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Abstract

Quantifying the Costs and Benefits of Privacy-Preserving Health Data

Publishing

Rashid Hussain Khokhar

Cost-benefit analysis is required for making good business decision. This analysis is crucial

in the field of privacy-preserving data publishing. In the economic trade of data privacy

and utility, organization has the obligation to respect privacy of individuals. They intend

to maximize the utility in order to earn revenue and also aim to achieve the acceptable

level of privacy. In this thesis, we study the privacy and utility trade-offs and propose

an analytical cost model which can help organization in better decision making subject to

sharing customer data with another party. We examine the relevant cost factors associated

with earning the revenue and the potential damage cost. Our proposed model is suitable

for health information custodians (HICs) who share raw patient electronic health records

(EHRs) with another health center or health insurer for research and commercial purposes.

Health data in its raw form contain significant volume of sensitive data and sharing this

data raises issues of privacy breach. Our analytical cost model could be utilized for non-

perturbative and perturbative anonymization techniques for relational data. We show that

our approach can achieve optimal value as per selection of each privacy model, namely,
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K-anonymity, LKC-privacy, and ε-differential privacy and their anonymization algorithm

and level, through extensive experiments on a real-life dataset.
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Chapter 1

Introduction

The development of Electronic Health Record (EHR) systems proliferates in recent years

[NCGC09]. Typically, an EHR system provides a stable and secure storage for large vol-

ume of health-related data including patient-specific medical history, laboratory test results,

demographics, and billing records. The centralized storage not only facilitates the daily

operations of different health service providers but also provides an ideal environment for

supporting effective health data mining. The goal of health data mining is to efficiently

and effectively extract hidden knowledge from large volume of health data with the goal of

improving the operations of health service providers or supporting medical research. Data

mining on EHRs has been proven to be effective and beneficial to health service providers,

researchers, patients, and health insurers [KT05].

To achieve effective health data mining, the precondition is having access to high qual-

ity health data. Yet, health data by default is sensitive, and health information custodians

(HICs) have the obligation to preserve the privacy of patients [BH03] [AFWM10] [BEP00].

Nowadays, the health information sharing activities are primarily based on obtaining con-

sensus from the patients; however, HICs have faced notable privacy breaches of different

nature [KCG11] [Swe02], which are due to either negligence of administrative staff or

employment of weak de-identification methods.
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In the past 15 years, many new privacy-enhancing techniques have been proposed

to thwart different types of privacy attacks [FWFY10]. New privacy models and data

anonymization methods have been iteratively proposed, broken, and patched with new

models and methods [MCFY11] [KM11]. Thus, it is very difficult to claim that the pub-

lished data is bulletproof for all privacy attacks. Suppose a health information custodians

(HIC) would like to share its patient-specific data to another party for research purpose.

The HIC would like to know the answers to the following questions:

• Which privacy model and anonymization algorithm should be employed?

• Given an anonymization algorithm, how to choose the parameters to provide ade-

quate privacy protection to the patients?

• How useful the data is after anonymization?

• What is the probability of a privacy breach on the released data?

• What are the costs in case of a patient privacy breach?

A practical approach is to identify, minimize, and accept the risks by studying the trade-

off between privacy protection and information utility. A study on patient privacy and data

security [Pon12] shows that the number of health service providers’ reporting cases of data

privacy breach is increasing every year. The data loss includes patient sensitive information,

medical files, billing, and insurance records. Average economic impact of data breaches

over the last two years is $2.4 million. These data loss incidents not only create negative

impacts of the HICs’ images in the general public but also result in possible civil lawsuits

from patients for claiming compensation [Wit07] [BL11]. Thus, the measure of economic

impact of privacy breach is complex. The objective of this thesis is to model the associated

costs and benefits of sharing person-specific information with different data anonymization

methods at different privacy protection levels with respect to the information utility for

health data mining in terms of monetary value.
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1.1 Contributions

The contributions of this thesis are summarized as follows. We study the challenges for

sharing patient-specific EHRs faced by health information custodians (HICs), and develop

an analytical cost model to search for optimal value. To thwart the potential privacy attacks

on the released data, different privacy models, such as LKC-privacy [MFHL09], and ε-

differential privacy [Dwo06], have been proposed. Applying these privacy models would

result in degrade of data quality and loss of information. The goal of our proposed model is

to evaluate the cost of data distortion, the likelihood of a privacy breach, the cost of lawsuit,

and the compensation cost, so that the HICs can compare with benefits of releasing the data

for health data mining, such as general data analysis and classification analysis. The cost

model can help HICs in better decision making on secondary and commercial usages of

health data. Finally, we evaluate the proposed model on a real-life person-specific data set.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide the literature review.

In Chapter 3, we first present some measures to quantify the degree of privacy protection

and information utility followed by an overview of a data anonymization algorithm and a

problem definition. In Chapter 4, we provide details of our proposed solution to quantify

optimal cost. In Chapter 5, we evaluate our proposed method to search for optimal value

by performing experiments on real-life person-specific data set. Finally, in Chapter 6, we

conclude the thesis and discuss possible future work.
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Chapter 2

Literature Review

The research topic of privacy-preserving data publishing has received a lot of attention in

different research communities, from economic implications to anonymization algorithms.

The state-of-the-arts are summarized as follows.

2.1 Privacy Costs and Benefits in Commercial Setting

Cost and benefit analysis is the key concept in economic decision making system. Different

techniques are in practice for problem solving and decision making such as Grid Analy-

sis, Analytic Hierarchy Process, Conjoint Analysis, Decision Trees, and Pareto Analysis.

Grid Analysis is also known as Decision Matrix Analysis, in which weights are assigned

to different factors in making a decision [Ghu10]. Analytic Hierarchy Process is based on

mathematics and psychology, in which weights are assigned to each qualitative and quan-

titative factors for organizing and analyzing complex decisions [Saa08]. Conjoint Analysis

is a statistical technique used in market research to measure buyer preferences [PMJ02].

Decision Tree is basically a decision support tool that uses a tree-like model to analyze

possible consequences of a decision, quantify the values of outcomes, and provide guid-

ance in making good decisions [Min13]. Pareto Analysis employs the 80/20 Rule, in which
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the idea is to focus on the most important problems by doing 20% of work that can generate

80% advantage of doing entire job [Koc11].

Ku and Fan [KF09] use mathematical based Analytic Hierarchy Process (AHP), which

is a multi-objective decision making tool to analyze the relative weights of the nine funda-

mental factors assigned by consumers who intend to purchase travel products from online

travel agents. They build pairwise comparison matrix for criteria and subcriteria to obtain

each hierarchical factor weight. They found that privacy is one of the most important factor

considered by consumers when purchasing travel products on the Internet.

Phillips et al. [PMJ02] use conjoint analysis method to examine preferences for HIV

testing. They conduct a survey and define attributes of HIV tests, i.e., location, price, sam-

ple collection, timeliness/accuracy, privacy/anonymity, and counseling with their levels.

Price is defined as an attribute so that respondents can make decision between price and

other attributes. Respondents are asked to choose from "Test A or B" where each test is

described using a series of attribute levels. They calculate the mean on the absolute value of

coefficients across levels of attributes in order to compare which attribute in general most

important to respondents. Privacy/anonymity is found to be the most important attribute

for respondents in trade-off among other attributes. To measure the validity they use three

approaches (1) consistency of preferences, (2) willingness to trade, and (3) consistency

with theoretical predictions. They set baseline scenario for attribute privacy/anonymity as

results given in person but not linked to name. By using conjoint analysis they found that

respondents did not prefer testing results by phone or in-person with linking of names to

results.

Yassine and Shirmohammadi [YS08] discuss the negotiation process between online

consumers and sellers by which consumers can capitalize based on the value of their per-

sonal information. They examine only the case of a monopoly in their study and employ

risk-based premium method [DD05] to determine the consumer’s payoff. The quantified
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privacy risk is context-dependent for each consumer. Similar to other business risks, pri-

vacy risk could significantly affect the revenue of a company.

Jentzsch et al. [JPH12] analyze the monetization of privacy and find that many con-

sumers prefer service providers with lower price even though they are more privacy in-

vasive. If the products and prices are similar, then the service provider that collects less

personal information get significant share of the market due to offering privacy-friendly

online services. They use duopoly model that allows consumers to select service provider

depending on their privacy concerns and the offers made by service providers. They rec-

ommend that if portability of personal profiles for consumers among service providers is

mandated, consumers will face reduced potential switching costs in personalization, but the

transfer of personal profiles should be dependent on the consent of the consumer.

