 Experiment Setup

In this section we describe the experiment setups for measuring and comparing the perfor-

mance of the methods presented in the Section 3.2. As mentioned in the Section 3.1.4, the

problem is to find the neighborhood and the transition function for two or more consequent

configurations of a CA of known size. All methods of Section 3.2 try to find and express

the transition function as a set of if-then rules explained in the section 3.1.1. The number

of rules and the storage size of the transition function (i.e. total amount of memory in

bits required to store the transition function) is presented for the results of each method.

The methods explained in the Section 3.2.1 will find neighborhoods of variable sizes, while

the rest of the methods have fixed neighborhood size. The neighborhood size is therefore

compared only for the former methods. To obtain the configurations of the CAs at time t

(t ∈ Z) we use the pattern resulting from extracting the tth bit of an 8-bit, 256-level gray

scale image as explained in Section 3.1.4, Figure 3.6 and Table 3.1. We call the binary

pattern generated from ith bit of the image layer i of the image. Layer 0 will be the binary

pattern of the most significant bit of the value of each pixel in the image. The test data is

a subset of the face portraits from [19]. We select the images in the first two folders in the

http://vision.ucsd.edu/extyaleb/CroppedYaleBZip/CroppedYale.zip package, as presented

in the appendix A.1. There are 64 images in each folder, making it a total of 128 images.

To measure the scalability of the methods we create two sets of each of the above image

types, one containing 20 × 25 pixel images (Table A.1) and the other containing 40 × 50

pixel images (Table A.2). The face images are resized from the original image using Adobe R©

Photoshop R© CS4’s resize tool and Bicubic re-sampling of the original image.

Having eight consequent configurations of the CA (one per each layer of the image)

enables us to study the effects of adding memory to CA as explained in Section 3.1.2. In

the following experiments we search for the transition functions for generating each of the

image layers such as layer i from its j immediately previous layers (1 ≤ j ≤ i− 1). We will

form tables of the format similar to the Table 3.7 for this purpose, where fj−i,j−i+1,...,j→j+1

means the transition function that generates layer j + 1 from the last i layers, and fp

91

Table 3.7: The template of the result tables

Make
layer 1

Make
layer 2

Make
layer 3

Make
layer 4

Make
layer 5

Make
layer 6

Make
layer 7

Start from
layer 0

fp
0→1 fp

0,1→2 fp
0,1,2→3 fp

0,...,3→4 fp
0,...,4→5 fp

0,...,5→6 fp
0,...,6→7

Start from
layer 1

fp
1→2 fp

1,2→3 fp
1,2,3→4 fp

1,...,4→5 fp
1,...,5→6 fp

1,...,6→7

Start from
layer 2

fp
2→3 fp

2,3→4 fp
2,3,4→5 fp

2,...,5→6 fp
2,...,6→7

Start from
layer 3

fp
3→4 fp

3,4→5 fp
3,4,5→6 fp

3,...,6→7

Start from
layer 4

fp
4→5 fp

4,5→6 fp
4,5,6→7

Start from
layer 5

fp
5→6 fp

5,6→7

Start from
layer 6

fp
6→7

denotes the property p of such transition function. p can be any of the following properties,

depending on the form of the transition function f .

• The neighborhood size (for the expanding neighborhood method in Algorithm 3.1

only)

• Number of rules in the transition function (expressed as a rule set)

• The storage size of the transition function, defined as the amount of memory required

to store the transition function (in bits)

• The time that was spent to find the transition function (in milliseconds)

• The number of times the specific algorithm failed to find the transition function in

the set of 128 test data (different reasons of failure are discussed later in their own

section). If this number is not presented it means that the algorithm was successful

in finding the transition function for all the test data.

We do not list the detailed results or running each algorithm on each image in all the

test data sets, as that will require hundreds of pages. Each table has the average of the

specific property of the transition function (e.g. neighborhood size) for all the 128 images

of a set. The C++ source code of program and the test data sets are available on the public

SVN repository https://cmeasure3.googlecode.com/svn/trunk/cmeasure3 . Although

92

the code is originally compiled on a Microsoft Windows 7 PC with Microsoft Visual Studio

2012 and the VC++11 compiler, it has no dependency on any specific OS or compiler (it

has been compiled successfully on a Linux machine with GCC as well). The program also

runs in multi thread mode in some computationally expensive modules, if multi-threading

is supported by the host machine and the compiler.1

Each table in the form of Table 3.7 includes 28 pieces of data. Some cells are blank

because it doesn’t make sense to find the past configuration of the CA from its future

configuration, or to find its current configuration from it current configuration. Note that

the first four tables provide the average of 128 cases for each of the 28 transition functions,

while the last type of table (The number of times the algorithm failed) shows the absolute

number of times the algorithm failed. The reason for failure of the algorithm depends on

the specific algorithm, listed below:

• The Expanding Neighborhood method (Algorithm 3.1 in Section 3.2.1) might fail if

there remains at least one conflict in the Step 3 of the algorithm no matter how large

the neighborhood is extended. We remember that the current state of any cell outside

the CA was assumed to be a constant values in S. No matter what this value is, it has

the chance to be identical to the current configuration of the part of neighborhood

inside the CA for the specific cell that is causing the conflict.

• The Storing Individual Exception method (Algorithm 3.2 in Section 3.2.2.2) will never

fail.

• The Storing Ranges of Values to Store Exceptions method (Section 3.2.3) might fail

for different reasons depending on the specific search algorithm used to solve the

Minimum Irregular Regions Problem:

– The Top-Down search (Algorithm 3.4) might fail if the required resources (either

time or memory) exceed the available computing power. In our implementation

the algorithm is forced to quit whenever in Step 4.2 of the algorithm the number

of object in R that are covered by c are more than 32. Although a 64-bit machine

1I need to thank my friend Marc-Antoine Chabot, who helped me get my results faster by lending me
his computer’s CPU time.

93

can handle the cases where up to 64 objects in R are covered by c, the exponential

order of the algorithm prevents us to pass that step in less than few hours on an

Intel R©coreTMi7 machine when that number is higher than 32.

– The Bottom-Up search (Algorithm 3.5) never fails (in price of searching a small

section of the search space).

– The Evolutionary search (Figure 3.9) might fail if trapped in a local optima

point. It is possible to get trapped in such local optima because we do not know

the minimum possible penalty of the individuals in advance, and also because

we stop the algorithm if there has been no decrease in the penalty for a fixed

number of generations.

3.3.2 Results - Expanding Neighborhood

We remember from Example 3.12 that the order according to which the neighbors are eval-

uated for their importance can effect the final neighborhood size. Moreover, two initially

distinguishable rules can become identical after discarding enough elements from the neigh-

borhood. As a result, the order of evaluating the neighbors plays a role in the neighborhood

size, number of the rules in the transition function and the most important, in the storage

size of the transition function. For all the methods in this section we store only the rules

whose output is 1, therefore the next state of a cell will be 0 if no rule in the transition

function matches its neighborhood.

In this section we run the Algorithm 3.1 on different set of inputs obtained from different

sets of images as explained earlier. In each following sections we modify the Step 4 of the

Algorithm 3.1 to try different orders on the test data sets. We measure the following

parameters of the resulted neighborhood and transition function in each case:

• Neighborhood Size: the number of elements in N .

• Number of Rule: the number of rules in the transition function.

• Storage Size: the amount of memory in bits required to store the transition function

on a binary machine.

94

• Calculation Time: the time in milliseconds required to find the transition function.

To get a better comparison of the effect of each removing order, we have measured

the time only for step 4 of the algorithm 3.1, as the first 3 steps are constant for all.

• Number of failures: the number of times that the Algorithm 3.1 could not find the

transition function. It happens when there remains an un-resolved conflict no matter

how large the neighborhood is increased in the Step 3 of the algorithm.

The table showing the last property - the number of times the algorithm failed - is the

same for all methods explained in this section. The reason is that the methods here differ

only in Step 4 of the Algorithm 3.1, while the failure happens in the Step 3, a common step

for all the methods in this section. We provide that information in one single table for all

the methods in Table 3.8.

Of the mentioned properties of the results, the Storage Size is the most important one,

since after all it is the transition function that needs to be stored in each cell. When

implemented on a stand-alone hardware, a small change in the size of transition function

can result in magnificent difference in total memory requirement of the device. For saving

memory, the transition function stores only the rules whose output are 1. This was discussed

earlier in the Section 3.1.4. The calculation time gives us only a rough estimation of the

run time of each algorithm and not a very precise measure of comparison. This is because

the run time depends not only on the complexity of the algorithm but the efficiency of the

implementation as well. The better measure for comparing the cost of the algorithm is the

complexity analysis provided for each of the algorithms in Section 3.2.

For each order of removing the neighbors, each of the above three properties are mea-

sured for 128 images in each of the test data sets as explained in the Section 3.3.1. The

average in each run is presented in the following tables, e.g. the number in the row Li and

column Lj in a table that shows the neighborhood sizes, means that the average neigh-

borhood size for a transition function that creates the layer j of the image from layers

i, i+1, . . . , j−1. The CA is memory less if j = i+1, and has a memory of the last j− i−1

steps otherwise.

95

Table 3.8: The number of times the Expanding Neighborhood method
fails to find the transition function.

L1 L2 L3 L4 L5 L6 L7

L0 1 0 0 0 0 0 0

L1 0 0 0 0 0 0

L2 0 0 0 0 0

L3 0 0 0 0

L4 0 0 0

L5 0 0

L6 0

Table 3.9: The average of neighborhood sizes resulting from remove
oldest first (the current existing method).

L1 L2 L3 L4 L5 L6 L7

L0 35.05 18.55 14.16 12.37 9.25 7.24 5.41

L1 22.76 15.36 12.88 9.38 7.30 5.43

L2 22.30 14.74 9.98 7.52 5.70

L3 22.45 11.87 8.23 6.05

L4 18.29 10.01 6.80

L5 15.97 8.67

L6 15.38

3.3.2.1 Removing Oldest Elements First

Tables 3.9 to 3.12 provide the result for each of the four properties listed earlier in this

section, when the step 4 of the algorithm 3.1 starts from the element in the neighborhood

who has been added prior to the others. We use the phrase remove oldest first to refer to

this order.

Table 3.10: The average of number of rules in the transition function
resulting from remove oldest first (the current existing method).

L1 L2 L3 L4 L5 L6 L7

L0 191.62 219.68 243.1 237.06 237.89 249.17 248.96

L1 219.13 243.42 236.94 237.96 249.17 248.96

L2 243.21 236.87 238 249.1 249

L3 235.78 237.66 249.31 248.8

L4 236.56 249.21 248.73

L5 248.59 248.85

L6 247.87

96

Table 3.11: The average number of bits required to store the transi-
tion function resulting from remove oldest first (the current existing
method).

L1 L2 L3 L4 L5 L6 L7

L0 6836.36 8222.92 10729.99 11440.78 10703.55 10786.13 9420.47

L1 4963.06 7759.39 8939.09 8688.78 9066.48 8098.50

L2 5604.52 6834.86 6932.39 7471.50 7081.88

L3 5180.42 5506.77 6142.01 6021.56

L4 4252.41 4980.23 5070.23

L5 3969.61 4315.77

L6 3811.98

Table 3.12: The average time in milliseconds required to find the
transition function resulting from remove oldest first (the current
existing method).

L1 L2 L3 L4 L5 L6 L7

L0 2424.89 1026.94 2125.71 3245.53 1784.62 495.78 260.46

L1 620.06 1330.89 2057.34 1242.88 381.15 202.57

L2 1073.99 1567.29 940.18 299.84 166.59

L3 1193.06 788.56 233.62 140.37

L4 567.36 195.6 113.34

L5 190.95 118.46

L6 154.41

97

Table 3.13: The average of neighborhood sizes resulting from the
remove newest first order.

L1 L2 L3 L4 L5 L6 L7

L0 28.63 16.99 13.01 11.60 9.18 7.08 5.49

L1 20.35 14.02 11.91 9.30 7.13 5.52

L2 19.84 13.38 9.62 7.31 5.77

L3 19.84 11.29 7.94 6.09

L4 17.03 9.55 6.84

L5 15.22 8.41

L6 14.88

Table 3.14: The average of number of rules in the transition function
resulting from the remove newest first order.

L1 L2 L3 L4 L5 L6 L7

L0 167.17 199.04 231.64 234.05 236.17 247.71 248.22

L1 199.44 231.61 233.71 236.22 247.72 248.17

L2 232.08 232.57 236.16 247.61 248.26

L3 230.95 236.17 247.78 248.33

L4 235.82 247.94 248.28

L5 247.31 248.25

L6 247.78

3.3.2.2 Removing Newest Elements First

In order to observe the effect or picking the oldest element of the neighborhood in Step 4

of the algorithm 3.1, we also designed a set of experiments to show the results if the newest

element in the neighborhood is examined for removal first. We call this order remove newest

first and provide its results in the Tables 3.13 to 3.16.

Table 3.15: The average number of bits required to store the transi-
tion function resulting from the remove newest first order.

L1 L2 L3 L4 L5 L6 L7

L0 4879.87 6841.09 9569.63 10518.25 10521.48 10455.33 9512.40

L1 4071.60 6825.09 8084.04 8528.91 8771.60 8197.50

L2 4749.88 6021.44 6622.34 7206.03 7147.30

L3 4462.66 5207.86 5874.73 6040.47

L4 3963.23 4725.61 5090.93

L5 3762.22 4177.63

L6 3686.34

98

Table 3.16: The average time in milliseconds required to find the
transition function resulting from the remove newest first order.

