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ABSTRACT 

Growth, Doping, and Characterization of ZnO Nanowires: Application in a 

Miniaturized Gas Ionization Sensor 

 

Svetlana Spitsina, Ph. D. 

Concordia University, 2013 

 

          Semiconductor ZnO has been the subject of research for many applications for the 

past several years, because the material is nontoxic, biosafe, chemically stable, and 

biocompatible. In this work we report studies on ZnO nanowires (NWs), its fabrication 

and applications. Techniques are developed to control the morphology and distribution of 

ZnO Nanowires (NWs). We have also investigated the conductivity of nanowires and its 

manipulation using various doping materials and their concentrations. Fabricated 

nanowires have potential applications such as integration in nano optoelectronics, solar 

cells, gas or humidity sensors, and many other devices. In this thesis we have explored its 

application to develop a gas sensor based on the ionization of gases, so-called Gas 

Ionization Sensor (GIS).  

          A GIS based on metallic nanowires (NWs) had been previously designed and 

developed in the Micro/Nano Laboratories in the ECE Department at Concordia 

University. However, the reported device suffered from very low durability. The high 

voltages induced at the NWs tips damage the apexes (due to their thin structure) and 

device loses its sensitivity after several episodes of usage.   

          High performance GIS sensors demand specific morphology of NWs, uniform 

distribution, low density, and demand that NWs be made of highly conductive and 

chemically stable materials. In this work we have introduced ZnO nanowires to replace 

the metallic nanowires in the GIS. It is the core of thesis to fabricate ZnO NWs having 

the characteristics to improve the functioning of the GIS.  

          In these investigations we have focused on the electrochemical synthesis of 

nanowires. We used this technique due to its advantages such as low cost, high 
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throughput, repeatability, uniform and large area synthesis of NWs, strong adhesion of 

NWs to the substrate, ability to grow them with desired morphologies, as well as the 

possibility of effective doping during the growth. Effects of various growth parameters 

on the nanowire structures are investigated. Studies on doping the nanowires, p-type and 

n-type, were carried out. ZnO NWs with desired structures and conductivity were used to 

design and fabricate a GIS. The device was tested for various gases. Significantly 

improved performance of the GIS was demonstrated. GISs with p-type ZnO NWs 

illustrated high field enhancement factors because of the morphology, distribution, and 

conductivity of nanostructures. Also, the novel gas detectors illustrated superior 

sensitivity, reliability, and repeatability. 
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T Temperature in Kelvin [K] 

ct The equilibrium gas concentration near the tip [Moles] 

γ The field enhancement factor  

Eφ 

The field needed to reduce to zero a Schottky-

Nordheim barrier 
[eV] 

φ The metal work function [eV] 

Φ The metal work function [eV] 

r₀ Tip radius [cm] 

PF Tunneling prefactor  

R Universal gas constant [J/(Mol∙K)] 

v Velocity of the gas molecule [nm/s] 

E Voltage of the working electrode [V] 

β Voltage-to-barrier-field conversion factor [m⁻¹] 
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1. Introduction 

 

In this Chapter an introduction to nanoscience and nanotechnology as well as applications 

of nanostructures are presented. Semiconductor nanostructures, in particular the structure 

of ZnO nanowires and its applications, are discussed. Details of a gas ionization sensor 

are introduced, and finally the objectives of the thesis and its organization are elaborated 

at the end of the chapter.  

 

1.1. An Overview of Nanoscience and Nanotechnology 

Nanotechnology deals with fabrication of structures with dimensions in order of 

nanometers, 10
-9 

meter. Nanoscience is the understanding of principles behind operation 

at a nanoscale.  The nanostructures have either one, or two, or three dimensions in 

nanoscale, usually in the range of 1 nm to 100 nm. Nanostructures can be synthesized 

from metallic, semiconductive, or insulating materials. Their categories include nanodots 

or nanoparticles where all three dimensions are in nanoscale, nanowires where only two 

dimensions are in nanoscale, and nanowalls where only one dimension is in nanoscale. 

Generally, in the nanoscale region most physical, chemical, mechanical, and biological 

properties of the materials become size dependent. Hence, most properties of the 

nanostructures are different compared to the bulk materials.  

          In semiconductors, for example, crystal and energy band structures change as the 

size of materials reduces from bulk to nanoscale dimensions. In these ranges quantum 
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effects dominate most properties of the materials. Indeed, the energies of the carriers 

become quantized in nanostructures. As a result, the density of states, which describes the 

electronic states versus energy in the band diagram, is quite different from those in the 

bulk materials as shown in Figure 1.1.  

 

Figure 1.1. The electron density of states (g(E)) with single-valley, isotropic and 

parabolic band (E₀ = EC) in bulk semiconductor (a), in quantum well (b), in quantum wire 

(c), and in quantum dot (d). 
 

 

In bulk semiconductors the density of states is a continuous function as shown in Figure 

1.1(a). When one of the dimensions is quantized, as in a quantum well, the constant 

energy surface for single-valley, isotropic band in k-space from spherical shape, as it was 

in bulk material, becomes an area in two nonquantized directions. As a consequence, the 

density of states becomes a step function (σ(E)), and has constant values between energy 
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levels. One-dimensional semiconductor such as nanowires has two quantized dimensions. 

The constant energy for single-valley, isotropic band in k-space is represented by a 

continuous energy along the length of nanowire. Thus, the density of states is 

proportional to 1/√∆E between energy levels. In the case of a one-dimensional system 

like nanowires, which are the research topic in this work, electrons travel along the NWs 

through fixed energy channels. They can generate ballistic or diffusive transport. Ballistic 

transport happens when there is no scattering of electrons; the mean free path is larger 

than the length of the channel. In this case, the length of the nanowire channel is usually 

less than 1 micrometer. However, with increasing of the NW length the electron transport 

becomes diffusive. Thus, the increasing aspect ratio of nanowires leads to increase in 

resistance in this 1D nanostructure. Quantum dot is confined in all three spatial 

directions. Therefore, density of states depends on the number of confined levels and is 

described as the series of delta functions (δ-functions). 

          Nanostructures such as metallic nanowires and nanotubes are investigated by many 

researchers, and they have already found their way into the fabrication of many novel 

devices like gas ionization sensors, field emission devices (because of high field-

enhancement factor), switches (because of the lack of resistance in the channel along the 

nanowires), and in biosensors due to large sensitivity  [1, 2]. Semiconductor nanowires 

are successfully applied in bio, gas, humidity, temperature sensors, solar cells, 

nanolasers, light-emitting diodes  [3]. Nanowires made of piezoelectric materials are 

employed as nanogenerators. Ferromagnetic nanowires are used in bio applications, as 

drug delivery systems, and as microwave resonators  [4].       
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          The semiconducting nanowires can be elemental such as Si and Ge, or compound, 

comprising binary semiconductors such as AlP, AlAs, GaP, GaAs, InP, ZnO, or ternary 

semiconductors such as AlxGa1-xAs. Among them ZnO nanowires have illustrated that 

their applications are quite broad because of their electrical, optical, and piezoelectrical 

properties. As ZnO nanowires are the central topic in this research work, an introduction 

to their properties and their applications is presented in the following section.  

 

1.2. Zinc Oxide Nanowires 

ZnO NWs have high popularity, because this material is nontoxic, biosafe, chemically 

stable, and biocompatible. Pure ZnO is colorless and clear. ZnO (II-VI group) is a 

compound semiconductor, and is n-type without intentional doping. The n-type 

conductivity of ZnO arises because of the intrinsic defects and residual impurities such as 

hydrogen interstitials, which remain in the material during the fabrication process [5, 6]. 

The density of states (DOS) in intrinsic ZnO is illustrated in Figure 1.2. 
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Figure 1.2. DOS in wurtzite hexagonal structured ZnO (B4) [7]. 

 

Hydrogen interstitials lie in the conduction band of ZnO and serve as donors. ZnO has a 

direct wide bandgap (3.37 eV at T = 300K), where the bottom of the conduction band is 

formed from the 4s levels of Zn²⁺ and the top of the valence band is built from the 2p 

orbitals of O²⁻. It has strong ionic bonding and exciton binding energy of 60 meV [5, 6]. 

The bond polarity in ZnO occurs because of the strong negativity of the oxygen and 

different ionic bond radii of zinc and oxygen ions 0.074 and 0.14 (Pauling scale), 

respectively. Thus, ZnO is a piezoelectrical material due to its noncentrosymmetric 

crystal structure and bond polarity. Also, its bond polarity supports the wurtzite structure 

instead of the zinc-blend formation of ZnO. Specifically, the tetrahedral arrangement of 

ZnO occurs, where each zinc ion is connected to four oxygen neighbour ions and vice 

versa as illustrated in Figure 1.3.  
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Figure 1.3. Schematics of ZnO crystal structure: illustration of primitive unit cell (a) and 

the crystal shape of ZnO NW with indicated Miller-Bravais indices (b). 
 

Hexagonal wurtzite lattice with polar hexagonal axis, Zn²⁺-terminated (0001) and O²⁻-

terminated (0001 ), is uniaxial and is classified by its hexagonal closed packed structure 6 

mm point group symmetry (international notation), and by its space group P6₃mc as 

illustrated in Figure 2.1(b). Also, ZnO has high thermal stability (melting point = Tm = 

2242 K), because the coherent energy of ZnO per bond is 7.52 eV [6].   

          To fabricate one dimensional structures of this material vapour phase processes or 

wet chemical processes can be employed. The vapour phase processes include molecular 

beam epitaxy (MBE), metal-organic chemical vapour deposition (MOCVD), the 

sputtering method, pulsed laser deposition (PLD), infrared irradiation, and thermal 

decomposition. These processes involve high temperature, high vacuum, expensive 

equipment, and have low throughput. On the other hand, wet chemical methods, like 

electrochemical and hydrothermal processes, are performed at low temperature. Also, 
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they are not expensive. Further, the electrochemical process has potential in uniform and 

large area synthesis of nanowires, fast growth, and strong adhesion to the substrate. The 

electrochemical growth of ZnO NWs in templates and self-assembled ZnO NWs on 

planar or patterned substrates were extensively investigated. For example, studies of 

template-based growth of ZnO NWs in anodic alumina membranes (AAM) [8, 9] and in 

polycarbonate membranes [10] were performed. Self-assembled ZnO NWs were studied, 

and reported [11 - 13]. Conducted research on the n-type [14, 15], p-type [16], and 

ferromagnetic n-type [17] ZnO NWs, which were obtained during wet chemical 

synthesis, are already reported.  

          Synthesized ZnO NWs with varying morphologies because of polar charges at the 

surface, various conductivities, magnetic properties, and distributions are used to 

fabricate various nanodevices. It is known that the morphology of ZnO NWs, their 

doping types, and their uniform distribution control the photoluminescence, field-

emission, magnetic, and electrical characteristics of novel applications. Thus, novel 

devices with improved performance, repeatability, and durability can be engineered by 

controlling ZnO nanowires shape, their distribution and their conductive parameters. 

Recently, ZnO NWs have been extensively investigated for integration in various devices 

such as nanogenerators [18 - 21], nanolasers [22 - 25], solar cell electrodes [26 - 31], gas 

sensors [32 - 38], humidity sensors [39, 40], biosensors [41, 42], and as templates used to 

grow other nanostructures [43 - 45].  Furthermore, the achievement of the ferromagnetic 

ZnO NWs at room temperature by doping of NWs using dopants as Mn, Co [46], or Fe 

opens the door for applications in spintronic and spinplasmonic devices.  
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          In numerous novel applications including gas sensors, biosensors, solar cell 

electrodes, nanolasers, and nanogenerators, well distributed and highly oriented NWs are 

of crucial importance. Also, controllable fabrication of p-type or n-type ZnO NWs is 

important for applications in nano optoelectronics and solar cells.  It is the goal of this 

thesis to design the synthesis of ZnO nanowires with specific parameters best suited in 

fabricating a low voltage, low cost, and sensitive gas ionization sensor (GIS).  

 

1.3. Gas Sensors 

A gas sensor monitors the atmospheric air with the intention to prevent contamination of 

the surroundings, to protect people from hazardous gases in industrial milieu, in aircraft, 

and in living environments, and to detect the loss of the planetary atmospheric gases to 

outer space in exosphere. Gas detectors that identify the concentration of gas or gas 

mixtures are divided into optical, electrical, and chemical types. Optical gas detectors are 

based on detection of gas concentration by the power change of the light which was 

transmitted through the gaseous atmosphere. Chiefly, detected light power is compared 

with a reference light, and the difference between the powers of transmitted and a 

reference light provides the information about the quantity of the gas in the atmosphere. 

Since, difference between the reference and transmitted light is proportional to the 

concentration of gas. Chemical gas detectors are based on the change of the current in the 

electrochemical cell attributable to the voltage variation between working and reference 

electrodes at different amounts of the gas. The electrolyte of the chemical gas sensor is 

usually aqueous acid or salt. Electrical gas detectors are divided into physical and 

chemical. Chemical type gas detector is based on the adsorption of the gas. When the 
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active layer between two oppositely charged electrodes adsorbs the gas, its resistance 

value is changed. This variation in resistance of the active layer depends on an amount of 

the adsorbed gas. Thus, gas concentration is measured by detection of changes in 

resistance of the gas detector. The physical type of gas sensor is based on the physical 

phenomena, ionization of gas molecules. Gas ionization inside GIS operates at high 

electric field generated between capacitive plates of this device and lead to creation of 

conductive path between oppositely charged plates. In general, a gas ionization sensor 

(GIS), made of two parallel plates, has a big drawback as it needs a very high voltage 

(few thousands volts) to breakdown the gases. However, the latest developments in 

nanotechnology field gave GIS the advantage: the nanostructures placed on one or both 

capacitive plates create high local electric fields, which result in ionization of the gases at 

comparably very low voltages. The fundamental design of gas ionization sensor 

employed for detection of the gas with incorporated nanowires is illustrated in Figure 1.4. 

 

 

Figure 1.4. Schematics of gas sensor based on gas ionization. 
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Two capacitive oppositely charged plates with incorporated NWs as anode and insulating 

spacer are essential components of this gas detector. The insulating spacer is placed 

between capacitive plates to separate the oppositely charged electrodes and let gas enter 

into the active area of the gas detector. High electric field created between capacitive 

plates ionizes the gas in the gap. The resulting breakdown voltage created by the ionic 

current is generated between two oppositely charged capacitive plates and represents the 

amount and type of the gas. 

          Normally, the desired characteristics of the gas sensor include fast response, 

reversibility, low noise, selectivity, superior durability, low power consumption, non-

intrusiveness, noncontaminating properties, low cost, and high throughput during 

fabrication. However, the available gas detectors have diverse disadvantages such as high 

power, high cost, susceptibility to contaminants or to changes in environmental 

conditions, detection of only high gas concentrations or identification of limited range of 

gases, etc.  

          Ongoing research on low and uniform distributed nanowires incorporated into GISs 

in Concordia University (Micro/Nano fabrication laboratories at ECE department) 

resulted in numerous publications on metallic nanowires, silicon hillocks, and metal 

oxide nanowires integrated into GIS [1, 47 – 56]. Grown arrays of metallic nanowires 

result in observed breakdown voltages around 30-40 Volts compared to thousand volts 

between two parallel plates. However, the application of metallic nanowires has 

drawbacks such as low durability, since high electric field intensity destroys the sharp 

tips of the metallic nanostructures. Therefore, the replacing of metallic nanowires with 
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materials, which have strong binding and very high stable structure, may be a solution to 

the above issue. 

 

1.4. Research Objectives 

The goals of this research is  

 to study the morphology and the type of ZnO NWs conductivities for various 

applications; in particular, for the purpose of designing a novel gas ionization 

sensor to detect low concentrations of gases at a low voltage. The investigations 

are focused on the electrochemical synthesis of ZnO NWs with controlled 

morphology, distribution, and doping. The electrochemical technique to grow 

ZnO NWs is chosen because of its beneficial characteristics such as low cost, high 

throughput, repeatability, uniform and large area synthesis of NWs, strong 

adhesion of NWs to the substrate, ability to grow them with desired 

morphologies, as well as possibility of effective doping during the growth. n-type 

or p-type ZnO NWs with designed shapes and uniform distributions integrated 

into gas ionization sensor can improve the performance of a gas ionization sensor, 

because the high doping, specific shape and distribution can significantly increase 

the induced local electric field inside the gas detector.  

 using the best suited arrays of ZnO NWs to design and fabricate a low voltage, 

low cost, and sensitive GIS. Performance, selectivity, sensitivity, recovery time, 

reversibility, and durability of the gas detectors were examined.  
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1.5. Organization of the Dissertation 

The research efforts to synthesis ZnO NWs with certain specifications are presented in 

following chapters. Chapter 2 gives basics of electrochemistry and the methodology of 

the electrochemical growth of zinc oxide nanowires. In Chapter 3 we present the 

synthesis and doping of the nanowires. Chapter 4 illustrates the experimental work done 

to fabricate ZnO NWs. Chapter 5 discusses gas ionization, field emission, and field 

ionization phenomena in gases. We have also reported the simulation results on field 

emission by nanowires. It follows with the design, fabrication and characterizations of the 

GIS based on ZnO nanowires. Finally, Chapter 6 concludes with the noteworthy 

achievements and the contributions of the present work, and directions for future 

research.  
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2. Background on Electrochemistry 

In this chapter an introduction to electrochemistry is given, including the derived 

equations, which characterize the electrochemical process in terms of the ionic transport 

and rates of the reactions. The electrochemical process to fabricate ZnO NWs will follow. 

 

2.1. Overview of Electrochemical Processes 

Generally, an electrochemical system comprises a potentiostat connected to the 

electrochemical cell. The potentiostat is the device engaged to control a three electrode 

cell. The electrochemical system can work in two modes: potentiostatic mode and 

galvanostatic mode. In potentiostatic mode this hardware measures and controls the 

voltage difference between the working electrode and the reference electrode, and it 

measures the current flow between the working and counter electrodes versus time at a 

given area of the deposition. In galvanostatic mode, constant current is applied between 

the working electrode and the auxiliary electrode, and the potential between working and 

reference electrodes versus time is recorded. 

          Another element of the electrochemical system is the electrochemical cell. It 

includes anode, cathode, and reference electrode as shown in Figure 2.1.  
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Figure 2.1. Schematic of the electrochemical cell. 

