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Abstract

Rotordynamic Analysis of Tapered Composite Driveshaft Using Conventional and

Hierarchical Finite Element Formulations

Majed Al Muslmani

In the aerospace and automotive applications driveshafts are manufactured using fiber
reinforced composite materials. Compared to a conventional metallic driveshaft, a
composite driveshaft gives higher natural frequencies and critical speeds, and lower
vibration. The design of the driveshaft is dependent on its fundamental natural frequency
and its first critical speed, and tapering the driveshaft can substantially improve the
values of the natural frequency and first critical speed. In this thesis, the rotordynamic
analysis of the tapered composite driveshaft is carried out using three finite element
formulations: the conventional-Hermitian finite element formulation, the Lagrangian
finite element formulation, and the hierarchical finite element formulation. These finite
element models of the tapered composite shaft are based on Timoshenko beam theory, so
transverse shear deformation is considered. In addition, the effects of rotary inertia,
gyroscopic force, axial load, coupling due to the lamination of composite layers, and
taper angle are incorporated in the conventional-Hermitian, the Lagrangian, and the
hierarchical finite element models. The strain energy and the kinetic energy of the tapered
composite shaft are obtained, and then the equations of motion are developed using

Lagrange’s equations. Explicit expressions for the mass matrix, the gyroscopic matrix

111



and the stiffness matrix of the tapered composite shaft are derived to perform
rotordynamic analysis. The Lagrangian beam finite element formulation has three nodes
and four degrees of freedom per each node while the conventional-Hermitian beam and
the hierarchical beam finite element formulations have two nodes. The three finite
element models are validated using the approximate solution based on the Rayleigh-Ritz
method. A comprehensive parametric study is conducted based on the finite element
models, which shows that tapering the composite driveshaft can increase considerably the
natural frequency and first critical speed, and that they have nonlinear variation with the

taper angle.
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Chapter 1

Introduction and literature survey

1.1 Rotordynamic analysis

Today, rotating machines play an important role in aerospace and power industries. They
are used in applications such as aircraft engines, power plant stations, medical equipment,
automobiles, and helicopters. Designing rotating machines requires determining their
dynamic behavior, so it is essential to use modern techniques to model and analyze the
rotating machines. Studying the dynamic behavior of rotating machines to determine their
dynamic characteristics such as critical speeds, bending natural frequencies and

unbalance response, usually is defined as rotordynamic analysis.

Typically, any rotating machine has three main components: rotor, bearings, and attached
disks or blades. The rotor is considered the heart of rotating machines; and since the
rotating machine interacts with its surroundings, such as a high-pressure fluid or
unbalance of an attached disk or blade, the rotor experiences a high level of vibration.
This unacceptable level of vibration can lead to high stresses in the rotor, noise, a bad

surface finish in machining tools, and damage or failure in bearing or seals.

In fact, vibration of the rotor can happen in different ways: lateral vibration, axial
vibration, and torsional vibration. In lateral vibration, the rotor moves in orbital motion,
which is the result of a combination of motions in horizontal and vertical directions.
Axial vibration happens along the rotor’s axis, while torsional vibration appears as a

twisting in the rotor around its axis. Lateral vibration has a more significant effect on the



rotor than axial or torsional vibration, because lateral vibration has more amount of

energy than axial or torsional vibration [1].

Moreover, lateral forces, such as unbalance force that exists in attached disks or blades,
are considered the main reason for lateral vibration. When rotor speed is equal to any
bending natural frequencies of the rotor, the rotor undergoes violent vibration and the

corresponding speed of the rotor is referred to as a critical speed.

1.2 Composite materials

When two or more materials with different properties and mechanical performance come
together to make a new material, the performance and properties of which are designed
to be more advanced than those of the individual materials, the new material is defined as
a composite material [2]. On macroscopic scale, advanced composite materials consist of
two phases: fiber reinforcement material and matrix material. Fiber reinforcement is
stiffer and stronger than the matrix and provides composite materials with high strength
and stiffness, while the matrix holds the fibers in their direction, protects them from

environmental effects, and transfers the load between the fibers [3].

Advanced composite materials have a high specific strength and specific stiffness -to-
weight ratio compared to conventional metallic materials, such as steel and aluminum; in
addition, advanced composite materials have a high fatigue life, good capability to resist
corrosion, and low thermal expansion [3]. As a result of their characteristics, advanced

composite materials are extensively used in the aerospace and automobile industries.



Recently, driveshafts in helicopters and vehicles have started to be manufactured with
composite materials rather than conventional metallic materials, because composite
materials improve the dynamic characteristics of the driveshaft. Also, the advanced
composite materials give the driveshaft higher critical speeds and higher bending natural

frequencies compared to conventional metallic materials.

However, an advanced composite shaft cannot transfer the same amount of torque as
conventional metallic shaft that has the same size as the composite shaft; and at certain
level of torsional load, torsional buckling happens in the advanced composite shaft before
the conventional metallic shaft. To overcome this problem, a hybrid metallic composite
shaft can be used; where the composite materials increase the bending natural frequency

and the metallic materials improve the capability of transferring a high amount of torque.

1.3 Finite element method (FEM)

FEM is the most popular computational method, and it is used to solve and analyze a
large range of engineering problems, such as structural dynamics, stress analysis, heat
transfer, and fluid flow. The concept behind FEM 1is simple. Instead of defining the
approximation functions over the complete domain, as the Rayleigh-Ritz method does,
FEM defines the admissible function only over a finite number of subdomains, named
finite elements. Nowadays, there are many types of computer software based on finite

element method, and the most famous softwares in industry and academics being

ANSYS®, NASTRAN®, and ABAQUS"®.



Finite element method can be divided into two categories: conventional and advanced
finite element method. In conventional finite element method, the rotor usually is
modeled by a beam element that has two nodes in total, one node for each of its ends;
each node has four degrees of freedom, that are two displacements and two rotations.
Since finite element method gives an approximation solution, the rapid convergence of
solutions depends on increasing the number of elements. Today, with fast improvement
in computer capabilities, it is possible to use large number of elements to obtain an
accurate solution. However, for some complex engineering problems, increasing the
number of elements can be expensive and time consuming, even with a sophisticated

computer.

An example of an advanced finite element method is the hierarchical finite element
method. The idea behind the hierarchical finite element is to keep the mesh unchanged
and increase the degree of the admissible functions; this can be achieved by adding
polynomial and trigonometric terms inside the admissible functions to increase the
degrees of freedom that resulted in fast convergence. Moreover, it is possible to obtain a
combination of the conventional finite element and the hierarchical finite element, where
the mesh of the elements and the degree of the admissible functions are changeable; this
combination usually is referred to as an Ap- version of finite element method [22].

1.4 Literature survey

Driveshaft design depends on predicting critical speeds and bending natural frequencies.
Different analytical and computational methods have been used to study the behaviour of
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rotordynamic systems. Herein, the literature survey is divided into two parts. The first
part presents some important rotordynamic analyses of conventional metallic driveshafts.
The second part presents rotordynamic analysis of driveshafts made of composite
materials.

1.4.1 Rotordynamic analysis of conventional metallic shaft

As mentioned before, the finite element method (FEM) is the most popular computational
method, and with advanced computer technology it becomes easier to apply FEM on
complex problems. In fact, there is vast literature on rotordynamic analysis of driveshafts

using FEM.

In his PhD thesis, Ruhl [4] used FEM to model a turbo-rotor system; the model did not
account for rotary inertia, axial load, gyroscopic moments, shear deformation or internal
damping. However, his early investigation, of using FEM for a rotor-bearing system is
considered seminal. Ruhl used his model to predict the instability region and unbalance

response of a rotor-bearing system.

