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Abstract 

This piece of work deals with the viscous stability of trailing line vortex. The 

perturbations are three dimensional and the viscous effects were encountered. The 

eigenvalue problem was solved by implementing a pseudo-spectral approach in 

MATLAB environment. The code was confirmed through comparing the results with 

those available in the literature, produced with Bachelor’s vortex model as base flow. 

The code was afterwards used to investigate the stability of trailing line vortex 

where the azimuthal component of the base flow was the one of Vatistas’ vortex model. 

The stability of the linear modes (Kelvin’s waves) was investigated for axisymmetric and 

asymmetric disturbances.  Results for the temporal viscous unstable modes were 

provided.  The influence of swirl parameter and Reynolds number on the growth rate, 

phase speed and amplitude, of the perturbations were studied.      

 

Keywords: vortex model, Kelvin waves, stability analysis, pseudo-spectral method, 

trailing line vortex.   
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1. Background 

1.1 Introduction 

In this chapter, a brief introduction to the topic is provided beginning with 

inviscid vortex theory and then proceed with the initial argument published originally by 

Kelvin, which opened up the fascinating research area that deals with wave propagation 

in vortices. His approach has received enormous attention in aerodynamics and in 

general modern physics. Most of the fundamentals were explained in whole detail in the 

celebrated monograph of Saffman [1]. A Concrete illustration of this aspect can also be 

found in the Batchelor’s classical textbook in fluid dynamics [2]. 

Swirling flow or so-called “Vortices” has been a dynamic field of research. 

Momentum is transferred from large to low scale.  Vortices could also contain axial or 

radial flows such as bathtub vortex observed during drainage.  Another important 

example of vortices is a paired of intense vortices that form the wake behind wingtips of 

airplanes. These are known to be very dangerous for smaller aircrafts flying closely thus 

limiting traffic in busy airports. Starting at each wingtip, this spiral flow evolves and 

ultimately transfers to a columnar single cell vortex. These trailing line vortices persist 

for long distances behind the flight path. They appear in a diverse range of incidence 

angle during take-off, landing or cruising at high altitudes. The drag generated by these 

wingtip vortices is considered to be one of the main causes of fuel inefficiency. Thus it is 

necessary to have a good insight of the phenomenon before venturing in understanding 

of vortex-dominant flows. In our opinion, rotating flow must be prioritized in numerical 

or experimental fluid dynamics, since it is the backbone of fluid motion as mentioned by 

Hermann Schlichting [3]. Furthermore, one needs a dependable insight of rotating flows 

in many practical cases such as retrofitting design parameters in aerospace or vortex 

chambers. 
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A concentrated vortex is an axisymmetric flow where the azimuthal component of 

the velocity field is much greater than the others. Jets are known to be a different type of 

axisymmetric flow where the axial velocity is significantly greater than other two. One 

can utilize asymptotical theory to draw an analogy between the stability of vortex and 

jets in a well-posed simulation. Taking advantage of this fact in section 3.2 where the 

boundary condition on the vortex centerline is assumed to be similar to what Batchelor 

and Gill proposed for high-speed jets [4].  

A vortex is characterized by its intensity, and the core radius. We will classify 

vortex models in section 1.4. The core radius is the position of maximum azimuthal 

velocity. The vortex intensity is identified by a dimensionless variable called “q” (swirl 

parameter).  The stability of vortex strongly depends on the swirl parameter. It was 

believed between researchers that a specified value should exist for swirl parameter for 

which the vortex is stabilized. However, the upper limit has been controversial for a 

while. Now it is agreed that a value of q=2.31 is the upper limit above which the inviscid 

Bachelor vortex becomes stable. In the case of viscous fluid this upper limit depends on 

the Reynolds number. The limit decreases with decreasing Reynolds number.   

One is specifically interested in the stability of trailing line vortex, which appears 

on the wake of airplanes far from the trailing edge. The vortex developed enough and the 

swirling flow has a persistent columnar shape.  In this case, the flow is not subjected to 

any external source of pressure field. Accordingly, the trailing line vortex is of 

unconfined columnar type. In this study, one is looking for the wave propagation inside 

an unconfined single cell columnar vortex. Our work parallels the approach of Khorrami 

[5].  

  The governing equations and the associated boundary conditions were 

discretized using the pseudo-spectral method where the Chebychev polynomials are the 
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basis functions [6]. The perturbation was in form of Fourier waves; as A. 𝑒𝐢(𝑘𝑧+𝑚𝜃−𝝎𝑡) and 

the results were evaluated for both axisymmetric and asymmetric disturbances. 

Axisymmetric disturbance corresponds to zero azimuthal wave number (m=0). It has 

been shown that this mode is not greatly influenced by viscous forces. The main instable 

modes are found to occur at high Reynolds swirling flow with mode (m=±1). For 

example, flow in a wind tunnel is the low Reynolds regime. Therefore, the major mode is 

expected to be of the asymmetric (m=±1) type as had been found experimentally by 

Maxworthy [7]. 

The main framework for three dimensional temporal stability was established by 

Duck [8] and also Lessen [9]. For the temporal stability, one look for the growth rate for 

a given axial and azimuthal wavenumber (k, and m). In an opposite way, spatial analysis 

is carried out through computing axial wave number (k) for a fixed azimuthal 

wavenumber and growth rate (m, and 𝜔). In this analysis, the former case was 

considered. 

Pedley et al. simulated rotating pipe flow and confirmed the main mode in results 

is asymmetric for m=+1 [10].  Their results were presented in terms of Rossby number, 

which is a common dimensionless parameter in confined vortices. Maslowe validated the 

results with experiments [11]. Despite the persistency of asymmetric disturbances in a 

rotating pipe, only the axisymmetric mode (m=0) is recognized to withstand on the 

trailing line vortex.  

This is attributed to the small order of Reynolds number in the experimental 

work. However, on the wake of airplanes the flow has larger Reynolds number and 

therefore the viscous effects are minor. Consequently, only the axisymmetric disturbance 

is more likely to sustain in the well-developed section of trailing line vortex. The results 
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are presented in chapter 5 for two case studies of axisymmetric and asymmetric 

disturbances. The major difference between them was extensively discussed.  

Besides the controversial issues in finding the more stable type of disturbance, it 

has been noted by Khorrami that the effect of viscosity must be encountered in any 

stability analysis of vortex flow [5]. He computed the results for axisymmetric and 

asymmetric disturbances, and compared his results with Lessen and Duck. He also 

traced the effect of Reynolds number, and concluded that viscous forces affect the 

asymmetric disturbances but they do not influence the axisymmetric. In this study, the 

effect of viscous forces on the amplification rate was also studied, however only for 

asymmetric disturbance. In our work the polynomial basis proposed in Mao was used 

[12].  

    The fundamentals were briefly mentioned in the first chapter. The presentation 

proceeds with the analytical viscous stability in chapter 2 and applied numerical method 

in chapter 3. They contain every aspect in the establishment of the numerical algorithm 

except the principals required for deriving the polynomial basis. Apparently, those could 

be determined through recombining standard Chebychev basis, which is completely an 

advanced topic in functional analysis and therefore out of our scope.  The printed 

transcript of present procedure was also attached. 

In chapter 4, the method was confirmed by comparing the results with previous 

studies. Ultimately, the results were presented in chapter 5 for two cases; axisymmetric 

and asymmetric disturbance. A qualitative assessment of the influence of swirl quantity 

on the wave packets was also provided. The results in chapter 5 also contain the impact 

of Reynolds number on the growth rate. The last results consist of topographies of 

instability for asymmetric disturbance.  
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1.2 Vorticity and Kelvin’s theorem 

Mathematically, the vorticity field is defined as the curl of the velocity field: 

 𝛀∗ = 𝛁 × 𝑽∗ (1-1) 

This can be expanded in cylindrical coordinates as the relation between the 

vorticity components ( Ω𝑟
∗, Ω𝜃

∗, Ω𝑧
∗) and the velocity components (𝑈∗, 𝑉∗,𝑊∗): 

 Ω𝑟
∗ =

1

𝑟∗
𝜕𝑊∗

𝜕𝜃̅
−
𝜕𝑉∗

𝜕𝑧∗
 ,    Ω𝜃

∗ =
𝜕𝑈∗

𝜕𝑧∗
−
𝜕𝑊∗

𝜕𝑟∗
 ,      Ω𝑧

∗ =
1

𝑟∗
(
𝜕(𝑟∗𝑉∗)

𝜕𝑟∗
−
𝜕𝑈∗

𝜕𝜃∗
) (1-2) 

Conservation of momentum for incompressible flow in cylindrical coordinates is: 

𝜌
𝜕𝑽∗

𝜕𝑡
 + 𝜌𝑽∗. 𝛁𝑽∗ = −𝛁P∗ + 𝜇∆𝑽∗ (1-3) 

Rate of increase of 

momentum at P 
 

Net flow rate of 

momentum 
 

Net pressure 

force 
 

Net viscous 

force 
 

The equations of motions can also be reformatted in terms of vorticity. Applying 

the curl operator, the momentum equation for Newtonian fluid with uniform density can 

be expressed by following equation, which is again is in Eulerian form: 

𝜌
𝜕𝛀∗

𝜕𝑡
 

+ 𝜌𝑽∗. 𝛁𝛀∗ = 𝜌𝛀∗. 𝛁𝑽∗ + 𝜇∆𝛀∗ (1-4) 

Rate of increase of 

vorticity 

 Net flow rate of 

vorticity 

 Vortex 

stretching 

 Viscous 

diffusion 

 

Note that 𝛁 × 𝛁𝑃∗ is evidently zero for any conservative pressure field. Both 

velocity and vorticity are vector functions and can be localised in any point with 

coordinates 𝒙 = (𝑥, 𝑦, 𝑧). Equation (1-1) enables us evaluating the vorticity from velocity 

field. Conversely, it is also possible to compute velocity by using Biot-Savart law in ℝ3: 
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 𝑽∗(𝒛) = −
𝟏

𝟒𝝅
∫
(𝒙 − 𝒙̃) × 𝛀∗(𝒙̃)

‖𝒙 − 𝒙̃‖𝟑
𝒅𝒙̃

 

ℝ𝟑
 (1-5) 

Where 𝒙̃ an integration variable and the velocity field is defined in the complex space. 

The circulation Γ of flow is defined in a confined loop C as below: 

 Γ=∮V*.ds
 

C

 (1-6) 

Therefore, it can be seen as the work done by velocity over a closed curve. The 

vortex motion was firstly formulated by Kelvin when he proposed his well-known 

theorem about conservation of circulation in fluid flow: 

 
DΓ

Dt
=ν∫(∆V*).ds

 

C

 (1-7) 

Where 
𝐷Γ

𝐷𝑡
=
𝜕Γ

𝜕𝑡
+ 𝑽∗. 𝛁Γ and 𝜈 is kinematic viscosity. For inviscid flow, this equation could 

be simplified and deducted to common Helmholtz law in conservation of circulation [13].
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1.3 Trailing line vortex 

The mechanism of having a pair of wingtip vortex is simply caused by the 

difference in the pressure fields on top and bottom surfaces of wing. The high-pressure 

flow under the wing moves towards the top surface where the pressure is lower. This 

phenomenon generates a strong swirling flow at the wingtip, which is known to reduce 

the flight efficiency by adding the so-called induced drag. The evolution of wingtip vortex 

is schematically illustrated below. 

These vortices obviously dissipate energy and increase total drag imposed on the 

aircraft. Knowing the fact that the entire aerodynamic design aims to reduce the drag as 

much as possible, it becomes even more important to know how they could be possibly 

removed. This requires proposing a reasonable condition that explicitly determines the 

stability or instability of the vortex. Considering a single TLV, this stability condition 

should be well defined in terms of fluid mechanics of a developed concentrated columnar 

vortex.   Consequently, one should look for it as a function of major physical parameters 

describing the phenomenon. Regarding the vital role of swirl parameter in any q-vortex 

model directs us to comprehend the main idea behind the stability analysis in practice.  

Broadly speaking, any stability analysis in fluid mechanics simply provides a 

meaningful criterion for toggling into or away from the stable flow regime which can be 

used in another design level. For our case, it is usually demanded to make the wingtip 

vortices destabilized and chaotic in order to attenuate the induced drag. As mentioned 

before, the criterion here is reasonably the swirl parameter. A reliable threshold for 

vortex stability based on “q” can contribute to address fundamental questions in 

aerodynamics like “how does the geometry of wingtip possibly reduce the induced drag 

and as a result improve the fuel efficiency?” However, it is obvious that other aspects of 
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this puzzle must be treated as well, for example, knowing the effect of wingtip geometry 

on the swirl strength of trailing vortex. 

 

 

 

 

Figure 1-1 Trailing line vortex 
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1.4 Vortex models 

In inviscid flow theory, vortex region is idealized as vortex sheets, filaments or point 

vortices. The simplest of all models for vortices is point-vortex model. Helmholtz 

established the fundamental of vortex dynamics by introducing point vortex model for 

inviscid incompressible swirling flow [14]. Point vortex model is applicable in ideal 

simulations such as in the flow of superfluid helium where a pattern of individual 

vortices are distinguishable and could be acceptably considered as being one 

dimensional. The topic of quantized vortex pattern in helium was reviewed thoroughly 

by Donnelly [15]. The Introductory paper by Hasimoto contains more details for the 

point vortex model [16]. 

However, such ideal models are not applicable to the current study. Stability analysis 

of vortices requires incorporating the base flow for columnar line vortex with axial flow, 

thus restricting the selection to the available vortex models.  

In any incompressible vortex model, a set of dimensionless velocity components 

(U,V,W) in cylindrical coordinates must satisfy the axisymmetric Navier-Stokes 

equations for Newtonian incompressible fluid under laminar steady condition. 

Accordingly; 

 𝑈
𝜕𝑈

𝜕𝑟
+𝑊

𝜕𝑈

𝜕𝑧
−
𝑉2

𝑟
= −

𝜕P

𝜕𝑟
+
1

Re
(
𝜕2𝑈

𝜕𝑟2
+
1

𝑟

𝜕𝑈

𝜕𝑟
+
𝜕2𝑈

𝜕𝑧2
−
𝑈

𝑟2
) (1-8 a) 

 𝑈
𝜕𝑉

𝜕𝑟
+𝑊

𝜕𝑉

𝜕𝑧
+
𝑈. 𝑉

𝑟
=
1

Re
(
𝜕2𝑉

𝜕𝑟2
+
1

𝑟

𝜕𝑉

𝜕𝑟
+
𝜕2𝑉

𝜕𝑧2
−
𝑉

𝑟2
) (1-8 b)   

 𝑈
𝜕𝑊

𝜕𝑟
+𝑊

𝜕𝑊

𝜕𝑧
= −

𝜕P

𝜕𝑧
+
1

Re
(
𝜕2𝑊

𝜕𝑟2
+
1

𝑟

𝜕𝑊

𝜕𝑟
+
𝜕2𝑊

𝜕𝑧2
) (1-8 c)   

 
𝜕𝑈

𝜕𝑟
+
𝑈

𝑟
+
𝜕𝑊

𝜕𝑧
= 0 (1-8 d)   
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Where all parameters became dimensionless regarding to the vortex core (𝑟𝑐
∗) and 

axial velocity at infinity (𝑊∞
∗) as shown below:  

𝑟 = 𝑟∗ 𝑟𝑐
∗⁄    

𝑧 = 𝑧∗ 𝑟𝑐
∗⁄    

𝑈 =
𝑈∗

𝑊∞
∗ 𝑅𝑎𝑑𝑖𝑎𝑙  (𝑟 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)  

𝑉 =
𝑉∗

𝑊∞
∗ 𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑎𝑙   (𝜃 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)  

𝑊 =
𝑊∗

𝑊∞
∗ 𝑎𝑥𝑖𝑎𝑙   (𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)  

P =
P∗ − P∞

∗

𝜌𝑊∞
∗2

   

Re =
𝑊∞

∗. 𝑟𝑐
∗

𝜈
   

One can look at dimensionless parameters above and discover the fact that the 

definition of Reynolds number in equation (1-8) relies essentially on an 

unchangeable  𝑟𝑐
∗. Note that the vortex core  𝑟𝑐

∗ is the radial location of the maximum 

azimuthal velocity. It is indeed an indicator of the effective zone of rotating flow. Far 

downstream, where the trailing vortex is well developed, the core size could reasonably 

accepted to be constant. Consequently, the core radius is invariable for an adequately 

developed swirling flow regime behind the airplane and one can use it as ’’a priori” in the 

dimensionless equations. Thus, our analysis is necessarily limited to the developed 

region of trailing line vortex. 

Azimuthal velocity is predominant in a swirling flow of this kind, and one can 

conclusively omit any term in the momentum equations that does not contain “V”. In 

addition; the columnar flow assumption retrieves the independency of all variables to the 

axial dimension (i.e. 
𝜕

𝜕𝑧
= 0).   
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Therefore, equations (1-8) could then be reduced to: 

 
𝑉2

𝑟
=
𝑑P

𝑑𝑟
 (1-9 a) 

 
𝑈

𝑟

𝑑(𝑟𝑉)

𝑑𝑟
=
1

Re

𝑑

𝑑𝑟
(
1

𝑟

𝑑

𝑑𝑟
(𝑟𝑉)) (1-9 b) 

 
𝜕𝑈

𝜕𝑟
+
𝑈

𝑟
+
𝜕𝑊

𝜕𝑧
= 0 (1-9 c) 

Furthermore, any model should be capable of interpolating the experimental profile 

of the azimuthal velocity component. Fortunately, several simple (and sometimes 

empirical) models have been proposed to approximate well the experimental values of 

the velocity field and pressure distribution. The most presently popular are those of: 

Rankine, Scully, Sullivan, Taylor, Bachelor, Burger, Lamb-Oseen and Vatistas. The 

tabulated velocity components, static pressure and vorticity for some models were 

provided in Table 1-1 in non-dimensional form [17]: 

 

Table 1-1 

Quantity Radial Velocity 
Azimuthal 

Velocity 
Axial Velocity Pressure Vorticity 

Variable 𝑈 =
𝑈∗

𝑊∞
∗ 𝑉 =

𝑉∗

𝑊∞
∗ 𝑊 =

𝑊∗

𝑊∞
∗ P =

P∗ − P∞
∗

𝜌𝑊∞
∗2

 Ωz =
Ω𝑧
∗

(𝑊∞
∗ 𝑟𝑐

∗⁄ )
 

Rankine 

0 ≤ 𝑟 ≤ 1 0 𝑞. 𝑟 −𝑘𝑧 
𝑞2. 𝑟2

2
 2q 

1 ≤ 𝑟 ≤ ∞ 𝑓𝑛(𝑟) 
𝑞

𝑟
 −

1

Re

𝑧

𝑟

𝑑

𝑑𝑟
(𝑟𝑓𝑛(𝑟)) 𝑞2 (1 −

1

2𝑟2
) 0 

Burgers −2𝛼𝑟 
𝑞

𝑟
(1 − 𝑒𝛼𝑟

2
) 4𝛼𝑧 𝑞2 (1 −

𝛽

𝛼𝑙𝑛2
) 2𝑞. 𝛼. 𝑒−𝛼𝑟

2
 

Vatistas 𝑛 = 2 
−6𝑟3

1 + 𝑟4
 

𝑞. 𝑟

√1 + 𝑟4
 

24𝑧. 𝑟2

(1 + 𝑟4)2
 

2

𝜋
𝑡𝑎𝑛−1(𝑟2) 

2𝑞

√(1 + 𝑟2)3
 

 

Where 𝛼 = 1.256 and 𝛽 = ∫
1

𝑟3
(1 − 𝑒−𝛼𝑟

2
)
2
𝑑𝑟

∞

𝑟
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In all models, the dimensionless swirl parameter is defined by 

𝑞 =
Γ∞
∗

2𝜋. 𝑟𝑐
∗.𝑊∞

∗ 

And Γ∞
∗ is the asymptotical circulation of the velocity field in 𝑟 − 𝜃 plane. Regarding to 

its definition in (1-6), it can be evaluated either from velocity: 

Γ∞
∗ = ∮ 𝑽∗. 𝑑𝒔 = lim

𝑟∗→+∞
∮ 𝑉∗
 

𝐶∞

. 𝑟∗𝑑𝜃 = 2𝜋 lim
𝑟̅→+∞

(𝑟∗. 𝑉∗)
 

𝐶∞

 

This directly determines the dimensionless swirl parameter in terms of 

dimensionless azimuthal velocity as 𝑞 = lim
𝑟→+∞

(𝑟𝑉). All models given in Table 1-1, share 

these features: 

 Maximum azimuthal velocity should be located on the unit core radius 

(i.e. 𝑟 = 1) 

 lim
𝑟→+∞

(𝑟𝑉) = 𝑞 Which means that all the models asymptotically act as 

irrotational vortex  𝑟 → ∞; 𝑉 →
𝑞

𝑟
. 

 lim
𝑟→0
(
𝑉

𝑟
) = 𝑞 or equivalently 𝑟 → 0;  𝑉 → 𝑞. 𝑟 (i.e. forced vortex). 