 

An electrolyte consists of dissolved chemicals in deionized water, which dissociate and 

form both positive and negative ions. The anode can be any conducting material but 

mostly a platinum gauze is used. The cathode can be a metal or a semiconductor 

electrode. The next component of the electrochemical cell is the reference electrode 

which has a stable potential drop and is used to measure the working electrode potential. 

The homogeneous electrolyte is made of an equal numbers of cations and anions. The 

electroneutrality condition is given as 





s

i

iiCz
1

0                                                      (2.1) 

where zi is the elementary charge of the ith  species, Ci is the concentration of the ith 

species, and s is the number of species inside the electrolyte [57].   

          Furthermore, at an applied electric field, the reactive processes of reduction and 

oxidation take place inside the electrochemical cell. A reduction process happens, when 
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an electrode provides electrons into the electrolyte, where the minimum energy of the 

electrons is comparable with the energy of the orbital of the valence electron to be 

received. Thus, the negatively charged electrode provides electrons with energy 

equivalent to the energy of the orbital of the valence electrons. Oxidation happens when 

electrons from a higher orbital of the species inside the electrolyte move to the lower 

energy level provided by the positively charged electrode. In other words, the chemical 

species in solution provide electrons. Oxidation or reduction occurs at critical potentials, 

which depend on the standard potentials of the species inside the electrolyte [57]. An 

example of the reduction process in an electrochemical cell is when the positive ions of 

zinc accept the electrons and reduce at the negatively charged electrode, when the 

electrode potential is equal to or more negative with respect to the standard electrode 

potential. This reaction is expressed as 

 sZneZn   22
                                                 (2.2) 

An example of the oxidation process is when zinc donates electrons to electrode and 

produces ions. The applied potential in an electrochemical cell is equal to or higher than 

the positive standard potential. An oxidation reaction is expressed as 

  eZnsZn 2)( 2
                                               (2.3) 

In general, the standard electrode potential (Eº) (potential of reduction or oxidation 

process, redox) of any element in the electrolyte is expressed as                                                  

eqK
nF

RT

nF

G
E ln

0
0 


                                          (2.4) 

where ΔG° is the standard Gibbs energy change in the electrochemical cell reaction, 

which is defined as the difference between the sum of Gibbs energies of the products and 
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the sum of Gibbs energies of the reactants, n is the number of ions in electrochemical 

cell, F is the Faraday constant (96485 C/mol), and nF is the charge involved in the 

chemical reaction, R is the ideal gas constant (8.314 J/K·mol), T is the temperature in 

Kelvin, and Keq is the equilibrium constant [57].  

          The thermodynamics of the reactions inside the electrochemical cell depends on 

the interfacial region between the working electrode and the electrolyte. Indeed, the 

interfacial region in solution consists of the double layer which is created between the 

working electrode (semiconductor or metal) and an electrolyte [57]. The double layer 

comprises the inner layer (Helmholtz layer), which is composed of solvent molecules and 

other species (ions or molecules) that are specifically adsorbed, and diffuse layer, which 

extends from the Helmholtz layer into the bulk of the solution [57]. The Helmholtz layer 

is defined by the inner Helmholtz plane (the place where the electrical centers of the 

specifically adsorbed ions are located) and outer Helmholtz plane (the location where 

centers of the solvated ions are placed (solvated ions are ions surrounded by solvent 

molecules)) as shown in Figure 2.2 [57].  

 

 

Figure 2.2. The interfacial region in a solution is the double layer. It consists of diffuse 

and Helmholtz layers, where Helmholtz layer comprises inner and outer Helmholtz 

planes.  
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The total excess charge density on the solution side is the sum of inner layer and diffuse 

layer charge densities and equals to negative value of the charge density on the metal or 

semiconductor surface. The interfacial region in the semiconductive working electrode 

comprises the space charge region (SCR) and surface states, which contribute to the 

charge creation. In the case of the metallic electrode, the charges are available on the 

surface without any voltage drop in the SCR. When the charges set on both sides of the 

interfacial region have equal and opposite sign, equilibrium is reached inside the 

electrochemical cell [58]. Without applied potential, electrons cannot enter the ions due 

to a high level of the ionic energies [59]. When external voltage is applied, the changes in 

the value of the density and charge carriers involved in the transport across the interface 

occur. Ohmic or rectifying contact arises between working electrode and electrolyte. On 

the electrolyte side, modification of the character and density of the ions electrostatically 

adsorbed at the surface of a working electrode happens [58]. On the working electrode 

the changes in the surface density of free carriers and the appearance of the band bending 

in the case of the semiconductive working electrode occur as illustrated in Figure 2.3.  

 
Figure 2.3. The energy schematics of a) the interfacial region in metallic electrode and b) 

the interfacial region in n-type semiconductor electrode under applied negative external 

voltage. 
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Figure 2.3 illustrates the potential drop in the Helmholtz layer. The inner and outer 

Helmholtz planes (IHP, OHP) represent two capacitors in series (C₁, C₂) created by 

charged particles as shown in Figure 2.3. The capacitive surface between the working 

electrode surface and OHP has equal amount of the charges with different sign. 

Helmholtz assumed linear voltage drop (VD) in vicinity of the charged surface; however, 

the experimental results showed the exponential character of the voltage drop in this 

inner layer. At applied negative potential on the metallic working electrode the electrons 

with the ionic energy near or below the Fermi level tunnel through the working electrode 

into ions creating the current as illustrated in Figure 2.3 (a) [59]. For metallic electrode, 

the charge transport is fast. In the case of the semiconductor working electrode, the 

electrochemical reaction rates are limited due to the potential barrier present between a 

semiconductor and an electrolyte.  

          In general, the flux inside the electrochemical cell is created because of the applied 

electrochemical potential, and it is expressed as 


















  iiii

i
iiii

Bi
i CzuC

F

RTu
CzuC

e

Tku
J                   (2.5) 

where Ji is the molar flux in mol/(sec·cm²), F is the Faraday constant (F=eNA), R is the 

ideal gas constant (R = kBNA), kB is the Boltzmann constant (1.38·10⁻²³ m²kgs⁻²K⁻¹), 

NA is Avogadro number, ui is the molar mobility in cm²/(V·sec·mol) of species i (

AB

i
Aii

TNk

qD
Nu  / , where q is the total charge, μi is the mobility (cm²/V·sec) of 

species i). Also, ionic current equals the ion flux multiplied by the charge it carries. 

Accordingly, the current density (ji) is defined as the molar flux multiplied by the total 

molar charge, ziF, and it is given as 
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φ)CFzuCRTu(zFJzj iiiiiiiii  2
                               (2.6a) 
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                                    (2.6b) 

Equations (2.6a) and (2.6b) represent the current density in terms of molar mobility and 

in terms of diffusion coefficient, respectively. Total flux of the electric charge in the 

electrochemical cell is the current density (jc), and it is given as 

 iic JzFj                                                           (2.7) 

where ∑ is summation over all i species in electrochemical cell.  

          Note that current inside the electrochemical cell is governed by the rates of mass 

transfer from the bulk solution to the electrode surface and the electron transfer at the 

electrode surface, where chemical reactions precede or follow the electron transfer [58]. 

Mass transfer modes include migration (movement of the ions under the influence of an 

electric field), diffusion (movement of the chemical species under the influence of the 

chemical potential gradient), and convection (stirring or hydrodynamic transport, and 

forced convection) [58]. Essentially, the surface reactions involved in the current creation 

are adsorption, desorption, or crystallization (electrodeposition). The Nernst-Planck 

equation describes the current inside electrochemical cell comprising all three mass 

transfer modes, and it is given as                           
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where A is the cross-section area, R is the ideal gas constant (8.314 J/(mol·K)), Di is the 

diffusion coefficient (cm²/s), ∇Ci is the concentration gradient in the solution, ∇ϕ is the 

potential gradient, zi and Ci are the charge and the concentration of the i
th

 species, 
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respectively, and υ(x) is the velocity (cm/s) with which a volume element in a solution 

moves along the axis [60]. As it was discussed above the ionic current comprises the 

oxidation and reduction reactions on the same electrode, and it is expressed in the 

Buttler-Volmer equations of current which includes the kinetic rate constants: 

    dkOxknFAi ca Re                                           (2.9a) 
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where A is the surface area of the electrode in m², ka is the reaction rate in the forward 

direction, kc is the reaction rate in the backward direction, [Ox] is the concentration of the 

oxidant, [Red] is the concentration of the redactor, n is the number of electrons 

transferred, E₀ (in V) is the standard potential of the redox reaction, E is the applied 

potential, k₀ (in m/s) is the standard rate constant of the electrode (k₀,c=A′exp(-∆Ga,0/RT) 

for oxidation and k₀,a= A′exp(-∆Gc,0/RT) for reduction), and αa and αc are the transfer 

coefficients of each redox couple [60]. The kinetic rate constants depend on the applied 

potential and on the value of the standard rate constant. Finally, the electrochemical 

system is fully specified by set of Poisson-Nernst-Planck Equations, which characterize 

transport inside the electrochemical cell, and it is given as 
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where Equation (2.10a) is the general conservation of mass and describes the influence of 

an ionic concentration gradient and electric field gradient on the flux of the chemical 

species (ions) inside the electrochemical cell, and Equation (2.10b) is the charge density 

in the electrochemical cell and describes the free charge density defined by Poisson 

equation and by mean (volume averaged) ion concentrations summing up all the ions in 

the volume. In order to control the flux of charged species different variables can be 

altered in the electrochemical process as shown in Figure 2.4. 

 

 
Figure 2.4. Synopsis of the variables in the electrochemical cell [57].  

 

As it can be seen, the transport of species inside the electrolyte depends on the 

geometrical and the electrical characteristics of the material (electric field variations), on 
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the concentration and pH of the solution, on the electrical parameters such as potential, 

current, and type of the applied electricity (alternating (AC) or direct (DC)), on the 

growth temperature, and on the growth time as illustrated in Figure 2.4.  

          Therefore, to design the shape and conductivity type of the novel structures various 

variables can be applied in electrochemical cell to alter the ionic transport of chemical 

species.  

 

2.2. Electrochemical Synthesis of ZnO Nanowires 

Electrochemical growth of ZnO NWs can be performed in potentiostatic or galvanostatic 

modes in a three-electrode cell. The electrochemical cell comprises the auxiliary 

electrode (platinum wire gauze), the reference electrode (Ag/AgCl in saturated 4M KCl 

with potential drop +0.24 V vs. NHE (normal hydrogen electrode)), the working 

electrode (substrate, where ZnO NWs growth takes place), and the electrolyte. The 

electrolyte contains two equivalent concentrations of initial products, the source of zinc 

ions Zn(NO₃)₂·6H₂O (zinc nitrate hexahydrate) and the source of hydroxide ions 

C₆H₁₂N₄ (hexamethylenetetramine). The pH of the solution is between 6 to 7 which 

implies that there is no excess or deficiency of OHˉ ions in electrolyte, and the solution is 

neutral. The major constituents for synthesis of ZnO NWs at 6-7 pH of electrolyte are 

zinc hydroxide (precipitates), nitrate, and zinc ammonia complexes. The governing 

reactions inside the electrochemical cell are [61, 62] 

OHZnOZn(OH)2OHZn 22

2  

                           (2.11a) 

surfaces crystal and electrodeat  9OHNH8eO6HNO

surfaces crystal and electrodeat  2OHNO2eOHNO

323

223









  (2.11b) 
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OH4NHZnO2OH)Zn(NH 23

2

43  
                         (2.11c) 

In the bulk solution hexamine (C₆H₁₂N₄) contributes to the production of hydroxide ions 

(OHˉ) and ammonia (NH₃), which react with Zn²⁺ ions. The product of these reactions 

are the precipitation of (Zn(OH)₂) and tetraammine zinc (Zn(NH₃)
2

4 ) ions, which are 

the precursors to ZnO. Zn(OH)₂ is spontaneously dehydrated into ZnO and H₂O on the 

crystal surfaces at the applied temperatures usually more than 70°C as shown in Equation 

(2.11a). Ions of tetraammine zinc react with OHˉ ions at the electrode surface and on the 

crystal surfaces as shown in Equation (2.11c).These reactions are governed by the 

diffusion mass transfer mode indicating that the above chemical reactions do not need the 

applied electric field. It is always occurs at high temperatures (>70°C). Another formed 

ions in solution that create ZnO are Zn(OH)  . Furthermore, nitrate ions reduce to nitrite 

(NO


2 ) and hydroxide (OHˉ) ions at electrode and crystal surfaces, when they accept 

electrons as demonstrated in Equation (2.11b). At higher amount of available electrons 

(higher applied electric field inside the electrochemical cell) nitrate ions produce 

ammonia and hydroxide ions and contribute to the increased density of the hydroxide 

ions in vicinity of the charged surface as illustrated in Equation (2.11b).   

          The investigation of the effect in the modification of the ionic current in 

electrochemical cell, in terms of the variations in the concentration of the electrolyte, in 

the growth temperature, and in the conductivity type of the substrate, on the geometric 

shape and distribution of ZnO NWs is disclosed subsequently, in Chapter 3.  
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3. Synthesis and Characterization of ZnO 

Nanowires 

There are several techniques to synthesize ZnO nanowires including vapor phase [63 – 

67] and wet chemical processes [8 – 13, 68 – 73]. Contrary to other techniques, wet 

chemical methods, like electrochemical and hydrothermal processes, are performed at 

low temperature, and have potential in large scale production. Furthermore, an 

electrochemical process has advantages such as potential to grow uniform and large area 

of nanowires, fast growth, and strong adhesion of NWs to the substrate, as well as much 

lower cost than the other techniques. In this work we have used this technique to grow 

ZnO NWs.  

          Here, the studies on growth of ZnO NWs emphasizing the effects of different 

growth parameters on NWs shape, size, and distribution are reported. The morphology 

and distribution of the ZnO NWs depend on the charge transfer kinetics based on the 

Buttler-Volmer equations of current (Equation (2.9)). Therefore, the effects of variations 

in the ionic flux by changing concentration of the electroactive species, the conductivity 

of the working electrode, and the growth temperature on the geometry of nanowires and 

their distribution were considered in this work. To characterize the fabricated nanowires, 

Field Emission-Scanning Electron Microscopy (FE-SEM) was used.  
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3.1. The Effect of the Electrolyte Concentration on ZnO NWs: 

Morphology and Distribution  

Three different concentrations of constituents in electrolyte (6.3 mM (10⁻³·Molar mass of 

chemical (g/L)), 5.4 mM, and 4.5 mM, at equal decrease of 0.9 mM, with equal 

concentrations of the zinc nitrate hexahydrate and hexamethylenetetramine diluted in 

deionized (DI) water) were used to study the effect of electrolyte concentration on 

morphology of ZnO NWs. The concentration amounts were chosen based on the previous 

researches [8 - 13, 17]. Indeed, it has been shown that high concentrations of chemicals in 

the electrolyte result in overgrowth and low concentrations lead to creation of a much 

dispersed distribution of nanostructures on the working electrode. A concentration of 6.3 

mM of electrolyte was shown to generate ZnO NWs grown on the substrate with very 

uniform distribution. We further used 5.4 and 4.5 mM of electrolyte concentration to 

support the investigations on studying morphology of grown ZnO NWs. The electrolytes 

were stirred using magnet spinning for 15 minutes and heated to 80º C before 

electrochemical deposition. The growth time was chosen 30 minutes.  

          First, n-type (100) silicon (ρ ≈ 1-5 Ω·cm) was used as working substrate 

(electrode). One side of the working electrodes was always covered by Al using physical 

vapor deposition (PVD). Alloying at 450°C for 30 minutes was performed to create 

ohmic contact between Al and substrate (the purpose of the Al layer was to make sure 

that we have uniform distribution of charges on the silicon substrate). The applied voltage 

in the electrochemical cell was -1.5 V. 

          Image analyses of grown ZnO NWs on n-type Si in different concentrations of the 

electrolyte are demonstrated in Figure 3.1. 



26 
 

 

 

a) 

 

b) 
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c) 

Figure 3.1. SEM images of ZnO NWs electrochemically grown on n-type Si in 

electrolyte with equal concentrations of constituents: a) 6.3 mM, b) 5.4 mM, c) 4.5 mM. 

        

The observations show the augmentation of ZnO NWs grown perpendicular to the 

surface as the concentration of the electrolyte decreases.  ZnO NWs were grown on n-

type substrate mostly making an angle smaller than 90° to the surface when the 

concentration of the electrolyte was 6.3 mM as demonstrated in Figure 3.1 (a). When 

concentration of the electrolyte was decreased to 5.4 mM, the angle between the majority 

of nanowires and the surface was increased, closer to a right angle as shown in Figure 3.1 

(b). Further, at electrolyte concentration of 4.5 mM as Figure 3.1(c) illustrates, ZnO NWs 

mostly grown perpendicular to the working electrode.  

          Next, p-type (100) Si (resistivity = 7-30 Ω·cm, thickness = 525 µm) was used as 

the working electrode. Applied voltage in the electrochemical cell was -1.5 V. 

          Electrochemically grown ZnO NWs on p-type Si for various concentrations of 

electrolyte are shown in Figure 3.2. 
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a) 

 
b) 
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c) 

Figure 3.2. SEM images of ZnO NWs electrochemically grown on p-type Si in 

electrolyte with equal concentrations of constituents a) 6.3 mM, b) 5.4 mM, c) 4.5 mM. 

 
 

At high electrolyte concentration, dense hexagonal wurtzite nanowires with average 

length of about 2.5μm and with diameters of about 300 nm were grown on the substrate (l 

= 2.5 μm, d = 0.3 μm). The nanowires concentration as well as their length (around 2 

μm), and the diameters (about 250 nm) were decreased, when the concentration of the 

electrolyte was reduced to 5.4 mM. The effect was more pronounced as the electrolyte 

was further diluted.  

          In the following studies, a working electrode of Ti/Au layer (50nm/100nm) 

sputtered on n-type Si was considered. Applied voltage in the electrochemical cell was -

1.0 V. Electrochemically grown ZnO NWs on the Au layer are illustrated in Figure 3.3. 
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a) 

 
b) 

100 nm 

80 nm 
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c) 

Figure 3.3. SEM images of ZnO NWs electrochemically grown on Au/Ti layer in 

electrolyte with equal concentrations of constituents:  a) 6.3 mM, b) 5.4 mM, c) 4.5 mM. 
 

