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ABSTRACT 

Operand Value Based Modeling and Estimation of Dynamic Energy Consumption of Soft 

Processors in FPGA 

 

 

Zaid A. M. Al-Khatib 

 

This thesis presents a novel method for estimating the dynamic energy consumption of soft 

processors in FPGA, using an operand-value-based model. The processor energy model is created 

at the instruction-level, which enables fast, early and accurate energy estimation. The modeling 

heuristic is based on the observation that the energy required to execute instructions on an FPGA 

implementation of a soft processor has a strong dependence on the operand values. Our energy 

model contains three components: the instruction base energy, the maximum variation in the 

instruction energy due to input data, and the impact of one’s density of the operand values during 

software execution. The one’s density refers to the number of operand bits that are set to one. We 

use post-place and route processor simulations as a reference to evaluate the accuracy of our model, 

and that of other existing instruction-level energy models, for several benchmarks. We 

demonstrate that our model has only 4.7% average error and 12% worst case error compared to 

the reference, and is more than twice as accurate as existing instruction-level models. 

Key Words: Energy modeling, Soft processors, system-level design, Power estimation 
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Chapter 1 

1 Introduction 

1.1 Motivation 

Recent design trends have pointed to increased use of Field Programmable Gate Array (FPGA) in 

embedded systems. Soft-processors, implemented in FPGA, provide a convenient computational 

platform. Soft-processor energy consumption is a first order metric for FPGA-based embedded 

system design, due to its direct impact on battery life. Therefore, early and accurate modeling of 

soft-processor performance and energy consumption, for a given application, is needed to perform 

early design space exploration with reasonable confidence. Furthermore, rapid profiling of the 

energy consumption required to run an application is important to guide software optimizations to 

minimize energy requirements. 

The energy consumed by any digital circuit, including processors, consists of both static and 

dynamic energy. The static energy, also known as leakage energy is constant, and is determined 

by the physical material properties as well as the fabrication technology. It does not depend on the 

operation of the circuit. Therefore, it is easy to measure or estimate. However, the dynamic energy, 

also known as switching energy, consumed by a given transistor in a digital circuit is a function of 

its switching frequency, load capacitance and supply voltage, the rate of which is given in Equation 

(1.1). The load capacitance and supply voltage for each transistor in an FPGA are fixed. However, 

the switching frequency is determined by the operation of the circuit, which is governed by the 

executing application. Therefore, modeling the dynamic energy consumption of a soft processor 
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remains a major challenge due to the large number of contributing factors to the individual 

transistor switching rates. The focus of this research is to estimate the dynamic energy consumed 

by the processor. Therefore, only dynamic energy and power will be discussed in this thesis.  

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
1

2
∙ 𝐶 ∙ 𝑉𝑑𝑑

2 ∙ 𝑓       (1.1) 

The abstraction level of the processor energy model influences the estimation accuracy and 

efficiency as shown in Figure 1.1. Low-level post-place-and-route models may be used for 

accurate estimation, but they are extremely slow, thereby hindering the design space exploration. 

System-level energy models, based on power modes of the processor, suffer from accuracy issues. 

Instruction-level models are more accurate than system-level models, but usually require large 

data models, especially if they incorporate the inter-instruction energy effects. Existing instruction-

level models do not take the input data of the application into account, potentially leading to large 

inaccuracies, especially for soft processors implemented in FPGA. 

 

Figure 1.1 Correlation of the processor power model abstraction level with 

estimation accuracy and computation efficiency [1] 

 

 

Accuracy 

Efficiency 
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Our goal, in this research, is to build an instruction-level energy model that can provide fast and 

accurate estimates of dynamic energy consumption for soft processors in FPGA. Our model takes 

into account the operand values of the instructions, for calculating the energy consumption. 

Previous work has shown insignificant impact of operand values on energy consumed by 

Application Specific Integrated Circuit (ASIC) processors [2]. However, our experimental results 

show that the operand values greatly affect the energy consumed by soft processor cores 

implemented in FPGA. Because the soft-processor data-path units are implemented on several 

Configurable Logic Blocks (CLBs) and Digital Signal Processors (DSPs), operand values 

propagate through long interconnect routes. Heuristic reasoning indicates the switching rates of 

these interconnects is proportional to operand value. That is because the applications are made up 

of small basic blocks of heterogeneous sequences of instructions which very often contain 

instructions with no or very small operands [3]. Such instructions include NOPs and word/byte 

operations. These instructions force most of the data-path signals to zero. Similarly, branch 

mispredictions and unfilled delay slots also reset several data-path signals to the zero state. This 

results in an increased probability of signals switching when instructions operating with values 

that contain a lot of ones (that we will refer to as one’s density) are executed. Furthermore, the 

energy impact of some homogeneous sequences of instructions also depends on the operand value. 

Such constructs are often utilized by compilers to implement certain operations. For example, the 

Microblaze compiler uses a series of identical shift instructions to implement several operations. 

For such sequences of shift instructions, the energy consumed is proportional to the number of 

alternating bit values in the operand value. 

Based on the above heuristics, an energy data model is created for the processor for a given 

technology. The application software is compiled for the target processor, and executed on an 
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instruction-set simulator or a prototype implementation to get the stream of executing instructions 

and the operands values metrics. The processor energy data model is used to calculate the energy 

of each instruction and the cumulative energy for each basic block in the application. The basic-

block energy is back annotated in the application code to derive an executable energy model. 

1.2 Related Work 

There are a number of modeling techniques to estimate the power and energy consumption of 

embedded processors. They can be categorized based on the abstraction level of the model. The 

most accurate models simulate the processor at the gate and transistor levels. Examples of tools, 

based on such models, include Xilinx’s XPower Analyzer (XPA) [4] and Synopsys’s Power 

Compiler [5]. Although accurate, low-level simulation models suffer from very slow simulation 

speeds. That is because they require very large signal Value Change Dump (VCD) files that are 

generated by tedious post-place and route simulations. For instance, using top of the line, off the 

shelf PCs, it took an hour and 15 minutes for XPA to estimate the average power consumption of 

the Dhrystone benchmark [6], running on a Microblaze processor [7]. Similarly, XPA took over 

10 hours of simulation to estimate the average power consumption of a JPEG encoder application 

[8]. These times are for the simulation running on a quad-core i7 PC with 16 GB RAM. 

Estimation techniques that use high levels of abstraction typically use statistical approach to 

generate very rough energy estimates. Such tools are used in early design space exploration 

because of their speed. Xilinx introduced the Xilinx XPower Estimator (XPE) tool which uses 

highly abstracted statistical models [9]. It was developed to complement their XPA tool, providing 

their users power estimation tools from both ends of the abstraction spectrum. Others have also 

attempted to model processors power characteristics using back-propagation neural networks [10] 

[11]. Although this model can be used efficiently, its accuracy is directly dependent on the training 
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set used to generate the neural network weights. Although it might be useful to efficiently compare 

alternative implementations of one algorithm, this approach cannot be used to estimate the power 

consumption of different programs efficiently.  

Other processor energy and power models typically characterize either the processor functional 

blocks or the workload of the processor. Functional block characterization through macro 

modeling is a conventional approach used for analyzing hardware RTL models, and has been 

applied to ASIC processors [12] [13] [14] as well as soft processors implemented in FPGA [15]. 

However, such techniques use signal activity rates that are derived using extensive time consuming 

simulations. To over-come this limitation, several works have proposed using such an approach to 

model a processors instruction set [16]. However, the generated models were not used to estimate 

the energy requirements of full applications, and hence were not validated. We have identified two 

types of models that characterize the workload of the processors. The first are state-based models, 

and the second are instruction level models.  

State Based Models consider only the power state of the processor and timing information to 

estimate the energy consumption of the processor. An average dynamic power value is assigned 

to each power state. The dynamic energy consumed by executing an application is estimated by 

multiplying the weighted average power by the total execution time. Jouletrack implements a very 

state based model [2]. System level estimation tools like Softwatt [17], Wattch [18], and other 

state-based estimation techniques [19] [20] [21] use state based processor models because of their 

simplicity. Energy aware scheduling techniques using state based models have also been proposed 

[22]. However, state based models do not properly reflect the processor energy savings from 

software optimizations that do not reduce the execution time. For example, re-ordering assembly 

instructions to increase the number of repeating instructions greatly reduces energy consumption. 
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However, this effect cannot be observed by state based models. We have developed a state based 

model of the Microblaze processor to compare the proposed model with highly abstracted models. 

It is presented in detail in section 2.1.1. 

Instruction level models are divided between first and second order models. First order models 

assign an estimated average energy value for each instruction in the processors instruction set. The 

energy required to execute a program is then estimated as the sum of the energy values assigned 

to all the instructions that execute as part of the program. Jouletrack models an ARM and a Hitachi 

ASIC processors using first order model in addition to the state based model [2]. However, the 

results in [2] demonstrate negligible increase in accuracy using first order models, compared to 

state based models. First order models for the Microblaze soft processor have been proposed in 

[23]. However, although the experimental results presented in [23] are generated using only two, 

very small, benchmark: Fast Fourier Transfer (FFT) and Matrix Multiplication. As we present in 

this paper, these models tend to perform well for certain types of application, especially small 

ones, but fail to estimate the energy of large applications. Section 2.1.3 summarizes the techniques 

used to develop first order instruction-level models. 

Second order processor models incorporate inter-instruction energy effects on top of a base energy 

estimate for each instruction. That is, while analyzing the energy required for completing an 

instruction, the neighboring instructions are also accounted for. The reasoning is that neighboring 

instructions indicate the state of the processor before and after executing an instruction. Several 

processors, including an Intel 486DX2 processor [24] and a Fujitsu DSP [25], have been modeled 

using this approach. VLIW processors have also been modeled using second order models. 

Specifically, the StarCore VLIW DSP was modeled in the JouleQuest tool [26], and others in [27] 

[28]. Second order models have been applied to estimate system-level energy consumption [29]. 
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However, second order models do not take the effects of input data for the application into account, 

which can lead to significant errors. Our processor energy models builds on second order models 

by incorporating effects of operand values of instructions. In section 2.1.4 we develop a second 

order model of the Microblaze processor using techniques suggested in the literature. 

Automated energy estimation tools are required to use such models to estimate the energy required 

by an application. Several works proposed using open source compilers like Low Level Virtual 

Machine (LLVM) to trace the dynamic behavior of an application [30]. However, such tools have 

only been validated using very small and simple benchmarks, but not realistic applications. It is 

doubtful that such an approach would generate satisfactory results because the Control Flow 

Graphs (CFG) of applications generated using different compilers are often different. 

1.3 Writing Conventions 

To improve the readability of this thesis and to avoid excessive use of acronyms, we adopted two 

conventions in the writing of this thesis. We focus in this research on analyzing and estimating the 

dynamic energy consumption of processors. However, digital circuits also consumes static energy 

at a constant rate; i.e. the static power. Therefore, although statements like “energy consumed by 

the processor” usually imply both types of energy, we use it to refer solely to the dynamic energy 

consumption, unless we clearly specify otherwise. Secondly, the switching of internal signals in 

the processor, dictated by the instruction, causes the consumption of dynamic energy. Therefore, 

although we will frequently use expressions like “energy of instruction” or “energy of an 

application”, we do not mean to imply the software itself consumes the energy. Instead, we use 

these phrases to refer to the dynamic energy consumed by the processor as it executes an 

instruction and the dynamic energy consumed by the processor as it executes an application. 
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1.4 Thesis Outline 

The rest of the thesis is organized in 4 chapters as follows. Chapter 2 describes the processor 

energy models. It described energy models developed using the techniques commonly used in the 

literature, as well as the proposed model. We begin by describing the state of the arts processor 

energy models; i.e. Post-place and route models, state based models, and first, and second order 

instruction-level models. We define each model, and present its parameters and equations. We also 

describe the process used to model the Microblaze processor using each method. We further 

discuss the major weakness of each approach. In the second part of Chapter 2 describes the 

proposed Operand Value Based Model (OVBM) in detail, and the process used to generate the 

Microblaze OVBM. This part is broken into 3 subsections discussing the main parameters of an 

OVBM; the base energy cost of instructions, maximum energy variance due to operand values, 

and the impact of operand values on instruction energy. 

Chapter 3 presents the automated tool we developed to use instruction-level energy models and 

estimate the energy required by the processor to execute any given application. The first part of 

the chapter describes the first phase of the tool, needed to generate all the parameters needed by 

the OVBM. We describe how the tool, in the first phase, analysis the source code and identifies 

the basic blocks. Furthermore, we describe how the tool automatically annotates the source code 

with instructions to trace the application execution and analysis the values of the operands of each 

executing instruction. In the second part of the chapter, we describe the second phase of the tool. 

Listing all the equations applied to use the energy model, execution trace, and operand metrics to 

generate detailed estimated energy reports.  