It is crucial to know that all vortex models are solutions to the simplified Navier-

Stokes equations and continuity. Since the system of equations that describes these 

vortices is underdetermined, their formulation starts by presuming a velocity profile and 

other flow parameters are obtained by the solution of the set. 

The simplest and the oldest model is due to Rankine. It assumes a solid body 

rotation in the vortex core, and a potential flow outside the core. The maximum velocity 

occurs at the core radius. Burgers model is considered to match better than Rankine’s to 

the empirical tangential velocity near the core. However, it carries additional 

complication in evaluating pressure drop on the vortex axis. In this study, the azimuthal 

component of vortex model proposed by Vatistas was used, which is known to agree well 

with the experimental results. Moreover, it does not have the complexities encountered 
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in Burger’s model about computing the new parameter 𝛽. Instead, it results into an 

explicit formulation for pressure distribution inside the vortex core. 

The radial variations of azimuthal velocity for common vortex models are 

presented in Figure 1-2 below [18]. 

 

 

 

Figure 1-2 Comparison of different viscous vortex models, [18] 
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1.5 Waves inside vortices 

Disturbances transmit throughout the flow region as travelling waves. These 

waves, commonly called Kelvin waves, are neutrally oscillatory and most of the time 

damped. Nevertheless, they are sometimes stable enough to be called solitons, which 

usually lead to abrupt instability and vortex breakdown as well as accompanying 

enlargement, stretching and dissipation [16]. 

These waves were discovered theoretically by Lord Kelvin during his attempt for 

developing the theory of vortex atoms [19]. He imposed Rankine’s vortex model to three 

dimensional perturbation and derived the dispersion relation as below: 

(𝑚Ω2 +ω)2

4Ω2 − g2
[
𝛽𝑟𝑐𝐽|𝑚|́ (𝛽𝑟𝑐)

𝐽|𝑚|(𝛽𝑟𝑐)
+
2𝑚Ω

𝑔
] = −|𝑘|𝑟𝑐

𝐾|𝑚|́ (|𝑘|𝑟𝑐)

𝐾|𝑚|(|𝑘|𝑟𝑐)
 (1-10) 

With  𝛽2 =
𝑘2(4Ω2−𝑔2)

𝑔2
   and   𝑔 = 𝑚Ω+ 𝜔. Where 𝐽(𝑚) and 𝐾(𝑚) are respectively the Bessel 

function and the modified Bessel function of order 𝑚 [1]. Here, m=0 corresponds to 

axisymmetric mode and 𝜔 is the growth rate. 

The presence of these waves in the vortex core was experimentally confirmed by 

Maxworthy [7]. Melander et al. also observed Kelvin on trailing line vortices in turbulent 

regimes [20].  

Kelvin was apparently motivated in waves on the vortex core for developing his 

vortex ring model on an entirely different topic; to explain matter at the atomic level. 

While his approach missed the chance to receive attention in 19th century, recently his 

approach seems to be applicable in revealing intriguing notions in modern physics, 

particularly in string theory [21].   
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1.6 Stability analysis of vortices 

The main idea of stability analysis in swirling flows is the interaction between 

vortices and waves. The approach is established by determining a steady state solution, 

which is called base flow and the stability is checked through a study of eigensolutions of 

the linearized perturbation equation. Indeed, stability analysis is significantly more 

elaborative than providing the base flow. 

A body of works in recent years was restricted to Bachelor’s trailing vortex. 

Martin Lessen firstly calculated both inviscid and viscous stability of wave modes with 

numerical shooting method [9]. (Duck & Pedley). On the moment, reference to the PhD 

thesis by K. Duraisamy for the most dependable studies in wingtip vortices [22] is made. 

The most significant publication are those by Leibovich et al. [23] . They studied 

the interaction of vortex break down and unstable Kelvin waves. Moreover, they 

proposed a stability criteria by considering maximum strain energy and asymptotical 

theory [24].  Maxworthy et al. [7] investigated wave motions in vortex core 

experimentally and validated dispersion theory of solitary waves in Burger’s vortex 

model. Lessen et al. implemented the first viscous stability analysis by introducing three 

dimensional perturbation into the base flow [9]. Extensive viscous stability analysis is 

available for Scully model in Khorrami [5] as well as Batchelor vortex model in Fabre 

and Mao [25], [12]. 

In the present study, the same analysis for a vortex having an azimuthal velocity 

from Vatistas vortex model (n=2) is applied.  Selecting appropriate value for n can 

produce either Rankine’s (n  ∞) or Scully’s (n = 1) vortices. For several practical 

reasons, the most widely used member of the set is the n = 2 (a close approximation to 

Oseen-Lamb and Burgers vortices), [26].  Vatistas model was found by several 
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researcher more suitable in describing experimental results. For instance Bagai and 

Leishman [27] used the n-family model to describe of tip-vortices at helicopter rotor 

wakes.  The Vatistas vortex model is found to describe well the strong vortex connecting 

the inlet to the ground in Jet engines operating near the ground [28]. To date there are 

over 70 publications (in scholarly journals, monograms, reports of major scientific 

centers, masters and doctoral theses, and patents) that cite the original contribution, and 

the list grows by the day. Due to several agreeable practical and mathematical properties 

it is expected that this vortex model and its extensions will eventually replace the widely 

cited classical Rankine, Oseen-Lamb, Burgers, and Scully vortex formulations.  
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2. Analytical Model for Viscous Stability Analysis of Vortex 

2.1 Linearization of perturbation equation 

Here, the general perturbation equation is derived. The momentum and 

conservation equations are used in cylindrical coordinates for the velocity and pressure 

fields. Starting point is the full Navier-Stokes and continuity equations for an 

incompressible Newtonian fluid [12]: 

𝜕𝑡𝒗 + (𝒗.𝛁)𝑽 = −𝛁p + Re
−1∆𝒗 with 𝛁. 𝒗 = 0 (2-1) 

In this equation 𝒗(𝑟, 𝜃, 𝑧; 𝑡) = (𝑢, 𝑣, 𝑤) and p(𝑟, 𝜃, 𝑧; 𝑡) are respectively 

dimensionless velocity and pressure fields in cylindrical coordinates; in a way that: 

𝑢 → 𝑅𝑎𝑑𝑖𝑎𝑙  (𝑟 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)  

𝑣 → 𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑎𝑙   (𝜃 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

𝑤 → 𝑎𝑥𝑖𝑎𝑙   (𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

One can expand equation (2-1) as shown below; 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+
𝑣

𝑟

𝜕𝑢

𝜕𝜃
+ 𝑤

𝜕𝑢

𝜕𝑧
−
𝑣2

𝑟
= −

𝜕p

𝜕𝑟
+
1

Re
(
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
+
1

𝑟2
𝜕2𝑢

𝜕𝜃2
+
𝜕2𝑢

𝜕𝑧2
−
𝑢

𝑟2
−
2

𝑟2
𝜕𝑣

𝜕𝜃
) (2-2a) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑟
+
𝑣

𝑟

𝜕𝑣

𝜕𝜃
+ 𝑤

𝜕𝑣

𝜕𝑧
−
𝑢. 𝑣

𝑟
= −

1

𝑟

𝜕p

𝜕𝜃
+
1

Re
(
𝜕2𝑣

𝜕𝑟2
+
1

𝑟

𝜕𝑣

𝜕𝑟
+
1

𝑟2
𝜕2𝑣

𝜕𝜃2
+
𝜕2𝑣

𝜕𝑧2
+
2

𝑟2
𝜕𝑢

𝜕𝜃
−
𝑣

𝑟2
) 

(2-2 b) 

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+
𝑣

𝑟

𝜕𝑤

𝜕𝜃
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

𝜕p

𝜕𝑧
+
1

Re
(
𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
+
1

𝑟2
𝜕2𝑤

𝜕𝜃2
+
𝜕2𝑤

𝜕𝑧2
) 

(2-2 c) 

𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
+
1

𝑟

𝜕𝑣

𝜕𝜃
+
𝜕𝑤

𝜕𝑧
= 0 

(2-2 d) 

All quantities were made dimensionless with the scale of free stream axial 

velocity 𝑊∞
∗, and a characteristic core radius 𝑟𝑐

∗. The dimensionless pressure equals to 
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(p∗ − p∞
∗) 𝜌𝑊∞

∗2⁄ , and the Reynolds number is defined as Re = 𝑊∞
∗𝑟𝑐
∗ 𝜈⁄  where 𝜈 is the 

kinematic viscosity [29]. 

The velocity and pressure fields are written in the form: 

 𝑢 = 𝑈 + 𝑢′  

 𝑣 = 𝑉 + 𝑣′  

 𝑤 = 𝑊 +𝑤′  

 p = P + p′  

Where uppercase letters denote base flow variables for single cell vortex. For brevity, the 

base flow field by 𝑽(𝑟) = (𝑈, 𝑉,𝑊) is designated. Thereby, the following closed form can 

be obtained [12]: 

𝜕𝑡𝒗
′ + (𝑼.𝛁)𝒗′ + (𝒗′. 𝛁)𝑽 = −𝛁p′ + Re−1𝛁2𝒗′ With 𝛁.𝒗′ = 0 (2-3) 

𝒗′(𝑟, 𝜃, 𝑧; 𝑡) = (𝑢′, 𝑣′, 𝑤′) and p′(𝑟, 𝜃, 𝑧; 𝑡) are the introduced disturbances which are 

asserted in flow field and one is interested to investigate their growth rate. that the 

velocity 𝑽(𝑟) = (𝑈, 𝑉,𝑊) is only a function of radial distance. All the terms that include 

derivative of the base flow respect to azimuthal and axial coordinate (e.g. 
𝜕𝑈

𝜕𝑧
, 
𝜕𝑊

𝜕𝜃
, etc.) can 

be eliminated. Moreover, dropping the non-linear terms in (2-3) (e.g. 
𝑢′𝑣′

𝑟
, 𝑢′

𝜕𝑢′

𝜕𝑟
,
𝑣′

𝑟

𝜕𝑢′

𝜕𝜃
, 

etc.) one reaches the “Linear Perturbation Equation”,  given by Eqs. (2-4) [29]. 

It is important to point out that eliminating these terms might not be necessarily 

a sound assumption. Especially when the initial perturbations raise enough to the extent 

that the second order terms in the perturbation equation become excessively large and so 

are no longer negligible. Thus, neglecting non-linear terms is only admissible for 

elementary growth of disturbances and right after they exceed a specified value the linear 
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form of the perturbation equation does not describe the dispersion of instabilities 

accurately. 

𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝑢′

𝜕𝑟
+
𝑉

𝑟

𝜕𝑢′

𝜕𝜃
+𝑊

𝜕𝑢′

𝜕𝑧
+ 𝑢′

𝜕𝑈

𝜕𝑟
−
2𝑉𝑣′

𝑟
= 

(2-4 a) 

−
𝜕p′

𝜕𝑟
+
1

Re
(
𝜕2𝑢′

𝜕𝑟2
+
1

𝑟

𝜕𝑢′

𝜕𝑟
+
1

𝑟2
𝜕2𝑢′

𝜕𝜃2
+
𝜕2𝑢′

𝜕𝑧2
−
𝑢′

𝑟2
−
2

𝑟2
𝜕𝑣′

𝜕𝜃
) 

𝜕𝑣′

𝜕𝑡
+ 𝑈

𝜕𝑣′

𝜕𝑟
+
𝑉

𝑟

𝜕𝑣′

𝜕𝜃
+𝑊

𝜕𝑣′

𝜕𝑧
+ 𝑢′

𝜕𝑉

𝜕𝑟
+
1

𝑟
(𝑈𝑣′ + 𝑉𝑢′) = 

(2-4 b) 

−
1

𝑟

𝜕p′

𝜕𝜃
+
1

Re
(
𝜕2𝑣′

𝜕𝑟2
+
1

𝑟

𝜕𝑣′

𝜕𝑟
+
1

𝑟2
𝜕2𝑣′

𝜕𝜃2
+
𝜕2𝑣′

𝜕𝑧2
+
2

𝑟2
𝜕𝑢′

𝜕𝜃
−
𝑣′

𝑟2
) 

𝜕𝑤′

𝜕𝑡
+ 𝑈

𝜕𝑤′

𝜕𝑟
+
𝑉

𝑟

𝜕𝑤′

𝜕𝜃
+𝑊

𝜕𝑤′

𝜕𝑧
+ 𝑢′

𝜕𝑊

𝜕𝑟
+ 𝑤′

𝜕𝑊

𝜕𝑧
= 

(2-4 c) 

−
𝜕p′

𝜕𝑧
+
1

Re
(
𝜕2𝑤′

𝜕𝑟2
+
1

𝑟

𝜕𝑤′

𝜕𝑟
+
1

𝑟2
𝜕2𝑤′

𝜕𝜃2
+
𝜕2𝑤′

𝜕𝑧2
) 

𝜕𝑢′

𝜕𝑟
+
𝑢′

𝑟
+
1

𝑟

𝜕𝑣′

𝜕𝜃
+
𝜕𝑤′

𝜕𝑧
= 0 

 

(2-4 d) 

It should be emphasized that here only considered the incompressible instability 

was considered. The unconfined single cell vortex is our interest. Radial distance varies 

from singular point at origin to infinity. However, only the region (0,R) where the value 

of R was sufficiently chosen to be the effective zone of vortex momentum was discretized. 

More precisely; 0<r<R is the region where the azimuthal component V is predominant. 

Many researchers authenticated the fact that neglecting velocity for r>R does work 

satisfactorily for a numerical modal analysis. Note that components (U,V,W) and P come 

out of base flow field defined by chosen vortex model and fulfill the equation (1-9) as well 

as all the conditions proposed in section (1-4). Hence, equation (2-4), which from now 

on is called “LPE”, is a system of ordinary differential equation with known coefficients 
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(all in terms of velocity and pressure fields proposed by base flow for vortex). It must be 

solved to determine the evolution of the imposed disturbance (𝑢′, 𝑣′, 𝑤′, 𝑝′)[16].  
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2.2 Boundary conditions for LPE 

The domain of axisymmetric flow is easily recognised to be (0,∞). Accordingly, 

should look for a sound assumptions in two districts; first, vortex centerline (r=0), and 

second, free stream (r∞). Assuming an asymptotical correlation for the compatibility 

condition on the vortex core; 

 lim
𝑟→0

𝜕𝒗′

𝜕𝜃
= 0 (2-5) 

Where 𝒗′(𝑟, 𝜃, 𝑧; 𝑡) = (𝑢′, 𝑣′, 𝑤′) = 𝑢′𝐞𝐫̂ + 𝑣
′𝐞𝛉̂ +𝑤

′𝐞𝐳̂ is the total perturbation velocity 

field. The compatibility equation (2-5) was originally proposed by Batchelor in order to 

perform stability analysis of high-speed jets [4]. This assumption assures about the 

smoothness of solution along the centerline. Indeed, it is a deduction of the general 

compatibility relation for the total velocity field. Knowing that all velocity components in 

base flow are independent of azimuthal direction [5]. yields: 

𝜕𝒗′

𝜕𝜃
=
𝜕

𝜕𝜃
(𝑢′𝐞𝐫̂ + 𝑣

′𝐞𝛉̂ +𝑤
′𝐞𝐳̂) 

 

Or 

lim
𝑟→0

𝜕𝒗′

𝜕𝜃
=
𝜕𝑢′

𝜕𝜃
𝐞𝐫̂ + 𝑢

′
𝑑𝐞𝐫̂
𝑑𝜃
+
𝜕𝑣′

𝜕𝜃
𝐞𝛉̂ + 𝑣

′
𝑑𝐞𝛉̂
𝜕𝜃
+
𝜕𝑤′

𝜕𝜃
𝐞𝐳̂ +𝑤

′
𝑑𝐞𝐳̂
𝜕𝜃

 
 

But 

𝑑𝐞𝐫̂
𝑑𝜃

= 𝐞𝛉̂ 
𝑑𝐞𝛉̂
𝑑𝜃

= −𝐞𝐫̂ 
𝑑𝐞𝐳̂
𝑑𝜃

= 0 

These allows us to refine the compatibility equation as a boundary condition on r=0 as; 
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{
 
 
 

 
 
 
𝜕𝑢′

𝜕𝜃
|
𝑟=0

= 𝑣′

𝜕𝑣′

𝜕𝜃
|
𝑟=0

= −𝑢′

𝜕𝑤′

𝜕𝜃
|
𝑟=0

= 0

 

 

 

B.C.’s for LPE on the vortex 

centerline 

(2-6 a) 

 

In temporal stability analysis, one looks for the growth rate of transient Kelvin 

waves. Therefore, only the transient solutions of LPE are involved. This is arithmetically 

equivalent to 𝑢′ = 𝑣′ = 𝑤′ = 0 at free stream; or 

lim
𝑟→∞

𝑢′ = lim
𝑟→∞

𝑣′ = lim
𝑟→∞

𝑤′ = 0 B.C.’s for LPE on free stream (2-6 b) 

 

  



23 

    

2.3 Imposing spiral disturbance on LPE 

Let us now introduce asymmetric (spiral) disturbance to equation (2-4), 

expressed in Fourier wave form: 

 𝑢′ = 𝐹1(𝑟)𝑒
𝐢(𝑘𝑧+𝑚𝜃−𝝎𝑡) 

(2-7) 

𝑣′ = 𝐹2(𝑟)𝑒
𝐢(𝑘𝑧+𝑚𝜃−𝝎𝑡) 

𝑤′ = 𝐹3(𝑟)𝑒
𝐢(𝑘𝑧+𝑚𝜃−𝝎𝑡) 

p′ = 𝐹4(𝑟)𝑒
𝐢(𝑘𝑧+𝑚𝜃−𝝎𝑡) 

Where all variables are dimensionless. Parameter 𝑘 is real and represents the 

wavenumber on the axial coordinate. The quantity 𝑚 is an integer, known as the 

azimuthal direction wavenumber. The growth rate is directly related to the real part of 

the complex variable 𝝎. 

Without loss of generality, the problem could be restricted to positive values of k 

and q but negative m. It is worthy to note that in order to achieve to a much cleaner LPE, 

many authors in inviscid analysis displace the radial disturbance by a phase angle of 
𝜋

2
 

(which equals multiplication by an imaginary unit). In the present study the viscous 

mode analysis, whereas all the disturbances were presumed to have the same phase 

angle was adopted. 