As the images show, at high concentrations of the constituents the grown nanowires had 

high density, with the tips around 100 nm.  When concentration of electrolyte was 

decreased, the length of the nanowires and their diameters (around 80 nm) were 

decreased. For the further dilution of the electrolyte the nanowires tips became even 

sharper, with around 60 nm diameters.  

          Studies revealed that although the electrolyte concentration affects the size and 

geometrical structures of the grown nanowires, but it is their distribution that is most 

affected by this parameter. The reason is that the decrease in electrolyte concentration 

leads to: 

 increased mobility of ions because of increased free mean path and diffusion 

coefficient;  

60 nm 
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 increased amount of hydroxide ions at the vicinity of the working electrode due to 

higher mobility (20.6·10⁴ cm²s‾¹V‾¹) compared to the mobility of zinc ions 

(5.5·10⁴ cm²s‾¹V‾¹) [60], causing to reduce amount of zinc ions at the vicinity of 

the nanowires base.  

It is shown that the hydroxide ions (source of oxygen in ZnO NWs) are responsible for 

the directionality of ZnO NWs [36, 74 - 75]. Therefore, the increased amount of these 

ions leads to the improvement of the directionality and sharper nanowires tips.  

 

3.2. The Effect of the Substrate Conductivity on ZnO NWs: 

Morphology and Distribution 

To study the effect of the substrate on the grown nanowires structures, we have used four 

different working electrodes (substrates), a gold layer sputtered on an n-type Si wafer, 

two n-type (100) Si with two different resistivity (ρ ≈ 1 - 5 Ω·cm and ρ ≈ 10⁻³ Ω·cm), 

and a p-type Si (resistivity = 7 - 30 Ω·cm, thickness = 525 µm). Concentration of the 

electrolyte was kept constant at 5.4 mM. The growth temperature and time were 80° C 

and 45 minutes, respectively.  

          At any applied voltage inside the electrochemical cell, a rectifying contact will be 

formed between the working electrode and the electrolyte (a Schottky barrier between the 

metallic working electrode and the solution and a heterojunction between semiconductive 

electrode and the electrolyte).  

          We believe that the electrons on the surface of the substrate must be responsible for 

the nanowires structures grown on the substrate. To show this we have made a layer of 

gold film on a silicon substrate first, then in order to manipulate the concentration of 
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electrons on the surface we have done some post-treatments using annealing the gold 

layer at various temperatures and times. In the case of ZnO NWs grown on Au layer it 

was hypothetically assumed:  

 that limited amount of electrons possessing equal energies is the reason of 

perpendicular growth of nanowires, decreased density of the nanowires and high 

curvature of the NWs’ pinnacles;  

 that nonuniform distribution of electrons (varying conductivity of Au layer) lead 

to creation of ZnO NWs on the areas of higher conductivity.  

          To test these hypotheses, electrochemical growth of ZnO NWs was performed on 

Au layer sputtered on n-type Si with various annealing parameters of Au layer. 

Parameters were chosen as 350°C for 20 minutes, 380°C for 40 minutes, and 380°C for 1 

hour. Also, we have used a gold layer etched, briefly in diluted (1:100) HCl acid for 3 to 

5 minutes. The applied voltage in electrochemical cell was -1.0 V. Grown ZnO NWs on 

the treated metallic surfaces are illustrated in Figure 3.4. 
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a) 

 
b) 

150 nm 

40 nm 



35 
 

 
c) 

 
d) 

Figure 3.4. SEM images of ZnO NWs electrochemically grown on Au layer in electrolyte 

concentration of 5.4 mM, where Au layer was annealed a) at 350° C for 20 min., b) at 

380° C for 40 min., c) at 380° C for 1 hour, and d) ZnO NWs grown on a Au layer briefly 

etched in HCl.  

 

160 nm 

40 nm 
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The results show that as we have altered the thickness of the gold on the silicon substrate 

the structure and the concentration of the grown nanowires are changed. For example, for 

annealing the layer at 350° C (a temperature less than the eutectic temperature of the 

gold, 363° C), short ZnO NWs with large diameters were grown on the substrate as 

illustrated in Figure 3.4 (a). Formation of the thin and long ZnO NWs with high curvature 

of the tips and low density was achieved, when annealing temperature was at 380° C, 

larger than the eutectic temperature of the gold (this causes the creation of uneven surface 

and thickness of the gold layers). Nanowires grown under this condition had lower 

density with varying diameters. The variations are dependent on the conductivity of the 

particular place on the substrate where the NWs grew. In other words, the changes were 

dependent on the thickness of the gold layer. Further, by increasing the annealing time 

some nano islands were created on the film. As the Figure 3.4 (c) shows, nanowires were 

grown on metallic areas. Finally, when the conductivity of the surface was altered by 

brief etching of the metallic layer in HCl acid, ZnO NWs were grown with smaller 

diameters and high curvatures of the apexes.  

          In the case of semiconductor substrates used as the working electrodes, the 

electrons on the semiconductive surface have varying energies due to the presence of the 

charge space region and because of the energy band bending at an applied voltage inside 

electrochemical cell.  Hypothetically, we can anticipate:  

 that uniform distribution of electrons with varying energies on the surface of the 

semiconductive electrode causes nonuniform distribution of zinc and hydroxide 

ions and leads to formation of the nanowires with angle less than 90° with respect 

to the surface; 
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 that the increased amount of electrons on the surface of the semiconductive 

electrode causes generation of high quantity of Zn ions at the vicinity of the 

substrate surface and makes them less available on the NWs crystalline surfaces. 

This leads to grow nanowires with large base diameters, and sharp curvature at 

the tips of NWs.  

          The electrochemical growth of ZnO NWs was performed on semiconductive 

working electrode with various conductivities. The applied voltages were -1.5 V in the 

case of n-type and p-type Si, and -1.0 V when phosphorous doped n⁺-type Si was used as 

working electrode. The SEM observations of the grown ZnO NWs on silicon substrates 

illustrate that as the conductivity of the n-type Si increases well-defined and uniform 

nanoprotrusions on the NWs pinnacles with very sharp tips are grown on the substrate as 

illustrated in Figure 3.5. 

 

 
a) 
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b) 

 
c) 
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d) 

Figure 3.5. SEM images of ZnO NWs electrochemically grown on a) n-type Si, b) doped 

n-type Si, c) doped n-type Si showing 2D nucleation and growth on the (0001) face, and 

d) on p-type Si. 

 

ZnO NWs in all cases were grown at some angle to the substrate as illustrated in Figure 

3.5. Low conductivity n-type Si resulted in formation of the nanostructures with almost 

flat tips. In the case of low resistivity n-type Si, nanoprotrusions were observed on the 

NWs pinnacles. P-type Si resulted in creation of the nanostructures with flat tips; the 

crystalline nanowires had very uniform structures with a diameter of about 300 nm. 

          The above investigations reveal that the morphology and distribution of ZnO NWs 

are strongly dependent on the conductivity of the substrate, which could be due to the 

concentrations and distribution of the electrons available on the surface of the substrates. 
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3.3. The Effect of Temperature of the Electrolyte on ZnO NWs: 

Morphology and Distribution 

Temperature of the electrolyte plays an important role in the formation of the ionic 

current inside the electrochemical cell (please see Equation (2.6)). In these studies we 

have investigated the effect of electrolyte temperature on the structures of the grown 

nanowires. While we have taken all other parameters constant, we have studied this effect 

on the working electrodes of n-type Si, n⁺-type Si, and Au layer. Image analyses of the 

grown ZnO NWs on semiconductive surfaces at electrolyte temperatures of 80° C and 

85° C are shown in Figure 3.6. 

 

 
a) 
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b) 

 
c) 
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d) 

 
e)  

Figure 3.6. SEM images of ZnO NWs grown at electrolyte temperature of a) 85° C on n-

type Si, b) 80° C on n-type Si, c) 85° C on doped n-type Si, and (d - e) 80° C on doped n-

type Si. 

 

The morphology of ZnO NWs grown on n-type Si at temperature 85°C has shown well 

defined crystalline surfaces of hexagonal nanostructures. As the growth temperature 
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decreased by 5° C the diameter of the NWs apexes was decreased with respect to the 

previous case. Also, an uneven surface on the NWs pinnacles was observed which could 

be due to the smaller amount of zinc ions at the vicinity of the NWs tips as demonstrated 

in Figure 3.6 (b). Increasing conductivity of the substrate did not have any significant 

effects on the grown nanostructures.  

          Figure 3.7 shows the results of growing nanowires on Au layer. 

 

 
a) 
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b) 

Figure 3.7. SEM images of ZnO NWs grown on Au layer in the electrolyte at growth 

temperature of a) 85° C and b) 80° C.  

 

Highly oriented and uniformly distributed arrays of ZnO NWs were obtained under both 

conditions. As the temperature changed the geometry and the diameter of the nanowires 

changed. At higher temperature the NWs diameters were increased and the tips were 

flatter. As temperature decreased low concentration of NWs with smaller diameters were 

generated.  

          Investigations on the effect of temperature on the morphology of ZnO NWs and 

their distribution showed that increased temperature resulted in improved crystallinity of 

the nanowires, increased diameters of NWs and uniform distribution. Indeed, temperature 

plays an important role in the formation of the ionic current inside electrochemical cell 

(Equation (2.6)). As temperature increased the flux of ZnO ions was increased what 

resulted in the increased diameters and uniform distribution of nanowires. Also, with the 
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temperature increase amount of the hydrogen impurities resided inside nanostructures 

reduced and caused in the improved crystalline structure of the nanowires.  
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4. Doping of ZnO Nanowires 

ZnO NWs have found their ways in many applications: sensors, photonics and 

optoelectronic devices. Controlling the doping level and the conductivity of the 

nanowires plays an important role in many applications.  

          It is shown that ZnO NWs can be doped with impurities to produce p-type or n-

type conductivity. P-type ZnO nanowires exhibit a band gap reduction and strong 

acceptor related photoluminescence, while n-type nanowires have band gap broadening 

with a strong donor-bound exciton emission. Although, the doping of ZnO NWs has been 

explored by several researchers [14-17, 76-80], but the technique to control the doping in 

the ZnO nanowires has been not reported in the past. 

          In this Chapter, we report studies on changes in the conductivity and doping 

concentrations of ZnO NWs during their growth. To achieve doped ZnO NWs, cationic 

doping in one step during electrochemical growth was used. In this process, Ag ions 

(group I) were used to produce p-type and Al ions (group III) to fabricate highly doped n-

type ZnO NWs. Field Emission Scanning Electron Microscopy (FE-SEM), Energy-

Dispersive X-ray Spectroscopy (EDXS), and photoelectrochemical cell (PEC cell) 

measurements were used to characterize the geometry, distribution, chemical constituents 

and conductivity type of our samples.  

 

4.1. Doping of ZnO NWs with Ag and Al Impurities 

Doping of ZnO NWs alters electrical, magnetic, and optical properties of the 

nanostructures. ZnO NWs are usually n-type semiconductor because of the intrinsic 



47 
 

defects such as hydrogen impurities. Cationic doping of ZnO NWs (impurities substitute 

Zn atoms in crystal) with low impurity concentration in the electrolyte is a diffusion-

limited process, indicating that formation of nanowires starts at temperatures 70° C and 

above without applying an electric field. At limited diffusion process the reaction rate 

(which is the rate of NWs production) equals to the kinetic rate of the species in the 

electrolyte. The appropriate reduction voltage generates fluxes of the ions (zinc and 

impurities) moving toward the charged working electrode, where impurity ions reduce on 

the charged surface and partially replace zinc ions in the crystalline structures of the 

growing nanowires. Cationic doping is governed by diffusion mass transfer mode of ionic 

flux (ionic current mostly generated by diffusion). Thus, effective doping is achieved on 

the semiconductive or metallic substrates, when limited amount of the electrons 

provide necessary reduction energies (the produced ionic flux mostly generated by the 

diffusion mass transfer mode). High applied voltages or highly conductive working 

electrodes lead to drastic decrease of the effective doping, because the generated ionic 

current governed by migration transfer mode (where ionic flux is mostly generated by 

applied electric field).  

          Here we have investigated the effect of impurities (Ag or Al) introduced into the 

electrolyte on the nanowires conductivities. We have used again various substrates to 

grow the crystals, so the effects of conductivity of the substrates on the final products are 

also considered. The growth temperature in all cases was considered 80° C in 

electrochemical cell. Silver nitrate and aluminum nitrate nanohydrate were used to dope 

the nanowires. Table 4.1 shows the percentage mass of impurities that were added to the 

electrolyte to replace Zn ions.  
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Table 4.1. Concentrations of the chemicals used in the electrochemical cell for p-type and 

n-type doping of ZnO NWs. 

Mass of Zn²⁺  replaced by 

mass of impurities [%] 

Concentration is 5.4 mM 

AgNO₃ 

[mg/L] 

Al(NO₃)₃·9H₂O 

[mg/L] 

ZnO(NO₃)₂·6H₂O 

[g/L] 

A
g

⁺ 

0.3 1.669  1.602 

0.5  2.8  1.598 

0.6 3.3  1.5967 

0.8 4.45  1.5935 

1.0 5.562  1.59 

1.2 6.672  1.587 

1.5 8.316  1.582 

A
l³

⁺ 

1.5  42 1.582 

2.0  56 1.574 

2.5  70 1.566 

 

      In the case of Ag dopant, we have used an applied voltage of -0.8V. As the reduction 

voltage (when working electrode provides electrons with the energy comparable to the 

ionic valence electron orbital’s energy, the ions accept electrons and solidify) for silver is 

+0.8 V and for zinc is -0.76 V, the applied voltage was large for the silver reduction but 

just enough for zinc reduction. The working electrode with more negative potential than 

required thermodynamics of the reaction generates increased ionic flux, which depends 

on the amount of the overpotential (η) (difference between the applied voltage and ionic 

reduction potential), and increases concentration of the ions on the charged surface. The 

generated ionic current density described by the Buttler-Volmer Equation (please see 

Equation (2.9)) at low overpotential is simplified to 
RT

nF
jj


0  (in the case of Zn 
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reduction) and at high overpotential, is expressed by the Tafel equation (in the case of Ag 

reduction) [57, 60]. The Tafel equation is given as η=a+b·log(j), where a=
0ln j

F

RT


and 

b=
 0ln j

a
, R is ideal gas constant, T is the absolute temperature, α is the charge transfer 

coefficient with value between 0 and 1, F is Faraday constant, j is the current density, and 

j₀ is the exchange current density at equal reaction rates on anode and cathode at the 

condition that reversed reaction rate is negligible compared to the forward reaction [57, 

60].  

          Electrochemically grown Ag-doped ZnO NWs on an n-type Si wafer are shown in 

Figure 4.1. 

 

 
a) 
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b)  

 
c) 
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d)  

Figure 4.1. SEM images of Ag-doped ZnO NWs grown on n-type Si in different 

concentrations of Ag: a) 0.5% of Zn mass replaced by Ag, b) 0.8% of Zn mass replaced 

by Ag, c) 1.2% of Zn mass replaced by Ag, d) 1.5% of Zn mass replaced by Ag.  

 

When a small amount of silver is added to the electrolyte, hexagonal discs are formed on 

the substrate, causing growth of deformed nanowires on the substrates. An image of ZnO 

NWs on the n-type Si, where 0.8% of zinc ions were replaced by silver ions, illustrates 

long and very thin structures grown with uniform concentration. Further increase of the 

Ag amount inside the electrolyte has resulted in a closely packed distribution of ZnO 

NWs with various diameters. When the amount of silver was increased further, the 

nonuniform metallic layer was observed. As it can be seen the different amount of 

impurities inside electrolyte changes the morphology and distribution of nanowires. In 

addition, we observed that high concentration of Ag (more than 1%) disturbs the 

formation of the wurtzite hexagonal structure of the nanowires; possibly, because it is the 

Ag-O structure grown on the substrate which has a different crystal structure (it has cubic 

crystal structure). Based on SEM observations Ag-doped ZnO NWs with well-defined 
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morphology and uniform distribution are grown on n-type silicon when we had 0.8% of 

Zn mass replaced by Ag. Thereafter, we decided to use this proportion to check the 

doping of the nanowires with silver on n⁺-type Si as well as on a layer of gold film. The 

results of these studies are shown in Figure 4.2. 

 

 
a) 
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b) 

 
c) 

 
d) 

Figure 4.2. SEM images of Ag-doped ZnO NWs grown in electrolyte with concentration 

of Ag 0.8% of Zn mass replaced by Ag on (a - b) n⁺-type Si and on (c - d) Au layer. 
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SEM results showed that a uniform doped ZnO NWs with sharp tips were grown on these 

substrates. In the case of Ag-doped ZnO NWs grown on the Au layer the majority of 

nanowires were grown perpendicular to the surface of the substrate.  

          In the case of Al-doped ZnO NWs we have set the voltage at -1.8 V. Since the 

standard potential for aluminum is -1.66 V, the applied voltage was large compared to 

zinc reduction potential but just enough for aluminum reduction (this was to make sure 

that we were growing ZnO nanowires and not Al₂O₃).  

    Image analyses of Al-doped ZnO NWs grown on n-type Si are illustrated in Figure 4.3. 

 

 
a) 

 
b) 
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c) 

 
d) 

Figure 4.3. SEM images of the Al-doped ZnO NWs grown on n-type Si in electrolyte 

with concentration of Al: a) 1.5% of Zn mass replaced by Al, b) 2.0% of Zn mass 

replaced by Al, c) 2.5% of Zn mass replaced by Al, and d) 3.0% of Zn mass replaced by 

Al. 

 

SEM images of Al-doped ZnO NWs on n-type Si illustrated that 2.0% and 2.5% of Zn 

mass replaced by Al resulted in uniformly distributed nanostructures on the substrate. In 
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the case of 1.5 % and 3 % of Zn mass replaced by Al, the uniform distribution in the Al-

doped ZnO NWs was not achieved. Similar studies are done using various substrates, 

analogous results were observed.  

          To obtain the information on the constituents of the nanowires and their 

distributions the elemental analysis was carried out employing Energy Dispersive X-ray 

Spectroscopy (EDXS).  