In Chapter 4, we present the experimental results from using the energy models described in 

Chater2, and using the estimation tool described in Chapter 3. We compare the accuracy of the 
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estimates generated using state of the arts models, OVBM, and reference low-level estimation 

models in four sections. In the first section, we present the accuracy of the instruction-level models, 

demonstrating the higher accuracy and reliability from using the OVBM. In the second section, 

we demonstrate the speed advantage of using the instruction-level OVBM over the accurate post-

place and route estimation method. In the third section, we describe the estimation granularity of 

estimates generated using the OVBM as compared to the accurate low-level estimation models. In 

the last section, we compare the effort needed to generate each of the state of the art instruction-

level models and OVBM. Finally, we present our conclusion and future work in Chapter 5. 
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Chapter 2 

2 Processor Energy Modeling 

This chapter will describe state of the arts energy models implemented at different abstraction 

levels as well as the proposed Operand Value Based Model (OVBM). We also describe the energy 

models generated using each technique for a Microblaze soft processor implementation on a Xilinx 

Virtex5 FPGA. These models are used to validate the proposed technique and compare its 

accuracy, efficiency and granularity with the state of the arts methods as presented in Chapter 5. 

2.1. State of the Art Models 

As described in the literature review in Section 1.3, we categorize state of the art energy models 

by their abstraction level. The following subsections will describe low-level, post place and route 

models, high-level state based models, and two instruction level models of the Microblaze soft 

processor. We also present the Microblaze energy model generated using each method. 

2.1.1 Post-Place and Route Model 

The most accurate method to estimate the energy of a soft processor requires estimating the energy 

consumed by each transistor using the fundamental dynamic power equation (2.1). For the Xilinx 

Virtex5 FPGA, that is 1.1 billion transistors in a single chip [31], 55 million of which are used to 

implement a Microblaze processor. For each, the average switching frequency depends on the 

instructions the processor implementation is executing. Therefore, tedious post-place and routes 

simulations are needed to estimate the switching frequency for each signal, as the application is 

executed. Xilinx includes the iSim simulator in its suite of tools which is performs such simulations 
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[32]. Once a simulation is completed, the simulator produces a VCD file that contains the average 

switching rate of each signal. These values are used along with signal capacitance vectors and 

supply voltage level by Xilinx XPA tool [4] to estimate the average power consumed by the 

processor with great accuracy. 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
1

2
∙ 𝐶 ∙ 𝑉𝑑𝑑

2 ∙ 𝑓       (2.1) 

Using the average power consumed by the microblaze as it executes an application and the time it 

taken to complete the execution, the energy consumed by the application can be calculated using 

equation (2.2). 

𝐸𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∙ 𝑇       (2.2) 

Because of its accuracy, this approach is used to characterize the energy consumption for the state 

based and instruction level energy models. Although physical energy measurement methods have 

been proposed and used before to generate instruction-level models [33], they are impractical for 

modeling soft processors. That is because it is not possible to measure only the dynamic power 

consumed by the soft processor. Instead, physical measurement include the total power (static and 

dynamic) consumed by the whole FPGA chip including memory, clock network, and system bus 

components. 

2.1.2. State Based Model 

In state based models, we assume the processor is consuming a constant average power while in 

the active state; i.e. while it is executing any application. Therefore, to model the dynamic energy 

using a state based model, a single average power parameter is sufficient to estimate the energy of 

any application using equation (2.3). The execution time of the application, denoted by T, is 
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required to estimate the energy required by an application. Using a performance estimation tool 

like Xilinx’s iSim [32] and accurate behavioral models of the processor, we can estimate the 

execution time. 

𝐸𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∙ 𝑇       (2.3) 

One application is selected to evaluate the average dynamic power of the processor using the 

accurate post place and route model. The distribution of the operations in the application selected 

will directly impact the accuracy of the estimates generated using this model. In general, to 

improve the accuracy of this approach, an application of similar distribution of operations to the 

ones we intend to evaluate needs to be selected. This is demonstrated in the experimental results 

in Chapter 4. When the average power of the Dhrystone benchmark [6] is used, this model 

estimates the energy of other benchmarks with intensive integer and memory operations like the 

Quicksort benchmarks with high accuracy. However, the accuracy of its estimates are greatly 

degraded when estimating the energy of different benchmarks the Quantization function. 

2.1.3. First Order Instruction Level Model 

In first order energy models, we assume constant energy required to execute each instruction. The 

model therefore contains an estimated energy of each instruction in a given processor instruction 

set. Using the parameters of a first order model and a list of instructions that execute in a given 

application, the energy of this application can be evaluated using equation (2.4). N denotes the 

total number of executed instructions of the application and 𝐸(𝑖) denotes the energy required to 

run the ith instruction. 

𝐸𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = ∑ 𝐸(𝑖)𝑁
𝑖=1 2       (2.4) 
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When generating the first order model for the Microblaze processor, we followed the approach 

used in the literature, using infinite loops. First, we evaluated the energy of an empty infinite loop 

using a low-level energy estimation tool, namely the Xilinx XPA tool and post place and route 

models of the processor [4]. Then, we evaluate the energy of an infinite loop containing one 

instruction. Listing 2.1 shows the assembly instructions of the empty loop and the loop containing 

an and instructions. This method dictates we assume the difference between the energy of the two 

loops equal to the energy of the instruction. Applying this method to all Microblaze instructions, 

we obtain the parameters of the first order energy model as given in Table 2.1.  

Listing 2.1 Assembly source code of empty infinite loop and infinite loop with  an 

and instruction 

 

Empty infinite loop  and instruction in an infinite loop 

$L2: 

 bri $L2 

 

 

$L2: 

 and r3,r4,r5 

 bri $L2 

 



   

 

14 

 

 

There is however a serious flaw in this method of approximating the energy of an instruction. The 

energy required to execute the empty is found to be only 0.76 nJ, which is very small in comparison 

to the energy required to execute the loop with an and instruction, estimated at 2.1 nJ. The reason 

for this large difference is clear when we examine the pipeline states as the Microblaze processor 

is executing each application. While executing a branch instruction, the Microblaze processor 

fetches two instructions before the branch instruction is decoded. When it is decoded, the pipeline 

is flushed, and the instruction at the target address is fetched. Figure 1.1 shows the Microblaze 

pipeline as it executes the empty loop given in Listing 2.1. In the first iteration, while the branch 

is fetched and decoded, the rtsd and nop instruction are fetched. However, when the branch is 

decoded and taken, they do not get into the execute stage. As a result, the branch instruction 

remains in the control and data-path of the last three pipeline stages. Therefore, the 0.76 nJ of 

Table 2.1 Parameters of the Microblaze first order energy model  

Instruction Energy of each instruction (nJ) 

add 1.1949 

rsubk 1.3200 

mul 1.2534 

idiv 1.2934 

and 1.3475 

xori 1.1798 

cmp 1.5821 

nop 1.0698 

lwi 1.4954 

swi 1.4102 

srl 1.2358 

sra 1.2358 
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dynamic energy consumed by the processor is the result of the switching that occurs only in the 

first two stages. On the other hand, when the Microblaze is executing the infinite loop with the and 

instruction, the instruction in all pipeline stages change at least twice in each iterations as shown 

in Figure 2.2. Because of this phenomenon, the estimated energy of each instruction is greatly 

exaggerated. This is proven in the estimation results presented in chapter 4, that show an average 

error of 216% when estimates were obtained using these parameters. To work around this flaw, 

several papers suggest calibrating the estimates obtained using this model using the estimation 

error of one benchmark application [2] [24] [25] [27].  

 

Figure 2.1 Microblaze pipeline status during the execution of an empty inifinite 

loop 

Loop 
Iteration 

Instruction 
Pipeline stages 

IF ID EX MEM WB 

1 

bri 0 bri 0 X X X X 

rtsd r17,0 rtsd r17,0 bri 0 X X X 

nop nop rtsd r17,0 bri 0 X X 

2 

bri 0 bri 0 rtsd r17,0 bri 0 bri 0 X 

rtsd r17,0 rtsd r17,0 bri 0 bri 0 bri 0 bri 0 

nop nop rtsd r17,0 bri 0 bri 0 bri 0 

3 

bri 0 bri 0 rtsd r17,0 bri 0 bri 0 bri 0 

rtsd r17,0 rtsd r17,0 bri 0 bri 0 bri 0 bri 0 

nop nop rtsd r17,0 bri 0 bri 0 bri 0 

 
Decoded branch causing pipeline flush  Stages not updated because of flushed instructions 
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Figure 2.2Microblaze pipeline status during the execution of an infinite loop with 

an and instruction 

2.1.4. Second Order Instruction Level Model 

Second order processor energy models increase the scope of the instruction-level energy model to 

incorporate inter-instruction energy effects. That is because, in addition to the type of instruction, 

the dynamic energy of an instruction also depends on the state of the processor prior to its 

execution. This inter-instruction effect can be accounted for in several ways. The most commonly 

used method, as described most related works [24] [25] [26] [27] [28], requires evaluating the 

energy of each pair of instructions. Knowing the energy of each possible pair of instructions, 

equation (2.5) can be used to estimate the energy required to execute a program. An 𝑬(𝒊, 𝒋) term 

denotes the energy of the pair of instructions, 𝑖 followed instruction 𝑗. Therefore 𝑬(𝒊 + 𝟏, 𝒊) 

denotes the energy required to execute a pair of consecutive instructions. 

𝐸𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
1

2
∑ 𝐸(𝑖 + 1, 𝑖)𝑁−1

𝑖=1       (2.5)  

Loop Iteration Instruction 
Pipeline stages 

IF ID EX MEM WB 

1 

and r3,r4,r5 and r3,r4,r5 X X X X 

bri 0 bri 0 and r3,r4,r5 X X X 

rtsd r17,0 rtsd r17,0 bri 0 and r3,r4,r5 X X 

and r3,r4,r5 and r3,r4,r5 rtsd r17,0 bri 0 and r3,r4,r5 X 

2 

and r3,r4,r5 and r3,r4,r5 rtsd r17,0 bri 0 bri 0 and r3,r4,r5 

bri 0 bri 0 and r3,r4,r5 bri 0 bri 0 bri 0 

rtsd r17,0 rtsd r17,0 bri 0 and r3,r4,r5 bri 0 bri 0 

and r3,r4,r5 and r3,r4,r5 rtsd r17,0 bri 0 and r3,r4,r5 bri 0 

 
Decoded branch causing pipeline flush  Stages not updated because of flushed instructions 
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However, this approach requires evaluating a large number of instruction pairs using the method 

of infinite loops used to estimate the energy of instructions in the first order model. The same flaw 

discussed in the previous subsection applies to pairs of instructions in infinite loops. Furthermore, 

the most significant inter-instruction effect observed between pairs of instruction is a great 

reduction in the energy if a pair of the instruction that had the same opcode. Therefore, we decided 

to model the Microblaze processor using a simplified variation of second order models. Our model 

consists of energy estimates for instructions when they execute after instructions of the same type 

and a different estimate when they execute after instructions of the same type. The energy estimates 

as obtained for the first order model are taken as the energy estimates for instructions after different 

instruction types. Furthermore, we estimated the energy required to execute pairs of repeating 

instructions. We observed the dynamic energy required by the second instruction was consistently 

55% of the energy required to execute a single instruction. This was consistent when the same 

instruction was repeated up to 7 times as can be seen in Figure 2.3. The figure shows the dynamic 

energy of load word, store word, shift right logic and shift right arithmetic instructions. These are 

the instructions that are used by the compiler in repeated sequences. Using this observation, we 

determined it is sufficient to implement the second order energy model using the parameters of the 

first order model and the energy drop ratio, as given in Table 2.2. Using these parameters, the 

energy required to execute a given application is evaluated using equation (2.6), where 𝑟 is the 

ratio with which energy drops when the instruction is repeated.  
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Figure 2.3 The dynamic energy of repeating instructions 

Table 2.2 Parameters of the Microblaze second order energy model 

 

𝑬𝒂𝒑𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏 = ∑ 𝑬(𝒊) ∙ (𝒊𝒏𝒔𝒕𝒊 ≠ 𝒊𝒏𝒕𝒊−𝟏) + 𝑬(𝒊) ∙ (𝒓) ∙ (𝒊𝒏𝒔𝒕𝒊 == 𝒊𝒏𝒔𝒕𝒊−𝟏)𝑵
𝒊=𝟏    (2.6)   
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Repeated Instruction Energy Drop Ratio 0.5534 

add 1.1949 

rsubk 1.3200 

mul 1.2534 

idiv 1.2934 

and 1.3475 

xori 1.1798 

cmp 1.5821 

nop 1.0698 

lwi 1.4954 

swi 1.4102 

srl 1.2358 

sra 1.2358 
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2.2 Operand Value Based Model 

This section describes the methodology for creating the proposed Operand-Value-Based Model 

(OVBM) for a processor. The OVBM contents are as follows: 

 A set of base energy costs for instructions,  

 The maximum energy variance, due to operand values, for each instruction, and 

 Two parameters, m and b, which are used to account for the effect of data values in the 

application.  

The parameters of the OVBM, for a given soft-processor implementation, are extracted from the 

energy consumption of applications that are designed to reveal energy dissipation characteristics 

of different instructions, as well as the dependence of energy consumption on operand values. 