Our notion is close to Zielinski and Olivier’s work [ZO10] which aims at maximizing

both privacy and information utility. They present an approach based on price theory to

achieve optimum levels of privacy and utility by the use of constraint optimization. They

solve the optimization problem by using the Lagrange multipliers method. In contrast, our

work employs a mathematical model by analyzing different cost factors associated with

earning the revenue and the potential damage cost. Furthermore, their work is limited to

non-perturbative patient-specific data anonymization and is applicable when global recod-

ing is used as the anonymization technique. Our proposed method is applicable to both

perturbative and non-perturbative data.

2.2 Privacy Trade-offs in Secondary Use

A family of previous work [LS08] [LL09] [GRS09] [AAC+11] discusses the trade-off be-

tween privacy and utility but not in terms of monetary value. Some areas for secondary use
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of electronic health data include clinical research and development, public health surveil-

lance, health system planning and management, quality improvement, post-market surveil-

lance of drugs, mandatory or discretionary reporting and health insurance.

Loukides and Shao [LS08] present a distance-based quality measure approach that

handles both quasi-identifiers and sensitive attributes on equal terms by optimizing the

weighted sum of the amount of generalization of quasi-identifiers and the amount of protec-

tion of sensitive attributes for K-anonymous data. They design an efficient threshold based

clustering algorithm that use heuristics technique and perform greedy search in forming

data groups. This approach first partitions the data into sub-spaces and then clusters each

sub-space separately. Multi-dimensional local recoding strategy is used to achieve both

quality and efficiency in the anonymization process.

Li and Li [LL09] suggest that it is inappropriate to directly compare privacy with utility.

They identify three critical characteristics about privacy and utility. The first characteristic

states that acquiring specific knowledge about a small group of individuals has a significant

impact on privacy, while acquiring aggregate information about a large group of individ-

uals has a significant impact on utility. The second characteristic states that privacy is an

individual concept, and utility is an aggregate concept. The third characteristic states that

any information learned by the adversary if it deviates from prior belief either correct or in-

correct may result in privacy loss, but only correct information contributes to utility. They

observe that the trade-off between privacy and utility in publishing data is similar to the

risk-return trade-off in financial investment [EG95], where the aim is to determine the ap-

propriate level of risk. They use JS-divergence distance for measuring privacy loss. For

utility loss they compare the anonymized data with the original data.

Dwork et al. [DMNS06] discuss differential privacy model which ensures that the addi-

tion or removal of a single database record does not significantly affect the overall privacy

of a database and it also guarantees protection independent of an adversary’s background
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knowledge. Ghosh et al. [GRS09] follow mechanisms that guarantee near-optimal utility

to every potential user, independent of its side information and preferences. They model

the side information as a prior probability distribution over the query results, and prefer-

ences using a loss function. They show that user can derive as much utility from geometric

mechanism as it can be derive from differentially private mechanism.

Alvim et al. [AAC+11] model the database query system as an information-theoretic

channel and measure the information that an attacker can learn by posting queries on

database and analyzing the response. They prove that ε-differential privacy provides pro-

tection by implying the bound on the information leakage and utility. This bound is strong

enough to prevent attacks using prior distributions. They use binary gain function to mea-

sure the utility of a query result.

2.3 Disclosure Control Methods for Privacy Protection

Many non-perturbative and perturbative disclosure control methods, such as global and

local recoding [WW98] [Tak99], suppression and local suppression [WW98] [Lit93], sam-

pling [SMOW94], micro-aggregation [DFMS02], noise addition [Kim86], data swapping

[DR82], post randomization [KWG97], adopted in the past so far in the vision to provide

confidentiality and privacy in publishing person-specific data. These methods according to

Gehrke [Geh10] do not formally state how much an attacker can learn and they preserve

confidentiality by hiding the parameters used. Below we summarize the works in disclosure

control methods.

Global recoding: In global recoding, specific attribute values are mapped into same

generalized value in all records. Global recoding is the preferable method when there are

many unsafe combinations to eliminate in the person-specific data and to obtain uniform

categorization of attributes [WW98]. It applies to categorical variables and continuous

variables. For example, recoding the age attribute values into a set of 5-year age groups, or
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recoding the occupation attribute values into two groups ‘White-collar’ and ‘Blue-collar’.

This method helps in de-identification of the records.

Local recoding: In local recoding, attribute values may be generalized to different gen-

eralization group [WF10]. For example, attribute value Age=10 appear in two records may

map to different anonymization age groups [5-10] and [10-15]. Local recoding provides

less information loss in comparison to global recoding, but the analysis result could be

difficult to interpret.

Local suppression: Local suppression is the process in which specific value of an

attribute in a record changes to ‘missing’ value but the attribute values in other records

remain unchanged [WW99]. It is a special case of generalization, which aims to reduce the

information either in cell or record to prevent from identification. For example, suppose

the combination "Occupation=Manager; Age=24; Salary>50K" is at risk of identification

due to its uniqueness. By suppressing the age value 24 reduces the risk of information

disclosure and increases the frequency count of similar records.

Sampling: Sampling is suitable for categorical microdata, in which sample S of the

original set of records is published instead of publishing the original microdata file. This

method is not effective for continuous microdata because it does not mask continuous vari-

able for all records in S [HDFF+12].

Micro-aggregation: In micro-aggregation, records are aggregated into groups and in-

stead of releasing original value for a given record, the average of the group to which

the record belongs is released [HDFF+12]. Groups are constructed using a criterion of

maximal similarity in order to prevent disclosure of individual data. Univariate micro-

aggregation and Multivariate micro-aggregation methods are used to deal with one or

more variables at a time. Univariate micro-aggregation is also called individual ranking in

which micro-aggregation apply to each variable independently [DFOTMS02]. Multivari-

ate micro-aggregation is NP-hard and in this approach groups are formed by considering
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all or subset of the variables at the same time [NHT08]. In general multivariate micro-

aggregation method offer better disclosure control than univariate micro-aggregation.

Noise addition: Additive noise method is used to perturb continuous data in order to

preserve privacy of the data but on other side it may affects the quality of data for legitimate

use. It consists of adding a random value which chosen from uniform, normal, exponential,

and other distributions with zero mean [Sra10]. Differential privacy mechanism adds noise

using exponential distribution to achieve acceptable level of privacy [Dwo08].

Data swapping: Data-swapping is a method used for masking microdata file without

altering marginal frequency counts. It consists of altering a fraction of the original records

in a file by switching values of a subset of variables between selected pairs or swap pairs of

records. It is simple to implement and it protects the univariate distribution of the variable

by removing the relationship between the record and the respondent. It is commonly used

to protect sample uniqueness to avoid risk of re-identification. Furthermore swapping data

values between two or more variables can disturb multivariate relationships which would

affect the utility of the data for research analysis [Moo96].

Post randomization: Post randomization method (PRAM) is a randomized version

of data swapping to avoid disclosure of data. PRAM uses probabilistic mechanism (also

known as transition matrix) to change the score on some categorical variables for certain

records with respect to the score in the original microdata file [BM05]. The resulting

perturbed microdata file may contain inconsistencies, e.g., 18-year old professor or 12-

year old widow. These inconsistencies may appear between different records as well as

between different variables of same record. To remove these inconsistencies edits check

run use to eliminate invalid combinations. Its use is limited in practice due to little practical

knowledge available for information utility.
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2.4 Privacy Compliance

The health information custodians (HICs) who are liable to share electronic health records

(EHRs) for health data mining and clinical research should ensure the compliance of health

regulatory bodies. The Health Insurance Portability and Accountability Act (HIPAA) re-

quires patient consent before the disclosure of health information between health service

providers [Dep13]. Health Information Technology for Economic and Clinical Health

(HITECH) Act builds on the HIPAA Act of 1996 to strengthen the privacy and security

rules. Under the HITECH Act, HIPAA covered entities are required to report data breaches

that affect 500 or more individuals to the U.S. Department of Health and Human Services

(HHS) and the media, in addition to notifying the affected individuals [Lic12]. The HIC

would face substantial breach notification costs and enforcement risks if there is any lapse

occurred in non-compliance with the law at other side. HIPAA privacy rule provides two

methods by which health information can be designated as de-identified. The first is the

Expert Determination method which requires that an expert certifies the re-identification

risk inherent in the data is sufficiently low. The second is the Safe Harbor method which

requires the removal of a list of 18 identifiers [Off12].