 

4.2. Characterization of Doped ZnO NWs Using EDX Spectroscopy  

Energy Dispersive X-ray Spectroscopy is used to identify the chemical composition of 

the material.  EDXS in conjunction with scanning electron microscopy (SEM) employs 

SEM stream of electrons with high speed, which bombard the test material. Then 

electrons will slow down as they propagate through the matter and result in the 

Bremsstrahlung radiation. Bremsstrahlung radiation is defined by the electromagnetic 

radiation, X-rays [81]. In detail, the bombarding electrons remove the electrons from 

lower atomic energy levels of the material creating the vacancies. When electrons are 

removed from 1
st
 atomic energy levels (n = 1, K-shell of the atom) the electrons from 

higher atomic energy levels fall into created vacancies. If electrons from 2
nd

 atomic 

energy levels make transitions into 1
st
 levels, then K-alpha X-rays are emitted. If 

electrons from 3
rd

 or higher levels drop into 1
st
 levels, then K-beta X-rays are emitted. 

Furthermore, if the beam of electrons has removed electrons from the 2
nd

 atomic energy 

levels, L-shell of the atom, then electrons dropped from 3
rd

 levels result in the emitting of 

L-alpha X-rays, and the electrons fallen from 4
th

 levels into the 2
nd

 levels generate the 

emission of L-beta X-rays [82]. The frequencies of the emitting X-rays depend on the 
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difference between the atomic energy levels of atoms in the material. As it is known, the 

difference between energy levels of atoms is characteristic for each chemical element, 

and the number of X-ray emissions reflects the amount of the elements inside the 

material. Thus, information on chemical constituents of the material and their amounts 

can be obtained by detection of X-rays and their amount. 

          Results of the element analysis for Ag-doped ZnO NWs (0.8 % of Zn mass 

replaced by Ag) are illustrated in Figure 4.4.  

 

 
a) 
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b) 

 
c) 
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d) 

 
e) 

Figure 4.4. EDXS analysis of the Ag-doped ZnO NWs: a) SEM image of the Ag-doped 

ZnO NWs electrochemically grown on n⁺-type Si with the specific area used for analysis; 

Mapping analysis: distribution of b) oxygen, c) zinc, d) silver in Ag-doped ZnO NWs; 

and e) Spectrum analysis of Ag-doped ZnO NWs.  

 

Highlighted area on the SEM image as shown in Figure 4.4 (a) illustrates the studied site, 

where ZnO NWs were analyzed by EDXS. First, mapping analyses are demonstrated. 

The results illustrate uniform distribution of oxygen, zinc, and silver inside the grown 

ZnO NWs. Next, Spectrum analysis of ZnO NWs has been executed. Outputs indicated 

high amount of Zn and O compared to the silver.             

          Following is the chemical element analysis of the electrochemically grown Al-

doped ZnO NWs. EDXS analysis was performed for each doping concentrations, but the 

attained data was similar in all samples. Therefore, the results of the EDXS analysis of 

the sample with 2.5% of Zn mass replaced by Al shown in SEM image were reported in 

Figure 4.5.  
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a) 

 
b) 

 
c) 
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d) 

 
e) 

Figure 4.5. EDXS analysis of the Al-doped ZnO NWs: a) SEM image of Al-doped ZnO 

NWs electrochemically grown on n-type Si with the specified area used for analysis; 

Mapping analysis: distribution of b) oxygen, c) zinc, d) aluminum in Al-doped ZnO 

NWs; and e) Spectrum analysis of Al-doped ZnO NWs. 

 

SEM image of Al-doped ZnO NWs with highlighted area under investigation by EDXS is 

illustrated in Figure 4.5 (a). The illustration of the Mapping element analyses are shown 

in Figure 4.5 (b-d). Distributions of all detected chemical elements including zinc, 

oxygen, and aluminum were uniform inside Al-doped ZnO NWs, as demonstrated in 

Figure 4.5 (b - d). Spectrum analysis confirmed the existence of Zn, O, and Si inside ZnO 

NWs. 

O: 35.27 atm.% 

Si: 18.17 atm. % 

Zn: 46.56 atm. % 
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          In summary, EDX Spectroscopy confirmed the presence and uniform distribution 

of silver impurities inside Ag-doped ZnO NWs as well as aluminum impurities inside Al-

doped ZnO NWs. The conductivity type of the nanostructures was investigated using 

Photoelectrochemical (PEC) cell measurements.  

 

4.3. Characterization of Doped ZnO NWs Conductivity Type Using 

PEC Cell Measurements 

PEC cell is the suitable application used to detect conductive type of the nanostructures. 

Photoelectrochemical cell takes advantage of the fact that photons falling on the 

semiconductive surface can create electron-hole pairs and this effect can set up an electric 

potential difference across the interface in electrochemical cell.  

          The basic concept lying behind PEC cell measurements used in our investigation is 

monitoring the polarity of the open-circuit voltage shift between the dark and illuminated 

conditions inside PEC cell [83]. “Dark” open-circuit potential (Vdark) is the potential at 

equilibrium after explicit charge-transfer process, which result in matching the redox 

potential of the electrolyte and the Fermi level of the tested sample surface. Under 

illumination (Vlight) by the white light source, new charge carriers were excited in the 

doped ZnO NWs and resulted in an open-circuit potential shift, ∆Voc. A negative shift in 

open-circuit potential (∆Voc) is an indicative of the n-type material, and the positive shift 

in voltage is the confirmation that tested ZnO NWs are p-type nanomaterials [84].  

          In the present work, the electrolyte was 5 mM KCl diluted in DI water. The 

electrochemical cell was operated in galvanostatic mode: current of 0 A was applied and 

potential was measured. PEC cell was covered by aluminum foil to protect the tested 
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sample inside the solution from light. The substrate with doped ZnO NWs was applied as 

working electrode, and doped ZnO NWs were arranged to be facing toward the small 

open window in a sheet of aluminum foil. This window was made for the incident light 

from the white light source (Model 21AC fiber optic illuminator, CO Edmund, Industrial 

optics). The PEC system was standardized using known samples of n- and p-type silicon: 

n-type Si sample had shift of -120 mV and p-type Si sample had potential shift of +85 

mV, respectively.  

          The characteristic PEC cell measurement for p-type material (Ag-doped ZnO NWs 

grown on n-type Si) is illustrated in Figure 4.6.  

 

 
Figure 4.6. PEC cell measurement using Ag-doped ZnO NWs.   

 

The light was applied on Ag-doped ZnO NWs and had excited electrons inside NWs to a 

higher energy level. Then it was turned off after 85 seconds. PEC cell measurement 

illustrates characteristic positive voltage shift in open circuit, when Ag-doped ZnO NWs 

were illuminated.  
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          Next, Al-doped ZnO NWs were tested in PEC cell. The negative shift in the open 

circuit voltage was detected due to the applied light for all tested nanostructures. The 

experimental PEC cell measurements using Al-doped ZnO NWs is illustrated in Figure 

4.7. 

 

 
Figure 4.7. PEC cell measurement using Al-doped ZnO NWs.   
 

As it can be seen in Figure 4.7 the voltage was measured in dark following by the applied 

light condition which resulted in the shift of the cathodic voltage. The test was repeated 

for every 4 seconds. In this experiment, excited electrons went into higher energy level 

inside Al-doped ZnO NWs and leading to the increased amount of conductive electrons. 

As a result, the value of the potential inside electrochemical cell was increased.  As it was 

recorded in Figure 4.7, voltage shift was -0.25 V.  

          In the case of Al-doped ZnO NWs, we performed PEC cell measurements of the n-

type substrates before growth of Al-doped ZnO NWs and after. Then the shift of open 

circuit voltage detected on Al-doped ZnO NWs was decreased on the value of the open 
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circuit voltage detected in the substrates before electrochemical deposition. Normalized 

shift in potential, obtained from PEC cell measurements, was recorded versus the amount 

of the aluminum introduced into the electrolyte as shown in Figure 4.8. 

 
Figure 4.8. The open-circuit voltage shift in Al-doped ZnO NWs grown on n-type Si with 

respect to the open-circuit shift in n-type Si substrates versus amount of the Al introduced 

in an electrolyte. 

 

Highest shift in the voltage, which is reflecting higher amount of the n-type doping in 

ZnO NWs, was for the lowest concentration of Al added into the electrolyte.  

          The results of the conductivity type measurements are summarized in Table 4.2. 

The studies on the conductivity type of the electrochemically grown Ag-doped ZnO NWs 

on n-type Si, on n⁺-type Si, and on Au layer have confirmed p-type conductivity in these 

nanostructures. However, higher value of Voc was detected for Ag-doped ZnO NWs 

grown on n-type Si. The analysis conducted on the conductivity type of Al-doped ZnO 

NWs illustrates negative voltage shift in all Al-doped ZnO NWs. As in the case of p-type 

doping, n-type doping illustrated higher open circuit shifts in Al-doped ZnO NWs grown 

on low conductivity n-type Si. 
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Table 4.2. PEC cell measurements results. 

Material 
VD 

[mV] 

VL 

[mV] 

∆Voc 

[mV] 

Conductivity 

type 
n
-t

y
p
e 

S
i 

0.3% (Ag) -225 -215 10 p 

0.5% (Ag) -240 -235 5   p 

0.6% (Ag) -225 -210 15 p 

0.8% (Ag) -140 -100 40 p 

1.0% (Ag) -265 -250 15 p 

1.5% (Ag) -420 -320 100 p 

1.5% (Al) -225 -445 -220 n 

2.0% (Al) -270 -405 -135 n 

2.5% (Al) -220 -465 -245 n 

3.0% (Al) -400 -450 -50 n 

A
u
  

la
y
er

 

0.8% (Ag) -300 -280 20 p 

n
⁺-

ty
p
e 

S
i 0.8% (Ag) -160 -145 15 p 

 

          This is the first time p-type ZnO NWs and n⁺-type ZnO NWs were obtained in a 

one-step procedure, using electrochemical deposition, to the best of our knowledge. In 

fact not only doping of ZnO NWs, but also the parameters, which can be engaged to 

fabricate NWs with controlled doping, are established in the present work. Experimental 

results of the PEC cell tests have shown that the doping level of the nanowires depends 

on the conductivity of the substrates as working electrodes. As the conductivity of the 

substrates was increased, the concentration of the dopant inside the nanowires was 
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decreased. This proved that dopant flux inside the electrolyte is due the diffusion mass 

transfer. Thus, we can draw the conclusion that control over the doping concentration can 

be achieved by employing working electrode with appropriate conductivity.  
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5. Gas Ionization Sensor: Application of n-type 

and p-type ZnO Crystalline NWs 

5.1. Theoretical Background on Gas Ionization, on Field Ionization in 

Gases from Metallic and Semiconductor Surfaces, and on Field 

Emission from Metallic and Semiconductor Surfaces 

Field ionization and field emission in gases lead to breakdown of gas and creation of the 

conduction path in gas ionization sensor (GIS). Therefore, to understand the performance 

of this gas detector, some theoretical background on gas ionization, field ionization and 

field emission in gases from metal and semiconductor surfaces is discussed in detail here. 

The impact of nanowires integrated into the GIS and used in Field Ionization and Field 

Emission modes is addressed as well. 

5.1.1. Gas Ionization 

In field emission, where the gas ionization process is at a pressure lower than 

atmospheric pressure, the breakdown follows the Townsend mechanism which is based 

on the phenomena of primary and secondary ionization. The primary ionization is 

attributed to the collisions of the electrons with gas molecules, where electrons with 

energy equal or higher than the gas ionization energy hit gas molecules and remove 

electrons from the outer shells of gas atoms, creating gas ions. Secondary ionization is 

caused by the bombardment of the cathode with the positively charged gas ions obtained 

during primary ionization, Figure 5.1.  
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a) 

 
b) 

Figure 5.1. a) Collision of the electrons, which were emitted from the cathode (e⁻) with 

energy equal to or higher than the gas ionization energy, with the gas molecules (A) 

produces positive gas ions (A⁺) and double the number of the electrons: A+e⁻→A⁺+2e⁻; 

b) collision of the positive gas ions with a cathode.  

 

It is found that at low gas pressure the discharge is uniform. The behavior of the electric 

current due to increasing applied voltage comprises three distinct regions: nonlinear, 

saturation and Townsend discharge, as shown in Figure 5.2. 
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Figure 5.2. Graph of electric current vs. applied voltage, showing the three regions 

including discharge in the Townsend region [85]. 

 

          At low electric field, the curve is nonlinear (nonlinear region). In this region the 

effective recombination coefficient (which is the rate of recombination of positive ions 

with electrons or with negative ions in a gas between oppositely charged capacitive plates 

of GIS) is large and as a result the density of the charged particles, as well as a current 

rate decreases [86]. The current density (j) in this region includes ne and ni, the number of 

the electrons per unit of volume and the number of ions per unit of volume, respectively, 

μe and μi are the mobilities of electrons and ions, respectively, e is an electronic charge, 

and E is the applied electric field. 

          In the next region, where the rate of ion and electron production is constant, the 

limiting condition is reached when all ions and electrons reach the electrodes before they 

have time to recombine. The total number of charges arriving at the electrodes is equal to 

the total number being produced [86] as it is illustrated and expressed in Figure 5.2, 

where d is a distance between the electrodes, ∂n/∂t is the total rate of production of 

charged particles per unit of volume, assuming all charged particles to be singly charged. 
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          As the intensity of the electric field is further increasing, the Townsend discharge 

region is reached, where glow discharge (plasma) becomes visible. The electric current 

starts to rise due to the secondary ionization mechanisms (most probable is electron 

emission by positive-ion bombardment of the cathode since this process needs less 

energy). With further increasing of the applied voltage, plasma is created over the entire 

cathode, and an arc discharge or an electrical breakdown of the gas begins. The pre-

breakdown Townsend discharge current is given in Figure 5.2, where i₀ is the current 

leaving the cathode, α is the first Townsend ionization coefficient (which indicates the 

number of ionizing collisions made on average by an electron as it travels one centimeter 

in the direction of the electric field), and γ is the second Townsend coefficient (which 

stands for the number of electrons released from the cathode caused by the secondary 

emission mechanisms such as liberation of electrons in the gas by collision of positive 

ions with the cathode or by bombardment of the negatively charged electrode by positive 

or metastable atoms, or by photon impact) [86]. The positive denominator results in a 

non-self-sustaining discharge. When the denominator is going to zero the Townsend 

breakdown criterion is reached, corresponding to the self-sustaining discharge and 

indicating that αd=ln(1+1/γ). 

          Behavior of the breakdown voltage in gases was predicted by Paschen. Paschen’s 

law states that the breakdown voltage is a function of the pressure (p) and electrode 

separation (d) only in the combination pd. Ideally, the Paschen’s law applies in 

atmospheric pressures at uniform separations between electrodes (such as a pair of 

parallel plates) for 1 cm and more and the unvarying applied electric field inside the gas 

sensor [87, 88]. The Paschen’s curve of the breakdown voltage versus gas pressure has 
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nonlinear behavior. A general formula for breakdown voltage versus gas pressure is 

given by 
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where αd=ln(1+1/γ), and formula with assumption of the Townsend discharge, where αd 

= 1 or γ ≈ 0.582, e is the electron charge, EI is the ionization energy of gas, d is the 

distance between capacitive plates, and λ is the mean free path of charged particle [89]. λ 

= (kBT)/(pπrI²), where kB is Boltzmann constant, T is the temperature in Kelvin, p is the 

pressure, rI is the ion radius [88]. Breakdown of gas depends on the second Townsend 

coefficient (γ), which varies due to the physical characteristics of the gas between 0.001 

and 0.1. At lower values of γ the Paschen’s curve shifts to the higher pressure region as 

in the case of electronegative gases such as SF₆, Freon, O₂, CO₂ (these gases reattach 

electrons very fast). At higher values of γ the Paschen’s curve shifts to the lower gas 

pressures region. Increasing of the second Townsend coefficient occurs when the first 

Townsend coefficient rises (α = (1/λ)·exp(-(d·EI)/(e·V))where e is an electron charge, d is 

the separation between charged plates, λ is the mean free path, EI is the ionization energy 

of gas, and V is the applied voltage). Table 5.1 illustrates ionic radius and ionization 

energy of O₂, N₂, He, and Ar.  
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Table 5.1. Ionic radius and ionization energy of O₂, N₂, He, and Ar.  

Gas 
Radius 

[pm] from ref. [90] 

Ionic energy 

[eV] from ref. [91] 

O₂ 124 13.6181 

N₂ 60 14.5341 

He 46 24.5874 

Ar 154 15.7596 

 

The breakdown voltages versus varying gas pressures for a given separation (60μm) are 

obtained by implementing data from Table 5.1 as illustrated in Figure 5.3. 

 

 

Figure 5.3. Paschen's curves in Ar, O₂, N₂, and He. 

 

Breakdown voltage decreases with increasing gas pressure, and when the minimum value 

of the breakdown voltage has been reached, it starts to increase again up to the point 

where the breakdown voltage remains constant at greater gas pressures. The minimum 

value of the breakdown voltage corresponds to the highest ionizing efficiency [86]. Since 
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different gases have different ionization energy and ionic radius their breakdown voltages 

values are not the same as illustrated in Figure 5.3. The observed breakdown voltages 

values in oxygen and nitrogen gases are very similar compared to the breakdown in He 

and Ar. Gas pressures higher than 30 Torr could be used for a micrometer scaled gap 

between oppositely charged capacitive plates of the gas detector. In this region, the 

highest breakdown in Ar, following by breakdowns in N₂ and O₂ (similar value of 

breakdown voltages), and the lowest breakdown in He are obtained. Thus, the application 

of Paschen’s law is limited and cannot be employed for detection of low concentrations 

of gases by gas ionization sensors with micro-sized gaps.   

 

5.1.2. Field Ionization in Gases from Metal and Semiconductor Surfaces 

Field ionization (FI) happens when covalent electrons of the gas molecules have enough 

energy to leave the gas atom and tunnel through a potential barrier into a vacant energy 

state of the energy levels of metal or semiconductor. In field ionization, the gas molecules 

become dipoles in an inhomogeneous field, where at a critical distance from the 

positively charged surface the dipole attraction is larger than or equal to the centrifugal 

force of a tangentially approaching molecule with polarizability αp [92]: 

c

p
x

mv

x

F
F

2







                                                    

(5.3) 

where F is electric field,  x is a distance from the charged surface. The critical distance is 

the point where the dipole attraction is given as mv²/2=kT=(1/2)αpF², where m is the 

atomic weight of the gas particle, v is the velocity (v=(α/M)
1/2

F where M is the mass of 

the atom), k is the Boltzmann constant, and T is the temperature in Kelvin. The gas 

molecules attracted to the emitter surface by a polarization force, hop around the surface 
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and then are field-ionized when they pass through the ionization zone or at a critical 

distance from the emitter [93] as shown in Figure 5.4. 

