
AN OBSERVABLE DATA CACHE MODEL FOR FPGA

PROTOTYPING

PARTHASARATHY RAVISHANKAR

A Thesis

in

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science (Electrical and Computer Engineering)

at

Concordia University

Montréal, Québec, Canada

March 2013

© PARTHASARATHY RAVISHANKAR, 2013

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Parthasarathy Ravishankar

Entitled: “An Observable Data Cache Model for FPGA Prototyping”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. Rabin Raut

 __ Examiner, External

 Dr. Benjamin Fung To the Program

 __ Examiner

 Dr. Sofiene Tahar

 __ Supervisor

 Dr. Samar Abdi

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

______March 2013_____ ___________________________________

 Dr. Robin A. L. Drew

 Dean, Faculty of Engineering and

 Computer Science

iii

ABSTRACT

An Observable Data Cache Model for FPGA Prototyping

Parthasarathy Ravishankar

This work presents design of a configurable and observable model of L1 data cache memory

and a novel method for integrating the model into an FPGA prototype. Embedded system

software designers use in-circuit emulation on FPGA platforms to validate the functionality

and performance of embedded software. Data cache, particularly L1, has a major impact of

system performance, yet remains unobservable during software debugging and analysis. Our

solution is to model the data cache as an on-chip hardware peripheral that can be integrated

into the processor system and can display the state of the data cache at any given time. The

model is synthesized on Xilinx Virtex 5 FPGA and validated using several benchmarks. The

experimental results show that the model can accurately track cache hits and misses and can

estimate the run time of an embedded software application with an average error of only

5.4%, and a worst case error of only 13.7%.

iv

ACKNOWLEDGEMENTS

Foremost, I would like to express my gratitude to my supervisor Dr. Samar Abdi, for his

support, motivation and patience throughout my study and research. I thank him for his

generous contribution of time and expertise which guided me to successful completion of

Master’s thesis.

Besides my supervisor, I would like to thank the rest of my thesis committee members, Dr.

Sofiene Tahar and Dr. Benjamin Fung for their invaluable comments and questions. I also

thank Ted Obuchowicz - Engineering specialist, who was helpful every time I had

difficulties with my software.

I would also like to thank my fellow labmates: Zaid, Richard, Paul, Karim, Ali, Ehsan and

Kazem for your suggestions and all the discussions we had. It was always fun to work with

you guys. I thank all my greatest friends in Canada and KDs for always cheering me on.

Finally I would like to thank my wonderful parents, grandparents and brother for their

unconditional love and continuous support. My parents have been my biggest source of

inspiration and I cannot thank them enough for whatever they have done to me.

v

To my parents

vi

CONTENTS

List of Tables ... ix

List of Figures .. x

List of Acronyms ... xiii

List of Principal Symbols .. xiv

1 Introduction ... 1

1.1 Motivation ... 2

1.2 Embedded System Validation ... 2

1.2.1 Software simulation ... 2

1.2.2 FPGA Prototyping .. 3

1.3 Rationale for modeling direct mapped L1 data cache ... 3

1.4 Methodology .. 5

1.5 Related Work ... 7

1.5.1 Analytical model .. 7

1.5.2 Trace driven simulation .. 8

1.5.3 Single pass simulation .. 9

1.5.4 Partial trace simulation ... 10

1.5.5 High level simulation ... 12

1.5.6 Novelty of pCache .. 14

1.6 Thesis Contribution ... 15

1.7 Thesis Organization ... 16

2 Peripheral Cache ... 17

2.1 pCache - Interface .. 17

vii

2.2 pCache Architecture .. 18

2.3 Write Policies .. 19

2.3.1 Write through policy .. 19

2.3.2 Write back policy ... 20

2.4 Control Unit ... 21

2.5 pCache – Features .. 23

2.5.1 Write policy .. 24

2.5.2 Line size ... 24

2.5.3 Cache size ... 24

2.5.4 Cacheable address range .. 24

3 Functional Validation ... 25

3.1 Built-in cache based reference system .. 25

3.2 pCache based model .. 26

3.3 Validation of Write through mode .. 28

3.3.1 Read transactions ... 28

3.3.2 Write transactions ... 31

3.4 Validation of Write back mode ... 33

3.4.1 Read transactions ... 33

3.4.2 Write transactions ... 37

3.5 Validation using Software debugger ... 41

4 Timing Analysis .. 45

4.1 Bus Characteristics .. 46

4.1.1 PLB Behavior ... 46

4.1.2 XCL Behavior .. 47

4.2 Parameterized cache timing model .. 48

viii

4.3 Characterization of the Write through Cache .. 49

4.4 Characterization of the Write back Cache ... 50

4.5 Timing Validation ... 52

4.6 Run-time Estimation Error .. 64

4.6.1 Sources of Error ... 65

4.6.2 Error Reduction .. 66

4.7 Speed ... 67

4.8 Performance optimization using observable cache ... 68

4.9 Cache Design Exploration ... 71

5 Conclusion and Future work ... 76

Appendix .. 78

A.1 Cache Controller .. 78

B.1 Tag memory ... 91

References .. 96

ix

List of Tables

Table 1 The configuration parameters of pCache .. 23

Table 2 Average XCL delay in Write through cache ... 49

Table 3 Average XCL delay in 4-word Write back cache ... 50

Table 4 Average XCL delay in 8-word Write back cache ... 51

Table 5 Performance estimation of Dhrystone in 4-word WT data cache 52

Table 6 Performance estimation of Dhrystone in 8-word WT data cache 53

Table 7 Performance estimation of Quicksort in 4-word WT data cache 54

Table 8 Performance estimation of Quicksort in 8-word WT data cache 55

Table 9 Performance estimation of JPEG in 4-word WT data cache 56

Table 10 Performance estimation of JPEG in 8-word WT data cache 57

Table 11 Performance estimation of Dhrystone in 4-word WB data cache 58

Table 12 Performance estimation of Dhrystone in 8-word WB data cache 59

Table 13 Performance estimation of Quicksort in 4-word WB data cache 60

Table 14 Performance estimation of Quicksort in 8-word WB data cache 61

Table 15 Performance estimation of JPEG in 4-word WB data cache 62

Table 16 Performance estimation of JPEG in 8-word WB data cache 63

Table 17 Average error in timing estimation using pCache based model 65

Table 18 Comparison of run time of JPEG application ... 67

x

List of Figures

Figure 1.1 Processor-Memory gap [20] ... 1

Figure 1.2 Influence of associativity of cache on energy [P. Marwedel et al., ASPDAC,

2004] .. 4

Figure 1.3 Modeling methodology ... 5

Figure 2.1 Block diagram of pCache - processor bus interface. .. 17

Figure 2.2 Block diagram of pCache. .. 18

Figure 2.3 Flow chart describing write through policy. ... 19

Figure 2.4 Flow chart describing write back policy. .. 20

Figure 2.5 Control Unit FSM – Write through policy. .. 21

Figure 2.6 Control Unit FSM – Write back policy. ... 22

Figure 3.1 Block diagram of MicroBlaze core with built-in data cache 25

Figure 3.2 Block diagram of MicroBlaze core with pCache module. 26

Figure 3.3 Block diagram of datapath with pCache module .. 27

Figure 3.4 Read miss in 4 word WT built-in data cache .. 28

Figure 3.5 Read miss in pCache ... 28

Figure 3.6 Read hit in built-in WT data cache ... 30

Figure 3.7 Read hit in pCache .. 30

Figure 3.8 Consecutive writes in built-in WT data cache .. 31

Figure 3.9 Non consecutive write in built-in WT data cache .. 32

Figure 3.10 Non consecutive and consecutive write in pCache ... 33

Figure 3.11 Read hit in built-in WB data cache ... 34

Figure 3.12 Read hit in pCache .. 34

xi

Figure 3.13 Read miss (1 dirty) in built-in WB data cache ... 35

Figure 3.14 Read miss (1 dirty) in pCache .. 35

Figure 3.15 Read miss not dirty in built-in WB data cache ... 36

Figure 3.16 Read miss not dirty in pCache .. 37

Figure 3.17 Write hit in built-in WB data cache .. 38

Figure 3.18 Write hit in pCache ... 38

Figure 3.19 Write miss 1 dirty in built-in WB data cache ... 39

Figure 3.20 Write miss 1 dirty in pCache .. 39

Figure 3.21 Write miss not dirty in built-in WB data cache .. 40

Figure 3.22 Write miss not dirty in pCache ... 40

Figure 3.23 Result of the test code in 4 word built-in write back data cache model 42

Figure 3.24 Result of the test code in 4 word write back pCache based model. 42

Figure 3.25 Contents of the pCache. .. 43

Figure 4.1 Read and write operations to off-chip DDR memory via PLB 46

Figure 4.2 Plot of performance estimation of Dhrystone in 4-word WT data cache 53

Figure 4.3 Plot of performance estimation of Dhrystone in 8-word WT data cache 54

Figure 4.4 Plot of performance estimation of Quicksort in 4-word WT data cache 55

Figure 4.5 Plot of performance estimation of Quicksort in 8-word WT data cache 56

Figure 4.6 Plot of performance estimation of JPEG in 4-word WT data cache 57

Figure 4.7 Plot of performance estimation of JPEG in 8-word WT data cache 58

Figure 4.8 Plot of performance estimation of Dhrystone in 4-word WB data cache 59

Figure 4.9 Plot of performance estimation of Dhrystone in 8-word WB data cache 60

Figure 4.10 Plot of performance estimation of Quicksort in 4-word WB data cache 61

xii

Figure 4.11 Plot of performance estimation of Quicksort in 8-word WB data cache 62

Figure 4.12 Plot of performance estimation of JPEG in 4-word WB data cache 63

Figure 4.13 Plot of performance estimation of JPEG in 8-word WB data cache 64

Figure 4.14 Impact of Instruction Cache on Overhead .. 66

Figure 4.15 Address conflict in data cache (1) .. 69

Figure 4.16 Address conflict in data cache (2) .. 70

Figure 4.17 Design space exploration of 2KB data cache for JPEG 72

Figure 4.18 Design space exploration of 1KB data cache for JPEG 73

Figure 4.19 Design space exploration of 2KB data cache for Dhrystone 74

Figure 4.20 Design space exploration of 64B data cache for Dhrystone 74

Figure 4.21 Design space exploration of 256B data cache for Quicksort 75

file:///C:/Users/Partha/Dropbox/Report/Thesis%20drafts/draft_feb_v5.docx%23_Toc353807264
file:///C:/Users/Partha/Dropbox/Report/Thesis%20drafts/draft_feb_v5.docx%23_Toc353807265

xiii

List of Acronyms

FPGA Field Programmable Gate Array

SRAM Static Random Access Memory

L1 Level 1

TLM Transaction Level Modeling

ASIC Application Specific Integrated Circuit

DDR2 SDRAM Double Data Rate Synchronous Dynamic Random Access Memory

LRU Least Recently Used

ILA Integrated Logic Analyzer

CRCB Configuration Reduction approach by the Cache Behavior

CSR Control Status Register

FSM Finite State Machine

RNW Read Not Write

WT Write Through

WB Write Back

pCache Peripheral Cache

ICache Instruction Cache

DCache Data Cache

R/W Read or Write

BRAM Block Random Access Memory

UART Universal Asynchronous Receiver Transmitter

DLMB Data Local Memory Bus

ILMB Instruction Local Memory Bus

PLB Processor Local Bus

DXCL Data-Xilinx Cache Link

IXCL Instruction-Xilinx Cache Link

EDK Embedded Development Kit

JTAG Joint Test Action Group

XMD Xilinx Microprocessor Debugger

FSL Fast Simplex Link

xiv

List of Principal Symbols

Tpcache Run time in pCache based model

Test Estimated run time

Tbuilt-in Run time in built-in cache system

H Number of hits

M Number of misses

Txcl-hit Average time for hit via CacheLink

Txcl-miss Average time for miss via CacheLink

Tplb Average time for access via PLB

RH Number of read hits

RM Number of read misses

NCwr Number of non-consecutive writes

Cwr Number of consecutive writes

Nrf_cyc Number of refresh cycles

Trd Average time for read via PLB

Twr Average time for write via PLB

T’rh Average time for read hit via XCL

T’rm Average time for read miss via XCL

T’nc-wr Average time for non consecutive writes via XCL

T’c-wr Average time for consecutive writes via XCL

WH Number of write hits

WMnD Number of write miss not dirty

WMxD Number of write miss with x dirty bits

RMnD Number of read miss not dirty

RMxD Number of read miss with x dirty bits

T’wh Average time for write hit via XCL

T’wm-nD Average time for write miss not dirty via XCL

T’wm-xD Average time for write miss with x dirty bits via XCL

T’rm-nD Average time for read miss not dirty via XCL

T’rm-xD Average time for read miss with x dirty bits via XCL

1

CHAPTER 1

1 Introduction

The gap between processor performance and the time taken to access main memory keeps

growing continuously as shown in Figure 1.1 [20]. This increasing performance gap is a

major drawback in the overall computer system performance [20, 21].

Figure 1.1 Processor-Memory gap [20]

In order to bridge the gap, cache memory was introduced between the processor and the

memory. Cache is a small, fast, expensive memory made of SRAM, which reduces the

average time to access memory. Since fast memory is expensive, the memory hierarchy is

divided into multiple levels, such as registers, L1 cache, L2 cache, L3 cache and main

memory. Each level in the hierarchy is smaller, faster, and more expensive per byte than the

next lower level. The objective is to provide cost-effective and high performance memory

system.

2

1.1 Motivation

The size and configuration of L1 data cache in embedded processors have a great impact on

software performance. However, data caches are unobservable by the embedded software

designer. As such, it is difficult for the software designer to observe the cache state and

performance, for specific instances of code execution. Such feedback is useful to optimize

the software for improving cache hits [1]. Moreover, during design space exploration, it is

desirable to modify the cache configuration of a given processor core in order to evaluate

cache design choices. In order to accomplish the above objectives, we need a fast,

observable, configurable and timing accurate model of the data cache.

1.2 Embedded System Validation

Validation broadly refers to the process of determining that a design is functionally correct.

The two most commonly used methods for early system level validation are software

simulation and FPGA prototyping.

1.2.1 Software simulation

Software simulation refers to an event driven logic simulator that operates by propagating

input changes through the design to simulate the operation of the digital circuit [9]. Software

simulators use languages such as Verilog, VHDL and SystemC to describe the design and

verification environment. Cycle accurate software models of processor cores and the

memory hierarchy provide excellent observability. The cycle accurate models can also be

easily configured to reflect different design choices. However, it becomes extremely difficult

to model the processor subsystem, bus and the memory hierarchy altogether. Such cycle

accurate model requires large amounts of computing resources and time. Abstract software

3

simulation models, such as Transaction-level Models (TLMs), are very useful for early

system modeling, but they compromise cycle accuracy for greater simulation speed.

1.2.2 FPGA Prototyping

FPGA based prototyping refers to the process of prototyping SoC and ASIC design on

FPGA for hardware verification and early software development. FPGA prototypes are

created by instantiating the processor cores and other system components on an FPGA chip.

This technique enables pre-silicon embedded software development and allows hardware

and software co-development. Moreover, once the design process is over, the FPGAs are

ready for production, while ASICs take much longer time to reach production. As such, it

helps improve time to market window and avoids expensive silicon re-spin. FPGA

prototypes are typically, several orders of magnitude faster than cycle accurate software

simulation models, while still providing cycle accuracy. In-circuit emulation techniques can

be used to debug software and observe the addressable memory in FPGA prototypes.

However, L1 caches cannot be easily probed and observed in FPGA prototypes since they

are not bus-addressable.