The final rule under the HITECH Act augments an individual’s privacy protections,

expands individuals new rights to their health information, and includes revisions to the

penalties applied to each HIPAA violation category for healthcare data breaches. Section

160.404 refers to the new HITECH penalty scheme [Dep13], as follows: (1) for violations

in which the covered entity did not know and, by applying persistent efforts, would not have

found within the scope of knowledge that the covered entity violated a provision, an amount

not less than $100 or more than $50,000 for each violation (2) for a violation in which it is

known that the violation was due to reasonable cause and not to willful neglect, an amount

not less than $1,000 or more than $50,000 for each violation (3) for a violation in which it

is known that the violation was due to willful neglect and was timely corrected, an amount
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not less than $10,000 or more than $50,000 for each violation and (4) for a violation in

which it is known that the violation was due to willful neglect and was not timely corrected,

an amount not less than $50,000 for each violation. A penalty for repeat violations in a

calendar year can be hold upto $1.5 million across all HIPAA violation categories of an

identical provision.

2.5 Privacy Breach and Impact

In this section we provide the details for personal data privacy breaches and their impacts.

The top three causes for a personal data breach are [BRL12]: (1) Accidental disclosure, (2)

Loss, and (3) Unauthorized access, use or disclosure.

Accidental disclosure: Incidents where a company mistakenly exposed personal in-

formation to unintended recipients. For example, bank confidential letter was sent to the

wrong address through human, mechanical, or system error, or at work place inadvertently

email personal information of an employee to the wrong recipient, personal data file made

publicly accessible on a company’s website by means of some technical error [BRL12].

Loss: Incidents where personal information is lost by a company. For example, stolen

of laptop, CD/DVD, tape drive, hard drive, usb drive, flash drive, or any other removable

media, or paper documents [BRL12].

Unauthorized access, use or disclosure: Incidents where personal information is ille-

gally accessed from company’s database by an intruder in order to acquire sensitive infor-

mation of individual. Also in the cases where company’s employees access or disclose per-

sonal information outside the requirements or authorisation of their assigned job [BRL12].

A study on patient privacy and data security [Pon12] shows that the number of health

service providers’ reporting cases of data breach has increased significantly during the last

two years. The average economic impact of data breaches is measured at $2.4 million. To
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ensure the compliance, organizations are required to implement internal safe guard mecha-

nisms to minimize the risks, costs, and the impact of a data breach. These safe guards may

have a significant cost to mitigate the effects of a data breach including costs involved in

sending mandatory breach notifications, dealing with regulatory investigations, hiring ex-

ternal auditors, facing class action litigation and loss of business goodwill due to decreased

consumer loyalty [BRL12]. In addition to applying the safeguards, organizations are re-

quired to prepare incident response plan in mitigating the effects of a data breach. These

response measures may serve as a reference guide for certain best practices in dealing with

a data breach. These include gathering necessary information related to a data breach,

finding number of affected individuals, and investigating possible consequences of the data

breach. Subsequently, companies are also required to prepare a report and send notification

of the data breach to concern data protection authorities on the set format as per applicable

laws.

Electronic Health Record (EHR) provides benefits by connecting different health ser-

vice providers through health data networks. Though integration on common platform

enable health service providers to do effective health data mining and clinical research,

on the other hand it is very challenging for them to manage, maintain, and control patient

information. Health records by its nature are very sensitive and sharing even de-identified

records may raise issues of patient privacy breach. Data privacy breach incidents not only

create negative impacts of these health service providers in the general public but also re-

sult in possible civil lawsuits from patients for claiming compensation. Each person has its

own intrinsic value and it is hard to settle the compensation cost for every individual. The

economic analysis of litigation suggests that individuals are more likely to submit a file suit

when their expected rewards exceed their expected costs [CU08]. In civil cases an individ-

ual can sue against another party who could be an individual, a company or corporation.

Additionally, the parties may be two companies, organizations, or corporations [EH13].
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Below we mention some cases of monetary fines due to data breach incidents.

Monetary fines due to data breach:

Zappos, an online shoe retailer owned by Amazon, suffered a massive data breach af-

fecting 24 million consumers. In this data breach incident, reported in January 2012, hack-

ers gained access to the company’s internal network and stole details of their consumers

including their name, e-mail addresses, billing and shipping addresses, the last four digits

of the user’s credit card and a cryptographically scrambled version of their website pass-

word [Sch12]. Such incidents can significantly impact company’s reputation and loss of

consumer trust. As stated by Zappos CEO Tony Hsieh following this incident, "We have

spent over 12 years building our reputation and trust, it is painful to see us take so many

steps back due to a single incident."

Global Payments initially from investigation estimated that 1.5 million accounts were

exposed but later news reports suggested that nearly 7 million accounts were exposed due

to data breach [Inf13]. According to Global Payments, the data breach it revealed in April

2012 cost the company around $94 million. The breakdown of breach costs include $60

million for expenses in investigation, remediation, and protection insurance, and $35.9

million for the estimated fraud loses, fines, and other potential penalties that would be

imposed by the card networks.

South Shore Hospital pays $750,000 to settle charges against violation of HIPAA pri-

vacy and security rule that exposed the confidential health information of more than 800,000

individuals in 2010 [RB12]. Attorney General filed the lawsuit against the hospital under

the state Consumer Protection Act and the federal HIPAA Act for this data breach incident.

Hospital pays a civil penalty of $250,000, payment of $225,000 for an education fund to

be used by the Attorney General’s Office, and $275,000 for the hospital to implement the

security measures.

Western Health, which manages hospitals and clinics at Newfoundland region, fired
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an employee who was involved in accessing the confidential medical records of 1,043 pa-

tients [CBC12]. Barbara Hynes filed a class-action lawsuit against the concerned authority

for breach of her personal and confidential health information.

Hospice of North Idaho, a non-profit patient care facility, agreed to pay $50,000 in set-

tlement with the U.S. Department of HHS for violating the HIPAA Act [DeG13]. In Febru-

ary 2010, they reported to HHS that an unencrypted laptop containing sensitive personal

information of 441 patients has been stolen. This is the first breach settlement affecting less

than 500 patients. Leon Rodriguez is the Director of the Office for Civil Right said "This

action sends a strong message to the health care industry that, regardless of size, covered

entities must take action and will be held accountable for safeguarding their patients’ health

information."

In many data breach lawsuits, plaintiffs seek remedy for claimed harms, such as actual

financial loss incurred from the identity theft, emotional distress, compensation for the

credit monitoring, or possible future losses [RHA12]. A study by Ponemon Institute found

that identity theft 61% is the most significant privacy concern followed by 56% increase in

government surveillance. [Pon13]
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Chapter 3

Preliminaries

In this chapter, we first present some measures to quantify the degree of privacy protection

and information utility followed by an overview of a data anonymization algorithm and a

problem definition.

3.1 Quantifying Privacy

A HIC wants to share a person-specific data table with a health data miner, such as a med-

ical practitioner or a health insurance company for research purposes. A person-specific

data set for classification analysis typically contains four types of attributes, namely the ex-

plicit identifiers, the quasi-identifier (QID), the sensitive attribute, and the class attribute.

Explicit identifiers (such as name, social security number, and telephone number, etc.) are

those which belongs to personal unique identification. QID (such as birth date, sex, race,

and postal code, etc.) is a set of attributes having values may not be unique but their com-

bination may reveal the identity of an individual. Sensitive attributes (such as disease,

salary, marital-status, etc.) are those attributes that contain sensitive information of an in-

dividual. Class attributes are the attributes that the health data miner wants to perform
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classification analysis. Let D(A1, . . . , An, Sens, Class) be a data table with explicit iden-

tifiers removed, where {A1, . . . , An} are quasi-identifiers that can be either categorical or

numerical attributes, Sens is a sensitive attribute, and Class is a class attribute. A record

in D has the form 〈v1, v2, . . . , vn, s, cls〉, where vi is a value of Ai, s is a sensitive value of

Sens, and cls is a class value of Class.

3.1.1 Privacy Threats

The following example illustrates two types of privacy attacks, namely record linkage and

attribute linkage [FWCY10].

Example 1. Consider the de-identified raw patient data in Table 1, where each record cor-

responds to the personal and health information of a patient, where QID = {Age, Gender,

Occupation}, Sens = {Disease}, and Class = {Blood transfusion}. The HIC wants to re-

lease Table 1 to a researcher for the purpose of classification analysis on the class attribute

Blood transfusion which has two values Y es and No, indicating whether or not the patient

need transfusion of blood. Without loss of generality, we assume that the only sensitive

value in Disease is HIV in this example.