L1 L2 L3 L4 L5 L6 L7

L0 2333.21 916.23 1888.87 3057.88 1909.43 533.39 263.35

L1 520.79 1184.62 1944 1240.23 390.93 208.01

L2 924.08 1421.11 942.42 304.78 171.6

L3 1033.4 778.12 227.29 135.66

L4 523.46 200.52 105.19

L5 197.85 110.79

L6 155.56

Table 3.17: The average of neighborhood sizes resulting from the
least dynamic information gain first order.

L1 L2 L3 L4 L5 L6 L7

L0 36.25 20.14 14.87 12.45 9.96 7.54 5.66

L1 23.88 15.95 13.13 9.95 7.45 5.70

L2 22.51 14.80 10.46 7.67 5.86

L3 22.07 12.09 8.41 6.13

L4 18.05 9.77 6.89

L5 15.59 8.55

L6 15.16

3.3.2.3 Removing Least Gainful Elements First, Dynamically Updating Gains

The method used here is very similar to the method of Section 3.3.2.5 , instead the infor-

mation gain of each neighbor is updated once a neighbor is removed, and the remaining

neighbors are sorted from the least information gain to the highest after each removal. We

call this the least dynamic information gain first, and show its results in the Tables 3.17 to

3.21.

Table 3.18: The average of number of rules in the transition function
resulting from the least dynamic information gain first order.

L1 L2 L3 L4 L5 L6 L7

L0 188.66 216.57 242.32 236.25 237.28 248.69 248.76

L1 216.08 244.46 236.82 237.61 248.62 248.85

L2 243.47 237.19 237.67 248.32 249.07

L3 234.39 237.5 248.99 248.92

L4 236.49 248.47 248.6

L5 248.37 248.53

L6 248.11

99

Table 3.19: The average number of bits required to store the transi-
tion function resulting from the least dynamic information gain first
order.

L1 L2 L3 L4 L5 L6 L7

L0 6831.57 8813.39 11348.37 11440.56 11401.09 11203.88 9831.17

L1 5073.52 8202.69 9071.27 9146.84 9215.00 8488.31

L2 5745.51 6849.38 7223.37 7577.88 7277.85

L3 5034.20 5576.80 6262.83 6089.25

L4 4194.04 4838.88 5133.33

L5 3871.08 4251.94

L6 3761.94

Table 3.20: The average time in milliseconds required to find the
transition function resulting from the least dynamic information gain
first order.

L1 L2 L3 L4 L5 L6 L7

L0 449204.32 125534.84 738182.84 1256526.15 591368.1 61930.46 14312.14

L1 31027.88 292301.82 602187.15 331843.85 34827.56 8993.65

L2 128069.76 290467.5 189476.23 21009.07 5784.33

L3 111144.93 103457.94 11959.54 3519.39

L4 34932.64 5835.62 1963.09

L5 2374.13 1352.85

L6 1019.25

100

Table 3.21: The average of neighborhood sizes resulting from the
most dynamic information gain first order.

L1 L2 L3 L4 L5 L6 L7

L0 40.96 21.09 15.88 13.94 10.02 7.45 5.66

L1 24.62 16.65 14.05 10.06 7.57 5.66

L2 23.37 15.84 10.71 7.64 5.88

L3 23.26 12.46 8.40 6.29

L4 18.66 9.91 7.03

L5 15.75 8.77

L6 15.27

Table 3.22: The average of number of rules in the transition function
resulting from the most dynamic information gain first order.

L1 L2 L3 L4 L5 L6 L7

L0 201.91 224.06 245.48 238.66 237.98 249.22 249.12

L1 222.42 244.96 238.05 238.06 249.25 249.14

L2 244.21 238.2 238.46 249.21 249.43

L3 236.29 238.3 249.23 249.27

L4 237.45 249.33 249.21

L5 249.06 249.2

L6 248.31

3.3.2.4 Removing Most Gainful Elements First, Dynamically Updating Gains

Once again to see the effect of re-sorting the neighbors according to their information

gain in step 4 of the Algorithm 3.1, we repeat the experiment while the neighbors are

dynamically sorted similar to of the Section 3.3.2.6, but in a reverse order from the neigh-

bor with the most information gain to the one with the least. Similar to the Section

subsubsec:Removeleastgainfirst-dynamic, the neighbors are re-sorted after each removal.

The results for this method - called the most dynamic information gain first order - are

presented in the Tables 3.17 to 3.20.

3.3.2.5 Removing Least Gainful Elements First, No Update in Gains

Tables 3.25 to 3.29 provide the features of the transition function resulting from the Algo-

rithm 3.1 when in the Step 4 we sort the neighbors from the least information gain to the

most, and we do not update the information gain of the neighbors after each removing of

the neighbors. We call this order least static information gain first.

101

Table 3.23: The average number of bits required to store the transi-
tion function resulting from the most dynamic information gain first
order.

L1 L2 L3 L4 L5 L6 L7

L0 8285.14 9548.75 12317.23 12954.25 11531.02 11106.61 9855.51

L1 5419.03 8554.55 9814.10 9274.72 9415.16 8442.00

L2 5959.74 7375.78 7419.42 7599.38 7333.91

L3 5378.53 5779.80 6265.73 6262.47

L4 4343.71 4936.84 5253.59

L5 3922.20 4369.69

L6 3790.66

Table 3.24: The average time in milliseconds required to find the
transition function resulting from themost dynamic information gain
first order.

L1 L2 L3 L4 L5 L6 L7

L0 248904.85 122186.18 666788.57 1304033.45 631127.9 61760.82 14718.93

L1 30453.22 277465.6 607790.35 358116.17 34799.41 9197.14

L2 115653.78 296991.67 208981.89 21247.06 5953.62

L3 109789.31 118018.25 11584.9 3583.86

L4 38150.36 5691.71 1956.15

L5 2413.29 1394.87

L6 1023.55

Table 3.25: The average of neighborhood sizes resulting from the
least static information gain first order.

L1 L2 L3 L4 L5 L6 L7

L0 28.13 16.76 12.65 11.02 8.57 7.02 5.45

L1 20.09 13.57 11.41 8.70 7.04 5.52

L2 19.63 13.02 9.24 7.23 5.66

L3 20.08 11.01 7.92 5.93

L4 17.13 9.50 6.73

L5 15.36 8.43

L6 15.02

102

Table 3.26: The average of number of rules in the transition function
resulting from the least static information gain first order.

L1 L2 L3 L4 L5 L6 L7

L0 167.52 201.22 233.06 233.92 236.38 248.21 248.75

L1 201.34 232.91 233.38 236.38 248.21 248.73

L2 231.72 234.07 236.6 248.03 248.75

L3 230.98 236.39 248.22 248.53

L4 235.79 248.23 248.6

L5 248.23 248.57

L6 248.03

Table 3.27: The average number of bits required to store the tran-
sition function resulting from the least static information gain first
order.

L1 L2 L3 L4 L5 L6 L7

L0 4826.54 6825.33 9148.99 10028.94 9849.80 10385.72 9460.94

L1 4051.73 6500.09 7756.31 7996.75 8681.45 8214.33

L2 4723.75 5950.53 6388.97 7128.91 7031.05

L3 4531.18 5092.25 5869.76 5884.75

L4 3986.15 4701.78 5016.12

L5 3811.09 4190.00

L6 3725.97

Table 3.28: The average time in milliseconds required to find the
transition function resulting from the least static information gain
first order.

L1 L2 L3 L4 L5 L6 L7

L0 4721.52 2360.12 5719.63 10076.58 6983.34 2693.05 1709.39

L1 983.57 2829.57 5494.46 4108.04 1748.75 1133.91

L2 1619.91 3151.59 2582.32 1134.32 828.93

L3 1711.61 1633.69 698.39 533.97

L4 819.22 462.57 334.82

L5 326.63 276.09

L6 265.23

103

Table 3.29: The average of neighborhood sizes resulting from the
most static information gain first order.

L1 L2 L3 L4 L5 L6 L7

L0 34.90 18.61 13.89 12.12 9.08 7.12 5.46

L1 22.74 15.18 12.53 9.25 7.18 5.52

L2 21.95 14.41 9.80 7.42 5.68

L3 21.55 11.52 8.08 5.99

L4 17.89 9.77 6.75

L5 15.50 8.52

L6 15.08

Table 3.30: The average of number of rules in the transition function
resulting from the most static information gain first order.

L1 L2 L3 L4 L5 L6 L7

L0 191.28 218.03 241.8 237.51 237.67 249.07 248.94

L1 218.41 241.46 237.42 237.82 249.08 248.95

L2 242.48 237.51 237.78 249.07 249.04

L3 235.38 237.71 249.28 248.81

L4 236.7 249.22 248.98

L5 248.63 248.82

L6 248.03

3.3.2.6 Removing Most Gainful Elements First, No Update in Gains

To see the effect of sorting the neighbors according to their information gain and have a

better understanding of the results of Section 3.3.2.5, we also measure the results when we

sort the neighbors from the one with the most information gain to the one with the least

in step 4 of the Algorithm3.1. The neighbors are not re-sorted according to their updated

information gain after each neighborhood removal. Tables 3.29 to 3.32 present the results

in this case, named most static information gain first order here.

3.3.2.7 Removing Row by Row, Top Left First

We mentioned before in Section 3.2.1.2 that we expect the physically close cells to have

similar properties such as importance, and we suggested to examine removing the unimpor-

tant neighbors according to their location in the CA. In this section we try out this idea.

The neighbors -who initially form a square at the end of Step 3 of the Algorithm 3.1 - are

sorted row by row, from the top left neighbor to the bottom right neighbor. We call it the

104

Table 3.31: The average number of bits required to store the tran-
sition function resulting from the most static information gain first
order.

L1 L2 L3 L4 L5 L6 L7

L0 6756.98 8179.52 10488.73 11233.69 10468.40 10591.36 9504.47

L1 4932.92 7597.91 8722.24 8540.53 8904.02 8241.80

L2 5469.24 6702.91 6790.66 7369.22 7065.23

L3 4962.94 5339.00 6022.76 5959.38

L4 4161.41 4865.52 5041.13

L5 3854.16 4243.19

L6 3740.34

Table 3.32: The average time in milliseconds required to find the
transition function resulting from the most static information gain
first order.

L1 L2 L3 L4 L5 L6 L7

L0 3953.91 2363.08 5702.82 10406.28 7036.28 2704.15 1704.96

L1 975.99 2813.39 5574.47 4048.7 1753.71 1149.67

L2 1573.21 3192.02 2676.73 1129.24 840.23

L3 1709.03 1703.28 695.73 556.59

L4 856.52 478.43 348.82

L5 309.36 263.86

L6 249.47

105

Table 3.33: The average of neighborhood sizes resulting from the
linear order.

L1 L2 L3 L4 L5 L6 L7

L0 31.40 17.71 13.16 11.55 8.79 7.15 5.56

L1 21.49 14.13 12.00 8.91 7.16 5.61

L2 20.42 13.52 9.45 7.41 5.86

L3 20.44 11.26 8.01 6.11

L4 17.41 9.73 6.84

L5 15.43 8.57

L6 14.97

Table 3.34: The average of number of rules in the transition function
resulting from the linear order.

L1 L2 L3 L4 L5 L6 L7

L0 172.97 208.73 233.66 233.24 235.82 247.54 248.03

L1 208.29 232.87 232.93 235.89 247.47 248.05

L2 233.53 232.32 235.78 247.48 248.25

L3 230.6 235.46 247.72 248.1

L4 234.92 247.8 248.31

L5 247.31 248.21

L6 247.35

linear order and present the result of using this order in the Tables 3.33 to 3.36

3.3.2.8 Removing Row by Row, Bottom Right First

To verify the effects of locality on the order of removing unimportant neighbors, we setup

another experiments similar to of Section 3.3.2.7 but in a reverse order; i.e. the neighbors

are sorted row by row, from the bottom right neighbor to the top left neighbor in the

neighborhood of Step 3 in the Algorithm 3.1. We call this the reverse linear method and

Table 3.35: The average number of bits required to store the transi-
tion function resulting from the linear order.

L1 L2 L3 L4 L5 L6 L7

L0 5652.49 7468.38 9486.30 10423.22 10091.02 10557.38 9632.77

L1 4464.27 6761.45 8121.84 8186.22 8814.38 8329.31

L2 4837.40 6092.39 6510.42 7291.50 7256.29

L3 4588.55 5186.38 5926.64 6051.47

L4 4031.42 4809.13 5090.41

L5 3814.28 4253.92

L6 3702.34

106

Table 3.36: The average time in milliseconds required to find the
transition function resulting from the linear order.

L1 L2 L3 L4 L5 L6 L7

L0 1838.6 851.16 1804.25 2957.66 1689.46 515.64 265.5

L1 497.23 1116.92 1642.02 1036.64 351.72 197.16

L2 806.78 1177.46 803.01 279.89 165.27

L3 835.16 630.24 218.58 131.07

L4 473.23 190.58 109.3

L5 199.28 113.23

L6 155.64

Table 3.37: The average of neighborhood sizes resulting from the
reverse linear order.