1.3 Rationale for modeling direct mapped L1 data cache

The rationale for modeling direct mapped L1 data cache is

 We do not target the instruction cache (ICache) to be modeled, because the

performance of instruction cache is generally good. Instruction access pattern is

sequential and less random when compared to data access pattern. The effect of

change in configuration of ICache has less impact on the performance of software.

4

Figure 1.2 Influence of associativity of cache on energy [P. Marwedel et al., ASPDAC,

2004]

For example, increasing the block size of ICache will lead to increase in

performance.

 Direct mapped cache is preferred to set associative cache because direct mapped

cache is extremely quick to search and consumes less energy as shown by Figure 1.2

[33]. The set associative caches consume more energy which reduces the

performance of embedded systems.

 Level 1 (L1) cache has the greatest impact on system performance. As such,

embedded systems may have only L1 cache and ignore other hierarchy. Hence, the

pCache focuses on modeling L1 cache.

5

Model

 FPGA Chip

Off Chip DDR2 SDRAM

Processor

Processor bus

DDR

Controller

Timer

D
 C

a
c
h

e
 L

in
k

DCache ICache

I
C

a
c
h

e
 L

in
k

 FPGA Chip

Off Chip DDR2 SDRAM

Processor

Processor bus

DDR

Controller

Timer

ICache

I
C

a
c
h

e
 L

in
k

pCache

(a) Processor system with built-in cache (b) Processor system with pCache

Figure 1.3 Modeling methodology

1.4 Methodology

Figure 1.3 illustrates our modeling methodology. The target design of the processor system

with built-in L1 data cache (DCache) is shown in Figure 1.3 (a). The peripherals such as

timer and DDR controller are connected to the processor bus. There is also dedicated cache

link connecting the processor to the off chip memory. Upon cache miss, the block of data

corresponding to the missed address is fetched from the off chip memory over the dedicated

cache link. Software debuggers, typically, can display only the processor internal registers

and the contents of memories mapped on the processor bus. As such it is not possible to

display the cache state at run time using software debuggers. In order to provide an

observable cache to the embedded software designers, we model this system as shown

Figure 1.3 (b).

6

The pCache-based model consists of the processor system without a built-in data cache. In

the case of hard processor cores, the data cache can simply be disabled in software, since

most embedded processors provide instructions to turn off the data cache. The processor can

access data from off chip memory only through the processor bus. The pCache module is a

custom hardware component that interfaces to the processor using the processor bus. It

monitors the processor address signals and Read/Write signals in the processor bus to track

every data transaction targeted to the main memory, and to register a cache hit or miss.

Memory mapped registers within pCache are used to store the cached memory addresses and

are accessible using a software debugger. The run time of a software application in pCache

system will be higher because of the absence of built-in data cache and the missing cache

link. However, with the data from hit and miss counters we can derive the estimated run time

of the software application in processor system with built-in cache. The pCache module is

also configurable, enabling the designer to explore different cache architectures by changing

its parameters.

The advantages of a pCache based model are

 (i) Observability: an observable data cache model and a debugger can be used by

embedded software developers to easily identify code with poor cache behavior and explore

opportunities for code optimization.

(ii) At-speed simulation: since the cache model is built into the FPGA prototype, the

embedded software is executed on the actual processor, implemented as a soft or hard core in

FPGA. As such, there is no need to use a slow cycle accurate software simulation model of

the processor to generate the memory trace.

7

(iii) Easy reconfiguration: The processor, if available as soft-core, can be treated as a black

box. The cache model can be reconfigured without having to re-synthesize the processor in

FPGA. If the processor core is implemented as a hard core on the FPGA/board, the built-in

cache cannot be reconfigured. Therefore, for modeling purposes, the built-in cache can be

turned off and the pCache model can be used.

1.5 Related Work

There are different ways to model and simulate cache memory behavior. It can be broadly

divided into Trace driven simulation, Analytical model (trace analysis) and high level

functional simulation.

1.5.1 Analytical model

Analytical model uses parameters extracted from address trace of programs to quickly

predict the performance of cache. As such these models require a mechanism to collect

address trace and to store them. Such mathematical approach requires various assumptions

about the statistical properties of address traces and data use patterns to formulate analytical

equations.

Several analytical models [26, 27 and 28] have been proposed which are limited mainly to

analyzing perfect loop nests, with straight line assignments and no call statements in the

program. Xue et.al. [3] proposed an analytical model of data cache which is applicable to

whole programs, including loop nests. The model is applicable only to programs with

compile time predictable memory accesses, and so is less accurate for programs with data

dependent constructs.

8

An analytical cache model is proposed in [2] that analyses parameters extracted from the

address trace to predict average cache miss rate. The miss rate calculated from the model is

compared to the simulation results. Although the computation cost is low, the miss rate

predictions by the model are consistently lower than simulated miss rates for caches of size

8K through 32K. The mean relative error in miss rate for certain cache configuration is quite

significant at 23% and the worst case error in prediction is 39%.

In 2003, Ghosh et al. [19] proposed an analytical model of the cache combined with an

algorithm to compute cache parameters satisfying desired performance constraints. Their

objective was to obtain a set of optimal cache pairs (Depth, Associativity) for a given

number of desired cache misses. However, to limit the number of design points in design

space exploration, they do not consider the cache line size as a varying parameter. Likewise,

they have assumed fixed Least Recently Used (LRU) and write back cache policies. As such,

they have cache size and associativity only as varying configuration parameters.

1.5.2 Trace driven simulation

Trace driven simulation [25] has been the typical approach to evaluate cache performance. It

requires the application software to be simulated once to generate memory reference trace

(address trace). This address trace is then processed by a cache simulator for each cache

configuration that needs to be evaluated. The advantage of trace simulation is that it is more

accurate than the analytical model. However, processing only one configuration on each

simulation pass during design space exploration can prove to be tedious and time

consuming. Moreover, address traces that are very long requires large storage space

requirement and longer simulation time.

9

One such simulator is Dinero IV [11], in which there is no notion of simulation time or

cycles. It just gives information on hits and misses for an address trace. It also has the

drawback of requiring repeated simulation runs resulting in lengthy design space exploration

time. In 2012, Atanasovski et al [12] proposed a highly configurable trace driven cache

simulator MMCacheSim. The simulator, implemented as a set of java classes predicts the

performance of multiple levels of cache. In order to validate, they compare the average CPU

cycles for memory access in the simulator and in real multiprocessors. The results show that

the simulated values are not very accurate and there is no discussion on the actual error

percentage. Moreover, the simulator is specific to matrix related applications and is not

validated against standard benchmarks.

1.5.3 Single pass simulation

In order to overcome the disadvantage of repeated cache simulation in conventional trace

driven simulation, the single pass simulation technique based on inclusion property [13] was

first proposed by Mattson et al. An efficient Stack data structure was used to determine the

performance of multiple cache architectures in one pass of the address trace. In 2010, Haque

et al developed a single pass L1 cache simulator, SCUD [14]. It has a special data structure

that is made up of Central look-up table, binomial tree and miss counter table to calculate the

cache miss rate of an application trace. The central look-up table holds hit/miss information

of memory addresses for all possible cache configurations. The SCUD uses several

properties of its data structure like binary search and binomial tree to simplify the decision

making process during simulation. Simulation times for various benchmarks are compared to

the simulation time in conventional Dinero IV [11] cache simulator. It shows an average

10

speed up of 10 times over Dinero IV. However, for memory intensive workloads like

Mpeg2, the SCUD simulation time is as high as 6.5 hours.

In order to further decrease the time complexity of simulation during design space

exploration of caches, Janapsatya et al. [15] proposed a simulation algorithm based on Cache

Inclusion properties. The basic idea of the approach in [15] is, given two caches with same

associativity using LRU replacement policy, the following are applicable.

 Whenever a cache hit occurs, all caches that have larger set sizes will also guarantee

a cache hit.

 Whenever a cache miss occurs, all caches that have smaller set sizes will also

guarantee a cache miss.

The time complexity of finding the best configuration among all the cache configurations by

this approach is reduced by skipping simulation based on the above assumptions. The results

of this method are consistent with the Dinero IV [11] simulator, and have an average speed

up of 45 times over the later. In 2009, Tojo et al. [6] proposed CRCB1 and CRCB2

algorithm to improve Janapsatya’s [15] simulation approach. Both the cache simulation

algorithms are based on Cache inclusion property. It reduces the number of hit/miss

judgements that are required for simulating all the cache configurations compared to

conventional full trace simulation approaches. The cache configuration with minimum total

memory access time is obtained by analyzing the stored address trace only once.

1.5.4 Partial trace simulation

Many partial address trace simulation techniques to simulate the cache architectures are

available. They do not simulate the entire length of address trace, leading to an increase in

11

simulation speed. Statistical trace sampling techniques to form smaller clusters of trace have

been proposed. But it leads to the problem of cold start bias, in which there is no consistency

in state of the cache from one cluster to other. The accuracy of such cache simulation

techniques depends on the method used for repairing the state of the cache at the beginning

of each sample.

To solve the above state repair problem, Conte et al. [4] proposed two techniques fill flush

and no state loss. The first technique fill flush is based on Stone’s approach [16] to the single

pass technique. In fill flush approach, unique references with unknown cache state are

removed from the address trace. The miss ratio for a cache configuration by this method is

expressed as,

where [C,B,S] is the notation used to represent the dimension of a cache of size 2
C

bytes,

with a block size of 2
B
 bytes and 2

S
 blocks in each set. N is the total number of references

and R[B] is the total number of recurrences (hits) for block size B. D[C,B,S] is the total

number of dimensional conflicts (misses) for that particular configuration. F[B] is the

number of references whose cache state is unknown. The fill flush method is fast, because

only small clusters of trace are simulated. However, since the cache is flushed at the

beginning of each cluster and references with unknown cache state are removed from

calculating the miss ratio, the method is not very accurate. In the no state loss method,

statistical sampling is applied only to the conflict metric D and R[B] and N are recorded for

the whole trace. The miss ratio for this method is calculated as,

12

where Ns is the number of sampled clusters each of length Ls. The advantage of this method

is the state of all the references within the sample is known since state of the cache is

maintained throughout simulation. On average only 6% of the address trace is sampled in

this method. Since most of the trace is processed, this method is accurate but very slow.

To overcome the state repair problem arising from sampling the address trace, X.Li et al.

[17] proposed cache simulation using compressed traces. This technique is based on

SEQUITUR algorithm [18] for trace compression and cache inclusion properties. The

SEQUITUR algorithm identifies the repeating memory reference sequences present in the

trace. Cache simulation for each repeating sequence is performed only once, leading to

significant reduction in simulation time. This lossless compression scheme produces

accurate cache hit/miss results. But the downside of this technique is that, the compression

ratio will be very less if there are very few repetitive patterns.

Space sampling and time sampling techniques on address trace are propose by Chen et al.

[7]. Although they reduce space and time requirements in trace driven simulation, the

estimation of Miss per Instruction (MPI) by space sampling is not consistently accurate. For

instance, Eqnott benchmark reports an error of 37.75%. The time sampling is applicable to

loop iterations only and requires additional pre-processing to detect loops.

1.5.5 High level simulation

Transaction Level Modeling (TLM) [29] is the widely used approach for system modeling

and simulation. This increased level of abstraction in system modeling can increase the

13

simulation speed by two or three orders of magnitude compared to conventional Instruction

Set Simulator approach. In TLM, the source program is back annotated with execution delay

information of the target processor. This annotated program is then compiled and executed

on the host machine. The total execution time can be estimated by summing up the

annotated timing numbers.

Early transaction level model [30] provides increased simulation speed, but do not model the

behavior of cache during execution delay estimation. Such model compromises timing

accuracy for greater speed. Fast Veri [31] a product of InterDesign Technologies, uses a

high speed TLM model for hardware/software co-simulation. In order to maintain timing

accuracy, the program is back annotated with delays from their cache model. However, their

work is proprietary and not easily extendable for other transaction level models.

Pedram et al. [8] extended the transaction level model in [30], by integrating a cache model

into a TLM. The address information obtained from synthesized target binary and the basic

block timing information obtained from ISS is used in back annotated cache calls. The

model dynamically updates its status and returns appropriate delay for each access. The

disadvantage is the process of inserting cache calls is done manually. Experimental results

for only a simple matrix multiplication program is provided. As such, the method has not

been demonstrated on realistic benchmark applications.

Pieper et al. [7] performed high level cache simulation by back annotating the original trace

with memory access delays. They used stack distance histogram which records the delay

since last reference to an address and this data is used to simulate the behavior of cache.

Since the delays for each memory address is too large for back annotation, they proposed

14

compression techniques to reduce the size required to store the data inside a histogram.

However, the accuracy for large direct mapped cache is poor. The worst case miss prediction

error for a 2KB direct mapped cache is 337%.

Lin et al. [32] proposed source level timing annotation for generating accurate TLM model.

The source program is divided into basic blocks and annotated with timing information.

Moreover, by analyzing the assembly code through a target processor model, they take into

account features like pipeline, branch prediction and cache architectures. However, since the

target assembly code is not executed, the exact address of data access is unknown. As such,

they use average cycle number to model the delay of each data access. Hence, their data

cache model does not precisely calculate the data cache access latency.

1.5.6 Novelty of pCache

The pCache based model is novel and provides significant improvement over existing

models as explained below.

 Analytical models of cache extract parameters from the stored address trace for

computation. Such models are fast, but the estimation is highly error prone. In

contrast, the pCache model is fast, accurate and does not require storing address

trace.

 Trace driven simulation is an accurate method to evaluate cache performance, but the

simulation runs are very long. Since only one configuration can be processed in each

simulation pass, it is prohibitively slow to be used in design space exploration. In

contrast pCache is fast and can be easily used in cache design space exploration.

15

 Single pass simulation technique evaluates multiple cache configurations in single

run. It is faster than conventional trace driven simulation but slower compared to

pCache model.

 Partial trace simulation applies sampling technique to reduce the length of address

trace to be simulated. But it leads to cache cold start problem that make such

simulations inaccurate. In contrast, pCache can be used which is fast and accurate.

 Transaction level model of cache is fast compared to other simulation techniques, but

is not cycle accurate. Alternatively, pCache is fast and cycle accurate.

1.6 Thesis Contribution

In this thesis, we present an observable cache model called pCache that can be used in FPGA

prototyping. A pCache based model combines the observability of software simulation with

the speed and cycle accuracy of FPGA prototyping. The contributions of this work are,

 We designed and implemented a cycle accurate, observable and fast functional model

of L1 data cache on the FPGA, which is a new technique not currently possible with

bus analyzers. The module can be integrated into a prototype of a processor system

on an FPGA.

 The model is several orders of magnitude faster than conventional software

simulation. Examples show FPGA based model can simulate designs in milliseconds

as opposed to several hours in software simulation.

 A highly configurable pCache model which allows us to create models of direct

mapped, L1 caches of any size, of any block size, with write through and write back

techniques.

16

 We developed a parameterized timing model of the cache for accurate performance

estimation of embedded software, with different cache configuration.

 A methodology for cache design space exploration using the timing model.

 Demonstration of software optimizations such as loop splitting and fusion using the

observable cache model.

1.7 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we outline the design of the

peripheral cache, called pCache, and its features. In chapter 3, the built-in cache based

reference design and pCache based model is introduced. A complete functional validation of

both the write policies, write through and write back, is also presented. A detailed timing

analysis of the pCache based model is presented in Chapter 4. The parameterized cache

timing model and equations to estimate overhead in pCache model are also presented.

Timing validation against standard benchmarks is shown in section 4.5.