Post-place and route simulation tools and scripts are used to automate the generation of energy 

values. As an example, we have modeled a Microblaze soft processor implementation on a Xilinx 

Virtex 5 FPGA [6] using XPower Analyzer [4]. The Microblaze instruction set architecture is 

similar to the RISC-based DLX architecture [34]. 

2.2.1 Base Energy Cost of Instructions 

We define the instruction base energy cost as the minimum dynamic energy needed for the 

processor to complete the instruction. It is determined by the type and operation of the instruction 

as well as the state of the processor’s internal signals prior to executing the instruction. The state 

of the processor is determined by the preceding instruction(s), thus incorporating the inter-

instruction energy effect. This can be done by simulating and tabulating the energy requirements 

for all possible combinations of instructions. However, the size of such a data model can get quite 
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large. To reduce the model size, we can group similar instructions in classes and model only the 

inter-class energy effects.  

In order to characterize the energy requirements of instructions we have developed a novel 

technique. It is based on a fixed reference application. The purpose of this benchmark is to 

represent a sequence of diverse instructions that resembles a typical basic block, in which 

instructions are examined. This is to replace the use of infinite loops used to generate the 

parameters of the first and second order models, which are also commonly used in the related 

works. Listing 2.2 shows this benchmark containing the instructions and instruction constructs 

commonly found such as sequences of repeating shifts. The operands values of the instructions 

continuously change with each loop iteration. The energy of this loop is evaluated using low-level 

models. 
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Listing 2.2 Source code of the instruction energy characterization benchmark in 

C++ and compiler generated assembly 

 

 

C++  Compiler Generated Assembly 

int main() 

{ 

int a=3,b=10,c=43; 

 do{ 

  a=b*c; 

  b=a^589994; 

  c=a/b; 

  b=c|19; 

  c=a%16; 

  c++; 

 }while(c>1); 

} 

 main: 

... 

 addik r3,r0,3 # 0x3 

 swi r3,r19,12 

 addik r3,r0,10 # 0xa 

 swi r3,r19,8 

 addik r3,r0,43 # 0x2b 

 swi r3,r19,4 

$L2 

 lwi r4, r19, 8 

 lwi r3, r19, 4 

 mul r3, r4, r3 

 swi r3, r19, 12 

 lwi r3, r19, 12 

 imm 9 

 xor r3, r3, 170 

 swi r3, r19, 8 

 lwi r4, r19, 12 

 lwi r3, r19, 8 

 idiv r3, r3, r4 

 swi r3, r19, 4 

 lwi r3, r19, 4 

 ori r3, r3, 19 

 swi r3, r19, 8 

 lwi r4, r19, 12 

 addk r3, r0, r4 

 sra r3, r4 

 sra r3, r3 

 ... 

 sra r3, r3 

 addk r5, r0, r3 

 srl r5, r3 

 srl r5, r5 

 ... 

 srl r5, r5 

 addk r3, r4, r5 

 andi r3, r3, 15 

 rsubk r3, r5, r3 

 swi r3, r19, 4 

 lwi r3, r19, 4 

 addik r3, r3, 1 

 swi r3, r19, 4 

 lwi r3, r19, 4 

 addik r18, r0, 1 

 cmp r18, r3, r18 

 blti r18, $L2 
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Using the benchmarking application, a set of instruction benchmarking applications is created, one 

set of applications per instruction. In each application, an instruction with zero, or very small, 

operands is inserted between a pair of instructions in the reference application in Listing 2.2. 

Therefore, we create as many benchmarking applications per instruction as there are instructions 

in the reference application. In our modeling effort, we created a set of 37 benchmarking 

applications for each instruction to generate the Location Based Energy Profiles (LBEPs) for the 

Microblaze instruction set. The low-level model and estimation tool of the processor is then used 

to simulate the execution of the benchmarks and estimate the energy consumed. The differences 

between the energy consumed by the benchmarks with an added instruction and the reference 

application are evaluated. These differences approximate the energy required to execute the 

instruction when surrounded by different types of instructions. We refer to these differences as the 

Location-Based Energy Profile (LBEP) of the instruction. Instructions that utilize the same units 

of the processor data-path are expected to have similar LBEPs. 

We derived LBEPs for the Microblaze instruction set, using accurate energy estimates from XPA 

[4]. They are given in Figure 2.4 through Figure 2.15. The X-axis in each LBEP shows, from left 

to right, the sequence of instructions in the reference application. The Y-axis is the increase in 

energy consumption when the instruction is inserted before the corresponding instruction on the 

X-axis. We identify three main types of instructions based on the data-path units they utilize. The 

groups are: arithmetic and logic, memory load and store, and shift. As expected, the instructions 

in each group have similar LBEPs, different from instruction in the other groups.  

Figure 2.4 shows the LBEP of the addition (add) Microblaze instruction. It demonstrate the energy 

required to execute the set of benchmarking applications with added (add) instruction at different 

locations in the reference application. The instruction used is addk r6, r7, r8, where registers r7 
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and r8 are initialized to zero. The label ‘k’ in (addk) implies the instruction will keep the carry flag 

[35]. The LBEP shows the energy consumed by the (addk) instruction is lowest around other (add) 

instructions as well as at the beginning of the loop. It is also low around the (mul), (imm), (idiv), 

(ori), (and), (rsub), and (cmp) instructions; i.e. arithmetic and logic instructions. It is highest when 

the (add) instruction appears between two memory operations instructions; i.e. load word 

immediate (lwi) and store word immediate (swi) word instructions. 

 
Figure 2.4 LBEP for the Microblaze addk instruction 

Figure 2.5 shows the LBEP of the register subtraction (rsub) Microblaze instruction. It demonstrate 

the energy required to execute the set of benchmarking applications with added (rsub) instruction 

at different locations in the reference application. The instruction used is rsubk r8, r6, r7, where 

registers r6 and r7 are initialized to zero. The label ‘k’ in (rsubk) implies the instruction will keep 

the carry flag [35]. The LBEP shows the energy consumed by the (rsubk) instruction is minimum 

around the (mul), (imm), (idiv), (ori), (add), (and), and (cmp) instructions; i.e. arithmetic and logic 

instructions. It is highest when the (rsub) instruction appears between two memory operation or 

shift instructions; i.e. load (lwi) and store (swi) word instructions, and shift right logic (srl) and 

arithmetic (sra) instructions. 

-0.2

0

0.2

0.4

0.6

0.8

1

lw
i

lw
i

m
u

l

sw
i

lw
i

im
m

sw
i

lw
i

lw
i

id
iv

sw
i

lw
i

o
ri

sw
i

lw
i

ad
d

k

sr
a

sr
a

sr
a

sr
a

ad
d

k

sr
l

sr
l

sr
l

sr
l

sr
l

ad
d

k

an
d

i

rs
u

b
k

sw
i

lw
i

ad
d

ik

sw
i

lw
i

ad
d

ik

cm
p

b
lt

i

In
st

ru
ct

io
n

 E
n

e
rg

y 
(n

J)

Location of inserted instruction in benchmarking loop 

addk



   

 

24 

 

 
Figure 2.5 LBEP for the Microblaze rsubk instruction 

Figure 2.6 shows the LBEP of the integer multiplication (muli) Microblaze instruction. It 

demonstrate the energy required to execute the set of benchmarking applications with added (muli) 

instruction at different locations in the reference application. The instruction used is muli r6, r6, 

5, where register r6 is initialized to zero. The LBEP shows the energy consumed by the (muli) 

instruction is minimum around low around the (imm), (idiv), (ori), (add), (and), (rsub), and (cmp) 

instructions; i.e. arithmetic and logic instructions. It is highest when the (muli) instruction appears 

between two memory operation or shift instructions; i.e. load (lwi) and store (swi) word 

instructions, and shift right logic (srl) and arithmetic (sra) instructions. 

 
Figure 2.6 LBEP for the Microblaze muli instruction 
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Figure 2.7 shows the LBEP of the (idiv) Microblaze instruction. It demonstrate the energy required 

to execute the set of benchmarking applications with added (idiv) instruction at different locations 

in the reference application. The instruction used is idiv r7, r8, r6, where registers r8 and r6 are 

initialized to 5 and 19 respectively. The instruction therefore repeatedly performs an integer 

division of 19 over 5 [35]. The LBEP shows the energy consumed by the (idiv) instruction is lowest 

around other (idiv) instructions as well as at the beginning of the loop and before the immediate 

instruction. It is also significantly low around the (mul), (imm), (ori), (add), (and), (rsub), and 

(cmp) instructions; i.e. arithmetic and logic instructions. It is highest when the (idiv) instruction 

appears between two memory operation or shift instructions; i.e. load (lwi) and store (swi) word 

instructions, and shift right logic (srl) and arithmetic (sra) instructions. 

 
Figure 2.7 LBEP for the Microblaze idiv instruction 

Figure 2.8 shows the LBEP of the logic-and (and) Microblaze instruction. It demonstrate the 

energy required to execute the set of benchmarking applications with added (and) instruction at 

different locations in the reference application. The instruction used is andi r6, r6, 13, where 

register r6 is initialized to 19. The LBEP shows the energy consumed by the (andi) instruction is 

lowest around the (mul), (imm), (idiv), (ori), (add), (rsub), and (cmp) instructions; i.e. arithmetic 

and logic instructions. It is highest when the (and) instruction appears between two memory 
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operation or shift instructions; i.e. load (lwi) and store (swi) word instructions, and shift right logic 

(srl) and arithmetic (sra) instructions. 

 
Figure 2.8 LBEP for the Microblaze and instruction 

Figure 2.9 shows the LBEP of the logic exclusive or (xor) Microblaze instruction. It demonstrate 

the energy required to execute the set of benchmarking applications with added (xor) instruction 

at different locations in the reference application. The instruction used is xori r7, r6, 207, where 

register r6 is initialized to 19. The LBEP shows the energy consumed by the (xor) instruction is 

lowest around the (mul), (imm), (idiv), (ori), (add), (and), (rsub), and (cmp) instructions; i.e. 

arithmetic and logic instructions. It is highest when the (xor) instruction appears between two 

memory operation or shift instructions; i.e. load (lwi) and store (swi) word instructions, and shift 

right logic (srl) and arithmetic (sra) instructions. 

-0.2

0

0.2

0.4

0.6

0.8

1

lw
i

lw
i

m
u

l

sw
i

lw
i

im
m

sw
i

lw
i

lw
i

id
iv

sw
i

lw
i

o
ri

sw
i

lw
i

ad
d

k

sr
a

sr
a

sr
a

sr
a

ad
d

k

sr
l

sr
l

sr
l

sr
l

sr
l

ad
d

k

an
d

i

rs
u

b
k

sw
i

lw
i

ad
d

ik

sw
i

lw
i

ad
d

ik

cm
p

b
lt

i

In
st

ru
ct

io
n

 E
n

e
rg

y 
(n

J)

Location of inserted instruction in benchmarking loop 

and



   

 

27 

 

 
Figure 2.9 LBEP for the Microblaze xori instruction 

Figure 2.10 shows the LBEP of the compare (cmp) Microblaze instruction. It demonstrate the 

energy required to execute the set of benchmarking applications with added (cmp) instruction at 

different locations in the reference application. The instruction used is cmp r8, r7, r6, where 

registers r6 and r7 are initialized to 19 and 13 respectively. The instruction hence subtracts 13 from 

19 resulting in 6, which only contains 2 ones [35]. The LBEP shows the energy consumed by the 

(cmp) instruction is lowest around other (cmp) instructions as well as at the beginning of the loop 

and before the immediate instruction. It is also significantly low around the (mul), (imm), (idiv), 

(ori), (add), (and), and (rsub) instructions; i.e. arithmetic and logic instructions. It is highest when 

the (cmp) instruction appears between two memory operation or shift instructions; i.e. load (lwi) 

and store (swi) word instructions, and shift right logic (srl) and arithmetic (sra) instructions. 

 
Figure 2.10 LBEP for the Microblaze cmp instruction 
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Figure 2.11 shows the LBEP of the no-operation (nop) Microblaze instruction. It demonstrate the 

energy required to execute the set of benchmarking applications with added (nop) instruction at 

different locations in the reference application. It is important to note the (nop) instruction is 

implemented using an (or) instruction, namely as or r0, r0, r0 [35]. Therefore, the (nop) is 

considered a logic operation instruction. The LBEP shows the energy consumed by the (nop) 

instruction is lowest around the (mul), (imm), (idiv), (ori), (add), (and), (rsub), and (cmp) 

instructions; i.e. arithmetic and logic instructions. It is highest when the (nop) instruction appears 

between two memory operations instructions; i.e. load (lwi) and store (swi) word instructions. 