17



Table 1: De-Identified Raw Patient Data

Quasi-identifier (QID) Sensitive Class
Rec# Age Gender Occupation Disease Blood transfusion
1 29 M Doctor Migraine N
2 38 F Cleaner HIV Y
3 64 M Welder Asthma Y
4 38 F Painter HIV Y
5 56 M Painter Migraine N
6 24 F Lawyer Migraine Y
7 36 F Cleaner HIV Y
8 61 M Lawyer Asthma Y
9 39 F Painter HIV Y
10 24 M Technician Asthma N
11 52 M Painter HIV Y
12 41 F Lawyer Asthma N
13 28 M Lawyer Migraine Y
14 37 M Cleaner HIV Y
15 66 M Welder Asthma N
16 36 F Painter HIV Y
17 44 M Painter HIV Y

The first type of attack is called record linkage [FWCY10]. In this attack, an adversary

attempts to link a real-life patient to a data record in the released data table. In other words,

the adversary wants to the identify the record of a target victim from the table. Suppose

an adversary has gathered some prior knowledge about the target victim who is a female

painter, denoted by qid = 〈F, Painter〉. By matching qid with the records in the table,

the adversary attempts to identify the records in the data table that are consistent with the

prior knowledge qid. The group of consistent records of a qid is denoted by D[qid]. If the

group size |D[qid]| is small, then the adversary may identify the victim’s record and the

victim’s sensitive value. The probability of a successful record linkage is 1/|D[qid]|. In

this particular example, D[qid] = {Rec#4, 9, 16}.

The second type of attack is called attribute linkage [FWCY10]. In this attack, an

adversary may not able to identify the exact record of a target victim, but could infer his/her

sensitive values with high confidence from the released data table. Suppose an adversary

18



has prior knowledge qid of a target victim. The adversary can first identify D[qid] and

infer that the victim has sensitive value s with confidence P (s|qid) = |D[qid∧s]|
|D[qid]| , where

D[qid∧s] denotes the set the records containing both qid and s. P (s|qid) is the percentage

of the records inD[qid] containing s. The privacy of the target victim is at risk if P (s|qid) is

high. For example, given qid = 〈M,Painter〉 in Table 1, D[qid∧HIV ] = {Rec#11, 17}

and D[qid] = {Rec#5, 11, 17}, therefore P (HIV |qid) = 2/3 = 66.67%.

3.1.2 Privacy Models

Various privacy models have been proposed to protect against the aforementioned linkages

to an individual patient in the released data. In this subsection, we discuss the most widely

adopted models in the literature, namely K-anonymity, LKC-privacy, and ε-differential

privacy.

Definition 1. (K-anonymity) [SS98]. LetD(A1, . . . , An) be a table andQID be the quasi-

identifier associated with it. D satisfies K-anonymity if and only if each record on QID in

D appears with at least K − 1 other records in D.

K-anonymity does not provide privacy if sensitive values in an equivalence class lack

diversity so it is subject to attribute linkage attack. Furthermore, due to the curse of high

dimensionality as discussed in [Agg05], enforcing K-anonymity on high-dimensional data

would result in significant information loss. To overcome this bottleneck, Mohammed et

al. [MFHL09] pointed out that in real-life privacy attack it is very difficult for an adversary

to acquire all QID attributes of a target victim, and proposed the LKC-privacy model in

which the adversary’s prior knowledge qid is assumed to be bounded by at most L values

of the QID attributes.

Definition 2. (LKC-privacy) [MFHL09]. Let L be the maximum number of values in the

prior knowledge of an adversary on a target victim. Let S ⊆ Sens be a set of sensitive

values. A data table D satisfies LKC-privacy if and only if for any qid with |qid| ≤ L,
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1. |D[qid]| ≥ K, where K > 0 is an integer anonymity threshold, and

2. for any s ∈ S, P (s|qid) ≤ C, where 0 < C ≤ 1 is a real number confidence

threshold.

Intuitively, LKC-privacy model prevents both record and attribute linkage attacks and

also ensures that every combination of values in QIDi ⊆ QID with maximum length L

in the data table D is shared by at least K records, and the confidence of inferring any

sensitive values in S is not greater than C, where L, K, C are thresholds and S is a set of

sensitive values specified by the HIC. LKC-privacy bounds the probability of a successful

record linkage to be≤ 1/K and the probability of a successful attribute linkage to be≤ C,

provided that the adversary’s prior knowledge qid does not exceed L values. LKC is more

flexible than K-anonymity in adjusting the privacy and utility trade-off. Dwork [Dwo06]

proposed a privacy model called differential privacy which provides strong privacy guar-

antees independent of an adversary’s background knowledge and computational power.

Definition 3. (ε-differential privacy) [Dwo06]. Given a sanitization mechanism Mr pro-

vides ε-differential privacy in non-interactive setting, if a real value ε > 0, and for any

two data sets D1 and D2 their symmetric difference contains at most one record (i.e.,

|D14D2| ≤ 1), and for any possible anonymized data sets D∗.

Pr[Mr(D1) = D∗] ≤ eε × Pr[Mr(D2) = D∗], (1)

where the probabilities are taken over the randomness of Mr.

Differential privacy is a privacy model which originates from the field of statistical

disclosure control. It ensures that the addition or removal of a single database record does

not affect the outcome of any query significantly. It follows that no risk is incurred by

joining a statistical database.
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3.2 Quantifying Utility

The data utility of a released data table depends on the data analysis task to be performed

by the data recipient. We examine two utility measures in this thesis. The first measure,

discernibility ratio (DR), aims at quantifying the impact of anonymization on the overall

data distortion for supporting general analysis.

DR =

∑
qid |D[qid]|2

|D|2
(2)

DR is the normalized discernibility cost with the range of 0 ≤ DR ≤ 1. Lower value of

DR represents higher data quality.

The second measure aims at quantifying the impact of anonymization on classification

quality. To determine the impact on classification data analysis, we build a classifier on 2/3

of the anonymized records as the training set, and measure the classification error (CE)

on 1/3 of the anonymized records as the testing set. We measure classification error (CE)

using C4.5 classifier [Qui93] for classification analysis. Baseline Error (BE) is measured

on the raw data without anonymization. CE−BE represents the impact of anonymization

on classification quality.

3.3 Data Anonymization Algorithm

3.3.1 Top-Down Specialization Algorithm

Algorithm 1 provides an overview of the Top-Down Specialization (TDS) algorithm [FWY07].

Initially, all values in QID are generalized to the top most value in their taxonomy tree as

depicted in Figure 1.
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Figure 1: Taxonomy Trees

It is assumed that a taxonomy tree is specified for each categorical attribute in QID.

For each continuous attribute in QID, a taxonomy tree can dynamically grown at runtime,

forming a binary tree structure in which each non-leaf node has exactly two child nodes

that represent a split of the parent interval. Marki contains the topmost value for each

attribute Ai in a taxonomy tree. At each iteration, the TDS algorithm performs the Best

specialization, which has the highest Score among the candidates that are valid specializa-

tions in ∪Marki (Line 4). Then, apply Best to D and update ∪Marki (Line 5). Finally,

update the Score and validity of the candidates in ∪Marki (Line 6). The algorithm is

efficient in updating the Score and maintaining the statistics for candidates in ∪Marki

by directly accessing the data records and it terminates if any further specialization would

lead to a violation of the privacy requirement. The specialization process can be viewed as

pushing the "mark" of each taxonomy tree downwards, which effect in increase the utility

and decrease anonymity as value of the records are become more distinguishable. Figure 1

exhibits a solution mark indicated by the dotted lines representing the anonymous Table 2.
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Algorithm 1 Top-Down Specialization (TDS) Algorithm [FWY07]
1: Initialize every value in D to the topmost value.
2: Initialize Marki to include the topmost value.
3: while some x ∈ ∪Marki is valid do
4: Find the Best specialization from ∪Marki.
5: Perform Best on D and update ∪Marki.
6: Update Score(x) and validity for x ∈ ∪Marki.
7: end while;
8: Output D and ∪Marki.