17

CHAPTER 2

2 Peripheral Cache

In this chapter, the architecture of the peripheral cache (pCache), its various features and

interface are described in detail.

2.1 pCache - Interface

Hit_out

P
ro

ce
ss

o
r_

b
u

s

Addr_Bus

RNW

Addr_Valid

pCacheProcessor

Timer

 Cache

DDR

Controller

Instruction

Inst_Valid

Figure 2.1 Block diagram of pCache - processor bus interface.

Figure 2.1 shows the interface between pCache and the processor bus. The pCache module is

connected as a slave peripheral to the processor bus. The input signals to the pCache are

Instruction bus, Instruction valid, Address bus, Read/Write and Address valid. The result of

the data access (hit/miss) is shown by the Hit out output signal from pCache.

18

2.2 pCache Architecture

hit_out

pCache

CSR

Control Unit

Hit & Miss counters

Tag Memory

Addr_Bus

RNW

Addr_Valid

T
a

g

In
d

e
x H

it

M
is

s

Block Addr

H Cntrs (RH,WH)

M Cntr (RM)

M_D Cntrs(WMxD, RMxD)

M_nD Cntrs(WMnD, RMnD)

Wr Cntrs (NCwr, Cwr)

Block 1

Block N-1

Block N

Slave Registers

Count data

Inst_Valid

Instruction

Figure 2.2 Block diagram of pCache.

Figure 2.2 shows the block diagram of direct mapped pCache. pCache consists of the

following sub modules: Slave registers, Control Unit, Tag Memory, Control Status Register

(CSR) and Hit and Miss Counters. CSR is a 32 bit control register for pCache that allows the

processor to Reset, Enable and Disable pCache. Tag Memory is a 2D array of registers that

store the tags of memory locations being accessed. The pCache model does not store the

actual data being cached but stores only the address of the memory locations being accessed.

Hence, we are not interested in tracking any of the data signals in the processor bus. In order

to display the contents of the cache, we write the address of the first location of the block of

19

memory on to slave registers labeled Block 1 to Block N in Figure 3. Cache timing

parameters are kept in specific slave registers: H Cntrs (hit counters), M Cntr (miss counter),

M_D Cntrs (miss-dirty counters), M_nD Cntrs (miss-not-dirty counters) and Wr Cntrs (write

counters). We will elaborate on the timing parameters in Section 4.2.

2.3 Write Policies

The write policies on write hit distinguish cache designs into Write Through and Write Back

caches.

2.3.1 Write through policy

Memory

Request

Request

type

Cache Hit ? Cache Hit ?

Read data

from lower

memory into

cache

Return Data

Write data into

cache

Write data into

lower memory

Done

Write Read

Yes

No

No

Yes

Figure 2.3 Flow chart describing write through policy.

The operation of write through policy is explained by the flow chart shown in Figure 2.3.

When a write hit occurs, the data is updated both in the cache and main memory. On a write

miss, the data is written directly into the main memory. On a read miss, the existing block in

20

cache is replaced by a new block from the main memory. The advantage of this method is

that the main memory always has the most recent value of the data. But this makes write

slower, since every write requires a main memory access.

2.3.2 Write back policy

Memory

Request

Request

type

Cache Hit ? Cache Hit ?

Write Read

Identify cache

block to use

Is it Dirty ?

Identify cache

block to use

Is it Dirty ?

Update data in

lower memory

Update data in

lower memory

Write new data

into the cache

block

Read data from

lower memory into

the cache

Mark cache block

as not dirty

Return data

Mark cache block

as dirty

Done

No

Yes

No

No

Yes

Yes

No
Yes

Figure 2.4 Flow chart describing write back policy.

Figure 2.4 describes the procedure for write back policy. On a write hit, the data is modified

in the cache and the dirty bit is set high. On a write miss, the selected cache block’s dirty bit

is checked. If dirty, the modified block of data is updated in the memory and is replaced with

21

a new block. Similarly on a read hit, the data is read from the cache and on a read miss, the

data is updated in the memory if dirty bit is high. Else it is replaced by a new block from the

main memory and marked not dirty.

2.4 Control Unit

The pCache Control Unit models the write through and write back behaviors described in

section 2.3. The Control Unit is responsible for tracking address and Read/Write signals in

the processor bus and updating the pCache state. The operation of Control Unit is described

using finite state machines shown in Figure 2.5 and 2.6. We define four states that the

system may be in while running: Check R/W, Read, Write, and Tag_mem update. Control

signals are assigned specific values in each of the states.

Check

R/W

Read

Tag

mem

Update

Write

R
N
W

H
it

~ R
N
W

M
is

s

New address

Figure 2.5 Control Unit FSM – Write through policy.

Figure 2.5 shows the FSM that implements write through policy. Upon receiving a new valid

address, the controller checks the RNW signal. If RNW is ‘1’ the controller goes to Read

state where the tag memory is checked to know if the requested data is cached. The

22

controller waits until it receives hit/miss signal from the tag memory. Upon receiving miss,

the miss counter is incremented, and the controller moves to Tag_mem update state. The tag

memory is updated and the system returns to Check R/W state. Upon receiving hit, the hit

counter is incremented and the system returns to Check R/W state. If RNW is logic ‘0’ the

controller goes to Write state. In this state, it waits for the arrival of hit/miss signal from the

Tag memory. Upon receiving hit/miss result, the respective counters are incremented and the

controller returns to Check R/W state irrespective of hit or miss.

Check

R/W

Read

Tag

mem

Update

Write

M
is

s

~ R
N
W

R
N
W

H
it

H
it

Miss

New address

Figure 2.6 Control Unit FSM – Write back policy.

Figure 2.6 shows the FSM that implements write back policy. Upon receiving a new valid

address, the controller checks the RNW signal. If RNW is ‘1’ the controller goes to Read

state where the tag memory is checked to know if the requested data is cached. Upon hit, the

hit counter is incremented and the controller returns to Check R/W state. Upon miss, the miss

counter is incremented and the controller moves to Tag_mem update state where the tag

memory is updated. If RNW is logic ‘0’, the system moves to Write state. The tag memory is

23

checked and the controller waits for the hit/miss result. Upon hit, the hit counter is

incremented and the system returns to Check R/W state. Upon miss, the miss counter is

incremented and the controller moves to Tag_mem update state. The tag memory is updated

and the system returns to Check R/W state.

2.5 pCache – Features

The pCache module has user configurable parameters that can be used to describe the

behavior of pCache model. It can be configured before synthesis using the parameters shown

in Table 1. The parameters and its corresponding features are described below. The design

of pCache makes it generic enough to be used with most buses. The configurability makes it

flexible enough to model most direct mapped cache architectures used in embedded systems.

Table 1 The configuration parameters of pCache

Parameter Description Possible values
Default

value

write_select

Write policy

1 = Write through

0 = Write back

0, 1 1

cache_line_size Cache line length 4, 8 4

index_bits
Number of rows in

cache
1 - 7 4

mem_addr_size
Size of DDR2

memory
6 - 28 14

mem_base_addr
Base address of

DDR2 memory
0xXXXXXXXX

User

defined

24

2.5.1 Write policy

The parameter write_select is used to select the write policy in pCache. When set to ‘1’,

write through policy is selected and when set to ‘0’, write back policy is selected.

2.5.2 Line size

Each cache block in pCache can hold 4 or 8 words of data. The size of the block in pCache

module can be configured by the parameter cache_line_size.

2.5.3 Cache size

The size of the pCache (number of rows) can be modified using index_bits parameter. The

pCache can hold 2
index_bits

 rows. To demonstrate the operation of pCache, we have chosen the

possible values to this parameter to be in the range of 1 to 7. This translates to cache size of

64 Bytes to 2K Bytes. However, the pCache can also have size more than 2KB.

2.5.4 Cacheable address range

The parameters mem_addr_size and mem_base_addr are used to determine the cacheable

address range of the main memory. The parameter mem_base_addr represents the base

address assigned to the off-chip DDR2 memory.

25

CHAPTER 3

3 Functional Validation

In this chapter, we validate the functional correctness of the pCache model manually by

comparing its cycle accurate simulation to that of the reference design with built-in cache.

Chipscope Pro Analyzer with an ILA (Integrated Logic Analyzer) core was used to validate

and debug the pCache model.

3.1 Built-in cache based reference system

MicroBlaze Core

BRAM

(I Cache & D Cache)

DDR2 SDRAM

IXCLDXCL

UART

Timer

PLB

dlmb ilmb

Figure 3.1 Block diagram of MicroBlaze core with built-in data cache

Figure 3.1 is the design of MicroBlaze based system with built-in data cache and instruction

cache, similar to the one shown in Figure 1.3 (a). On-chip Block RAM connected to the

MicroBlaze processor by data local memory bus (dlmb) and instruction local memory bus

(ilmb) is utilised to implement the cache. When a new data is requested, the built-in cache

26

controller performs a lookup on the tags to check if the requested data is currently cached.

On a cache miss, the built-in controller requests the new data block over data CacheLink

(DXCL). The Universal Asynchronous Receiver Transmitter (UART) connects to the PLB

and provides the interface for asynchronous serial data transfer between the system on FPGA

and the HyperTerminal. The timer connected to PLB is used to measure the runtime of the

embedded software executed by the processor.

3.2 pCache based model

MicroBlaze Core

BRAM

(I Cache)

DDR2 SDRAM

ilmb IXCL

UART

Timer

PLB

pCache

Figure 3.2 Block diagram of MicroBlaze core with pCache module.

Figure 3.2 is the model with pCache attached to the PLB as a peripheral, similar to the one

shown in Figure 1.3 (b). Since the data cache is disabled, there is no DXCL bus in this

model. The MicroBlaze processor accesses data from the main (DDR) memory via PLB.

Instructions are fetched by the processor from the main memory via IXCL bus. Figure 3.3

shows the actual block diagram of datapath with MicroBlaze processor and the slave

peripherals including pCache, timer and the UART.

27

Figure 3.3 Block diagram of datapath with pCache module

The pCache design was implemented on a Xilinx Virtex 5 XC5VLX110T FPGA. The Xilinx

Embedded Development Kit (EDK) supports debugging of a program on MicroBlaze

processor running on an FPGA. The JTAG interface on board is used to communicate with

the design and to capture internal bus signals via Chipscope bus analyzer. The trigger setup

in Chipscope was configured to capture specific data in the design. The captured data in

Chipscope is used to validate the pCache model against the reference design. The time for

completion of a transaction shown in the following section, is specific to the particular case

under consideration. The average delays for different types of transactions are discussed in

Chapter 4.

28

3.3 Validation of Write through mode

3.3.1 Read transactions

Listing 1. Sample code to test read miss in WT cache

XIo_In32(0x90001A20); //Read miss

 imm -28672

 addik r3, r0, 6688

 lwi r3, r3, 0

XIo_In32(0x900019AC); //Read miss

imm -28672

addik r3, r0, 6572

lwi r3, r3, 0

Figure 3.4 Read miss in 4 word WT built-in data cache

Figure 3.5 Read miss in pCache

29

Listing 1 shows the code to test read miss transaction in write through data cache. The

XIo_In32 and XIo_Out32 macros read and write 32 bit data, respectively, into the memory.

The assembly instructions that make up the macro are also shown in the listing 1. A 4 word

data cache of size 256B is used for the test case. The first read operation to memory location

0x90001A20 results in a miss. The second read operation to memory location 0x900019AC,

which is mapped to the same cache block as the previous address, also results in a miss.

Figure 3.4 and Figure 3.5 shows the screenshot of read miss on data address 0x900019AC,

in built-in data cache and pCache model respectively. The circled portion in Figure 3.4

shows 4 words of data being fetched over DXCL bus on a read miss. Pointers O and X point

to the start and finish time of the data fetch. The missed data is read from off-chip memory

in 32 clock cycles. Read miss in pCache is shown in Figure 3.5 by the highlighted signal

hit_out. The hit signal remains low and takes 35 cycles to read data from main memory via

PLB.

Listing 2. Sample code to test read hit in WT cache

XIo_In32(0x90005400); //Read miss

imm -28672

addik r3, r0, 21504

lwi r3, r3, 0

XIo_In32(0x90005408); //Read hit

imm -28672

addik r3, r0, 21512

lwi r3, r3, 0

Listing 2 shows the code to test read hit transaction in 4 word write through cache. The first

read operation to memory location 0x90005400 results in a miss. The new block of data

consisting 4 words is fetched into the data cache. The second read operation to memory

location 0x90005408 results in a hit in data cache.

30

Figure 3.6 Read hit in built-in WT data cache

Figure 3.7 Read hit in pCache

Figure 3.6 and Figure 3.7 shows the screenshot of read hit on data address

0x90005408, in built-in data cache and the pCache model respectively. We can see the

Trace_Dcache_Hit signal in built-in data cache and hit_out signal in pCache model go high

for this memory transaction. We note, read hit takes 2 cycle delay in built-in data cache and

in pCache model, it takes 35 cycles to complete the read from main memory via PLB.

31

3.3.2 Write transactions

Listing 3. Sample code to test consecutive writes in WT cache

asm("swi r5, r19, 48"); //Write to 0x900019E8

asm("swi r6, r19, 52"); //Write to 0x900019EC

asm("swi r7, r19, 56"); //Write to 0x900019F0

asm("swi r8, r19, 60"); //Write to 0x900019F4

Listing 4. Sample code to test non consecutive write in WT cache

XIo_Out32(0x9000540C, 0x12345FDA); //Write to 0x9000540C

imm -28672

addik r4, r0, 21516

imm 4660

addik r3, r0, 24538 // 0x12345FDA

swi r3, r4, 0

Listing 3 shows the assembly code to test consecutive write operation in write through data

cache. Since XIo_Out32 macro consists of both arithmetic instructions and store instruction,

we cannot use it to have consecutive write to main memory. Hence, we use the store

instruction swi to generate four consecutive write to memory addresses 0x90019E8,

0x900019EC, 0x900019F0 and 0x900019F4.

Figure 3.8 Consecutive writes in built-in WT data cache

32

Figure 3.9 Non consecutive write in built-in WT data cache

Listing 4 shows the code to test non consecutive write in write through cache. The

data 0x12345FDA is written to memory location 0x9000540C. The swi instruction in the

macro follows an arithmetic instruction addik. Figure 3.8 and Figure 3.9 show the screenshot

of consecutive and non–consecutive writes in built-in data cache respectively. Since write to

the write through cache always result in write to the main memory, the bus protocol used in

write through policy does not set hit signal to high even if it results in a hit. In the Figure 3.8,

we can see a sequence of writes to main memory via DXCL bus. The pointers in Figure 3.8

show the write operation to memory address 0x900019F4, that has a delay of 14 clock

cycles. The non consecutive write to memory address 0x9000540C shown in Figure 3.9 has

3 cycles delay. The reason for the difference in delay between consecutive and non

consecutive write is discussed under the heading characterization of write through cache in

section 4.3.

Listing 5 shows the code to test non consecutive and consecutive write in write

through pCache. The first write operation to memory address 0x9000540C is a non

consecutive write which follows an addik instruction. The second write instruction to

33

Listing 5. Sample code to test write in WT pCache

XIo_Out32(0x9000540C, 0x12345FDA); //Write to 0x9000540C

imm -28672

addik r4, r0, 21516

imm 4660

addik r3, r0, 24538 // 0x12345FDA

swi r3, r4, 0

 asm("swi r5, r19, 48"); // Write to 900022AC

Figure 3.10 Non consecutive and consecutive write in pCache

memory address 0x900022AC is a consecutive write to main memory. Figure 3.10 shows the

screenshot of non-consecutive and consecutive write in the pCache model. The pointers

show a write transaction to memory address 0x9000540C. We can see, both the types take

11 cycles only to complete the write into main memory via PLB.