 

 

Figure 5.4. a) Ionization of a gas in the vicinity of a NW’s tip, b) four ways for a gas 

atom to be ionized in an ionization zone: A-direct incidence, B-orbital capture, C- 

bouncing capture, D –adsorbed diffusion.  

 

However, other ways for the gas atom to be ionized exist, such as orbital capture, 

adsorbed diffusion, and direct incidence. The last one (direct incidence) is the mode of 

ionization for gas molecules in the supply-limited regime as illustrated in Figure 5.4 (b, 

mode A). The ionization in metals occurs only when gas atom is at a critical distance 

from metal. In metals the critical distance is the closest distance between the atom and the 

conductive surface, where ground state of the atom is above the Fermi level of the metal. 

If the distance between the atom and the metal is shorter than the critical distance, the 

ground state of the atom is lower than the Fermi level of the metal, and the gas electron 
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has no available states to move into [94]. In the case of p-type semiconductors, the 

ionization can be achieved at smaller critical distance because of the defined amount of 

the empty states in the valence band of the semiconductor. The smaller tunneling critical 

distance results in an increased current, since more electrons can tunnel through a shorter 

distance into the semiconductor. Moreover, the ionization potential of the gas electrons is 

different for each gas; consequently, the electric field intensity value which would cause 

ejection of the electron from the gas molecule is also different for each gas.  

          The tunneling ionization mode, where the gas electron tunnels from gas atom to the 

surface of the metal or semiconductor, is taking place in the vicinity of the high local 

electric field at a critical distance (xc). In this case, the electric field values are high 

enough to reduce the width of the potential barrier to a width comparable to the de 

Broglie wavelength of the electron inside the gas atom. In the proximity of the 

conductive metallic surface, the potential energy of a gas electron in an electric field is 

given as [94] 
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where V(x) is the potential energy of the gas electron, -e²/|xi-x| is the Coulomb potential 

attributable to a positive ion charge e located at distance xi from the plane surface of the 

conductor, eFx is the potential energy of the electron due to the applied field (F), -e²/4x is 

the potential energy due to the electron’s positive image, and e²/(xi+x) is the potential 

energy due to the negative image of the ion behind the conductor surface. On the 

conductor’s surface, the electron meets the bottom of the conduction band [94]. The 

schematics of the electron in a gas atom, the electron in a gas atom at applied electric 

field, and the electron in a gas atom near the metallic surface are illustrated in Figure 5.5. 
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Figure 5.5. a) Potential energy of the gas electron, b) potential energy of the gas electron 

in an electric field, and c) potential energy of the gas electron near the metal surface [94]. 

 

To ionize the gas molecule the applied energy should be equal to or larger than the 

ionization energy of the gas (UI) as illustrated in Figure 5.5 (a). With an applied electric 

field, the potential barrier is reduced and the electron can tunnel through when the width 

of the barrier is comparable to the de Broglie wavelength of the electron inside the atom 

as illustrated in Figure 5.5 (b). When the gas atom is near the conductive surface, the 

potential of the electron at the surface meets the bottom of the conduction band as 

illustrated in Figure 5.5 (c). The critical distance of the metallic emitter is obtained as 

[94] 
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where ϕ is the work function of the metal, αa is the polarizability of the gas atom, αi is a 

polarizability of the ensuing ion. The last term in the equation represents the difference in 

the polarization energy before and after the ionization.  

          In the case of semiconductors the created electric fields are reduced compared to 

the electric fields in the metals because of the effect of the field penetration and the 

dielectric property of semiconductors. The potential energy of a gas electron near the 

semiconductor surface in an electric field involves field penetration and the dielectric 

property of the material, and it is given as 
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where λ and ε′ are the field penetration depth and the relative dielectric constant [95]. The 

work function of a semiconductor is increased due to the energy band bending (eFλ) 

because of the field penetration and is decreased by 4eπαsnF attributable to the field-

induced polarization of the surface atoms, where αs and n are the polarizability of a 

surface atom and the number of atoms per unit area of the surface, respectively [95]. The 

effective work function of the semiconductor (φeffective) is given as 

  semicondssemicondseffective neF   4                                  (5.7) 

where ϕsemicond is the semiconductor work function. The schematic potential diagram for 

the ionization of gas near the p-type semiconductor surface illustrates the effective work 

function due to the field penetration and the field-induced polarization as shown in Figure 

5.6.
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Figure 5.6. Schematics of the potential diagram for the field ionization of a gas atom in 

vicinity of the positively charged p-type semiconductor surface, where the effective work 

function is increased due to the field penetration into the surface and is decreased because 

of the field-induced dipole moments of the surface atoms.  

 

In the case of a semiconductor, the critical path is decreased by the amount of the band 

bending and is increased by the amount of the field-induced polarization of the surface 

atoms (ϕs) [95], and it is given as 

 
 

eF

U
F

x

e
U

eF
x

effectiveI
ia

c
effectiveIc








































 2

2

2

1

1'

1'

4

1

                  
(5.8) 

where αa and αi are the polarizabilities of gas and ensuing ion, respectively. In a 

degenerate p-type semiconductor, the critical path decreases due to the increased 

effective work function. This assumes that the tunneling barrier has an equilateral 

trapezoid geometry of the upper base xa, of the lower base xc and of the altitude (UI-ΔV), 

where UI is the ionization potential and ΔV is the Schottky reduction given as
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  2/132 FeV  . The tunneling probability, assuming the Wentzel-Kramers-Brillouin 

(WKB) approximation, is given as  
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If xa equals zero in Equation (5.9a) the potential barrier changes the geometry from 

equilateral trapezoid into equilateral triangle and the tunneling probability will be 

expressed as in Equation (5.9b) [95]. The ion current is proportional to the tunneling 

probability of the gas electrons in the vicinity of the metallic or semiconductor surfaces. 

5.1.2.a. Formation of the Ion Current 

The ion current at low electric field and at high electric field is not the same. At relatively 

low field (field-limited regime) the total rate of ionization is small compared to the rate of 

gas molecules’ arrival [96]. The ion current in the field-limited regime (IFL) is given as 

122   tctFL cexrI
                                               

(5.10) 

where rt is the metal tip curvature, e is the electron charge, xc is the critical distance, τ is 

the characteristic time ionization (τ=(veD(xc))ˉ¹, where ve is the orbital frequency of the 

tunneling electron in the gas molecule and D(xc) is the tunneling probability D(xc) = 

exp(-4/3(2m/ħ²)
1/2

(UI-(e³F)
1/2

)
1/2

xc) from Equation (5.9a), and ct is the equilibrium gas 

concentration near the tip. The equilibrium gas concentration is given as 
 

 gptggt kTUTTcc /exp/                                     (5.11)             

where cg is the concentration far from the ionization zone, Tg and Tt are the gas and tip 

temperature in Kelvin, respectively, and Up is the polarization energy (Up=(1/2)αpF² in 
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eV) [96]. Since the current is proportional to the exponential of the squared electric field, 

the field-limited current increases with electric field intensity. Figure 5.7 shows an 

example of the ion current generated in the vicinity of the nanowire’s apex having tip 

curvature 20 nm in Ar gas, where the ionization energy of the Ar molecule is 15.76 eV, 

αp = 11.08∙1.64877∙10¯⁴¹C²m²/J [97], the critical distance at which the electron will 

tunnel to the semiconductor is close to the electron’s de Broglie wavelength (which is 

about 0.309 nm or 0.031 Å), the pressure (P) is 0.12 Torr, and the temperature (T) is 

300K.  

 

 

Figure 5.7. Ionization current in the field-limited regime versus the electric field in Ar gas 

at a pressure of 0.12 Torr, where NW’s tip curvature 20 nm, the ionization energy of the 

Ar molecule is 15.76 eV, αp = 11.08∙1.64877∙10¯⁴¹C²m²/J [97], the critical distance 0.309 

nm, and the temperature (T) is 300K.  

 

The plot in Figure 5.7 shows two distinct regions. In the region of lower electric field, the 

slope is very small. In this region ion current is caused mostly by residual gases. At the 

higher electric fields, the slope is high and satisfies a linear relation. Here at high fields 
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the current depends on the ionization probability of the gas (Equation (5.9)) and 

proportional to the exponential of polarization energy (Equation (5.11)). Field-limited 

current illustrates the gas ionization in first two stages. All four ways for a gas atom to 

ionize in an ionization zone (A-direct incidence, B-orbital capture, C- bouncing capture, 

D –adsorbed diffusion) can be observed. In the intermediate currents the ionization of gas 

molecules depends on the way in which gas arrives into ionization zone as shown in 

Figure 5.4 (b) (the kinetics of the ionization). Finally, at high electric fields in supply-

limited region gas atoms arrive following direct incidence into ionization zone.  

     In supply-limited regime, all particles approaching the charged surface become 

ionized. The ion current is limited by the gas supply in the ionization zone, and it is 

called a supply-limited ionization current (ISL) [98]:  

eYrI tSL

24                                                     (5.12) 

where Y is the number of particles impinging on a unit surface per unit time [98], and it 

is given by 

                                                                                                                                   (5.13) 

 

where Pg is the gas pressure. In the supply-limited regime at given constant pressure, 

applied voltage, and temperature of the gas, the ion current depends on the polarizability 

divided by the weight of the gas particle. The example of supply-limited current in Ar 

produced in vicinity of the NW’s apex with 20 nm curvature is illustrated below. In 

Figure 5.8 the employed parameters were T = 300K, P = 10¯⁶ Torr, αp = 

11.08∙1.64877∙10¯⁴¹ C²m²/J [114], UI(Ar) = 15.76 eV. 
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Figure 5.8. Ion current in the supply-limited regime versus the electric field in argon gas 

pressure of 10⁻⁶ Torr, where curvature of the NW tip 20 nm, the ionization energy of the 

Ar molecule is 15.76 eV, αp = 11.08∙1.64877∙10¯⁴¹C²m²/J [97], the critical distance 0.309 

nm, and the temperature (T) is 300K.  

 

Ion current in supply-limited case illustrates linear dependence. This current can be 

observed after field-limited regime in high electric fields during gas ionization process. 

 

5.1.3. Field Emission in Gases from Metal and Semiconductor Surfaces 

High applied electric fields in a direction perpendicular to the metal or semiconductor 

surfaces lead to the emission of electrons by quantum mechanical tunneling through the 

surface energy barrier from electron states at the Fermi level, as it was described by 

Fowler-Nordheim theory, which assumes smooth and clean emitter’s surface and 

includes Fermi-Dirac statistics for electrons. Also, the electron tunnelling is described in 

terms of the Wentzel-Kramers-Brillouin approximation, where the potential barrier has 

triangular shape [99]. The Fowler-Nordheim tunneling equation is given as in ref. [100, 

101] 
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)/)(exp( 2/3122 VbfvVaPJ Fz   

                                
(5.14) 

where λz is the correlation factor which includes the temperature correction factor (λT), 

the electronic-band-structure correlation factor (λB), and the decay-width correlation 

factor (λd) (λz = λTλBλd² ≈ (1.07)¯²), PF is the tunnelling prefactor (≈1), a and b are 

Fowler-Nordheim coefficients (a ≈ 1.541434·10¯⁶ AeVV¯² and b = (8π/3)∙(2m)
1/2

/eh ≈ 

6.830890 eV
-3/2 nm

-1
), β is the voltage-to-barrier-field conversion factor (β = γ/W = 

Floc/Vapp, where W is a gap between anode and cathode), v(f) is the correction function 

(v(f) ≈ 1-f+(1/6)f·ln(f)...), where f is the scaled barrier field (f = F/Fφ = (e³/4πε0)(Floc/φ²) = 

(1.439964 eV²Vˉ¹nm) (F/φ²), where Fφ is the field needed to reduce to zero a Schottky-

Nordheim barrier of the unreduced height (omitted reduction due to mirror effect), and it 

equals to the work function (φ)), and V is the applied voltage. The function v(y), that was 

used in some articles, corresponds to v(f
1/2

). The given approximation of v(f) is valid with 

accuracy of better 0.0025 [102]. The electron field emission (FE) energy diagrams for 

metal and n-type semiconductor surfaces are illustrated in Figure 5.9.  

 

 

a) 
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b)  

Figure 5.9. Energy-band diagrams a) for the electron field emission from metal, and b) 

for the electron field emission from n-type semiconductor surfaces. 

  

The length of the tunnelling path depends on the applied voltage and the field 

enhancement factor, as well as on the height of the barrier.  

      The work function of the semiconductor is given as the energy between the vacuum 

and the Fermi energy level, and it has higher values compared to the metal work 

functions. Therefore, the emission of the electrons from semiconductor will be at higher 

applied electric fields compared to the values of the applied electric field in metals. To 

improve field emission in semiconductors, doping can be used to move the Fermi level 

closer to the conduction band (in n-type semiconductor), or the conductor emitters’ 

morphology and geometry can be designed to achieve a high field enhancement factor.  

          From experimental I-V characteristics of the field emission device, the work 

function or the enhancement factor of the field emitters can be calculated using the 

relationship 
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where β is the enhancement factor per meter and A is the emitter’s surface. By drawing 

the graph ln(I/V²) versus 1/V from experimental data, the negative slope (


 2/3)( 


bfv
) 

and intersection with ln(I/V²) axis (
  


















2

2

07.1
ln

aA
) will provide the necessary 

information for calculation of the work function of the semiconductor or calculation of 

the enhancement factor (γ=β·W). Illustrations of the current density and calculations of 

enhancement factor from the slope are illustrated in Figure 5.10. 
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b) 

Figure 5.10. a) Current density in a gap of 60 µm with β = γ/nm of 10/nm, 100/nm, or 

1000/nm and work function = 5.3 eV, b) ln(J/V²) versus 1/V from the current density 

curves. 

 

Using the slopes of the curves we can calculate the enhancement factors for a given 

current densities. The slope in this case is given as 


 2/3)( 


bfv
. β₁ = 10/nm,  β₂ ≈ 

100/nm, and β₃ ≈ 1000/nm are extracted from the slope if v(f) ≈ 1, as it was assumed in 

Figure 5.10 (a).  

 

5.1.4. Geometrical Field Enhancement 

To improve the efficiency of the field ionization and field emission  

 the critical distance should be decreased (more charged particles could tunnel 

through)  

 the area of the high local electric field should be increased  
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 the emitted electrons from the surface should possess high energy to move the 

electron from the gas atom.  

Decreasing the critical distance in the case of the field ionization and creation of the 

emitted electrons with high energy in the case of FE can be achieved by increasing the 

local electric field near the NWs apexes. This can be achieved by employing the novel 

morphologies of the electrochemically grown ZnO NWs as conical shape of NWs’ 

apexes and small protrusions with large curvatures on them. Other geometrical 

parameters, which cause increase of the electric field, are aspect ratio and spacing 

between the NWs. The enhancement factor (γ) includes geometrical parameters of the 

nanowires and their distribution in an array. Also, enhancement factor of the array of 

electric field emitters represents the relation between applied and local electric field 

intensities, and it is given as 

 
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(5.16) 

where γ₀ is the enhancement factor of one electric field emitter, h, a and b are the 

adjustment values, L/r is an aspect ratio of NWs ( L is the length of the NW and r is the 

radius), and s is the spacing between NWs. If s ≪ L then the field enhancement factor is 

given as 

   
L

s
hrLC

L

s
hrLba

L

s
a 

9.09.0

0 //
            

(5.17) 

where C is the alterable parameter and h is chosen - 26 in ref. [103]. Multiple protrusions 

on the nanotips generate a high enhancement factor because of high curvatures of the 
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nanoprotrusions, and increase the available surface having high local electric field. The 

enhancement factor for one nanowire with nanoprotrusions of similar geometries is given 

as
 

sionsnanoprotru ofnumber 0  sionnanoprotru                           (5.18) 

where it is assumed that all nanoprotrusions have about the same enhancement factor 

values.  

 

5.2. Simulations of GIS with ZnO NWs as Anode/Cathode (COMSOL) 

ZnO NWs have been proven experimentally to be well suited for field ionization and 

field emission applications. An optimized capacitive device (GIS) with ZnO NWs field 

ionization array is developed using the COMSOL software. The effects of the NWs 

geometry and their between-wire spacing on the enhanced electric field and total energy 

stored were investigated using Multiphysics Partial Differential Equation (PDE) and 

Electrostatics modules.  

 

5.2.1. Theoretical Background on Electrostatics 

The general governing equations for the electrostatic model were (1) ∇×F = 0, where F is 

the vector electric field, (2) the Poisson’s equation (∇²V = -ρ/ε, where ε is the 

permittivity of the material, V is the applied potential, and ρ is the volume charge 

density), and (3) the Laplace’s equation (∇²V=0). In our model, the material was 

nonpolarizable and nonmagnetizable, and the volume charge density (ρv) was expressed 

as ρv = ∇∙D = ε∇∙F where D is the electric displacement field vector. The boundary 

conditions used in the electrostatics simulations are described in Appendix A. 
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          The applied electric field is given as  

d

V
Fapplied                                                           (5.19) 

where d is the space between two oppositely charged electrodes in the GIS model. The 

field enhancement factor (γ) defines the amplification in an applied electric field intensity 

caused by the geometry of the NW, and it is given as 

                                      appliedloc γFF                                                      (5.20) 

where Eloc is the augmented electric field near the NW pinnacle. The energy density or 

energy per unit volume of the electrostatic field (we) is defined by 

                                             2

2

1
Fwe                                                        (5.21) 

and the total energy stored in the field or the work to assemble a static charge distribution 

(W) is given as 

                                              
V

edVwW                                                    (5.22) 

where V is the volume between the two electrodes in the GIS model. 

 

5.2.2. Simulation Results Using Models of GIS with ZnO NWs 

The equation-based modeling (PDE, partial differential equation in coefficient form) and 

AC/DC module (electrostatics) were used for 2D and 3D GIS models, respectively.  

          To study the field intensity in the vicinity of the NW apexes, the electrostatic 

model of the GIS with an incorporated NW on one of the plates in the middle was 

considered. The geometries of the models are recorded in Table 5.2. 
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Table 5.2. Geometries of the GIS models used in simulations.  