Note that all variables 𝐹1, 𝐹2, 𝐹3 and 𝐹4 and also their derivatives are solely in 

terms of radial distance of the vortex core. These perturbations are then substituted into 

LPE equation (2-4) and yield a linear system of ordinary differential equations as (2-8); 
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−𝝎𝐹1 + 𝑈𝐹1 +̇ 𝑈̇𝐹1 +  𝐢𝑚
𝑉

𝑟
𝐹1 −

2𝑉

𝑟
𝐹2 + 𝐢𝑘𝑊𝐹1 = 

(2-8 a) 

−𝐹4 +̇
1

Re
(𝐹1̈ +

𝐹1̇
𝑟
− (𝑚2 + 1)

𝐹1
𝑟2
− 𝐢
2𝑚

𝑟2
𝐹2 − 𝑘

2𝐹1) 

−𝝎𝐹2 +𝑈𝐹2 +̇ 𝑉̇𝐹1 +  𝐢𝑚
𝑉

𝑟
𝐹2 +

𝑈

𝑟
𝐹2 +

𝑉

𝑟
𝐹1 + 𝐢𝑘𝑊𝐹2 = 

(2-8 b) 

−𝐢
𝑚

𝑟
𝐹4 +

1

Re
(𝐹2̈ +

𝐹2̇
𝑟
− (𝑚2 + 1)

𝐹2
𝑟2
+ 𝐢
2𝑚

𝑟2
𝐹1 − 𝑘

2𝐹2) 

−𝝎𝐹3 +𝑈𝐹3 +̇ 𝑊̇𝐹1 +  𝐢𝑚
𝑉

𝑟
𝐹3 + 𝐢𝑘𝑊𝐹3 = 

(2-8 c) 

−𝐢𝑘𝐹4 +
1

Re
(𝐹3̈ +

𝐹3̇
𝑟
− 𝑚2

𝐹3
𝑟2
− 𝑘2𝐹3) 

𝐹1 +̇
𝐹1
𝑟
+ 𝐢
𝑚

𝑟
𝐹2 + 𝐢𝑘𝐹3 = 0 

(2-8 d) 

Where dots denote derivatives with respect to r. One can eliminate 𝐹3 and 𝐹4 by an 

elaborative algebraic manipulation and obtain a 2×2 system of ordinary differential 

equations in terms of variables 𝐹1 and 𝐹2 which are respectively correspondent to the 

amplitudes of the traveling disturbance wave in the radial (𝑢′) and azimuthal (𝑣′) 

coordinates.  

One then needs to find the solution of following eigenvalue problem: 

 
𝝎[
𝐿11 𝐿12
𝐿21 𝐿22

] [
𝐹1
𝐹2
] = [

𝑅11 𝑅12
𝑅21 𝑅22

] [
𝐹1
𝐹2
] (2-9) 

Linear operators 𝐿11, 𝐿12, 𝐿21, and 𝐿22 are defined as below [12]: 
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𝐿11 = Re [
𝑑2

𝑑𝑟2
+
1

𝑟

𝑑

𝑑𝑟
−
1

𝑟2
− 𝑘2] (2-10a) 

𝐿12 = 𝐢𝑚Re [
1

𝑟

𝑑

𝑑𝑟
−
1

𝑟2
] 

(2-10b) 

𝐿21 = −
𝐢𝑚

𝑘2
[
1

𝑟

𝑑

𝑑𝑟
+
1

𝑟2
] 

(2-10c) 

𝐿22 = 1 +
𝑚2

𝑘2𝑟2
 

(2-10d) 

 

Operators 𝑅11, 𝑅12, 𝑅21, and 𝑅22 could be specified identically but with more terms as; 

𝑅11 =
𝑑4

𝑑𝑟4
+
2

𝑟

𝑑3

𝑑𝑟3
− (

3

𝑟2
+ 𝑓 + 𝑘2)

𝑑2

𝑑𝑟2
+ (

3

𝑟3
−
𝑓 + 𝑘2

𝑟
−
𝑑𝑓

𝑑𝑟
+ 𝐢(𝑘

𝑑𝑊

𝑑𝑟
Re))

𝑑

𝑑𝑟
−
3

𝑟4
+
𝑓 + 𝑘2

𝑟2

− (
𝑑𝑓

𝑑𝑟
)
1

𝑟
+ 𝑘2𝑓 + 𝐢(𝑘

𝑑2𝑊

𝑑𝑟2
Re) 

(2-11 a) 

𝑅12 = 𝐢 [
𝑚

𝑟

𝑑3

𝑑𝑟3
−
2𝑚

𝑟2
𝑑2

𝑑𝑟2
+ (
3𝑚

𝑟3
−
𝑓𝑚

𝑟
)
𝑑

𝑑𝑟
−
3𝑚

𝑟4
+
𝑓𝑚 + 2𝑘2𝑚

𝑟2
−
𝑚

𝑟

𝑑𝑓

𝑑𝑟
+ 𝐢
2𝑉𝑘2Re

𝑟
] 

(2-11 b) 

𝑅21 = −
𝐢

𝑘2Re
[
𝑚

𝑟

𝑑3

𝑑𝑟3
+
2𝑚

𝑟2
𝑑2

𝑑𝑟2
− (
𝑚

𝑟3
+
𝑓𝑚

𝑟
)
𝑑

𝑑𝑟
+
𝑚

𝑟4
−
𝑓𝑚 + 2𝑘2𝑚

𝑟2
+ 𝐢 (𝑚𝑘

𝑑𝑊

𝑑𝑟
Re)

1

𝑟

− 𝐢(𝑘2𝐸Re)] 

(2-11 c) 

𝑅22 =
1

Re
[(1 +

𝑚2

𝑘2𝑟2
)
𝑑2

𝑑𝑟2
+ (
1

𝑟
−
𝑚2

𝑘2𝑟3
)
𝑑

𝑑𝑟
+ (
𝑚2

𝑘2
)
1

𝑟4
− (1 + 𝑓

𝑚2

𝑘2
)
1

𝑟2
− 𝑓] 

(2-11 d) 

Where 𝑓 = 𝑘2 +
𝑚2

𝑟2
+ 𝐢𝑘𝑊𝑅𝑒 + 𝐢

𝑚𝑉𝑅𝑒

𝑟
  and 𝐸 =

𝑉

𝑟
+
𝑑𝑉

𝑑𝑟
  [15].  
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For a particular radial distance, all the expressions in (2-10) and (2-11) act as 

linear derivatives: 𝑎4𝐷
4 + 𝑎3𝐷

3 + 𝑎2𝐷
2 + 𝑎1𝐷 + 𝑎0 whereas 𝐷 is 

𝑑

𝑑𝑟
 and with the 

coefficients 𝑎0, 𝑎1, ... are only functions of 𝑟. As a result, one can initially derive their 

linear form for 𝑟 and save it for computational efficiency.  

Equation (2-9) which from now its solution is our major interest, is an LPE 

according to introducing a 3D disturbance into an axisymmetric incompressible viscous 

flow. It may be regarded as an eigenvalue problem and could be solved to determine the 

perturbation growth rate; 𝝎 as well as amplitudes F1 and F2. 

The Boundary conditions of LPE were defined in section 2.2 and here they should 

be consistently reconstructed in terms of amplitudes F1 and F2. Substitution of (2-7) back 

into the original B.C.’s yields: 

{
𝑖𝑚𝐹1 = 𝐹2
𝑖𝑚𝐹2 = −𝐹1

 
B.C.’s for LPE on the vortex centerline (2-12 a) 

It is obvious that amplitudes F1 and F2 are bounded and should be asymptotically 

vanished far from the vortex centerline, This is equivalent to the boundary condition at 

𝑟 = ∞ as below. 

lim
𝑟→∞

𝐹1 = lim
𝑟→∞

𝐹2 = 0 B.C.’s for LPE on free stream (2-12 b) 

Consequently, the azimuthal wave number (m) requires different B.C.’s on the 

vortex centerline. Only m=0 and m<-1 were considered, since the boundary condition for 

m=-1 was obscure. The boundary conditions are listed in Table 2-1. 
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Table 2-1 

 Radial Azimuthal 

m=0 
r=0 𝐹1 = 𝐹1̈ = 0 𝐹2 = 0 

r=∞ 𝐹1 = 𝐹1̇ = 0 𝐹2 = 0 

m<-1 
r=0 𝐹1 = 𝐹1̇ = 0 𝐹2 = 𝐹2̈ = 0 

r=∞ 𝐹1 = 𝐹1̇ = 0 𝐹2 = 𝐹2̈ = 0 

 

Our main objective is investigation of the viscous stability of trailing line vortex by 

solving equation (2-9). Unfortunately, the perturbation equation does not have a closed 

form solution. Therefore, it sounds inevitable resorting to an appropriate numerical 

technique. The numerical method was demonstrated in the following chapter. 
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3. Pseudo-spectral method with Chebychev basis 

3.1 Discretizing LPE in Chebychev basis  

3.1.1 Compiling LPE for Chebychev collocation method 

The LPE, as its compact formulation presented in equation (2-9), is a Linear ODE 

system and must be solved for evaluating variables F1(r) and F2(r) in semi-infinite 

domain 0 < 𝑟 < ∞. In such a domain, it is common to incorporate the Chebychev 

polynomials.  

First of all, the domain should be conformed for adopting Chebychev collocation 

method. The original domain (0,∞) is mapped to (−1,1) by introducing new variable “y” 

as below: 

 𝑦 =
2𝑟

𝑅
− 1 (3-1) 

The scaling quantity, R, provides a way for truncating infinity. As displayed in 

figure 1-2, the azimuthal velocity (V) clearly falls off outside the vortex core. The 

azimuthal component vanishes at a sufficiently large but finite radial distance. This 

distance was assumed to equal to 2.5 for axisymmetric and 7.5 for asymmetric mode. In 

this way, the boundary condition at infinity coincides with r=R. 

The vortex centerline is characterized with y=-1, and the infinity with y=1 Then 

equation (2-9) changes to the following form: 
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 𝝎[
𝐿11 𝐿12
𝐿21 𝐿22

] [
𝐹1(𝑦)
𝐹2(𝑦)

] = [
𝑅11 𝑅12
𝑅21 𝑅22

] [
𝐹1(𝑦)
𝐹2(𝑦)

] (3-2) 

The LPE equation (2-9) is a 2×2 ODE system in 𝕂2 and could be projected to a 

subspace that roughly has the dimension 𝕂𝑀 ×𝕂𝑀*. This region is constructed by 

orthogonal Chebychev basis function {𝚽𝑛}𝑛=1
𝑀  and {𝚿𝑛}𝑛=1

𝑀  which satisfy B.C.’s given in 

Table 3-1. 

Table 3-1 

 Radial Azimuthal 

m=0 

y=-1 𝚽𝑖 = 0          
𝑑2𝚽𝒊
𝑑𝑦2

= 0 𝚿𝑖 = 0 

y=1 𝚽𝑖 = 0           
𝑑𝚽𝒊
𝑑𝑦

= 0 𝚿𝑖 = 0 

m<-1 

y=-1 𝚽𝑖 = 0           
𝑑𝚽𝒊
𝑑𝑦

= 0 𝚿𝑖 = 0     
𝑑2𝚿𝒊
𝑑𝑦2

= 0 

y=1 𝚽𝑖 = 0          
𝑑𝚽𝒊
𝑑𝑦

= 0 𝚿𝑖 = 0     
𝑑2𝚿𝒊
𝑑𝑦2

= 0 

 

The standard Chebychev basis is defined with a recurrence formulation as: 

Γ1(𝑦) = 1      Γ2(𝑦) = 𝑦        Γ𝑛 (𝑛>2)(𝑦) = 2Γ𝑛−1(𝑦) − Γ𝑛−2(𝑦) (3-3) 

We intentionally shifted the index of the Chebychev basis by one unit, so the 

corresponding functions could be fed much easier into the program. Unfortunately, the 

properties of standard Chebychev basis do not match with the acquired characteristics in 

Table 3-1. Therefore, there is a need to recombine the standard basis in a way that they 

fulfill all the B.C.’s  at y=±1. Here the modified basis proposed by Mao [12] was 

incorporated.   

                                                           
* is either the  complex space or  real space. 
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3.1.2 Modified chebychev basis for m=0 

The modified Chebychev basis for discretizing the radial disturbance (i.e. 𝑢 = 𝑈 + 𝑢′;  𝐹1) 

is: 

𝚽𝟏 = Γ1 

𝚽𝟐 = Γ2 

𝚽𝟑 = Γ3 − Γ1 

𝚽𝟒 = (Γ4 − Γ2) − 2(Γ3 − Γ1) 

𝚽𝒊 (𝒏>4,𝑜𝑑𝑑) = Γ𝑖−Γ1 −
1

4
(𝑖 − 1)2(Γ3 − Γ1) +

1

96
[(𝑖 − 1)4 − 4(𝑖 − 1)2](Γ4 − 2Γ3 − Γ2 + 2Γ1) 

𝚽𝒊 (𝒏>4,𝑒𝑣𝑒𝑛) = Γ𝑖−Γ2 −
1

4
(𝑖2 − 2𝑖)(Γ3 − Γ1) +

1

96
[−(𝑖 − 1)4 − 2(𝑖 − 1)2 + 3](Γ4 − 2Γ3 − Γ2 + 2Γ1) 

Then for 𝑖 > 4, all terms simply satisfy 𝚽𝒊(𝑦 = ±1) =
𝑑2𝚽𝒊

𝑑𝑦2
|
(𝑦=−1)

= 
𝑑𝚽𝒊

𝑑𝑦
|
(𝑦=1)

= 0 

This enables to estimate the radial amplitude of emanating disturbance, 𝐹1 on the 

subspace 𝕂𝑀−4 = 𝑠𝑝𝑎𝑛{𝚽𝟓,𝚽𝟔, … ,𝚽𝑴}. Similarly, the following basis for azimuthal 

disturbance (i.e. 𝑣 = 𝑉 + 𝑣′;  𝐹2) was used; 

𝚿𝟏 = Γ1  

𝚿𝟐 = Γ2  

𝚿𝒊 (𝒏>2,𝑜𝑑𝑑) = Γ𝑖−Γ1  

𝚿𝒊 (𝒏>2,𝑒𝑣𝑒𝑛) = Γ𝑖−Γ2  

Which satisfies 𝚿𝒊(𝒊>2)(𝑦 = ±1) = 0 

𝑀 − 4-subsequent terms from this functional vector were taken in. Then, the 

corresponding subspace 𝕂𝑀−4 = 𝑠𝑝𝑎𝑛{𝚿𝟑,𝚿𝟒, … ,𝚿𝑴−𝟐} has the same dimension as the 

radial one.   
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3.1.3 Modified chebychev basis for m<-1 

The radial disturbance was discretized with: 

𝚽𝟏 = Γ1  

𝚽𝟐 = Γ2  

𝚽𝟑 = Γ3 − Γ1  

𝚽𝟒 = Γ4 − Γ2  

𝚽𝒊 (𝒏>4,𝑜𝑑𝑑) = Γ𝑖−Γ1 −
1

4
(𝑖 − 1)2(Γ3 − Γ1) 

 

𝚽𝒊 (𝒏>4,𝑒𝑣𝑒𝑛) = Γ𝑖−Γ2 −
1

8
(𝑖2 − 2𝑖)(Γ4 − Γ2) 

 

That for 𝑖 > 4, satisfy 𝚽𝒊(𝑦 = ±1) =
𝑑𝚽𝒊

𝑑𝑦
|
(𝑦=±1)

= 0. This provides the subspace 

𝕂𝑀−4 = 𝑠𝑝𝑎𝑛{𝚽𝟓,𝚽𝟔, … ,𝚽𝑴} which could be used for approximating F1. 

For the azimuthal disturbance, we used: 

𝚿𝟏 = Γ1 

𝚿𝟐 = Γ2 

𝚿𝟑 = Γ3 − Γ1 

𝚿𝟒 = Γ4 − 6Γ3 − Γ2 + 6Γ1 

𝚿𝒊 (𝒏>4,𝑜𝑑𝑑) = Γ𝑖−Γ1 −
1

12
[(𝑖 − 1)4 − (𝑖 − 1)2](Γ3 − Γ1) −

1

96
[(𝑖 − 1)4 − 4(𝑖 − 1)2](Γ4 − 6Γ3 − Γ2 + 6Γ1) 

To fulfill the B.C.’s; 𝚿𝒊(𝒊>2)(𝑦 = ±1) =
𝑑2𝚿𝒊(𝒊>4)

𝑑𝑦2
|
(𝑦=±1)

= 0 

Then, 𝑀 − 4-subsequent terms from this functional vector make the subspace 

𝕂𝑀−4 = 𝑠𝑝𝑎𝑛{𝚿𝟑,𝚿𝟒, … ,𝚿𝑴−𝟐} which has as same dimension as of the radial 

disturbance. 
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3.1.4 Discretizing operators and approximation of LPE 

We suppose M-collocation nodes by incorporating Gauss-Lobatto points: 

 𝑦𝑠 = −cos(
(𝑠 − 1)𝜋

𝑀 − 1
)                𝑓𝑜𝑟    𝑠 = 1,2,… ,𝑀  (3-4) 

In pseudo-spectral collocation method, one estimates 𝐹1(𝑦) on the basis {𝚽𝑛}𝑛=5
𝑀  

and 𝐹2 on the basis {𝚿𝑛}𝑛=3
𝑀−2.* 

 
𝐹1𝑀(𝑦) = ∑𝜙𝑛𝚽𝑛(𝑦)

𝑀

𝑛=5

 (3-5a) 

 
𝐹2𝑀(𝑦) = ∑ 𝜓𝑛𝚿𝑛(𝑦)

𝑀−2

𝑛=3

 (3-5b) 

One also needs to seek for the weight coefficients (𝜙5, 𝜙6, … , 𝜙𝑀) and 

(𝜓3, 𝜓4, … , 𝜓𝑀−2) by implementing simultaneous solution of the eigenvalue system in 

equation (3-2) for roughly M times. Now, let see what happens for the amplitudes 𝐹1𝑀 

and 𝐹2𝑀 locally (i.e. on each collocation point). Rewriting series expansions at each 

collocation point; gives: 

 
𝐹1𝑀(𝑦𝑠) = ∑𝜙𝑛𝚽𝑛(𝑦𝑠)

𝑀

𝑛=1

 (3-6a) 

 
𝐹2𝑀(𝑦𝑠) = ∑ 𝜓𝑛𝚿𝑛(𝑦𝑠)

𝑀−2

𝑛=1

 
(3-6 b) 

Any operator in (2-10) and (2-11) either 𝐿11, 𝐿12, 𝐿21, and 𝐿22or 𝑅11,𝑅12,𝑅21, and 

𝑅22 depends only on the radial location which is characterized by 𝑟𝑠 or the corresponding 

variable 𝑦𝑠 defined by mapping correlation (3-1). Thus, they appear as linear derivative 

                                                           
*Remind that  
(1) F1 and its mutual polynomial basis  correspond to radial (i.e. ) direction.   
(2) F2 and its mutual polynomial basis  correspond to azimuthal (i.e. ) direction. 
(3)M is the order of polynomials, (i.e. number of the computing terms) in the modified chebychev series 
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operators with constant coefficients such as 𝑎4
𝑑4

𝑑𝑟4
+ 𝑎3

𝑑4

𝑑𝑟4
+ … . Thus; it would be more 

precise to label them locally as 𝐿11⌋@𝑦𝑠 , 𝐿12⌋@𝑦𝑠, ... and 𝑅11⌋@𝑦𝑠, 𝑅12⌋@𝑦𝑠, ... and so on. 