3.4 Validation of Write back mode

3.4.1 Read transactions

Listing 6. Sample code to test read hit in WB cache

XIo_In32(0x90006800); //Read miss

XIo_In32(0x90006804); //Read hit

34

Figure 3.11 Read hit in built-in WB data cache

Figure 3.12 Read hit in pCache

Listing 6 shows the code to test read hit in 4 word write back cache. The first read operation

to memory address 0x90006800 results in a miss. The corresponding block of data from

main memory is fetched into the data cache. The second read operation to memory address

0x90006804 results in a hit in data cache. Figure 3.11 and Figure 3.12 shows the screenshot

of read operation to memory address 0x9000540C, in built-in write back data cache and

pCache respectively. The transaction results in a cache hit in both the models. The pointers

X and O show the start and end of the read transaction. We note from the screenshot, the

read hit in built-in data cache via DXCL bus takes 2 cycles only to be executed and 35 cycles

via PLB in pCache model.

35

Listing 7. Sample code to test read miss (1D) in WB cache

XIo_In32(0x9000230C); //Read miss

XIo_Out32(0x90002300, 0x8544539A); //Write hit

XIo_In32(0x90005400); //Read miss 1D

Figure 3.13 Read miss (1 dirty) in built-in WB data cache

Figure 3.14 Read miss (1 dirty) in pCache

Listing 7 shows the code to test read miss with 1 dirty bit in 4 word write back data

cache. The first read operation to memory address 0x9000230C results in a cache miss and a

block of data is fetched into the data cache. The second write operation modifies the data in

the cache block. The next read operation to memory address 0x90005400 results in a miss

36

with 1 dirty word. Figure 3.13 and Figure 3.14 shows the screenshot of read transaction in

built-in write back data cache and pCache model respectively. The read to memory address

0x90005400 results in a miss with 1 dirty bit in both the models. Note the signal hit_out in

Figure 3.14, which is low in the region between the pointers X and O. The circled portion in

Figure 3.13 shows the modified data in the cache block being written back to main memory

before it is replaced with a new block. We see the time for read miss with 1 dirty bit to be 33

cycles in built-in data cache and 35 cycles in pCache model.

Listing 8. Sample code to test read miss notD in WB cache

XIo_In32(0x90003120); //Read miss

XIo_In32(0x9000302C); //Read miss not Dirty

Figure 3.15 Read miss not dirty in built-in WB data cache

Listing 8 shows the code to test read miss no dirty in 4 word write back data cache.

The first read operation to memory address 0x90003120 results in a read miss in data cache.

The next read operation to memory address 0x9000302C which maps to the same cache

block, results in a read miss with no dirty bit. Figure 3.15 and Figure 3.16 shows the

screenshot of read transaction in built-in write back data cache and pCache models

37

Figure 3.16 Read miss not dirty in pCache

respectively. The read to memory address 0x9000302C results in a miss with no dirty bits in

both the models. Since the block of data that is replaced in the cache is not dirty, we do not

find any data being written back to main memory in Figure 3.15. The new block of data that

is being fetched from the main memory to data cache is shown by the circled region in

Figure 3.15. We see the time for read miss with no dirty bits to be 39 cycles in built-in data

cache and 35 cycles in pCache model.

3.4.2 Write transactions

Listing 9. Sample code to test write hit in WB cache

XIo_In32(0x90003004); //Read miss

XIo_Out32(0x90003000, 0x12825678); //Write hit

Listing 9 shows the code to test write hit in 4 word write back data cache. The first read

operation to memory address 0x90003004 results in a miss in data cache. The corresponding

block of data is fetched from main memory to data cache. The write operation to memory

address 0x90003000 results in a hit in data cache. Figure 3.17 and Figure 3.18 shows the

screenshot of write transaction in built-in write back data cache and pCache models

38

Figure 3.17 Write hit in built-in WB data cache

Figure 3.18 Write hit in pCache

respectively. The write to address 0x90003000 in main memory results in a hit in both the

models. The hit signals, Trace_Dcache_hit and hit_out are set high in the region between the

pointer X and O. We see the time for write hit to be 2 cycles in built-in cache and 11 cycles

in pCache model.

Listing 10. Sample code to test write miss (1D) in WB cache

XIo_Out32(0x90005410, 0x12300678); //Write hit

XIo_Out32(0x90003010, 0x12300678); //Write miss 1D

39

Figure 3.19 Write miss 1 dirty in built-in WB data cache

Figure 3.20 Write miss 1 dirty in pCache

Listing 10 shows the code to test write miss with 1 dirty bit in 4 word write back data

cache. The first write operation to memory address 0x90005410 results in a cache hit and the

data is modified in the cache. The second write operation to memory address 0x90003010

which maps to the same cache block, results in a miss with 1 dirty bit. Figure 3.19 and

Figure 3.20 shows the snapshot of write transaction in built-in write back data cache and

pCache models respectively. The write to address 0x90003010 in main memory results in a

miss in cache with 1 dirty bit. The circled portion in Figure 3.19 shows the modified data in

40

cache being written back to main memory before it is replaced by a new block. The hit_out

signal in the pCache model shown in Figure 3.20 is low in the region between the pointers X

and O. We see the time for write miss with 1 dirty bit to be 7 cycles in built-in cache and 11

cycles in pCache model.

Listing 11. Sample code to test write miss notD in WB cache

XIo_Out32(0x90003180, 0x12300678); //Write miss

XIo_Out32(0x90003080, 0x12345FDA); //Write miss notD

Figure 3.21 Write miss not dirty in built-in WB data cache

Figure 3.22 Write miss not dirty in pCache

41

Listing 11 shows the code to test write miss with no dirty bits in write back data

cache. The first write operation to memory address 0x90003180 results in a miss in data

cache. The write operation to memory address 0x90003080 which maps to the same cache

block, results in a miss with no dirty bits. Figure 3.21 and Figure 3.22 shows the screenshot

of write transaction in write back data cache and pCache models respectively. The write to

address 0x90003080 in main memory results in a miss with no dirty bits in both the cache

models. Upon write miss with no dirty bits, the bus protocol used in write back policy sets

the hit signal Trace_Dcache_hit to high in the built-in data cache model. This can be seen in

Figure 3.21shown by the pointer X. But in the case of pCache model, the hit_out signal is at

logic 0 during similar scenario. We see the time for write miss with no dirty bits to be 2

cycles in built-in data cache and 11 cycles in pCache model.

3.5 Validation using Software debugger

The Xilinx Microprocessor Debugger (XMD) provided by EDK is used to debug programs

running on the FPGA. We used the sample code shown in Listing 12 to validate the

correctness of pCache model. Software breakpoints were set and the contents of memory

mapped registers were tracked using the software debugger.

Listing 12. Sample code used in functional validation

XIo_In32(0x90005400); //Read miss (A)

XIo_Out32(0x9000540C, 0x12345FDA); //Write hit (B)

XIo_Out32(0x90005410, 0x12300678); //Write miss (C)

XIo_In32(0x90005408); //Read hit (D)

XIo_In32(0x90005420); //Read miss (E)

XIo_Out32(0x90005434, 0x12300678); //Write miss (F)

42

The first memory transaction A, reads address 0x90005400 which is not cached. This results

in a cache read miss. Transaction B writes data 0x12345FDA into the address 0x9000540C.

Since the cache block holds 4 words, (0x90005400, 0x90005404, 0x90005408 and

0x9000540C) transaction B results in a write hit. Transaction C writes data into memory

location 0x90005410 which is not present in cache and results in a write miss. Transaction D

results in a read hit on address 0x90005408, which is present in the cache. Transaction E and

F reads memory address 0x90005420 and writes data into address 0x90005434 respectively,

which are not cached resulting in read miss and write miss.

Figure 3.23 Result of the test code in 4 word built-in write back data cache model

Figure 3.24 Result of the test code in 4 word write back pCache based model.

F E D C B A

A B C
C

D E F

43

The cache hit signal Trace_Dcache_Hit in the reference built-in cache design was compared

to the Hit_out signal of the pCache model. The screenshot of internal signals resulting from

the execution of the test program in listing 1 is shown in Figure 3.23.

 Pointer A shows read miss at address 0x90005400

 Pointer B shows write hit at address 0x9000540C

 Pointer C shows write miss at address 0x90005410

 Pointer D shows read hit at address 0x90005408

 Pointer E shows read miss at address 0x90005420

 Pointer F shows write miss at address 0x90005434

Figure 3.24 shows the screenshot of signals viewed through Chipscope while simulating the

pCache model. We note that the pointers A to F follow the same sequence as in the built-in

cache. The hits in pCache are generated for the same memory addresses as in built-in cache

design. This demonstrates the functional correctness of the pCache-based model.

Figure 3.25 Contents of the pCache.

Figure 3.25 shows the contents of the data cache using XMD, after executing the test

program in pCache model. Addresses of the first location of the block of memory being

E

F

A, B, D

C

44

accessed are written to the slave register dedicated to the corresponding cache block. The

block address for the data being accessed in instructions A, B and D is 0x90005400. The

block addresses for the data being accessed in instructions C, E and F are 0x90005410,

0x90005420 and 0x90005430 respectively. Theoretically, the bus analyzer can be used to

determine the state of the cache. However, since the bus analyzer has small memory, which

allows tracing for only upto 1024 cycles, the cache state must be computed manually for

long runs of software execution. Moreover, the software developer needs to be familiar with

hardware design and signal tracing, which is clearly impractical. Using pCache-based model,

the entire content of the data cache is easily observable at run-time using a software

debugger. The software developer does not need to be familiar with any hardware details.

45

CHAPTER 4

4 Timing Analysis

In this chapter, we present cache timing analysis using the example of a MicroBlaze based

system [9].

The pCache based model has a longer software execution time due to two reasons.

 Accessing data from the off-chip main memory via PLB takes longer than access via

CacheLink.

 The absence of an on-chip data cache.

We will define the number of additional cycles taken by the pCache-based model, compared

to the built-in cache design, as the overhead. We also define as the number of cycles

taken for software execution in the pCache-based model. can be easily measured

using a timer peripheral. The timer is reset and started before a given block of code, and

stopped after. The overhead cycles due to cache hit and miss are calculated, and subtracted

from to determine the estimated run time .

Equation 1

46

In Equation 1, is the average time to access a single word from main memory.

 is the average time to access data in the built-in data cache and is the

average time to access data not in cache, over the XCL bus. The overhead due to a single

cache hit in pCache is . This factor is multiplied with the number of hits H in

pCache to determine the total overhead due to cache hits. Similarly, the overhead due to each

cache miss in pCache is multiplied with the number of misses M to

determine the overhead due to cache misses.

4.1 Bus Characteristics

In order to model the estimated software execution time (Test) in pCache based model, we

need to understand the behavior of PLB and XCL buses. The following sub sections provide

details about bus protocol and main memory access delay for both the buses. Chipscope Pro

bus analyzer [10] is used to observe the bus activity and to measure the main memory access

time.

4.1.1 PLB Behavior

Figure 4.1 Read and write operations to off-chip DDR memory via PLB

A B C D

47

Figure 4.1 shows snapshot of PLB transactions. It shows a valid read and write transaction to

DDR main memory. To measure the number of cycles for an operation, we count from the

start of PLB_PAValid the valid address signal (shown by pointers A and C) till where the

instruction gets executed (shown by pointers B and D). The delay in main memory can vary

due to factors such as bus turnaround time, column address latency and refresh rate.

Therefore, the measured time for read/write operation is not always constant. We model the

PLB access delay by averaging the read and write times for several transactions which gives

us 35 cycles for a read and 11 cycles for a write transaction.

4.1.2 XCL Behavior

The XCL bus is a point to point FSL connection between the MicroBlaze processor and the

DDR main memory. During data miss, the processor uses this connection to fetch data from

the off-chip main memory. In data cache with write through policy, the cache link uses

DXCL protocol [9] to communicate with the main memory. Upon read miss, the DXCL

protocol follows critical word first method to read data from the main memory. By this

method, the requested word is first read followed by the remaining 3 or 7 words. Upon read

hit, the hit signal is asserted, however during write hit the hit signal is not set to high. The

writes to data cache in write through mode will always result in a write over cache link

regardless of whether there was a hit or miss as explained in section 2.3.

In the case of write back policy, the cache link uses DXCL2 protocol [9]. Upon read

miss, the DXCL2 protocol follows linear fetch method to read the new block from main

memory. In linear fetch, the data words are read in the order in which they are stored in the

main memory. Write is performed only to the cache and the dirty bit is set high. Upon write

miss the modified cache block is written back to the main memory before getting replaced.

48

4.2 Parameterized cache timing model

The parameters needed to calculate the overhead in write through cache timing model are as

follows. The first four parameters are variables obtained from respective counters in the

pCache module. The last six parameters are constants measured using the bus analyzer, used

in overhead calculation. We will discuss the last six parameters in detail in section 4.5.

 RH : Number of read hits

 RM : Number of read miss

 NCwr : Number of non-consecutive writes

 Cwr : Number of consecutive writes

 Nrf_cyc : Number of refresh cycles

 Trd : Average time for read via PLB

 Twr : Average time for write via PLB

 T’rh : Average time for read hit via XCL

 T’rm : Average time for read miss via XCL

 T’nc-wr : Average time for non consecutive writes via XCL

 T’c-wr : Average time for consecutive writes via XCL

Additional parameters are needed to calculate the overhead in a write back cache

timing model as follows. The first five parameters are variables obtained from respective

counters and the next five parameters are assigned constant values, based on measurements

using the bus analyzer. The time for write/read miss in a write back cache depends on the

number of dirty bits that are set, which we denote by x.

49

 WH : Number of write hits

 WMnD : Number of write miss not dirty

 WMxD : Number of write miss with x dirty bits

 RMnD : Number of read miss not dirty

 RMxD : Number of read miss with x dirty bits

 T’wh : Average time for write hit via XCL

 T’wm-nD : Average time for write miss not dirty via XCL

 T’wm-xD : Average time for write miss with x dirty bits via XCL

 T’rm-nD : Average time for read miss not dirty via XCL

 T’rm-xD : Average time for read miss with x dirty bits via XCL

4.3 Characterization of the Write through Cache

Table 2 Average XCL delay in Write through cache

Memory Access Delay (cycles)

Read hit 2

Read miss 32

Non-Consecutive Write 3

Consecutive Write 14

Table 2 shows the memory access type and its average delay via XCL in write through

cache. The total overhead in the write through cache is computed by the following equation:

 Equation 2

50

The first component on the RHS in Equation 2,
 , is the overhead due to

read hits. The 2nd component,
 , is the overhead due to read miss. The 3rd

and 4th components are the overhead associated with non-consecutive and consecutive

writes respectively. The time for non-consecutive and consecutive writes are different

because of delays such as write recovery time and write to write spacing time in DDR2

SDRAM. Hence, we have separate components for both the cases. The last component is the

refresh cycles in the DDR memory. The datasheet mentions that the DDR memory, chosen

in our design, is refreshed 8192 times within 64 ms at regular intervals of 7.8 us; and the

length of each refresh cycle is 55 ns. This data is used by the pCache module to calculate

Nrf_cyc for a given period.