Nelson and McVaugh [5] introduced a procedure to model a rotordynamic system using
FEM; their system consisted of a flexible shaft, rigid disks, and discrete bearings.
Equations of motion of each part of the system (disk, rotor and bearing) were derived
separately and then the general equation of the system was obtained by assembling the
equations of each component (disk, rotor and bearing). The model included the effects of
rotary inertia, gyroscopic moments, and axial load. The finite element had two nodes;
each node had four degrees of freedom, two translations and two rotations.
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In addition, Nelson and Zorzi [6] studied the effect of a constant axial torque on dynamic
characteristics of a rotor-bearing system, and they found that the critical speeds of the
rotor system were not affected by the level of axial torque. However, when the
rotordynamic system was operated at high speed, the effect of the axial torque on the

stability, reliability and safety cannot be neglected.

Nelson and Zorzi [7] studied the internal damping effect on the dynamic behavior of a
rotor-bearing system. The internal damping was represented in two linear damping forms:
viscous and hysteretic damping. The researchers found that the internal damping had a
negative effect on the stability of system: the viscous damping led the rotor-bearing
system to instability at the first critical speed, while hysteretic damping made the system
unstable at all critical speeds. Nelson [8] used Timoshenko beam theory to include the
effects of transverse shear deformation, gyroscopic moment, rotary inertia, and axial
load. In addition, Chen and Ku [9] used a Ritz finite element technique to predict the
regions of dynamic instability of a rotor-bearing system subjected to periodic axial force;

the rotating shaft was modeled based on Timoshenko beam theory.

Moreover, the tapered shaft captured an interest among rotordynamics researchers.
Greenhill et al. [10] extended the linearly tapered Timoshenko beam theory to develop a
tapered finite element formulation for a shaft; they included the shear deformation in the
finite element as a degree of freedom. The conical element had two nodes and each one
of them had six degrees of freedom: two translations, two rotations, and two shear
deformations. Genta and Gugliotta [11] introduced an axisymmetrical conical beam finite
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elemeent with two complex degrees of freedom at each node. Also, Khuief and
Mohiuddin [12] developed an equation of coupled bending and torsional motions using
Lagrange’s equation; they derived a conical finite element with two nodes and ten
degrees of freedom for each node. The conical finite element was derived based on

Timoshenko beam theory.

1.4.2 Rotordynamic analysis of composite shaft

Recently, composite materials have been used on a large scale for different structural
applications. Since composite materials have high strength- and stiffness-to-weight ratios,
composite materials have become more attractive to manufacturers in the aerospace and
automobile industries. Advanced composite materials dramatically improve the dynamic
characteristics of shafts in terms of critical speeds, bending natural frequencies, and

unbalance response.

Zinberg and Symonds [13] developed an advanced composite tail rotor for helicopters.
They experimentally studied a boron/epoxy composite shaft and determined its critical
speeds; their results show an improvement in the dynamic behavior of composite shafts
over aluminum shafts. Also, Hetherington et al. [14] experimentally investigated the
dynamic performance of supercritical helicopter power transmission composite shafts;
their experiment indicated that composite shafts can be operated above at least the second
critical speed. Also, it was observed that external damping is required for safe and stable

supercritical operation.



Singh and Gupta [15] published formulations for the rotordynamics of composite shafts
by using two different theories: the conventional equivalent modulus beam theory
(EMBT) and a layerwise beam theory (LBT). Performance rotordynamics parameters
such as critical speed, unbalance response, bending natural frequencies, and threshold of
stability were more accurately predicted using LBT than using EMBT. In fact, EMBT has
some limitations that LBT does not. Specifically, EMBT does not measure the effects of
bending-stretching coupling, shear-normal coupling, bending-twisting coupling, cross-
sectional deformations, or out-of-plane warping. In another study, Gubran and Gupta [16]
published a modification of the equivalent modulus beam theory to include the effect of
the stacking sequence and coupling mechanisms of composite materials. The bending
natural frequencies of the composite shaft that was analyzed using the modified EMBT

showed a good agreement with LBT results.

Kim and Bert [17] studied the vibration of cylindrical hollow composite shafts using the
Sanders best first approximation shell theory. They investigated the critical speeds of
different types of composite rotors and compared the results to those obtained using the
classical beam theory, and the compared results well agreed. Hu and Wang [18§]
performed vibration analysis on rotating laminated cylindrical shells using the
ABAQUS" finite element program. They studied the influences of rotating speed, end
conditions, shell thickness, shell length, and shell radius on the fundamental bending

natural frequency.



Chen and Peng [19] studied the stability of rotating uniform composite shafts. The
composite rotor was studied using the shaft finite element, based on Timoshenko beam
theory, by considering the EMBT. Chang et al. [20] developed a finite element model to
study the dynamic behavior of uniform composite shaft. Their model incorporated rotary
inertia, gyroscopic moments and shear deformation as well as the coupling mechanisms
in composite materials. The shaft was modeled based on a first-order shear deformation
beam theory. Also, Chang et al. [21] performed a vibration analysis of rotating uniform
composite shafts containing randomly oriented reinforcements. Boukhalfa et al. [22]
applied a p-version hierarchical finite element to model a composite shaft; the
hierarchical beam finite element contained two nodes, and each node had six degrees of
freedom. The model included the effects of rotary inertia, gyroscopic moments, and shear
deformation as well as the coupling mechanisms in composite materials, and it was
modeled as Timoshenko beam. In addition, Boukhalfa and Hadjoui [23] published free
vibration analysis of uniform composite shaft using the hp-version of finite element,
which is a combination of the conventional version of finite element (h-version) and the

hierarchical finite element.

Kim Wonsuk, in his PhD dissertation [24], developed a mechanical model for a tapered
composite Timoshenko shaft. The model represented an extended length tool holder at
high speed in end milling or boring operation. The structure of the shaft had clamped —
free supports. Kim used the general Galerkin method to obtain the spatial solutions of the

equations of motion. He studied forced torsion, dynamic instability, forced vibration



response, and static strength of a tapered composite shaft subjected to deflection-

dependent cutting forces.
1.5 Objectives of the thesis

Eventhough Kim [24] developed a mechanical model for a tapered composite
Timoshenko shaft and studied forced torsion, dynamic instability, and forced vibration
response of a tapered composite shaft, he did not use the finite element method. In fact
Kim used the general Galerkin method to obtain the spatial solutions of the equations of
motion, and the solution was only under clamped-free condition of the tapered composite
shaft. Based on the author’s knowledge there is no work that has been carried out on the
rotordynamic analysis of tapered composite driveshaft based on the finite element
method. In this thesis, the tapered composite shaft means that the inner and outer
diameters of one end are constant while the inner and outer diameters of the other end

increase with increasing the taper angle.

The objectives of the present thesis are: (1) to develop three different finite element
models: conventional-Hermitian, hierarchical, and conventional-Lagrangian finite
element models for rotordynamic analysis of tapered composite shaft; (2) to investigate
the bending natural frequencies, critical speeds and mode shapes of tapered and uniform
composite shafts; (3) to validate the developed finite element models using the
approximate solution that is obtained based on the Rayleigh-Ritz method; and (4) to
conduct a comprehensive parametric study on uniform and tapered composite

driveshafts.
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Moreover, rotordynamic analysis of metal driveshaft based on conventional-Hermitian
finite element is very well established, so the conventional-Hermitian finite element is
used for rotordynamic analysis of the uniform and the tapered composite driveshaft in
this thesis. In addition, the conventional-Lagrangian finite element model [20] and
hierarchical finite element model [22] of uniform composite driveshaft have already been
developed; but no work has been done on tapered composite driveshaft using these finite
element methods. Therefore, in the present thesis, the conventional-Hermitian, the
conventional-Lagrangian, and hierarchical finite element models are developed to
establish a comparison between finite element solutions. Furthermore, these finite

element models are validated using the Rayleigh-Ritz method.