 
Figure 2.11 LBEP for the Microblaze nop instruction 

Figure 2.12 shows the LBEP of the load word from memory (lwi) Microblaze instruction. It 

demonstrate the energy required to execute the set of benchmarking applications with added (lwi) 

instruction at different locations in the reference application. The instruction used is lwi r6, r19, 

16, where the value of r9 plus 16 is the memory location of a variable initialized to zero. The 

instruction therefore loads a zero value into register r6. The LBEP shows the energy consumed by 

the (lwi) instruction is lowest around other (lwi) and (swi) instructions; i.e. other memory 

instructions. It is highest when the (lwi) instruction appears between shift instruction and logic and 

arithmetic instructions. 
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Figure 2.12 LBEP for the Microblaze lwi instruction 

Figure 2.13 shows the LBEP of the store word into memory (swi) Microblaze instruction. It 

demonstrate the energy required to execute the set of benchmarking applications with added (swi) 

instruction at different locations in the reference application. The instruction used is swi r0, r19, 

4, which stores the zero value of r0 in the memory location of the value of r19 plus 4. The LBEP 

shows the energy consumed by the (swi) instruction is lowest around other (swi) and (lwi) 

instructions; i.e. other memory instructions. It is highest when the (swi) instruction appears 

between shift instruction and logic and arithmetic instructions. 

 
Figure 2.13 LBEP for the Microblaze swi instruction 

Figure 2.14 shows the LBEP of the shift right logic (srl) Microblaze instruction. It demonstrate the 

energy required to execute the set of benchmarking applications with added (srl) instruction at 

-0.2

0

0.2

0.4

0.6

0.8

1

lw
i

lw
i

m
u

l

sw
i

lw
i

im
m

sw
i

lw
i

lw
i

id
iv

sw
i

lw
i

o
ri

sw
i

lw
i

ad
d

k

sr
a

sr
a

sr
a

sr
a

ad
d

k

sr
l

sr
l

sr
l

sr
l

sr
l

ad
d

k

an
d

i

rs
u

b
k

sw
i

lw
i

ad
d

ik

sw
i

lw
i

ad
d

ik

cm
p

b
lt

i

In
st

ru
ct

io
n

 E
n

e
rg

y 
(n

J)

Location of inserted instruction in benchmarking loop 

lwi

-0.2

0

0.2

0.4

0.6

0.8

1

lw
i

lw
i

m
u

l

sw
i

lw
i

im
m

sw
i

lw
i

lw
i

id
iv

sw
i

lw
i

o
ri

sw
i

lw
i

ad
d

k

sr
a

sr
a

sr
a

sr
a

ad
d

k

sr
l

sr
l

sr
l

sr
l

sr
l

ad
d

k

an
d

i

rs
u

b
k

sw
i

lw
i

ad
d

ik

sw
i

lw
i

ad
d

ik

cm
p

b
lt

i

In
st

ru
ct

io
n

 E
n

e
rg

y 
(n

J)

Location of inserted instruction in benchmarking loop 

swi



   

 

30 

 

different locations in the reference application. The instruction used is srl r6, r8, where registers 

r6 and r8 are initialized to zero. The LBEP shows the energy consumed by the (srl) instruction is 

lowest around other shift instructions. It is also significantly low around the (imm), and (add) 

instructions. It is highest when the (srl) instruction appears between two memory operations 

instructions; i.e. load (lwi) and store (swi) word instructions. The energy of the shift instruction is 

at an intermediate level when the instruction appears around (mul), (idiv), (and), and (rsub) 

instructions. 

 
Figure 2.14 LBEP for the Microblaze srl instruction 

Figure 2.15 shows the LBEP of the shift right arithmetic (sra) Microblaze instruction. It 

demonstrate the energy required to execute the set of benchmarking applications with added (sra) 

instruction at different locations in the reference application. The instruction used is sra r6, r8, 

where registers r6 and r8 are initialized to zero. The LBEP shows the energy consumed by the 

(sra) instruction is lowest other shift instructions. It is also significantly low around the (imm), and 

(add) instructions. It is highest when the (sra) instruction appears between two memory operations 

instructions; i.e. load (lwi) and store (swi) word instructions. The energy of the shift instruction is 

at an intermediate level when the instruction appears around (mul), (idiv), (and), and (rsub) 

instructions. 
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Figure 2.15 LBEP for the Microblaze sra instruction 

The LBEPs help identify the classes of instructions but their values do not directly represent the 

energy cost of the inserted instruction. Consider the portion of the reference loop with and without 

an inserted “addk” instruction as shown in Figure 2.16. The energy consumed by executing the 

code on the RHS includes the energy to complete the (addk) instruction after the store instruction 

(swi). It also includes the energy consumed to decode the load instruction (lwi) after the inserted 

(addk). However, the energy consumed to execute the reference application on the LHS includes 

the energy to decode a load instruction after a store instruction. Therefore, the LBEP value 

obtained by finding the difference between the energy consumption of LHS and RHS code 

segments can be expressed in (2.5) denoted by ∆𝐸(𝑎𝑑𝑑𝑘). 
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…
mul r3,r4,r3
swi r3,r19,12

lwi r3,r19,12
xori r3,r3,589994
...

…
mul r3,r4,r3
swi r3,r19,12
addk r6,r7,r8
lwi r3,r19,12
xori r3,r3,589994
...

Original Loop
Loop with inserted addk 

instruction

 

Figure 2.16 Reference Loop With/Without inserted addk instruction 

∆𝑬(𝒂𝒅𝒅𝒌)  =  𝑬 (𝒂𝒅𝒅𝒌 𝒂𝒇𝒕𝒆𝒓 𝒔𝒕𝒐𝒓𝒆) – 𝑬𝒅𝒆𝒄𝒐𝒅𝒆 (𝒍𝒐𝒂𝒅 𝒂𝒇𝒕𝒆𝒓 𝒔𝒕𝒐𝒓𝒆)   (2.7) 

It is difficult to evaluate the energy required to decode each instruction of the reference 

benchmarking application, taking into account its preceding instruction. However, the LBEPs 

presented using low-level power simulations indicate that 𝐸𝑑𝑒𝑐𝑜𝑑𝑒 for an instruction is very small 

when it follows an instruction from the same group. On the other hand, it might be larger than the 

energy of the inserted instruction. In such cases, the energy difference would produce a negative 

energy value on the LBEP as can be seen in some of the preceding LBEP figures. Therefore, in 

order to calculate the base energy cost of an instruction, we consider only those sample points in 

the LBEP in which the instruction is inserted between two instructions of the same type. Hence, 

we obtain three base energy costs for each instruction, one for each case where it executes 

following instructions of a specific group. For instance, from the energy profile of the load word 

instruction (lwi) given in Figure 1, we first consider the energy values corresponding to the (lwi) 

instruction inserted between pairs of logic or arithmetic instructions. The average of these energy 

estimates is recorded as the base energy cost of the load instruction following a logic or arithmetic 

operation. Similarly, estimates for the base energy cost of the lwi instruction following memory 

and shift instructions, are also evaluated. The three base energy costs of select Microblaze 
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instructions are presented in Table 2.3 for when they follow an instruction from one of the three 

groups. This constitutes the first component of the OVBM. 

Table 2.3 Base energies variations for Microblaze instructions in Nano Joules 

 

2.2.2 Maximum Energy Variance 

The dynamic power consumed by the soft processor cores implemented on an FPGA depends on 

the operand values of the instruction. This is because internal signals in processor cores 

implemented in FPGAs are often much longer than those in ASIC implementations. The operand 

values of instructions need to propagate between the data-path units implemented on several CLBs 

in FPGA implementations. On the other hand, data-path units in ASIC processors are placed within 

close proximity of one another to minimize latency and power consumption. Although dynamic 

energy is consumed by the signals switching, the number of ones in the values of the operands is 

Instruction Base Energy After instruction from class (nJ) 

 
Arithmetic & Logic Memory Shift 

add 0.1147 0.4882 0.1608 

rsubk 0.3461 1.0352 0.7762 

mul 0.1233 0.4819 0.4019 

idiv 0.1850 0.5401 0.4419 

and 0.0892 0.5306 0.4213 

xori 0.3257 0.6345 0.5921 

cmp 0.1821 0.7108 0.5727 

nop 0.1343 0.4808 0.1959 

lwi 0.7680 0.3536 0.9858 

swi 0.8159 0.4108 0.9761 

srl 0.1628 0.5550 0.1124 

sra 0.1571 0.5836 0.1899 

 



   

 

34 

 

a good indication of the possibility of switching. Because instructions such as NOPs and branches 

have zero operands and are executed frequently, the more ones in the operands of an instruction, 

the more likely it is to cause higher dynamic energy consumption. This is demonstrated in the 

results presented in this section.  

To model the influence of operand values, we introduce a new parameter to the OVBM, called 

maximum instruction energy variance. It is defined as the maximum difference between the energy 

cost of an instruction with large operands and the instruction’s base energy cost. To observe this 

variance, a copy of the energy benchmarks used to generate the base LBEPs, described in the 

previous subsection, is created. The operand values of the inserted instructions are set to the 

maximum positive values of 0x7fffffff instead of zero. The process to generate the LBEPs is 

repeated, generating a new maximum LBEP for each instruction. 

Figure 2.17 shows the minimum and maximum LBEP for the (add) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (add) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (add) instruction.  
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Figure 2.17 Maximum and minimum energy profiles and maximum energy 

variance for the addk instruction 

Figure 2.18 shows the minimum and maximum LBEP for the (rsub) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (rsub) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (rsub) instruction.  

 
Figure 2.18 Maximum and minimum energy profiles and maximum energy 

variance for the rsubk instruction 
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Figure 2.19 shows the minimum and maximum LBEP for the (mul) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (mul) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (mul) instruction.  

 
Figure 2.19 Maximum and minimum energy profiles and maximum energy 

variance for the muli instruction 

Figure 2.20 shows the minimum and maximum LBEP for the (idiv) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (idiv) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (idiv) instruction.  
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Figure 2.20 Maximum and minimum energy profiles and maximum energy 

variance for the idiv instruction 

Figure 2.21 shows the minimum and maximum LBEP for the (and) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (and) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (and) instruction.  

 
Figure 2.21 Maximum and minimum energy profiles and maximum energy 

variance for the and instruction 
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Figure 2.22 shows the minimum and maximum LBEP for the (xor) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (xor) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (xor) instruction.  

 
Figure 2.22 Maximum and minimum energy profiles and maximum energy 

variance for the xori instruction 

Figure 2.23 shows the minimum and maximum LBEP for the (cmp) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (cmp) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (cmp) instruction.  
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Figure 2.23 Maximum and minimum energy profiles and maximum energy 

variance for the cmp instruction 

Figure 2.24 shows the minimum and maximum LBEP for the (lwi) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (lwi) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (lwi) instruction.  

 
Figure 2.24 Maximum and minimum energy profiles and maximum energy 

variance for the lwi instruction 
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Figure 2.25 shows the minimum and maximum LBEP for the (swi) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (swi) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (swi) instruction.  

 
Figure 2.25 Maximum and minimum energy profiles and maximum energy 

variance for the swi instruction 

Figure 2.26 shows the minimum and maximum LBEP for the (srl) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (srl) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (srl) instruction.  
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Figure 2.26 Maximum and minimum energy profiles and maximum energy 

variance for the srl instruction 

Figure 2.27 shows the minimum and maximum LBEP for the (sra) Microblaze instruction. The 

lower graph, the minimum LBEP, was used to calculate the base energy of the (sra) instruction. 

The upper graph represents the energy required to execute the instruction with maximum operand 

values at the different locations in the reference benchmarking application. The difference between 

the maximum and minimum LBEPs is presented by the bar graph. The average of these differences 

is taken as the maximum, operand value dependent, energy variance of the (sra) instruction.  

 
Figure 2.27 Maximum and minimum energy profiles and maximum energy 

variance for the sra instruction 
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As seen in figures, the difference between the maximum energy and the base energy does not vary 

significantly with the location of the inserted instruction. This is consistent with most Microblaze 

instructions. The small variance is due to the different average one’s densities of the instructions 

of the reference loop. This variation of operand values is also difficult to estimate in applications 

as their energy cost is being estimated. Therefore, the differences between each set of two LBEPs 

are averaged to obtain a single value of maximum energy variance for each instruction. These 

values are appended to the base energy estimates as given in Table 2.4. 

The total energy consumed by an instruction 𝑖 is therefore modeled using equation (2.6). 𝐸𝑏𝑎𝑠𝑒(𝑖, 𝑗) 

is the base energy of instruction 𝑖 following instruction 𝑗. 𝐸𝑉(𝑖) is the maximum energy variance 

of instruction 𝑖. Finally, 𝑘 is a factor that determines the specific energy variance of instruction 𝑖, 

to be derived from its operands value. This factor will be discussed in the following subsection. 

𝑬𝒊 = 𝑬𝒃𝒂𝒔𝒆(𝒊, 𝒋) + 𝒌 ∙ 𝑬𝑽(𝒊)       (2.8) 
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2.2.3 Energy impact of operand values 

As can be seen in the results presented in the previous section, the operand value have a significant 

effect of the energy consumed by soft-processors in FPGA. The following subsections define the 

impact of the operand values on the energy consumption of two types of instruction structures. In 

heterogeneous sequences of instructions, the more ones in the instruction operands, the more likely 

it is that internal signals will be switched. However, in homogeneous sequences of repeating shift 

instructions, the energy impact of operand values depends on the number of alternating bit values.  