4.4 Characterization of the Write back Cache

Table 3 Average XCL delay in 4-word Write back cache

Memory access Delay (cycles)

Read hit 2

Read miss nD 34

Read miss D 36

Write hit 2

Write miss nD 2

Write miss D 7

51

Table 4 Average XCL delay in 8-word Write back cache

Memory access Delay (cycles)

Read hit 2

Read miss nD 36

Read miss (1)D 39

Read miss (2-8)D 33

Write hit 2

Write miss nD 2

Write miss (1-7)D 7

Write miss (8)D 10

Table 3 and Table 4 shows the memory access type and its average delay in 4 word and 8

word write back caches respectively. The total overhead in write back cache is computed by

the following equation,

Equation 3

The first component on the RHS,
 is the overhead due to read hits. The

2nd component,
 is the overhead due to read miss not dirty. The

3rd component,
 is the sum of overheads due to read miss dirty.

The dirty bits range from 1 to 4 in cache with 4 word cache block and from 1 to 8 in 8 word

cache block. The overhead due to write hit, write miss not dirty and write miss dirty are

calculated similarly in the 4th, 5th and 6th components in Equation 3.

52

4.5 Timing Validation

In order to analyze the timing accuracy of pCache based model, we estimated the run time of

several benchmarks. Equation 2 and Equation 3 are used to calculate the overhead in write

through and write back caches respectively. Both the pCache based model and the reference

design have a 32KB instruction cache. The error in timing estimation is calculated using

Equation 4, where Tbuilt-in is the reference number of cycles for software execution with a

built-in data cache.

Equation 4

To validate the timing of pCache based model, we run Dhrystone, Quicksort and JPEG

benchmarks with different cache configuration. The result of timing estimation for each case

is shown below.

Table 5 Performance estimation of Dhrystone in 4-word WT data cache

Cache

Size
Tbuilt-in Tpcache Hwr Hrd Mrd Mwr

Over-

head
Test

Error

%

64B 132,509 443,700 2,885 8,593 1,901 1,936 326,281 117,419 -11.4

128B 103,761 443,651 3,254 9,521 973 1,567 354,121 89,530 -13.7

256B 83,266 443,614 3,785 10,053 441 1,036 370,081 73,533 -11.7

512B 77,421 443,654 4,270 10,189 305 551 374,161 69,493 -10.2

1KB 73,853 443,643 4,342 10,280 214 479 376,891 66,752 -9.6

2KB 68,965 443,643 4,605 10,438 56 216 381,631 62,012 -10.1

53

Figure 4.2 Plot of performance estimation of Dhrystone in 4-word WT data cache

Table 5 shows the result of running Dhrystone with different sizes of 4 word write through

data cache. The average error in estimating the run time using pCache is 11.1% and has a

maximum error of -13.7% for the data cache of size 128B. Figure 4.2 shows the plot of

actual and estimated run time of Dhrystone in 4 word write through data cache.

Table 6 Performance estimation of Dhrystone in 8-word WT data cache

Cache

Size
Tbuilt-in Tpcache Hwr Hrd Mrd Mwr

Over-

head
Test

Error

%

64B 159,366 443,700 2,825 6,867 3,627 1,996 274,501 169,199 6.2

128B 110,576 443,651 3,226 8,448 2,046 1,595 321,931 121,720 10.1

256B 80,787 443,658 3,654 10,076 418 1,167 370,771 72,887 -9.8

512B 77,220 443,705 4,013 10,166 328 808 373,471 70,234 -9.0

1KB 74,334 443,662 4,146 10,239 255 675 375,661 68,001 -8.5

2KB 68,856 443,676 4,667 10,459 35 154 382,261 61,415 -10.8

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

64B 128B 256B 512B 1KB 2KB

R
u

n
 T

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Size

Actual

Estimated

Avg.Error: 11.1%

Worst case: -13.7%

54

Figure 4.3 Plot of performance estimation of Dhrystone in 8-word WT data cache

Table 6 shows the result of running Dhrystone with different sizes of 8 word write through

data cache. The average error in estimating the run time using pCache is 9.1% and has a

maximum error of -10.8% for the data cache of size 2KB. Figure 4.3 shows the plot of actual

and estimated run time of Dhrystone in 8 word write through data cache.

Table 7 Performance estimation of Quicksort in 4-word WT data cache

Cache

Size
Tbuilt-in Tpcache Hwr Hrd Mrd Mwr

Over-

head
Test

Error

%

64B 194,502 505,986 2,453 8,809 3,491 2,196 320,200 185,786 -4.5

128B 144,981 505,872 3,335 10,345 1,955 1,314 366,279 139,593 -3.7

256B 103,382 505,983 3,839 11,664 636 810 405,850 100,133 -3.1

512B 85,720 505,866 4,394 12,153 147 255 420,519 85,347 -0.4

1KB 84,091 505,872 4,467 12,189 111 182 421,599 84,273 0.2

2KB 84,031 505,950 4,475 12,191 109 174 421,660 84,290 0.3

 50

 70

 90

 110

 130

 150

 170

 190

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Size

Actual
Estimated

Avg.Error: 9.1%

Worst case: -10.8%

55

Figure 4.4 Plot of performance estimation of Quicksort in 4-word WT data cache

Table 7 shows the result of running Quicksort with different sizes of 4 word write through

data cache. The average error in estimating the run time using pCache is 2.0% and has a

maximum error of -4.5% for the data cache of size 64B. Figure 4.4 shows the plot of actual

and estimated run time of Quicksort in 4 word write through data cache.

Table 8 Performance estimation of Quicksort in 8-word WT data cache

Cache

Size
Tbuilt-in Tpcache Hwr Hrd Mrd Mwr

Over-

head
Test

Error

%

64B 202,260 505,966 1,967 7,748 4,552 2,682 288,370 217,596 7.6

128B 143,522 505,866 3,451 10,061 2,284 1,198 357,894 147,972 3.1

256B 101,581 505,953 3,846 11,590 710 803 403,630 102,323 0.7

512B 85,243 505,953 4,451 12,209 91 198 422,200 83,753 -1.7

1KB 83,898 505,933 4,524 12,227 73 125 422,740 83,193 -0.8

2KB 83,854 505,828 4,533 12,230 70 116 422,829 82,999 -1.0

 50

 70

 90

 110

 130

 150

 170

 190

 210

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Size

Actual

Estimated

Avg.Error: 2.0%

Worst case: -4.5%

56

Figure 4.5 Plot of performance estimation of Quicksort in 8-word WT data cache

Table 8 shows the result of running Quicksort with different sizes of 8 word write through

data cache. The average error in estimating the run time using pCache is 2.5% and has a

maximum error of 7.6% for the data cache of size 64B. Figure 4.5 shows the plot of actual

and estimated run time of Quicksort in 8 word write through data cache.

Table 9 Performance estimation of JPEG in 4-word WT data cache

Cache

Size

Tbuilt-in

(k cycles)

Tpcache

(k cycles)
Hwr Hrd Mrd Mwr

Over-

head

(k cycles)

Test

(k cycles)

Err

%

64B 24,582.2 63,158.6 311,517 1,008,864 382681 251,025 38,890.8 24,267.8 -1.3

128B 18,497.2 63,158.5 410,002 1,191,142 200403 152,540 44,359.1 18,799.4 1.6

256B 16,191.5 63,159.0 439,216 1,261,630 129915 123,326 46,473.8 16,685.3 3.0

512B 14,227.0 63,158.3 472,034 1,319,342 72203 90,508 48,205.1 14,953.1 5.1

1KB 13,385.2 63,158.6 491,642 1,343,879 47666 70,900 48,941.3 14,217.4 6.2

2KB 12,487.6 63,158.6 526,984 1,371,391 20154 35,558 49,766.6 13,392.0 7.2

 50

 70

 90

 110

 130

 150

 170

 190

 210

 230

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Size

Actual

Estimated

Avg.Error: 2.5%

Worst case: 7.6%

57

Figure 4.6 Plot of performance estimation of JPEG in 4-word WT data cache

Table 9 shows the result of running JPEG with different sizes of 4 word write through data

cache. The average error in estimating the run time using pCache is 4.1% and has a

maximum error of 7.2% for the data cache of size 2KB. Figure 4.6 shows the plot of actual

and estimated run time of JPEG in 4 word write through data cache.

Table 10 Performance estimation of JPEG in 8-word WT data cache

Cache

Size

Tbuilt-in

(k cycles)

Tpcache

(k cycles)
Hwr Hrd Mrd Mwr

Over-

head

(k cycles)

Test

(k cycles)

Err

%

64B 28,630.9 63,159.0 288,024 940,611 450934 274,518 36,843.2 26,315.8 -8.1

128B 20,711.9 63,159.0 382,918 1,146,863 244682 179,624 43,030.8 20,128.2 -2.8

256B 17,202.7 63,158.5 432,826 1,242,049 149496 129,716 45,886.4 17,272.1 0.4

512B 14,553.2 63,158.8 469,796 1,316,503 75042 92,746 48,120.0 15,038.8 3.3

1KB 13,521.8 63,158.3 490,303 1,345,951 45594 72,239 49,003.4 14,154.9 4.7

2KB 12,475.9 63,158.8 522,755 1,374,198 17347 39,787 49,850.8 13,308.0 6.7

 10

 12

 14

 16

 18

 20

 22

 24

 26

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(m
il

li
o
n

 c
y
cl

es
)

Cache Size

Actual

Estimated

Avg.Error: 4.1%

Worst case: 7.2%

58

Figure 4.7 Plot of performance estimation of JPEG in 8-word WT data cache

Table 10 shows the result of running JPEG with different sizes of 8 word write through data

cache. The average error in estimating the run time using pCache is 4.3% and has a

maximum error of -8.1% for the data cache of size 64B. Figure 4.7 shows the plot of actual

and estimated run time of JPEG in 8 word write through data cache.

Table 11 Performance estimation of Dhrystone in 4-word WB data cache

Cache

Size
Tbuilt-in Tpcache Hwr Hrd Mrd Mwr

Over-

head
Test

Error

%

64B 135,130 443,609 3,556 8,321 2173 1265 317,252 126,357 -6.5

128B 90,192 443,662 4,310 9,516 978 511 359,249 84,413 -6.4

256B 69,015 443,662 4,472 10,184 310 349 381,447 62,215 -9.9

512B 62,991 443,717 4,469 10,274 220 142 382,222 58,495 -7.1

1KB 59,581 443,609 4,679 10,359 135 124 388,015 55,594 -7.1

2KB 55,799 443,676 4,784 10,470 24 37 392,099 51,577 -7.6

 10

 15

 20

 25

 30

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(m
il

li
o
n

 c
y
cl

es
)

Cache Size

Actual

Estimated

Avg.Error: 4.3%

Worst case: -8.1%

59

Figure 4.8 Plot of performance estimation of Dhrystone in 4-word WB data cache

Table 11 shows the result of running Dhrystone with different sizes of 4 word write back

data cache. The average error in estimating the run time using pCache is 7.4% and has a

maximum error of -9.9% for the data cache of size 256B. Figure 4.8 shows the plot of actual

and estimated run time of Dhrystone in 4 word write back data cache.

Table 12 Performance estimation of Dhrystone in 8-word WB data cache

Cache

Size
Tbuilt-in Tpcache Hwr Hrd Mrd Mwr

Over-

head
Test

Error

%

64B 203,886 443,662 3,349 6,207 4287 1472 243,518 200,144 -1.8

128B 124,893 443,601 3,971 8,104 2390 850 310,247 133,354 6.8

256B 70,469 443,627 4,523 10,175 319 298 380,997 62,630 -11.1

512B 62,989 443,694 4,643 10,288 206 178 385,308 58,386 -7.3

1KB 61,304 443,700 4,672 10,326 168 149 386,567 57,133 -6.8

2KB 55,606 443,614 4,799 10,478 16 22 392,273 51,341 -7.7

 30

 50

 70

 90

 110

 130

 150

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Size

Actual

Estimated

Avg.Error: 7.4%

Worst case: -9.9%

60

Figure 4.9 Plot of performance estimation of Dhrystone in 8-word WB data cache

Table 12 shows the result of running Dhrystone with different sizes of 8 word write back

data cache. The average error in estimating the run time using pCache is 6.9% and has a

maximum error of -11.1% for the data cache of size 256B. Figure 4.9 shows the plot of

actual and estimated run time of Dhrystone in 8 word write back data cache.

Table 13 Performance estimation of Quicksort in 4-word WB data cache

Cache

Size
Tbuilt-in Tpcache Hwr Hrd Mrd Mwr

Over-

head
Test

Error

%

64B 146,104 505,899 3,411 9,470 2830 1238 335,585 150,314 2.9

128B 105,587 505,774 3,933 10,713 1587 716 397,403 108,371 -0.2

256B 71,754 505,968 4,283 11,898 402 366 436,890 69,078 -3.7

512B 60,025 505,895 4,567 12,225 75 82 448,849 57,046 -5.0

1KB 59,213 506,017 4,586 12,243 57 63 449,464 56,553 -4.5

2KB 59,177 506,011 4,587 12,244 56 62 449,508 56,503 -4.5

 20

 50

 80

 110

 140

 170

 200

 230

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Size

Actual
Estimated

Avg.Error: 6.9%

Worst case: -11.1%

61

Figure 4.10 Plot of performance estimation of Quicksort in 4-word WB data cache

Table 13 shows the result of running Quicksort with different sizes of 4 word write back data

cache. The average error in estimating the run time using pCache is 3.5% and has a

maximum error of -5.0% for the data cache of size 512B. Figure 4.10 shows the plot of

actual and estimated run time of Quicksort in 4 word write back data cache.

Table 14 Performance estimation of Quicksort in 8-word WB data cache

Cache

Size
Tbuilt-in Tpcache Hwr Hrd Mrd Mwr

Over-

head
Test

Error

%

64B 179,515 505,985 2,992 8,320 3980 1657 310,721 195,264 8.8

128B 120,183 505,986 4,089 10,270 2030 560 380,763 125,223 4.2

256B 75,450 505,795 4,370 11,818 482 279 434,293 71,502 -5.2

512B 60,356 506,011 4,599 12,251 48 50 449,689 56,322 -6.7

1KB 59,711 505,983 4,609 12,260 39 40 449,961 56,022 -6.2

2KB 59,626 506,018 4,611 12,261 39 38 449,999 56,019 -6.0

 30

 50

 70

 90

 110

 130

 150

 170

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Size

Actual
Estimated

Avg.Error: 3.5%

Worst case: -5.0%

62

Figure 4.11 Plot of performance estimation of Quicksort in 8-word WB data cache

Table 14 shows the result of running Quicksort with different sizes of 8 word write back data

cache. The average error in estimating the run time using pCache is 6.2% and has a

maximum error of 8.8% for the data cache of size 64B. Figure 4.11 shows the plot of actual

and estimated run time of Quicksort in 8 word write back data cache.

Table 15 Performance estimation of JPEG in 4-word WB data cache

Cache

Size

Tbuilt-in

(k cycles)
Tpcache Hwr Hrd Mrd Mwr

Over-

head

(k cycles)

Test

(k cycles)

Erro

r %

64B 24,377.7 63,643.4 365,455 1,014,369 389231 199138 38,878.9 24,755.5 1.7

128B 18,079.8 63,634.0 450,358 1,191,780 211820 114235 44,753.8 18,880.2 4.4

256B 15,622.4 63,643.1 487,000 1,263,167 140433 77593 47,031.6 16,602.5 6.3

512B 13,192.5 63,633.9 525,200 1,336,000 67600 39393 49,516.9 14,117.0 7.0

1KB 12,140.8 63,634.3 542,160 1,336,011 37589 22433 50,549.5 13,084.8 7.8

2KB 11,348.2 63,634.0 556,214 1,388,700 14900 8379 51,354.0 12,280.0 8.2

 20

 50

 80

 110

 140

 170

 200

 230

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Size

Actual
Estimated

Avg.Error: 6.2%

Worst case: 8.8%

63

 Figure 4.12 Plot of performance estimation of JPEG in 4-word WB data cache

Table 15 shows the result of running JPEG with different sizes of 4 word write back data

cache. The average error in estimating the run time using pCache is 5.9% and has a

maximum error of 8.2% for the data cache of size 2KB. Figure 4.12 shows the plot of actual

and estimated run time of JPEG in 4 word write back data cache.