3D model of GIS with 1 nanowire 
2D model of GIS 

with 5 nanowires 

3D model of GIS 

with 9 nanowires 

Diameter of conductive plates (Au) = 2 µm 

Separation between the plates = 60 µm 

Thickness of plate = 100 nm 

Conical shape 

of NW 
dbase = 100 nm 

dbase = 100 nm dbase = 200 nm 

dtip = 20 nm dtip = 40 nm 

rcurvature = 3 nm rcurvature = 10 nm 

Hexagonal 

NW 
d =100 nm 

  Hexagonal 

NW with 

decreased tip 

dbase =100 nm 

dtip = 20 nm 

 

The voltage applied on the plate with NW was 400 V, and the opposite plate was 

grounded, 0 V. The volume between the conductive plates was filled with air at 

1.333·10⁻⁵ Pa, close to a vacuum. Outside the region containing air, the volume 

boundary condition was 0 V. The described electrostatic model with the Dirichlet 

boundary conditions and the investigated NW geometries are illustrated in Figure 5.11. 
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Figure 5.11. Schematics of a) a GIS model and b) the three modeled geometries of NW as 

described in Table 5.1. 

 

Three shapes of ZnO NWs were considered, as illustrated in Figure 5.11 (b). 

Investigations of the effect of the variations in the applied voltage and of the space 

between ZnO NWs on electric field intensity were performed using 2D and 3D models 

using the same boundary conditions. Meshed models where the geometry of the NW, 

distribution of nanowires in 2D and 3D models investigated are shown in Figure 5.12. 

 

 
a)  

b)
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c) 

 
d) 

 

              
e) 

Figure 5.12. a) Meshed 3D GIS model with 1 ZnO NW in Electrostatics application, (b-c) 

meshed 2D GIS model in PDE module, and (d-e) meshed 3D GIS model in Electrostatics. 

 

In all of the GIS models simulated in this work, ZnO material was used for the 

nanowires, surrounded by air. The meshing element was free tetrahedral as illustrated in 

Figure 5.12. The mesh was user-defined, where the number of tetrahedral elements was 

increased in the region of the nanowires. The particulars of the mesh parameters are 

disclosed in Appendix A. Dirichlet boundary conditions were used with V = 0 V on all 

boundaries except plate with ZnO NWs where constant voltage was applied. 
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          Next the distribution of the electric field in the vicinity of the nanowires, total 

energy stored between capacitive plates of GIS, as well as the screening effects were 

considered in GIS models as illustrated in Table 5.3. 

 

Table 5.3. Parameters considered in simulations of GIS models.  

Model Electric field 

Total energy 

stored between 

capacitive 

plates of GIS 

Screening 

effect 

3D GIS model with 1 NW Figure 5.13 

and 

Figure 5.14 

Figure 5.15 Figure 5.16 2D GIS model with 5 NWs 

3D GIS model with 9 NWs 

 

Coefficient based model was used because the important parameters under consideration 

were represented as coefficients in PDE module. These parameters are the charge density 

represented as source term (f) and the dielectric constant of the medium represented as 

diffusion coefficient (c). In following simulations the electrostatic analysis was 

considered, where the dielectric constant was 9.16 for nanowires. In 3D model, 9 ZnO 

NWs were situated in the middle of the positively charged plate. First, the direction of the 

electric field and its distribution in ZnO NWs incorporated into GIS model were studied, 

Figure 5.13. 

 



 

94 
 

 
a) 



 

95 
 

V
 =

 0
 V

V
 =

 0
 V

V = 100 V
 

b) 



 

96 
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e) 

Figure 5.13. Equipotential lines of electric field in 2D GIS model in vicinity of the ZnO 

NWs (a), direction and density of the electric field intensity (b), electric field in the 

vicinity of the NW’s tip (c), distribution and density of the electric field intensity in 3D 

GIS model (d), and distribution of the electric field in NWs of 3D GIS model (e).  

 

 

The electric field intensity in FI mode was considered, where applied voltage on ZnO 

NWs was 80V in 2D GIS model. The equipotential lines represent the amount of the 

electric field in different colors as demonstrated in Figure 5.13 (a). These lines are always 

directed perpendicular to the electric field vector direction. It can be seen that there is a 

low electric field intensity generated between the nanowires (equipotential lines have 

dark blue color), Figure 5.13 (a) and Appendix A. The highest electric field is observed in 

the vicinity of NWs pinnacles (dark red color) or densely distributed arrows. Surface of 

the NWs apexes provides the highest values of the electric field intensity. Reducing 

intensity of the electric field can be observed as the electric field moving further from the 
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tip. To attain better understanding on the behavior of the electric field between NWs and 

in vicinity of the NWs tips we looked at the direction of the electric field and its intensity. 

The highest intensity of the electric field was obtained in NWs as shown in Figure 5.13 

(b). Multiple lines representing the electric field vectors with included x and y directions 

components originate from positively charged surface and go through NWs, Appendix A. 

On the tip’s surface lines have small curvatures, since apex of NW has curvature, and 

electric field is always perpendicular to the surface. Direction of the electric field is 

almost in the y-direction, perpendicular to the electrodes. Following simulation results 

from 3D GIS model illustrate uniform distribution of the electric field in vicinity of the 

NWs pinnacles and directed perpendicular to the curved surface of NWs apexes. 

          Next, the readings of the maximum electric field intensity in the normal direction 

to the capacitive plate along 1 NW in 3D model with single nanowire as shown in Figure 

5.11 were obtained. The maximum local electric field in a vicinity of the conical NW’s 

apex was observed, Table 5.4. 

 

Table 5.4. Geometry of the NW versus local electric field. 

Geometry of 

the NW’s tip 
Conical 

Hexagonal flat tip 

(diameter of the tip = 

20 nm) 

Hexagonal flat tip 

(diameter = 100 nm) 

F [V/m] 7.2·10⁸ 3.2·10⁷ 2.0·10⁷ 

 

Large accumulation of the charged particles in curved tip resulted in maximum local 

electric field directed perpendicular to the apex surface. The maximum electric field 

intensity was detected in conical shape of ZnO NW. Thus, maximum field enhancement 

factor was detected in the conical NW geometry, 108, and minimum was obtained in the 
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hexagonal NW, 3. As for the hexagonal NW with decreased diameter of the tip, the field 

enhancement factor was 4.8. Numerical results illustrate rapid increase in the value of the 

electric field intensity, when the shape of the tip became sharp (conical NW’s geometry). 

          To investigate the behavior of the electric field intensity at the vicinity of the NWs 

tips all three models were used. The electric field was studied on the path which goes 

through the NW situated in the middle of the array (2D) or in the middle of the capacitive 

plate (3D) at varying applied voltages. The created paths in models are shown in 

Appendix A. The electric field intensities along specified paths at varying applied 

voltages for all models are shown in Figure 5.14.   

 
a) 
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b) 
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c) 
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d) 
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e) 

Figure 5.14. a) Electric field on the path between parallel capacitive plates along the 

hexagonal NW with decreased diameter of the tip (20 nm), b) electric field intensity 

through ZnO NW in direction perpendicular to the charged plates in 2D model, c) the 

maximum values of the electric field versus the applied voltages in 2D GIS model, d) 

electric field detected on the studied path through NW at the different applied voltages in 

3D GIS model, e) maximum electric field values versus the applied voltages in 3D GIS 

model. 

 

 

Intensity of the electric field between parallel gold plates on the path along the NW axis 

rapidly increased and reached its maximum value in the vicinity of the NW’s pinnacle. 

Then the value of the electric field intensity was decreased quickly down to the value of 

the applied electric field created between the plates due to the applied voltage. For the 
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applied voltage of 400 V Fapplied was equal to 400 V/60 μm = 6.667·10⁶ V/m. The value 

of the electric field intensity increased from 6.667·10⁶ V/m to 3.2·10⁷ V/m in the vicinity 

of the NW apex at 1 μm from the plate on the path along NW. The simulations illustrated 

linear increase in the local electric field due to the applied voltage. Maximum value of the 

electric field intensity was observed in vicinity of the NW apex in all models as 

illustrated in Figure 5.14. The field enhancement factor at applied voltage of 200 V is 

1.95 in 3D model with 1 hexagonal NW, 3.06 in 2D GIS model, and 3.1 in 3D GIS 

model. The results on detection of the electric field demonstrate that the curvature of the 

tip and decreasing of the tip’s radius increase the value of the electric field. Also, the 

value of the ratio between local and applied fields versus applied voltage increases with 

applied voltage. For instance, at applied voltage of 250 V in 3D GIS model the 

enhancement factor is increased from 3.1 at applied 200 V to 3.92.  In 3D model with 1 

NW factor increased from 1.95 at 200 V to 4.8 at 400 V. Also, in 2D GIS model the 

increase from 3 at 80 V to 3.06 at 200 V was observed.  

          The energy density has the highest value near the NWs pinnacles; therefore, gas 

molecules will tend to ionize in the vicinity of the NWs tips. Total energy stored between 

oppositely charged capacitive plates at a range of the applied voltages illustrated 

nonlinear dependence on the applied voltage as shown in Figure 5.15.  
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a) 
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b) 
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c) 

Figure 5.15. a) Total energy stored in the field between oppositely charged plates of 3D 

GIS model with 1NW, b) total energy stored in a field between oppositely charged 

capacitive plates at different applied voltage in 2D GIS model, c) total energy stored in a 

field between oppositely charged plates versus the applied voltage in 3D GIS model with 

9 NWs. 

 

In fact, increase in the value of the applied voltage 4 times generated 16 times 

augmentation in the total energy in a gap between the oppositely charged capacitive 

plates in 3D model with one NW, as shown in Figure 5.15 (a). The obtained results 

illustrate a low amount of the work used to assemble a static charge distribution between 

the oppositely charged plates of the 2D GIS model (surface integral of the area between 

capacitive plates, 0.5*uy*uy*8.85e-12*9.16): 1.5166·10⁻⁸ J at 80 V, 2.867210⁻⁸ J at 110 

V, 4.644510⁻⁸ J at 140 V, 6.848210⁻⁸ J at 170 V, 9.478510⁻⁸ J at 200 V from Figure 5.15 

(b).    
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          However, the obtained values of total energy are much higher compared to the 3D 

model with 1 NW and 3D GIS model with 9 NWs. In the case of 3D GIS model with 9 

NWs total energy stored between oppositely charged capacitive plates at a range of the 

applied voltages showed decreased values compared to 2D GIS model but higher values 

compared to 3D GIS model with 1 ZnO NW as illustrated in Figure 5.15 (c). 

      Finally, the dependence of the electric field on the space between nanowires was 

studied in 2D and 3D GIS models, and the results of the investigations are summarized in 

Figure 5.16. 
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b) 

Figure 5.16. a) Electric field versus the space between NWs at applied voltage from 80 V 

to 200V with step of 30 V in 2D model, b) electric field versus the space between NWs at 

applied voltage from 50 V to 250 V with step of 50 V in 3D model. 

 

 

The obtained results of simulations illustrated the presence of the screening effect in 2D 

GIS model illustrated in Figure 5.16 (a). When ZnO NWs were situated close to each 

other, the maximum electric field was 8.64∙10⁶ V/m, but when space between nanowires 

increased to 9 NW lengths the value of the electric field was increased to 1.08∙10⁷ V/m at 

the applied voltage of 200V. Following investigation of the screening effect in 3D GIS 

model with 9 NWs demonstrated negligible differences in local electric field values, 

Figure 5.16 (b). Insignificant screening effect was observed because of the geometry of 

the NWs, the double increase in the values of the top and base NWs diameters compared 

to 2D GIS model.  

          COMSOL multiphysics has been used to optimize the physical dimensions of ZnO 

NWs and their distribution in an array for future incorporation into GIS. The simulations 

showed that not only screening effect is the dominant factor in decrease of the electric 
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field in the device but also the geometry of the nanowire plays a dominant role. It is 

illustrated that ZnO NWs with a large tips curvatures are advantageous, since they 

provide the highest electric fields in a vicinity of the NWs pinnacles. Another observation 

is that in contrast to NWs with the small diameters and insignificant tip curvatures the 

insignificant screening effect has been observed in 3D GIS model with NWs which have 

doubled diameters and increased apex curvatures. Total energy stored between capacitive 

plates of 3D GIS model with 9 NWs had higher values compared to 3D GIS model with 1 

NW because of the increased amount of the field emitters, NWs. Optimized ZnO NWs 

have been achieved by the electrochemical synthesis, and gas ionization sensor has been 

fabricated with the optimized ZnO NWs integrated as anode/cathode.  

 

5.3. Fabrication and Test Results of the GISs made with ZnO NWs 

A gas ionization sensor (GIS) is a physical sensor based on the creation of the breakdown 

in the gaseous atmosphere between two oppositely charged capacitive plates. The applied 

electric fields in a GIS should be high enough to ionize the gas molecules which thus 

become the ionic current. However, high applied electric voltages in a range of kV units 

are required to create electric fields sufficient for gas ionization. Therefore, the 

performance of a gas detector operating this way is very low. With advances in the 

nanotechnology field, the possibility of placing nanostructured field emitters (nanowires) 

between two plates causes advances in a new generation of GIS devices [1, 47 - 56]. The 

field emitting nanowires create very high local electric field between the capacitive plates 

causing the enhancement of the total electric field and consequently lowering the 

breakdown voltages of the gases by several orders of magnitude. At micro/nano device 
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laboratories in ECE Department at Concordia University, as part of ongoing research to 

develop a sensitive odor sensor, several types of GIS-based metallic and semiconductor 

nanowires were designed, fabricated, and characterized. By using this technique it is 

managed to decrease the breakdown voltages of gases [1, 47 - 56] from several thousand 

to few hundred volts. However, it is the goal of this project to not only bring the 

breakdown voltage even lower but enhance other GIS properties in particular their 

durability. For this reason, we are using ZnO nanowires to replace the metallic nanowires 

in the GIS. As the ZnO has a very good chemical stability and withstands much higher 

electric field without damaging the apexes of the nanowires tips. Superior properties of 

ZnO nanowires make it possible to design and fabricate GIS devices with much lower 

breakdown voltages and enhanced durability of the devices.  As discussed in previous 

chapters we can manipulate the morphology and conductivity of ZnO nanowires to 

achieve high electric fields, responsible for breakdown of gases. The design, fabrication 

and characterization of the GIS based on ZnO nanowires are discussed in this section.  

 

5.3.1. Fabrication of GIS with Incorporated ZnO NWs 

Structure of the GIS involves two capacitive electrodes. ZnO NWs are grown on one of 

the electrodes and placed between the plates, as shown in Figure 5.17.  
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a) 

 
b) 
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c) 

Figure 5.17. a) GIS inside the chamber connected to the cables, b) 2D schematics of the 

GIS with the incorporated ZnO NWs, c) 3D schematics of the GIS with ZnO NWs as 

anode. 

 

An insulating spacer, polypropylene ring with resistivity of 10¹⁶ -10¹⁸ Ω∙cm and with 

thickness of 60 μm, is separating the two plates. Three openings in spacer were created 

each of them at angular distance 60° with the aim to let gas flow between the oppositely 

charged capacitive plates. Substrate with ZnO NWs, the insulation layer and its size, the 

opposite electrode, and the conductive wires connected to the measurement set up are 

demonstrated in Figure 5.17 (b). The two plates in this work are made of 2 x 2 cm² 

silicon wafers and the working area of the GIS was 346.36 mm². The backsides of the 

wafers are metalized to make them ohmic contacts. GIS electrodes with ZnO NWs were 

porous silicon (PS), n-type Si with high and low resistivity (ρ = 5-8 Ω·cm and ρ = 10⁻³ 

Ω·cm), and Au layer sputtered on n-type Si (gold layer was alloyed at 385°C for 45 min. 

in N₂/H₂ atmosphere (1:1)). Another electrode in GIS was the silicon covered by Al 

(metal was alloyed at 450°C for 30 minutes at N₂/H₂ atmosphere (1:1) with the intent to 

create the ohmic contact between Si and Al layer). Substrates covered by n-type and p-

type ZnO NWs incorporated into GISs are illustrated in Figure 5.18. 
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Figure 5.18. SEM images of ZnO NWs grown on a) the porous silicon and b) n⁺-type Si 

(ρ = 10⁻³ Ω·cm); SEM images of Ag-doped ZnO NWs grown on c) n-type Si (ρ = 5-8 

Ω·cm), d) n⁺-type Si, and e) gold layer (alloyed at 380°C for 45 minutes).  

 

Porous silicon substrate with the grown perpendicular to the surface n-type ZnO NWs is 

illustrated in Figure 5.18 (a). Next, n-type ZnO NWs electrochemically grown on n⁺-type 
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Si illustrates low distribution, random-angled, and with the nanoprotrusions on the NWs 

apexes. SEM images of the Ag-doped ZnO NWs grown on the n-type Si with low and 

high resistivity and on Au layer are shown in Figure 5.18 (c - e). The NWs tips’ 

diameters were between 20 nm and 200 nm depending on their morphology.  

          Electrochemical growth parameters used to synthesize ZnO NWs are reported in 

Appendix A. EDXS analysis confirmed the uniform distribution of Ag inside ZnO NWs, 

and PEC cell measurements have illustrated p-type conductivity in Ag-doped ZnO NWs, 

as reported in Appendix A. The obtained n-type and p-type ZnO NWs electrochemically 

grown on the substrates with different conductivities were integrated into GISs.  

          The connection to Keithley-2400 single measurement units (SMUs) was achieved 

through connection of electrical wires attached to GIS to the cables on the handmade 

stand. The cables were connected inside the vacuum chamber to the outgoing triaxial 

cables connected to the SMUs, which were used to applied voltage sweeping in the range 

from 0 V to 400 V maximum and detected the created ionic currents and breakdown 

voltages in GISs [96]. The measurement set up and performances of the fabricated GISs 

are discussed in following section. 

 

5.3.2. Gas Ionization Sensor Performance and Analysis 

The fabricated gas ionization sensors were (1) tested in vacuum for different 

concentrations of gases, and (2) tested for detection of gas leakage in air. The 

measurement methodology and setup is described first. Then, the I-V characteristics, the 

breakdown voltages at different concentrations of gas and in different gases were studied. 

Finally, performance of the novel GISs was summarized. 
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5.3.2.a. Measurement Methodology and Setup 

The goal of this investigation is to measure I-V characteristics of the gas ionization 

sensor, including the pre-breakdown current-voltage characteristics and the gaseous 

breakdown voltages measured for different gas types in a vacuum and in air. 