Substituting (3-5) into (3-2) yields the local LPE on each collocation point. Therefore, 

each collocation point exhibits a separate eigenvalue problem as: 

 

𝝎[
𝐿11⌋@𝑦𝑠 𝐿12⌋@𝑦𝑠
𝐿21⌋@𝑦𝑠 𝐿22⌋@𝑦𝑠

] [
𝐹1𝑀(𝑦)

𝐹2𝑀(𝑦)
] = [

𝑅11⌋@𝑦𝑠 𝑅12⌋@𝑦𝑠
𝑅21⌋@𝑦𝑠 𝑅22⌋@𝑦𝑠

] [
𝐹1𝑀(𝑦)

𝐹2𝑀(𝑦)
] 

s = 1,2,3,4,… , ℓ    (ℓ ≤ 𝑀) 

(3-7) 

One can look back into the definition of all operators in (2-10) and (2-11) for the 

maximum order of derivation and verify that only for 𝑠 ≥ 3 the system of equations 

represented by (3-7) could result in nontrivial answer. Furthermore, it is more desirable 

to deal with a square matrix, taking ℓ = 𝑀 − 2 in order to generate a compact form from 

the discretized LPE are as shown in equation (3-8) (see appendix A); 
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𝝎

[         [    
𝐿
1
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
3
𝐿
1
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
3

𝐿
1
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
4
𝐿
1
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
4

⋯
𝐿
1
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
3

⋯
𝐿
1
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
4

⋮
⋮

𝐿
1
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
𝑀
−
2
𝐿
1
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
𝑀
−
2

⋱
⋮

⋯
𝐿
1
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
𝑀
−
2
]    

[    
𝐿
1
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
3
𝐿
1
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
3

𝐿
1
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
4
𝐿
1
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
4

⋯
𝐿
1
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
3

⋯
𝐿
1
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
4

⋮
⋮

𝐿
1
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
𝑀
−
2
𝐿
1
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
𝑀
−
2

⋱
⋮

⋯
𝐿
1
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
𝑀
−
2
]    

 

[    
𝐿
2
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
3
𝐿
2
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
3

𝐿
2
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
4
𝐿
2
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
4

⋯
𝐿
2
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
3

⋯
𝐿
2
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
4

⋮
⋮

𝐿
2
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
𝑀
−
2
𝐿
2
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
𝑀
−
2

⋱
⋮

⋯
𝐿
2
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
𝑀
−
2
]    

[    
𝐿
2
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
3
𝐿
2
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
3

𝐿
2
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
4
𝐿
2
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
4

⋯
𝐿
2
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
3

⋯
𝐿
2
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
4

⋮
⋮

𝐿
2
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
𝑀
−
2
𝐿
2
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
𝑀
−
2

⋱
⋮

⋯
𝐿
2
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
𝑀
−
2
]    ]         

[        
𝜙
5

𝜙
6 ⋮
𝜙
𝑀

𝜓
3

𝜓
4 ⋮

𝜓
𝑀
−
2
]         

=
 

[         [    
𝑅
1
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
3
𝑅
1
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
3

𝑅
1
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
4
𝑅
1
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
4

⋯
𝑅
1
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
3

⋯
𝑅
1
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
4

⋮
⋮

𝑅
1
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
𝑀
−
2
𝑅
1
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
𝑀
−
2

⋱
⋮

⋯
𝑅
1
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
𝑀
−
2
]    

[    
𝑅
1
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
3
𝑅
1
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
3

𝑅
1
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
4
𝑅
1
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
4

⋯
𝑅
1
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
3

⋯
𝑅
1
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
4

⋮
⋮

𝑅
1
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
𝑀
−
2
𝑅
1
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
𝑀
−
2

⋱
⋮

⋯
𝑅
1
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
𝑀
−
2
]    

 

[    
𝑅
2
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
3
𝑅
2
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
3

𝑅
2
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
4
𝑅
2
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
4

⋯
𝑅
2
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
3

⋯
𝑅
2
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
4

⋮
⋮

𝑅
2
1
{ 𝚽

5
( 𝑦
)}
@
𝑦
𝑀
−
2
𝑅
2
1
{ 𝚽

6
( 𝑦
)}
@
𝑦
𝑀
−
2

⋱
⋮

⋯
𝑅
2
1
{ 𝚽

𝑀
( 𝑦
)}
@
𝑦
𝑀
−
2
]    

[    
𝑅
2
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
3
𝑅
2
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
3

𝑅
2
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
4
𝑅
2
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
4

⋯
𝑅
2
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
3

⋯
𝑅
2
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
4

⋮
⋮

𝑅
2
2
{ 𝚿

3
( 𝑦
)}
@
𝑦
𝑀
−
2
𝑅
2
2
{ 𝚿

4
( 𝑦
)}
@
𝑦
𝑀
−
2

⋱
⋮

⋯
𝑅
2
2
{ 𝚿

𝑀
−
2
( 𝑦
)}
@
𝑦
𝑀
−
2
]    ]         

[        
𝜙
5

𝜙
6 ⋮
𝜙
𝑀

𝜓
3

𝜓
4 ⋮

𝜓
𝑀
−
2
]         

(3-8) 
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3.1.5 Evaluating the growth rate of the travelling waves 

The growth rate can be found through eigenvalue analysis of the matrix of 

coefficients [D] in equation (3-8). It could be shown that a set of complex answers 𝝎1, 

𝝎2, 𝝎3, ..., 𝝎2𝑀−8 exist as: 

 {𝝎𝜶}[1:(2𝑀−8)] = 𝑒𝑖𝑔{[𝐷]} = 𝑒𝑖𝑔{[𝐿]
−1. [𝑅]} (3-9) 

The original definition of perturbations in equation (2-7) simply reveals the fact 

that it is the real part of 𝝎 that causes perturbations 𝑢′, 𝑣′,𝑤′ and p′ either amplify or 

attenuate in time. For more illustration, let us expand one of eigenvalues: 

𝝎𝛼 = 𝜔𝑟 + 𝐢𝜔𝑖 

Substituting back into (2-7), gives: 

 𝑢′ = 𝐹1(𝑟)𝑒
𝐢(𝑘𝑧+𝑚𝜃−(𝜔𝑟+𝐢𝜔𝑖)𝑡)

= 𝐹1(𝑟)𝑒
(𝜔𝑖𝑡)𝑒𝐢(𝑘𝑧+𝑚𝜃−𝜔𝑟𝑡) 

⟹               ‖𝑢′‖ = ‖𝐹1‖𝑒
(𝜔𝑖𝑡) 

                         ∠𝑢′ = (𝑘𝑧 +𝑚𝜃 + ∠𝐹1) − 𝜔𝑟𝑡 

 

(3-10) 

This shows that the perturbation will be amplified when 𝜔𝑖 > 0 and decay if 𝜔𝑖 <

0. The neutral stability is specified by 𝜔𝑖 = 0. The unstable region, therefore, 

corresponds to a positive 𝜔𝑖 and that is where the instabilities are intensified with a 

quick exponential rate. On the other hand, a negative 𝜔𝑖 corresponds to a flow regime, 

which is capable of persisting over destabilizing sources. Accordingly, zero growth rate 

may be seen as threshold in transition from an unstable flow to a stable one. 

The eigensolutions of equation (3-9) are a spectrum of complex quantities 𝝎𝛼s 

that each of them accompanies with the eigenvectors [𝜙5, 𝜙6, … , 𝜙𝑀]
′ and [𝜓3,
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𝜓4, … , 𝜓𝑀−2]
′. Then, the amplitudes of traveling disturbance waves (𝐹1, 𝐹2, 𝐹3, 𝐹4) could be 

deduced either universally by (3-5) or locally by (3-6). 

Thereon, the most tangible parameter for investigating the growth rate of 

disturbance is followed through selecting the maximum real part among the 

eigenvalues 𝝎1, 𝝎2, 𝝎3, ..., 𝝎2𝑀−8: 

 𝜔 = max (𝑟𝑒𝑎𝑙(𝑒𝑖𝑔{[𝐿]−1. [𝑅]})) (3-11) 

Which is the growth rate of the primary mode. Matrices [L] and [R] are the matrices of 

coefficients on LHS and RHS of equation (3-8). Likewise, the growth rate of secondary 

mode is evaluated by the second largest real part. In this way, successive modes do exist 

depending on the number of collocation points.   
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3.2 Demonstrating the numerical procedure 

It was been shown in previous section that the concrete criterion for stability is 

the growth rate from (3-11). Hence, one needs primarily to build up the matrices of 

coefficients [𝐿](2𝑀−8)×(2𝑀−8) and [𝑅](2𝑀−8)×(2𝑀−8). Now let us introduce the vector 𝑳𝟏𝟏̂(𝒚) 

as below: 

{ 𝑳𝟏𝟏̂(𝒚)}[𝟏:𝑴] =
[𝐿11{𝚽1(𝑦)} 𝐿11{𝚽2(𝑦)} 𝐿11{𝚽3(𝑦)} 𝐿11{𝚽4(𝑦)} 𝐿11{𝚽5(𝑦)} 𝐿11{𝚽6(𝑦)} ⋯ 𝐿11{𝚽𝑀(𝑦)}] 

The idea could be developed in designating vectors  𝑳𝟏𝟏̂(𝒚),  𝑳𝟐𝟏̂(𝒚),  𝑳𝟏𝟐̂(𝒚) and 

 𝑳𝟐𝟐̂(𝒚); as below 

{ 𝑳𝟏𝟏̂(𝒚)}[𝟏:𝑴] =
[𝐿11{𝚽1(𝑦)} 𝐿11{𝚽2(𝑦)} 𝐿11{𝚽3(𝑦)} 𝐿11{𝚽4(𝑦)} 𝐿11{𝚽5(𝑦)} 𝐿11{𝚽6(𝑦)} ⋯ 𝐿11{𝚽𝑀(𝑦)}] (3-12 a) 

{ 𝑳𝟐𝟏̂(𝒚)}[𝟏:𝑴] =
[𝐿21{𝚽1(𝑦)} 𝐿21{𝚽2(𝑦)} 𝐿21{𝚽3(𝑦)} 𝐿21{𝚽4(𝑦)} 𝐿21{𝚽5(𝑦)} 𝐿21{𝚽6(𝑦)} ⋯ 𝐿21{𝚽𝑀(𝑦)}] (3-12 b) 

{ 𝑳𝟏𝟐̂(𝒚)}[𝟏:𝑴−𝟐] =
[𝐿12{𝚿1(𝑦)} 𝐿12{𝚿2(𝑦)} 𝐿12{𝚿3(𝑦)} 𝐿12{𝚿4(𝑦)} ⋯ 𝐿12{𝚿𝑀−2(𝑦)}] (3-12 c) 

{ 𝑳𝟐𝟐̂(𝒚)}[𝟏:𝑴−𝟐] =
[𝐿22{𝚿1(𝑦)} 𝐿22{𝚿2(𝑦)} 𝐿22{𝚿3(𝑦)} 𝐿22{𝚿4(𝑦)} ⋯ 𝐿22{𝚿𝑀−2(𝑦)}] (3-12 d) 

Then, the LHS of equation (3-8) could be rewritten in a more concise form as: 

 

[𝐿](2𝑀−8)×(2𝑀−8) =

[
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
{ 𝑳𝟏𝟏̂(𝒚𝟑)}[𝟓:𝑴]

{ 𝑳𝟏𝟏̂(𝒚𝟒)}[𝟓:𝑴]
⋮

{ 𝑳𝟏𝟏̂(𝒚𝑴−𝟐)}[𝟓:𝑴]]
 
 
 
 
 

  

[
 
 
 
 
 
{ 𝑳𝟏𝟐̂(𝒚𝟑)}[𝟑:𝑴−𝟐]

{ 𝑳𝟏𝟐̂(𝒚𝟒)}[𝟑:𝑴−𝟐]
⋮

{ 𝑳𝟏𝟐̂(𝒚𝑴−𝟐)}[𝟑:𝑴−𝟐]]
 
 
 
 
 

    

[
 
 
 
 
 
{ 𝑳𝟐𝟏̂(𝒚𝟑)}[𝟓:𝑴]

{ 𝑳𝟐𝟏̂(𝒚𝟒)}[𝟓:𝑴]
⋮

{ 𝑳𝟐𝟏̂(𝒚𝑴−𝟐)}[𝟓:𝑴]]
 
 
 
 
 

  

[
 
 
 
 
 
{ 𝑳𝟐𝟐̂(𝒚𝟑)}[𝟑:𝑴−𝟐]

{ 𝑳𝟐𝟐̂(𝒚𝟒)}[𝟑:𝑴−𝟐]
⋮

{ 𝑳𝟐𝟐̂(𝒚𝑴−𝟐)}[𝟑:𝑴−𝟐]]
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

(3-13) 
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Similar notation can also be used for operators in equation (2-11); providing four 

vectors  𝑹𝟏𝟏̂(𝒚),  𝑹𝟐𝟏̂(𝒚),  𝑹𝟏𝟐̂(𝒚)and  𝑹𝟐𝟐̂(𝒚) as: 

{ 𝑹𝟏𝟏̂(𝒚)}[𝟏:𝑴] =
[𝑅11{𝚽1(𝑦)} 𝑅11{𝚽2(𝑦)} 𝑅11{𝚽3(𝑦)} 𝑅11{𝚽4(𝑦)} 𝑅11{𝚽5(𝑦)} 𝑅11{𝚽6(𝑦)} ⋯ 𝑅11{𝚽𝑀(𝑦)}] (3-14 a) 

{ 𝑹𝟐𝟏̂(𝒚)}[𝟏:𝑴] =
[𝑅21{𝚽1(𝑦)} 𝑅21{𝚽2(𝑦)} 𝑅21{𝚽3(𝑦)} 𝑅21{𝚽4(𝑦)} 𝑅21{𝚽5(𝑦)} 𝑅21{𝚽6(𝑦)} ⋯ 𝑅21{𝚽𝑀(𝑦)}] (3-14 b) 

{ 𝑹𝟏𝟐̂(𝒚)}[𝟏:𝑴−𝟐] =
[𝑅12{𝚿1(𝑦)} 𝑅12{𝚿2(𝑦)} 𝑅12{𝚿3(𝑦)} 𝑅12{𝚿4(𝑦)} ⋯ 𝑅12{𝚿𝑀−2(𝑦)}] (3-14 c) 

{ 𝑹𝟐𝟐̂(𝒚)}[𝟏:𝑴−𝟐] =
[𝑅22{𝚿1(𝑦)} 𝑅22{𝚿2(𝑦)} 𝑅22{𝚿3(𝑦)} 𝑅22{𝚿4(𝑦)} ⋯ 𝑅22{𝚿𝑀−2(𝑦)}] (3-14 d) 

Which simply let us reconfigure the RHS in equation (3-8) as below; 

 

[𝑅](2𝑀−8)×(2𝑀−8) =

[
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
{ 𝑹𝟏𝟏̂(𝒚𝟑)}[𝟓:𝑴]

{ 𝑹𝟏𝟏̂(𝒚𝟒)}[𝟓:𝑴]
⋮

{ 𝑹𝟏𝟏̂(𝒚𝑴−𝟐)}[𝟓:𝑴]]
 
 
 
 
 

  

[
 
 
 
 
 
{ 𝑹𝟏𝟐̂(𝒚𝟑)}[𝟑:𝑴−𝟐]

{ 𝑹𝟏𝟐̂(𝒚𝟒)}[𝟑:𝑴−𝟐]
⋮

{ 𝑹𝟏𝟐̂(𝒚𝑴−𝟐)}[𝟑:𝑴−𝟐]]
 
 
 
 
 

    

[
 
 
 
 
 
{ 𝑹𝟐𝟏̂(𝒚𝟑)}[𝟓:𝑴]

{ 𝑹𝟐𝟏̂(𝒚𝟒)}[𝟓:𝑴]
⋮

{ 𝑹𝟐𝟏̂(𝒚𝑴−𝟐)}[𝟓:𝑴]]
 
 
 
 
 

  

[
 
 
 
 
 
{ 𝑹𝟐𝟐̂(𝒚𝟑)}[𝟑:𝑴−𝟐]

{ 𝑹𝟐𝟐̂(𝒚𝟒)}[𝟑:𝑴−𝟐]
⋮

{ 𝑹𝟐𝟐̂(𝒚𝑴−𝟐)}[𝟑:𝑴−𝟐]]
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

(3-15) 

Ultimately, the discretized linear perturbation equation (or the approximation of 

LPE) receives a compact form as following: 

 

𝝎[𝐿](2𝑀−8)×(2𝑀−8)

[
 
 
 
 
 
 
 
𝜙5
𝜙6
⋮
𝜙𝑀 
𝜓3
𝜓4
⋮

𝜓𝑀−2]
 
 
 
 
 
 
 

= [𝑅](2𝑀−8)×(2𝑀−8)

[
 
 
 
 
 
 
 
𝜙5
𝜙6
⋮
𝜙𝑀 
𝜓3
𝜓4
⋮

𝜓𝑀−2]
 
 
 
 
 
 
 

 

 

 

(3-16) 

 



39 

    

The matrices of coefficients were intentionally arranged according to (3-13) and 

(3-15) to attain better computational performance. A subroutine that offers locally 

vectors  𝑳𝟏𝟏̂(𝒚),  𝑳𝟐𝟏̂(𝒚), ... 𝑳𝟐𝟐̂(𝒚), and also  𝑹𝟏𝟏̂(𝒚),  𝑹𝟐𝟏̂(𝒚), ...  𝑹𝟐𝟐̂(𝒚) as a function of 

base flow characteristics and the perturbation for a degree of precision was proposed. 

Such a subroutine should be considered as diagram below; 

 𝑚
𝑘
𝑞
𝑅𝑒
𝑀
𝑦

             
𝑓1
→            

{ 𝑳𝟏𝟏̂(𝒚)}[𝟏:𝑴]

{ 𝑳𝟐𝟏̂(𝒚)}[𝟏:𝑴]

{ 𝑳𝟏𝟐̂(𝒚)}[𝟏:𝑴−𝟐]

{ 𝑳𝟐𝟐̂(𝒚)}[𝟏:𝑴−𝟐]

     &    

{ 𝑹𝟏𝟏̂(𝒚)}[𝟏:𝑴]

{ 𝑹𝟐𝟏̂(𝒚)}[𝟏:𝑴]

{ 𝑹𝟏𝟐̂(𝒚)}[𝟏:𝑴−𝟐]

{ 𝑹𝟐𝟐̂(𝒚)}[𝟏:𝑴−𝟐]

 

 

(3-17) 

 

We shall continue now with a numerical example; by computing 

vector { 𝑹𝟏𝟐̂(𝒚𝟑)}[𝟏:𝟓]: 

{ 𝑹𝟏𝟐̂(𝒚)}[𝟏:𝟓] =
[𝑅12{𝚿1(𝑦)} 𝑅12{𝚿2(𝑦)} 𝑅12{𝚿3(𝑦)} 𝑅12{𝚿4(𝑦)} 𝑅12{𝚿5(𝑦)}] 

The given quantities were summarized in Table 3-2 
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Table 3-2 

𝑚 = −2 𝑘 = 1.95 𝑞 = 0.7 𝑅𝑒 = 1000 𝑀 = 7 𝑅 = 2.5 

𝑠 = 3;  𝑦3 = 0.5 𝑎𝑛𝑑 𝑟3 = 1.875 

Base Flow 

𝑈 = 0 𝑉 =
𝑞

𝑟
(1 − 𝑒−𝑟

2
) 𝑊 = 𝑒−𝑟

2
 

Radial  (r-direction) azimuthal   (θ-direction) axial   (z-direction) 

 

More specifically; we are going to compute one of its arrays; 𝑅12{𝚿4(𝑦)}; at 𝑦3 =

0.5 (i.e. 𝑟3 = 1.875), where: 

 

𝑉 =
𝑞

𝑟
(1 − 𝑒−𝑟

2
) =  0.3622  

(3-18) 𝑊 = 𝑒−𝑟
2
= 0.0297 

𝑑𝑉

𝑑𝑟
=
−𝑞(1 − 𝑒−𝑟

2
)

𝑟2
+ 2𝑞𝑒−𝑟

2
= −0.1516 

From (2-11 b), the operator 𝑅12 is defined as: 

𝑅12 = 𝐢 [
𝑚

𝑟

𝑑3

𝑑𝑟3
−
2𝑚

𝑟2
𝑑2

𝑑𝑟2
+ (
3𝑚

𝑟3
−
𝑓𝑚

𝑟
)
𝑑

𝑑𝑟
−
3𝑚

𝑟4
+
𝑓𝑚 + 2𝑘2𝑚

𝑟2
−
𝑚

𝑟

𝑑𝑓

𝑑𝑟
+ 𝐢
2𝑉𝑘2Re

𝑟
] (3-19) 

Where 

𝑓 = 𝑘2 +
𝑚2

𝑟2
+ 𝐢𝑘𝑊𝑅𝑒 + 𝐢

𝑚𝑉𝑅𝑒

𝑟
 

(3-20 a) 

𝑑𝑓

𝑑𝑟
= −

2𝑚2

𝑟3
+ 𝐢𝑘(−2𝑟𝑒−𝑟

2
)𝑅𝑒 + 𝑖𝑚𝑅𝑒 (

−2𝑞(1 − 𝑒−𝑟
2
)

𝑟3
+
2𝑞

𝑟
𝑒−𝑟

2
) 

(3-20 b) 
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Firstly, one needs to compute 𝑓 and 
𝑑𝑓

𝑑𝑟
 via substituting (3-18) into (3-20): 