 

 

Table 2.4 Base energies and maximum energy variations for Microblaze 

instructions in Nano Joules 

Instruction 
Base energy after instruction from class (nJ) Max. instr. Energy 

Variance Arithmetic & Logic Memory Shift 

add 0.1147 0.4882 0.1608 1.0034 

rsubk 0.3461 1.0352 0.7762 0.7872 

mul 0.1233 0.4819 0.4019 0.9795 

idiv 0.1850 0.5401 0.4419 0.7602 

and 0.0892 0.5306 0.4213 0.6977 

xori 0.3257 0.6345 0.5921 0.6977 

cmp 0.1821 0.7108 0.5727 1.0456 

nop 0.1343 0.4808 0.1959 0 

lwi 0.7680 0.3536 0.9858 0.5310 

swi 0.8159 0.4108 0.9761 0.2208 

srl 0.1628 0.5550 0.1124 1.0782 

sra 0.1571 0.5836 0.1899 1.0373 
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2.2.3.1 Energy Impact of Operand Density 

To confirm the hypothesis that one’s density in operand values of instructions in heterogeneous 

sequences impacts the energy consumed, we used a new set of benchmarks. An application 

containing a source array of 10 elements and a loop with a fixed set of different and non-repeating 

instructions is created as given in Listing 2.3. The instructions in the loop load a value from the 

source array and perform several operations using it. Copies of this application are generated and 

refactored by changing the values in the source array. In each application, the array is initialized 

to integers containing the same number of ones, different from the other applications. For instance, 

the first application operates on source array with values that are all powers of two as shown in 

Listing 2.3. In the second application, the source array is initialized to the 10 values that include 

33554433, 67109888, and 524416, all 32-bit positive integers containing exactly two bits with the 

logic 1 value. In total 30 applications are created, and the energy required to execute each is 

estimated using post-place and route tools. 
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Listing 2.3 First application used to observe dependency of energy consumed on 

one’s densities 

 

To model the dependence of the energy consumption on operand density for the Microblaze 

instructions, we created the set of 30 applications described. We then used post-place and route 

models and XPA [4] to estimate the energy required to execute each application. The estimated 

energy values are graphed in Figure 2.28 against the ones count of the input array values. The 

figure also shows the linear approximation we make of the points. The lowest point of the line, at 

194.7 nJ, corresponds to the least dense operands for the application given in Listing 2.3. This 

value is in fact only 0.4% less than the sum of the base energies of the instructions in the benchmark 

(which evaluates to 195.4 nJ using values in Table 2.3). The additional energy consumed, beyond 

the base energy cost of 195 nJ, is the accumulation of operand-caused energy variances of 

instructions in the benchmark (the 𝑘 ∙ 𝐸𝑉(𝑖) term in equation (2.6)).  

#define size 10 

int main(){ 

 int temp, arr_in[size]= 

{1024, 4194304, 67108864, 2048, 128, 256, 2}; 

 while(1){ 

  for (int i=0; i<size; i++){ 

   temp=arr_in[i]; 

   temp*=2; 

   temp++;  

} 

} 

 return 0; 

} 
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Figure 2.28 Relation between the energy consumed running an application and the 

one’s count of its input values  

The energy consumed by the programs in Figure 2.28, represented by ∑ 𝐸𝑖, increases linearly with 

increase of the density of one’s in the instruction operands values. Since the terms ∑ 𝐸𝑏𝑎𝑠𝑒(𝑖, 𝑗) 

and ∑ 𝐸𝑉(𝑖) are constant, the 𝑘 term in equation (2.6) is expressed as a linear function of the one’s 

density as given in equation (2.7). The one’s density of the operands of instruction 𝑖, is denoted by 

𝑂𝐷(𝑖) with the 𝑚 and 𝑏 terms denoting the slope and Y-intercept, respectively, of the linear fit.  

 𝒌 = 𝒎 ∙ (𝑶𝑫(𝒊)) + 𝒃          (2.9) 

We can then substitute k into equation (2.6) and express the estimated energy consumed by a basic 

block of 𝑁 instruction using equation (2.8) as the sum of the estimated energy consumed for each 

instruction in the basic block. 

𝑬𝒆𝒔𝒕 = ∑ 𝑬(𝒊)𝑵
𝒊=𝟏 = ∑ 𝑬𝒃𝒂𝒔𝒆(𝒊, 𝒊 − 𝟏)𝑵

𝒊=𝟏 + ∑ (𝒎 ∙ 𝑶𝑫(𝒊) + 𝒃) ∙ ∆𝑬(𝒊) 𝑵
𝒊=𝟏   (2.10) 
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In order to use equation (2.10) with the results shown in Figure 2.28 to derive the values for m and 

b for a given processor, we can equate the estimated energy of the applications calculated using 

equation  (2.8) with the accurate energy estimates found using the post-place and route model such 

as XPA [4]. The sum of base energies and energy variance for the instructions making up the 

application can be evaluated using the values in Table 2.4. The average one’s density in the 

operands of each instruction (𝑂𝐷(𝑖) parameter) is found using the estimation and annotation tool 

described in the next chapter. This generates an over-determined system of 30 equations and two 

unknown variables m and b. By rewriting these equations, representing m in terms of b, the solution 

to this system can be visualized as given in Figure 2.29. This over-determined system converges 

to an approximate solution at m = 0.016 and b = -0.061 for the Microblaze processor. The values 

of m and b are added to the processor’s OVBM. 

 

Figure 2.29 Graphs of the 30 linear equations used to evaluate the m and b 

parameters 
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2.2.3.2 Energy Impact of Alternating Bit Values 

Instruction sequences like repeating shifts are frequently used by the Microblaze compiler and the 

energy impact of their operand value significantly differ from other instructions. The repeating 

shifts used by the Microblaze compiler operate on the same source and destination register. The 

first shift switches the processor from an unknown state determined by its preceding instruction. 

Therefore, its energy cost can be estimated using equations (2.6) and (2.9) discussed earlier. 

However, the second, and every other consecutive, shift instruction will require less switching of 

signals, since they do cause the processor to change its state. The most significant switching caused 

by each of these instructions is to shift the operand value once. Therefore, only where there are 

alterations in the bit values of the operand that switching will be required. That is, shifting 1010 

will require switching all 4 bits, whereas shifting 0011 will require switching one bit, and therefore 

will consumed more energy. 

This behavior is confirmed when the instructions of the 30 reference applications described in the 

previous subsection are replaced with a series of 31 shift instructions. The energy required to run 

these 30 applications is estimated using the post-place and route model. Furthermore, the energy 

required to run a refactored version of these applications with only the first shift instruction is also 

estimated. The difference of the energy required to execute the applications with the 31 shift 

instructions and those with one shift, approximates the energy required to run the 30 repeating 

shift instructions. From these estimates, the average energy per shift instruction is calculated. 

Knowing the values in the source array of each application, the average number of alternating bits 

in the operand value of the shift instructions is calculated. Figure 2.30 shows the energy dissipated 

by each repeated shift instruction on the Y-axis, and the average number of alternating bit values 

in the shift operand value on the X-axis. The fitted line can then be used to estimate the energy of 
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each repeating shift instruction as given in (2.9), where ABVC stands for the alternating bit value 

count and the 𝑚𝑠ℎ𝑖𝑓𝑡 and 𝑏𝑠ℎ𝑖𝑓𝑡 are the slope and Y-intercept of the line fitted to the points in 

Figure 2.30. The slope and Y-intercept parameters of the line we fitted to the data points are also 

added to the OVBM. For the Microblaze processor, the slope and the Y-intercept evaluate to 0.02, 

and 0.5 respectively. These parameters are also added to the OVBM, completing the list of 

parameters in the Microblaze OVBM as given in Table 2.5. 

𝑬𝒓𝒆𝒑𝒆𝒂𝒕𝒊𝒏𝒈 𝒔𝒉𝒊𝒇𝒕 = 𝒎𝒔𝒉𝒊𝒇𝒕 ∙ 𝑨𝑩𝑽𝑪(𝒊) + 𝒃𝒔𝒉𝒊𝒇𝒕      2.11) 

 
Figure 2.30 Energy consumed executing a repeating shift instruction v.s number of 

alternating bit values in its operand 
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Table 2.5 Complete list of the Microblaze OVBM parameters 

 

  

Instruction 
Base energy after instruction from class (nJ) Max. instr. Energy 

Variance Arithmetic & Logic Memory Shift 

add 0.1147 0.4882 0.1608 1.0034 

rsubk 0.3461 1.0352 0.7762 0.7872 

mul 0.1233 0.4819 0.4019 0.9795 

idiv 0.1850 0.5401 0.4419 0.7602 

and 0.0892 0.5306 0.4213 0.6977 

xori 0.3257 0.6345 0.5921 0.6977 

cmp 0.1821 0.7108 0.5727 1.0456 

nop 0.1343 0.4808 0.1959 0 

lwi 0.7680 0.3536 0.9858 0.5310 

swi 0.8159 0.4108 0.9761 0.2208 

srl 0.1628 0.5550 0.1124 1.0782 

sra 0.1571 0.5836 0.1899 1.0373 

 
Operand Value Impact - Linear Fit 

Parameters 
 

𝑚 0.016  

𝑏 -0.061  

𝑚𝑠ℎ𝑖𝑓𝑡 0.02  

𝑏𝑠ℎ𝑖𝑓𝑡 0.5  
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Chapter 3 

3 Energy Estimation Tool 

We developed a tool to utilize the OVBM and instruction-level processor energy models described 

in Chapter 2 to estimate the energy consumption of any application. The tool is designed to 

automatically analyze the source code of a given application, generate an annotated executable to 

collect run-time information. It then uses any instruction-level energy model to estimate the energy 

the processor would consume running the application. The tool works in two phases as shown in 

Figure 3.1. It prepares the inputs needed by the model in the first phase and uses the model 

equations to generate the energy report in the second. The following sections describe the 

operations performed by the tool in each phase to generate the energy estimates. 
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Figure 3.1 Proposed automated application analysis, annotation, and energy 

estimation tool 

3.1 Phase 1 

In the first phase, the tool is designed to generate the parameters needed by the OVBM model to 

estimate the energy required by a given application. It first identifies the basic blocks of the 

application, and the complete list of instructions in each basic block. It also generates an annotated 

executable that identifies the basic blocks that execute, the number of times they are executed, and 

the average one’s density or number of alternating bit values in the operands of the different 

instructions. The annotations collect this information t at run time and transmit them to the host 

PC to be used in the energy estimation in the second phase. Figure 3.2 illustrates the process 

performed by the tool in the first phase as will be described in the following subsections. 
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Figure 3.2 Phase I of the estimation tool. Identifying basic blocks and generating 

the annotated executable 
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3.1.1 Source Code Analysis and Basic Blocks Identification 

The tool starts in phase 1 by generating the assembly code of the application to identify its basic 

blocks. A basic block is defined as a sequence of assembly instructions with one entry point and 

one exit point. This implies the instructions in each basic block always execute the exact same 

number of times in each application run. The tool lists the basic blocks and stores them in a file 

that is used as input in the second phase to estimate the energy of each using a processor energy 

model.  

For the most accurate representation of the instructions in that will be executed in each basic block, 

the tool compiles the source code then it dis-assembles the binary file using an object-dump utility 

[29]. This is done because assemblers sometimes insert special instructions before generating the 

executable file. One example of such instructions is the Microblaze imm instruction. The encoded 

Microblaze immediate instructions contain 16-bit immediate field. However, the immediate value 

can be 32-bit value. When the assembler encounters an immediate instruction with a 32-bit 

immediate value, it pre-pends it with an imm instruction with the upper half of the 32-bit value. It 

also replaces the 32-bit value of the immediate instruction to the lower half of the value. This way, 

the imm instruction loads the upper half of the immediate values into the processor to be 

concatenated with the immediate value of the following instruction [35]. This is illustrated in the 

code snippet in Listing 3.1. It shows the instructions of the first basic block of the EncodeDC 

function from the JPEG encoder benchmark. The left column shows the instructions in the source 

code. The right column shows the instructions in the dis-assembled object file. The highlighted 

imm instructions were automatically inserted by the assembler. When estimating the energy of this 

basic block in the second phase, the tool will analyze the instructions read from the dis-assembled 

file to ensure it accounts for the energy of these instructions. 
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Listing 3.1 Instructions in Assembly Source File and dis-assembled Object File 

 

In the sequence of assembly instructions read from the dis-assembled object file, the tool parses 

the instructions and identifies the boundaries of basic blocks by:  

 Beginning of functions 

 Return from subroutine instructions 

 Branch and jump instructions 

 Labels which used as target addresses of branch and jump instructions 

Assembly from Source Code  Assembly from Object File 

EncodeDC: 

    Addik r1,r1,-44 

    swi r15,r1,0 

    swi r19,r1,40 

    addk r19,r1,r0 

 

    lwi r4,r0,input 

 

    lwi r3,r0,LastDC 

    rsubk r3,r3,r4 

    swi r3,r19,32 

 

    lwi r3,r0,input 

 

    swi r3,r0,LastDC 

    lwi r3,r19,32 

    bgei r3,$L53 

 EncodeDC: 

    Addik r1, r1, -44 

    swi r15, r1, 0 

    swi r19, r1, 40 

    addk r19, r1, r0 

    imm 0 

    lwi r4, r0, -31444 

    imm 0 

    lwi r3, r0, -32484 

    rsubk r3, r3, r4 

    swi r3, r19, 32 

    imm 0 

    lwi r3, r0, -31444 

    imm 0 

    swi r3, r0, -32484 

    lwi r3, r19, 32 

    bgei r3, 20 
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When the executable file is generate, labels are removed, and displacement for branch instructions 

are calculated and inserted in the immediate field of the instruction. This can be seen in Listing 3.1, 

where the label of the last instruction $L53 is replaced with the displacement value 20. However, 

the object dump utility evaluates the address of the target location and appends it as a comment to 

the instruction in the dis-assembled file. This is illustrated in Listing 3.2. The end of basic block 2 

is marked by the branch instruction in line 12. The displacement of the branch instruction is -32, 

i.e. 8 locations above the current location. The address of the target location, 240, is found 

appended to the instruction by the object-dump utility. Since this is an entry point to a sequence 

of instructions, line 4 is identified as the starting position of basic block 2. Furthermore, delayed 

instructions are identified and the instruction in the delay slot is included in the proper basic block. 