Table 16 Performance estimation of JPEG in 8-word WB data cache

Cache

Size

Tbuilt-in

(k cycles)
Tpcache Hwr Hrd Mrd Mwr

Over-

head

(k cycles)

Test

(k cycles)

Erro

r %

64B 31,984.2 63,634.5 328,649 933,290 470310 235944 34,909.0 28,725.5 -10.2

128B 22,473.4 63,634.6 427,044 1,131,421 272179 137549 42,059.4 21,575.2 -4.0

256B 18,123.6 63,634.3 478,377 1,225,056 178544 86219 45,418.6 18,215.7 0.5

512B 14,500.4 63,634.2 519,049 1,331,638 71959 45542 49,256.0 14,378.3 -0.8

1KB 12,679.5 63,634.1 546,800 1,364,071 39526 17791 50,444.6 13,189.5 4.0

2KB 11,472.7 63,634.5 558,448 1,388,734 14866 6145 51,348.5 12,286.0 7.1

 8

 11

 14

 17

 20

 23

 26

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(M
il

li
o
n

 c
y
cl

es
)

Cache Size

Actual

Estimated

Avg.Error: 5.9%

Worst case: 8.2%

64

Figure 4.13 Plot of performance estimation of JPEG in 8-word WB data cache

Table 16 shows the result of running JPEG with different sizes of 8 word write back data

cache. The average error in estimating the run time using pCache is 4.4% and has a

maximum error of -10.2% for the data cache of size 64B. Figure 4.13 shows the plot of

actual and estimated run time of JPEG in 8 word write back data cache.

4.6 Run-time Estimation Error

Table 17 shows the average error in estimating the run time of benchmarks using pCache

based model. The overall average error in estimating the run time is only 5.4%. The worst

case error of -13.7% is noted in the Dhrystone benchmark for a 4-word 128B write through

cache shown in Table 5. Although the pCache is functionally identical to the built-in cache,

the timing analysis is subject to certain errors that are discussed in the following section.

 8

 12

 16

 20

 24

 28

 32

 36

64B 128B 256B 512B 1KB 2KB

R
u

n
 t

im
e

(M
il

li
o
n

 c
y
cl

es
)

Cache Size

Actual

Estimated

Avg.Error: 4.4%

Worst case: -10.2%

65

Table 17 Average error in timing estimation using pCache based model

Write Policy Cache line size Benchmark
Average Error

%

Write Through

cache

4 word

Dhrystone 11.1

Quicksort 2.0

JPEG 4.0

8 word

Dhrystone 9.1

Quicksort 2.5

JPEG 4.3

Write Back

Cache

4 word

Dhrystone 7.4

Quicksort 3.5

JPEG 5.9

8 word

Dhrystone 6.9

Quicksort 6.2

JPEG 4.4

Overall Average Error % 5.4

4.6.1 Sources of Error

The timing model does not account for instruction cache misses. It must be noted that, in

pCache, the instructions are fetched on the IXCL, independent of and concurrent with data

reads and writes on the PLB. The processor waits for 27 cycles on an instruction miss.

Figure 4.14 shows the impact of Instruction cache on Overhead calculation. There are 4

scenarios while estimating the overhead. In the case of an instruction hit, irrespective of data

hit or data miss, the instruction fetch delays do not impact the overhead. In the case of

simultaneous instruction miss and data miss, the time for data access is greater than that for

instruction fetch. As such, the execution delay depends only on the data transaction delay.

Therefore the instruction cache behavior has no impact on the overhead. As a result, in the

above cases, our estimation is accurate.

66

Figure 4.14 Impact of Instruction Cache on Overhead

However, in the case of a simultaneous instruction miss and data hit, there is an execution

delay of 27 cycles. Therefore, the correct overhead is (35-27) cycles, since data read over

PLB takes 35 cycles in the pCache-based model. However, since we do not model the

instruction cache, and always assume an instruction cache hit, the overhead for the above

case is calculated to be (35-2) cycles, given the 2 cycles delay for a data read hit. This source

of error leads to underestimation of run time. But from Table 5 to 16 we note that, for some

cases, the error is positive, implying an overestimation. This is because the constants

assigned to the parameters in the cache timing model are averaged over several transactions.

As such, the parameter values do not account for possible variations, and can lead to

overestimation.

4.6.2 Error Reduction

67

We can mitigate the effects of instruction cache miss on our timing model by using a large

instruction cache (32KB), which is expected to have a high hit rate. This will reduce the

probability of the simultaneous instruction miss and data hit scenario. By reducing this

scenario which was one of the sources of error, we could achieve more accurate estimates of

the run time. Disabling the instruction cache is not an option since the run time will be

dominated by the instruction fetch from main memory. Since instruction and data are fetched

in parallel, the effect of changing the parameters of data cache will not be observed.

4.7 Speed

Table 18 Comparison of run time of JPEG application

Write Policy Cache line size Tbuilt-in (s) TpCache (s)
Software

simulation

Write Through
4 word 0.10 0.51

 6 hours
8 word 0.10 0.51

Write Back
4 word 0.09 0.51

8 word 0.09 0.51

Table 18 shows the comparison of run time of our largest benchmark, the JPEG application

in built-in data cache model, pCache model and cycle accurate software simulation. The

average run time on a 2KB pCache model is 0.51 seconds. The average run time on a 2KB

built-in data cache model is 0.095 seconds, which is faster than pCache model but provides

no observability. The cycle accurate software simulation of JPEG in the reference design

with 2KB built-in data cache, takes over 6 hours on an i7 desktop with 16GB RAM. As

such, the pCache based model is observable and much faster than cycle accurate software

simulation.

68

4.8 Performance optimization using observable cache

Listing 13. Sample code with single loop

int a[128], b[128];

int i=0;

for(i;i<128;i++)

{

 a[i] = i;

 b[i] = i+1;

}

Listing 14. Sample code with split loop

int a[128], b[128];

int i=0,j=0;

for(i;i<128;i++)

{

a[i] = i;

}

for(j;j<128;j++)

{

b[j] = j+1;

 }

Listings 13 and 14 show the sample code to demonstrate performance optimization of

software using the observable cache model, pCache. The address of the integer arrays a and

b used in the above code maps to the same block in data cache. The sample code in Listing

13 shows single loop that modifies both the arrays a and b. To analyze the program

behavior, we use pCache model of size 512 bytes, and insert two software breakpoints at

positions shown by red bullets in Listing 13.

69

Figure 4.15 shows the contents of the data cache using the XMD, during the execution of the

test program in pCache model. As mentioned earlier, the address of the first location of the

block of memory being accessed is written to the slave register dedicated to the

corresponding cache block. The block addresses for the elements a[0-3] and b[0-3] are

mapped to the slave register 0xC3C00024. Figure 4.15 (a) shows the contents of data cache

when the execution reaches the first breakpoint. The block address for the elements a[0-3],

0x90002070 is written to the data cache. When the execution hits the second breakpoint, the

block address for the elements b[0-3], 0x90002270 is written to the data cache as shown by

Figure 4.15 (b).

a[0-3]

b[0-3]

(a) Address of a[0-3] being cached (b) Address of b[0-3] being cached

Figure 4.15 Address conflict in data cache (1)

70

Figure 4.16 shows the block addresses for the elements a[4-7] and b[4-7] which are mapped

to the slave register 0xC3C00028. Figure 4.16 (a) shows the contents of data cache when the

program reaches first breakpoint during second iteration. The block address for the elements

a[4-7], 0x90002080 is written to the data cache. In Figure 4.16 (b), we see the block address

for the elements b[4-7], 0x90002280 being written to the same block in data cache. Since

both the arrays are accessed alternately in the same loop, we could see continuous misses in

pCache. The estimated run time of the sample code in Listing 13 in system with pCache

based model is 15,747 cycles.

In order to improve the software performance, we optimize the code as shown in Listing 14.

We use loop splitting optimization to create two loops, and the arrays a and b are modified

inside different loops. This method significantly improves the cache hit rate, and thereby

reduces the execution time of the software. The estimated run time of the sample code in

(a) Address of a[4-7] being cached (b) Address of b[4-7] being cached

Figure 4.16 Address conflict in data cache (2)

a[0-3], b[0-3]

a[4-7]

a[0-3], b[0-3]

b[4-7]

71

Listing 14, using the pCache based model is 6186 cycles. Therefore, we get a performance

improvement of almost 2.5X by applying the loop splitting optimization. It must be noted

that loop splitting is not always desirable because it results in larger code and twice as many

branches. If the arrays a and b did not conflict on the cache, loop splitting might result in

poorer behavior. As such, loop splitting cannot be performed automatically by an optimizing

compiler, and requires introspection by the software designer. Identification of cache

conflicts due to a specific code sequence, during program execution, is not possible without

an observable cache model. The pCache model, therefore, exposes such conflicts to the

software designer and opens up opportunities for optimization.

For reference, we also executed the two sample codes with a built-in data cache of 512 bytes.

The resulting run times for the single and split loop codes were 15,455 cycles and 5,896

cycles, respectively. The numbers translate to timing errors of 2% and 5% respectively.

Therefore, not only does pCache expose optimization opportunities, software designers can

rely on the predicted impact of the optimization.

4.9 Cache Design Exploration

A major challenge in the design of embedded systems is the many design possibilities that

need to be evaluated. Identifying the best architecture configuration requires performance

analysis, which is performed via time consuming cycle accurate software simulations.

Instead, pCache can be used in design space exploration to identify the best configuration of

data cache for a given application and cache size. Consider the following examples to find

the optimal configuration of data cache of given size, for Dhrystone, Quicksort and JPEG

applications. The run time, in cycles, (Y-axis) is plotted for various cache configurations (X-

72

axis), for both the reference built-in cache design and the pCache-based model. The run time

in reference built-in cache design and pCache based model are denoted as Actual and

Estimated respectively.

Figure 4.17 Design space exploration of 2KB data cache for JPEG

Figure 4.17 shows the comparison of run time of JPEG application for different

configurations of 2KB data cache. The pCache based model indicates that 4-word write back

cache configuration has the lowest run time (Estimated 12.28 million cycles). This is

corroborated from the timing measurements in the reference design with built-in data cache.

We find the same 4-word write back configuration to be the fastest (measured at 11.35

million cycles).

0

2

4

6

8

10

12

14

16

4W-WT 8W-WT 4W-WB 8W-WB

R
u

n
 t

im
e

(M
il

li
o
n

 c
y
cl

es
)

Cache Configuration

Actual

Estimated

73

Figure 4.18 Design space exploration of 1KB data cache for JPEG

Figure 4.18 shows the comparison of run time of JPEG application for different

configurations of 1KB data cache. The pCache based model shows that 4-word write back

cache configuration has the lowest run time (Estimated 13.08 million cycles). This is verified

from the timing measurements in the built-in data cache model, in which we find the same 4

word write back configuration to be the fastest (measured at 12.14 million cycles).

Figure 4.19 shows the comparison of run time of Dhrystone benchmark for different

configurations of 2KB data cache. The pCache based model shows that 8-word write back

cache configuration has the lowest run time (Estimated 51.3 thousand cycles). The timing

measurements in built-in data cache model shows that the same 8-word write back

configuration to be the fastest (measured 55.6 thousand cycles).

0

2

4

6

8

10

12

14

16

4W-WT 8W-WT 4W-WB 8W-WB

R
u

n
 t

im
e

(M
il

li
o
n

 c
y
cl

es
)

Cache Configuration

Actual

Estimated

74

Figure 4.19 Design space exploration of 2KB data cache for Dhrystone

Figure 4.20 Design space exploration of 64B data cache for Dhrystone

Figure 4.20 shows the comparison of run time of Dhrystone benchmark for different

configurations of 64B data cache. The pCache based model shows that 4-word write through

cache configuration has the lowest run time (Estimated 132.5 thousand cycles). The timing

measurements in built-in data cache model shows that the same 4-word write through

configuration to be the fastest (measured 117.4 thousand cycles).

0

10

20

30

40

50

60

70

80

4W-WT 8W-WT 4W-WB 8W-WB

R
u

n
 t

im
e

(t
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Configuration

Actual

Estimated

0

25

50

75

100

125

150

175

200

225

4W-WT 8W-WT 4W-WB 8W-WB

R
u

n
 t

im
e

(T
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Configuration

Actual
Estimated

75

Figure 4.21 Design space exploration of 256B data cache for Quicksort

Figure 4.21 shows the comparison of run time of Quicksort benchmark for different

configurations of 256B data cache. The pCache based model shows that 4-word write back

cache configuration has the lowest run time (Estimated 69.1 thousand cycles). The timing

measurements in built-in data cache model shows that the same 4-word write back

configuration to be the fastest (measured 71.8 thousand cycles).

From the above examples, we find the optimal cache configuration can be different for

different benchmarks and different cache sizes. The pCache model can be used to accurately

select the optimal configuration among others, which can be corroborated by the results from

built-in cache in every case. Hence, designers can use pCache model with high confidence to

do early design space exploration.

0

20

40

60

80

100

120

4W-WT 8W-WT 4W-WB 8W-WB

R
u

n
 t

im
e

(T
h

o
u

sa
n

d
 c

y
cl

es
)

Cache Configuration

Actual
Estimated

76

CHAPTER 5

5 Conclusion and Future work

An observable data cache used in FPGA prototyping is of great help to embedded system

and software designers for validating the performance of embedded software. In this thesis

we presented our work on an on-chip hardware peripheral, called pCache, which models a

data cache. The peripheral can be integrated into a processor system on an FPGA and can

display the state of the cache at any given time during software execution. We also presented

a parameterized timing model of the cache for accurate performance estimation during

embedded software execution.

The pCache provides easy observation of the cache contents and accurate count of hits and

misses. With such feedback, the embedded software designers can optimize the software for

improving cache hits. We also demonstrated two software optimization techniques using the

observable cache model. The embedded system designers need to evaluate many cache

design choices during design space exploration in order to find an optimal configuration of

cache for specific embedded applications. The pCache, being configurable, allows the

designers to modify the cache configuration (size of the cache, cache write policy and

cacheable address range) of a given processor core to evaluate the system performance.

In the future, we will extend pCache to incorporate the following,

 Instruction Cache – The pattern of instruction access is usually sequential and less

random compared to data access. As such, the performance of ICache is good and

77

changing configuration has less impact on the performance. However, we will model

the instruction cache to improve the accuracy in performance estimation. The

challenge in the timing model will be to identify the occurrences of simultaneous

instruction miss and data hit.

 Set associative cache – Set associative caches are complex and require many tags to

be compared simultaneously. The extra hardware (Comparators and Multiplexers)

leads to increased energy consumption, as mentioned earlier. However, set

associative cache can solve the problem of cache pollution.