Table 2: Anonymous data (L = 2, K = 2, C = 0.5)

Quasi-identifier (QID) Sensitive Class
Rec# Age Gender Occupation Disease Blood transfusion
1 [1− 99] M Professional Migraine N
2 [1− 99] F Non-Technical HIV Y
3 [1− 99] M Technical Asthma Y
4 [1− 99] F Non-Technical HIV Y
5 [1− 99] M Non-Technical Migraine N
6 [1− 99] F Professional Migraine Y
7 [1− 99] F Non-Technical HIV Y
8 [1− 99] M Professional Asthma Y
9 [1− 99] F Non-Technical HIV Y
10 [1− 99] M Technical Asthma N
11 [1− 99] M Non-Technical HIV Y
12 [1− 99] F Professional Asthma N
13 [1− 99] M Professional Migraine Y
14 [1− 99] M Non-Technical HIV Y
15 [1− 99] M Technical Asthma N
16 [1− 99] F Non-Technical HIV Y
17 [1− 99] M Non-Technical HIV Y
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We provide the details of the Score function for general and classification data analysis

as follows.

Score for General Analysis: In some cases, data is shared for general data analysis with-

out a specific data analysis task, or the data analysis task is unknown at the time of data

release. For these cases, we use discernibility metric [Slo92] to measure the data distor-

tion in the anonymized data table. The discernibility metric charges a cost to each record

for being identical from other records. For each record in an equivalence group qid, the

penalty cost is |D[qid]|. Thus, the penalty cost on a group is |D[qid]|2. To minimize the

discernibility penalty cost, we choose the specialization v → child(v) that maximizes the

value of over all qid containing v, denoted by qidv.

Score(v) = DM(v) =
∑
qidv

|D[qidv]|2 (3)

Score for Classification Analysis: In the case of classification analysis, we use infor-

mation gain, denoted by InfoGain(v), to measure the goodness of a specialization. Our

selection criterion, Score(v), is to keep the specialization v → child(v) that has the maxi-

mum InfoGain(v):

Score(v) = InfoGain(v). (4)

InfoGain(v): Let Dx denote the set of records in D generalized to the value x. Let

freq(Dx, cls) denote the number of records in Dx having the class value cls. Note that

|Dv| =
∑

c |Dc|, where c ∈ child(v). So, we have

InfoGain(v) = H(Dv)−
∑
c

|Dc|
|Dv|

H(Dc), (5)

H(Dx) = −
∑
cls

freq(Dx, cls)

|Dx|
× log2

freq(Dx, cls)

|Dx|
, (6)
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whereH(Dx) measures the entropy of classes for the records inDx [Qui93], and InfoGain(v)

measures the reduction of the entropy by specializing v into c ∈ child(v). The smaller the

entropy H(Dx) implies the higher purity of the partition with respect to the class values.

Example 2 shows the computation of InfoGain(v).

Example 2. Consider Table 1 with L = 2, K = 2, C = 50%, and QID = {Age,Gender,

Occupation}. Initially, all data records are generalized to 〈[1-99], ANY _Gender, ANY _

Occupation〉, and ∪Marki = {[1-99], ANY _Gender, ANY _Occupation}. To find the

Best specialization among the candidates in ∪Marki, we compute Score([1-99]), Score

(ANY _Gender), and Score(ANY _Occupation). Below we show the computation of

Score(ANY _Occupation) and DR.

For the specialization:

ANY _Occupation→ {Blue-collar,White-collar}.

For general analysis:

Score(ANY _Occupation) = 122 + 52 = 169.

DR = 32+22+52+32+42

172
= 0.217993.

For classification analysis:

H(DANY_Occupation) = −12
17
× log2 1217 −

5
17
× log2 5

17
= 0.8739

H(DBlue-collar) = − 9
12
× log2 9

12
− 3

12
× log2 3

12
= 0.8112

H(DWhite-collar) = −3
5
× log2 35 −

2
5
× log2 25 = 0.9709

InfoGain(ANY _Occupation) = H(DANY_Occupation)−(1217×H(DBlue-collar)+
5
17
×H(DWhite-collar)) =

0.0156

Score(ANY _Occupation) = InfoGain(ANY _Occupation) = 0.0156.
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3.3.2 Differential Generalization Algorithm

We employ differentially-private generalization anonymization algorithm (DiffGen) [MCFY11]

for classification analysis. DiffGen achieves ε-differential privacy by making two major ex-

tensions on TDS. First, DiffGen selects theBest specialization based on exponential mech-

anism. Second, DiffGen adds the Laplacian noise to the generalized contingency table, i.e.,

the published qid counts. The noise is calibrated according to sensitivity of the function

which defines as the maximum difference of its outputs from two data sets that differ in at

most one record. ε is a user-specified privacy threshold. A lower value of ε implies higher

level of privacy protection.

3.4 Problem Definition

This thesis aims at answering the questions pointed out in Chapter 1 by proposing an ana-

lytical cost model. The research problem is formally described as follows. Let D be a raw

patient-specific data table. A HIC would like to anonymize D and share the anonymized

version D′ to a third party. The HIC wants to quantify the cost and benefit of D′ with

respect to the level of privacy protection and information utility with respect to a data anal-

ysis or data mining task. Thus, the research problem is to propose an analytical cost model

that covers both aspects of data privacy and utility in terms of monetary value. The model

provides guidance in finding the optimal solution based on the choice of privacy models,

anonymization algorithm, and privacy protection levels. The value of optimal cost con-

tinuously changes with respect to the variations and uncertainties in different qualitative

and quantitative variables that influence the outcome of the decision on the basis of their

values. The model considers the sensitivity of the dataset, size of the dataset, cost of dis-

tortion, cost in terms of classification quality, likelihood of privacy breach, cost of lawsuit,

trend in compensation cost, probability of attack and potential damage cost.
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Chapter 4

Proposed Solution

In this chapter, we propose a solution to quantify the trade-off between privacy and utility in

terms of monetary value of data anonymization for health data mining. Our analytical cost

model is applicable to both perturbative and non-perturbative anonymization techniques.

In the subsequent analysis, we focus the analysis on person-specific relational data but

the model is also applicable to other types of data such as set-valued data and sequential

data. We assume no randomization is allowed in order to maintain the data truthfulness of

records. Our proposed model will be evaluated with respect to some common privacy mod-

els, namely K-anonymity, LKC-privacy, and ε-differential privacy. Section 4.1 presents

the analytical cost model, and Section 4.2 discusses the relevant cost factors of revenue

earning and the factors that affect potential damage cost, followed by the attack model and

performance measures.

4.1 Analytical Cost Model

Figure 2 depicts an overview of the proposed cost and benefit model. Nodes represent dif-

ferent types of variables such as general variables, chance variables, and objective variable.

An influence diagram shows the dependency of one variable on another with an arrow. For
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example, the arrow connecting the Size of Dataset to Monetary Value of Raw Dataset indi-

cates that the dependency of Monetary Value of Raw Dataset on the Size of Dataset. Our

model allows the user to choose privacy models and their anonymization algorithms and

privacy parameters. Then our model analyzes the impact of privacy protection with respect

to the information utility for health data mining in terms of monetary value. It helps in

identifying the economic consequences of sharing patient health data. Revenue depends

upon the Monetary Value of Raw Dataset and the Cost of Anonymization. Data anonymiza-

tion may impact on revenue by hiding potentially relevant information, but on the other

hand it may provide benefits in reducing the risk of privacy breach and costs of compen-

sation. The variable Cost of Anonymization in the model represents CoD for general data

analysis and CQC for classification analysis. Optimal Cost is the model’s objective and

evaluates the overall value or desirability of possible outcomes. This model can help HICs

in making better decisions to quantify the value of their earn, impact of a privacy breach,

possible costs of compensation when person-specific health data is shared for secondary

and commercial purposes.

Figure 2: Analytical Cost Model
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4.2 Cost Factors

In order to build analytical cost model as depicted in Figure 2, we need to identify and study

the relevant quantitative and qualitative cost factors. We perform quantitative analysis to

find the variable cost in terms of monetary value. Qualitative analysis is used to measure

the relative magnitudes of cost factors.

4.2.1 Sensitivity of Dataset

The sensitivity of a dataset SD is a given qualitative factor and its level l(l = 1, . . . , z)

represents the importance of data privacy. The higher the sensitivity level of l implies the

higher monetary value of a raw dataset, and the higher would be the impact on the potential

damage cost. Data privacy risk increases as the level of data sensitivity increases.

4.2.2 Size of Dataset

The size of a dataset Sizeds is a quantitative factor and it represents the total number of

recordsX in the dataset. Sizeds increases as the number of records in the dataset increases.

Each record has a monetary value. As the number of records increases, cost of raw dataset

also increases.