For instance, the return instruction in line 17 is delayed, line 18, or r0, r0, r0 which implements a 

nop, is also included in basic block 3. 
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Listing 3.2 Identified basic blocks in dis-assembled instructions 

 

3.1.2 Source Code Annotations 

The tool generates an annotated executable from the source code application to collect run time 

information such as the execution trace and operand values. This information is needed in the 

second phase as inputs to the OVBM to estimate the energy consumed by the application. The 

annotations are added to the compiled but not assembled source code, and not the dis-assembled 

application used to generate the list of basic blocks. This is because the dis-assembled application 

adds information to the assembly instructions. These include the binary encoding of the instruction, 

Line 

# Disassembled Instructions  

Basic Block 

ID# 

1 234: b0004000  imm 16384     

1 2  238: 30600000 addik r3, r0, 0    

3  23c: f8730010  swi r3, r19, 16     

4  240: e8930018  lwi r4, r19, 24     

2 

5  244: e8730008  lwi r3, r19, 8    

6  248: 58641800 fadd r3, r4, r3    

7  24c: f8730014  swi r3, r19, 20    

8  250: e8930014  lwi r4, r19, 20    

9  254: b00042c8  imm 17096    

10  258: 30600000 addik r3, r0, 0    

11  25c: 58632210 fcmp.lt r3, r3, r4    

12  260: bc23ffe0  bnei r3, -32   // 240 

13  264: 10600000 addk r3, r0, r0     

3 

14  268: 10330000 addk r1, r19, r0    

15  26c: ea61001c  lwi r19, r1, 28    

16  270: 30210020 addik r1, r1, 32    

17  274: b60f0008  rtsd r15, 8    

18  278: 80000000 or r0, r0, r0     
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and memory address as seen in Listing 3.2. Furthermore, instructions like the imm instruction 

described in the previous subsection can only be used by the assembler, and cannot be re-

assembled.  

The tool introduces three types of annotations to: 

1. Record the execution sequence of the basic blocks. 

2. Record the opcode of each instruction executed, as well as the values of their destination 

registers. 

3. Calculate the average of the one’s densities of all values used by each non-repeating shift 

instruction. 

4. Calculate the average of alternating bit values for the repeating shift instructions. 

To record run time data, the tool first annotates a logging function that logs the input value. The 

logging is done either through a serial port if the annotated application is intended to run on the 

target device or to a file if it is intended to run on an Instruction Set Simulator (ISS).  

In order to record the execution trace, calls to the logging function are annotated in the assembly 

source code at the beginning of each basic block. In these annotations, the ID number of the basic 

block is passed as input the logging function. This way, as the annotated application is executed, 

a sequence basic block ID numbers will be logged tracing the execution path. 

The second group of annotations used to record the instructions executing and their operand values, 

perform stack operations. They store in a stack in memory the opcode ID of the each instruction 

followed by the value stored in its destination register. These values are then processed by a 

function that is also annotated and called before the application terminates. In this function, the 

data stored in the stack is extracted and analyzed. As the instructions opcode ID numbers are read, 



   

 

59 

 

sequences of homogenous shift instructions are detected. The operand values corresponding to 

these instructions are analyzed, and the number of alternating bits is counted. For other 

instructions, the one’s density of the operand values is calculated. The analysis produces two arrays 

containing the average density of ones in the operand values of each instruction type, and number 

of alternating ones in the operand value for each type of repeating shift instructions. The two arrays 

are then passed to the logging function to be stored for the second phase as values of the OD term 

in (2.7) and Alternating Bit Value Count (ABVC) term in (2.9). 

These annotations are demonstrated in the segment of the annotated Dhrystone source code given 

in Listing 3.3. The instructions from the original source code are numbered and marked in bold. 

The listing shows parts of basic blocks 14 and 15 of the benchmark. At the beginning of each basic 

block, the annotated instructions set the value of register r5 of the processor to the basic block ID 

number, then branches to an annotated logging function “trace”. The trace function logs the basic 

block ID as part of the execution trace. Furthermore, following each original instruction, 

annotations push the instruction opcode and value of its destination operand into a stack with stack 

pointer stored in register r31. These values are processed to calculate the average ones densities 

and alternating bit values before the application terminates, to be used by the second phase. 
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Listing 3.3 Basic blocks number 14, and 15 from the Dhrystone benchmark  

 

L12: 

     # Exec trace annotations begin here 

     addik     r5,r0,14 #Basic Block ID 

     brlid     r15,trace  

     nop     # Unfilled delay slot 

     # Exec trace end here 

 

 1   lbui     r3,r19,32 

          addik     r30,r0,83     # 

          swi  r30,r31,0x90000000 #Store opcode ID 

          addik     r31,r31,4     # 

          swi   r3,r31,0x90000000 #Store value 

          addik     r31,r31,4     # 

 2   sext8     r3,r3 

          addik     r30,r0,130     # 

          swi  r30,r31,0x90000000 #Store opcode ID 

          addik     r31,r31,4     # 

          swi     r3,r31,0x90000000  #Store value 

          addik     r31,r31,4     # 

. . . 

 3   brlid     r15,Func_1 

 4   nop          # Unfilled delay slot 

 

     # Exec trace begin here 

     addik     r5,r0,15 #Basic Block ID 

     brlid     r15,trace 

     nop     # Unfilled delay slot 

     # Exec trace end here 

. . . 
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3.2 Phase 2 

The second phase of the estimation tool uses one of the instruction-level processor energy models 

and parameters obtained from the first phase to estimate the energy the application run would 

consume. It first uses one of the models to estimate the energy required by each basic block 

identified in the first phase. When using the first order model, equation (3.1) is applied using the 

estimated energy per instruction as given in Table 2.1. When using the second order model, 

equation (3.2) is applied using the parameters in Table 2.2, hence taking into account the inter-

instruction energy effect. 

𝑬(𝑩𝑩) = ∑ 𝑬(𝒊)𝑵
𝒊=𝟏 3         (3.1) 

𝑬(𝑩𝑩) = ∑ 𝑬(𝒊) ∙ (𝒊𝒏𝒔𝒕𝒊 ≠ 𝒊𝒏𝒕𝒊−𝟏) + 𝑬(𝒊) ∙ (𝒓) ∙ (𝒊𝒏𝒔𝒕𝒊 == 𝒊𝒏𝒔𝒕𝒊−𝟏)𝑵
𝒊=𝟏   (3.2)  

On the other hand, when using the proposed OVBM, equation (3.3) is used to estimate the energy 

of each instruction in each basic block using the base energy, maximum energy variance and linear 

parameters given in Table 2.5. It then estimates the energy consumed by each basic block of 𝑁 

instruction as the sum of the estimated energy of all its instructions as in (3.4).  

𝑬(𝒊) = {
𝑬𝒃𝒂𝒔𝒆(𝒊, 𝒋) + (𝒎 ∙ (𝑶𝑫(𝒊)) + 𝒃) ∙ 𝑬𝑽(𝒊)

𝒎𝒔𝒉𝒊𝒇𝒕 ∙ 𝑨𝑩𝑽𝑪(𝒊) + 𝒃𝒔𝒉𝒊𝒇𝒕

    , 𝒊𝒇 (𝒊) 𝒊𝒔 𝒏𝒐𝒕 𝒂 𝒓𝒆𝒑𝒆𝒂𝒕𝒊𝒏𝒈 𝒔𝒉𝒊𝒇𝒕
    , 𝒊𝒇 (𝒊) 𝒊𝒔 𝒂 𝒓𝒆𝒑𝒆𝒂𝒕𝒊𝒏𝒈 𝒔𝒉𝒊𝒇𝒕         

  (3.3) 

𝑬(𝑩𝑩) = ∑ 𝑬(𝒊)𝑵
𝒊=𝟏 = ∑ 𝑬𝒃𝒂𝒔𝒆(𝒊, 𝒊 − 𝟏)𝑵

𝒊=𝟏 + ∑ (𝒎 ∙ 𝑶𝑫(𝒊) + 𝒃) ∙ ∆𝑬(𝒊) 𝑵
𝒊=𝟏    (3.4) 

Finally, the tool counts the number of times each basic block is executed using the execution trace. 

Knowing the energy cost of each basic block, as estimated using any model, the tool calculates the 

total energy consumed by an application of 𝑀 basic blocks using (3.5). 
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𝑬𝒂𝒑𝒑 = ∑ 𝑬(𝑩𝑩(𝒋))𝑴
𝒋=𝟏 ∙ 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝒔_𝑪𝒐𝒖𝒏𝒕(𝑩𝑩(𝒋))      (3.5) 

Furthermore, the use of instruction-level energy models makes it possible to generate granular 

energy profiles for the application. That is, besides the total energy consumption of an application, 

the execution trace along with the contents of each basic block can be used to profile the estimated 

energy consumed by each executing instruction, giving a very detailed profile. It is also possible 

to profile the execution by listing the energy consumed by each executing application. It can also 

calculate how much does each basic block contribute to the total energy consumption. Such details 

are very critical to guide power optimization efforts. Examples of these detailed profiles and some 

conclusions that can be derived from them are presented in the following chapter. 
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Chapter 4 

4 Experimental Results 

We developed an energy models for a Microblaze soft processor implementation on a Virtex5 

FPGA using the proposed OVBM method and the state of the arts methods described in Chapter 

2. We implemented the estimation tool described in Section 4 to automatically annotate and 

analyze applications targeted for a Microblaze processor. The automatic annotation tool was 

extended to use all three instruction level processor energy data models (first and second order 

models, as well as the proposed OVBM). All models characterize the dynamic energy consumption 

of a Microblaze soft processor implementation on a Virtex 5 FPGA, connected via a Local Memory 

Bus (LMB) to 64 kB block RAM, which stores the program and data of the application. The system 

clock is operating at a frequency of 125 MHz. The following sections will discuss the results from 

estimating the energy requirements for a set of 12 benchmark applications in terms of accuracy, 

speed, granularity, and estimation effort. 

4.1 Accuracy 

In order to compare the accuracy of the models, a set of 12 benchmarks was selected and the 

examined. The benchmarks include Dhrystone [6], an implementation of the quicksort algorithm, 

and the five functions of a JPEG encoder: Read BMP Block, Discrete Cosine Transfer (DCT), 

Quantize, Zigzag, and Huffman encode. Six variation of the quicksort implementation where 

tested. In each, the array being sorted is initialized with different values as described in Table 4.1. 

These benchmarks were selected because collectively they contain a great diversity of instructions 
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and operations with a great range of operand values. The Dhrystone benchmark is contains many 

integer arithmetic operations, string operations, memory accesses and logic decisions, presenting 

a good diverse set of instructions. Quicksort and Zigzag benchmarks consist of many memory 

access operations and logic decisions. Read-BMP block is made up of mostly memory access 

operations. DCT and Quantize benchmarks consist of many arithmetic and shift operations. 

Finally, the Huffman benchmark is made up of the most number of functions, with many memory 

access operations and logic decisions. As will be evident in the results, the state of the arts 

modeling techniques will produce good results for some of these benchmarks but not for others, 

unlike the proposed OVBM. This is critical to determine the robustness of the proposed technique 

in estimating different types of benchmarks with different types of operations. 