𝑓 = 1.952 +
(−2)2

1.8752
+ 𝐢1.95 × 0.029729 × 1000 + 𝐢

(−2) × 0.362234 × 1000

1.875
= 4.94 − 328.4𝐢 (3-21 a) 

𝑑𝑓

𝑑𝑟
= −

2(−2)2

1.8753
+ 𝐢 × 1.95 × (−2 × 1.875𝑒−𝑟

2
)1000 + 𝐢(−2)1000(

−2 × 0.7 × (1 − 𝑒−1.875
2
)

1.8753
+
2 × 0.7

1.875
𝑒−1.875

2
)

= −1.214 + 150.35𝐢 

(3-21 b) 

The modified Chebychev polynomial 𝚿4 can be found for m=-2 and M=7 (see 

page 31); 

𝚿4(𝑦) = 4𝑦
3 − 12𝑦2 − 4𝑦 + 12 

that on 𝑦3 = 0.5 results into 

𝚿4(𝑦3) = [4𝑦
3 − 12𝑦2 − 4𝑦 + 12]𝑦=0.5 =7.5 (3-22 a) 

𝚿4̇ (𝑦3) = [12𝑦
2 − 24𝑦 − 4]𝑦=0.5 =-13 (3-22 b) 

𝚿4̈ (𝑦3) = [24𝑦 − 24]𝑦=0.5 =-12 (3-22 c) 

𝚿4
(3)(𝑦3) = [24]𝑦=0.5 = 24 (3-22 d) 

Knowing that 𝑦 =
2𝑟

𝑅
− 1 gives: 

𝑑

𝑑𝑟
=
2

𝑅

𝑑

𝑑𝑦
     ; 

𝑑2

𝑑𝑟2
= (

2

𝑅
)
2
.
𝑑2

𝑑𝑦2
    ;

𝑑3

𝑑𝑟3
= (

2

𝑅
)
3
.
𝑑3

𝑑𝑦3
 

it can then be used in equation (3-19) to obtain: 

 

𝑅12{𝚿4(𝑦)} = 𝐢

[
 
 
 
 
𝑚

𝑟
(
2

𝑅
)
3 𝑑3𝚿4
𝑑𝑦3

−
2𝑚

𝑟2
(
2

𝑅
)
2 𝑑2𝚿4
𝑑𝑦2

+ (
3𝑚

𝑟3
−
𝑓𝑚

𝑟
)
2

𝑅

𝑑𝚿4
𝑑𝑦

+(−
3𝑚

𝑟4
+
𝑓𝑚 + 2𝑘2𝑚

𝑟2
−
𝑚

𝑟

𝑑𝑓

𝑑𝑟
+ 𝐢
2𝑉𝑘2Re

𝑟
)𝚿4

]
 
 
 
 

 (3-23) 

Two different approaches could be employed in evaluating above expression on 

the node, specified by s=3 where 𝑦3 = 0.5 & 𝑟3 = 1.875. We illustrate both of them on the 

next page.   
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Approach (I): One can directly substitute (3-21) and (3-22) into (3-23) and obtain: 

𝑅12{𝚿4(𝑦)}@𝑦3 = 𝐢 [
𝑚

𝑟
(
2

𝑅
)
3

𝚿4
(3)(𝑦3) −

2𝑚

𝑟2
(
2

𝑅
)
2

𝚿4̈ (𝑦3) + (
3𝑚

𝑟3
−
𝑓𝑚

𝑟
)
2

𝑅
𝚿4̇ (𝑦3)

+ (−
3𝑚

𝑟4
+
𝑓𝑚 + 2𝑘2𝑚

𝑟2
−
𝑚

𝑟

𝑑𝑓

𝑑𝑟
+ 𝐢
2𝑉𝑘2Re

𝑟
)𝚿4(𝑦3)] 

 

= 𝐢 [
−2

1.875
× (

2

2.5
)
3

× 24 −
2(−2)

1.8752
× (

2

2.5
)
2

× (−12) + (
3(−2)

1.8753
−
(4.94 −  328.4𝐢)(−2)

1.875
) ×

2

2.5
× (−13)

+ (−
3(−2)

1.8754
+
(4.94 − 328.4𝐢)(−2) + 2 × 1.952 × (−2)

1.8752
−
(−2)

1.875
(−1.214 +  150.35𝐢)

+ 𝐢
2 × 0.3622 × 1.952 × 1000

1.875
) × 7.5] = −17266.4 −  126.8𝐢 

 

(3-24 I) 

Approach (II) The operator could be expressed in polynomial form, be saved as the 

vector of coefficients and eventually been evaluated on the point s=3. (y=0.5): 

𝑅12{𝚿4(𝑦)}@𝑦3 = 𝐢 [
𝑚

𝑟
(
2

𝑅
)
3

𝚿4
(3)(𝑦) −

2𝑚

𝑟2
(
2

𝑅
)
2

𝚿4̈ (𝑦) + (
3𝑚

𝑟3
−
𝑓𝑚

𝑟
)
2

𝑅
𝚿4̇ (𝑦)

+ (−
3𝑚

𝑟4
+
𝑓𝑚 + 2𝑘2𝑚

𝑟2
−
𝑚

𝑟

𝑑𝑓

𝑑𝑟
+ 𝐢
2𝑉𝑘2Re

𝑟
)𝚿4(𝑦)]

@𝑦3

= 𝐢 [
−2

1.875
× (

2

2.5
)
3

× [24] −
2(−2)

1.8752
× (

2

2.5
)
2

× [24𝑦 − 24] + (
3(−2)

1.8753
−
(4.94 − 328.41𝐢)(−2)

1.875
)

×
2

2.5
× [12𝑦2 − 24𝑦 − 4]

+ (−
3(−2)

1.8754
+
(4.94 − 328.41𝐢)(−2) + 2 × 1.952 × (−2)

1.8752
−
(−2)

1.875
(−1.214 + 150.352𝐢)

+ 𝐢
2 × 0.362234 × 1.952 × 1000

1.875
) [4𝑦3 − 12𝑦2 − 4𝑦 + 12]]

@𝑦3

 

= [(−7265.7 − 31.8𝐢)𝑦3 + (25160.1 + 137.2𝐢)𝑦2 + (539.8 − 34.4𝐢)𝑦 + (−22918.1 −  139.9𝐢)]@𝑦=0.5

= −17266.4 −  126.8𝐢 

 

 

 

 

 

 

(3-24 II) 

Both methods led to similar results, but approach (I) needs to have access to all 

values of 𝚿4(𝑦3) ,𝚿4̇ (𝑦3) ,𝚿4̈ (𝑦3) and 𝚿4
(3)(𝑦3).    If every arrays in the vector 

{𝑹𝟏𝟐̂(𝒚𝟑)}[𝟏:𝟓] are considered then 5×4=20 extra variables would be required, which is 

equal to 20×3=60 for all the arrays 𝑅12{𝚿𝑗(𝑦𝑠)}, 3 ≤ 𝑗, 𝑠 ≤ 5 . Regarding terms like  
𝑑4

𝑑𝑟4
 in 

every operator, approach (I) contains five extra matrices, that each has a dimension of 
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𝑀2, just to save all the quantities 𝚿𝑗(𝑦𝑠), 𝚿𝑗̇ (𝑦𝑠), 𝚿𝑗̈ (𝑦𝑠), 𝚿𝑗
(3)(𝑦𝑠) and 𝚿𝑗

(4)(𝑦𝑠) (1 ≤ 𝑗, 𝑠 ≤

𝑀). 

In the same manner, unnecessary spaces shall be considered for all 

quantities 𝚽𝑗(𝑦𝑠), 𝚽𝑗̇ (𝑦𝑠), 𝚽𝑗̈ (𝑦𝑠), 𝚽𝑗
(3)(𝑦𝑠) and 𝚽𝑗

(4)(𝑦𝑠) (1 ≤ 𝑗, 𝑠 ≤ 𝑀). This means that 

approach (I) needs 10M3 more space compared to approach (II); which in turn reveals 

the advantages of approach (II) in terms of computational cost. 

In addition, the latter is more suitable for establishing a subroutine like (3-17). 

From (3-24 II): 

𝑅12{𝚿4(𝑦)} = (−7265.7 − 31.8𝐢)𝑦
3 + (25160.1 + 137.2𝐢)𝑦2 + (539.8 − 34.4𝐢)𝑦 + (−22918.1 −  139.9𝐢)

= [0 0 0 0 (−7265.7 − 31.8𝐢) (25160.1 + 137.2𝐢) (539.8 − 34.4𝐢) (−22918.1 −  139.9𝐢)]

[
 
 
 
 
𝑦7

𝑦6

⋮
𝑦
1 ]
 
 
 
 

 

Similarly; 𝚿5(𝑦) = 8𝑦4 − 8𝑦3 − 24𝑦2 + 8𝑦 + 16  and the same approach gives: 

𝑅12{𝚿5(𝑦)}

= (−14531.4 − 63.6𝐢)𝑦4 + (23499.2 + 175.2𝐢)𝑦3 + (36868.4 + 176.9𝐢)𝑦2 + (−27983.2 − 370.8𝐢)𝑦 + (−26820.9 − 108𝐢)

= [0 0 0 (−14531.4 − 63.6𝐢) (23499.2 + 175.2𝐢) (36868.4 + 176.9𝐢) (−27983.2 − 370.8𝐢) (−26820.9 − 108𝐢)]

[
 
 
 
 
𝑦7

𝑦6

⋮
𝑦
1 ]
 
 
 
 

 

The concept can be generalized by expressing all terms 𝑅12{𝚿𝑗(𝑦)}, 1 ≤ 𝑗 ≤ 5 as 

polynomials of y and save all their coefficients in a medial matrix [ℛ12
𝑝
(𝑗, 𝑙)]

5×8
 . Each 

row in that matrix represents the coefficients of polynomials.  

For example, in this case: 
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[ℛ12
𝑝
(𝑗, 𝑙)]

5×8
= 

0 0 0 0 0 0 0 -1816.4-7.9i 

0 0 0 0 0 0 -1816.4-7.9i 280.2+3.5i 

0 0 0 0 0 -3632.9-15.9i 1121+13.9i 3632.9+18.8i 

0 0 0 0 -7265.7-31.8i 25160.1+137.2i 539.8-34.4i -22918.1-139.9i 

0 0 0 -14531.4 - 63.6i 23499.2+175.2i 36868.4+176.9i -27983.2- 370.8i -26820.9-108i 
 

(3
-3

-2
5

) 

Any row of this matrix identifies: 

𝑅12{𝚿𝑗(𝑦)} = ℛ12
𝑝 (𝑗, 1). 𝑦7 +ℛ12

𝑝 (𝑗, 2). 𝑦6 +⋯+ℛ12
𝑝 (𝑗, 7). 𝑦 + ℛ12

𝑝 (𝑗, 8)         1 ≤ 𝑗 ≤ 5 

The vector { 𝑹𝟏𝟐̂(𝒚)}[𝟏:𝟓] is computed from: 

{ 𝑹𝟏𝟐̂(𝒚)}[𝟏:𝟓] =
[𝑅12{𝚿1(𝑦)} 𝑅12{𝚿2(𝑦)} 𝑅12{𝚿3(𝑦)} 𝑅12{𝚿4(𝑦)} 𝑅12{𝚿5(𝑦)}]  

 

 

(3-26) 
 

 

= [𝑦7 𝑦6 ⋯ 𝑦 1]

[
 
 
 
 
 
 
 
 
 
ℛ12
𝑝
(1,1)

ℛ12
𝑝
(1,2)

ℛ12
𝑝
(2,1)

ℛ12
𝑝
(2,2)

ℛ12
𝑝
(1,3)

ℛ12
𝑝
(1,4)

ℛ12
𝑝
(2,3)

ℛ12
𝑝
(2,4)

ℛ12
𝑝
(3,1)

ℛ12
𝑝
(3,2)

ℛ12
𝑝
(4,1)

ℛ12
𝑝
(4,2)

ℛ12
𝑝
(5,1)

ℛ12
𝑝
(5,2)

ℛ12
𝑝
(3,3)

ℛ12
𝑝
(3,4)

ℛ12
𝑝
(4,3)

ℛ12
𝑝
(4,4)

ℛ12
𝑝
(5,3)

ℛ12
𝑝
(5,4)

ℛ12
𝑝
(1,5)

ℛ12
𝑝
(1,6)

ℛ12
𝑝
(2,5)

ℛ12
𝑝
(2,6)

ℛ12
𝑝
(1,7)

ℛ12
𝑝
(1,8)

ℛ12
𝑝
(2,7)

ℛ12
𝑝
(2,8)

ℛ12
𝑝
(3,5)

ℛ12
𝑝
(3,6)

ℛ12
𝑝
(4,5)

ℛ12
𝑝
(4,6)

ℛ12
𝑝
(5,5)

ℛ12
𝑝
(5,6)

ℛ12
𝑝
(3,7)

ℛ12
𝑝
(3,8)

ℛ12
𝑝
(4,7)

ℛ12
𝑝
(4,8)

ℛ12
𝑝
(5,7)

ℛ12
𝑝
(5,8)]

 
 
 
 
 
 
 
 
 

 

Also notate the basis vector {Ψj(y)}, 1≤j≤5 as a matrix of coefficients of 

polynomials since Ψ1(y)=1, Ψ2(y)=1, Ψ3(y)=2y
2-2, Ψ4(y)=4y

3-12y2-4y+12, …;  

[𝚿(𝑗, 𝑙)]5×8 = 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 

0 0 0 0 0 2 0 -2 

0 0 0 0 4 -12 -4 12 

0 0 0 8 -8 -24 8 16 
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Thus, in order to derive a subroutine like 𝑓1 in (3-17), it is needed to write a 

procedure that provides matrix of coefficients of polynomials [ℛ12
𝑝
(𝑗, 𝑙)] and evaluates 

the vector { 𝑹𝟏𝟐̂(𝒚)} as well as: 

[𝚿(𝑗, 𝑙)]{(𝑀−2)×(𝑀+1)}

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑖𝑛 (2−10)𝑎𝑛𝑑 (2−11) 

𝑜𝑛 (𝑀,𝑚,𝑘,𝑞,Re,𝑅,𝑠)
⇒                        [ℛ12

𝑝
(𝑗, 𝑙)]

{(𝑀−2)×(𝑀+1)}

(3−26)@𝑦𝑠
⇒       { 𝑹𝟏𝟐̂ (𝒚𝒔)}[1:(𝑀−2)] 

Thereby, a subroutine as 𝑓1 as (3-17) is established. Then, matrices [L] and [R] in 

(3-13) and (3-15) are set up by means of vectors  𝑳𝟏𝟏̂(𝑦𝑠),  𝑳𝟐𝟏̂(𝑦𝑠),  𝑳𝟏𝟐̂(𝑦𝑠), 𝑳𝟐𝟐̂(𝑦𝑠) and 

  𝑹𝟏𝟏̂(𝑦𝑠),  𝑹𝟐𝟏̂(𝑦𝑠),  𝑹𝟏𝟐̂(𝑦𝑠), 𝑹𝟐𝟐̂(𝑦𝑠) for s=3,4, …, M-2. In this case: 

[L][6×6] = 

-28631 -55511 -116614 - 2560i 15360i 23040i 

-56020 10240 -71080 - 2560i 20480i 10240i 

-18391 60631 -116614 - 2560i 25600i - 17920i 

- 2i 0 - 2i -1.9 9.7 17.5 

2.7i 5.4i 5.4i -3.3 20.1 26.8 

14.1i - 8.1i 30.3i -5.5  38.8 27.7 

 

 

[R][6×6] = 

306.5-3086.5i 868.1–14562i 1507-24643.9i 3285.1+21.8i -17266.4-126.8 i -29566.2- 231.2i 

588.1-584.7i -189.3-5427.4i 52.1+11095.9i 5005.8+50.5i -31568.2-345.4i -36980.4-345.4i 

803.8+850.3i -1862.3–12506i 4254.9+22164.5i 1533.9+258.2i -9504.8–1948 i -12600 -728.5i 

0.75+0.02i 0.09-0.01i 0.92-0.03i 0.01-0.64i -0.06+3.2i -0.13+5.76i 

0.29-0.05i -1.6-0.08i 0.57-0.07i 0.03-i -0.16+6i -0.22+8i 

4.25-0.3i -3.3+0.27i 10.8-0.65i 0.09+0.9i -0.6-6.2i -0.4-4.4i 
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4. Code Implementation and Confirmation 

4.1 Setting off the program 

The pseudo-spectral method was described in previous chapter and accordingly a 

straightforward procedure was implemented in MATLAB. The computations were quite 

routine and easy to follow. The convergence of the algorithm was fairly acceptable as far 

as the input parameters are chosen not to be in the vicinity of the neutral stability curve. 

The Script of the program could be also found in appendix B.  

An iterative algorithm was used to determine the convergent value of the growth 

rate. After fixing 𝜔𝑖, other quantities such as phase speed, radial amplitude, radial 

frequency, azimuthal amplitude, and azimuthal frequency for travelling disturbance 

were computed. 

The travelling disturbances in (𝑟 − 𝜃) plane were investigated for an arbitrary 

swirl parameter and Reynolds number. Interacting with the axial velocity component, 

the disturbances also emanate in a helical form. In this study, the axial direction was not 

included in the stability analysis.  

The base flow was set up to be: 

𝑈 = 0        ; 𝑉 =
𝑞.𝑟

√1+𝑟4
     ; 𝑊 = 𝑒−𝑟

2
 

(4-1) 

This profile was chosen to be similar to Batchelor vortex model used by Fabre et 

al [25]. The only difference is that the azimuthal component was replaced by Vatistas 

vortex model. 

Our objective was to implement stability analysis with the proper azimuthal 

component. As explained in section 1.4, the azimuthal component is acceptable only if its 

maximum value is coincidence with the core radius. In other words, the condition 

𝑉(𝑟 = 𝑟𝑐) = 𝑉𝑚𝑎𝑥 should not be violated in any base flow model used in stability analysis.  
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Despite, the peak azimuthal component in Batchelor vortex model occurs at 

r=1.256 (the azimuthal velocity is similar to Burger’s model, see Table 1-1). This model 

has been commonly used for viscous stability analysis, which I strongly believe that was 

not the correct base flow.  

Nonetheless, it is required to compare and validate present method with a 

reliable study. Indeed, the dimensionless swirl parameter would be the best variable in 

quantifying the onset or cease of stability in a columnar vortex which in turn restrict the 

selection of base flow to so-called “q-vortex” models.  

 The overall drawback in the credibility of Batchelor vortex could be remedied by 

correcting the azimuthal component. The new velocity profile should be: 

𝑉𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
𝑞

𝑟
(1 − 𝑒1.256𝑟

2

) (4-2) 

Then, the highest value of azimuthal velocity relocates to r=1; the core radius. 

Both the original and the modified base flow were fed into the program and the results 

were compared in the next section. 
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4.2 Confirmation with previous studies 

The accuracy of the numerical method was verified by comparing the results of 

present study for the growth rate with the previous stability studies. The comparisons of 

results are listed in Table 4-1. 

Table 4-1 
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Present Method 

Original 

Batchelor 

Modified 

Batchelor 

Vatistas 

Azimuthal 

20000 -2 1.2 0.70 0.3138 0.3139 0.3127 0.3135 0.2849 0.2960 

50000 -2 1.2 0.70 0.3138 0.3139 0.3133 0.3141 0.2852 0.2965 

100000 -2 1.2 0.70 0.3138 0.3139 0.3135 0.3143 0.2854 0.2967 

100000 -3 1.7 0.79 0.3544 0.3546 0.3540 0.3541 NaN 0.3201 

100000 -4 2.15 0.82 0.3777 0.3775 0.3768 0.3769 NaN 0.3390 

 

Calculations were performed for asymmetric disturbances (m<-1) and the results 

related to original Batchelor obviously agree with those of [9], [8], and [5]. This 

coincidence can assure us from the credibility of the generated MATLAB program (see 

appendix B). The trend of growth rate fairly complies with available results; however, a 

relatively large deviation is evident on the right-side columns of Table 4-1. Because the 

base flow of the “Modified Batchelor” is different than the “Vatistas Azimuthal”. 
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4.3 Convergence test of the algorithm 

The proposed method was proved to be computationally efficient. The 

convergence history is given in Table 4-2 for the particular asymmetric case of 

m=-3, k=1.65, q=0.75, Reynolds=1000. 