L1 L2 L3 L4 L5 L6 L7

L0 29.53 17.63 12.76 11.34 8.98 7.08 5.44

L1 21.45 13.98 11.77 9.14 7.11 5.49

L2 20.60 13.42 9.58 7.25 5.72

L3 20.79 11.28 7.91 6.09

L4 17.55 9.61 6.81

L5 15.60 8.67

L6 15.09

presents its results in the Tables 3.37 to 3.40

3.3.2.9 Removing in Random Order

In order to obtain a better understanding of the effects of each of the previous removal

orders, we setup an experiment where the neighbors are examined for their importance in

a totally random order. This can be considered as the base of comparison for each of the

orders mentioned in the Sections 3.3.2.1 to 3.3.2.8. We call this the random order, and

Table 3.38: The average of number of rules in the transition function
resulting from the reverse linear order.

L1 L2 L3 L4 L5 L6 L7

L0 170.39 207.81 236.21 234.92 235.55 247.37 248.28

L1 208.1 235.1 234.56 235.6 247.37 248.27

L2 235.46 234.26 235.32 247.29 248.32

L3 232.62 235.03 247.21 248.26

L4 234.27 247.47 248.3

L5 247.11 248.21

L6 247.65

107

Table 3.39: The average number of bits required to store the transi-
tion function resulting from the reverse linear order.

L1 L2 L3 L4 L5 L6 L7

L0 5071.91 7418.11 9379.34 10433.03 10219.10 10428.33 9417.90

L1 4470.21 6761.73 8100.40 8321.19 8731.37 8156.25

L2 5041.69 6146.17 6536.58 7125.16 7079.61

L3 4736.60 5148.77 5838.52 6036.34

L4 4035.13 4738.33 5066.48

L5 3850.69 4303.55

L6 3736.80

Table 3.40: The average time in milliseconds required to find the
transition function resulting from the reverse linear order.

L1 L2 L3 L4 L5 L6 L7

L0 2926.49 947.91 2070.78 3233.85 1834.6 534.71 251.49

L1 526.64 1275.79 1988.5 1249.36 383.53 192.79

L2 1018.03 1473.73 1000.25 296.56 174.46

L3 1148.47 753.17 212.65 127.63

L4 563.22 204.75 97.07

L5 179.8 109.03

L6 145.14

present its results in the Tables 3.41 to 3.44.

3.3.3 Analysis of the results - Expanding Neighborhood

In the follwoing sections we use bar plots to visualize the data of the tables of the format

3.7. To have an over-all observation of all the 9 methods at once, in the Sections 3.3.3.1 to

3.3.3.4 we provide an X − Y −Z plot that bundles together all the 9 corresponding tables.

In such case, the arrangement of the bars is as as illustrated in Figure 3.11.

Table 3.41: The average of neighborhood sizes resulting from the
random order.

L1 L2 L3 L4 L5 L6 L7

L0 30.71 17.48 13.38 11.53 8.91 7.03 5.38

L1 21.40 14.38 11.88 9.02 6.95 5.46

L2 21.08 13.63 9.42 7.30 5.70

L3 20.99 11.26 8.01 5.91

L4 17.66 9.59 6.66

L5 15.54 8.53

L6 15.05

108

Table 3.42: The average of number of rules in the transition function
resulting from the random order.

L1 L2 L3 L4 L5 L6 L7

L0 179.06 212.83 240.32 236.21 237.34 248.77 248.62

L1 210.88 239.68 236.21 237.39 248.26 248.77

L2 239.93 235.11 237.25 248.42 248.91

L3 233.11 237.03 248.41 248.63

L4 236.02 248.65 248.51

L5 248.49 248.86

L6 247.99

Table 3.43: The average number of bits required to store the transi-
tion function resulting from the random order.

L1 L2 L3 L4 L5 L6 L7

L0 5567.76 7486.53 10039.59 10653.31 10296.52 10456.13 9330.78

L1 4490.45 7123.16 8212.29 8337.31 8580.59 8128.27

L2 5222.49 6240.44 6543.47 7235.97 7074.18

L3 4784.81 5221.44 5951.04 5869.44

L4 4107.88 4760.31 4959.23

L5 3859.92 4246.72

L6 3731.48

Table 3.44: The average time in milliseconds required to find the
transition function resulting from the random order.

L1 L2 L3 L4 L5 L6 L7

L0 2471.05 984.04 1904.09 3028.96 1728.8 520.34 259.48

L1 573.39 1285.18 1922.98 1174.03 377.59 221.14

L2 981.67 1450.42 902.94 304.36 165.59

L3 1101.23 770.78 236.44 136.35

L4 544.76 203.75 108.55

L5 195.95 118.32

L6 152.71

109

Figure 3.11: The arrangement of the bars where all the removing
orders are bundled together in one plot.

3.3.3.1 Neighborhood Sizes

For better observation, Figure 3.12 illustrates different neighborhood sizes for different

transition functions resulted form each of the 9 orders of evaluating neighbors to remove

the unimportant ones that we explained in Sections 3.3.2.1 to 3.3.2.9. As it can be seen

in that figure, for each transition function that creates a specific layer of the image from

its previous layers, the result of all methods are bundled together to form groups of 9

bars adjacent to each other. The arrangement of bundles is explained in the Figure 3.11.

Although contain different values, these bundles can be observed to have two certain trends,

both expectable. First is that the Neighborhood Size grows larger as we keep the layer to

be created constant and we start from earlier layers. For example creating Layer 3 of the

images starting from the layer 0 (i.e. using the layers 0, 1and2 in a CA with two steps of

memory) needs obviously smaller neighborhood size comparing to creating the same layer

3 only from layer 2 of the image (i.e. a memoryless CA). This is because as the memory

steps of the CA increase, CA has more information available to resolve the conflicts in the

110

rule base. This means instead of growing the neighborhood larger to finally find a difference

between two cells with different next states, CA can look in to the history of those two cells

in a smaller neighborhood to find a difference and use it to distinguish the two.

The other characteristic of the plot in Figure 3.12 is that for a CA with a fixed levels of

memory, the neighborhood size shrinks smaller as we move towards creating least significant

layers. For example for a memoryless CA (i.e. memory steps = 0); creating the layer 2 from

layer 1 of the image requires smaller neighborhood than the case of creating layer 1 form

layer 0 of the image. This is again expectable because as we move towards less significant

layers of the image, the cells with the same state become more spread in the image, providing

more information to the algorithm to create the transition function from. This property

(spreading through out the whole image in less significant bits) can be observed very well

in the 8 figures in Table 3.1.

3.3.3.2 Number of Rules in the Transition Function

Figure 3.13 illustrates the average number of rules in each transition function resulted form

each of the 9 orders explained in Sections 3.3.2.1 to 3.3.2.9. As it can be observed, the aver-

age number of rules is lower in the transition functions that create the more significant bits.

This is because the cells with similar state are often group together in the more significant

bits, resulting in more similarities and repeating patterns in lower levels (corresponding to

more significant bits). This is in contrast to the less significant bits where cells with similar

patterns are distributed all over the image. Again, this characteristics can be observed in

the 8 figures of the Table 3.1.

The other property of the Figure 3.13 is that the number of rules in a transition function

can easily get saturated to 250 rules. Remember that the size of the image is 20×25 pixels,

meaning there are a total of 500 cells in CA, each corresponding to one pixel. This will

result in an upper limit of 500 rules in the transition function. Knowing we store only the

rules whose output are 1 and there are 128 images with no bias on the number of black or

white pixels in each layer, it is reasonable to expect the upper limit of 250 rules in each

transition function. On the other hand, this upper limit is quickly reached because the

chance of having two exactly similar patterns of neighborhood in a CA with totally random

111

Figure 3.12: The overview of the neighborhood size for all transition
functions resulting from different removing orders in the Expanding
Neighborhood method.

112

Figure 3.13: The overview of the number of rules in each transition
functions resulting from different removing orders in the Expanding
Neighborhood method.

configurations in time is 1
(h+1)×2n , where h is the number of memory steps of the CA and

n is the neighborhood size. For an average neighborhood size of 20 for a memoryless CA

this chance is 1
1048576 = 0.00000095, a very small chance. As the distribution of the cells

with the same state becomes more random in less significant bits, less will be the chance

of having two repeating rules in the transition function. Rules are merged together only if

they are identical, so it is expectable to not merge any rules in creating higher levels of CA

and hit the upper limit.

3.3.3.3 The Storage Size of the Transition Function

At the first glance one might expect to require less memory to store the transition functions

with smaller neighborhood and expect the trend in the plot to be similar to of Figure 3.12,

113

as storing the transition function is to store all the individual rules whose output is 1, and

one bit per neighborhood in the If part of the rule will be required. Nevertheless, it is

important to remember the effect of the number of memory steps of the CA on the rules.

Although the neighborhood becomes smaller as we increase the number of memory steps of

the CA, same neighborhood (with different configuration) appears multiple times in the If

part of the rule. As it can be observer from the Figure 3.14, the effect of storing the same

neighborhood multiple times cancels the effects of shrinking the neighborhood. In other

terms, adding history to the CA in the expanding neighborhood method does not have any

positive effects on making the whole transition function smaller.

The other trend that can be observed from the Figure 3.14 is that for a constant number

of memory steps, the transition function for creating less significant layer takes less amount

of memory. This is again consistent with our expectations of having more data available

to the transition function in order to use smaller neighborhoods in case of less significant

layers, similar to the same behavior in the neighborhood sizes.

3.3.3.4 The Calculation Time

Since the 3 first steps of the Algorithm 3.1 is common for all the 9 methods explained in

Sections 3.3.2.1 to 3.3.2.9, we measure the time only for the forth step of the algorithm so we

can compare the methods better. Figure 3.15 illustrates this measured time in milliseconds

for finding each of transition functions. The first thing that is noticed in there is that

two specific removing orders take extremely longer than the other orders. Not surprisingly,

these two orders are least dynamic information gain first and most dynamic information

gain first. One can easily tell that updating the information gain of all of the neighborhood

elements after removing any of the unimportant elements is causing this extremely long

time. One might rightfully believe that this extremely long time makes that specific order

not practical even if its storage size is slightly better than other methods to store the resulted

transition function.

To observe the overall characteristics of the calculation time we remove those two specific

method from the plot of the Figure 3.15 and re-present the plot without those two orders

in Figure 3.16.

114

Figure 3.14: The storage size (in bits) required to store each of the
transition functions resulting from different removing orders in the
Expanding Neighborhood method.

115

Figure 3.15: The time required for Step 4 of the Algorithm 3.1 to
find the transition functions using each of the removing orders in the
Expanding Neighborhood method.

116

Figure 3.16: The time required for Step 4 of the Algorithm 3.1 to
find the transition functions using each of the removing orders in the
Expanding Neighborhood methods, except the least dynamic infor-
mation gain first and most dynamic information gain first.

117

It is expected for the pattern of calculation time to follow the pattern of the storage sizes

in the Figure 3.14 or in other terms, the pattern of total elements in the neighborhood when

considering the memory of the CA. The reason is that the more elements in the If part

of the rules are, the longer it takes to remove the unimportant ones and re-form the rules.

This can be observed in the pattern of Figure 3.16. However, we emphasize again that the

calculation time - when measured in seconds - is not an important feature of the algorithm.

All the methods in the Sections 3.3.2.1 to 3.3.2.9 (except the least information gain first

and most information gain first orders) have the same complexity and the differences in

times are mainly because of implementation of the code. When comparing the time cost of

the algorithms it is a much better idea to refer to the complexity analysis of each algorithm.

In Section 3.2 such analysis is provided after introducing each algorithm.

3.3.3.5 The Effects of Removing Unimportant Neighbors According to Their Age

We define the age of an element in neighborhood the number of iterations of step 3 of

the Algorithm 3.1 after the element was added to the neighborhood. Current existing

methods sort the elements in the neighborhood according to their age and start removing

the unimportant neighbors from the oldest one in neighborhood. To observe the effect of

sorting by age there, we set up two experiments in Sections 3.3.2.1 and 3.3.2.2, and compare

their results to the case where the neighbors are put in a random order in the beginning of

Step 4 of the Algorithm 3.1 (i.e. the results of the Section 3.3.2.9). Figures 3.17 illustrates

this comparison for the storage size of the resulting transition function. We compare only

the storage size of the transition functions, because it is the key important property of a

transition function as expressed in the Section 3.3.2. However, one can easily make the

comparison for any of the other measured properties (i.e. neighborhood size, number of

rules, calculation time) according to the provided tables in corresponding section. Note

that in each plot in the following figures we compare 3 different orders at the same time. As

it can be observed in the plots, there are bundles of 3 bars for each transition function from

any starting layer to any target layer. The caption of the figures will explicitly mention

what removing order each of the right, middle and the left bars are representing.

To our surprise, Figure 3.17 shows that removing the unimportant neighbors starting

118

Figure 3.17: The comparison of the storage sizes the transition func-
tions after using Remove Oldest First (right), Random (middle) and
Remove Newest First (left) orders.

119

from the newest neighbor results in a smaller transition function. Moreover, the current

method has a poorer performance even comparing to a random order. The reason is believed

to be that our method adds groups of neighbors in each iteration of Step 3 of the algorithm

3.1, instead of adding them one by one. This was explained and justified in Section 3.2.1.2.

As a result, there are chances that in the last iterations (that resolves all the conflicts)

several extra (hence unimportant) neighborhood elements are added. These extra elements

are the youngest elements and therefore examining the youngest elements first can be more

effective. If started from the oldest ones, several of such originally unimportant neighbors

can become important by the time they are examined, because one or more older, initially

important neighbors might have been marked as not-important after adding the latest

groups of elements.