Table 4.1 Quicksort benchmark applications examined 

 

4.1.1. Reference Estimates 

The reference execution time and average dynamic power consumed by the processor for each 

benchmark were obtained using Xilinx iSim [32] and XPA [4]. The product of the execution time 

and the average power is the reference dynamic energy consumed by the benchmarks as shown in 

Table 4.2. Since XPA performs post place and route, transistor level simulations, these estimations 

Application Abbreviation Notes 

QuickSort V1 Qs1 Sorts an array of 10 integers between 10 and 19 in random order 

QuickSort V2 Qs2 Sorts an array of 10 integers between 10 and 19 in ascending order 

QuickSort V3 Qs3 Sorts an array of 10 integers between 10 and 19 in descending order 

QuickSort V4 Qs4 Sorts an array of 10 integers between 10 and 106 in random order 

QuickSort V5 Qs5 Sorts an array of 10 integers between 106 and 109 in random order 

QuickSort V6 Qs6 Sorts an array of 50 integers between 1 and 500 in random order 
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are highly accurate and can be used as reference to analyze and compare the accuracy of the 

different energy models. 

Table 4.2 Benchmark energy estimates using XPA [4] 

 

4.1.2. State Based Models 

Table 4.3 presents the dynamic energy estimations obtained using state based models created with 

different benchmarks as reference power. As described in Section 2.1.1, the state based model uses 

the average dynamic power consumed by one reference benchmark as the average power 

consumed by any application. The estimated energy is evaluated as the product of the execution 

time by the average power. Naturally, the error in estimating the benchmark used as reference 

power using the state based model is zero. If the developer is fortunate to choose a benchmark like 

the Dhrystone or first quicksort benchmark presented, the average estimation error will be 

reasonable for such a coarse approach. However, estimates using such an approach suffer greatly 

Application Time  (µs) Power (mW) Energy (mJ) 

Dhrystone 39.35 33.35 1.31 

Qs1 17.59 31.02 0.55 

Qs2 14.01 31.57 0.44 

Qs3 18.10 31.20 0.56 

Qs4 22.18 31.61 0.70 

Qs5 19.57 33.03 0.65 

Qs6 164.20 33.78 5.55 

ReadBMPBlock 251.61 39.96 10.05 

DCT 166.68 30.84 5.14 

Quantize 58.20 25.52 1.49 

Zigzag 25.33 30.98 0.78 

Huffman Encode 471.95 40.70 19.21 

JPEG 973.77 37.66 36.67 
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when estimating the energy consumed by applications that contain a different distribution of 

instruction types and operations. This is seen in the poor estimations of the energy of the JPEG 

functions when compared to the reference energy values in Table 4.2. It is also important to note 

that the accuracy of estimation derived using state based models depend on the accuracy of the 

timing estimation used. In the results presented in Table 4.3, the accurate timing estimation used 

to evaluate the reference energy consumption in Table 4.2 is used with the state based models. 

However, very accurate execution time estimations may not be easy to obtain efficiently. The rest 

of the instruction-level models, including the proposed OVBM do not use the execution time as a 

parameter to estimating the energy of the program. 

Table 4.3 Accuracy of state based energy model using different reference 

applications as compared to XPA [4] estimations in Table 1 

 

 Estimated energy from state-base model and reference power estimate of: 

 Dhrystone Qs1 ReadBMP Huffman Enc. JPEG 

Application E (mJ) Err E (mJ) Err E (mJ) Err E (mJ) Err E (mJ) Err 

Dhrystone 1.31 0.0% 1.22 -7.0% 1.57 19.8% 1.60 22.0% 1.48 12.9% 

Qs1 0.59 7.5% 0.55 0.0% 0.70 28.8% 0.72 31.2% 0.66 21.4% 

Qs2 0.47 5.6% 0.43 -1.7% 0.56 26.6% 0.57 28.9% 0.53 19.3% 

Qs3 0.60 6.9% 0.56 -0.6% 0.72 28.1% 0.74 30.4% 0.68 20.7% 

Qs4 0.74 5.5% 0.69 -1.9% 0.89 26.4% 0.90 28.7% 0.84 19.1% 

Qs5 0.65 1.0% 0.61 -6.1% 0.78 21.0% 0.80 23.2% 0.74 14.0% 

Qs6 5.48 -1.3% 5.09 -8.2% 6.56 18.3% 6.68 20.5% 6.18 11.5% 

ReadBMP 8.39 -16.5% 7.81 -22.4% 10.05 0.0% 10.24 1.9% 9.48 -5.8% 

DCT 5.56 8.2% 5.17 0.6% 6.66 29.6% 6.78 32.0% 6.28 22.1% 

Quantize 1.94 30.7% 1.81 21.6% 2.33 56.6% 2.37 59.5% 2.19 47.6% 

Zigzag 0.84 7.7% 0.79 0.1% 1.01 29.0% 1.03 31.4% 0.95 21.6% 

Huffman Enc. 15.74 -18.1% 14.64 -23.8% 18.86 -1.8% 19.21 0.0% 17.77 -7.5% 

JPEG 32.48 -11.4% 30.21 -17.6% 38.91 6.1% 39.63 8.1% 36.67 0.0% 

Average error 10.0%  9.3%  24.3%  26.5%  18.6% 

Std. Deviation of error 8.3%  9.4%  13.6%  14.2%  10.7% 
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4.1.3. Instruction Level Models 

 

 lists the estimation results obtained using the instruction level models, first and second order state 

of the arts models, and the proposed OVBM. The first and second order models initially produced 

very large errors as shown in  

. The energy for an instruction in the first order model is obtained by low-level simulations of the 

given instruction in an infinite loop as described in Section 2.1.2 and as was done in [2] [24] [25] 

[27]. Similarly, the energy of instructions and the inter-instruction energy effect in the second order 

model is obtained using low-level simulation the instructions in infinite loops as described in 

Section 2.1.3. Clearly, this technique does not produce accurate estimates of the energy cost of an 

instruction because of the false assumptions used in generating the models and explained in 

Section 2.1.2. As suggested in [8] [36], the models were calibrated using the Dhrystone benchmark 

estimation error to produce calibrated energy estimates. This calibration is performed by first 

finding the ratio of the estimated energy of the Dhrystone application using the first or second 

order model to the accurate estimate energy of the application using the accurate XPA tool. The 

energy estimates for the other applications are then divided by this ratio to obtain the calibrated 

energy estimates given in  

. However, despite calibration, the first and second order models generated estimates with worst-

case errors of up to 37.6%, and 38.5% respectively. The average errors were also high at 16% and 

12.6%. Moreover, these models cannot be used with confidence because the standard deviation of 

the errors is high. These errors may significantly vary if a different benchmark was used to 

calculate the calibration ratio. 
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Table 4.4 Accuracy of different energy models with relative errors as compared to 

XPA [4] estimations in Table 1 

 

The energy estimates generated using the approach presented in this paper are given in the last 

column in  

, with the OVBM heading. The accuracy of this method is a significant improvement over the other 

methods examined in terms of average accuracy and estimation confidence; generating estimates 

with a maximum error of -12.3%. The average error is only 4.7%. The standard deviation of the 

Application 
First order Model Second order Model OVBM 

E (mJ) Err E* (mJ) Err E (mJ) Err E* (mJ) Err E (mJ) Err 

Dhrystone 3.6 171% 1.31 0.0%** 3.3 155% 1.31 0.0%** 1.30 -0.7% 

Qs1 1.81 231% 0.58 6.1% 1.35 148% 0.53 -2.9% 0.57 4.2% 

Qs2 1.70 285% 0.55 23.6% 1.07 142% 0.42 -5.1% 0.46 3.9% 

Qs3 1.85 228% 0.59 5.1% 1.40 147% 0.55 -3.1% 0.58 3.7% 

Qs4 2.28 225% 0.73 4.1% 1.70 142% 0.67 -5.1% 0.72 3.2% 

Qs5 2.01 212% 0.65 -0.1% 1.50 131% 0.59 -9.3% 0.65 0.8% 

Qs6 15.80 185% 5.07 -8.7% 12.63 128% 4.95 -10.7% 5.37 -3.2% 

ReadBMP 24.6 145% 7.90 -21.4% 21.7 116% 8.50 -15% 8.82 -12% 

DCT 18.2 253% 5.82 13.2% 18.2 253% 7.12 38.5% 4.96 -3.5% 

Quantize 6.4 329% 2.04 38% 4.0 169% 1.57 5.4% 1.47 -0.9% 

Zigzag 2.3 195% 0.74 -5.3% 2.3 194% 0.90 15.3% 0.78 -0.6% 

Huffman Enc. 50.7 164% 16.3 -15.4% 47.7 148% 18.7 -2.7% 17.64 -8.2% 

JPEG 102.2 179% 32.8 -10.7% 93.8 156% 36.8 0.3% 33.67 -8.2% 

Average error  216%  12.6%  156%  9.5%  4.2% 

Std. Deviation of error  51.6%  10.6%  35.0%  10.4%  3.5% 

* Calibrated energy estimates. Calibration factor is derived using the error of estimating the Dhrystone benchmark. 

** Zero estimation error because the estimation was generated using the reference energy of the Dhrystone benchmark. 
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errors with our model is only 4.3%, which means that the dynamic energy estimates can be used 

with confidence for early design space exploration and software optimizations. 

4.2 Speed 

In addition to having a high average accuracy and confidence, the proposed estimation technique 

generates energy estimates much faster than the other accurate tools. Table 4.5 presents the time 

needed by our tool and XPA [4] to analyze each of the examined applications. Both tools were 

executed using PCs with Intel i7 quad-core processors and 16 GB of RAM. As described in 

Chapter 3, the tool is executed on a host machine in two phases. In the second phase, it uses metrics 

obtained from running an annotated executable that is generated in the first phase. In our 

examination, we used a Microblaze implementation on a Xilinx Virtex5 FPGA development board 

to run the annotated executable. The slowest operation needed by our tool is the transmitting the 

logs from the target device to the host through the serial JTAG - USB connector. However, the 

tool was designed to utilize the target device to analyze the operand values and send the minimum 

amount of data to the host through this bottleneck connection. The data transmitted consists only 

of a series of basic block ID numbers and the average operand density for each instruction as 

shown in Figure 3.1 Proposed automated application analysis, annotation, and energy estimation 

tool. 

To estimate the energy consumed by the JPEG benchmark, which is the largest benchmark 

examines, the total execution time of the tool on the host machine did not exceed one 280ms. The 

time needed to run the annotated executable and transfer the logs to the host reached a maximum 

1 minute and 45 seconds. This gives a total worse case time of about 1 minute and 45 seconds. 

Compared to 10 hours and 38 minutes required to obtain the reference estimate using XPA, 

illustrates a speed up of 3 orders of magnitude. 
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Table 4.5 Execution time of OVBM-based estimation tool compared to Post-place-

and-route simulation (XPA) 

 

4.3 Estimation Granularity 

The estimation tool as described in Chapter 3 is capable of generating fine-grained energy 

estimations using the proposed OVBM. The tool produces the execution trace of the examined 

benchmark as a sequence of executing basic blocks. It also uses the OVBM to estimate the energy 

consumed by each basic block. Combined, the software developer would be able to trace the 

execution of his application alongside the estimated energy consumed by each basic block. This 

level of granularity can guide software developers in their effort to optimize the energy 

consumption of their application. On the other hand, accurate estimation tools like XPA only 

produce the total estimated energy for a given application execution. 

Figure 4.1 through Figure 4.24 provide a graphical presentation of the estimated energy generated 

by the tool. On the X-axis of each figure is the application execution trace, i.e. the sequence of 

Application 
OVBM Tool (Seconds) XPA 

Host Target Total (Seconds) (Minutes) 

Dhrystone 0.03 7.49 7.53 4320 72 

Qs6 0.01 23.08 23.09 8820 147 

ReadBMPBlock 0.21 5.88 6.08 12120 202 

DCT 0.03 10.85 10.88 8880 148 

Quantize 0.01 8.40 8.41 5100 85 

Zigzag 0.01 4.41 4.42 3900 65 

Huffman Encode 0.07 65.04 65.11 20400 340 

JPEG 0.28 104.24 104.52 38280 638 
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basic block ID numbers that execute. On the Y-axis of the odd-numbered figures, the dynamic 

energy consumed by each executed basic block. The Y-axis of the even-numbered figures displays 

the cumulative energy consumed by the application. The final point on the even-numbered figures 

is the estimated energy consumed by the application as given in  

. Furthermore, since all the instructions in each basic block are known from the output of the first 

phase of the tool, the granularity of the output can be further expanded to instruction-level 

granularity. On the other hand, accurate estimation tools like XPA, produce a single value for the 

average dynamic power consumed, which can be used to calculate the single energy estimate as 

given in Table 4.2.  