          Guarding was used to reduce a leakage current. Triax cables were employed for the 

low-current measurements. The core and the inner shield are kept at the same potential, 

and the leakage current between them was zero. The leakage current which appeared 

between inner and outer shields was neglected because the core was connected to the GIS 

and the current in the core was measured.  

          The input was a linear staircase voltage sweep. This sweep started from 0 V and 

ended at the maximum voltage (420 V). The programmable parameters (in the software 

provided with the Keithley 2400, having current resolution 10 pA), were the starting 

voltage, the end voltage, the voltage step levels, and the source delay at each step. The 

output changed in equal intervals until the stop source level was reached at the maximum 

voltage. The time duration at each step included the source delay (about 10 ns) and the 

time to perform the measurement (integration period). The time to perform measurement 

was determined by Number of Power Line Cycles (NPLC), which expressed the 

integration period by basing it on the line frequency. If it was set to 1 then the integration 

period was 1/60 s (for 60 Hz line power), and therefore it was equal to about 16.67 msec. 

The charging current was recorded at each voltage step. The damping time of the 

charging current was determined by the effective RC constant of the circuit. The 

capacitive current Icap(t) was given as [96] 
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where t was elapsed time, I₀ was the peak of charging current, C was the cell capacitance, 

∆V was the voltage step, and ∆t was the pulse rise time. The value of the added delay 

time was high enough to have negligibly low value of the charging current in comparison 

to the real pre-breakdown currents. The schematic of the voltage sweep applied to GIS is 

illustrated in Figure 5.19. 

 

 
Figure 5.19. The input linear staircase voltage sweep used in the experimental testing of 

GISs. 

  

The employed time delay value was 50 ms to ensure that Icap dies off, and ∆V was less 

than 1 V. 

5.3.2.b. Characterization of GISs 

In this section the test results of fabricated GISs are reported. Gas ionization sensors were 

used in Field Ionization (FI) and Field Emission (FE) modes, meaning that ZnO NWs 

were applied as anode or as cathode, respectively.  
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          First, the sensitivity of the novel sensors was studied by detecting argon in a 

vacuum. The studies of variations in breakdown voltages in FE and FI modes were 

reported. It was expected that in GISs with n-type ZnO NWs the low values of the 

breakdown voltages should be detected in FE mode because of high amount of electrons 

available above Fermi energy level. In contrast, GISs with p-type ZnO NWs should 

generate low breakdowns in FI mode because of the high concentration of holes available 

to accept gas electrons at energy levels lower than Fermi energy level. In both cases the 

electrons emitting from the nanowires (FE mode) and gas electrons (FI mode) would 

tunnel through a short distance at small energy lost. Experimental results of the 

breakdown voltages at low concentrations of Ar using fabricated GISs with n-type or p-

type ZnO NWs are illustrated in Figure 5.20.  
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b) 
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d) 

 
e) 

Figure 5.20. Breakdown voltage versus  Ar pressure is detected by using a) GIS with n-

type ZnO NWs grown on PS in FE mode, b) GIS with n-type ZnO NWs grown on n⁺-

type Si in FE and FI modes, c) GIS with p-type ZnO NWs grown on n-type Si in FE and 

FI modes, d) GIS with p-type ZnO NWs grown on n⁺-type Si in FE and FI modes, and e) 

GIS with p-type ZnO NWs grown on Au layer in FI mode.  

 

The values of the breakdown voltage versus the Ar concentration illustrated behavior 

similar to the Paschen’s curve in terms of the decreasing of breakdown voltage with 

increasing in the gas concentration as shown in Figure 5.20 (a – c). The observed 

degraded performance of GIS with ZnO NWs grown on n⁺-type Si was attributable to the 

low amount of the electric field emitters contributing to the production of the high 

electric fields, as shown in Figure 5.20 (b). Since, most of the nanowires have been 

grown under angle to the substrate and have low density. Also, this GIS was tested in FE 
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and FI modes illustrating decreased values of the breakdowns in FE mode compared to 

the FI mode voltages. The small difference in values of breakdown voltages in FE and FI 

modes illustrate existence of the high amount of surface states in ZnO NWs. Next GIS 

with p-type ZnO NWs grown on n-type Si illustrates almost the same breakdowns in FE 

and FI modes for the same reason as in previous gas detector, Figure 5.20 (c). The 

performance of this GIS was low because of the high voltage drop on the resistive 

substrate (ρ ≈ 5 Ω·cm created resistance of 100 Ω for wafer thickness of 500 μm) 

compared to previously observed GISs, where resistivity of the substrates was 10⁻³ Ω·cm, 

which created resistance of 0.5 Ω for the same Si wafer thickness. The decreased 

resistivity of the substrate in the subsequent GIS, where p-type ZnO NWs were grown on 

n⁺-type Si, illustrated the lowest breakdown voltages in FI and FE modes compared to 

other GISs, Figure 5.20 (d).  Well defined difference between breakdowns in FE and FI 

modes was observed. The lower breakdown voltages were in FI mode since p-type ZnO 

NWs were employed. Lastly, GIS with p-type ZnO NWs grown on Au layer was used in 

FI mode only, because p-type nanoemitters provide superior performance in this mode. 

This gas detector has illustrated slightly lower performance compared to the previously 

discussed GIS because of the degraded at some extend geometry of the NWs, Figure 5.20 

(e). As it can be seen the uniform distribution, geometrical shape of ZnO NWs apexes, 

and an adequate doping level of field emitters greatly improved the performance of GIS. 

In addition, the nanoprotrusions on NWs pinnacles significantly improved local electric 

field and the area of the ionization. From the above investigation on detection of Ar at 

low pressures, the last two gas detectors were chosen for detection of nitrogen, argon, 

oxygen, and helium in an air and in a vacuum. 
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          At start, detection of gases was performed by GIS with p-type ZnO NWs grown on 

n⁺-type Si. The compliance of the current was chosen 100 mA. Gas flow into an air was 

regulated by mass flow controller. The applied flow (120 units) contributed to about 0.1 

Torr of Ar pressure at constant mechanical pump work, which corresponds to Ar gas 

density (ρ) of 0.213 g/m³ (ρ=(P(in Pa)M)/(RT), where ideal gas constant (R) is 8.314 

J/(K·mol), molar mass of Ar (M) is 39.948 g/mol, and room temperature (T) is 300 K). In 

these tests the vacuum chamber was open and flow of gas into air was detected by GIS. I-

V characteristics of GIS for detection of the gas leakage into an air are illustrated in 

Figure 5.21. 

 

 
Figure 5.21. I-V characteristic of GIS with p-type ZnO NWs grown on n⁺-type Si in FI 

mode for detection of gas traces in an air. 

 

The obtained results illustrated that the breakdowns in GIS happened at high ionic 

currents, more than 0.01 A, Figure 5.21. The smallest value of the voltage in field-limited 

regime in GIS was at leakage of He, and it was 17.14 V at generated ionic current of 13.4 

mA, because of the longest free mean path due to small ionic radius of He compared to 
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the other gases free mean paths. Breakdown voltages in leak of the oxygen (28.56 V), 

argon (29.28 V), and nitrogen (29.99 V) in an air were very close to the breakdown in an 

air (28.57 V). The air and N₂ follow a similar curve where air has slightly lower 

breakdown compared to N₂. The reason is that air is a mixture of gases where nitrogen is 

the dominant gas, 78%. The generated current at breakdowns in air (43 mA), in air with 

the trace of oxygen (50.6 mA), and in the air with the argon (60 mA) varied from each 

other for about 10 mA. The generated breakdown current in air with trace of nitrogen (38 

mA) had only minor difference from generated current in air (43 mA). In summary, 

investigation on the detection of gas escape in an air has shown that fabricated sensor can 

be applied as gas leakage detector of He based on the distinguished breakdown voltage 

(17.14 V) which is different from breakdown in air (28.57 V), or gas leakage detector of 

O₂ and Ar based on variations in generated current at breakdowns.    

          Following the detection of different concentration of gases in vacuum using the 

same GIS was disclosed. Different concentrations of gas was introduced into vacuum 

chamber under vacuum (10⁻⁵ Torr), and experimental data on GIS performance was 

obtained. The first gas, which has been assessed by GIS, was Ar, as shown in Figure 

5.22. 
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c) 

Figure 5.22. I-V characteristics of GIS with p-type ZnO NWs grown on n⁺-type Si in FI 

mode for detection of different concentrations of Ar gas in vacuum (a - c).  

 

The curves illustrate four regions in Figure 5.22. Ohmic region where field strength is 

small and current flows because of the existing radiation-generated electron-ion pairs as 

I=eEμpp where concentration of the gas ions is negligible. Next region represents 

beginning of the ionization in the field-limited regime. The sharp increasing of the 

current is observed in this region similar to the theoretical current, as illustrated in Figure 

5.7. Field-limited current increases with electric field intensity and depends on gas 

ionization energy. This regime is followed by the intermediate region where the 

increasing of voltage and current is observed because of the rebound to the tips gas 

particles exceeding the polarization energy, as indicated in Figure 5.22 (b). Thus, gas 

molecules are approaching to the ionization region only from the gas region, and the 

arrival rate begins to be proportional to the supply function as in Equation (5.13). So, 

current reaches supply-limited ionization regime. It starts to depend on supply function 
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and polarizability of the gas, and illustrates Ohmic behavior similar as in theoretical 

curve of Figure 5.8.  Finally, breakdown is observed at higher ionic currents, as 

illustrated in Figure 5.22 (c). Also, the variation of the breakdown voltage in GIS with the 

amount of Ar gas was observed. At small amount of gas, 1.7·10⁻⁵ Torr, the breakdown 

voltage was the largest one (23.3 V), as shown in Figure 5.22. The tests of GIS on 

detection of different concentrations of He, N₂, and O₂ are shown in Figure 5.23.  
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b) 

 
c) 

Figure 5.23. I-V characteristics of GIS with p-type ZnO NWs grown on n⁺-type Si in FI 

mode for detection of different concentrations of He in vacuum (a), I-V characteristics of 

GIS with p-type ZnO NWs grown on n⁺-type Si in FI mode for detection of different 

concentrations of N₂ in vacuum (b), I-V characteristics of GIS with p-type ZnO NWs 

grown on n⁺-type Si in FI mode for detection of different concentrations of O₂ in vacuum 

(c). 
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(a) indicates. The negative differential resistivity was observed at 0.13 Torr when current 

was going from Ohmic regime into field-limited region because of the increase in the ion-

electron recombination rate at non-uniform electric fields at the nanowires tips at constant 

generation rate. The breakdown voltages in field-limited region are used to detect the gas 

or its concentration since current depends on the gas concentration and gas ionization 

energy. After tests in He GIS with p-type ZnO NWs grown on n⁺-type Si was employed 

to detect different concentrations of N₂. The lowest voltage was 18 V at 0.36 Torr in 

field-limited region and breakdown voltage was 23.3 V, and the maximum voltage was 

39.5 V at 0.096 Torr in field-limited region and the maximum breakdown voltage was 

33.6 V at 0.17 Torr, Figure 5.23 (b). Negative differential resistivity regions over certain 

ranges were observed in I-V curve at N₂ gas pressure 0.096 Torr. The first region with 

negative resistivity is at 11 V after Ohmic region. This is attributable to the increase in 

the ion-electron recombination rate at non-uniform electric fields at the nanowires tips at 

constant generation rate. Then a quasi-exponential current rise is starting at 12 V. 

Repeated negative differential resistivity regions were observed at 19.8 V, 26.4 V, and 

29.55 V. Also, the decreasing voltage was observed in ionic current at 0.096 Torr. This is 

a manifestation of the corona discharge. The observed I-V characteristics of GIS in O₂ 

atmosphere illustrated as in previous cases after the breakdown further increasing in 

current resulted in decreased voltage or in other words in corona discharge, as shown in 

Figure 5.23 (c). The summary of the breakdowns in different gases in GIS with p-type 

ZnO NWs grown on n⁺-type Si is reported in Figure 5.24. 
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Figure 5.24. Breakdown voltages versus gas concentrations.  

 

The breakdown voltages in different types of gases versus varying gas concentrations 

have illustrated that breakdown voltage in Ar gas had lowest value compared to the 

others gases at low pressures as around 10⁻⁵ Torr following by breakdown in N₂, in He, 

and in O₂, Figure 5.24. The breakdown voltages in oxygen illustrated pronounced 

decrease in their values with increased concentration of the gas as in Paschen’s curve. 

Experimental data provide distinguishable breakdown voltages in field-limited regions in 

different gaseous atmosphere. Ohmic current can be employed to detect gases because 

the gas conductivity (eEμini) is different for each gas. At applied bias voltages of 1 V and 

5 V the ionic current in Ar, He, O₂, and N₂ at 0.01 Torr was measured, Figure 5.25. 
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a) 

 

b) 

Figure 5.25. Ionic current generated in Ar, He, N₂, O₂ at 0.01 Torr versus time in GIS 

with p-type ZnO NWs grown on n⁺-type Si when constant voltage was applied: a) 1 V, b) 

5 V.  

  

The results of the tests illustrated that GIS sensor was capable to detect gases based on 

the generated ionic current from the 1 V or 5 V batteries, Figure 5.25. At applied 1V 

ionic current created in argon and oxygen were almost the same 0.152 μA, and formed 
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current in nitrogen was the highest one, 0.178 μA, as shown in Figure 5.25 (a). Also, the 

lowest currents were generated in He gaseous atmosphere such as 0.116 μA and 35.8 μA 

at applied 1 V and 5 V, respectively. Values of the generated currents at 5 V bias were 

hundreds times higher compared to formed ionic currents at 1 V bias, as indicated in 

Figure 5.25 (b). Moreover, ionic currents produced in oxygen, in argon, and in nitrogen at 

bias of 5 V were 36.7 μA, 36.6 μA, and 36.4 μA, respectively.  

          Next GIS with p-type ZnO NWs grown on Au layer was used to detect gases in a 

vacuum in FI mode. The compliance of the current was 1 μA. First, I-V characteristics of 

GIS with p-type ZnO NWs grown on Au layer were recorded in Figure 5.26. 
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b) 

 

c) 

 
d) 
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e) 

 
f) 

Figure 5.26. I-V characteristic of GIS with p-type ZnO NWs grown on Au layer in FI 

mode: a) detection of different concentrations of Ar, b) detection of different 

concentrations of O₂, c) detection of different concentrations of N₂, d) detection of 

different concentrations of He, e) breakdown voltages in GIS with p-type ZnO NWs 

grown on Au layer versus gas concentrations of Ar, He, O₂, N₂, f) I-V characteristics of 

GIS with p-type ZnO NWs grown on Au layer in FI mode in 0.01 Torr gaseous 

atmosphere in Ar, O₂, N₂, and He.  
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the voltage in different gases and different concentrations were observed in each gas. 

Following graph illustrates the voltages generated by GIS with p-type ZnO NWs grown 

on Au layer at different gas. Well defined distinguishable breakdown voltages can be 

observed at pressure of 0.01 Torr. The breakdowns in N₂ and O₂ had no variations 

because of the increasing gas pressure. But they have distinct values from each other. Ar 

illustrated minimum breakdown at 0.01 Torr following by increasing of the breakdown 

voltages with gas pressure.  I-V characteristics of the investigated GIS with p-type ZnO 

NWs grown on Au layer in different gases at constant pressure of 0.01 Torr was 

investigated next. I-V characteristic for different gas generated distinct curves in field-

limited regime at constant pressure of 0.01 Torr.  

          Further experimentation used ohmic current to detect different gases at applied 

biases of 5 V and 10 V. The average value of the generated ionic current at constant gas 

pressure 0.01 Torr is reported in Table 5.5. 

Table 5.5. Field-limited current values detected in GIS with p-type ZnO NWs grown on 

Au layer at applied bias voltages of 5 V and 10 V at constant gas pressures of 0.01Torr. 

Gas Ar O₂ He N₂ 

Bias voltage [V] 5 10 5 10 5 10 5 10 

Current [nA] 6.81 14.7 5.14 10.6 5.57 12 5.67 11.1 

 

The results illustrate the similarities in prebreakdown region. For bias voltage 5V current 

was 5.14 nA, 5.57 nA, 5.67 nA, and 6.81 nA for O₂, He, N₂, and Ar, respectively, and for 

bias voltage 10 V current was 10.6 nA, 11.1 nA, 12 nA, and 14.7 nA for O₂, N₂, He, and 

Ar, respectively. The highest current was created in Ar, and the lowest current was 

formed in O₂. Also, the values of the generated ionic currents in He and in N₂ switched 

the order when bias voltage was increased to 10 V as shown in Table 5.5. GIS with p-
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type ZnO NWs grown on Au layer has demonstrated improved performance, good 

selectivity and repeatability.  

          In FE mode the GISs under investigation in some cases had slight decrease in 

voltage with increase of current in I-V curves. This is a manifestation of the corona 

discharge. Townsend avalanche phenomena was observed at currents 10⁻⁷ A to 10⁻⁶ A. 

To estimate field enhancement factor in GIS with p-type ZnO NWs grown on Au layer 

we used the slope in the linear region of the generated dark discharge current at vacuum 

condition (P = 1.8·10⁻⁵ Torr) where ionization-induced current is negligible. Thus, the 

conductivity of the device (G) can be expressed as G = I/V = JA/Eγd. I-V characteristics 

of GIS with p-type ZnO NWs grown on Au layer is illustrated in Figure 5.27. 

 

 

Figure 5.27. I-V characteristics of GIS with p-type ZnO NWs grown on Au layer at P = 

1.8·10⁻⁵ Torr. 

 

The linear region is emphasized in Figure 5.27. From the slope of the curve in linear 

region the conductivity is obtained such as 8·10⁻¹¹ [A/V] at P = 1.8·10⁻⁵ Torr, in GIS 
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with p-type ZnO NWs grown on Au layer. Calculated field enhancement factor is 5132. 

The geometry of the nanowire includes the length of 1 μm, radius of 12 nm, h of -26, 

interspace of 50 nm, a of 1, and calculated b of 2683.8. The enhancement factor 

calculated using Equation (5.17) in one nanowire is 1.026·10⁵.   