Table 4-2 

 Eigenvalue (𝝎 = 𝜔𝑟 + 𝐢𝜔𝑖) 

M Primary mode Secondary mode 

20 0.2997493189 i - 0.8255926974 0.1785820337 i - 0.8231761633 

25 0.2996236357 i - 0.8256629175 0.1764776611 i - 0.8232370169 

30 0.2996168708 i - 0.8256644140 0.1764618726 i - 0.8232219030 

35 0.2996169531 i - 0.8256633787 0.1764616424 i - 0.8232165578 

Convergence value of 0.2996 for growth rate by considering 35 collocation points 
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4.4 Verifying contours of growth rate 

These contours known as topography of instability are very beneficial. It allows 

one to determine the destabilizing interval of swirl as well as the type of possibly 

amplified instabilities. In figures 4-1, 4-2, and 4-3 the unstable region is pictured as 

contours of growth rate for various Reynolds numbers. Plots of instability topography, 

were originally provided by Mao et al. [12]. In order to validate the present method, 

these contours were regenerated and compared for different Reynolds numbers. In the 

modified Batchelor Vortex model the disturbance is asymmetric (m=-2) and Reynolds 

number equals 100, 103, and 104 for figures 4-1, 4-2, and 4-3 respectively. 

Inspecting all the figures, the regenerated contours are satisfactorily smooth all 

through the unstable region. The locations and values of maximum growth rate in both 

cases match fairly well.  Furthermore, the unstable region in present study does not 

outspread wider than those by Mao’s which ensures not having a contractive 

interpretation on any point (q,k). Nonetheless, the approach portrays major difficulties 

about convergence in the region close to the neutral stability. The corresponding curves 

are plotted by dashed curve in the contours of Mao in each of the figures. These were 

required to be detected using the inviscid stability theory, which was not the scope of 

present study. 

It may be stated that the present study is in good agreement with previously 

established approaches of viscous stability analysis and it is capable of providing reliable 

results. 
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`  

(a) 

 

(b) 

Figure 4-1 Contours of growth rate for Batchelor’s vortex model 

m=-2, Re=100, (a) Mao paper  (b) Present study 
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(a) 

 

(b) 

Figure 4-2 Contours of growth rate for Batchelor’s vortex model 

m=-2, Re=1000, (a) Mao paper  (b) Present study 
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(a) 

 

(b) 

Figure 4-3 Contours of growth rate for Batchelor’s vortex model 

m=-2, Re=10000, (a) Mao paper  (b) Present study 

  



54 

    

 

5. Viscous Stability Analysis  

5.1 Results for axisymmetric mode (m=0) 

The number of mode captures depends on the number of collocation points, but 

since the primary and secondary modes are the most unstable ones we presented only 

the results related to these modes. The primary mode corresponds to the solution with 

the largest real part among all the eigensolutions. 

Variation of growth rate and phase speed versus axial wavenumber for an 

axisymmetric disturbance (m=0) is plotted in figure 5-1. The swirl quantity equals to 

0.26 and Reynolds number is 5×104. Some portion of the curve was not displayed due to 

numerical problem in the convergence. The solid curve represents the growth rate of the 

primary mode and dashed line corresponds to the secondary mode. The magnitude of 

growth rate is relatively small which means that the instability of the vortex build up 

slowly. The primary mode growth rate increases monotonically until reaches its 

maximum of 0.0710 at k=2.8176.  

The profile of growth rate for primary and secondary modes overlap at 𝑘 ≈ 1.85. 

That occurs on the peak of secondary mode and is known to be the main cause of 

divergence in computing the eigensolutions. 

The slope of phase speed curve represents the wave group velocity which is equal 

to -0.72  in figure 5-1 for both primary and secondary modes. However, the temporal 

branches of phase speed for the primary and secondary mode cross over each other.  

Figures 5-2 and 5-3 show the associated eigenfunctions associated with this 

instability. Recall from section 2.3 that complex quantities F1 and F2 correspond 
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respectively to radial and azimuthal disturbances. The magnitudes of ‖𝐹1‖ and ‖𝐹2‖ were 

normalized everywhere by the largest one. Moreover, the zero frequency was set off to be 

at the location of the peak amplitude. 

The observable points in the profile of disturbances are as following. They 

resemble impulse waves while their maximum occurs inside the vortex core (r<1). The 

position of peak amplitude for radial disturbance is on rmax=0.7479 which is farther than 

the one for the azimuthal disturbance; rmax=0.5953. This indicates that the unstable 

mode is a center mode. Looking at the frequencies in figures 5-2 and 5-3, little variations 

can be seen except an abrupt phase shift on the distance almost equal to 0.6. Based on 

the mode frequencies one can notices that the primary instability is almost stationary. 

In figure 5-4, the real and imaginary parts of eigenvalues, 𝜔𝑟 and 𝜔𝑖 were 

presented for the first fifteen temporal viscous modes. 
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Figure 5-1 Primary and secondary mode for axisymmetric disturbance 

(The solid and dashed lines represent primary and secondary modes respectively.) 
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Figure 5-2 Propagation of radial axisymmetric disturbance 
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Figure 5-3 Propagation of azimuthal axisymmetric disturbance 
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Figure 5-4 Locus of eigenvalues in axisymmetric disturbance 
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5.2 Results for the asymmetric mode (m=-2) 

The dependence of the growth rate, 𝜔𝑖, on the axial wave number, k, for an 

asymmetric disturbance (m=2) is shown in figure 5-5. Again, the solid line and 

dashed line represent primary and secondary modes respectively. Their profiles are fairly 

distinctive and look obviously smoother than those for axisymmetric disturbance. In 

addition, the growth rates in figure 5-5 have significantly greater order of magnitude 

compared to the results presented in figure 5-1. 

The figure shows that the asymmetric instability occurs at lower axial 

wavenumber. This statement could be probed through jeopardizing the order of 

magnitude of variable k between figures 5-1 and 5-2 for which the instability as the value 

of growth rate is significant. Then, it may be concluded that the asymmetric disturbance 

travels in long-wave packets and comparatively the axisymmetric does in short-wave 

ones. 

The first two strongest modes were satisfactorily plotted distinctively as quasi-

parabolic profiles. In the same manner, other modes are expected to share the same 

shape. Unfortunately, the computational capability of present study did not allow for 

more refinement of eigensolutions. 

Looking at figure 5-5, it is clear that the maximum of primary mode profile 

occurs in larger values of k than the peak of secondary mode; k=0.989 versus k=0.695. 

Furthermore, the primary mode instability lasts over a wider interval of axial 

wavenumber. 

The order of magnitudes of growth rates shown in figures 5-1 and 5-5 are 

evidently different. For example, the axisymmetric disturbance in Figure 5-1 Primary 

and secondary mode for axisymmetric disturbancehas maximum growth rate equal to 
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0.0710. In contrast, the maximum value of the asymmetric growth rate equals 0.2634 for 

primary mode and 0.1389 for secondary mode (see figure 5-5). This means that 

asymmetrical modes are the most unstable ones. 

The phase speed, 𝜔𝑟 decreases monotonically with the axial wavenumber by rate 

of -0.51. The curves of primary and secondary modes are very close to each other and 

have a quite constant rate of change. However, in the reality since a primary mode is the 

most unstable mode one should expect to observe the primary mode rather the second 

one.  

Figure 5-6 shows the amplitude and frequency of the radial eigenfunctions F1 for 

the particular case m=-2, k=0.5, q=0.4 and Reynolds=4000. Figure 5-7 is the plot of 

‖𝐹2‖ and ∠𝐹2; the azimuthal amplitude and frequency of asymmetric temporal instability 

for the similar asymmetric inputs. Again, the eigenfunctions are normalized with the 

maximum values. 

If the normalized amplitude and azimuthal disturbances in figure 5-6 and 5-7 are 

compared with those in figures 5-2 and 5-3, it can be seen that the radial profiles in the 

former spread over larger domain than the latter. 

The maximum value of radial amplitude in figure 5-6 is found to be at r=0.4136 

which is again less than unity. Therefore, the asymmetric instability persists inside the 

vortex core and occurs even closer to the vortex centerline compared to the 

axisymmetric. The slope of ∠𝐹1 inside the vortex core is approximately -1.5 which simply 

indicates non-stationary characteristic of asymmetric disturbance. Despite, the 

horizontal phase speed for r>1 has the meaning of stationary asymmetric instabilities on 

the free stream region (outside of the vortex core). 
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As presented so far, the amplitude of disturbance has only one maximum. 

Nonetheless, there are two peaks in the profile shown in figure 5-7 which make the 

azimuthal asymmetric disturbance look different from a single impulsive profile. The 

largest azimuthal amplitude occurs at r=0.239, is apparently closer to the centerline 

compared to the radial amplitude in figure 5-6. 

Neglecting all the phase shifts in figure 5-7, the slope of ∠𝐹2 on the distances 

close to unity is notably equal to -2.5. Thus one lead up to anticipating non-stationary 

instabilities of asymmetric type in the region with highest azimuthal velocity. 

The locus of eigenvalues for asymmetric disturbance, m=-2, and q=1.0 is 

presented in figure 5-8 for different values of axial wavenumber. The distribution of 

eigenvalues are quite spurious. However, the arrangement bifurcates into possibly 

meaningful pattern, which is in turn an open question to address. 

 

 



63 

    

 

Figure 5-5 Primary and secondary modes for asymmetric disturbance 

(The solid and dashed lines represent primary and secondary modes respectively.) 
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Figure 5-6 Propagation of radial asymmetric disturbance 
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Figure 5-7 Propagation of azimuthal asymmetric disturbance 
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Figure 5-8 Locus of eigenvalues for asymmetric disturbance 
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5.3 Effect of swirl parameter on instability 

 In this subsection, the influence of swirl parameter on the instability was 

attempted. The unstable modes were recomputed with approximately doubling the 

values of swirl quantity. These “intense vortex” plots were compared illustratively with 

their conjugate figures in order to study the effect of intensifying swirl parameter on the 

main traits of unstable waves. 

 The behaviour of the growth rate and phase speed at a higher value of swirl 

parameter is depicted in figure 5-9 for axisymmetric disturbance, with Reynolds number 

equal 5×104, m=0, and q=0.52 (almost twice of the swirl quantity taken in section 5-1 ). 

As it can be seen, the axisymmetric instability shifts to higher values of axial 

wavenumber (short-wave) as the swirl parameter increases. Again, the profiles of growth 

rate for primary and secondary modes lie close to each other, which serve as a cause of 

computational divergence in the present algorithm. 

 Comparing figures 5-1 and 5-9, the peak of primary growth rate in the latter 

occurs at larger values of k. Consequently, the stronger vortex may cause the 

axisymmetric instabilities to shift from the long-wave to short-wave. In addition, 

increasing the swirl quantity apparently widens the range of axial wavenumber for which 

the growth rates of unstable axisymmetric waves are noticeable.  

 Looking at figure 5-9, the branches of phase speed cross over each other and 

decrease with an approximately equivalent rate. Besides, the slope is less than figure 5-1, 

which means the stronger the vortex, slower the group velocity is. 

 Finally, the increase in maximum value of growth rate from 0.0710 to around 

0.10 is intriguing. It may be then concluded that increasing the value of q makes 
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axisymmetric instabilities slow down, have more amplification rate and shift up to a 

much short-wave zone. 

 Figures 5-10 and 5-11 assess the new amplitudes and frequencies of radial and 

azimuthal axisymmetric disturbances for larger swirl parameter. Comparing radial 

disturbances in figures 5-2 and 5-10, the position of the peak changes from 0.748 to 

1.098, which means the maximum value was relocated away vortex core. Nonetheless, 

the stationary characteristics of the travelling waves did not change due to the horizontal 

frequency. Therefore, increasing the swirl parameter may shift the position of maximum 

growth rate to radial distances farther from the vortex centerline but does not necessarily 

interrupt other features of axisymmetric disturbance. In other words, instability shifts 

from center mode into an annular mode that occurs outside the vortex core.    

 Figure 5-11 should be compared back with figure 5-3, m=0, k=3.2, and the value 

of q increases from 0.26 to 0.52. Thereby, the new azimuthal amplitude increases to its 

maximum at r=0.9159 opposed to its previous peak location at r=0.5953. This means 

that the increasing the swirl also shifts the azimuthal instability farther. However, it can 

be seen that the impulsive profile of azimuthal wave is not modified and the amplitude 

falls offs quickly to zero after the peak. The unstable wave stays stationary. The 

implication is that every feature of the axisymmetric instability is immune to the swirl 

parameter except the position of maximum amplitude. 
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Figure 5-9 Primary and secondary modes for axisymmetric disturbance; intense vortex  

(The solid and dashed lines represent primary and secondary modes respectively.) 
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Figure 5-10 Propagation of radial axisymmetric disturbance; intense vortex 
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Figure 5-11 Propagation of azimuthal axisymmetric disturbance; intense vortex 

  



72 

    

Figure 5-12 illustrates the growth rate variations for a comparatively larger swirl 

quantity than section 5.2. The disturbance is asymmetric (m=-2), q=0.8, and 

Reynolds=4000. Again, only the first two predominant modes among the spectrum of 

eigensolutions were presented. The largest values of the growth rate are 0.2601 and 

0.1814 for primary and secondary modes. These maximums were also taken place 

farther; their new position in figure 5-12 are r=1.3, 1.14 compared to the values r=0.989, 

0.695 in figure 5-5. The phase speed for both primary and secondary mode were also 

shown in figure 5-12. As it is expected, the corresponding branches look to be 

undistinguishable. The magnitude of the declination rate of phase speed is -0.86, greater 

than slope -0.51 in figure 5-5. Therefore, the azimuthal instabilities propagate faster as 

the swirl quantity increases. 

Figure 5-5 and 5-12 could be also compared in terms of order of magnitude of k 

for predominant instabilities. In this way, the range of axial wave number in intense 

vortex presented by figure 5-12 states larger orders than figure 5-5. From that, the 

majority of asymmetric instabilities in a stronger vortex possibly tend to occur in 

comparatively short-wave type. 

Radial variations of magnitude ‖𝐹1‖ and angle ∠𝐹1 for intense vortex are 

presented in figure 5-13. Compared to figure 5-6, the radial amplitude profile in figure 5-

13 slightly shrinkages and offers its peak at a smaller radial distance rmax=0.3211. This is 

less than rmax=0.4136 in figure 5-6 and is obviously closer to the vortex centerline. Figure 

5-13 also presents the frequency of radial asymmetric disturbance for strongest mode 

versus radial location. As it is observed, the asymmetric instabilities are not stationary in 

as much as the value of ∠𝐹1 decreases with declination rate approximately equal to -3.7 

inside the vortex core. Although, the phase speed is almost horizontal outside of the core 
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implying that the instability should be interpreted as stationary waves far outside of the 

core.  

The amplitude and frequency of azimuthal disturbance were also plotted in figure 

5-14. Corresponding values for asymmetric disturbance are: Reynolds=4000, m=-2, 

k=0.50, and with a stronger swirl quantity; q=0.80. It is interesting to note that the 

location of the maximum azimuthal disturbance remained unchanged while the swirl 

quantity increases. The value of rmax equals 0.239 whether in figure 5-7 or figure 5-14. 

The slope of the frequency of azimuthal disturbance on the region near to the core radius 

has the approximate value of -4.0, which means there is a sharper declination rate 

compared to the rate of -2.5 in figure 5-7. 
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Figure 5-12 Primary and secondary mode for asymmetric disturbance, intense vortex  

(The solid and dashed lines represent primary and secondary modes respectively.) 
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Figure 5-13 Propagation of radial asymmetric disturbance; intense vortex 
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Figure 5-14 Propagation of azimuthal asymmetric disturbance; intense vortex  
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Table 5-1 

𝑞 𝑘𝑚𝑎𝑥  𝜔𝑖,𝑚𝑎𝑥 
𝑑𝜔𝑟
𝑑𝑘

 

0.19 0.626 0.1531 -0.64 

0.4 0.942 0.2635 -0.64 

1.1 0.879 0.2147 -0.89 

m=-2, Reynolds=4000 

 

Figure 5-15 depicts the variations of growth rate 𝜔𝑖 with k for different swirl 

parameters. The disturbance is asymmetric (m=-2), Reynolds=4000, and q=0.19, 0.4, 

and 1.1. The main information was also summarized in Table 5-1. 

 As seen in a larger perspective, all profiles have similar quasi-parabolic pattern. 

However, the maximum growth rate and also the range of predominant instability 

depend strongly on the value of swirl quantity. 

Inspecting figure 5-15 carefully, it can be observed that increasing the swirl 

quantity does not necessarily scale up/down the growth rate profile over k. Indeed, as 

the value of q increases from 0.19 to 0.4, both the peak of primary modes and the axial 

wave number range of predominant instabilities increase dramatically. Nevertheless, 

intensifying parameter from 0.4 to 1.1 decreases the scale of instability and shifts the 

growth rate curve to somewhere between the profile of q=0.19 and 0.4.  

In conclusion, the swirl parameter strongly affects both the order of amplification 

of disturbances and the spectrum of travelling unstable waves. A maximum value shall 

exist for the value of swirl quantity for which the largest amplification rate occurs over 

the widest range of axial wave number. Furthermore, there should be also a critical swirl 

parameter, 𝑞𝑐𝑟 that represents the maximum destabilizing swirl parameter. For the 
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values of swirl quantity greater than 𝑞𝑐𝑟, all instabilities decay in as much as the growth 

rate cross over the neutral stability curve. 

Figure 5-16 displays the variations of 𝜔𝑟 of the primary mode with the axial wave 

number for different values values of swirl parameter. All the associated quantities are 

equivalent to those in figure 5-15. The sequence of values corresponds to quantities of 

"q". When q = 0.19, the slope is -0.64. At q = 0.40 the slope is slightly declined as 

compared to q = 0.19. At q = 1.10, the slope equals -0.89 which is at its most declined as 

compared to the other values of q. Consequently, as the graph shifts up, there is a 

sharper rate of declination that corresponds to higher group velocity. Therefore, stronger 

the vortex is, faster the asymmetric instability propagates, which is a generalized 

compliment of what was already discussed. 

 

  



79 

    

 

Figure 5-15 Effect of swirl parameter on the growth rate of, m=-2, q=0.19,0.4,1.1 

 

 

Figure 5-16 Effect of swirl parameter on the phase speed, m=-2, q=0.19,0.4,1.1 
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5.4 Effect of viscous forces on instabilities 

The effect of Reynolds number on the asymmetric mode (m=-2) at q=0.8 is 

presented in figure 5-17 for two scenarios of axial wave number; k=0.70 and k=1.1. The 

primary and secondary modes were displayed with solid and dashed lines respectively. 

The increase in growth rate over Reynolds number is noticeable. Thus, as the 

Reynolds number increases, the flow becomes more unstable. The secondary mode has 

the same variations but with a shift in the curve; since its growth rate is expectedly 

smaller than the primary mode.  

It is evident that the growth rate varies more significantly in low Reynolds flow 

than high Reynolds flow. As the Reynolds number increases, it increases with lower rate 

and eventually reaches asymptotically to the value 0.251 for k=1.1 and 0.225 for k=0.7. 

Indeed, the stabilizing effect of viscous forces in low Reynolds number is the main 

decaying source. Accordingly, the instabilities become immune to viscous forces in high 

Reynolds number flows. 