1.6 Layout of the thesis

This chapter presents introductory information on rotordynamic analysis, composite
materials, and finite element method. Also, it provides a literature survey on
rotordynamic analysis of conventional metallic driveshafts and composite material
driveshaft.

Chapter 2 presents the rotordynamic analysis of conventional metallic shafts using
conventional finite element.

In chapter 3 a formulation based on conventional-Hermitian finite element is developed
and applied to the rotordynamic analysis of uniform composite driveshafts based on

Timoshenko Beam Theory; the effect of axial load is considered in the formulation.
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Chapter 4 provides four different formulations for tapered composite driveshafts:
conventional-Hermitian, hierarchical, and Lagrangian finite elements as well as

Rayleigh-Ritz formulation

Chapter 5 gives a detailed parametric study on rotordynamics of tapered composite
shafts. The study includes the effects of stacking sequence, axial load, fiber orientation,

length of the driveshaft and taper angle.

Chapter 6 closes the thesis by providing an overall conclusion of the present work and by

suggesting recommendations for future work.
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Chapter 2
Rotordynamic Analysis of Rotor-Bearing System Using Conventional

Finite Element Method

2.1 Introduction

In this chapter, vibration analysis of conventional metal driveshaft using conventional
finite element formulation is presented. A finite shaft element is developed for this
purpose. Two different models are developed based on two different beam theories; one
is based on Euler -Bernoulli beam theory and the other model is based on Timoshenko
beam theory. In Euler —Bernoulli beam theory rotary inertia and shear deformation are
ignored, while in Timoshenko beam theory they are considered. Also, the effect of the
axial load is included in both the models. Moreover, rotor-bearing system with tapered
shaft is modeled based on Timoshenko theory. Rotordynamic analysis including
determination of natural frequencies, critical speeds, mode shapes and steady-state
response is conducted and applications to example systems are provided. Rotordynamic
analysis of conventional metal driveshaft is a very well established topic, so the equations
in this chapter are borrowed from References [1, 25, 26] to provide basic information and

introduction about rotordynamic analysis.

2.2 Coordinate system
A typical rotor-bearing system consists of three main parts: rotor, disk and bearing.

Figure 2.1 shows a typical rotor-bearing system. The equations of motion of the rotor-
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bearing system depend on the equations of motion of each component. Thus, it is
necessary to develop the individual equations of motion of the rotor, bearing and disk.
Then, one can assemble them to obtain general equations of motion for the rotor-bearing
system. Moreover, in order to develop the equations of motion of rotor-bearing system
using finite element method, it is required to divide the rotor into number of elements
which are connected together with nodes. Each element has two nodes located at the ends
where disks and bearings are attached to the rotor. Since the vibration analysis in this
work is focus only on lateral vibration, each node has four degrees of freedom: two
translations in the y and z directions and two rotations about the y- and z-axes. The
translational motions of any node on the rotor are defined from the equilibrium position
by displacements v and w in y and z directions, respectively, while the rotational motions

are defined by rotations f,, and f, about y- and z-axes, respectively. Here, it is assumed

that the rotations f,, and f, are small [1].

Figure 2.1 Typical rotor-bearing system
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In addition, rotor-bearing system is described by two coordinate systems: (a) xyz which is
fixed to the space (b) XyZ which is fixed to the cross-section of the disk and the shaft and
rotates with them; the two coordinate systems are related through a set of rotation angles.
The kinetic energy of the shaft element and the disk are function of the instantaneous
angular velocities in XyZ frame. So, it is assumed that the instantaneous angular
velocities in xyz frame are ,By about the y-axis, 3, about the z-axis and @ about the x-
axis, and they have to be transferred to XyZz frame. In order to do this, it is necessary to
choose an order of rotations as it is shown in Fig 2.2, and the rotations are applied in the

following order [1]:

1) P, about y-axis (it makes x’y’z’ coordinate)

2) [, about the new z-axis (it makes x”y”’z” coordinate)

3) @ about the new x-axis(it makes xyZ coordinate)

So, the instantaneous angular velocities in Xyz frame are [1]:

Wx ) 0 0 1170
Iwylz 0|+ |cos@® sing 0] [/;’:Z
Wz 0 —sin® cos@® 1llo

0 0 -—sinfB, cosf,1|10

+| cos @ San) 0] 1 0 0 ][ﬁy]

—sin® cos® 11|10 cosB, sinB,l|Llo

2.1)
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Wy Q) - ﬁ.ySiTlﬁZ
[“’3‘1] = | B,cos® + By sin® cosp,
Yz —B, sin® + B, cos® cosp, 2.2)

where wg, w; and w; are the instantaneous angular velocities about X,y andZ

respectively.

Zz

B,

NI
<i

B,

Figure 2.2 Cross-section rotation angles
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Furthermore, the general equations of rotor-bearing system can be developed using the

following approach:

a.

Establishing the kinetic energy T and the strain energy U for the element rotor-
bearing system.

Developing the lateral displacements and the rotations fields of the rotor using
the finite element method.

Using the Lagrange’s Equation to obtain the equation of motion of the shaft

element.

d(aT) oT aU_

ar\aq) "oq "o~ ¢

where g is the vector of the generalized coordinates, Q is the vector of

generalized forces .

Assembling the individual equations of the shaft element, disks, and bearings to

obtain the general equations of motion of rotor-bearing system.

2.3 Rigid disk element

Energy method is used here to obtain the equation of motion of the disk. The disk is

assumed to be a rigid body made of metallic material as it is illustrated in Fig 2.3, so the

strain energy is neglected and the disk is described only by its kinetic energy. Herein, the

rotational part of the kinetic energy is calculated with respect to XyZ frame that is fixed to

the disk. The kinetic energy that results from the translation of the disk is
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-2 4

Figure 2.3 Typical rotating rigid disk.

1 1
Ty = > (disk mass ) (linear velocity)? = > Ma (W2 + w?) (2.3)

where my is the mass of the disk and v and w are the translational velocities in y and z

directions. The kinetic energy due to disk rotation is [1]
1 2 2y, 1, 74
TdT‘ =E Id ((l)y"‘(l)z—)‘l'zlpwf ( . )

where wg,wy and w; are the angular velocities of the disk around X,y and z

;srespectively. I, and Iy are the polar moment of inertia and diametral moment of inertia,

respectively. The total kinetic energy is

1 1 1
Ty =35 Mg (0% +w?) + 5 la (w2 + w?) +§Ipw,23 2.5)
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1 1 . )
T, = 2 Ma (% +w?) + Eld(ﬁzz + ﬁ’;coszﬁz)