78

Appendix

A.1 Cache Controller

module cachecontroller_fullyparam

(clk,rst,CSR,processorword,inst_r_w,hit,miss,rd_wr,index,tag,check,rst_cache,

inst,Data_range_low,D_bit,hit_rdcounter_out,miss_rdcounter_out,

hit_wrcounter_out,miss_wrcounter_out,check,miss_D_wrcounter_out,

miss_nD_wrcounter_out,miss_D_rdcounter_out,miss_nD_rdcounter_out,

msb_word_select,mem_AValid,write_inst_three_cycles_out,write_inst_four_cycles_out,

write_inst_five_cycles_out,write_inst_ten_cycles_out,read_miss_after_write_miss_out,

read_miss_after_write_hit_out,read_miss_after_read_hit_out,

read_miss_after_read_miss_out,read_hit_wb_thirty_cycles_out,

read_hit_wb_extended_thirty_cycles_out,rite_missD_wb_fortytwo_cycles_out,

read_missnD_wb_fiftythree_cycles_out,read_missD_wb_eightyfive_cycles_out,

Trace_Validinst,Trace_Inst);

parameter write_select =1;

parameter mem_address_bits = 14;

parameter index_bits = 4;

parameter cache_line_size = 4;

localparam word_select_bits = (cache_line_size % 3) + 1 ;

localparam tag_bits = mem_address_bits - index_bits - word_select_bits - 2;

input [0:31] processorword,CSR,Data_range_low,Trace_Inst;

input hit,miss,clk,rst,inst_r_w,D_bit;

input mem_AValid,Trace_Validinst;

output [0:1]rd_wr;

output [0:index_bits-1] index;

output [0:tag_bits-1] tag;

output [0:31] check,inst;

output rst_cache;

output [0:31] hit_rdcounter_out,miss_rdcounter_out,hit_wrcounter_out,

miss_wrcounter_out,miss_D_wrcounter_out,miss_nD_wrcounter_out,

miss_D_rdcounter_out,miss_nD_rdcounter_out;

output msb_word_select;

output [0:31] write_inst_three_cycles_out,write_inst_four_cycles_out,

write_inst_five_cycles_out,write_inst_ten_cycles_out;

output [0:31] read_miss_after_write_miss_out,read_miss_after_write_hit_out,

read_miss_after_read_hit_out,read_miss_after_read_miss_out;

output [0:31] read_hit_wb_thirty_cycles_out, read_hit_wb_extended_thirty_cycles_out;

output [0:31] write_missD_wb_fortytwo_cycles_out,read_missnD_wb_fiftythree_cycles_out,

read_missD_wb_eightyfive_cycles_out;

79

wire [0:31] processorword,CSR,Data_range_low;

wire hit,miss,clk,rst,inst_r_w,D_bit;

reg [0:1]rd_wr;

reg [0:index_bits-1] index;

reg [0:tag_bits-1] tag;

reg [0:31] inst;

reg msb_word_select;

reg [0:mem_address_bits-1] temp;

reg [2:0] current_state;

reg [2:0] next_state;

reg [2:0] previous_state;

reg [0:31] check,processorword_old;

reg rst_cache,flag,stop;

reg flag_prev_access_write,flag_current_access_write;

reg [2:0]flag_current_access; //000 Read Hit; 001 Read Miss; 010 Write Hit; 011 Write Miss; 100

Write Miss nD; 101 Write Miss D; 110 Read Miss nD; 111 Read Miss D;

reg [2:0]flag_prev_access;

reg [1:0] counter_wb_read_hit;

integer hit_rdcounter;

integer miss_rdcounter;

integer hit_wrcounter;

integer miss_wrcounter;

integer miss_D_wrcounter,miss_nD_wrcounter,miss_D_rdcounter,miss_nD_rdcounter;

integer counter_continous_write;

integer write_inst_three_cycles;

integer write_inst_four_cycles;

integer write_inst_five_cycles;

integer write_inst_ten_cycles;

integer read_miss_after_write_miss;

integer read_miss_after_write_hit;

integer read_miss_after_read_hit;

integer read_miss_after_read_miss;

integer read_hit_wb_thirty_cycles;

integer read_hit_wb_extended_thirty_cycles;

integer write_missD_wb_fortytwo_cycles;

integer read_missnD_wb_fiftythree_cycles;

integer read_missD_wb_eightyfive_cycles;

always @(posedge clk)

begin

80

 if (write_select == 1)

 begin

 if (rst==1'b1 || CSR == 32'hFFFFFFFF)

 begin

 rd_wr= 2'b10;

 index= {index_bits{1'b0}};

 tag = {tag_bits{1'b0}};

 current_state= 3'b111;

 next_state= 3'b000;

 previous_state= 3'b111;

 rst_cache = 1'b1;

 flag = 1'b1;

 stop = 1'b1;

 inst = 32'h00000000;

 processorword_old = 32'h00000000;

 hit_rdcounter = 0;

 miss_rdcounter = 0;

 hit_wrcounter = 0;

 miss_wrcounter = 0;

 check = 32'b0;

 miss_D_wrcounter = 0;

 miss_nD_wrcounter = 0;

 miss_D_rdcounter = 0;

 miss_nD_rdcounter = 0;

 msb_word_select = 1'bz;

 flag_prev_access_write = 1'b0;

 flag_current_access_write =1'b0;

 counter_continous_write =0;

 write_inst_three_cycles = 0;

 write_inst_four_cycles = 0;

 write_inst_five_cycles = 0;

 write_inst_ten_cycles = 0;

 flag_current_access = 3'bzz;

 flag_prev_access = 3'bzz;

 read_miss_after_write_miss = 0;

 read_miss_after_write_hit = 0;

 read_miss_after_read_hit = 0;

 read_miss_after_read_miss = 0;

 counter_wb_read_hit = 2'bzz;

 read_hit_wb_thirty_cycles = 0;

 read_hit_wb_extended_thirty_cycles = 0;

 write_missD_wb_fortytwo_cycles = 0;

 read_missnD_wb_fiftythree_cycles = 0;

 read_missD_wb_eightyfive_cycles = 0;

 end

 else if ((mem_AValid == 1'b1) && (processorword[0:3] == 4'b1001) && (CSR ==

32'h11111111) && (stop == 1'b1))

begin

81

current_state= 3'b111;

 next_state= 3'b000;

 previous_state= 3'b111;

 stop = 1'b0;

 rst_cache = 1'b0;

end

else if ((Trace_Validinst == 1'b1) && (Trace_Inst[0:5] != 6'b111110))

begin

 flag_current_access_write = 1'b0;

 flag_prev_access_write = 1'b0;

 check = 32'hbaafbeef;

end

else if((rst == 1'b0) && (CSR == 32'h11111111) && (stop ==1'b0))

begin

 if((processorword[0:3] == 4'b1001))

 begin

 previous_state= current_state;

 current_state= next_state;

case(current_state)

3'b000:

 begin //idle

 rst_cache = 1'b0;

 if ((previous_state == 3'b010) || (previous_state == 3'b011) || (previous_state == 3'b100)

|| (previous_state == 3'b001) || (stop == 1'b1))

 begin

next_state = 3'b000;

stop = 1'b1;

rd_wr = 2'b10;

flag_prev_access_write = flag_current_access_write;

flag_prev_access = flag_current_access;

if((flag_current_access_write == 1'b1) && (counter_continous_write == 1))

 write_inst_three_cycles = write_inst_three_cycles+1;

else if((flag_current_access_write == 1'b1) && (counter_continous_write == 2))

 write_inst_four_cycles = write_inst_four_cycles+1;

else if((flag_current_access_write == 1'b1) && (counter_continous_write == 3))

 write_inst_five_cycles = write_inst_five_cycles+1;

 else if ((flag_current_access_write == 1'b1) && (counter_continous_write >= 4))

 write_inst_ten_cycles = write_inst_ten_cycles +1;

 end

 else

 begin

flag =1'b0;

temp = processorword[32-mem_address_bits:31];

rd_wr= 2'b10;

82

if(inst_r_w) // check if read

 begin

next_state= 3'b010;

flag_current_access_write = 1'b0;

 end

else

 begin

 next_state= 3'b001;

 check = 32'hccccdddd;

 flag_current_access_write = 1'b1;

 if(flag_prev_access_write == 1'b1)

 counter_continous_write = counter_continous_write+1;

 else

counter_continous_write = 1;

 end

 end

 end

3'b010:

begin //read

 rd_wr= 2'b11;

tag= temp[0:tag_bits-1];

index= temp[tag_bits:mem_address_bits-word_select_bits-3];

check = 32'hfabfabee;

 if(hit)

 begin

next_state= 3'b000;

hit_rdcounter = hit_rdcounter+1;

check = 32'hfabf00ee;

flag_current_access = 3'b000;

 end

 else if(miss)

 begin

next_state= 3'b011;

miss_rdcounter = miss_rdcounter +1;

check = 32'hfabfab99;

flag_current_access = 3'b001;

 end

end

3'b001:

begin //write

rd_wr= 2'b11;

tag= temp[0:tag_bits-1];

index= temp[tag_bits:mem_address_bits-word_select_bits-3];

check = 32'heeeeffff;

 if(hit)

 begin

83

next_state = 3'b000;

hit_wrcounter = hit_wrcounter+1;

check = 32'ha2a2a2a2;

flag_current_access = 3'b010;

 end

 else if (miss)

 begin

next_state = 3'b000;

miss_wrcounter = miss_wrcounter+1;

check = 32'haaaabbbb;

flag_current_access = 3'b011;

 end

end

3'b011:

begin

rd_wr = 2'b00;

tag= temp[0:tag_bits-1];

index= temp[tag_bits:mem_address_bits-word_select_bits-3];

next_state = 3'b000;

inst = processorword;

if(cache_line_size==8)

 msb_word_select = processorword[27];

else

 msb_word_select = 1'bz;

if(flag_prev_access == 3'b011)

 read_miss_after_write_miss = read_miss_after_write_miss+1;

if(flag_prev_access == 3'b010)

 read_miss_after_write_hit = read_miss_after_write_hit+1;

if(flag_prev_access == 3'b000)

 read_miss_after_read_hit = read_miss_after_read_hit+1;

if(flag_prev_access == 3'b001)

 read_miss_after_read_miss = read_miss_after_read_miss+1;

end

3'b111:

begin

rd_wr = 2'b10;

next_state = 3'b000;

end

endcase

84

end

else

begin

rd_wr= 2'b10;

rst_cache = 1'b0;

index= {index_bits{1'b0}};

tag = {tag_bits{1'b0}};

current_state= 3'b000;

next_state= 3'b000;

previous_state= 3'b000;

msb_word_select = 1'bz;

end

end

else if ((CSR == 32'hDDDDDDDD))

begin

rd_wr= 2'b10;

index= {index_bits{1'b0}};

tag = {tag_bits{1'b0}};

current_state= 3'b000;

next_state= 3'b000;

previous_state= 3'b000;

rst_cache = 1'b0;

msb_word_select = 1'bz;

end

end

else

begin

if(rst==1'b1 || CSR == 32'hFFFFFFFF)

 begin

rd_wr= 2'b10;

index= {index_bits{1'b0}};

tag = {tag_bits{1'b0}};

current_state= 3'b111;

next_state= 3'b000;

previous_state= 3'b111;

rst_cache = 1'b1;

flag = 1'b1;

stop = 1'b1;

inst = 32'h00000000;

processorword_old = 32'h00000000;

check = 32'b0;

hit_wrcounter = 0;

hit_rdcounter = 0;

miss_D_wrcounter = 0;

85

miss_nD_wrcounter = 0;

miss_D_rdcounter = 0;

miss_nD_rdcounter = 0;

miss_rdcounter = 0;

miss_wrcounter = 0;

msb_word_select = 1'bz;

flag_prev_access_write = 1'b0;

flag_current_access_write =1'b0;

counter_continous_write =0;

write_inst_three_cycles = 0;

write_inst_four_cycles = 0;

write_inst_five_cycles = 0;

write_inst_ten_cycles = 0;

flag_current_access = 3'bzzz;

flag_prev_access = 3'bzzz;

read_miss_after_write_miss = 0;

read_miss_after_write_hit = 0;

read_miss_after_read_hit = 0;

read_miss_after_read_miss = 0;

counter_wb_read_hit =2'b00;

read_hit_wb_thirty_cycles = 0;

read_hit_wb_extended_thirty_cycles = 0;

write_missD_wb_fortytwo_cycles =0;

read_missnD_wb_fiftythree_cycles = 0;

read_missD_wb_eightyfive_cycles = 0;

 end

else if ((mem_AValid == 1'b1) && (processorword[0:3] == 4'b1001)&& (CSR == 32'h11111111) &&

(stop == 1'b1))

begin

current_state= 3'b111;

next_state= 3'b000;

previous_state= 3'b111;

stop = 1'b0;

rst_cache = 1'b0;

end

else if((rst == 1'b0) && (CSR == 32'h11111111) && (stop ==1'b0))

begin

 if(processorword[0:3] == 4'b1001)

 begin

previous_state= current_state;

current_state= next_state;

case(current_state)

86

3'b000:

begin //idle

rst_cache = 1'b0;

if ((previous_state == 3'b010) || (previous_state == 3'b011) || (previous_state == 3'b100)

|| (previous_state == 3'b001) || (stop == 1'b1))

begin

next_state = 3'b000;

stop = 1'b1;

rd_wr = 2'b10;

flag_prev_access = flag_current_access;

if((flag_current_access == 3'b000) && (counter_wb_read_hit == 2'b01))

read_hit_wb_thirty_cycles = read_hit_wb_thirty_cycles +1;

if((flag_current_access == 3'b000) && (counter_wb_read_hit == 2'b10))

 read_hit_wb_extended_thirty_cycles = read_hit_wb_extended_thirty_cycles

+1;

 end

 else

 begin

 flag =1'b0;

temp = processorword[32-mem_address_bits:31];

rd_wr= 2'b10;

if(inst_r_w) // check if read

begin

next_state= 3'b010;

check = 32'hbdabdaad;

end

else

begin

next_state= 3'b001;

check = 32'hccccdddd;

end

 end

 end

 3'b010:

begin //read

rd_wr = 2'b11;

tag= temp[0:tag_bits-1];

index= temp[tag_bits:mem_address_bits-word_select_bits-3];

check = 32'hadcdacaa;

if(hit)

begin

next_state = 3'b000;

hit_rdcounter = hit_rdcounter+1;

87

check = 32'hbfdacffa;

flag_current_access = 3'b000;

if(flag_prev_access == 3'b000)

 counter_wb_read_hit = counter_wb_read_hit +1;

 else if ((flag_prev_access == 3'b101) || (flag_prev_access == 3'b100))

 read_hit_wb_extended_thirty_cycles =

read_hit_wb_extended_thirty_cycles +1;

 else

 counter_wb_read_hit = 2'b00;

 end

 else if (miss)

begin

if(D_bit)

begin

 next_state = 3'b011;

 miss_D_rdcounter = miss_D_rdcounter+1;

 flag_current_access = 3'b111;

 if((flag_prev_access == 3'b000) || (flag_prev_access == 3'b010) ||

(flag_prev_access == 3'b101) || (flag_prev_access == 3'b100) || (flag_prev_access ==

3'b110))

 read_missD_wb_eightyfive_cycles = read_missD_wb_eightyfive_cycles +1;

 end

else

 begin

 next_state = 3'b011;

 miss_nD_rdcounter = miss_nD_rdcounter+1;

 flag_current_access = 3'b110;

 if(flag_prev_access == 3'b000)

 read_missnD_wb_fiftythree_cycles = read_missnD_wb_fiftythree_cycles+1;

 end

end

 end

 3'b011:

 begin //read-write

rd_wr = 2'b00;

tag= temp[0:tag_bits-1];

index= temp[tag_bits:mem_address_bits-word_select_bits-3];

next_state = 3'b000;

inst = processorword;