4.2.3 Price per Record

The price per record Prrec is a quantitative factor and it represents the unit price Y of

record. The cost of a raw dataset increases as the unit price per record increases.

4.2.4 Monetary Value of Raw Dataset

The monetary value of a raw datasetCostrd is the product factor of sensitivity of the dataset

SD, size of the dataset Sizeds, and price per record Prrec.
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Costrd = SD × Sizeds × Prrec (7)

4.2.5 Cost of Distortion

To determine the cost of distortion CoD, we first need to determine the discernibility ratio

(DR) on the anonymized data as described in Section 3.2. Recall that the discernibility

cost charges a penalty to each record for being indistinguishable from other records. Using

Equation 2, the cost of distortion is calculated as follows:

CoD = Costrd ×DR (8)

4.2.6 Cost in terms of Classification Quality

To determine the cost in terms of classification quality CQC, we first use all records for

anonymization, build a classifier on 2/3 of the anonymized records as the training set, and

measure the classification error (CE) on 1/3 of the anonymized records as the testing set.

Classification Accuracy (CA) is measured using the form (1 − CE). We use the well-

known C4.5 classifier [Qui93] for classification model. Baseline Accuracy (BA) is the

accuracy measured on the raw data without anonymization. BA− CA represents the cost

of anonymization in terms of classification accuracy. So, the cost in terms of classification

quality is defined as:

CQC = Costrd × (BA− CA) (9)

4.2.7 Revenue

Revenue is the monetary value received by an institution after selling the anonymized ver-

sion of the dataset for research or commercial purpose. Costrd is impacted by CoD and
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CQC for general analysis and classification data analysis, respectively. Operating expenses

have an impact on a company’s revenue but here we consider only fixed operating expenses

Foe, which is considered to be the same for both cases.

Revenue for the general analysis case, denoted by Revga, is defined as:

Revga = Costrd − CoD − Foe (10)

Revenue for the classification analysis case, denoted by Revca, is defined as:

Revca = Costrd − CQC − Foe (11)

4.2.8 Likelihood of Privacy Breach

Likelihood of privacy breach LPB is calculated by applying adversary background knowl-

edge to infer the sensitive attribute value of a victim in percentage using the attack model.

The details are given in Section 4.3. Let us assume that victim record is in the released

dataset and adversary knows the victim’s QID. Formally, LPB for general and classifica-

tion analysis case is defined as:

LPB =
#. of Records forSenval

#. of Records on class labelSenattr
(12)

where Senval denotes the value of the sensitive attribute and Senattr denotes the sensitive

attribute in the dataset.

4.2.9 Cost of Lawsuit

The cost of lawsuit Costlwst is based on the monetary fines or penalties applicable by

law in case of privacy breach. It is a qualitative factor because its monetary value may

vary depending on the disclosure of sensitive information. Approximate value of Costlwst
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could be considered subject to the historical trends of privacy breach. The cost of lawsuit

increases as the level of data sensitivity l increases.

4.2.10 Probability of Attack

The probability of attack Probatk is taken by calculating the F-measure on sensitive at-

tribute value Senval. F-measure is a weighted harmonic mean of recall and precision.

Formally, Probatk for general and classification analysis is defined as:

Probatk =
2× (Precision on Senval × Recall on Senval)

Precision on Senval + Recall on Senval
(13)

4.2.11 Trend in Compensation Cost

The trend in compensation cost TCcost means how the compensation cost would vary in

presence of an attack and its severity level. TCcost is impacted by the choice of the privacy

model (e.g., K-anonymity and LKC-privacy) and its level of privacy protection. So, the

higher the value of privacy parameter implies less chance of privacy attack. We hypothe-

size that the privacy attacks would have an exponential impact on compensation cost due to

costly litigation processes [Off09]. There is no specific monetary value for compensation

cost highlighted in [Off09], but a person who suffers from the financial loss due to disclo-

sure of his sensitive information may claim for compensation. Every personal record has

its own intrinsic value and it is hard to settle the compensation cost for each individual.

As the probability of attack Probatk increases, TCcost also increases. Formally, TCcost for

general and classification analysis case is defined as:

TCcost = exp(Probatk)× Costlwst (14)
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4.2.12 Potential Damage Cost

Potential damage cost PDC means the costs in mitigating the effects of a data breach.

It may include significant costs in sending mandatory breach notifications, dealing with

regulatory investigations, hiring external auditors, facing class action litigation and loss

of goodwill in the general public due to decreased patient loyalty [BRL12]. PDC to the

HICs is impacted by the likelihood of privacy breach LPB and the trend in compensation

cost TCcost. We hypothesize that LPB would have an exponential impact on potential

damage cost [BL11] [AFT06] because a plaintiff seek remedy for alleged harms, such as

actual financial loss incurred from the identity theft, emotional distress, or possible future

losses [RHA12]. Formally, PDC for general and classification analysis is defined as:

PDC = exp(LPB)× TCcost (15)

4.2.13 Net Value

Net valueNV shows due diligence in evaluating the cost factors. NV is used in cost-benefit

analysis to quantify the difference between the monetary value of revenue and potential

damage cost on different privacy protection levels. Formally, NVga for general analysis

and NVca for classification analysis are calculated as follows respectively:

NVga = Revga − PDC (16)

NVca = Revca − PDC (17)

4.2.14 Optimal Cost

Optimal Cost Optcost is calculated by taking the maximum of net value NV for general

analysis or classification analysis on different privacy protection level. Optcost is formally
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defined as:

Optcost = max(NV ) (18)

4.3 Attack Model

LetD be the raw patient data as shown in Table 1, andD′ be the anonymized version of pa-

tient data as shown in Table 2. SupposeDisease is the sensitive attribute andBlood trans-

fusion is the class attribute. Assume the anonymized data table D′ is released together

with the classifier. The adversary may have some additional background knowledge about

a victim. Suppose he knows that victim is in the table and the victim’s qid. Our attack

model is similar to [Kif09] in the nous that we are thinking from adversary’s perspec-

tive and predicting sensitive attribute value of a target victim who is a participant in the

anonymized training data. An adversary cannot link a record to an individual, although he

can infer some sensitive values with high confidence in percentage. We set the sensitive

attribute Disease as the class label and then use classification algorithm C4.5 to infer the

sensitive attribute of individuals. In our attack model we use precision and recall mea-

sures to evaluate the quality of results on the class label Disease, which has three values

Migraine, HIV , and Asthma. Below we provide the details of these measures followed

by an example of confusion matrix.

4.3.1 Precision

Precision is a measure of exactness or quality which is formally defined as the number of

correctly classified positive elements divided by the total number of all classified elements

as positive.

Precision =
TP

TP + FP
(19)
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4.3.2 Recall

Recall is a measure of completeness or quantity which is formally defined as the num-

ber of correctly classified positive elements divided by the total number of actual positive

elements.

Recall =
TP

TP + FN
(20)

4.3.3 F-measure

F-measure is the harmonic mean of precision and recall and it is formally defined as:

F-measure =
2× (Precision×Recall)
Precision+Recall

(21)

4.3.4 Confusion Matrix

A confusion matrix contains information about actual and predicted classifications done by

a well-known classification model. Performance of classification model is evaluated using

the data in the matrix.

Example 3. Consider the anonymous table D′ in Table 2. An adversary sets the sensitive

attribute Disease as a class on the anonymized version of received data table. It results in

new data table which is denoted by D∗. We consider HIV as a sensitive value in the sen-

sitive attribute Disease, and then use classification model C4.5 to infer sensitive attributes

of individuals. The confusion matrix for the three class classifier is shown in Table 3.
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Predicted class
A B C

Actual class
HIV (A) 3 0 0

Asthma (B) 0 1 0
Migraine (C) 0 1 0

Table 3: Confusion Matrix

The rows correspond to the Actual class of the data, i.e., the class labels in the data. The

columns correspond to the Predictions made by the model. The values which are shown

along the diagonal represent the number of correctly classified instances; other values show

the errors. Below we show the calculation of the performance measures for the above

confusion matrix on sensitive value.

True positives refer to the positive records that were correctly classified by the classifier,

e.g., TP = 3 shows correctly classified. False negatives are the positive records that were

incorrectly classified, e.g., FN = 0 shows no incorrectly classified. False positives are

the negative records that were incorrectly classified, e.g., FP = 0 shows no incorrectly

classified. So, the values of performance measures, i.e., Precision = 1, Recall = 1,

and F -measure = 1 are calculated by using Equation 19, Equation 20, and Equation 21,

respectively. An adversary may use these performance measures to determine the success

rate of a privacy attack. F-measure represents the probability of attack Probatk, so when its

value equal to 1 it implies that there are 100 percent chances of a successful attack.