1. - L
+ 7Ip(®2—2®/3ysm,82+ B smzﬂz) 26

Since the rotations 8, and f,, are small, sin 5, ~ 8, and cos 8, ~ 1, and the higher order

terms can be neglected. Thus [1],

.1 P Ny L
d —Emd(v +W)+§ a(BZ +B3) — I ﬁyﬁf"? p® (2.7)

where %Ip(bz is a constant term and has no effect on the equation of the disk; —IpQByﬂZ

represents the gyroscopic (Coriolis) effects of the disk where () is the rotation speed and

equals to @. The equations of motion of the disk are obtained be applying Lagrange’s

equation to Equation (2.7) [1]:

rd (E)Td> aTd
dt\ ov ov
%(fﬂ)_(’;ﬂ mg 0 0 0](Y 00 0 0](Y
T 0 mgo0 0|} 00 0 of]w
i(f)ﬂ)_aﬂ "0 0 Ig 0])hy 2o 0 0 I [ By 8
dt\ap, 2B,y 0 0 01 B, 00 =l o B,
d <6Td> daT,
[dt\opg,) 0B,
The governing equation of motion for rotating rigid disk is
[Mal{G} + Q[Ga{q} = {Qa} (2.9)

where [My]and [G4] are the mass matrix and the gyroscopic matrix of the disk,
respectively.
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mgy 0 0 0

_ 0 mgy 0 0
[Mg] 0 o I, 0 (2.9.2)

0 0 01

00 0 0]

_loo 0 0
[Gal =g o O I, (2.9.b)

00 —Ipb 0]

Q4 in equation (2.9) represents the forces and moments terms that act on the disk that
result from mass unbalance, skew position of the disk on the shaft, interconnection
forces and other external effects [1]. In an unbalanced disk, the unbalanced forces come
into play because the mass center of the disk is shifted from its geometric center by an

eccentricity of e and a phase angle of §. The unbalance forces in the disk are [1,26]

E, = mge Q% cos(Qt + &) (2.10)
E, = mge Q?sin(Qt + §) (2.11)

Also, the out of balance moments can exist on the shaft. The resulting moments are [1,29]

M, = t(I, — 1) Q2 cos(Qt + y) (2.12)
M, = t(l, — I3) Q*sin(Qt + ) (2.13)

where 1 is the angle between the center line of the rotor and the axis of rotation, and y is a
phase angle. So, the force and moment matrix Q is

( mgeQ%cosd ([ mzeQ?cosd )
J mge Q?sin § mge Q?sin§

(I, — Ig) Q% cosy —1(l, — Iz O siny !Slnﬂt (2.14)

{Qq} = Lcosﬂt + !

= 5 T T

T(l, — Ig) Q*siny (L, — Iqy Q% cosy
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2.4 Bearing element

Mostly, bearings are considered as flexible elements and they are represented in a

mathematical model as springs and dampers as shown in Figure 2.4. The nonlinear

relationship between load and deflection in most categories of bearing makes the analysis

more complex, and to avoid this complexity in rotordynamic analysis one can assume

linear load-deflection relationship of the bearing [1].

C

IV

T

K

Figure 2.4 Rotating shaft supported at its ends by two bearings.

The virtual work of the bearing acting on the shaft is [1]
W = —k,,v6v — k,,,wév — k,,wéw — k,,véw — c,, V6V — c,, WbV
— CzzWOW — ), VOW
Or

W = f,6v + f, 6w

(2.15)

(2.16)

where f,, and f, are the components of the generalized force that acts on the shaft by the

bearing [1]
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M _ Koy  kyw] (v Cov  Cow] (D
{fz}‘_[kw,, kWW] {w}_[cwv Corr {W} (2.17)
Equation (2.17) can be written in form

[Col{ap} + [Kplign} = {Qp} (2.18)

Or, in a general form when the damping and stiffness of a bearing are function of the

shaft speed [1] :

{Qp} = —K(Q{gp} — C(VD{qn} (2.19)

where

(@} = {Z} and {av} = {:,}

2.5 Shaft element

Figure 2.5 shows finite shaft element. The shaft is modeled as a rotating beam element
with distributed mass and stiffness. The element has two nodes located at its ends and
each node has four degrees of freedom; the four degrees of freedom are two translational
displacements in y and z directions and two rotational displacements about y- and z-
axes. Furthermore, the internal displacements of the element are functions of time and the
position along the length of the shaft, and the displacement of any point in the element

can be expressed by the displacements of the end nodes and shape function as [26]

v(x,t)

W(.X, t) \P(.X')
!b’y(x, t)l = [@(x)] {a(®)3 (2.20)
\B,(x, 1))
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{q(t)} is the vector of the time-dependent displacements of the nodes in the finite shaft

element.
q(t) = [vl Wy ﬁy1 Bz1 V2 W, ﬁyz ﬁzz]T (2.21)

The shape functions ( W(x) and ®(x) ) are established by using two different beam

theories, that are Euler-Bernoulli beam theory and Timoshenko beam theory.

Wy
Bw
/A BZZ Vi

ByZ

Figure 2.5 Typical finite shaft element

23



2.5.1 Shape functions based on Euler - Bernoulli beam theory
In Euler-Bernoulli beam theory, shear deformation and rotary inertia are ignored, and the

translational displacements and rotational displacements, as shown in Figure 2.6, are

related by [26]
B, = g—z (2.22)
By =— ?3_1:: (2.23)
y

V(x,t)
Vi V2
> X
y-x plane
> X
Wy w(x,t) Wy
By
By1
z-x plane
\j

z

Figure 2.6 The displacements and the rotations in the two bending planes
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The deflection within the shaft element in y-x plane is defined by the end displacements
and shape functions. To derive the shape functions, one can consider the y-x plane and
represent the lateral displacement v(X,t) by a cubic polynomial with four parameters

because there are four boundary conditions [1,26] :
U(x, t) = CO + Clx + szz + C3x3 (224)

The translation and rotation boundary conditions in y-x plane are:

U(O' t) =" (t) ﬁZ(O' t) = ﬁzl(t)
(2.25)
v(L,t) = v,(t) Bz(L,t) = B (t)
Applying the lateral and the rotational boundary conditions gives

V1 =4, (2.26)
Vo, — V1 = alL + azLZ + a3L3 (227)
a; =B, + 0y (2.28)
BZZ - le = ZazL + 3a3L2 (229)

Solving for C,, C;, C, and C3, and substituting back into Equation (2.24) gives [1,26]

v(x,t) = Ny(x)v1(8) + N2 (x)B21(t) + N3(x)v2(8) + Ny(x)B22(1) (2.30)
where
N1=1—3€2+263 N3=3$2_2€3
(2.31)
Ny = L(§ —28* +¢&?) Ny = L(=§*+¢&%)
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where ¢ is the non-dimensional parameter: & = % Substituting Equation (2.30) into

Equation (2.22) gives [1,26]

B.(x,t) = Ny ()vy (t) + Ny () B1 () + N3 (x)va(£) + Ny(x) B2 (1) (2.32)

where
; 1 NZ =1- 4‘5 + 3&2
N, = Z(_6€ + 652)
(2.33)

. 1 - _ 2
Ny = 7 (6 - 669 o= it

For symmetric shaft, the shape functions for one plane of motion can be used for the

other plane, so the displacement field of the shaft element can be approximated as [26]

-
41
v Ny O 0O N, N;J O 0 N,T|Bn
w Yes(x N, —N N, —N,
| =lonol @@ = [0 &0 0 0 0 |[%] e
B Ny o o N, N3 0o Ni]|w:
IByZ
—,322—

2.5.2 Shape Functions based on Timoshenko Beam theory

Euler - Bernoulli beam theory is a reasonable approximation for a thin beam, but not for a
thick beam which has two important effects: shear deformation and rotary inertia.
Timoshenko beam theory includes shear effect and rotary inertia. The main concept of
the theory is to remove the assumption that the beam cross-section remains perpendicular

to the beam centerline. Moreover, in Timoshenko beam theory, the rotations of the cross-
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section centerline consist of two parts: one is caused by the bending and the other one by

the shear deformation [26], as illustrated in Figure 2.7.