Figure 5-18 compares variations of 𝜔𝑟 for primary and secondary modes over 

Reynolds number for different values of k. The phase speeds of primary and secondary 

modes are not influenced significantly by Reynolds number. The asymptotical values are 

0.916 and 0.574 for k=0.7 and k=1.1 respectively. An illustrative graph for the group 

speed is a matter of interest in investigating the effects of viscous forces. Unfortunately, 

the computational algorithm was not adequately rigorous to obtain those results. 
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Figure 5-17 Growth Rate as a function of Reynolds number, m=-2, k=0.7,1.1 

(The solid and dashed lines represent primary and secondary modes respectively.) 
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Figure 5-18 Phase Speed as a function of Reynolds number, m=-2, k=0.7,1.1 

(The solid and dashed lines represent primary and secondary modes respectively.) 
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5.5 Topography of instabilities 

The q-k plane was discretized and the growth rates were found at each point. An 

iterative method was employed to achieve convergent values for the growth rate. The 

entire unstable region was then mapped out with another subroutine. However, the 

algorithm did not adequately converge in the region close to the neutral stability. We 

attribute this to the singularity of eigensolutions for small growth rates. The curves of 

neutral stability are certainly of considerable interest and would be possibly a genuine 

topic for future studies. 

The type of instability could be divided into two categories: long-wave type 

corresponding to smaller values of k, and short-wave type according to larger values of k. 

The outmost curve in the contour of growth rate is the neutral stability curve (𝜔𝑖 = 0).  

Contours of growth rate for axisymmetric disturbance, m=-2 and Reynolds=100 

are plotted in figure 5-19. An increment of 0.01 was considered for generating the 

contours. The flow is found to be entirely stable for swirl parameters larger than qcr=1.52. 

This value as mentioned before is so-called critical swirl parameter and was evaluated to 

be around 1.5 for inviscid studies. The maximum growth rate equals 0.1837 occurring at 

q=0.586 and k=1.12. The unstable region is smooth everywhere. The range of unstable 

swirl is found out to be 0.1<q<1.5. Accordingly, the axial wave number of instabilities lies 

between 0.2 and 1.8. 

Regarding the apex of the unstable region, the shortest unstable wavelength 

occurs at q=0.41. Accordingly, the largest axial wave number equals 1.82 for this swirl 

quantity. The border of the unstable region is the neutral stability curve and visibly 

distinguishable. It extends to shorter wavelength as the swirl parameter increases. This 

argument is supported by the positive slope on the bottom line of the unstable region in 
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figure 5-19. The strongest amplification of instabilities corresponds to the values of k is 

close to unity. Therefore, the axial wave number of unstable modes has as order of 

magnitude as the core radius (rc).The shortwave limit is meaningfully determined by the 

largest axial wavenumber in the unstable region, which is the apex in contours. Here, it 

was found to be 1.82 for Reynolds=100. In the same manner, the zero-axis is the long-

wave limit of instabilities. The unstable region in figure 5-19 lies near to the k=0 axis. 

Figure 5-20 presents the topography of instabilities for the particular case of m=-

2, Reynolds=1000. As mentioned before, the inner area is the unstable region and its 

border corresponds to neutral stability. Comparing figures 5-19 and 5-20, the unstable 

region is perceptibly extended as Reynolds number increases. The maximum growth rate 

is equal to 0.2895 at q=0.606 and k=1.15 (greater than figure 5-19). The critical swirl 𝑞𝑐𝑟 

also increases roughly to 2.5. It was not possible to compute the value of swirl parameter 

for which the most shortwave instability happens, however the estimated value of 0.5 

could be interpolated. Again, the unstable region looks to be fairly smooth. The growth 

rate goes smoothly toward zero as the swirl intensifies. There was also divergence in 

pseudo-spectral method for long wave disturbances (close to k=0 axis). Both the 

precision and convergence of the algorithm degrade for small values of k. 

Ultimately, the topography of instability is mapped out in figure 5-21 for 

Reynolds equal to 104 and asymmetric disturbance (m=-2). The largest growth rate is 

found to be 0.3034 at q=0.606. In comparison, the largest growth rate in figure 5-21 is a 

bit greater than figure 5-20. But the values of qmax and kmax did not change. Thus, as 

Reynolds number increases, the value of swirl parameter and axial wave number for the 

most significant instability asymptote to a location in q-k plane. As seen in the plots, the 

numerical quality declines significantly for small magnitudes of growth rate. Thus, the 

results in the area close to the neutral stability would not be reliable.  
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Figure 5-19 Contours of unstable region, m=-2, Reynolds=100 
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Figure 5-20 Contours of unstable region, m=-2, Reynolds=1000 
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Figure 5-21 Contours of unstable region, m=-2, Reynolds=10000 
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6. Conclusion 

In this study, the stability analysis of single cell unconfined columnar vortex was 

undertaken. The work parallels the investigation conducted with q-vortex model as the 

base flow. In the present study the azimuthal velocity in the q-vortex model is replaced 

by the azimuthal component of Vatistas vortex model. The base flow was subjected to 

three dimensional perturbation. The viscosity was included in the stability analysis. The 

perturbation equations were discretized using a pseudo-spectral method. The numerical 

code was validated by comparing the obtained results for the growth rate and topography 

of instability for the q-vortex model. 

The evolutions of both axisymmetric and asymmetric disturbances were 

investigated. It was found that the asymmetrical instabilities occur comparatively at 

higher Reynolds number and in short-wave form and are resilient and stationary. 

The results showed that intensifying the swirl has a drastic impact on the nature of 

the instability.  In fact the instability switches from centre modes into annular modes.   

In an intense vortex, the instabilities propagates faster and their spectre is larger.  

Investigating the impact of Reynolds number, it was shown that the stronger the viscous 

forces are, the smaller the growth rate of instabilities is. The viscosity stabilises the 

vortex. Topographies of instabilities were mapped out for three different Reynolds 

number. As a result, the critical swirl quantity was found to be larger than inviscid 

threshold for stabilizing the flow; qcr>1.5. Note that this critical value was recently re-

evaluated and found equal to 2.3. 
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The maximum amplification rate was found to be when  𝑞 ≈ 0.5 , which 

approximately coincided with the largest range of axial wavenumber and the shortwave 

limit which was about 𝑘 ≈ 2.00. The last results point out that major instabilities travel 

in the vortex having the same order of axial wave number as the core radius.  

Similarly to the algorithm implemented by others, the present code did not produce 

reliable results in the region close to the neutral stability curve. This is because the 

singularities (critical layer) that needs a special treatments.  One of the option to cure 

this drawback in is to embed a continuation method together with changing the 

integration path to ovoid the singularities at critical layer (critical radius). This can serve 

as guide for future work and we believe that this will overcome the difficulties that were 

faced at high Reynolds number, known in the studies of inviscid stability problems.    

It was also discovered that changing R affects the convergence of the numerical 

solution. Thus, it is suggested that the maximum radius R be redefined in each iteration. 

In this way, better convergence would be obtained as the distribution of collocation 

points is manipulated. There is no doubt that more complication will be added as well.  

A variety of new subtopics could be prospectively considered. Determining the 

neutral stability curve would be a beneficial analysis and could be considered as a case-

study in future. Another open topic is the determination of the most amplified mode 

among all range of azimuthal wavenumber and the entire spectrum of eigensolutions. 

Another direction of future is to consider a stability full Vatistas model not just its 

tangential velocity.  

The numerical procedure presented here lays the foundation of viscous stability 

analysis by pseudo-spectral method. The algorithm could be used as a valuable tool in 
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disseminating the knowledge of vortex stability. In addition, the program could be 

extended to be used in more complicated cases like compressible stability analysis.  

“End” 
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Appendix A 

Pseudo-spectral method with chebychev collocation 

The Chebychev polynomial of degree n, 𝑇𝑛(𝑥), is defined by: 

𝑇𝑛(cos 𝜃) = cos (𝑛𝜃) (A-1) 

Thus, by considering 𝑥 = cos 𝜃, the first five terms are: 

𝑇1(𝑥) = 1  

𝑇2(𝑥) = 𝑥  

𝑇3(𝑥) = 2𝑥
2 − 1  

𝑇4(𝑥) = 4𝑥
3 − 3𝑥  

𝑇5(𝑥) = 8𝑥
4 − 8𝑥2 + 1  

...  

Chebychev polynomials are the eigenfunctions of the singular Sturm-Liouville problem : 

𝑑

𝑑𝑥
(𝑝(𝑥)

𝑑𝜙𝑛
𝑑𝑥
) + (𝜆𝑛𝑤(𝑥) − 𝑞(𝑥))𝜙𝑛(𝑥) = 0 

 

with  𝑝(𝑥) = √1 − 𝑥2, 𝑤(𝑥) = 1 √1 − 𝑥2⁄ , 𝑞(𝑥) = 0, −1 ≤ 𝑥 ≤ 1, and the boundary conditions 

that 𝜙𝑛(±1) be finite[17]. The eigenvalues corresponding to 𝑇𝑛(𝑥) is 𝜆𝑛 = 𝑛
2. Hence, they 

satisfy the orthogonality relation 

〈𝑇𝑛, 𝑇𝑚〉 = ∫ 𝑇𝑛(𝑥)𝑇𝑚(𝑥)
1

−1

(1 − 𝑥2)−1 2⁄ 𝑑𝑥 = ∫ cos (𝑛𝜃)cos (𝑚𝜃)𝑑𝜃
𝜋

0

= {

0     (𝑛 ≠ 𝑚)

𝜋     (𝑛 = 𝑚 = 1)
𝜋

2
        (𝑛 = 𝑚 > 1)

 

(A-2) 

Some properties of these bases are: 

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥)        𝑛 > 2   
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|𝑇𝑛(𝑥)| ≤ 1   , |𝑇𝑛
′(𝑥)| ≤ 𝑛2   

𝑑𝑝

𝑑𝑥𝑝
𝑇𝑛(±1) = (±1)

𝑛+𝑝∏
𝑛2 − 𝑘2

2𝑘 + 1

𝑝

𝑘=0

 
 (A-3) 

   

Notice that is our study, the index of  𝑇𝑛(𝑥) was shifted by one unit and saved into the 

new functional vectors Γ𝑛(𝑦) as 

Γ𝑛(𝑦) = 𝑇𝑛(𝑥)|𝑥→𝑦; 𝑛→𝑛−1 = 𝑇𝑛−1(𝑦)  

As shown in §(3-1), we need to solve the eigenvalue problem in (3-2) for the entire 

domain at one time by deriving a compact correlation. The amplitude F1 (y) was 

approximated in the subspace ℛ𝑀 = 𝑠𝑝𝑎𝑛{𝚽1(𝑦),𝚽2(𝑦), … ,𝚽𝑀(𝑦)} and amplitude F2 (y) in 

the subspace ℛ𝑀−2 = 𝑠𝑝𝑎𝑛{𝚿𝑛(𝑦),𝚿𝑛(𝑦), … ,𝚿𝑛(𝑦) }  and as equation (3-4) which we plug 

into the local LPE (3-6) and obtain: 

𝝎[
𝐿11⌋@𝑦𝑠 𝐿12⌋@𝑦𝑠
𝐿21⌋@𝑦𝑠 𝐿22⌋@𝑦𝑠

]

[
 
 
 
 
 
∑𝜙𝑛𝚽𝑛(𝑦)

𝑀

𝑛=1

∑𝜓𝑛𝚿𝑛(𝑦)

𝑀−2

𝑛=1 ]
 
 
 
 
 

= [
𝑅11⌋@𝑦𝑠 𝑅12⌋@𝑦𝑠
𝑅21⌋@𝑦𝑠 𝑅22⌋@𝑦𝑠

]

[
 
 
 
 
 
∑𝜙𝑛𝚽𝑛(𝑦)

𝑀

𝑛=1

∑𝜓𝑛𝚿𝑛(𝑦)

𝑀−2

𝑛=1 ]
 
 
 
 
 

;  s = 1,2,3, . . , M 

(A
-4

) 

Notice that coefficients 𝜙𝑛 and 𝜓𝑛 in (3-5) represent the weight of series expansion 

respectively on the modified chebychev basis {𝚽𝑛}𝑛=1
𝑀  and {𝚿𝑛}𝑛=1

𝑀−2. Hence, when 

derivational operators are applied they should come out of any expression. Thereon, 

equation (A-4) can be rewritten as 

𝜔(𝜙1𝐿11{𝚽1(𝑦)}@𝑦𝑠 +𝜙2𝐿11{𝚽2(𝑦)}@𝑦𝑠 + …+ 𝜙𝑀𝐿11{𝚽𝑀(𝑦)}@𝑦𝑠) 

(A-5 a) 

+𝜔(𝜓1𝐿12{𝚿1(𝑦)}@𝑦𝑠 + 𝜓2𝐿12{𝚿2(𝑦)}@𝑦𝑠 + …+ 𝜓𝑀−2𝐿12{𝚿𝑀−2(𝑦)}@𝑦𝑠) 

= 

(𝜙1𝑅11{𝚽1(𝑦)}@𝑦𝑠 + 𝜙2𝑅11{𝚽2(𝑦)}@𝑦𝑠 + …+ 𝜙𝑀𝑅11{𝚽𝑀(𝑦)}@𝑦𝑠) 

+(𝜓1𝑅12{𝚿1(𝑦)}@𝑦𝑠 +𝜓2𝑅12{𝚿2(𝑦)}@𝑦𝑠 + …+ 𝜓𝑀−2𝑅12{𝚿𝑀−2(𝑦)}@𝑦𝑠) 
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𝜔(𝜙1𝐿21{𝚽1(𝑦)}@𝑦𝑠 + 𝜙2𝐿21{𝚽2(𝑦)}@𝑦𝑠 + …+ 𝜙𝑀𝐿21{𝚽𝑀(𝑦)}@𝑦𝑠) 
 

(A-5 b) 

 

 

+𝜔(𝜓1𝐿22{𝚿1(𝑦)}@𝑦𝑠 + 𝜓2𝐿22{𝚿2(𝑦)}@𝑦𝑠 + …+ 𝜓𝑀−2𝐿22{𝚿𝑀−2(𝑦)}@𝑦𝑠) 

= 

(𝜙1𝑅21{𝚽1(𝑦)}@𝑦𝑠 +𝜙2𝑅21{𝚽2(𝑦)}@𝑦𝑠 + …+ 𝜙𝑀𝑅21{𝚽𝑀(𝑦)}@𝑦𝑠) 

+(𝜓1𝑅22{𝚿1(𝑦)}@𝑦𝑠 + 𝜓2𝑅22{𝚿2(𝑦)}@𝑦𝑠 + …+ 𝜓𝑀−2𝑅22{𝚿𝑀−2(𝑦)}@𝑦𝑠) 

Expanding (A-5) for 3 ≤ 𝑠 ≤ 𝑀 − 2 and collect all coefficients for weight variables 

𝜙𝑖 and 𝜓𝑖 (i=1, 2, 3, ..., M) in matrix form as (A-6) 

𝝎

[
 
 
 
 
𝐿11{𝚽1(𝑦)}@𝑦3 ⋯

𝐿11{𝚽1(𝑦)}@𝑦4 ⋯

𝐿11{𝚽5(𝑦)}@𝑦3
𝐿11{𝚽5(𝑦)}@𝑦4

⋯ 𝐿11{𝚽𝑀(𝑦)}@𝑦3
⋯ 𝐿11{𝚽𝑀(𝑦)}@𝑦4

⋮
𝐿11{𝚽1(𝑦)}@𝑦𝑀−2 ⋯

⋮
𝐿11{𝚽5(𝑦)}@𝑦𝑀−2

⋱ ⋮
⋯ 𝐿11{𝚽𝑀(𝑦)}@𝑦𝑀−2]

 
 
 
 

[
 
 
 
 
 
𝜙1
𝜙2
⋮

𝜙𝑀−2
𝜙𝑀−1
𝜙𝑀 ]

 
 
 
 
 

+ 𝝎

[
 
 
 
 
𝐿12{𝚿1(𝑦)}@𝑦3 𝐿12{𝚿2(𝑦)}@𝑦3
𝐿12{𝚿1(𝑦)}@𝑦4 𝐿12{𝚿2(𝑦)}@𝑦4

𝐿12{𝚿3(𝑦)}@𝑦3 ⋯

𝐿12{𝚿3(𝑦)}@𝑦4 ⋯

𝐿12{𝚿𝑀−2(𝑦)}@𝑦3 0 0

𝐿12{𝚿𝑀−2(𝑦)}@𝑦4 0 0

⋮ ⋮
𝐿12{𝚿1(𝑦)}@𝑦𝑀−2 𝐿12{𝚿2(𝑦)}@𝑦𝑀−2

⋮ ⋱
𝐿12{𝚿3(𝑦)}@𝑦𝑀−2 ⋯

⋮ 0 0
𝐿12{𝚿𝑀−2(𝑦)}@𝑦𝑀−2 0 0]

 
 
 
 

[
 
 
 
 
 
𝜓1
𝜓2
⋮

𝜓𝑀−2
0
0 ]
 
 
 
 
 

 

(A
-6

-a
) 

= 

[
 
 
 
 
𝑅11{𝚽1(𝑦)}@𝑦3 ⋯

𝑅11{𝚽1(𝑦)}@𝑦4 ⋯

𝑅11{𝚽5(𝑦)}@𝑦3
𝑅11{𝚽5(𝑦)}@𝑦4

⋯ 𝑅11{𝚽𝑀(𝑦)}@𝑦3
⋯ 𝑅11{𝚽𝑀(𝑦)}@𝑦4

⋮
𝑅11{𝚽1(𝑦)}@𝑦𝑀−2 ⋯

⋮
𝑅11{𝚽5(𝑦)}@𝑦𝑀−2

⋱ ⋮
⋯ 𝑅11{𝚽𝑀(𝑦)}@𝑦𝑀−2]

 
 
 
 

[
 
 
 
 
 
𝜙1
𝜙2
⋮

𝜙𝑀−2
𝜙𝑀−1
𝜙𝑀 ]

 
 
 
 
 

+

[
 
 
 
 
𝑅12{𝚿1(𝑦)}@𝑦3 𝑅12{𝚿2(𝑦)}@𝑦3
𝑅12{𝚿1(𝑦)}@𝑦4 𝑅12{𝚿2(𝑦)}@𝑦4

𝑅12{𝚿3(𝑦)}@𝑦3 ⋯

𝑅12{𝚿3(𝑦)}@𝑦4 ⋯

𝑅12{𝚿𝑀−2(𝑦)}@𝑦3 0 0

𝑅12{𝚿𝑀−2(𝑦)}@𝑦4 0 0

⋮ ⋮
𝑅12{𝚿1(𝑦)}@𝑦𝑀−2 𝑅12{𝚿2(𝑦)}@𝑦𝑀−2

⋮ ⋱
𝑅12{𝚿3(𝑦)}@𝑦𝑀−2 ⋯

⋮ 0 0
𝑅12{𝚿𝑀−2(𝑦)}@𝑦𝑀−2 0 0]

 
 
 
 

[
 
 
 
 
 
𝜓1
𝜓2
⋮

𝜓𝑀−2
0
0 ]
 
 
 
 
 

 

And 
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𝜔

[
 
 
 
 
𝐿21{𝚽1(𝑦)}@𝑦3 ⋯

𝐿21{𝚽1(𝑦)}@𝑦4 ⋯

𝐿21{𝚽5(𝑦)}@𝑦3
𝐿21{𝚽5(𝑦)}@𝑦4

⋯ 𝐿21{𝚽𝑀(𝑦)}@𝑦3
⋯ 𝐿21{𝚽𝑀(𝑦)}@𝑦4

⋮
𝐿21{𝚽1(𝑦)}@𝑦𝑀−2 ⋯

⋮
𝐿21{𝚽5(𝑦)}@𝑦𝑀−2

⋱ ⋮
⋯ 𝐿21{𝚽𝑀(𝑦)}@𝑦𝑀−2]

 
 
 
 

[
 
 
 
 
 
𝜙1
𝜙2
⋮

𝜙𝑀−2
𝜙𝑀−1
𝜙𝑀 ]

 
 
 
 
 

+ 𝜔

[
 
 
 
 
𝐿22{𝚿1(𝑦)}@𝑦3 𝐿22{𝚿2(𝑦)}@𝑦3
𝐿22{𝚿1(𝑦)}@𝑦4 𝐿22{𝚿2(𝑦)}@𝑦4

𝐿22{𝚿3(𝑦)}@𝑦3 ⋯

𝐿22{𝚿3(𝑦)}@𝑦4 ⋯

𝐿22{𝚿𝑀−2(𝑦)}@𝑦3 0 0

𝐿22{𝚿𝑀−2(𝑦)}@𝑦4 0 0

⋮ ⋮
𝐿22{𝚿1(𝑦)}@𝑦𝑀−2 𝐿22{𝚿2(𝑦)}@𝑦𝑀−2

⋮ ⋱
𝐿22{𝚿3(𝑦)}@𝑦𝑀−2 ⋯

⋮ 0 0
𝐿22{𝚿𝑀−2(𝑦)}@𝑦𝑀−2 0 0]