4.3.5 Background Knowledge Attack

In continuation of the attack model as discussed in Example 3, an adversary may apply

C4.5 classifier on data table D∗ to predict the sensitive attribute value of an individual who

is a part of an anonymized training data. In addition, assume the adversary knows that the

victim is in the table and also know the victim’s qid, i.e., female and her occupation is
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Painter. By applying this knowledge on the anonymized training data, he finds a total

of 4 records on class attribute Disease which all belong to sensitive value HIV . So, the

likelihood of privacy breach LPB for this case becomes 4/4 which is calculated based on

Equation 12, implying that an adversary has 100% confidence on inferring sensitive disease

of the victim.
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Chapter 5

Empirical Study

In this chapter, our objectives are to study the impact of enforcing different data anonymiza-

tion methods at different privacy protection levels on person-specific dataset with respect to

the information utility for data mining in terms of monetary value. We perform the follow-

ing tests on person-specific dataset (1) to measure the classification accuracy on the class

label and on the sensitive attribute, (2) to measure the cost of distortion, (3) to measure

the cost in terms of classification quality, (4) to estimate the probability of attack by using

precision and recall performance measures, (5) to quantify the likelihood of privacy breach

which impacted by adversary prior knowledge about victim, and (6) to perform net cost-

benefit analysis to measure the revenue, potential damage cost and the optimal cost on the

released data.

The real-life dataset Adult obtained from the UCI Machine Learning Repository is

employed in our experiments. This dataset has been widely used for different research

purposes and is the de-facto benchmark for comparing performance of anonymization al-

gorithms [HJM07] [YC11] [FWY07]. It comprises of 45, 222 records on 8 categorical

attributes, 6 numerical attributes, and a binary Income class from the US Census database

after removing the records with unknown instances. In our study, we set Married-civ-

spouse and Divorced in the attribute MaritalStatus as sensitive, and the remaining 13
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attributes as QID. All experiments were performed on a machine with an Intel dual core

1.8GHz processor with 2GB memory.

5.1 Classification Accuracy on the Class Label and on the

Sensitive Attribute

Let Income be the class attribute, denoted by Class_Income. Let MaritalStatus be the

sensitive attribute, denoted by Sens_MaritalStatus.

Figure 3 depicts the classification accuracy CA for general data analysis with privacy

threshold 10 ≤ K ≤ 50, adversary’s knowledge L = 2, 4, 6, and confidence threshold

C = 50%. We observe thatCA on the class attribute Income generally decreases asK orL

increases, but not monotonically. For example, CA on Income increases slightly by 0.1%

when K increases from 40 to 50 for L = 2. In comparison to CA on the sensitive attribute

MaritalStatus generally decreases as K or L increases, but with some irregularities. For

example, CA on MaritalStatus increases by 0.4% when K increases from 10 to 20 for

L = 2, and increases by 0.2% when K increases from 30 to 40 for L = 6. CA increases in

this case because generalization removes the noise. However, as L increases to 6, theCA of

LKC-privacy equals to the CA of traditionalK-anonymity for both class attribute Income

and sensitive attribute MaritalStatus, but the CA remains unchanged with respect to the

change of confidence threshold 10% ≤ C ≤ 50%.
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Figure 3: CA on Income and MaritalStatus for General Analysis

Figure 4 depicts the classification accuracy CA for classification analysis with privacy

threshold 10 ≤ K ≤ 50, adversary’s knowledge L = 2, 4, 6, and confidence threshold

C = 50%. We observe that CA on the class attribute Income generally decreases as L

increases, but not monotonically with the increase in K. For example, CA on Income

increases by 3.1% when K increases from 10 to 20 for L = 4 and L = 6. In comparison

to CA on the sensitive attribute MaritalStatus generally decreases as L increases, but

not monotonically with the increase in K. For example, CA on MaritalStatus increases

slightly by 0.6% when K increases from 30 to 50 for L = 4 and L = 6. The CA of LKC-

privacy equals to the CA of traditional K-anonymity for both class attribute Income and

sensitive attribute MaritalStatus when L = 4 and L = 6, but the CA remains unchanged

with respect to the change of confidence threshold 10% ≤ C ≤ 50%.
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Figure 4: CA on Income and MaritalStatus for Classification Analysis

5.2 Cost of Distortion

Suppose the sensitivity of the dataset SD = 3, the price per record Prrec = $0.2, the cost

of lawsuit Costlwst = $1, 000, and the size of dataset Sizeds = 45, 222.

Figure 5 depicts the cost of distortion CoD for general data analysis with privacy

threshold 10 ≤ K ≤ 50, adversary’s knowledge L = 2, 4, 6, and confidence threshold

C = 50%. We observe that CoD generally increases as K or L increases, but sometimes

has a fall when K = 10 and L = 6 and then increases gradually as K increases. This anti-

monotonic property of the greedy algorithm helps in identifying the sub-optimal solution.

The CoD of LKC-privacy equals to the CoD of traditional K-anonymity when L = 6.

CoD is insensitive to change of confidence threshold 10% ≤ C ≤ 50%.
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Figure 5: Cost of Distortion for General Analysis

5.3 Cost in terms of Classification Quality

Suppose the sensitivity of the dataset SD = 3, the price per record Prrec = $0.2, the cost

of lawsuit Costlwst = $1, 000, and the size of dataset Sizeds = 45, 222. Baseline Accuracy

(BA) as calculated on raw data without anonymization is 85.3%.

Figure 6 depicts the cost in terms of classification quality CQC for classification anal-

ysis with privacy threshold 10 ≤ K ≤ 50, adversary’s knowledge L = 2, 4, 6, and confi-

dence threshold C = 50%. We observe that CQC generally increases as L increases, but it

is not consistent with the increase in K for specific level L. For example, CQC decreases

by $841.12 when K increases from 10 to 20 for L = 4 and L = 6. This fall happens

because the cost of anonymization in terms of classification accuracy (BA− CA) reduces

from 4.2% to 1.1% and it aids in finding the sub-optimal solution. The CQC of LKC-

privacy equals to the CQC of traditional K-anonymity when L = 4 and L = 6. CQC is

insensitive to the change of confidence threshold 10% ≤ C ≤ 50%.
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Figure 6: Cost in terms of Classification Quality for Classification Analysis

Figure 7 depicts the cost in terms of classification quality Cost_CQ using DiffGen

for classification analysis with the specified parameters for privacy budget ε = 0.5, 1 and

specialization levels 3 ≤ h ≤ 19. We use 30162 records of the real-life adult dataset to

build the classifier and then measure the accuracy on the remaining 15060 records. We

use 10-fold cross-validation to estimate the average accuracy. We observe that Cost_CQ

generally decreases, as specialization level h increases, except when privacy budget ε = 0.5

and specialization level h increase from 15 to 19. This is because Laplace noise overpower

when specialization level h get increase from certain threshold. When average accuracy

increases, Cost_CQ decreases. For example, average accuracy increases by 1.11% and

Cost_CQ decreases by $301.18 when specialization level h increases from 15 to 19 for

privacy budget ε = 1.
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Figure 7: DiffGen Privacy Cost_CQ for Classification Analysis

5.4 Probability of Attack

Figure 8 depicts the probability of attack Probatk for sensitive value Married-civ-spouse

in case of general data analysis with privacy threshold 10 ≤ K ≤ 50, adversary’s knowl-

edge L = 2, 4, 6, and confidence threshold C = 50%. We observe that Probatk generally

decreases as L increases, but not monotonically with the increase in K. The lowest value

71.27% of privacy attack inferred when L = 6 for K = 20 and K = 30, because of larger

equivalence group. It provides trade-off in increasing the level of privacy protection and

reducing the chances of privacy attack. The Probatk of LKC-privacy equals to the Probatk

of traditional K-anonymity when L = 6. Probatk is insensitive to change of confidence

threshold 10% ≤ C ≤ 50%.
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Figure 8: Probability of Attack for General Analysis

Figure 9 depicts the probability of attack Probatk for sensitive value Married-civ-

spouse in case of classification analysis with privacy threshold 10 ≤ K ≤ 50, adversary’s

knowledge L = 2, 4, 6, and confidence threshold C = 50%. We observe that Probatk

generally decreases as increase inK for specific level L, but not monotonically. The lowest

value 70.00% of privacy attack inferred when L = 4 and L = 6 for K = 30 and K = 40.