88

if(cache_line_size==8)

 msb_word_select = processorword[27];

else

 msb_word_select = 1'bz;

 end

3'b001: // write

begin

rd_wr = 2'b11;

tag= temp[0:tag_bits-1];

index= temp[tag_bits:mem_address_bits-word_select_bits-3];

check = 32'hacbacbbb;

if(hit)

begin

next_state = 3'b000;

check = 32'habcabcab;

hit_wrcounter = hit_wrcounter+1;

flag_current_access = 3'b010;

end

 else if((miss == 1'b1) && (D_bit ==1'b1))

 begin

next_state = 3'b100;

check = 32'habcdabcd;

miss_D_wrcounter = miss_D_wrcounter+1;

flag_current_access = 3'b100;

if((flag_prev_access == 3'b101) || (flag_prev_access == 3'b010))

 write_missD_wb_fortytwo_cycles = write_missD_wb_fortytwo_cycles +1;

 end

 else if ((miss == 1'b1) && (D_bit ==1'b0))

begin

next_state = 3'b100;

check = 32'hdcdcdcdc;

miss_nD_wrcounter = miss_nD_wrcounter+1;

flag_current_access = 3'b101;

end

 end

3'b100:

begin //write - write

rd_wr = 2'b01;

tag= temp[0:tag_bits-1];

index= temp[tag_bits:mem_address_bits-word_select_bits-3];

89

next_state = 3'b000;

inst = processorword;

if(cache_line_size==8)

msb_word_select = processorword[27];

else

msb_word_select = 1'bz;

end

 3'b111:

begin

rd_wr = 2'b10;

next_state = 3'b000;

end

endcase

 end

 else

 begin

 rd_wr= 2'b10;

rst_cache = 1'b0;

index= {index_bits{1'b0}};

tag = {tag_bits{1'b0}};

current_state= 3'b000;

next_state= 3'b000;

previous_state= 3'b000;

msb_word_select = 1'bz;

 end

end

else if ((CSR == 32'hDDDDDDDD))

begin

rd_wr= 2'b10;

index= {index_bits{1'b0}};

tag = {tag_bits{1'b0}};

current_state= 3'b000;

next_state= 3'b000;

previous_state= 3'b000;

rst_cache = 1'b0;

msb_word_select = 1'bz;

end

end

end

assign hit_wrcounter_out = hit_wrcounter;

assign hit_rdcounter_out = hit_rdcounter;

90

assign miss_D_wrcounter_out = miss_D_wrcounter;

assign miss_nD_wrcounter_out = miss_nD_wrcounter;

assign miss_D_rdcounter_out = miss_D_rdcounter;

assign miss_nD_rdcounter_out = miss_nD_rdcounter;

assign miss_rdcounter_out = miss_rdcounter;

assign miss_wrcounter_out = miss_wrcounter;

assign write_inst_three_cycles_out = write_inst_three_cycles;

assign write_inst_four_cycles_out = write_inst_four_cycles;

assign write_inst_five_cycles_out = write_inst_five_cycles;

assign write_inst_ten_cycles_out = write_inst_ten_cycles;

assign read_miss_after_write_miss_out = read_miss_after_write_miss;

assign read_miss_after_write_hit_out = read_miss_after_write_hit;

assign read_miss_after_read_hit_out = read_miss_after_read_hit;

assign read_miss_after_read_miss_out = read_miss_after_read_miss;

assign read_hit_wb_extended_thirty_cycles_out = read_hit_wb_extended_thirty_cycles;

assign read_hit_wb_thirty_cycles_out = read_hit_wb_thirty_cycles;

assign write_missD_wb_fortytwo_cycles_out = write_missD_wb_fortytwo_cycles;

assign read_missnD_wb_fiftythree_cycles_out = read_missnD_wb_fiftythree_cycles;

assign read_missD_wb_eightyfive_cycles_out = read_missD_wb_eightyfive_cycles;

endmodule

91

B.1 Tag memory

Module cache_fullyparam

(clk,rst,rst_cache,r_w,index,tag,hit,miss,dataout,indexout,writeout,inst_in,D_bit,msb_word_select);

parameter write_select =1;

parameter mem_address_bits = 14;

parameter index_bits = 4;

parameter cache_line_size = 4;

localparam word_select_bits = (cache_line_size % 3) + 1 ;

localparam tag_bits = mem_address_bits - index_bits - word_select_bits - 2;

localparam cache_depth = 1<< index_bits;

localparam zero_stuff = 32-1-tag_bits;

localparam zero_indexout_stuff = 8-index_bits;

input [0:index_bits-1] index;

input [0:tag_bits-1] tag;

input clk,rst,rst_cache;

input [0:1]r_w;

input [0:31] inst_in;

input msb_word_select;

output [0:31] dataout,writeout;

output hit,miss,D_bit;

output [0:7] indexout;

wire clk,rst;

reg hit,miss,D_bit;

reg [0:31] dataout,writeout;

reg [0:7] indexout;

reg [0:31] mem [0:cache_depth-1];

reg [0:31] temp;

integer i;

always @ (posedge clk)

begin

 if(write_select == 1)

begin

92

if (rst==1'b1 || rst_cache == 1'b1)

begin

hit = 1'b0;

miss = 1'b0;

dataout = 32'b0;

indexout = 8'b0;//{index_bits{1'b0}};

writeout = 32'b0;

D_bit = 1'bz;

for(i=0; i<cache_depth; i=i+1)

mem[i] = 32'b0;

end

else

begin

case (r_w)

2'b11:

begin

temp = mem[index];

if(temp[0])

begin

if(tag == temp[1:tag_bits])

begin

dataout = temp;

hit = 1'b1;

miss = 1'b0;

indexout = 8'bz;//{index_bits{1'bz}};

 end

else

begin

dataout = 32'b00110000111100001111000011110000;

hit = 1'b0;

miss = 1'b1;

indexout = 8'bz;//{index_bits{1'bz}};

 D_bit = 1'b0;

 end

end

else

begin

dataout = 32'b00000000111111111111111111110000;

indexout = 8'bz;//{index_bits{1'bz}};

93

hit = 1'b0;

miss = 1'b1;

D_bit = 1'b0;

end

end

2'b00:

begin

hit = 1'b0;

miss = 1'b0;

temp = {1'b1, tag, {zero_stuff{1'b0}}};

mem[index] = temp;

dataout = 32'bz;

indexout = {{zero_indexout_stuff{1'b0}},index};

if((cache_line_size == 8) && (msb_word_select == 1'b1))

 writeout = {inst_in[0:27], 4'b0000} - 5'b10000;

 else

 writeout = {inst_in[0:27],4'b0000};

end

2'b01:

begin

hit = 1'b0;

miss = 1'b0;

indexout = 8'bz;//{index_bits{1'bz}};

//writeout = 32'b0;

dataout = 32'b00001111000010010000110000001111;

end

2'b10:

begin

hit = 1'b0;

miss = 1'b0;

dataout = 32'b00001111111111110000111100001111;

indexout = 8'bz;//{index_bits{1'bz}};

// writeout = 32'b0;

end

endcase

end

 end

else

begin

if (rst==1'b1 || rst_cache == 1'b1)

94

begin

hit = 1'b0;

miss = 1'b0;

dataout = 32'b0;

indexout = 8'bz;//{index_bits{1'bz}};

writeout = 32'b0;

D_bit = 1'bz;

for(i=0; i<cache_depth; i=i+1)

 mem[i] = 32'b0;

 end

else

begin

case (r_w)

2'b11: //read

begin

 mem[index];

 if(temp[0])

begin

if(tag == temp[2:tag_bits+1])

begin

dataout = temp;

hit = 1'b1;

miss = 1'b0;

indexout = 8'bz;//{index_bits{1'bz}};

 end

 else

begin

dataout = 32'b00110000111100001111000011110000;

hit = 1'b0;

miss = 1'b1;

indexout = 8'bz;//{index_bits{1'bz}};

D_bit = temp[1];

 end

 end

 else

begin

dataout = 32'b00000000111111111111111111110000;

indexout = 8'bz;//{index_bits{1'bz}};

hit = 1'b0;

miss = 1'b1;

95

D_bit = 1'b0;

end

 end

2'b00: // read-write

begin

hit = 1'b0;

miss = 1'b0;

temp = {1'b1, 1'b0, tag, {zero_stuff-1{1'b0}}};

mem[index] = temp;

dataout = 32'bz;

indexout = {{zero_indexout_stuff{1'b0}},index};

if((cache_line_size == 8) && (msb_word_select == 1'b1))

 writeout = {inst_in[0:27], 4'b0000} - 5'b10000;

else

 writeout = {inst_in[0:27],4'b0000};

 end

2'b01: // write-write

begin

hit = 1'b0;

miss = 1'b0;

temp = {1'b1, 1'b1, tag, {zero_stuff-1{1'b0}}};

mem[index] = temp;

dataout = 32'bz;

indexout = {{zero_indexout_stuff{1'b0}},index};

if((cache_line_size == 8) && (msb_word_select == 1'b1))

writeout = {inst_in[0:27], 4'b0000} - 5'b10000;

else

 writeout = {inst_in[0:27],4'b0000};

end

2'b10:

begin

hit = 1'b0;

miss = 1'b0;

dataout = 32'b00001111111111110000111100001111;

indexout = 8'bz;//{index_bits{1'bz}};

end

endcase

 end

end

end

endmodule

96

References

1. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. 1998. Improving locality

using loop and data transformations in an integrated framework. In Proceedings of the

31st annual ACM/IEEE international symposium on Microarchitecture (MICRO 31).

IEEE Computer Society Press, Los Alamitos, CA, USA, 285-297.

2. A. Agarwal, J. Hennessy, and M. Horowitz. 1989. An analytical cache model. ACM

Trans. Comput. Syst. 7, 2 (May 1989), 184-215. DOI=10.1145/63404.63407

http://doi.acm.org/10.1145/63404.63407

3. J. Xue, X. Vera. "Efficient and accurate analytical modeling of whole-program data

cache behavior," Computers, IEEE Transactions on , vol.53, no.5, pp.547,566, May 2004

doi: 10.1109/TC.2004.1275296

4. T.M. Conte, M.A. Hirsch, W.-M.W. Hwu, "Combining trace sampling with single pass

methods for efficient cache simulation," Computers, IEEE Transactions on , vol.47, no.6,

pp.714,720, Jun 1998

5. T.F. Chen, "Efficient trace-sampling simulation techniques for cache performance

analysis," Simulation Symposium, 1996., Proceedings of the 29th Annual , vol., no.,

pp.54,63, 8-11 Apr 1996

6. N. Tojo, N. Togawa, M. Yanagisawa, T. Ohtsuki, "Exact and fast L1 cache simulation

for embedded systems," Design Automation Conference, 2009. ASP-DAC 2009. Asia and

South Pacific , vol., no., pp.817,822, 19-22 Jan. 2009

doi: 10.1109/ASPDAC.2009.4796581

7. J.J Pieper, A. Mellan, J.M. Paul, D.E. Thomas, F. Karim, "High level cache simulation

for heterogeneous multiprocessors," Design Automation Conference, 2004. Proceedings.

41st , vol., no., pp.287,292, 7-11 July 2004

8. A. Pedram, A. Gerslauer, “Modeling Cache effects at the transaction level,” in

Proceedings of IESS, 2009.

9. Xilinx Inc, MicroBlaze Processor Reference Guide, available http://www.xilinx.com

10. Xilinx Inc, ISE Concepts, Tools and Techniques, available http://www.xilinx.com

11. Dinero IV Trace-Driven Uniprocessor Cache Simulator,

http://pages.cs.wisc.edu/~markhill/DineroIV/, 2012.

12. MMCacheSim: A Highly Configurable Matrix Multiplication Cache Simulator, ICT

Innovations 2012.

97

13. R.L. Mattson, J.Gercsei, D.R. Slutz, and I.L. Traiger, “Evaluation Techniques for Storage

Hierarchies,” IBM Systems J., vlo. 9, no. 2, pp. 78-117, 1970.

14. M.S. Haque, J. Peddersen, A. Janapsatya, S. Parameswaran, "SCUD: A fast single-pass

L1 cache simulation approach for embedded processors with Round-robin replacement

policy," Design Automation Conference (DAC), 2010 47th ACM/IEEE , vol., no., pp.356-

361, 13-18 June 2010

15. A. Janapsatya, A. Ignjatovic, S. Parameswaran, "Finding optimal L1 cache configuration

for embedded systems," Design Automation, 2006. Asia and South Pacific Conference

on , vol., no., pp.6 pp., 24-27 Jan. 2006

doi: 10.1109/ASPDAC.2006.1594783

16. H.S. Stone, High-Performance Computer Architecture. New York: Addison-Wesley,

1990.

17. L. Xianfeng, S.N Hemendra, M. Tulika, R. Abhik, 2004. Design space exploration of

caches using compressed traces. In Proceedings of the 18th annual international

conference on Supercomputing (ICS '04). ACM, New York, NY, USA, 116-125.

18. C. G. Nevill-Manning and I. H. Witten. “Linear-time incremental hierarchy inference for

compression". In Data Compression Conference(DCC'97), pages 3-11,1997

19. A. Ghosh, T. Givargis, "Analytical design space exploration of caches for embedded

systems," Design, Automation and Test in Europe Conference and Exhibition, 2003 ,

vol., no., pp. 650- 655, 2003

doi: 10.1109/DATE.2003.1253681

20. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, fourth

ed. Morgan Kaufmann, 2007.

21. C. Carvalho, "The Gap between Processor and Memory Speeds", Proc. ICCA 2002,

2002, pp. 51-58.

22. Coursera, Online course on Computer Architecture available at

https://class.coursera.org/comparch-2012-001/wiki/view?page=coursedetails

23. J.L. Hennessy, D.A. Patterson, Computer Organization and Design, Fourth Edition: The

Hardware/Software Interface, 2008

24. W. Stallings, Computer Organization and Architecture: Designing for Performance.

9780273769194, 2012 Pearson.

25. R.A. Uhlig and T.N. Mudge, “Trace-Driven Memory Simulation: A Survey,” ACM

Computing Surveys, vol. 29, no.3, pp. 128-170, Sept 1997.

98

26. B.B. Fraguela, R. Doallo, E.L. Zapata, "Automatic analytical modeling for the estimation

of cache misses," Parallel Architectures and Compilation Techniques, Proceedings.

International Conference on , vol., no., pp.221,231, 1999

doi: 10.1109/PACT.1999.807544

27. S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss Equations: A Compiler Framework

for Analyzing and Tuning Memory Behavior,” ACM Trans. Programming Languages

and Systems, vol. 21, no. 4, pp. 703-746, 1999.

28. J.S. Harper, D.K. Kerbyson, G.R. Nudd, "Analytical modeling of set-associative cache

behavior," Computers, IEEE Transactions on , vol.48, no.10, pp.1009,1024, Oct 1999

doi: 10.1109/12.805152

29. R. Domer, “Transaction Level Modeling of Computation,” Center for Embedded

Computer Systems, Technical Report ,2006

30. G. Schirner, A. Gerstlauer, R. Domer, Abstract, multifaceted modeling of embedded

processors for system level design. In: ASP-DAC, Yokohama, Japan (January 2007)

31. D. Araki, N. Ito, T. Shinsha, Y. Mori, High speed hardware/software co-verification with

CPU model generator from software code. Technical report, InterDesign Technologies

Inc (2006)

32. K.L. Lin, C.K. Lo, R.S. Tsay, "Source-level timing annotation for fast and accurate TLM

computation model generation," Design Automation Conference (ASP-DAC), 2010 15th

Asia and South Pacific , vol., no., pp.235,240, 18-21 Jan. 2010

33. M. Peter, W. Lars, V. Manish, S. Stefan, H. Urs, 2004. Fast, predictable and low energy

memory references through architecture-aware compilation. InProceedings of the 2004

Asia and South Pacific Design Automation Conference (ASP-DAC '04).