dv
ow
By = “ o T Doz (2.36)

N ovIox

\
>

y=X plane

Figure 2.7 Deformed geometry of an edge of beam under the assumption of Timoshenko

beam theory
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And, the rotation and translation boundary conditions in y-x plane are

d
V(O' t) =V Bz(or t) = ﬁzl = % |x=0 - (Z)xy
(2.37)

ov
v(Lt) = V2 .BZ(L: t) = Bz = a =1 — (ny
The shear angle @,, and the lateral displacement v should be related together, and to

obtain the relationship between them, the moment equilibrium of the beam must be

considered. The bending moments and the internal shearing forces are [1, 25, 26]

ap Jdv
M, = E1=2 Q, = k;AGB, = k,AG (ﬁ - ﬁz> (2.38)

where

I: Second moment of area of the cross-section about the neutral plane
A: Area of the cross-section of the shaft element

G: shear modulus

E: Young’s modulus
kg: Shape factor depending on the shape of the cross-section and the Poisson ratio

For a hollow circular shaft section [1]:

6(1+v)2(1 + u?)?

= 2.39
(7+12v+4v2)(1 + p?)2 +4(5+ 6v + 2v2)pu? (239)

ks

where, 4 = 1;/1, and for a solid shaft [1]:
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6(1+v)?2

= 2.40
S (7+12v + 4v?) (240)
The static equilibrium of the beam in y-x plane can be written as [1, 25, 26]:
0 (. 0B, (xt)
— | El ———— | = —kGA 241
ox < ox sGADxy (2.41)
Substituting Equation (2.35) in Equation (2.41) gives
020y (x,t)  33v(x,t) k,GA
L — ot 2.42)
ax2 T oxd El Doy (x:6) (
Substituting Equation (2.24) in Equation (2.42) to obtain the shear angle @, [1]
6EI r'L? I'L? 33v(x,t)
— - - 7 243

I' is the shear deformation parameter, and it represents the ratio between bending
stiffness and shear stiffness, and & =3L—C is the non-dimensional parameter [12]. Now,

substituting the boundary conditions from Equation (2.37) in Equations (2.24) and (2.35)

and finding the four parameters (Cy, C;, C,, C3), one can get [1,26]

v(x, ) = Neg (0)v1 () + Nz (1) 821 () + Nz () 12(1) + Nea (1) B2 (1) (2.44)

where

1
Ny =——=[1+T —T¢&—3&%+2&3
=yl +T— T - 367 + 269

(2.45)
L 24T _ 44T
141l 2 2

Ny £+
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N3 =1+—F[Ff+352 —28°%]
L
Mo = s[5 6+ + ]

Substituting Equation (2.44) and Equation (2.43) into Equation (2.35) gives [1,26]

By (x,t) = Ney ()11 () + Nyp (B0 () + Npz ()2 (8) + Ny (X) B2 (1) - (2:46)
where
New = Ty L7066 + 647
N,, =m[1—4§+3€2 +T(1-9)]
Ny3 = [6§ — 6§7] (2.47)

LA+1D)

1
Ny =1_|_—F[Ff—25+352]

_ 12EI
" k,GAIL2

The displacement field of the shaft element can be approximated as [26]

_vl

wq

v N1 0 0 N2 Nz 0 0 Nel|Bon

W [Wrim(x) |0 Ny —=Nez 0 0 Nez =Ny 0 ||Bn
Bl = o) @O1= 0 N W 0 0w w0 ||vh] @4

B N, 0 0 N, N O 0 Ny llw2

.Byz

-.822—

30



2.5.3 Energy equations

Herein, the equations of motions are obtained based on Timoshenko beam theory only,
and for Euler-Bernoulli beam theory the same procedure can be applied. The kinetic
energy equation of shaft element is similar to that of (kinetic energy equation of) the rigid

disk, so the total kinetic energy for the shaft element may be written as [29,28]

L

L
1 L1 . . .
Tshare = > fme W? + w?)dx +f Eld(ﬁ§ + ﬁzz) dx — f L QB B dx (2.49)
0
0 0

where m,,l4e, I are the mass per unit length, diametral moment of inertia, and polar
moment of inertia. The total potential energy of the shaft element, including the elastic

bending energy, shear energy and the energy due to a constant axial load P, is [28,29]
B\ | (9By\'
() * (W dx
+1JLkAG( +6w>2+< av>2d
2 0 N [ .By ax ﬁZ ax ] X
N lfLP (c’)v)z N <6W)2 p
2J, [ 0x 0x Jax

Substituting Equation (2.48) in Equation (2.49) and Equation (2.50), one can obtain the

1 L
Usnare =35 | Bl
0

(2.50)

kinetic and the potential energies as functions of the displacements of the end nodes and
spatial shape function. The Lagrange’s equation is utilized here to obtain the equation of

motion for free vibration of the rotating shaft element [25,26].
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([Mr] + [MgD{G} + Q[Gsnar]{q} + ([Kp] + [Ks] + [KrD{q} = {0}

where

{q} is the translational mass matrix :

{q}z{v1 Wy .Byl Bz V2 Wy :8y2 :8z2}T

[M7] is the translational mass matrix :

L

[M7] = j Me [Prim] " [Wrim] dx = j p A[¥rim] " [Prim] dx
0 0

[Mg] is the rotational mass matrix :

L L
[Mg] = f e [Orim]T [Primn] dx = f p A [0Fn] [Brim] dx
0 0

[Gshare] is the gyroscopic matrix :

L

[Gshaft] = f Ipe [(DTim]T[ 0 1

[Kp] is the bending stiffness matrix :

L - Tr .
1K) = [ B1 [Brim] [Grim] s
0

[Ks] 1s the shear stiffness matrix:
L 0 1 T
K61 = [ s [[‘Pﬁm] ] o [%m]l [[‘Pﬂm]
0
0 -1
[KF] is the geometric stiffness matrix due to axial load:

32

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)



L
[Kr] =f P [quim]T[lPTim]dX (2.58)
0

2.5.4 Tapered driveshaft

There are two methods to model a tapered shaft. First method is to model the tapered
shaft with a large number of uniform shaft elements with different diameters, and the
second method is to incorporate the change in the cross-section of the tapered shaft into
the element definition [10]. The later method is adapted here to obtain the element
matrices based on Timoshenko beam theory. In fact, the procedure to construct the
tapered or conical element is exactly same as producing the uniform shaft element, and
the difference is in the kinetic and strain energy where the cross-section area and inertia
terms must be integrated through the length of the element. Also, the shape functions are
exactly the same as in uniform shaft element except that the shear deformation parameter
I" becomes [1]

12 ET
r=————
k GL2A

(2.59)

where I and A are the average moment of inertia and the average area of the cross-
section. For rotating tapered shaft element, the element translational mass matrix, the
rotational inertia matrix, the gyroscopic matrix, the bending stiffness matrix, the shear

stiffness matrix and the geometric stiffness matrix due to axial force, respectively are

[25,26].
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[Mylgp = f 16 (O [¥rim] [gim] dx = f p ACOFrim] [pim] dx
0 0

L L

Ly (X) [@rim] " [@rim] dx = J p A(x) [Drim] " [@rim] dx
0

[MR]rp = f

0

L
(Galre = [ Tpe@rml™ [ o] [@rimldx
0

L
[Kglrp :f El(x) [d)Tim]T[d)Tim] dx
0
L . Tr.
[Kglrp :f El(x) [(DTim] [(DTim] dx
0
ot ; 0 -1 e
[Kslrp = j kGA(x) l[TTim] + [1 0 ][(DTim]] I[TTim]
0

+ [2 _01] [@Tim]l dx

[Krlrp = jo P [‘i’Tim]T[‘i’Tim] dx

2.6 System equations of motion and analysis

(2.60)

2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

The general equation of motion of rotor-bearing system is assembled using Equation

(2.9), Equation (2.18) and Equation (2.51).