3.3.3.6 The Effects of Removing Unimportant Neighbors According to Their Information Gain and

Updating Their Information Gain After Each Removal

We told in Section 3.2.1.2 that the information gain of the elements in the If part of the

rules seem to be a good candidate to sort the neighborhood elements according to, before

examining for importance. Sections 3.3.2.3 and 3.3.2.4 provide the results of sorting once

from the element with the least information gain and another time from the element with

most information gain. In this experiment we update the information gain of all remaining

elements whenever an unimportant neighbor is removed. Figure 3.18 compares the result

of the two with the resulted of a random order.

Figure 3.18 makes it clear that while - as expected - removing the element with least

information gain has a clear advantage over the opposite order, both orders act poorly when

compared to a random order. The reason is believed to be the updating the information

gain of the elements after each element is removed, because removing an element rearranges

the combination of the remaining neighbors, and the information gain at the run time might

not reflect the original importance of the neighbor anymore. Moreover, we remember from

Section 3.3.3.4 that both methods take extremely long time to find the transition function.

Considering their poor performance and long runtime, the author of this thesis deeply

regrets even trying these methods.

120

Figure 3.18: The comparison of the storage sizes of the transition
functions after using Remove Most Dynamic Information Gain First
(right), Random (middle) and Remove Least Dynamic Information
Gain First (left) orders.

121

Figure 3.19: The comparison of the storage sizes of the transition
functions after using Remove Most Static Information Gain First
(right), Random (middle) and Remove Least Static Information Gain
First (left) orders.

3.3.3.7 The Effects of Removing Unimportant Neighbors According to Their Information Gain Without

Updating Their Information Gain After Each Removal

After observing the poor results of Sections 3.3.2.3 and 3.3.2.4 in Figure 3.18, we repeated

the same experiment, this time without re-arranging the sorted list according to the updated

information gains (Sections 3.3.2.5 and 3.3.2.6). This will let the elements to preserve their

initial information gain, and also contributes largely to keep the run time relatively short.

The results of those two experiments - as well as the random order as the base of comparison

- is provided in Figure 3.19.

Figure 3.19 clearly proves the success of the idea of using information gain in sorting

neighborhood elements for examining their importance (Section 3.2.1.2). As it can be seen

122

in this figure, sorting the elements from the element with least initial information gain has a

constant superiority over sorting in opposite order, and also almost always outperforms the

random order. Remembering from the Section 3.3.3.3 that adding memory to CA does not

contribute to smaller transition functions, we would want to create each layer only from its

immediate previous layer. Therefor we can safely state that sorting from the element with

the least initial information gain always out performs the random order in our application.

3.3.3.8 The Effects of Updating the Information Gains After Each Removal When Sorting By Informa-

tion Gain

We already showed in the Sections 3.3.3.6 and 3.3.3.7 that updating the information gain of

the neighborhood elements after removing each unimportant element has a negative effect

on the storage sizes of the transition function. To demonstrate this effect more clearly we

compare the two cases where in both the elements in the neighborhood are sorted from

the element with least information gain to the one with the most information, but their

information gain is constantly updated in one and does not get updated in the other. The

results are illustrated in Figure 3.20. It is clear from that figure that changing the initial

information gain of the elements has a negative impact on the storage sizes of the transition

function.

3.3.3.9 The Effects of Removing Unimportant Neighbors According to Their Location in the CA

The second idea suggested in Section 3.2.1.2 was to examine the neighborhood elements

according to their location in the CA. We did the experiments in the Sections 3.3.2.7 and

3.3.2.8. Figure 3.21 compares the cases where we sort the neighborhood elements in Step 4

of the Algorithm 3.1 row by row, once from the highest to the lowest row and once with the

reverse order. We also provide the results of the random order for a better understanding

of their performance.

As we expect, linear and reverse linear orders have similar performance, as they follow

the same concept of locality; i.e. if a neighborhood element is unimportant, there are

chanced that its adjacent element is unimportant too. Both method also have slightly better

performance of the random order, proving that the idea or sorting based on the location

123

Figure 3.20: The comparison of storage sizes of the transition func-
tions after using Remove Least Dynamic Information Gain First
(right), Random (middle) and Remove Least Static Information Gain
First (left) orders.

124

Figure 3.21: The comparison of the storage sizes of the transition
functions after using the Linear (right), Random (middle) and Re-
verse Linear (left) orders.

125

of the elements suggested in Section 3.2.1.2 has been successful, although not providing a

tremendous positive effect on the resulted transition function.

3.3.3.10 Comparison of the Most Successful Orders

We analyzed the effect of different properties (age, information gain, location) of the neigh-

borhood elements in the above sections. We saw in Section 3.3.3.5 that it is better to

examine newer neighborhood elements before the older ones. We saw in Section 3.3.3.7

and 3.3.3.8 that it is better to examine elements with less information gain before the ones

with more information gain, and keep the initial information gain of the cells rather than

dynamically updating the information gains. We also saw in the Section 3.3.3.9 that it is

better to examine the physically close cells in a sequence rather than examining randomly

located cells. Here we compare what we observed so far, to see using which of these param-

eters (age, information age and location) to sort the neighborhood elements in Step 4 of

the Algorithm 3.1 results in the transition function with smallest storage size. Figure 3.22

compares the results of the best 3 orders so far.

As it can be observed in Figure 3.22, the order we suggested in Section 3.2.1.2; i.e.

the middle bar which represents sorting from the neighborhood element with the least

information gain; out performs the other orders in most of the times by finding a transition

function whose storage requires the least number of bits in each cell of the CA.

3.3.3.11 Improvements to the Current Existing Methods

Table 3.45 represents the saving in the storage size of the transition function if our suggested

Least Static Information Gain First order is used in Step 4 of the Algorithm 3.1 instead

of the currently used Oldest First order. The average saving is 8.36% over all transition

functions, and 12.65% for the transition functions of a memoryless CA (the diagonal values).

3.3.4 Results - Storing Individual Exceptions

To observe and compare the results of our first suggested method, i.e. using hidden states

and storing individual exceptions, we implement the Algorithm 3.2 to run it on the same

126

Figure 3.22: The comparison of the storage sizes of the transition
functions after using the Oldest First (right), Least Static Informa-
tion Gain First (middle) and Linear (left) orders.

Table 3.45: Saving in the storage size of the transition function if
our suggested Least Static Information Gain First order is used in
Step 4 of the Algorithm 3.1 instead of the currently used Oldest First
order.

L1 L2 L3 L4 L5 L6 L7

L0 29.40% 17.00% 14.73% 12.34% 7.98% 3.71% -0.43%

L1 18.36% 16.23% 13.23% 7.96% 4.25% -1.43%

L2 15.72% 12.94% 7.84% 4.59% 0.72%

L3 12.53% 7.53% 4.43% 2.27%

L4 6.26% 5.59% 1.07%

L5 3.99% 2.91%

L6 2.26%

127

Table 3.46: The average of number of rules in the transition function
resulting from the Algorithm 3.2.

L1 L2 L3 L4 L5 L6 L7

L0 50.07 122.05 179.69 199.94 218.53 238.51 247.78

L1 99.63 177.58 199.76 218.53 238.51 247.78

L2 139.74 198.79 218.51 238.5 247.78

L3 156.32 217.96 238.5 247.78

L4 172.57 237.96 247.71

L5 187.13 247.44

L6 193.59

set of inputs as described in the Section 3.3.1. Similar to the previous experiments, only

the rules whose output are 1 are stored in the transition function. For this purpose we have

made a minor modification to the Equation 3.29 in Algorithm 3.2, so that E is always equal

to H0. This lets us to always set Sout = 1 in step 3 of the algorithm. This will make a minor

negative effect on the storage size of the transition function but at the same time it makes

the representation of the transition function more similar to of Expanding Neighborhood

method: similar to the Expanding Neighborhood method, the next state of a cell whose

neighborhood cannot be found in the transition function will be 0. We will apply the same

modification to the next suggested method as well, to make sure the representation is not

favoring our suggested methods in the comparisons. We present the results in this section

and provide the analysis of the results in the Section 3.3.5.

Unlike the existing method of Expanding Neighborhood, the Storing Individual Excep-

tions method has a fixed size of neighborhood. Tables 3.46 to 3.48 provide the average of

number of rules in the transition function, storage size of the transition function (in bits)

and the running time of algorithm to find the transition function in milliseconds.

3.3.5 Analysis of Results - Storing Individual Exceptions

3.3.5.1 Storage Size

Table 3.47 shows that in the Storing Individual Exceptions method, similar to the case of

Expanding Neighborhood, adding memory to the CA does not improve the storage size

of the transition function. We can see that to create any layer of the image, the smallest

transition function is the one that build from the immediate previous layer only. In other

128

Table 3.47: The average number of bits required to store the transi-
tion function resulting from the Algorithm 3.2.

L1 L2 L3 L4 L5 L6 L7

L0 1616.25 2909.27 5221.70 7808.84 10440.69 13241.25 15887.80

L1 2049.06 3586.24 6006.56 8473.63 11094.61 13657.70

L2 2257.66 4201.59 6506.67 8947.68 11427.59

L3 2736.56 4537.81 6801.13 9197.49

L4 2970.08 4650.16 6965.58

L5 2922.66 4734.51

L6 2965.70

Table 3.48: The average time in milliseconds required to find the
transition function resulting from the Algorithm 3.2.

L1 L2 L3 L4 L5 L6 L7

L0 15.8 15.68 16.44 16.11 17.85 19.11 25.1

L1 15.72 15.5 15.52 15.66 16.93 19.09

L2 15.78 15.61 15.51 15.54 17.69

L3 15.7 15.56 15.6 15.71

L4 15.6 15.64 15.62

L5 16.09 15.59

L6 15.61

words, the smallest values in each column of that table are those closest to the bottom.

When compared to the storage size of the transition function resulting from the best case

of Expanding Neighborhood method (Table 3.27), we notice that our first suggested method

works considerably better for the CAs with no or one step of memory, as depicted in

the Table 3.49. The improvement to the storage size of the transition function for the

memoryless CA (the diagonal values) is 39.5%. When considered all the possible values

(i.e. CAs with all number of memory steps), this method still improves the storage size by

3.31%.

3.3.5.2 Calculation Time

We analyzed the complexity of the Algorithm 3.2 in Section 3.2.2.3 and show that its or-

der of complexity is lower than of the Algorithm 3.1 used for the Expanding Neighborhood

method. This is no surprise then to notice the huge difference in the calculation time of

the two methods. Table 3.50 illustrates the advantage of the calculation time in Table 3.48

over the calculation time in Table 3.28. It is clear there that the Storing Individual Excep-

129

Table 3.49: Savings in the storage size of the transition function when
using the Storing Individual Exceptions instead of the best case of
the Expanding Neighborhood method.

L1 L2 L3 L4 L5 L6 L7

L0 66.51% 57.38% 42.93% 22.14% -6.00% -27.49% -67.93%

L1 49.43% 44.83% 22.56% -5.96% -27.80% -66.27%

L2 52.21% 29.39% -1.84% -25.51% -62.53%

L3 39.61% 10.89% -15.87% -56.29%

L4 25.49% 1.10% -38.86%

L5 23.31% -13.00%

L6 20.40%

tions method has an absolute superiority in terms of calculation time over the Expanding

Neighborhood method when using the Least Static Information Gain, as the former takes

only 1.73%0 of the calculation time of the latter on average. Even when compared to the

fastest order of Expanding Neighborhood (i.e. the Random order, where no time is spent on

sorting the neighborhood elements), we can still observe the Storing Individual Exceptions

method takes on average only 4.84% of the calculation time of Expanding Neighborhood

method (Table 3.51).

Table 3.50: The ratio of the time needed to find the transition func-
tion in Storing Individual Exceptions method to the equivalent time
in the Expanding Neighborhood method that uses the Least Static
Information Gain First order.

L1 L2 L3 L4 L5 L6 L7

L0 0.33% 0.66% 0.29% 0.16% 0.26% 0.71% 1.47%

L1 1.60% 0.55% 0.28% 0.38% 0.97% 1.68%

L2 0.97% 0.50% 0.60% 1.37% 2.14%

L3 0.92% 0.95% 2.24% 2.94%

L4 1.90% 3.38% 4.67%

L5 4.93% 5.65%

L6 5.89%

3.3.6 Results - Using Ranges of Values to Store Exceptions

We proposed the method of Using Ranges of Values to Store Exceptions in Section 3.2.3 and

provided three algorithms to implement it (Top-Down Search in Section 3.2.3.2, Bottom-Up

Search in Section 3.2.3.4 and Evolutionary Search in Section 3.2.3.6). Here we provide the

130

Table 3.51: The ratio of the time needed to find the transition func-
tion in Storing Individual Exceptions method to the equivalent time
in the Expanding Neighborhood method that uses the Random order.

L1 L2 L3 L4 L5 L6 L7

L0 0.64% 1.59% 0.86% 0.53% 1.03% 3.67% 9.67%

L1 2.74% 1.21% 0.81% 1.33% 4.48% 8.64%

L2 1.61% 1.08% 1.72% 5.11% 10.69%

L3 1.43% 2.02% 6.60% 11.53%

L4 2.86% 7.68% 14.39%

L5 8.21% 13.18%

L6 10.22%

Table 3.52: The average of number of rules in the transition function
resulting from using the Top-Down search in Section 3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 34.1420 29 195.4 224.27 234.32 249.98 249.01

L1 24 188.81 224.02 234.31 249.98 249.01

L2 N/A 222.98 234.3 249.98 249.01

L3 88.5 235.16 249.97 249.01

L4 207 249.84 248.93

L5 N/A 248.65

L6 199

result of using each algorithm in the Sections 3.3.6.1 to 3.3.6.3, and compare and analyze

the results in the Section 3.3.7. Similar to the method of Storing Individual Exceptions,

this method has a fixed neighborhood size of 9, so same three parameters of Section 3.3.4

are measured for each algorithm here. These algorithms might fail because of the reason

listed in Section 3.3.1, and in each experiment one table lists the number of times when

this happens. Having a number n in row Li and column Lj of that table means that the

specific method has failed to find the transition function that generates the layer Lj of the

image from the layers Li to Lj−1 in a total of n times (out of 128 times, the total number

of images in the test data set).