 
 
 
 

[
 
 
 
 
 
𝜓1
𝜓2
⋮

𝜓𝑀−2
0
0 ]
 
 
 
 
 

 

(A
-6

-b
) 

= 

[
 
 
 
 
𝑅21{𝚽1(𝑦)}@𝑦3 ⋯

𝑅21{𝚽1(𝑦)}@𝑦4 ⋯

𝑅21{𝚽5(𝑦)}@𝑦3
𝑅21{𝚽5(𝑦)}@𝑦4

⋯ 𝑅21{𝚽𝑀(𝑦)}@𝑦3
⋯ 𝑅21{𝚽𝑀(𝑦)}@𝑦4

⋮
𝑅21{𝚽1(𝑦)}@𝑦𝑀−2 ⋯

⋮
𝑅21{𝚽5(𝑦)}@𝑦𝑀−2

⋱ ⋮
⋯ 𝑅21{𝚽𝑀(𝑦)}@𝑦𝑀−2]

 
 
 
 

[
 
 
 
 
 
𝜙1
𝜙2
⋮

𝜙𝑀−2
𝜙𝑀−1
𝜙𝑀 ]

 
 
 
 
 

+

[
 
 
 
 
𝑅22{𝚿1(𝑦)}@𝑦3 𝑅22{𝚿2(𝑦)}@𝑦3
𝑅22{𝚿1(𝑦)}@𝑦4 𝑅22{𝚿2(𝑦)}@𝑦4

𝑅22{𝚿3(𝑦)}@𝑦3 ⋯

𝑅22{𝚿3(𝑦)}@𝑦4 ⋯

𝑅22{𝚿𝑀−2(𝑦)}@𝑦3 0 0

𝑅22{𝚿𝑀−2(𝑦)}@𝑦4 0 0

⋮ ⋮
𝑅22{𝚿1(𝑦)}@𝑦𝑀−2 𝑅22{𝚿2(𝑦)}@𝑦𝑀−2

⋮ ⋱
𝑅22{𝚿3(𝑦)}@𝑦𝑀−2 ⋯

⋮ 0 0
𝑅22{𝚿𝑀−2(𝑦)}@𝑦𝑀−2 0 0]

 
 
 
 

[
 
 
 
 
 
𝜓1
𝜓2
⋮

𝜓𝑀−2
0
0 ]
 
 
 
 
 

 

which enables us to extract a compact eigenvalue problem for discretized LPE. 
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Appendix B 

Source program 

 

function 

[w_r,w_i,F1,F2,AMP1,FRQ1,AMP2,FRQ2]=Stability_Spectrum(model,number_mode,chebychev_number

,azimuthal_number,axial_number,vortex_intensity,reynolds,radius_max) 

M=chebychev_number; 

L=zeros(2*M-8,2*M-8); 

R=zeros(2*M-8,2*M-8); 

[Phi,Psi]=Collocation_Basis(chebychev_number,azimuthal_number); 

for i=1:M-4 

[L11,L21,L12,L22,R11,R21,R12,R22]=Discretized_LPE(model,chebychev_number,a

zimuthal_number,axial_number,vortex_intensity,reynolds,radius_max,Phi,Psi,

i+2); 

               L(i,1:M-4)=L11(5:M);              

               L(i,M-3:2*M-8)=L12(3:M-2);                                  

               L(i+M-4,1:M-4)=L21(5:M);                             

               L(i+(M-4),M-3:2*M-8)=L22(3:M-2);                   

               R(i,1:M-4)=R11(5:M);                                                                                                           

          R(i,M-3:2*M-8)=R12(3:M-2);                                  

               R(i+M-4,1:M-4)=R21(5:M);                                    

               R(i+(M-4),M-3:2*M-8)=R22(3:M-2);                                                                                               

end 

nmod=number_mode;                                      % numbers of mode     

[Eigenvector,Eigenvalue]=eigs(L\R,nmod,'LR');     % eigensolutions for the multiple modes     

w_r=real(Eigenvalue(logical(eye(size(Eigenvalue)))));          

w_i=imag(Eigenvalue(logical(eye(size(Eigenvalue)))));   

y=-cos(([1:M]-ones(1,M))*pi/(M-1)); 

                     

FF1=zeros(M,nmod);     % Total amplitude of radial disturbance 

FF2=zeros(M,nmod);     % Total amplitude of azimuthal disturbance 

         

weight=zeros(1,M); 

basis=zeros(1,M); 

phi=weight;  % the weights of projection of the radial amplitude  

Phi_s=basis; % Local amount of the modified chebychev basis in radial dimension 

psi=weight;   

Psi_s=basis;  

         

for kk=1:nmod 

   for s=5:M 

      for j=5:M 

         phi(1,j)=Eigenvector(j-4,kk);     

         Phi_s(1,j)=polyval(Phi(j,:),y(s));    

      end 

      FF1(s,kk)=sum(phi.*Phi_s); 

   end 
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   for s=3:M-2 

      for j=3:M-2 

         psi(1,j)=Eigenvector(j+M-6,kk);      

         Psi_s(1,j)=polyval(Psi(j,:),y(s));   

      end 

      FF2(s,kk)=sum(psi.*Psi_s); 

   end 

end 

F1=sign(real(FF1)).*FF1; 

F2=sign(real(FF2)).*FF2; 

AMP1=abs(F1); 

FRQ1=angle(F1); 

AMP2=abs(F2); 

FRQ2=angle(F2); 

 

function 

[L11,L21,L12,L22,R11,R21,R12,R22]=Discretized_LPE(model,Cheb_No,Azimuthal_No,Axial_No,Vor

x_inten,Reynolds,Rad_Region,Phi,Psi,index) 

%% Chebyshev Polynomials 

M=Cheb_No; 

m=Azimuthal_No; 

k=Axial_No; 

q=Vorx_inten; 

Rey=Reynolds; 

RR=Rad_Region; 

Y_i=-cos(((index-1)*pi)/(M-1));    % Discretization 

Rad=RR/2*(Y_i+1);                  % Mapping r to y 

r=Rad; 

 

%%  Defining Coefficients in Operators;  

 

Z=2/RR;                           %chain rule    dy/dr 

if strcmp(model,'Vatistas')       % Vatistas Model 

   U=exp(-r^2); 

   diff_U=-2*r*exp(-r^2); 

   diff2_U=-2*exp(-r^2)-2*r*(-2*r*exp(-r^2)); 

   W=q*r/sqrt((1+r^4)); 

   diff_W=q*(1-r^4)/(1+r^4)^1.5; 

   f=k^2+m^2/r^2+1i*k*U*Rey+1i*m*W*Rey/r; 

   diff_f=-2*m^2/r^3+1i*k*Rey*diff_U+1i*m*Rey*(1/r*diff_W-1/r^2*W); 

   E=W/r+diff_W; 

end 

 

if strcmp(model,'Batchelor')      % Batchelor Model 

   U=exp(-r^2); 

   diff_U=-2*r*exp(-r^2); 

   diff2_U=-2*exp(-r^2)-2*r*(-2*r*exp(-r^2)); 

   W=q/r*(1-exp(-r^2)); 

   diff_W=-q/r^2*(1-exp(-r^2))+q/r*(2*r*exp(-r^2)); 

   f=k^2+m^2/r^2+1i*k*U*Rey+1i*m*W*Rey/r; 

   diff_f=-2*m^2/r^3+1i*k*Rey*diff_U+1i*m*Rey*(1/r*diff_W-1/r^2*W); 

   E=W/r+diff_W; 

end 

 

   if strcmp(model,'Modified Batchelor')    % Modified Batchelor Model 

   U=exp(-r^2); 

   diff_U=-2*r*exp(-r^2); 

   diff2_U=-2*exp(-r^2)-2*r*(-2*r*exp(-r^2)); 

   W=q/r*(1-exp(-1.256*r^2)); 

   diff_W=-q/r^2*(1-exp(-1.256*r^2))+q/r*(2*1.256*r*exp(-1.256*r^2)); 

   f=k^2+m^2/r^2+1i*k*U*Rey+1i*m*W*Rey/r; 

   diff_f=-2*m^2/r^3+1i*k*Rey*diff_U+1i*m*Rey*(1/r*diff_W-1/r^2*W); 

   E=W/r+diff_W; 

end 

 

%%   Evaluating L11_p(Phi(y))  

L11_p=zeros(M,M+1); 

for i=1:M 

   Phi_i=Phi(i,M-i+2:M+1);      

   L11_1=Rey*Z*polyder(Z*polyder(Phi_i));   
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   L11_2=Rey*1/r*Z*polyder(Phi_i);               

   L11_3=Rey*(-1/r^2-k^2)*Phi_i;                        

 

   [bb,i_max]=polyadds(L11_1,L11_2,L11_3); 

   L11_p(i,M+2-i_max:M+1)=bb; 

end               

 

%%   Evaluating L21_p(Phi(y)) 

L21_p=zeros(M,M+1); 

for i=1:M 

   Phi_i=Phi(i,M-i+2:M+1);      

   L21_1=(-1i*m/k^2)*(1/r)*Z*polyder(Phi_i);          

   L21_2=(-1i*m/k^2)*(1/r^2)*Phi_i;                         

   [bb,i_max]=polyadds(L21_1,L21_2); 

   L21_p(i,M+2-i_max:M+1)=bb; 

end    

 

%%   Evaluating L12_p(Psi(y)) 

L12_p=zeros(M,M+1); 

for i=1:M-2 

   Psi_i=Psi(i,M-i+2:M+1);        

   L12_1=(1i*m*Rey)*(1/r)*Z*polyder(Psi_i);                

   L12_2=(1i*m*Rey)*(-1/r^2)*Psi_i;                       

   [bb,i_max]=polyadds(L12_1,L12_2); 

   L12_p(i,M+2-i_max:M+1)=bb; 

end    

 

%%   Evaluating L22_p(Psi(y)) 

L22_p=zeros(M,M+1); 

for i=1:M-2 

   Psi_i=Psi(i,M-i+2:M+1);      

   L22_1=(1+m^2/(k^2*r^2))*Psi_i; 

   i_max=i; 

   L22_p(i,M+2-i_max:M+1)=L22_1; 

end 

 

%%   Substituting Y_i=y(index) into polynomials and finding [L11(y(index_y))] 

     %    as a {1,1:M}vector that each array is respect to the i-th chebychev  

     %    .... and also for L21,L12,L22    

L11=zeros(1,M); 

L21=zeros(1,M); 

for i=1:M 

   L11(i)=polyval(L11_p(i,M+2-i:M+1),Y_i); 

   L21(i)=polyval(L21_p(i,M+2-i:M+1),Y_i); 

end 

L12=zeros(1,M-2); 

L22=zeros(1,M-2); 

for i=1:M-2 

   L12(i)=polyval(L12_p(i,M+2-i:M+1),Y_i); 

   L22(i)=polyval(L22_p(i,M+2-i:M+1),Y_i); 

end 

 

 

%%   Evaluating R11_p(Phi(y 

R11_p=zeros(M,M+1); 

for i=1:M 

   Phi_i=Phi(i,M-i+2:M+1);      

   R11_1=Z*polyder(Z*polyder(Z*polyder(Z*polyder(Phi_i))));   

   R11_2=(2/r)*Z*polyder(Z*polyder(Z*polyder(Phi_i)));  

   R11_3=-(3/r^2+f+k^2)*Z*polyder(Z*polyder(Phi_i));  

   R11_4=(3/r^3-f/r-diff_f-k^2/r+1i*k*diff_U*Rey)*Z*polyder(Phi_i); 

   R11_5=(-3/r^4+f/r^2-(1/r)*diff_f+k^2*f+k^2/r^2+1i*k*diff2_U*Rey)*Phi_i; 

   [bb,i_max]=polyadds(R11_1,R11_2,R11_3,R11_4,R11_5); 

   R11_p(i,M+2-i_max:M+1)=bb; 

end               

 

%%   Evaluating R21_p(Phi(y))  

R21_p=zeros(M,M+1); 

for i=1:M 

   Phi_i=Phi(i,M-i+2:M+1);      

   R21_1=(-1i/Rey/k^2)*(m/r)*Z*polyder(Z*polyder(Z*polyder(Phi_i)));    
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   R21_2=(-1i/Rey/k^2)*(2*m/r^2)*Z*polyder(Z*polyder(Phi_i));   

   R21_3=(-1i/Rey/k^2)*(-f*m/r-m/r^3)*Z*polyder(Phi_i);   

   R21_4=(-1i/Rey/k^2)*(m/r^4-f*m/r^2+1i*m*k*diff_U*Rey/r-2*k^2*m/r^2-i*k^2*E*Rey)*Phi_i;   

   [bb,i_max]=polyadds(R21_1,R21_2,R21_3,R21_4); 

   R21_p(i,M+2-i_max:M+1)=bb; 

end    

 

%%   Evaluating R12_p(Psi(y)) 

R12_p=zeros(M,M+1); 

for i=1:M-2 

   Psi_i=Psi(i,M-i+2:M+1);      

   R12_1=(1i)*(m/r)*Z*polyder(Z*polyder(Z*polyder(Psi_i)));    

   R12_2=(1i)*(-2*m/r^2)*Z*polyder(Z*polyder(Psi_i));               

   R12_3=(1i)*(-f*m/r+3*m/r^3)*Z*polyder(Psi_i);                      

   R12_4=(1i)*(-3*m/r^4+f*m/r^2-m*diff_f/r +2*k^2*m/r^2+2*1i*W*k^2*Rey/r)*Psi_i;                                                              

   [bb,i_max]=polyadds(R12_1,R12_2,R12_3,R12_4); 

   R12_p(i,M+2-i_max:M+1)=bb; 

end 

 

%%   Evaluating R22_p(Psi(y))  

R22_p=zeros(M,M+1); 

for i=1:M-2 

   Psi_i=Psi(i,M-i+2:M+1  

   R22_1=(1/Rey)*(1+m^2/(k^2*r^2))*Z*polyder(Z*polyder(Psi_i));    

   R22_2=(1/Rey)*(1/r-m^2/(k^2*r^3))*Z*polyder(Psi_i);                      

   R22_3=(1/Rey)*(-1/r^2-f-f*m^2/(k^2*r^2)+m^2/(k^2*r^4))*Psi_i  

   [bb,i_max]=polyadds(R22_1,R22_2,R22_3); 

   R22_p(i,M+2-i_max:M+1)=bb; 

end    

 

%%   Substituting Y_i=y(index) into polynomials and finding [R11(y(index_y))] 

     %    as a {1,1:M}vector that each array is respect to the i-th chebychev  

     %    .... and also for R21,R12,R22    

R11=zeros(1,M); 

R21=zeros(1,M); 

for i=1:M 

   R11(i)=polyval(R11_p(i,M+2-i:M+1),Y_i); 

   R21(i)=polyval(R21_p(i,M+2-i:M+1),Y_i); 

end 

R12=zeros(1,M-2); 

R22=zeros(1,M-2); 

for i=1:M-2 

   R12(i)=polyval(R12_p(i,M+2-i:M+1),Y_i); 

   R22(i)=polyval(R22_p(i,M+2-i:M+1),Y_i); 

end 

 

                    function [sum_poly,max_order]=polyadds(varargin) 

                    n=nargin; 

                    order=zeros(1,n); 

                    for i=1:n 

                    order(i)=size(varargin{i},2); 

                    end 

                    m=max(order); 

                    coeffmat=zeros(n,m); 

                    for i=1:n 

                        coeffmat(i,(m-order(i)+1):m)=varargin{i}; 

                    end 

                    sum_poly=ones(1,n)*coeffmat; 

                    max_order=m; 

 

function [Phi,Psi]=Collocation_Basis(Cheb_No,Azimuthal_No) 

M=Cheb_No; 

m=Azimuthal_No; 

 

%% Gamma: Common Chebychev Polynomial 

Gamma=zeros(M,M+1); 

Phi=zeros(M,M+1); 

Psi=zeros(M,M+1); 

Gamma(1,M+1)=[1]; 

Gamma(2,M:M+1)=[1,0]; 

for i=3:M 
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   Gamma(i,:)=2*circshift(Gamma(i-1,:),[0 -1])-Gamma(i-2,:); 

end 

 

%%  Phi and Psi functions for the case m=0 

if m==0     

   Phi(1,:)=Gamma(1,:); 

   Phi(2,:)=Gamma(2,:); 

   Phi(3,:)=Gamma(3,:)-Gamma(1); 

   Phi(4,:)=Gamma(4,:)-Gamma(2,:)-2*(Gamma(3,:)-Gamma(1,:)); 

   for i=5:M 

      if mod(i,2)==1 

         Phi(i,:)=Gamma(i,:)-Gamma(1,:)                                  ... 

                  -(1/4)*(i-1)^2*(Gamma(3,:)-Gamma(1,:))                 ... 

                  +(1/96)*((i-1)^4-4*(i-1)^2)*(Gamma(4,:)                ... 

                  -2*Gamma(3,:)-Gamma(2,:)+2*Gamma(1,:)); 

      else 

         Phi(i,:)=Gamma(i,:)-Gamma(2,:)-(1/4)*(i^2-2*i)*(Gamma(3,:)-Gamma(1,:))    ... 

                 +(1/96)*(-(i-1)^4-2*(i-1)^2+3)*(Gamma(4,:)-2*Gamma(3,:)          ... 

                 -Gamma(2,:)+2*Gamma(1,:)); 

      end 

   end 

   Psi(1,:)=Gamma(1,:); 

   Psi(2,:)=Gamma(2,:); 

   for i=3:M-2 

      if mod(i,2)==1 

         Psi(i,:)=Gamma(i,:)-Gamma(1,:);                                 

      else 

         Psi(i,:)=Gamma(i,:)-Gamma(2,:);                               

      end 

   end 

end 

 

%%  Phi and Psi function for the case m<-1 

if m<-1 

   Phi(1,:)=Gamma(1,:); 

   Phi(2,:)=Gamma(2,:); 

   Phi(3,:)=Gamma(3,:)-Gamma(1,:); 

   Phi(4,:)=Gamma(4,:)-Gamma(2,:); 

   for i=5:M 

      if mod(i,2)==1 

         Phi(i,:)=Gamma(i,:)-Gamma(1,:)-(1/4)*(i-1)^2*(Gamma(3,:)-Gamma(1,:)); 

      else 

         Phi(i,:)=Gamma(i,:)-Gamma(2,:)-(1/8)*(i^2-2*i)*(Gamma(4,:)-Gamma(2,:)); 

      end 

   end 

   Psi(1,:)=Gamma(1,:); 

   Psi(2,:)=Gamma(2,:); 

   Psi(3,:)=Gamma(3,:)-Gamma(1,:); 

   Psi(4,:)=Gamma(4,:)-6*Gamma(3,:)-Gamma(2,:)+6*Gamma(1,:); 

   for i=5:M-2 

      if mod(i,2)==1 

         Psi(i,:)=Gamma(i,:)-Gamma(1,:)                                      ... 

                  -(1/12)*((i-1)^4-(i-1)^2)*(Gamma(3,:)-Gamma(1,:))          ... 

                  -(1/96)*((i-1)^4-4*(i-1)^2)*(Gamma(4,:)                    ... 

                  -6*Gamma(3,:)-Gamma(2,:)+6*Gamma(1,:)); 

      else 

         Psi(i,:)=Gamma(i,:)-Gamma(2,:)                                      ... 

                  -(1/12)*((i-1)^4-(i-1)^2)*(Gamma(3,:)-Gamma(1,:))          ... 

                  -(1/96)*((i-1)^4+2*(i-1)^2-3)*(Gamma(4,:)                  ... 

                  -6*Gamma(3,:)-Gamma(2,:)+6*Gamma(1,:)); 

      end 

   end 

end  
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