          In the case of p-type ZnO NWs grown on n⁺-type Si we used Equation (5.15) to 

estimate field enhancement factor. For this the effective area of electrons emission was 

derived using SEM analysis. From the SEM image of p-type ZnO NWs grown on Au 

layer area of 1000 nm ⨉ 1000 nm provides with 82 NWs with diameters between 30 nm 

and 50 nm. The effective number of the NWs on the surface of the gas sensor is around 

[346.36·10¹²nm²/(1000)²nm²]·82=2.84·10¹⁰, and calculated emitting area assuming that 

all area of the tip emit electrons is about 2.84·10¹⁰·(20nm)²·π = 35.6885·10¹² (nm²) 

=35.6885 (mm²). A typical field-emission current density-applied field (J-E) curve and 

the Fowler-Nordheim plot ln(J/E²) versus I/E are experimentally attained and illustrated 

in Figure 5.28. 
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b) 

Figure 5.28. a) J-E curve generated in GIS with p-type ZnO NWs grown on n⁺-type Si 

showing the electric field (1.64 kV mm⁻¹) for an emission current density of 1.44 mA 

mm⁻², and b) Fowler-Nordheim plot ln(J/E²) versus 1/E corresponding to (a). 

 

The function of ln(J/E²) is derived from Equation (5.15) as 

 
  


































2

22/3

2
07.1

lnln
a

E

bfv

E

J
                              (5.24)  

where first term ( 


 2/3b
) is the slope of the curve can be employed to calculate field 

enhancement factor. From slope the obtained field enhancement factor is 14941.8 at ZnO 

work function of 5.3 eV which is higher compared to GIS with p-type ZnO NWs grown 

on Au layer (γ = 5132). In fact, similar enhancement factor of the ZnO nanobelts of 

1.4·10⁴ was reported by W. Wang et al. [105]. The field enhancement in one nanowire is 

calculated from Equation (5.17) for space between NWs (100 nm) much less compared to 

the NW’s length (1000 nm). If h = -26, a = 1, NW’s radius 20 nm then calculated b = 

8554.86 and enhancement factor of one nanowire (γ₀) is 1.5·10⁵ where around 5 

nanoprotrusions. The field enhancement factor of one nanoprotrusion is about 3.0·10⁴. 

Significant field enhancement factors are obtained because of the morphology of created 
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nanowires (decreased diameters of the tips, nanoprotrusions on the NWs apexes) and 

uniform distribution of grown ZnO NWs. 

      The summary of the breakdown voltages in Ar in GISs with metallic and 

semiconductive nanowires in Field Emission mode are illustrated in Table 5.6. 

Table 5.6. Breakdown voltages in nanowires-based GISs in Ar atmosphere (FE mode).  

Gas Ar 

[Torr] 

VB₁[V] VB₂ [V] VB₃ [V] VB₄ [V] References VB 

FE 

mode 
FE mode FE mode FE mode FE mode 

0.1 284 280 287 96 
210 [105], 163 

[54], 310 [55] 

    0.15    270 274 269 88 162 [105] 

0.23    247 268    

0.25      243        255       123  

VB₁ - GIS (n-type ZnO NWs on PS) in FE mode 

VB₂ - GIS (n-type ZnO NWs on n⁺-type Si)  

VB₃ - GIS (p-type ZnO NWs on n-type Si)  

VB₄ - GIS (p-type ZnO NWs on n⁺-type Si) 

 

As it can be seen, GIS (VB₄) developed in a course of our investigation illustrated the 

lowest breakdown voltages in Ar in FE mode. 

          Following, the summary of the breakdown voltages in Ar in GISs with metallic and 

semiconductive nanowires (FI mode) are illustrated in Table 5.7. Once more, GISs with 

doped ZnO NWs illustrated superior performance compared to other ionization sensors. 

 

Table 5.7. Breakdown voltages in nanowires-based GISs in Ar atmosphere (FI mode). 

Ar Gas 
VB₂ [V] VB₃ [V] VB₄ [V] VB₅ [V] References VB 

FI mode FI mode FI mode FI mode FI mode 

0.1 

Torr 
324 339    22 57 

68 [54], 

173/290 [96], 375  

[55], 353 [106] 

0.15 

Torr 
    305      269 24 57 173/270 [96] 

0.23 

Torr 
285      266    

0.25 

Torr 
  15  173/235 [96] 

VB₅ - GIS (p-type ZnO NWs on Au layer) in FI mode 
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The summary of the breakdown voltages in N₂, O₂, and He in GISs with metallic and 

semiconductive nanowires are illustrated in Table 5.8. 

 

Table 5.8. Breakdown voltages in N₂, O₂, He using NWs-based GISs.  

Gas VB₄ in FI mode [V] VB₅ in FI mode [V] 
References in FI 

mode [V] 

N₂ 
0.01Torr 19 53 475[106] 

0.1 Torr 24 55 450[106] 

O₂ 
0.01Torr 32 56  

0.1 Torr 29 57  

He 
0.01Torr 22 59 

 
0.1 Torr 20 63 

 

 

As it is shown in Table 5.8, the novel GISs with p-type ZnO NWs fabricated in present 

work significantly improved performance. Moreover, these devices illustrated superior 

repeatability and selectivity. They were used in different type of gases at different 

compliances 1μA, 1 mA, and 10 mA, and 100 mA demonstrating repeatable results with 

standard deviation between 2.6 and 6.2. The best performance and high generated 

currents (in mA) were demonstrated by GIS with p-type ZnO NWs grown on n⁺-type Si, 

following by GIS with p-type ZnO NWs grown on Au layer. Experimental investigations 

have been shown that these sensors can be used to detect different gases in an air and in a 

vacuum. Gas recognition can be based on the generated ohmic current at applied bias 

voltage or the breakdown voltage in field-limited regime.  

          The conducted research on performance of the GISs with n-type and p-type ZnO 

NWs illustrated that GIS with p-type ZnO NWs significantly improved performance of 

the sensor (breakdown voltages in a range of 15 V to 40 V) and illustrated good 

sensitivity and repeatability. The p-type ZnO NWs with nanoprotrusions illustrated the 

highest field enhancement factor (γ = 1.5∙10⁴). 
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6. Concluding Remarks, Contributions and 

Suggestion for Future Work 

6.1. Concluding Remarks and Contributions 

In this work, growth of crystalline ZnO NWs with controlled geometric shape and 

distribution on the substrate is reported. SEM analyses have shown that geometric shape 

of the nanostructures depends on the conductivity of the substrates used for 

electrochemical growth of ZnO NWs, as well as the temperature and concentration of 

electrolyte control the crystalline structure, shape of the nanowires in particular their tips, 

and their distribution on the substrates. The nanowires were doped using Ag and Al 

impurities dopants. Ag-doped ZnO NWs illustrated p-type conductivity and Al-doped 

ZnO NWs have shown enhanced n-type conductivity. It was observed that the p-type 

conductivity of the nanowires is strongly dependent on the conductivity of the substrates.  

      COMSOL multiphysics is used to optimize the physical dimensions of ZnO NWs and 

their distribution to suit the best for fabrication of the GIS. The simulations showed that 

the geometry of the nanowires as well as the screening effect are the dominant factors on 

altering the electric field between the two parallel plates. It is illustrated that ZnO NWs 

with a large tips curvatures are advantageous, since they provide the highest electric 

fields at the vicinity of the NWs pinnacles. The nanowires with structures to suit the GIS 

the best are synthesized using electrochemical technique, utilized to design the GIS.  

      A gas ionization sensor (GIS) based on grown ZnO nanowires was designed, and 

fabricated. P-type and n-type crystalline ZnO NWs grown on semiconductor or metallic 

substrates were successfully placed between the two parallel plates. The fabricated GISs 
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are characterized, while nanowires were used either as an anode or cathode electrodes 

between two parallel planes. The best performance and high generated currents (in mA) 

are demonstrated by GIS made with p-type ZnO NWs grown on n⁺-type Si, following by 

GIS made with p-type ZnO NWs grown on Au layer. Experimental investigations have 

been shown that these sensors can be used to detect various gases in an air and in a 

vacuum. Gas recognition can be based on the generated ohmic current at applied bias 

voltage or the breakdown voltage in field-limited regime. Electrical characteristics of the 

gas ionization detector demonstrated superior performance, sensitivity, and repeatability 

compare to those fabricated using metallic nanowires, and reported in the literature. The 

enhancement factor of about 15000 was calculated for the devices made of p-type ZnO 

NWs grown on n⁺-type Si, and about 5000 for those made of p-type ZnO NWs grown on 

Au layer. 

      We can summarize the contributions of this research to the field of nanowires 

fabrications and their applications in developing a sensitive GIS as: 

 Electrochemically grown self-assembled crystalline ZnO NWs with controlled 

geometry of the apexes and distribution on the substrate.  

 One-step doping of ZnO NWs during electrochemical fabrication. P-type ZnO 

NWs employing Ag impurities and n⁺-type ZnO NWs using Al impurities are 

achieved.  

 Controlled doping has been accomplished by using substrates with various 

conductivities. 

 Gas ionization sensors based on n-type or p-type ZnO NWs are designed and 

fabricated.  
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 GISs were used to detect leakage of gases in atmosphere as well as pure gases at 

very low pressures. Gas detectors illustrated very good performance, selectivity, 

and repeatability.   

 The GISs were studied in both field ionization (FI) and field emission (FE) 

modes. The studies show that GISs made with p-type nanowires have low 

breakdown voltages in FI mode, and GISs fabricated with n-type nanowires have 

low breakdown voltages in FE mode.  

 GISs with p-type ZnO NWs have illustrated low-voltage field-ionization in field-

limited region in different gases and variation of ohmic current at applied bias 

voltage. Thus, detection of gases can be based on detection of the ohmic current at 

applied bias voltage, or by detection of the breakdown voltage in field-limited 

regime.  

 High value of field enhancement factor was accomplished in p-type ZnO NWs 

grown on n⁺-type Si where nanoprotrusions on NWs tips increased the local 

electric fields.  

 

6.2. Suggestion for Future Works 

Further development on the controlled doping to tailor the electrical and magnetic 

properties of ZnO NWs can be explored.  

Future work can be performed on  

― development of the novel devices with tailored geometry, conductivity, and 

magnetic properties of crystalline ZnO nanowires;  
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― studying the breakdowns and ionization behavior of GIS in low gas pressures and 

in mixtures of gases; 

― creation of an array of the miniaturized GISs with ZnO NWs to develop an odor 

sensor. 
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Appendix A  

GIS with ZnO NWs: Simulations of GIS Models 

(COMSOL) and Experimental Results 

A.1. Boundary Conditions 

The applied boundary conditions were given as 

  0212  FFn                                                (A.1a) 

                                     s 212 DDn                                             (A.1b) 

where ρs is the surface charge density and n₂ is the outward normal from medium 2 

which represents continuous electric field across a boundary (Equation (A.1a)), the 

discontinuity in the normal component of electric flux density (D) is the same as the 

surface charge density ρs on the boundary between two mediums (Equation A.1b).

  

          

The continuity equation represents the conservation of the electric charge, and it is 

expressed as 

 
                                                  0 J                                                      (A.2) 

where J is the current density vector.  

          The macroscopic properties of the medium were given as 

  FPFD 00 1  e                                       (A.3a) 

FJ                                                       (A.3b) 

VF                                                    (A.3c) 

    PV0-                                          (A.3d) 
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where P is the polarization vector (describes how the material is polarized (C/m²)), in our 

model the polarization was omitted (P = 0), χe is the electric susceptibility, ε₀ is the 

permittivity of a vacuum (8.854·10⁻¹² (F/m)), εr is the relative permittivity or the 

dielectric constant of the medium, σ is the electric conductivity, V is the electric scalar 

potential, and ρ is the volume charge density (C/m³). 

 

A.2. Meshes of Models in COMSOL and Simulations Results 

2D model includes 24147 elements. This is physics-controlled mesh with element size 

‘extremely fine’. 3D model has 112240 elements. This is user-defined mesh, where 

nanowires were meshed with the maximum element size 10⁻⁶ m and minimum element 

size of 5·10⁻⁸ m. The maximum growth rate was 1.5. This means that the element size 

grows by at most 50% approximately from one element to another. The resolution of 

curvature, which defines the element size along curved boundaries, was 0.5. For example, 

for curvature radius 0.2·10⁻⁶ m maximum allowed element size along the boundary is 

0.2·0.5·10⁻⁶=100 nm. The resolution of narrow regions was chosen less than 1, it was 

0.85. The distribution of the electric field intensity in 2D model is illustrated in Figure 

A.1. 
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a) 

 

b) 

Figure A.1. a) Equipotential lines of the electric field in 2D GIS model in vicinity of the 

ZnO NWs, b) direction and density of the electric field intensity. 
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The maximum electric field intensity was obtained in the vicinity of NW tip. Direction of 

the electric field was perpendicular to the surface of the curved NW tip. Also, the electric 

field along the nanowire was directed under angle to the surface less than normal.  

          Following illustrations are 2D and 3D models with applied lines used for 

investigation on the distribution of the electric field intensities and their dependence on 

applied voltage, Figure A.2. 

 

 

a) 
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b) 

Figure A.2. a) Chosen path for the electric field assessment with 500 nm space between 

NWs in 2D model, b) schematic of the studied path in 3D model. 

 

The investigation was performed in the middle of the nanowire located in the middle of 

the 2D model and 3D model. 

 

A.3. Novel GISs: Fabrication, Characterization and Experimental 

Results 

Electrochemical growth parameters employed to grow ZnO NWs for integration into 

GISs are recorded in Table A.1.  
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Table A.1. Electrochemical parameters used to grow ZnO NWs integrated into GISs. 

Substrate Chemicals 
Concentration 

[mM] 

Applied 

voltage 

[V] 

Growth 

temperature 

[°C] 

Growth 

time 

[min.] 

Porous 

Silicon 

Zn(NO3)2·6H2O 6.3 
-1.0 77 90 

C6H12N4 6.3 

n⁺-type Si 
Zn(NO3)2·6H2O 5.4 

-1.0 80 45 
C6H12N4 5.4 

n-type Si 

Zn(NO3)2·6H2O 5.4 

-1.0 80 30 C6H12N4 5.4 

AgNO₃ 4.45·10⁻³ 

n⁺-type Si 

Zn(NO3)2·6H2O 5.4 

-0.8 85 45 C6H12N4 5.4 

AgNO₃ 4.45·10⁻³ 

Au layer 

Zn(NO3)2·6H2O 5.4 

-0.7 85 45 C6H12N4 5.4 

AgNO₃ 4.45·10⁻³ 

 

EDXS analysis was performed to confirm the presence of Ag inside ZnO NWs, Figure 

A.3. 

 

 
a) 

O: 45.12%atm. 

Zn: 54.39% atm. 

Ag: 0.49% atm. 
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b) 

 
c) 
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d) 

Figure A.3. EDXS analysis of p-type ZnO NWs: a) Spectrum analysis, Mapping analysis: 

b) distribution of oxygen, c) distribution of Zn and d) distribution of Ag in Ag-doped 

ZnO NWs.  

 

Energy dispersion X-ray spectroscopy confirmed uniform distribution of Ag in all ZnO 

NWs. Photoelectrochemical (PEC) tests were used to confirm p-type conductivity of 

grown ZnO NWs. Applied light on p-type ZnO NWs resulted in decreasing of the 

potential value inside electrochemical cell. Results of the PEC cell measurements 

performed on p-type ZnO NWs are illustrated in Table A.2. 

 
Table A.2. PEC cell tests results of p-type ZnO NWs (0.8% of Ag) grown on n-type Si, 

n⁺-type Si, and on Au layer integrated into GISs. 

Substrate applied 
as capacitive plate in 

GIS 

Vdark 
[mV] 

Vlight  
[mV] 

∆V=Vlight-Vdark 
[mV] 

Conductive 
type 

n-type Si -140 -100 40 p 

n⁺-type Si -160 -145 15 p 

Au layer -300 -280 20 p 

 

 

Results of the photoelectrochemical measurements have confirmed that electrochemically 
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grown Ag-doped ZnO NWs exhibited p-type conductivity. After morphological and 

material analyses as well as the p-type conductivity confirmation ZnO NWs were 

incorporated into GISs.  

          Experimental tests of GIS with p-type ZnO NWs grown on n⁺-type Si as positively 

charged capacitive plate of device in different concentrations of O₂ are illustrated in 

Figure A.4. 

 

b)

c) d)

a)

Figure A.4. I-V characteristics of GIS with p-type ZnO NWs grown on n⁺-type Si in FI 

mode for detection of different concentrations of O₂ in vacuum (a - d). 

 

Experimental tests of GIS (p-type ZnO NWs grown on n⁺-type Si as positively charged 

capacitive plate of the gas detector)  in different concentrations of N₂ are demonstrated in 

Figure A.5. 
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a) b)

c) d)

Figure A.5. I-V characteristics of GIS with p-type ZnO NWs grown on n⁺-type Si in FI 

mode for detection of different concentrations of N₂ in vacuum (a - d). 

 

Following, I-V characteristics of GIS (p-type ZnO NWs grown on n⁺-type Si as anode of 

gas detector) in different concentrations of He are shown in Figure A.6. 
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a) b)

c) d)

 

Figure A.6. I-V characteristics of GIS with p-type ZnO NWs grown on n⁺-type Si in FI 

mode for detection of different concentrations of He in vacuum (a - d).  

 

Subsequent, I-V characteristics of GIS (p-type ZnO NWs grown on n⁺-type Si as anode) 

in different concentrations of Ar are reported in Figure A.7. 
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a) b)

c)

 

Figure A.7. I-V characteristics of GIS with p-type ZnO NWs grown on n⁺-type Si in FI 

mode for detection of different concentrations of Ar gas in vacuum (a - c).  

 

In all tests the breakdowns in GIS were at high ionic currents. Finally, experimental 

results on detection of the low concentrations of He, N₂, and O₂ by GIS (p-type ZnO 

NWs grown on n⁺-type Si as anode of gas detector) obtained in field-limited regime, 

Figure A.8. 
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a) 

 

b) 
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c) 

Figure A.8. I-V characteristics of GIS with p-type ZnO NWs grown on n⁺-type Si in FI 

mode for detection of different concentrations of He in vacuum (a), I-V characteristics of 

GIS with p-type ZnO NWs grown on n⁺-type Si in FI mode for detection of different 

concentrations of N₂ in vacuum (b), I-V characteristics of GIS with p-type ZnO NWs 

grown on n⁺-type Si in FI mode for detection of different concentrations of O₂ in vacuum 

(c). 
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