[M]{4} + Q[G1{q} + [C]{q} + [K]{q} = [Q]
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where [M], [C], [G], [K], [Q] and {q} are the mass matrix, damping matrix, gyroscopic
matrix, stiffness matrix, the forcing vector and the system displacement vector of the

rotor-bearing system, respectively.

2.6.1 Whirl speeds analysis
The natural frequencies of the system are determined from the homogeneous form of the

general equations of motion (2.67)

[M1{G} + [Cl{g} + Q[G]{q} + [K]{q} = {0} (2.68)
where [M], [C] and [K] are real and symmetric matrices and [G] is a real and skew-

symmetric matrix; Equation (2.68) can be written in form[1,26]

[M*1{x} + [K*1{x} = {0} (2.69)

where the matrix [M*] is a positive definite and real symmetric matrix and [K*] is an

arbitrary real matrix [1,26]

« _ [[M][0] a - [l61+1C] [K] - _ [td}

The solution of Equation (2.69) can be assumed in the form

[{X;}eMt]
() = (£} ott = | (KaJe™| 2.71)
l{ffn}'e%nt

2nx1

Substituting Equation (2.71) into Equation (2.69) yields
(=M K" DX} = MK} (2.72)
where
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-1 -1 [{Xl}ellt] 0
—[MI7[C1+[G]] —[M]7'[K] |{)?2}.e7‘2t| :9 (2.73)

[1] [0] 2nx2n l{)?n}.e}mtJan (0

—[M*]71[K*] is an arbitrary real matrix that gives the eigenvalues and the eigenvectors
of the system. The eigenvalues A happen in pairs of complex conjugates as well as the

eigenvectors {X} and they have the forms [1,26]

A=0+jw, (2.74)

®m=" w={"} @79)

The real part of the eigenvalues, o , represents the damping exponents that are used to
determine the instability region of the driveshaft. The positive values of damping
exponents refer to instability in the driveshaft. In addition, the imaginary parts of the

eigenvalues, wg, is the whirl speeds or the damped natural frequencies of the system.
2.6.2 Campbell Diagram and Critical Speeds

Campbell diagram is a map of natural frequencies of the driveshaft that shows the
variation of the natural frequencies with the rotation speeds; the Campbell diagram is
used to obtain the critical speeds. Figure 2.8 shows a typical Campbell diagram where the
intersections of the natural frequency curve with the forcing frequency lines represent the
critical speeds. In addition, beside the Campbell diagram, there are two other methods to

obtain the critical speeds; one is called the direct method and the other is the iteration
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method. The direct method can be used in case that the bearing coefficients are not
function of the rotation speed, but if the bearing coefficients change with rotation speed

the direct method must be replaced by the iteration method [1].

In the iteration method, the first critical speed is assumed as €, then [M (Q,)], [K (2)],
[C ()] and [G (€Q;)] are determined and the first eigenvalue is calculated. A new guess
of the first critical speed is obtained to calculate the first eigenvalue. The process will
continue until acceptable convergence is obtained. In the direct method, the critical
speeds are taken when one of the natural frequencies at a specific speed is equal to the
forcing frequency [1]. The forcing frequency can be written in terms of rotational speed
as

wr = nQ (2.76)
where n refers to the level of the lateral force on the shaft. For example, in out of balance
n =1 and in a four bladed helicopter rotor n = 4. In Equation (2.67) the force is in form

{0(®)} = {Qy}e’®rt , so the solutions of equation (2.67) will be in form{q(t)} =
{qo}e’®r [1]

(—Q*[n?*[M] +jn[G]] +jQn [C] + [K]) {0} = {Qo} (2.77)
By putting {Q,} = {0} in equation (2.77), one can get [1]

(—Q*[n%[M] + jn[G]] + j@n [C] + [K]) {qo} = {0} (2.78)

The solution of eigenvalue problem Q is in complex form; the real part of Q gives the

critical speed.
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Figure 2.8 Typical Campbell diagram of rotor-bearing system.

2.6.3 Steady-State Synchronous Response

Synchronous force or excitation is defined as the force, whose frequency is similar to
rotor speed. Mostly, the synchronous excitation happens because of the mass unbalance

and disk skew. The equation of motion for the rotor-bearing system is

[M]{G} + Q[G1{q} + [CI{q} + [K]{q} = {Q(®)} (2.79)
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where {Q(t)} represents the resulting forces and moments of the mass unbalance and the

disk skew [1]

mge Q% cos(6 + 0t)
mge Q2 sin(8 + 0t)

QI =120, = 1) 0 cos(y + 20) (2.80)
\z(, — Iz Q% sin(y + 0t))
( mgeeld
- jé
mge e lejm | — ER(QZ{bo}ejm) (2.81)

] S
® mk” | Clore — laiyT " |

k (ka - Idk)T el¥ }
where R represents the real solution part, and 22{b,} represents the force and moment
vector that is acting at the node because of the mass unbalance and the disk skew. The
steady-state solution can be assumed as [1]

@®} = R(22{go}e/™) (2.82)
where {qo} is a complex vector. Substituting Equation (2.82) and its derivatives into

Equation (2.79), one can get [1]

{q0} = [([K] — @*[M]) +j Q (Q[G] + [CD]1Q*{b,} (2.83)

2.7 Numerical Examples

In this section, examples on dynamic analysis of rotor-bearing system are provided. A
MATLAB program was written to analyze a rotor-bearing system; the program is able to
give the natural frequencies at any speed of the rotor, mode shapes, Campbell diagram,

and critical speeds and unbalance response of the rotor-bearing system.
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In Figure 2.9, a shaft, with 1.5 m long and 0.05 m diameter, is under study. Two disks are
keyed to the shaft at 0.5 m and 1 m from the left end; the first disk from the left has
diameter of 0.28 m and thickness of 0.07 m while the second disk has diameter of 0.35 m
and thickness of 0.07 m. Also, there are two bearings at each end. The shaft is modeled
be six elements with equal length. The meshing starts form the left side of the shaft, so
the first disk from the left side coincides with node 3 while the second disk coincides
with the node 5. Material properties of the rotor and the disk are: E =211 GPa; G = 81.2

GPa; Density = 7810 Kg/m’.

a) Case 1 : Isotropic bearings : K,y =K,,= IMN/m

b) Case 2: Anisotropic bearings: K,y = IMN/m; K,,= 0.8MN/m

Figure 2.9 The rotor system configuration with two bearings and two disks.

In case 1, stiffness and inertia properties are identical in y-x and z-x planes. As a result,
when the rotor does not rotate the natural frequencies of the rotor happen in pairs as it is
shown in Table 2.1. However, when the rotor starts rotating, the pairs of the natural

frequencies start to separate due to the gyroscopic effect. Figure 2.10 shows the Campbell
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diagram of the case 1, and one can see the separation of the natural frequencies while the

spinning speed increases.

Table 2.1 Eigenvalues and natural frequencies of the rotor supported by isotropic

bearings at two different speeds (case 1).