3.3.6.1 Using the Top-Down search in the Using Ranges of Values to Store Exceptions method

Tables 3.52 to 3.55 provide the results of using Algorithm 3.4 in the Using Ranges of Values

to Store Exceptions method that we defined in Section 3.2.3.

131

Table 3.53: The average number of bits required to store the tran-
sition function resulting from using the Top-Down search in Section
3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 458.57 617.66 5611.8 8349.08 10811.76 13757.81 15955.19

L1 390 3759.31 6326.19 8702.63 11507.92 13714.03

L2 N/A 4298.22 6593.72 9258.03 11472.87

L3 1385 4509.83 7007.8 9231.71

L4 3770 4763.82 6988.7

L5 N/A 4746.88

L6 3510

Table 3.54: The average time in milliseconds required to find the
transition function resulting from using the Top-Down search in Sec-
tion 3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 62925.9 123354.51 1268.94 92836.35 18243.41 1173.53 47.67

L1 97820.18 1420.65 101553.07 19673.84 1094.38 39.83

L2 5945.51 108866.35 20320.98 1098.19 35.05

L3 76987.7 21592.38 1114.44 29.4

L4 1722.26 1199.73 25.57

L5 190.88 23.03

L6 33.57

Table 3.55: the number of times using the Top-Down search in Sec-
tion 3.2.3 exceeded the available resources.

L1 L2 L3 L4 L5 L6 L7

L0 121 125 86 54 42 48 14

L1 126 96 55 42 48 14

L2 128 57 42 48 14

L3 126 44 48 14

L4 127 49 14

L5 128 16

L6 127

132

Table 3.56: The average of number of rules in the transition function
resulting from using the Bottom-Up search in Section 3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 50.07 122.05 179.69 199.94 218.53 238.51 247.78

L1 99.63 177.58 199.76 218.53 238.51 247.78

L2 139.74 198.79 218.5 238.5 247.78

L3 156.32 217.96 238.5 247.78

L4 172.57 237.96 247.71

L5 187.13 247.44

L6 193.59

Table 3.57: The average number of bits required to store the transi-
tion function resulting from using the Bottom-Up search in Section
3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 1081.09 2882.63 5253.81 7577.03 10222.64 13222.73 15891.15

L1 2082.89 3623.5 5775.31 8255.65 11076.09 13661.05

L2 2583.04 3975.1 6288.93 8929.16 11430.95

L3 2896.4 4323.9 6782.68 9200.85

L4 3222.26 4635.63 6969.09

L5 3450.7 4741.14

L6 3565.00

3.3.6.2 Using the Bottom-Up search in the Using Ranges of Values to Store Exceptions method

Tables 3.56 to 3.59 provide the results of using Algorithm 3.5 in the Using Ranges of Values

to Store Exceptions method (defined in Section 3.2.3).

3.3.6.3 Using the Evolutionary search in the Using Ranges of Values to Store Exceptions method

Tables 3.60 to 3.63 provide the results of using the Evolutionary Algorithm explained in the

Section 3.2.3.6 in the Using Ranges of Values to Store Exceptions method. This method

was defined in Section 3.2.3.

3.3.7 Analysis of Results - Using Ranges of Values to Store Exceptions

We again use the 3D bar plots to compare each property (number of rules, storage size and

calculation time) of the transition function resulting from the Using Ranges of Values to

Store Exceptions method. In each plot there will be three bars bundled together for each

transition function. The rightmost bar represents the measurement of the property when

133

Table 3.58: The average time in milliseconds required to find the
transition function resulting from using the Bottom-Up search in
Section 3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 15.67 16.5 23.34 29.22 37.86 48.64 59.98

L1 15.9 19.51 24.89 29.85 40.99 46.67

L2 15.92 21.99 25.81 32.89 40.82

L3 15.6782 23.2 27.96 34.75

L4 15.57 25.06 29.64

L5 15.94 24.39

L6 15.86

Table 3.59: the number of times using the Bottom-Up search in Sec-
tion 3.2.3 exceeded the available resources.

L1 L2 L3 L4 L5 L6 L7

L0 0 0 0 0 0 0 0

L1 0 0 0 0 0 0

L2 0 0 0 0 0

L3 0 0 0 0

L4 0 0 0

L5 0 0

L6 0

Table 3.60: The average of number of rules in the transition function
resulting from using the Evolutionary search in Section 3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 49.85 122.05 179.69 201.24 218.53 238.51 247.78

L1 99.6326 177.58 199.76 218.53 238.51 247.78

L2 139.74 199.44 218.5 238.5 247.78

L3 156.51 217.96 238.5 247.78

L4 172.57 237.96 247.71

L5 187.13 247.44

L6 193.59

Table 3.61: The average number of bits required to store the transi-
tion function resulting from using the Evolutionary search in Section
3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 1095.55 2881.69 5253.96 7623.24 10222.95 13221.64 15889.9

L1 2079.14 3623.5 5778.75 8255.03 11075.15 13659.8

L2 2582.26 3986.85 6287.84 8928.07 11429.7

L3 2903.7 4323.28 6781.43 9199.6

L4 3220.54 4634.53 6967.84

L5 3448.2 4739.89

L6 3564.53

134

Table 3.62: The average time in milliseconds required to find the
transition function resulting from using the Evolutionary search in
Section 3.2.3.

L1 L2 L3 L4 L5 L6 L7

L0 5846.17 1768.84 621.07 1938.47 1464.61 326.21 117.02

L1 3133.54 690.21 1806.84 1392.25 312.67 103.85

L2 2289.65 1766.39 1349.35 306.58 99.08

L3 3398.3 1490.11 305.39 92.96

L4 3150.92 288.83 86.92

L5 2096.29 86.55

L6 2028.71

Table 3.63: the number of times using the Evolutionary search in
Section 3.2.3 exceeded the available resources.

L1 L2 L3 L4 L5 L6 L7

L0 2 0 0 2 0 0 0

L1 0 0 0 0 0 0

L2 0 1 0 0 0

L3 1 0 0 0

L4 0 0 0

L5 0 0

L6 0

Top-Down search (Section 3.2.3.2) is used. The middle bar represents the measurement

of the same property when the Bottom-Up search (Section 3.2.3.4) is used and finally the

leftmost bar represents the measurement of the same property when the Evolutionary search

(Section 3.2.3.6) is used.

3.3.7.1 Number of Rules in the Transition Function

Figure 3.23 illustrates the average number of rules in the form of Equation 3.33 in the

transition functions resulting from using any of the 3 search methods. We can see that the

pattern of the number of rules is similar to of the case of Extending Neighborhood in Figure

3.13 but they reach to the upper limit of 250 rules more slowly. The reason is because of

the capability of our second suggested method to merge multiple rules in to one rule. We

can also notice a major difference between the results of Top-Down search and the other

two in creating the first few layers in a memoryless CA. However, there is not enough data

to strongly state the superiority of that method in those cases. As it can be seen in Table

135

Figure 3.23: The overview of the number of rules in the transition
functions in the Using Ranges of Values to Store Exceptions method
using Top-Down (right), Bottom-Up (middle) and evolutionary (left)
searches.

3.55, the reason is the failure of this method in finding the transition function for more than

90% of the input test data. As explained in Section 3.3.1, the Top-Down search method is

forcefully terminated when the required runtime for finding one single transition function

exceeds few hours.

3.3.7.2 The Storage Size of the Transition Function

Figure 3.24 provides an overview of the storage size of the transition functions resulting

from Using Ranges of Values to Store Exceptions method and using any of the 3 search

methods. A major difference between the trend of storage sizes here and in the Expanding

Neighborhood method (Figure 3.14) is that in case of a memoryless CA (creating layer j

from the layer j − 1 only) the storage size shrinks as we move towards the higher layers

136

Figure 3.24: The overview of the storage size of the transition func-
tions in the Using Ranges of Values to Store Exceptions method us-
ing Top-Down (right), Bottom-Up (middle) and evolutionary (left)
searches.

(corresponding to the less significant bits) in the Expanding Neighborhood method, while the

storage size is smaller in the lower layers in the Using Ranges of Values to Store Exceptions

method. It is because the random distribution of the cells with the same state in higher

layers contributes to provide more information to the Algorithm 3.1 and consequently re-

duces the neighborhood size and the storage size. On the other side, the same behavior

(more random distribution) makes it difficult for any of the search methods in Using Ranges

of Values to Store Exceptions to find larger irregular regions in the lower layers, so it is

expected to have larger storage sizes there.

Once again, the results of the Top-Down search is not very dependable because of very

few cases where it has been successful in finding the transition function.

137

Figure 3.25: The overview of the calculation time of the transition
functions in the Using Ranges of Values to Store Exceptions method
using Top-Down (right), Bottom-Up (middle) and evolutionary (left)
searches.

3.3.7.3 The Calculation Time for Each Search Method

Figure 3.25 compares the calculation time of the three different searches in the Using Ranges

of Values to Store Exceptions method. The first thing that can be noticed in that plot is

that the calculation time with the Top-Down search is so long that the difference between

the other two cannot be observed. Remembering its poor success in finding the transition

function in acceptable time we discard that method and re-draw the calculation time for

the case of Bottom-Up and Evolutionary searches only in Figure 3.26.

As it can be seen in Figure 3.26, Using Ranges of Values to Store Exceptions method can

find the transition function much faster when using the Bottom-Up search rather than the

Evolutionary search method. Considering their very similar performance in storage size of

138

Figure 3.26: The overview of the calculation time of the transition
functions in the Using Ranges of Values to Store Exceptions method
using Bottom-Up (right) and evolutionary (left) searches only.

139

the transition function, we decide to use the Bottom-Up as the dominant search algorithm

in Using Ranges of Values to Store Exceptions method when comparing it to the other

methods of forming the transition function. The other reason to support this is the failure

of the Evolutionary Search in finding the transition function in 6 out of 128 cases (Table

3.63).

3.3.8 Comparison of the Results

When comparing the performance of the two suggested methods in the storage size of the

found transition function, we can notice a very small advantage for the Storing Individual

Exceptions method over the Using Ranges of Values to Store Exceptions method. Table

3.64 shows that on average the storage size grows by 0.38% when using the latter instead of

the former method. We do not compare the calculation time of the two methods since the

average calculation time for each transition function has been few milliseconds (Tables 3.48

and 3.58). In that order the function used in our implementation (Microsoft WinAPI’s func-

tion GetTickCount() on a non-real time operating system and a multi-thread environment)

has a considerable error margin, making any comparison not dependable.

The improvement over the current existing method of Expanding Neighborhood is still

impressive specially for the memoryless CAs (i.e. creating a layer from its immediately

previous layer only). Table 3.65 shows an average improvement of 2.79% for CAs of all

memory size, and 34.36% improvement for the memoryless CA. We need to remind our

observation in previous methods that adding memory to the CA is not any beneficial in

terms of storage size of the transition function, so the improvement of 34.36% will be the

practical improvement. Tables 3.66 and 3.67 show that the Using Ranges of Values to Store

Exceptions method takes only 2.74% and 8.72% of the time used by the best and fastest

cases of Expanding Neighborhood method respectively.

3.3.9 A Note on Scalability

We mentioned in the end of Section 3.2.1 that the storage size of the found transition func-

tion using the current existing method of Expanding Neighborhood is not scalable. To show

this and evaluate both our suggested methods, we ran all the experiments with the inputs

140

Table 3.64: Improvement of Using Ranges of Values to Store Ex-
ceptions method over the Storing Individual Exceptions method in
Storage Size of the transition functions.

L1 L2 L3 L4 L5 L6 L7

L0 33.11% 0.92% -0.61% 2.97% 2.09% 0.14% -0.02%

L1 -1.65% -1.04% 3.85% 2.57% 0.17% -0.02%

L2 -14.41% 5.39% 3.35% 0.21% -0.03%

L3 -5.84% 4.71% 0.27% -0.04%

L4 -8.49% 0.31% -0.05%

L5 -18.07% -0.14%

L6 -20.21%

Table 3.65: Improvement of Using Ranges of Values to Store Excep-
tions method over the best case of Expanding Neighborhood method
(using the LeastStatic Information Gain First in Storage Size of the
transition functions.

L1 L2 L3 L4 L5 L6 L7

L0 77.60% 57.77% 42.57% 24.45% -3.79% -27.32% -67.97%

L1 48.59% 44.25% 25.54% -3.24% -27.58% -66.31%

L2 45.32% 33.20% 1.57% -25.25% -62.58%

L3 36.08% 15.09% -15.55% -56.35%

L4 19.16% 1.41% -38.93%

L5 9.46% -13.15%

L6 4.32%

Table 3.66: The ratio of the time needed to find the transition func-
tion in Using Ranges of Values to Store Exceptions method to the
equivalent time in the Expanding Neighborhood method that uses the
Least Static Information Gain First order.