It provides trade-off in increasing the level of privacy protection and reducing chances

of privacy attack. The Probatk of LKC-privacy equals to the Probatk of traditional K-

anonymity whenL = 4 andL = 6. Probatk is insensitive to change of confidence threshold

10% ≤ C ≤ 50%.
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Figure 9: Probability of Attack for Classification Analysis

5.5 Likelihood of Privacy Breach

Suppose the adversary has a background knowledge about victim. He knows victim’s age

is in between 46 to 50, sex is Male, education-num is ≥ 13, native-country is Canada,

and salary is > 50, 000.

Figure 10 depicts the likelihood of privacy breach LPB when adversary apply his back-

ground knowledge on sensitive value Married-civ-spouse in case of general data analysis

with privacy threshold 10 ≤ K ≤ 50, adversary’s knowledge L = 2, 4, 6, and confidence

threshold C = 50%. We observe that LPB changes as increase in adversary knowledge

L but it remains the same with the increase in K except for some irregularities. For ex-

ample, LPB increases from 87.04% to 88.49%, as L increases from 2 to 4 but remains

the same with increase in K for specific level L. When L increases from 4 to 6 and K

increases from 10 to 20 there is a fall of 5.06% in LPB. This anti-monotonic property of

the greedy algorithm helps in identifying the sub-optimal solution. It provides trade-off

in privacy-preserving as higher value of LPB results in more potential damage cost. The

46



LPB of LKC-privacy equals to the LPB of traditional K-anonymity when L = 6. LPB is

insensitive to change of confidence threshold 10% ≤ C ≤ 50%.

Figure 10: Likelihood of Privacy Breach for General Analysis

Figure 11 depicts the likelihood of privacy breach LPB when adversary apply his back-

ground knowledge on sensitive valueMarried-civ-spouse in case of classification analysis

with privacy threshold 10 ≤ K ≤ 50, adversary’s knowledge L = 2, 4, 6, and confidence

threshold C = 50%. We observe that LPB increases, as increase in L or K, but not mono-

tonically with the increase in K. For example, LPB drop by 3.47%, as increase in K from

10 to 20 when L = 4 and L = 6. This anti-monotonic property of the greedy algorithm

helps in identifying the sub-optimal solution. It provides trade-off in privacy-preserving

as higher value of LPB results in more potential damage cost. The LPB of LKC-privacy

equals to the LPB of traditional K-anonymity when L = 4 and L = 6. LPB is insensitive

to change of confidence threshold 10% ≤ C ≤ 50%.
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Figure 11: Likelihood of Privacy Breach for Classification Analysis

5.6 Net Cost-Benefit Analysis

Suppose the sensitivity of the dataset SD = 3, the price per record Prrec = $0.2, the

cost of lawsuit Costlwst = $1, 000, the fixed operating expenses Foe = $100, and the size

of dataset Sizeds = 45, 222. Baseline Accuracy (BA) as calculated on raw data without

anonymization is 85.3%.

Figure 12 depicts the net cost-benefit analysis for general data analysis case to estimate

the Revga, PDC, NVga, and Optcost with privacy threshold 10 ≤ K ≤ 50, adversary’s

knowledge L = 2, 4, 6, and confidence threshold C = 50%. We observe that Revga gen-

erally decreases as K or L increases. PDC generally decreases as K or L increases, but

not monotonically with the increase in K. For example, PDC increases slightly by $13.3

when K increases from 30 to 50 for L = 6. Minimum PDC is desired subject to the utility

of the data so PDC exhibits point of trade-off in privacy preservation. NVga estimates the

impact of PDC on Revga. Maximum NVga returns the Optcost $12, 187 for K = 20 and

K = 30 when L = 6. Revga and PDC of LKC-privacy equals to the Revga and PDC of
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traditional K-anonymity when L = 6. Revga and PDC remain unchanged with respect to

the change of confidence threshold 10% ≤ C ≤ 50%.

Figure 12: General Analysis Optimal Cost

Figure 13 depicts the net cost-benefit analysis for classification analysis case to esti-

mate theRevca, PDC,NVca, andOptcost with privacy threshold 10 ≤ K ≤ 50, adversary’s

knowledge L = 2, 4, 6, and confidence threshold C = 50%. We observe that Revca gen-

erally decreases as L increases, but it is not consistent with the increase in K for specific

level L. For example, Revca increases by $841.12 when K increases from 10 to 20 for

L = 4 and L = 6. PDC generally increases as L increases, but not monotonically with the

increase in K. For example, PDC decreases significantly by $5, 160.52 when K increases

from 10 to 20 for L = 4 and L = 6. Minimum PDC is desired subject to the utility of the

data so PDC exhibits point of trade-off in privacy preservation. NVca estimates the impact

of PDC on Revca. Maximum NVca returns the Optcost $12, 934 for K = 20 when L = 4
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and L = 6. Revca and PDC of LKC-privacy equals to the Revca and PDC of traditional

K-anonymity when L = 4 and L = 6. Revca and PDC remain unchanged with respect to

the change of confidence threshold 10% ≤ C ≤ 50%.

Figure 13: Classification Analysis Optimal Cost

Figure 14 depicts the revenue of using DiffGen for classification analysis with the spec-

ified parameters for privacy budget ε = 0.5, 1 and specialization levels 3 ≤ h ≤ 19. We

observe that the revenue generally increases, as increase in specialization level h, for the

specified privacy budget ε, except has a fall when ε = 0.5 and specialization level h in-

creases from 15 to 19. This is because Laplace noise overpower when specialization level

h get increase from certain threshold. Maximum revenue $25, 486.61 is achieved, when

ε = 1 and h = 19. DiffGen guard against data breach by protecting against adversaries

with background knowledge. We learned that by applying adversary knowledge mentioned

in Section 5.5 on the anonymized DiffGen data have no considerable privacy breach. So, it
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reflects no potential damage cost.

Figure 14: DiffGen Privacy Revenue

5.7 Summary of Empirical Study

We evaluate our proposed method to search for optimal value by performing experiments

on a real-life dataset. The HIC can compare costs and benefits by choosing different privacy

models, namely, K-anonymity, LKC-privacy, and ε-differential privacy. We learned that

the revenue and potential damage cost are generally high when the privacy protection level

is low by applying the cost factors on privacy modelsK-anonymity and LKC-privacy. The

optimal cost happens at the maximum of net valueNV ; however, the maximumNV would

not be found at lower privacy protection level. The maximum net value NV can be identi-

fied by gradually increasing privacy protection level and evaluating associated cost factors.

For the case of classification analysis, by applying the cost factors on K-anonymity, rev-

enue is not at the best with privacy level set as low, although the potential damage cost is

high. When we apply cost factors on LKC-privacy model, neither revenue nor potential
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damage cost is at the best with privacy level set as low, this is due to the fact heuristic

information gain used for classification and greedy algorithm search for sub-optimal solu-

tion with flexibility of adjusting adversary knowledge L. With the increase in privacy level

some time results in better classification structure. Costs and benefits would vary with the

change of parameters K and L, but confidence C does not produce change on outcome.

When apply cost factors on DiffGen revenue generally increases, as increase in special-

ization level for the specified privacy budget, except has drop when specialization level

increase from certain threshold. We also learned that by applying adversary knowledge on

the anonymized DiffGen data have no considerable privacy breach. So, it is considered as

safe from potential damage cost.
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Chapter 6

Conclusion and Future Work

In this chapter we conclude the thesis and provide some possible research directions that

can be conducted as a future work.

We propose an analytical cost model which can benefit health information custodi-

ans (HICs) in making better decisions while sharing health records for secondary use and

commercial purposes. Our model provides trade-off in terms of monetary value between

preserving privacy and extracting useful patterns or trends for both general data analysis

and classification analysis. Our proposed solution discusses the relevant quantitative and

qualitative cost factors associated with revenue earnings and potential damages. We present

an attack model based on the well-known C4.5 classification model, then use precision and

recall to evaluate the probability of attack, and measure the likelihood of privacy breach

against sensitive value of the victim by applying adversary background knowledge on the

anonymized data.

Our cost-benefit model and the factors employed in finding the trade-off between pri-

vacy and utility will be applicable to other privacy-preserving data publishing scenarios.

This work sheds light for future research that studies the trade-off between privacy pro-

tection and information utility with different perturbative and anonymization techniques

for other types of data, such as transaction [CMF+11], trajectory [FCDX09], and social
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network data [ZP11].
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