0 (rpm) 4000 (rpm)
Eigenvalues Natural frequency Eigenvalues Natural frequency
(rad/s) o, (Hz) (rad/s) o, (Hz)
0+85.67i 13.64 0+84.521 13.46
0+85.67i 13.64 0+86.881 13.83
0£2721i 43.31 0+249.811 39.78
0£2721i 43.31 0+£291.891 46.48
0+716.51 114.09 0£599.78 i 95.51
0+716.51 114.09 0+826.77 1 131.65

Table 2.2 The first seven critical speeds of the rotor supported by isotropic bearings (case

1.

Critical speeds ( rpm) 816 821 2468 2729 | 5376 8835 9449

In addition, Campbell diagram can be used to find the critical speeds; the first four
critical speeds from the Campbell diagram are almost same as those were calculated
using the direct method and they are shown in Table 2.2. Furthermore, the mode shapes

of the rotor at 4000 rpm are illustrated in Figure 2.11 and because the stiffness and the
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inertia are alike in y-x and z-x planes, the orbits in the mode shapes at any point along the

rotor take circular shape.

Natural frequencies (H=z)

W

=
N

| | | | | | | |
0 S0 1000 100 2000 2500 3000 3500 4000 4500
Rotor spin speed (rev/min)

Figure 2.10 The Campbell diagram of the rotor system for isotropic bearings (case 1).
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Nt req = 0 7285z Nt Feq = 46.9051Hz.

D (g

Figure 2.11 The mode shape of the rotor at 4000 rpm supported by isotropic bearings

(case 1).

In case 2, the bearings on both the ends are anisotropic bearings. At 0 rpm the natural
frequencies do not happen in pairs as in case 1 because stiffnesses in y and z directions
are not identical any more. Table 2.3 shows the natural frequencies of case 2 at 0 rpm and
4000 rpm. Figure 2.12 illustrates the Campbell diagram of the case 2; even though that

the natural frequencies at 0 rpm do not happen in pairs, one can see on the Campbell
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diagram that the separation between the natural frequencies still happen as the rotation

speed increases. In addition, under the effect of the anisotropic bearings, in Figure 2.13

the mode shapes form an elliptical orbit rather than a circular orbit as in case 1. Table 2.4

illustrates the critical speeds of the rotor system in case 2.

Table 2.3 Eigenvalues and natural frequencies of the rotor supported by anisotropic

bearings at two different speeds (case 2).

0 (rpm) 4000 (rpm)
Eigenvalues Natural frequency Eigenvalues Natural frequency
(rad/s) o, (Hz) (rad/s) o, (Hz)
0+81.801 13.03 0+81.481i 12.97
0+85.761 13.66 0+£8596i 13.83
0+£252.341 40.18 0£237.791 37.86
0+£271.891 43.29 0+284.54 45.31
0+£679.221 108.16 0+583.111 92.85

Table 2.4 The first seven critical speeds of the rotor supported by anisotropic bearings

(case 2).

Critical speeds ( rpm)

781

819

2348

2663 | 5258 | 8573 9325
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Figure 2.12 The Campbell diagram of the rotor system supported by anisotropic bearings
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(case 2).
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Figure 2.13: The mode shape of the rotor system supported by anisotropic bearings (case

2).

In the following example, the steady-state response of the rotor-bearing system of the
previous example is presented. The bearing’s properties are taken as Ky, = K, =
0.8MN/m and Cy, = C,,= 80 Ns/m, and the out of balance on the left disk is 0.001 Kg.m.
The response in y and z directions of nodes 3 and 5 are shown in Figure 2.14 and Figure
2.15. The responses in y and z directions are coincident as it is shown on both the figures;

this happens because of the equality of the stiffness in y and z directions. So, for any
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nodes along the rotor the responses in y and z directions are equal. Also, the comparison
between the responses at node 3 and node 5 in y direction is illustrated in Figure 2.16.
The maximum values of the response of both the nodes happen at the same spinning
speeds which are 792 rpm and 2561 rpm. And, by looking into the Campbell diagram in
Figure 2.17, one can find that the previous spinning speeds are the second and the fourth

critical speeds of the rotor.
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Figure 2.14: Steady-state response of the rotor-bearing system at node 3 in y and z

directions case 1 (isotropic bearings)
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Figure 2.15: Steady-state response of the rotor-bearing system at node 5 in y and z

directions for case 1 (isotropic bearings)
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Figure 2.16: Steady-state response of the rotor-bearing system at node 3 and node 5 iny

direction for case 1 (isotropic bearings)
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Figure 2.17 Campbell diagram of the rotor system supported by isotropic bearings
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In the next example, an overhung rotor that is 1.5 m long and with 50 mm diameter is
shown in Figure 2.18. The rotor has at its right end a disk with 350 mm diameter and 70
mm thickness. Also, there are two bearings; one is located at left end of the rotor and the
other is located at 1 m from left end. Six Timoshenko shaft elements with equal lengths
are used here. The natural frequencies of the rotor at 0 rpm and 4000 rpm under the effect
of an axial load are determined. Bearing properties are: K,y = K,, = 10 MN/m. Material

properties of the rotor and the disk are : E =211 GPa; G = 81.2 GPa.

B g
0,0 0,0

Force
FEEE R
00 ()

Figure 2.18 The configuration of the overhung rotor with one disk and two bearings

Table 2.5 illustrates the natural frequencies under the effect of the axial load. It is clear
from Table 2.5 that the tensile force increases the natural frequencies while the

compressive load decreases the natural frequencies.

50



Table 2.5 The natural frequencies in Hz under the effect of different tensile and

compression axial loads

Speed (rpm) Axial Load
0 KN 10 KN -10 KN 100 KN -100 KN
14.35 14.67 14.02 17.23 10.48
14.35 14.67 14.02 17.23 10.48
100.38 100.75 100.01 103.90 100.75
0 100.38 100.75 100.01 103.90 100.75
132.17 132.42 131.92 134.67 132.42
132.17 132.42 131.92 134.67 132.42
12.13 12.44 11.80 14.99 8.32
16.54 16.84 16.22 19.28 12.85
4000 90.08 90.21 89.95 91.34 88.79
100.94 101.34 100.54 104.75 96.76
103.09 103.55 102.63 107.46 98.33
186.88 187.14 186.61 189.48 184.19

In the last numerical example, a stepped shaft-disk system is shown in Figure 2.19. Two
different cases are presented in this example to determine the natural frequencies. Table
2.6 gives the properties of the stepped shaft-disk system for the two cases. In the first

case the length L, and the diameters d; and d, are fixed, while the length L, changes with

51




respect to the length L;. Table 2.7 illustrates the natural frequencies of the stepped shaft
with different L,. Clearly, the natural frequencies increase with decreasing L,. In the
second case, the lengths L; and L, and the diameter d, are fixed, while the diameter d,
changes with respect to the diameter d;. The mass, the polar moment of inertia, and the
diametral moment of inertia of the disk are calculated for the first d, and then used for the
other cases of d,. Table 2.8 shows the natural frequencies when d; is changed; reducing

the diameter d, decreases the natural frequencies.