L1 L2 L3 L4 L5 L6 L7

L0 0.33% 0.70% 0.41% 0.29% 0.54% 1.81% 3.51%

L1 1.62% 0.69% 0.45% 0.73% 2.34% 4.12%

L2 0.98% 0.70% 1.00% 2.90% 4.92%

L3 0.92% 1.42% 4.00% 6.51%

L4 1.90% 5.42% 8.85%

L5 4.88% 8.84%

L6 5.98%

141

Table 3.67: The ratio of the time needed to find the transition func-
tion in Using Ranges of Values to Store Exceptions method to the
equivalent time in the Expanding Neighborhood method that uses the
Least Static Information Gain First order.

L1 L2 L3 L4 L5 L6 L7

L0 0.63% 1.68% 1.23% 0.96% 2.19% 9.35% 23.12%

L1 2.77% 1.52% 1.29% 2.54% 10.86% 21.11%

L2 1.62% 1.52% 2.86% 10.81% 24.65%

L3 1.42% 3.01% 11.83% 25.48%

L4 2.86% 12.30% 27.30%

L5 8.14% 20.62%

L6 10.39%

Table 3.68: The average storage size of transition functions in a 40×
50 CA resulting from using the Oldest First order in the Expanding
Neighborhood method.

L1 L2 L3 L4 L5 L6 L7

L0 54614.98 63365.92 85912.66 89812.25 89538.20 81458.53 68281.94

L1 35236.80 59259.48 68899.05 71863.53 68235.27 58668.38

L2 37459.39 49620.53 55335.59 55022.31 49439.26

L3 33833.64 39836.56 42422.74 40620.75

L4 27079.55 31704.86 32428.38

L5 22516.27 25611.55

L6 20020.22

four times larger than the original 20 × 25 images and follow the exact same experiment

setup as in Section 3.3.1. Appendix A.2 contains the images used in this step.

3.3.9.1 Growths of the Storage Size of Transition Functions

Tables 3.68 lists the storage sizes of the transition functions for the new inputs when the

current existing Oldest First order is used in the Expanding Neighborhood method. Tables

3.69 and 3.70 provide the same information for our improvements to this method, i.e. using

the Linear and Least Static Information Gain First orders respectively. Tables 3.71 to 3.73

show the growth of the storage sizes when compared to the original experiments of Section

3.3.4.

When trying the first suggested method, i.e. Storing Individual Exceptions, we get the

results as shown in Table 3.74. The growth of the storage sizes in regards to the original

Table 3.47 is presented in Tabel 3.75.

142

Table 3.69: The average storage size of transition functions in a
40 × 50 CA resulting from using the Linear order in the Expanding
Neighborhood method.

L1 L2 L3 L4 L5 L6 L7

L0 51430.19 55539.89 79889.13 82048.03 84373.44 82113.33 69686.20

L1 31295.88 55466.11 62814.52 67862.59 68578.55 59870.91

L2 32866.35 44349.19 51689.34 55295.84 50285.94

L3 29707.57 37079.06 42770.37 41007.31

L4 25413.26 31721.41 33055.48

L5 22598.18 25787.70

L6 20015.74

Table 3.70: The average storage size of transition functions in a
40 × 50 CA resulting from using the Least Static Information Gain
First order in the Expanding Neighborhood method.

L1 L2 L3 L4 L5 L6 L7

L0 39149.35 51081.20 72295.88 75995.28 84904.34 77680.92 66988.36

L1 28552.16 49338.39 58212.42 68309.72 64895.86 57464.81

L2 30759.23 41426.84 51695.65 52705.97 48355.04

L3 28231.62 36966.36 40591.22 39496.53

L4 25506.95 30375.44 31825.69

L5 21784.41 24893.69

L6 19653.94

Table 3.71: The growth rate in the average storage size of transition
functions resulting from using theOldest First order in the Expanding
Neighborhood method.

L0 L1 L2 L3 L4 L5 L6

L0 7.99 7.71 8.01 7.85 8.37 7.55 7.25

L1 7.10 7.64 7.71 8.27 7.53 7.24

L2 6.68 7.26 7.98 7.36 6.98

L3 6.53 7.23 6.91 6.75

L4 6.37 6.37 6.40

L5 5.67 5.93

L6 5.25

143

Table 3.72: The growth rate in the average storage size of transition
functions resulting from using the Linear order in the Expanding
Neighborhood method.

L0 L1 L2 L3 L4 L5 L6

L0 9.10 7.44 8.42 7.87 8.36 7.78 7.23

L1 7.01 8.20 7.73 8.29 7.78 7.19

L2 6.79 7.28 7.94 7.58 6.93

L3 6.47 7.15 7.22 6.78

L4 6.30 6.60 6.49

L5 5.92 6.06

L6 5.41

Table 3.73: The growth rate in the average storage size of transi-
tion functions resulting from using the Least Static Information Gain
First order in the Expanding Neighborhood method.

L0 L1 L2 L3 L4 L5 L6

L0 8.11 7.48 7.90 7.58 8.62 7.48 7.08

L1 7.05 7.59 7.51 8.54 7.48 7.00

L2 6.51 6.96 8.09 7.39 6.88

L3 6.23 7.26 6.92 6.71

L4 6.40 6.46 6.34

L5 5.72 5.94

L6 5.27

Table 3.74: The average storage size of transition functions in a
40×50 CA resulting from the Storing Individual Exceptions method.

L1 L2 L3 L4 L5 L6 L7

L0 7087.33 9164.56 16379.72 29230.11 39285.98 49166.28 61557.59

L1 9016.86 11833.42 22751.34 32091.48 41319.41 52976.80

L2 10153.84 16276.43 24892.28 33471.76 44396.00

L3 13139.31 17710.74 25622.91 35815.20

L4 14274.13 17782.88 27226.91

L5 14063.91 18639.88

L6 14468.00

Table 3.75: The growth rate in the average storage size of transition
functions resulting from the Storing Individual Exceptions method.

L0 L1 L2 L3 L4 L5 L6

L0 4.39 3.15 3.14 3.74 3.76 3.71 3.87

L1 4.40 3.30 3.79 3.79 3.72 3.88

L2 4.50 3.87 3.83 3.74 3.88

L3 4.80 3.90 3.77 3.89

L4 4.81 3.82 3.91

L5 4.81 3.94

L6 4.88

144

Table 3.76: The average storage size of transition functions in a
40× 50 CA resulting from using the Bottom-Up search in the Using
Ranges of Values to Store Exceptions method.

L1 L2 L3 L4 L5 L6 L7

L0 2424.58 6742.91 15922.31 27577.20 37634.48 48777.41 61607.94

L1 6034.11 11276.55 21108.28 30442.79 40930.63 53027.14

L2 9158.69 14694.77 23252.69 33083.35 44446.34

L3 11915.22 16125.52 25235.91 35865.55

L4 13531.16 17440.98 27277.91

L5 14618.63 18748.34

L6 15541.06

Table 3.77: The average storage size of transition functions in a
40×50 CA resulting from using the Evolutionary search in the Using
Ranges of Values to Store Exceptions method.

L1 L2 L3 L4 L5 L6 L7

L0 2778.41 6815.27 15912.44 27919.26 38153.53 48800.66 61607.38

L1 6084.66 11275.61 21523.68 30803.00 40953.31 53025.08

L2 9119.92 15135.00 23679.77 33102.48 44444.47

L3 12248.31 16334.46 25255.59 35863.48

L4 13718.86 17463.10 27276.59

L5 14612.44 18746.84

L6 15504.88

We try the same experiment using our second suggested method, Using Ranges of Values

to Store Exceptions to compare the scalability of the storage size of the transition function.

However, we do this when using the Bottom-Up and Evolutionary searches only, as we

saw in Section 3.3.7 that the Top-Down search method is not successful in finding the

transition function in most of the cases. Tables 3.76 and 3.77 provide the storage size of

the transition functions in the new experiment setup for employing the Bottom-Up and

Evolutionary searches respectively, and the Tables 3.78 and 3.79 show the growth of the

transition function when compared to the case of 20× 25 images; i.e. Tables 3.57 and 3.61.

3.3.9.2 Analysis of Results of Growths of the Storage Size of Transition Functions

The results of the Section 3.3.9.1 shows that our improvement to the existing method of

Expanding Neighborhood has made it more scalable, as the Least Static Information Gain

has the slowest growth rate among the variation of that method in Table 3.80. However, it

145

Table 3.78: The growth rate in the average storage size of transition
functions resulting from using the Bottom-Up search in the Using
Ranges of Values to Store Exceptions method is used.

L0 L1 L2 L3 L4 L5 L6

L0 2.24 2.34 3.03 3.64 3.68 3.69 3.88

L1 2.90 3.11 3.65 3.69 3.70 3.88

L2 3.55 3.70 3.70 3.71 3.89

L3 4.11 3.73 3.72 3.90

L4 4.20 3.76 3.91

L5 4.24 3.95

L6 4.36

Table 3.79: The growth rate in the average storage size of transition
functions resulting from using the Evolutionary search in the Using
Ranges of Values to Store Exceptions method is used.

L0 L1 L2 L3 L4 L5 L6

L0 2.54 2.37 3.03 3.66 3.73 3.69 3.88

L1 2.93 3.11 3.72 3.73 3.70 3.88

L2 3.53 3.80 3.77 3.71 3.89

L3 4.22 3.78 3.72 3.90

L4 4.26 3.77 3.91

L5 4.24 3.96

L6 4.35

146

is obvious from the Tables 3.68 to 3.73 that the growth in the size of transition functions

resulting from the existing Expanding Neighborhood in general is faster than the growth

of the size of the CA. Table 3.80 shows that the amount of memory required to store the

transition functions resulting from the existing methods grows up about 7 times more when

the size of the CA grows up by a factor of 4. The Storing Individual Exceptions reduces this

growth rate to 3.96, very close to a linear ratio but the average storage size of the transition

functions are still growing faster than the size of the CA for memoryless CAs (4.65). It

is only the final method; i.e. Using Ranges of Values to Store Exceptions that has been

successful to reduce this ratio to less than linear in both cases.

Table 3.80: The average growth of the storage size of the transition
functions when the CA grows 4 times larger (4 times more cells in
the CA)

Method Variation Average growth of
the storage size
for all memory

sizes

Average growth of
the storage size

for memoryless CA

Expanding
Neighborhood

Oldest First 7.14 6.51

Expanding
Neighborhood

Linear 7.26 6.72

Expanding
Neighborhood

Least Static
Gain

7.09 6.47

Storing
Individual
Exceptions

N/A 3.96 4.65

Using Ranges of
Values to Store
Exceptions

Bottom-Up
Search

3.64 3.66

Using Ranges of
Values to Store
Exceptions

Evolutionary
Search

3.67 3.72

The reason why the storage size grows quickly in the current existing Expanding Neigh-

borhood is that the chance of conflicts is more in larger CAs because of more cells. This

means the neighborhood is expanded further, and consequently the chance of having two

cells with the same neighborhood drops considerably. This means the method has to to

store almost one rule for each cell in the rule base of the transition function. The number

147

of rules is still close to (and therefore grows as fast as) the number of cells in the CA. On

the other hand, we have the expanded neighborhood that contributes another coefficient to

the total size of the rule base, making the growth faster than linear. This issue is addresses

in both suggested methods. More specifically in the method of Using Ranges of Values to

Store Exceptions the neighborhood size is kept constant no matter how far the CA grows.

This means that there will be more chances that the same neighborhood repeats in more

than one cell in the CA, hence reducing the rate of growth of the number of rules in the

transition function (remember that we merge the rules with the same neighborhood in Step

2 of the Algorithm 3.2. This effect should be even more notable when the size of the CA

grows by a larger factor.

3.3.9.3 Growths of the Calculation Time of Transition Functions

Similar to the storage size, the calculation time grows as the size of the CA grows. We pro-

vided the asymptotic analysis of each method in Section 3.2. Here we provide the practical

calculation time of each method for the new CAs corresponding to the images in Appendix

A.2 (4 times larger than the setup in 3.3.1) in Table 3.81 to Table 3.86. The growth rate

of the calculation time can be obtained by comparing each table to its corresponding ta-

ble for 20 × 25 images. This result is provided in the Tables 3.87 to 3.92. Note that the

growth rate for the Storing Individual Exceptions method is not very trustworthy because

of the limitations of the machine on which the code has been implemented. In practice, any

measured time less than few milliseconds cannot be measured precisely on a non-real time

operating system. This means some measured calculation time in the tables 3.48 and 3.84

are not very precise. Some growth rates in the Table3.90 as a result are marked with the

question marks - meaning they are not precise results too.

3.3.9.4 Analysis of Results of Growths of the Calculation Time of Transition Functions

The summary of the growth in the calculation time is presented in Table 3.93. It can

be seen that both improvements to the existing method; i.e. using Linear or Least Static

Information Gain First instead ofOldest First order result in more scalable calculation time.

Table 3.93 also confirms our initial claim in Section 3.2 that the complexity orders of the two

148

Table 3.81: The average calculation time of transition functions in
a 40 × 50 CA resulting from using the Oldest First order in the
Expanding Neighborhood method.

L1 L2 L3 L4 L5 L6 L7

L0 308127.80 83525.06 344119.45 589396.51 272044.77 56158.78 10632.08

L1 33748.66 170453.16 293717.41 150839.10 33279.34 7009.41

L2 121849.67 208856.27 107400.86 22429.38 5262.54

L3 153149.23 79731.74 15420.93 3926.80

L4 47608.31 9684.46 2718.66

L5 6576.18 3135.01

L6 2978.13

Table 3.82: The average calculation time of transition functions in a
40 × 50 CA resulting from using the Linear order in the Expanding
Neighborhood method.