Figure 4.1 presents graphically the estimated energy of each basic block executed by the Dhrystone 

benchmark as generated by the tool. The X-axis represents the execution trace; i.e. the sequence 

of executing basic block ID numbers. The Y-axis represents the estimated energy of the 

corresponding basic block using the OVBM as evaluated in the second phase. Figure 4.2 presents 

the cumulative energy consumed by the application up to and including the execution of the basic 

block on the X-axis. Combined, the two figures show that basic blocks 42, 43, 46, 48, and 49 are 

the most frequently executed basic blocks, responsible for approximately two thirds of the total 

dynamic energy consumed. It also shows basic blocks like 65, and 12 which consume more energy 

than other basic blocks execute with much less frequency, responsible for only about 5% of the 

total energy consumed. Such detailed analysis is very simple using the generated report using the 

proposed technique, and very difficult to perform using the reference accurate tools. This is 

demonstrated in the other energy reports for the benchmarks examined. 
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Figure 4.1 Estimated energy of all executed basic blocks in the Dhrystone 

benchmark 

 
Figure 4.2 Cumulative estimated energy for the Dhrystone benchmark execution  

Figure 4.3 presents graphically the estimated energy of each basic block executed by the QuickSort 

V1 benchmark as generated by the tool. The X-axis represents the execution trace. The Y-axis 

represents the estimated energy of the corresponding basic block using the OVBM. Figure 4.4 

presents the cumulative energy consumed by the application up to and including the execution of 

the basic block on the X-axis. Combined, the graphs profile the energy consumed while the 

quicksort algorithm is applied to an array of 10 integers with values between 10 and 19 initialized 

in a random order. Therefore, this quick sort implementation has the lowest execution time and 

minimum energy consumption among the different versions of the QuickSort benchmarks 

presented. 
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Figure 4.3 Estimated energy of all executed basic blocks in the Quicksort V1 

benchmark 

 
Figure 4.4 Cumulative estimated energy for the Quicksort V1 benchmark execut ion 

Figure 4.5 presents graphically the estimated energy of each basic block executed by the QuickSort 

V2 benchmark as generated by the tool. The X-axis represents the execution trace. The Y-axis 

represents the estimated energy of the corresponding basic block using the OVBM. Figure 4.6 

presents the cumulative energy consumed by the application up to and including the execution of 

the basic block on the X-axis. Combined, the graphs profile the energy consumed while the 

quicksort algorithm is applied to an array of 10 integers with values between 10 and 19 initialized 

in an ascending order. Therefore, this quick sort implementation has lowest execution time and 

minimum energy consumption among the different versions of the QuickSort benchmarks 

presented. 
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Figure 4.5 Estimated energy of all executed basic blocks in the Quicksort V2 

benchmark 

 
Figure 4.6 Cumulative estimated energy for the Quicksort V2 benchmark execution  

Figure 4.7 presents graphically the estimated energy of each basic block executed by the QuickSort 

V3 benchmark as generated by the tool. The X-axis represents the execution trace. The Y-axis 

represents the estimated energy of the corresponding basic block using the OVBM. Figure 4.8 

presents the cumulative energy consumed by the application up to and including the execution of 

the basic block on the X-axis. Combined, the graphs profile the energy consumed while the 

quicksort algorithm is applied to an array of 10 integers with values between 10 and 19 initialized 

in a descending order. 
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Figure 4.7 Estimated energy of all executed basic blocks in the Quicksort V3 

benchmark 

 
Figure 4.8 Cumulative estimated energy for the Quicksort V3 benchmark execution  

Figure 4.9 presents graphically the estimated energy of each basic block executed by the QuickSort 

V4 benchmark as generated by the tool. The X-axis represents the execution trace. The Y-axis 

represents the estimated energy of the corresponding basic block using the OVBM. Figure 4.10 

presents the cumulative energy consumed by the application up to and including the execution of 

the basic block on the X-axis. Combined, the graphs profile the energy consumed while the 

quicksort algorithm is applied to an array of 10 integers with values between 10 and 109 initialized 

in a random order. Because the values of the array have higher ones density than the previously 

presented QuickSort benchmarks, the estimated energy of the instructions loading, comparing and 
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storing these values is higher in this benchmark than in the previous QuickSort benchmarks. As a 

result, the energy of the basic blocks are also higher than in the previous QuickSort benchmarks. 

 
Figure 4.9 Estimated energy of all executed basic blocks in the Quicksort V4 

benchmark 

 
Figure 4.10 Cumulative estimated energy for the Quicksort V4 benchmark 

execution 

Figure 4.11 presents graphically the estimated energy of each basic block executed by the 

QuickSort V5 benchmark as generated by the tool. The X-axis represents the execution trace. The 

Y-axis represents the estimated energy of the corresponding basic block using the OVBM. 

Figure 4.12 presents the cumulative energy consumed by the application up to and including the 

execution of the basic block on the X-axis. Combined, the graphs profile the energy consumed 
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while the quicksort algorithm is applied to an array of 10 integers with values between 106 and 109 

initialized in a random order. Because the values of the array have the highest ones density among 

the presented QuickSort benchmarks, the estimated energy of the instructions loading, comparing 

and storing these values is higher in this benchmark than in the other QuickSort benchmarks. As a 

result, the energy of the basic blocks estimated are the highest among the presented QuickSort 

benchmarks. 

 
Figure 4.11 Estimated energy of all executed basic blocks in the Quicksort V5 

benchmark 

 
Figure 4.12 Cumulative estimated energy for the Quicksort V5 benchmark 

execution 
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Figure 4.13 presents graphically the estimated energy of each basic block executed by the 

QuickSort V6 benchmark as generated by the tool. The X-axis represents the execution trace. The 

Y-axis represents the estimated energy of the corresponding basic block using the OVBM. 

Figure 4.14 presents the cumulative energy consumed by the application up to and including the 

execution of the basic block on the X-axis. Combined, the graphs profile the energy consumed 

while the quicksort algorithm is applied to an array of 50 integers with values between 1 and 500 

initialized in a random order. Therefore, the execution time and total energy consumption is the 

highest for this QuickSort benchmark among the other QuickSort benchmarks presented. 

 
Figure 4.13 Estimated energy of all executed basic blocks in the Quicksort V6 

benchmark 

 
Figure 4.14 Cumulative estimated energy for the Quicksort V6 benchmark 

execution 
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Figure 4.15 presents graphically the estimated energy of each basic block executed by the 

ReadBMPBlock benchmark as generated by the tool. The X-axis represents the execution trace. 

The Y-axis represents the estimated energy of the corresponding basic block using the OVBM. 

Figure 4.16 presents the cumulative energy consumed by the application up to and including the 

execution of the basic block on the X-axis. These graphs clearly illustrate the execution of many 

basic blocks in a loop of 8 iterations that consume approximately 90% of the total energy consumed 

by the benchmark. The software developer would therefore be recommender to focus power 

optimization effort on these repeating basic blocks. 

 
Figure 4.15 Estimated energy of all executed basic blocks in the ReadBMPBlock 

benchmark 

 
Figure 4.16 Cumulative estimated energy for the ReadBMPBlock benchmark 

execution 
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Figure 4.17 presents graphically the estimated energy of each basic block executed by the DCT 

benchmark as generated by the tool. The X-axis represents the execution trace. The Y-axis 

represents the estimated energy of the corresponding basic block using the OVBM. Figure 4.18 

presents the cumulative energy consumed by the application up to and including the execution of 

the basic block on the X-axis. The energy profile generated demonstrates that approximately half 

the energy consumed by this benchmark is a result of executing basic blocks 5 and 8. Unlike in 

most benchmarks, most of the energy consumed resulted from executing these two basic blocks, 

which execute less frequently than the other basic blocks. 

 
Figure 4.17 Estimated energy of all executed basic blocks in the DCT benchmark 

 
Figure 4.18 Cumulative estimated energy for the DCT benchmark execution 
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Figure 4.19 presents graphically the estimated energy of each basic block executed by the Quantize 

benchmark as generated by the tool. The X-axis represents the execution trace. The Y-axis 

represents the estimated energy of the corresponding basic block using the OVBM. Figure 4.20 

presents the cumulative energy consumed by the application up to and including the execution of 

the basic block on the X-axis. These graphs demonstrate a steady energy consumption by the 

Quantize benchmark. Basic block 7 clearly consuming the most amount of energy. 

 
Figure 4.19 Estimated energy of all executed basic blocks in the Quantize 

benchmark 

 
Figure 4.20 Cumulative estimated energy for the Quantize benchmark execution 
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represents the estimated energy of the corresponding basic block using the OVBM. Figure 4.22 

presents the cumulative energy consumed by the application up to and including the execution of 

the basic block on the X-axis. These graphs demonstrate the simple execution and steady increase 

in energy consumption of the Zigzag benchmark. 

 
Figure 4.21 Estimated energy of all executed basic blocks in the Zigzag benchmark 

 
Figure 4.22 Cumulative estimated energy for the Zigzag benchmark execution 
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benchmark as compared to the other benchmarks presented. However, the total energy estimated 

using the proposed tool was only 8% below the accurate estimate found using the accurate low-

level tools. 

 
Figure 4.23 Estimated energy of all executed basic blocks in the Huffman Encoder 

benchmark 

 
Figure 4.24 Cumulative estimated energy for the Huffman Encoder benchmark 

execution 
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second order models is proportional to the number of instructions in the processor instruction set. 

Given an instruction set of 𝑛 instructions, first and second order models require estimating the 

energy consumed by 𝑛 and 𝑛2 instruction benchmarking applications, respectively. The effort 

required to develop an OVBM model depends on 𝑛 and on the size of the reference loop used to 

generate the LBEPs. Given a reference loop of 𝑚 instructions, 𝑛 × 𝑚 benchmarking applications 

are required to generate the base energy costs. A second set of 𝑛 × 𝑚 applications are required to 

generate the maximum energy variance. To model the energy impact of operands values, 30 

applications are used to model the impact of operand density and 60 applications are used to model 

the impact of alternating bit values. Therefore, the energy required to run a total of 2(𝑛 × 𝑚) +

90 benchmarking applications is needed to develop an OVBM. It is important to note however the 

process of generating these applications and simulating them using reference low-level models 

and tools is easy to automate. In fact, we used basic scripts running on three computers with multi-

core processors to continuously generate the benchmarking applications and run these simulations 

in parallel. 
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Chapter 5 

5 Conclusion and Future Work 

5.1 Conclusion 

In this study, we presented a novel dynamic energy modeling technique for soft processors in 

FPGA based on the operand values of instructions. We compared it to accurate but slow low-level 

models, efficient but inaccurate high-level state based models as well as other instruction level 

modelling techniques. We identified a critical weakness in the conventional method used to 

characterize the energy of instructions in instruction level models, and proposed an alternative 

characterization technique. We also proved the energy consumption of instruction in soft 

processors is greatly affected by the operand values. We identified two structures of instructions 

that depend on two different properties of the operand values. The Energy of heterogeneous 

sequences of instructions depend on the density of ones in the operand values. On the other hand, 

the energy of homogeneous sequences of shift instructions depend on the number of alternating 

bit values in the operand. The proposed technique utilized the novel instruction characterization 

technique and it accounted for inter-instruction effects and operand values to estimate the energy 

of instructions with high accuracy and efficiency. 

Furthermore, we present an automated tool designed to generate detailed energy reports for any 

given execution of an application using any instruction-level energy model. The tool operates in 

two phases. In the first phase, it analyzes the basic blocks and annotates the instructions of an 

application to generate an annotated executable. Using this executable, the user can run the 
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application as he would the original application, while the annotations trace the execution and 

operand values. Once the execution is complete, other annotations analyze the operand values used 

by all executed instructions, calculating the ones densities and alternating bit values. The 

estimation tool then uses this information in the second phase to generate reports, detailing the 

estimated dynamic energy consumed by the application.  

We validate the proposed approach by modelling the Microblaze soft processor using this 

technique as well as a low-level model, high-level state based model, and two state of the arts 

instruction-level models. We used all these models to estimate the energy consumed by a set of 12 

benchmarks with diverse distributions of operations, instructions, and operand values. By 

comparing the results, we prove the proposed technique is more than twice as accurate as state of 

the arts instruction-level techniques, and more than three times as accurate as high-level models. 

More importantly, we prove that the proposed technique can be used with great confidence with 

any type of application without calibrating the results. This approach also presents other 

advantages to software developers and system designers that are not possible using the low-level 

energy models or physical measurements. The granularity of the estimates can guide software 

optimization efforts for energy consumption. Furthermore, the presented approach generates 

estimates in up to 3 orders of magnitude faster than the accurate low-level estimation tools. 

Therefore, the proposed model can be used for thorough and extensive early design space 

exploration. 

5.2 Future Work 

In this thesis we presented an energy modeling and estimation technique for soft processors, and 

demonstrated its accuracy, efficiency, and granularity for estimating the energy consumed by a 

soft processor core. In the future, we aim to validate this approach for multiple processor systems 



   

 

87 

 

in FPGA. We also intend to incorporate the energy model and estimation tool presented in this 

thesis in a suite of early performance metrics estimation tools for embedded systems. Therefore, 

we wish to expand the estimation tool to estimate the timing performance using instruction-level 

performance estimation models such as the one presented in [37]. Being able to estimate the 

execution time, the tool would be able to generate both dynamic and static energy and power 

reports for the soft processors.  

Furthermore, we aim to incorporate energy models of other system components to the estimation 

tool to estimate system-level energy consumption. Such models include main memory, system 

buses, clock trees, and other system controllers. In addition, further work can be done to expand 

the modeling technique to estimate the energy of soft processors with different cache 

configurations.  
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