L1 L2 L3 L4 L5 L6 L7

L0 192216.18 62975.55 241030.06 443476.83 219254.20 56363.08 10971.85

L1 24495.67 99091.99 186857.73 107482.38 32252.95 7193.24

L2 66039.88 119793.39 72121.80 21653.24 5382.79

L3 80693.17 51196.20 14504.20 4017.96

L4 29634.95 9064.66 2823.16

L5 6948.59 3230.47

L6 3196.00

Table 3.83: The average calculation time of transition functions in a
40 × 50 CA resulting from using the Least Static Information Gain
order in the Expanding Neighborhood method.

L1 L2 L3 L4 L5 L6 L7

L0 509904.06 177226.84 859198.39 1665129.80 997556.16 256842.31 59757.19

L1 50563.68 315719.10 700320.45 453416.52 135987.68 34473.41

L2 162046.37 384510.31 266393.10 73566.08 22093.90

L3 203684.75 151253.30 41878.44 13392.88

L4 64900.41 20638.74 8001.47

L5 10660.67 6982.61

L6 4904.09

149

Table 3.84: The average calculation time of transition functions in
a 40× 50 CA resulting from using the Storing Individual Exceptions
method.

L1 L2 L3 L4 L5 L6 L7

L0 21.62 16.84 51.90 120.99 165.52 204.86 288.23

L1 15.83 40.38 97.69 134.19 171.98 224.02

L2 15.88 85.61 118.59 148.02 201.30

L3 19.44 109.46 134.14 172.64

L4 17.61 122.88 152.03

L5 15.74 139.30

L6 15.79

Table 3.85: The average calculation time of transition functions in a
40× 50 CA resulting from using the Bottom-Up search in the Using
Ranges of Values to Store Exceptions method.

L1 L2 L3 L4 L5 L6 L7

L0 51.41 68.77 181.09 360.16 479.54 586.51 763.16

L1 38.64 138.80 280.32 391.83 508.84 619.88

L2 52.14 238.58 327.98 431.93 563.91

L3 79.70 286.91 361.65 482.48

L4 84.08 326.27 402.22

L5 84.73 358.81

L6 89.56

Table 3.86: The average calculation time of transition functions in a
40×50 CA resulting from using the Evolutionary search in the Using
Ranges of Values to Store Exceptions method.

L1 L2 L3 L4 L5 L6 L7

L0 55469.81 24223.24 12037.52 19537.41 17152.73 6117.86 1985.73

L1 38036.46 13585.08 19698.91 17001.49 6053.30 1908.63

L2 27620.94 20830.02 17186.56 5954.77 1834.47

L3 36037.78 17071.03 5905.20 1718.50

L4 36405.73 5931.10 1694.03

L5 28717.35 1799.70

L6 26939.94

150

Table 3.87: The growth in the average calculation time of transition
functions resulting from using theOldest First order in the Expanding
Neighborhood method, when the number of cells in the CA grows by
a factor of 4.

L0 L1 L2 L3 L4 L5 L6

L0 127.07 81.33 161.88 181.60 152.44 113.27 40.82

L1 54.43 128.07 142.77 121.36 87.31 34.60

L2 113.45 133.26 114.23 74.80 31.59

L3 128.37 101.11 66.01 27.97

L4 83.91 49.51 23.99

L5 34.44 26.46

L6 19.29

Table 3.88: The growth in the average calculation time of transition
functions resulting from using the Linear order in the Expanding
Neighborhood method, when the number of cells in the CA grows by
a factor of 4.

L0 L1 L2 L3 L4 L5 L6

L0 104.54 73.99 133.59 149.94 129.78 109.31 41.33

L1 49.26 88.72 113.80 103.68 91.70 36.48

L2 81.86 101.74 89.81 77.36 32.57

L3 96.62 81.23 66.35 30.65

L4 62.62 47.56 25.83

L5 34.87 28.53

L6 20.53

Table 3.89: The growth in the average calculation time of transition
functions resulting from using the Least Static Information Gain or-
der in the Expanding Neighborhood method, when the number of cells
in the CA grows by a factor of 4.

L0 L1 L2 L3 L4 L5 L6

L0 108.00 75.09 150.22 165.25 142.85 95.37 34.96

L1 51.41 111.58 127.46 110.37 77.76 30.40

L2 100.03 122.01 103.16 64.85 26.65

L3 119.00 92.58 59.96 25.08

L4 79.22 44.62 23.90

L5 32.64 25.29

L6 18.49

151

Table 3.90: The growth in the average calculation time of transi-
tion functions resulting from using the Storing Individual Exceptions
method, when the number of cells in the CA grows by a factor of 4.

L0 L1 L2 L3 L4 L5 L6

L0 1.37? 1.07? 3.16 7.51 9.27 10.72 11.48

L1 1.01? 2.61 6.29 8.57 10.16 11.73

L2 1.01? 5.48 7.64 9.52 11.37

L3 1.24? 7.03 8.59 10.99

L4 1.13? 7.85 9.73

L5 0.98? 8.93

L6 1.01?

Table 3.91: The growth in the average calculation time of transition
functions resulting from using the Bottom-Up search in the Using
Ranges of Values to Store Exceptions method, when the number of
cells in the CA grows by a factor of 4.

L0 L1 L2 L3 L4 L5 L6

L0 3.28 4.17 7.76 12.32 12.66 12.06 12.72

L1 2.43 7.11 11.26 13.13 12.41 13.28

L2 3.27 10.85 12.71 13.13 13.81

L3 5.08 12.36 12.93 13.88

L4 5.40 13.02 13.57

L5 5.31 14.71

L6 5.65

Table 3.92: The growth in the average calculation time of transition
functions resulting from using the Evolutionary search in the Using
Ranges of Values to Store Exceptions method, when the number of
cells in the CA grows by a factor of 4.

L0 L1 L2 L3 L4 L5 L6

L0 9.49 13.69 19.38 10.08 11.71 18.75 16.97

L1 12.14 19.68 10.90 12.21 19.36 18.38

L2 12.06 11.79 12.74 19.42 18.51

L3 10.60 11.46 19.34 18.48

L4 11.55 20.53 19.49

L5 13.70 20.79

L6 13.28

152

suggested methods in this thesis (Storing Individual Exceptions and Using Ranges of Values

to Store Exceptions) are less than the complexity order of the current existing Expanding

Neighborhood method. Adding this observation to the previous ones, that the storage sizes

of transition functions are both smaller and more scalable in these two methods, we can

conclude that for the inverse problem of the Cellular Automata, when the configuration of

the CA is forced from an unknown external models and not necessarily from a developmental

model such as the test data sets here, our two suggested methods in this thesis demonstrate

a considerably better performance than the current existing method.

Table 3.93: The average growth of the calculation time of the transi-
tion functions when the CA grows 4 times larger (4 times more cells
in the CA)

Method Variation Average growth of
the calculation

time
for all memory

sizes

Average growth of
the calculation

time
for memoryless CA

Expanding
Neighborhood

Oldest First 87.69 80.14

Expanding
Neighborhood

Linear 75.15 64.33

Expanding
Neighborhood

Least Static
Gain

79.22 72.68

Storing
Individual
Exceptions

N/A 8.74 N/A

Using Ranges of
Values to Store
Exceptions

Bottom-Up
Search

10.01 4.35

Using Ranges of
Values to Store
Exceptions

Evolutionary
Search

15.23 11.83

3.4 Conclusion

In this chapter we showed how Cellular Automata can be used for pattern generation

problems. We studied the inverse problem of Cellular Automata, where the consecutive

configurations are known and the neighborhood and transition function are to be found.

153

We pushed our methods to their limits, by using consequent configurations which are not

resulting from a developmental encoding. As explained in the text, the configurations in

this chapter are copied from the distribution of the nth bit in a 256-level gray scale images

of faces. While the distribution of the nth and (n + 1)th bits are not totally independent

from each other in such images, knowing that the (n + 1)th bit is not directly the result

of applying a well-defined function on the nth bit makes the problem more challenging in

the inverse problem. We showed that the current existing methods can be improved if

the suggested modifications are applied. We also suggested two new methods - with new

formats of the transition function - that contribute to both calculation time and storage size

of the resulted transition function. The latter parameter, i.e. the storage size of the resulted

transition function, is believed to be the most important characteristic of the method when

the solution is to be used on actual hardware. We also showed that our suggested methods

are more scalable, since the size of the solution in our methods grows much slower than of

the current methods.

The size of the solution on average grows more than 7 tiles larger when the pattern

has grown 4 times larger. We could reduce this ratio to less than linear, yet not as low

as one might expect from a developmental method. There is an important reason for this:

not every pattern with any arbitrary configurations over time can be stored in a small

developmental program and be regenerated using any arbitrary resolution. Remember that

our transition functions are lossless. For the patterns that have not been the result of

a developmental growth, there is a price for size and resolution of the generated pattern

and this price is reflected in the size of the transition function. The natural development

encoding is benefiting from an excellent scalability because it is not solving the inverse

problem. Natural evolution was never given the final pattern to grow, neither was provided

with the desired functionality. The phenotypes have been evolved because they have been

successful in their environment, without trying to achieve any pre-defined functionality of

architecture. Yet for an inverse problem with a non-developmental pattern configuration,

our second suggested method is scalable since the its solutions grow slower than the size of

the problem.

On the other hand, what is creating a negative effect on scalability is providing us

154

robustness and fault tolerant: as the size of the exceptions or irregular regions grow in

our methods, there will be less chances that an error in the configuration of the Cellular

Automata gets propagated in the neighborhood. The reason is that now that the size of

the details of the rules are increased, if an error is injected and a cell is forcefully moved to

a faulty state, the new faulty neighborhoods have less chance to be found in the if part of

any rule in the rule base. This means the forcefully modified cell can calculate its state back

to the original by using the previous states of its neighborhood and hidden states, before

causing an error in the adjacent cells.

The possible improvement for future researchers is to find better search methods for

solving the Minimum Irregular Regions Problem for our second method defined in 3.1.

However, better search algorithms might be specific to the characteristics of the images

whose layers are forming the configuration of the CA.

155

Chapter 4

Summary

4.1 Generating Patterns When the Functionality is Known

In Chapter 2 we proposed a developmental approach to emerge patterns of unknown ar-

chitecture to demonstrate given functionalities. We explained a method for evolving the

developmental programs that describe gate level feed forward digital circuits with local con-

nections. Keeping the connections local will eliminate the routing overhead and difficulties

on the configurable circuits if ever decided to employ this method on actual programmable

hardware.

We also introduced an innovative fitness function that uses the sensitivity analysis (pre-

sented in this thesis for the first time), and showed that the evolution is almost 4 times more

successful in finding solutions for certain problems if it uses our fitness function instead of

the traditional fitness function used in EHW.

In the end we showed that the solutions are scalable for modular circuits such as parity

generators, since the algorithm can find the optimum solution of the given number of inputs

faster if it already has the answer to the problem of smaller input size. This is an important

achievement in Evolutionary Hardware Design, where the answer to each given problem

used to be evolved from scratch, needing exponentially longer time after an increase in the

problem size.

156

4.2 Generating Patterns When the Architecture is Known

Cellular Automata has been used for developing patterns with given topology and architec-

ture. There has been methods for solving the inverse problem of Cellular Automata when

the consecutive patterns are known. In Chapter 3 we introduced two separate improve-

ments to the current existing method of solving the inverse problem of Cellular Automata.

We showed that using the locality or information gain of the state of the cells in removing

the unimportant neighbors contributes to smaller size for the transition function, which is

a critical feature of the final results if the method is to be used in real hardware.

We also suggested two methods that improve both time and memory efficiency. We

showed that adding hidden states to the Cellular Automata can result in shorter calcu-

lation time and solutions with smaller sizes. Moreover, we showed that our methods are

considerably more scalable in terms of both storage size and calculation time of the solu-

tion. In our experiments they could reduce the growth rate of the transition function to

less than the growth rate of the problem size. This is while the current existing methods

in our experiments grew almost two times faster than the problem size. Also keeping the

main neighborhood size constant and using cell’s own hidden states in the transition func-

tion greatly reduces the calculation time for the transition function. Finally, when using

this method on real programmable hardware we will require less resources spent on routing

because the neighborhood includes only the adjacent cells. This will save more resources

for calculations and data storage on such hardware.

4.3 Conclusion and Future Steps

In this thesis we showed that developmental descriptions are capable of emerging patterns

who posses certain form or functionality. Such developmentally generated pattern inherits

the built-in features of developmental systems such as scalability and fault tolerance, given

the pattern has enough regularity and modularity. The methods suggested in this thesis

improved the following measures:

• Improved Evolvability: Our fitness function in Section 2.2.3 increases the chance of

157

evolution to find the solution.

• Improved Efficiency: Our improvements in Section 3.2.1.2 decrease the size of transi-

tion functions in the inverse problem of Cellular Automata.

• Reduced Complexity: Our methods in Sections 3.2.2 and 3.2.3 reduce the complexity

of the algorithm to find the transition functions in the inverse problem of Cellular

Automata.

• Improved Scalability: Our method in Sections 3.2.2 and 3.2.3, and more specifically

Section 3.2.3.4 improve the scalability of the algorithm to find the transition functions

in the inverse problem of Cellular Automata.

The research explained in this thesis has the potential to be extended and improve the

formation of large patterns even further. Following items can be considered for the future

steps of this topic for the researchers interested in this field.

• Finding hidden transition functions for different applications.

• Finding suitable patterns with enough regularity and modularity to be generated using

development.

• Finding Better algorithms for solving the Minimum Irregular Regions Problem.

• Using evolution to find optimum neighborhood directly, in oppose to fixing them to

a certain neighborhood.

• Forming different transition functions for different regions, in oppose to using the

same transition function for the whole pattern.

• Shrinking neighborhood in the last methods, form a fixed size of nine neighbors to a

variable size that minimizes the size of transition function.

158

Bibliography

[1] A. Adamatzky, Automatic programming of cellular automata: identification approach,

Kybernetes 26 (1997), no. 2, 126–135.

[2] , Game of life cellular automata, Springer, 2010.

[3] R. Alonso-Sanz, Cellular automata with memory, Éd. des Archives contemporaines,

2008.

[4] P.J. Angeline, Morphogenic evolutionary computations: Introduction, issues and exam-

ples, Evolutionary Programming IV: The Fourth Annual Conference on Evolutionary

Programming, 1995, pp. 387–401.

[5] P. Bentley, Evolutionary design by computers, vol. 1, Morgan Kaufmann, 1999.

[6] Peter Bentley and Sanjeev Kumar, Three ways to grow designs: A comparison of

embryogenies for an evolutionary design problem, Proceedings of the Genetic and Evo-

lutionary Computation Conference, vol. 1, Morgan Kaufmann, 1999, pp. 35–43.

[7] P.J. Bentley, T.G.W. Gordon, J. Kim, and S. Kumar, New trends in evolutionary

computation, Evolutionary Computation, 2001. Proceedings of the 2001 Congress on,

vol. 1, IEEE, 2001, pp. 162–169.

[8] Elwyn R Berlekamp, John Horton Conway, and Richard K Guy, Winning ways for

your mathematical plays. volume 2, AK Peters, 1982.

[9] J.L. Beuchat and J.O. Haenni, Von neumann’s 29-state cellular automaton: a hardware

implementation, Education, IEEE Transactions on 43 (2000), no. 3, 300–308.

159

[10] D. Bleh, T. Calarco, and S. Montangero, Quantum game of life, EPL (Europhysics

Letters) 97 (2012), no. 2, 20012.

[11] R.D. Carr, S. Doddi, G. Konjevod, and M. Marathe, On the red-blue set cover problem,

Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,

Society for Industrial and Applied Mathematics, 2000, pp. 345–353.

[12] Santanu Chattopadhyay, Shelly Adhikari, Sabyasachi Sengupta, and Mahua Pal, Highly

regular, modular, and cascadable design of cellular automata-based pattern classifier,

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 8 (2000), no. 6,

724–735.

[13] F. Corno, M.S. Reorda, and G. Squillero, Exploiting the selfish gene algorithm for

evolving hardware cellular automata, Evolutionary Computation, 2000. Proceedings of

the 2000 Congress on, vol. 2, IEEE, 2000, pp. 1401–1406.

[14] A. Deutsch, S. Dormann, and P.K. Maini, Cellular automaton modeling of biological

pattern formation: characterization, applications, and analysis, Springer, 2005.

[15] Asbjoern Djupdal and Pauline C Haddow, Evolving redundant structures for reliable

circuits-lessons learned, Adaptive Hardware and Systems, 2007. AHS 2007. Second

NASA/ESA Conference on, IEEE, 2007, pp. 455–462.

[16] M. Ebne-Alian and N. Kharma, A new method to find developmental descriptions for

digital circuits, Evolvable Systems: From Biology to Hardware (2010), 73–84.

[17] M. Elkin and D. Peleg, The hardness of approximating spanner problems, STACS 2000,

Springer, 2000, pp. 370–381.

[18] Niloy Ganguly, Pradipta Maji, Sandip Dhar, Biplab Sikdar, and P Chaudhuri, Evolving

cellular automata as pattern classifier, Cellular Automata (2002), 56–68.

[19] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman, From few to many: Illumi-

nation cone models for face recognition under variable lighting and pose, IEEE Trans.

Pattern Anal. Mach. Intelligence 23 (2001), no. 6, 643–660.

160

[20] Scott F. Gilbert, Developmental biology, 4th ed., Sinauer Associates Inc, April 1994.

[21] T.G.W. Gordon, Exploring models of development for evolutionary circuit design, Evo-

lutionary Computation, 2003. CEC’03. The 2003 Congress on, vol. 3, IEEE, 2003,

pp. 2050–2057.

[22] T.G.W. Gordon and P.J. Bentley, Towards development in evolvable hardware, Evolv-

able Hardware, 2002. Proceedings. NASA/DoD Conference on, IEEE, 2002, pp. 241–

250.

[23] , Bias and scalability in evolutionary development, Proceedings of the 2005

conference on Genetic and evolutionary computation, ACM, 2005, pp. 83–90.

[24] Tino Gramb, T Gram, and T Pellizzari, Non-standard computation, John Wiley &

Sons, Inc., 1997.

[25] Ramin Halavati and Saeed Shouraki, Symbiotic evolution to avoid linkage problem,

Linkage in Evolutionary Computation (2008), 285–314.

[26] M. Hartmann, P.K. Lehre, and P.C. Haddow, Evolved digital circuits and genome

complexity, Evolvable Hardware, 2005. Proceedings. 2005 NASA/DoD Conference on,

IEEE, 2005, pp. 79–86.

[27] Morten Hartmann and Pauline Catriona Haddow, Evolution of fault-tolerant and noise-

robust digital designs, Computers and Digital Techniques, IEE Proceedings-, vol. 151,

IET, 2004, pp. 287–294.

[28] R. Hassin and A. Levin, A better-than-greedy approximation algorithm for the minimum

set cover problem, SIAM Journal on Computing 35 (2005), no. 1, 189–200.

[29] J.H. Holland, Emergence: From chaos to order, Oxford University Press, 2000.

[30] John H Holland, Escaping brittleness: the possibilities of general purpose learning al-

gorithms applied to parallel rule-based system, Machine learning (1986), 593–623.

[31] G.S. Hornby, Functional scalability through generative representations: the evolution

of table designs, Environment and Planning B 31 (2004), no. 4, 569–588.

161

[32] , Properties of artifact representations for evolutionary design, (2004).

[33] F. Jiménez Morales, J.P. Crutchfield, and M. Mitchell, Evolving two-dimensional cel-

lular automata to perform density classification: A report on work in progress, Parallel

Computing 27 (2001), no. 5, 571–585.

[34] S.A. Kauffman, The origins of order: Self-organization and selection in evolution,

Oxford University Press, USA, 1993.

[35] Sanjeev Kumar and PJ Bentley, The abcs of evolutionary design: Investigating the

evolvability of embryogenies for morphogenesis, Genetic and Evolutionary Computation

Conf.(GECCO’99) Late Breakers, Orlando, Florida USA, 1999.

[36] George F Luger, Artificial intelligence: Structures and strategies for complex problem

solving, Addison-Wesley Longman, 2002.

[37] Pradipta Maji, Chandrama Shaw, Niloy Ganguly, Biplab K Sikdar, and P Pal Chaud-

huri, Theory and application of cellular automata for pattern classification, Fundamenta

Informaticae 58 (2003), no. 3, 321–354.

[38] Jacques Mazoyer, A six-state minimal time solution to the firing squad synchronization

problem, Theoretical Computer Science 50 (1987), no. 2, 183–238.

[39] , An overview of the firing squad synchronization problem, Automata Networks

(1988), 82–94.

[40] Julian Miller and Peter Thomson, A developmental method for growing graphs and

circuits, Evolvable Systems: From Biology to Hardware (2003), 93–104.

[41] Julian F Miller, Dominic Job, and Vesselin K Vassilev, Principles in the evolutionary

design of digital circuitspart i, Genetic programming and evolvable machines 1 (2000),

no. 1, 7–35.

[42] , Principles in the evolutionary design of digital circuitspart ii, Genetic pro-

gramming and evolvable machines 1 (2000), no. 3, 259–288.

162

[43] Julian F Miller and Peter Thomson, Cartesian genetic programming, Lecture Notes in

Computer Science (2000), 121–132.

[44] Julian F Miller, Peter Thomson, and Terence Fogarty, Designing electronic circuits

using evolutionary algorithms. arithmetic circuits: A case study, 1997.

[45] FR Moore and GG Langdon, A generalized firing squad problem, Information and

Control 12 (1968), no. 3, 212–220.

[46] Can Öztürkeri and Colin G. Johnson, Evolution of self-assembling patterns in cellular

automata using development, J. Cellular Automata 6 (2011), no. 4-5, 257–300.

[47] K. Preston and M.J.B. Duff, Modern cellular automata: theory and applications, vol.

198, Plenum Press London, 1984.

[48] Paul L Rosin, Training cellular automata for image processing, Image Processing, IEEE

Transactions on 15 (2006), no. 7, 2076–2087.

[49] AF Rozenfeld, K. Laneri, and EV Albano, Critical dynamic approach to stationary

states in complex systems, The European Physical Journal-Special Topics 143 (2007),

no. 1, 3–8.

[50] LS Schulman and PE Seiden, Statistical mechanics of a dynamical system based on

conway’s game of life, Journal of Statistical Physics 19 (1978), no. 3, 293–314.

[51] Claude E Shannon, Communication theory of secrecy systems, Bell system technical

journal 28 (1949), no. 4, 656–715.

[52] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and A. Stauffer, A

phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems, Evo-

lutionary Computation, IEEE Transactions on 1 (1997), no. 1, 83–97.

[53] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A000110, Bell or

exponential numbers: ways of placing n labeled balls into n indistinguishable boxes.

[54] A.R. Smith, Real-time language recognition by one-dimensional cellular automata,

Journal of Computer and System Sciences 6 (1972), no. 3, 233–253.

163

[55] Stephen F Smith, Flexible learning of problem solving heuristics through adaptive

search, Proceedings of the Eighth international joint conference on Artificial intelli-

gence, vol. 1, Citeseer, 1983, pp. 422–425.

[56] WB Spillman Jr, T Zeng, and RO Claus, Modeling the electro-static self-assembly

process using stochastic cellular automata, Smart materials and structures 11 (2002),

no. 5, 623.

[57] M. Spivey, A generalized recurrence for bell numbers, Journal of Integer Sequences 11

(2008), no. 2.

[58] Kenneth O Stanley, Compositional pattern producing networks: A novel abstraction of

development, Genetic Programming and Evolvable Machines 8 (2007), no. 2, 131–162.

[59] Kenneth O Stanley, Joseph Reisinger, and Risto Miikkulainen, Exploiting morpho-

logical conventions for genetic reuse, Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2004) Workshop Program. Springer Verlag, Berlin,

2004.

[60] Adrian Stoica, Didier Keymeulen, Raoul Tawel, Carlos Salazar-Lazaro, and Wei-te Li,

Evolutionary experiments with a fine-grained reconfigurable architecture for analog and

digital cmos circuits, Evolvable Hardware, 1999. Proceedings of the First NASA/DoD

Workshop on, IEEE, 1999, pp. 76–84.

[61] Adrian Stoica, Ricardo S Zebulum, Xin Guo, Didier Keymeulen, Michael I Ferguson,

and Vu Duong, Silicon validation of evolution-designed circuits, Evolvable Hardware,

2003. Proceedings. NASA/DoD Conference on, IEEE, 2003, pp. 21–25.

[62] X. Sun, P.L. Rosin, and R.R. Martin, Fast rule identification and neighborhood selection

for cellular automata, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on 41 (2011), no. 3, 749–760.

[63] Eiichi Takahashi, Yuji Kasai, Masahiro Murakawa, and Tetsuya Higuchi, A post-silicon

clock timing adjustment using genetic algorithms, VLSI Circuits, 2003. Digest of Tech-

nical Papers. 2003 Symposium on, IEEE, 2003, pp. 13–16.

164

[64] G. Tufte, Phenotypic, developmental and computational resources: scaling in artificial

development, Proceedings of the 10th annual conference on Genetic and evolutionary

computation, ACM, 2008, pp. 859–866.

[65] John Von Neumann and Arthur W Burks, Theory of self-reproducing automata, (1966).

[66] Eric W. Weisstein, Cyclic group. from mathworld–a wolfram web resource, December

2012.

[67] S. Wolfram, Statistical mechanics of cellular automata, Reviews of modern physics 55

(1983), no. 3, 601.

[68] , A new kind of science, Wolfram Media, Inc., Champaign, Illinois, 2002.

[69] Stephen Wolfram, Cellular automata, Los Alamos Science 9 (1983), 2–27.

[70] , Cellular automata and complexity, (2006).

[71] A. Wuensche, Basins of attraction in network dynamics, Modularity in development

and evolution (2004), 1–17.

[72] Yingxu Yang and SA Billings, Extracting boolean rules from ca patterns, Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on 30 (2000), no. 4, 573–580.

[73] Albert Y Zomaya, Handbook of nature-inspired and innovative computing: integrating

classical models with emerging technologies, Springer, 2006.

165

Appendix A

Used Images From the Extended Yale Face

Database B

A.1 The 20-by-25 images

Table A.1: The set of 20 × 25 images used in the experiments of
Chapter 3

166

167

168

169

A.2 The 40-by-50 images

Table A.2: The set of 20 × 25 images used in the experiments of
Chapter 3

170

171

172

173

174