L4, dq Lo, do
|
[
(S
Figure 2.19 The stepped shaft-disk system
Table 2.6 The properties of the stepped shaft-disk system
Disk
Thickness =0.01 m Outer Diameter = 0.1 m
Bearings
K,y = 10° N/m K,, = 10° N/m
Case 1
Length, L; =0.06 m Diameter, d; = 0.01 m Diameter, d, = 0.005 m
Case 2
Diameter, d; = 0.01 m Length, L; =0.06 m Length, L, =0.06 m
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Table 2.7 The natural frequencies in Hz of the stepped shaft with different lengths L2

Speed L,=L, L,=08L, |L,=06L, |L,=04L,
(rpm)
592.5 714.4 882.6 1131.3
592.5 714.4 882.6 1131.3
1688.5 1978.4 2408.2 3018.9
0 1688.5 1978.4 2408.2 3018.9
4296 4654.8 5097.3 6016.4
4296 4654.8 5097.3 6016.4
571.2 686.8 846.6 1085.8
613.8 7425 919.5 1178.4
4000 1651 1945.9 2383.6 3004.4
1729.1 2013.6 2434.8 3034.7
4293 .4 4652.5 5094.6 6012.8
4298.8 4657.2 5100.1 6020.2
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Table 2.8: The natural frequencies in Hz of the stepped shaft with different diameters d.

Speed (rpm) d, =0.8d, d, =0.6d; d, =0.4d, d»=0.2d,
1156.2 792.8 401.6 108
1156.2 792.8 401.6 108
3178.3 2248.6 1140.2 300.7
0 3178.3 2248.6 1140.2 300.7
5315 4491.8 4158 2598.4
5315 4491.8 4158 2598.4
1143.9 774.5 377.7 82.1
1168.4 811 425.8 135.8
4000 3149.9 2211.6 1104.2 272.8
3207 2287.6 1181.1 348.2
5299.2 4486.6 4156.4 2597.8
5331.4 4497.3 4159.8 2599

2.8 Summary

In this chapter, Euler-Bernoulli beam theory and Timoshenko beam theory were used to
develop finite element models for a conventional metal driveshaft. The effect of axial
load is included in both models. Also, tapered driveshaft is modeled based on
Timoshenko beam theory. Numerical examples are given to perform rotordynamic
analysis and to obtain the natural frequencies and critical speeds of conventional metal

driveshaft.
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Chapter 3
Rotordynamic Analysis of Uniform Composite Shaft Using Finite

Element Method

3.1 Introduction

Advanced composite materials are increasingly being utilized in a large scale in
mechanical and aerospace applications such as automotive driveshaft and helicopter tail
rotors. Advanced composite materials improve substantially the rotor-dynamic
characteristics of a shaft in terms of critical speeds, bending natural frequencies and
unbalance response. Hence, the composite shaft has all the potentials to replace the
metallic shaft in such applications. In this chapter, the vibration analysis of composite
shaft-disk system is conducted using the conventional finite element formulation. A
composite finite element is developed for this purpose. The strain energy and the kinetic
energy of the composite rotor system are determined to obtain the governing equations of
motion of the system using the Lagrange’s equations. The first-order shear deformable
beam theory is used to establish the strain energy of the composite shaft system, while the
kinetic energy is obtained by considering translational and rotational motions of a moving
coordinate system that is attached to the cross-section of the shaft. In this model, the
Timoshenko beam theory is adopted to include the effects of shear deformation and
rotary inertia. In addition, the effects of gyroscopic forces, axial load, and coupling effect

due to the lamination of composite layers are included. A conventional beam finite
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element formulation with two end nodes and four degrees of freedom per each node is
used to obtain the mass matrix, the gyroscopic matrix and the stiffness matrix of the
composite rotor system in order to perform the vibration analysis. Using numerical
examples the present model is validated in comparison with the results available in the
literature. Rotor systems with stepped shafts are studied using the developed composite
finite element. The critical speeds, natural frequencies, mode shapes, Campbell diagram

and unbalance response of the stepped composite shaft-disk system are determined.

3.2 Stress - strain relations for a composite material layer

Figure 3.1 illustrates a single lamina deformed into a uniform cylinder where the angle
represents the angle between fiber orientation in the lamina and x-axis in cylindrical
coordinate system (X, 0, r).The material coordinate of single lamina is depicted in Figure
3.2 where the axes 1 and 2 are the principal material directions. The stress-strain relations

for a lamina in the principal material directions can be expressed as [20]:

_0'11_ _Qll QlZ Q13 0 O O 1 ‘611‘
022 Qiz Q22 Q3 0 0 0 €22
033 Qiz Q23 Q33 0 0 0 €33
T3]0 0 0 Qu O 0 |[|rs G.1)
30 0 0 0 Qs 0 ||V
(715 Y12
2o 0 0 0 0 Qe *
The above equation may be written as:
[0123] = [Q][€123] (3.2)
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where [Q] is the stiffness matrix of a single lamina, and it is a function of elastic moduli,

shear moduli and the Poisson’s ratio values of the lamina.

3,6
A

€

Figure 3.1 Single composite material lamina deformed into a uniform cylinder.
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—

Figure 3.2 Single layer of composite material in the principal material coordinates.

To determine the stress-strain relations in cylindrical coordinate system, transformation
from the principal material coordinate system (1, 2, 3) to cylindrical coordinate system
(x, 0, r) should be done. The relation between the stresses in cylindrical coordinate

system (X, 0, r) and principal material coordinate system (1, 2, 3) is [20]

O m?> n? 0 0 0 2mn 0117
Oo [ n2 m? 0 0 0 -2mn ] 022
or|l _ | 0 0 1.0 o0 0 | |0o33
Tor| | 0 0 0 m —n 0 T23 (3.3)
Tor 0 0 0 n m 0 T13
N —mn mn 0 0 0 m?2—n2%llr,]

where 1) is the fiber orientation angle, m = cos 1, and n = sin 1. Equation (3.3) can be

abbreviated as

[0x0r] = [T1][0125] (3.4)

Similarly, one can get the relation between the strains in both the coordinate systems:
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Exx [ m? n? 0 0 0
€90 n? m2 0 0 0 -—mn €22
€rr | _ 0 0 1 0 0 0 | €33
Yor | 0 0 0 m -n 0 Y23 (3-5)
Yr [ 0 O 0 n m 0 J Y13
[V x0 ] —2mn 2mn 0 0 0 m?—n?lly,]
Equation (3.5) can be abbreviated as
[€xor] = [T2][€123] (3.6)

Using Equations (3.1) - (3.6) with some mathematical manipulations, one can write the

stress-strain relation in cylindrical coordinate system [20] as:

G Q11 Q12 Qiz 0 0 Q] €
XX — — — — XX
Ogg 912 922 Q23 0 0 QZ6 €go
Orr | _ Qiz Q23 Q33 0 0 Q) |Er 3.7)
Tor 0 0 0 Qu Qu O Vor '
Far 0 0 0 Q4 Qss O Var
LT x0 A A = = LY x6 -
Q16 Q26 Q36 0 0 Qg
The above equation can be written in the following form
[UxBr] = [Q] [exer] (38)

where [Q] is the transformed stiffness matrix of the layer and can be calculated by the

following equation [20] :

[Q] = [TL][QI[T2] ™ (3.9)
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3.1 Strain-displacement relations
Timoshenko beam theory is considered here to study the transverse vibration of the
uniform composite shaft. So, the displacement fields of the composite shaft are assumed

[20,22] as

U (x,y,2,t) = zf,(x,t) — yB(x,t) = (rsin)B,(x,t) — (rcos 6)B,(x,t)  (3.10)

uy(x,y,z,t) = v(x,t) (3.11)

u,(x,y,z,t) = w(x,t) (3.12)
where y =rcosf and z = rsin 6. uy, u,, and u, are the displacements of any point of
the composite shaft in x, y and z directions, and v and w are the displacements of a point
on the reference axis of the shaft in y and z directions and S, and 8, are the rotation

angles of the cross-section about y-axis and z-axis. The strains can be determined using

Equations (3.10) - (3.12) [20] as

ou, ap,y ap,
= = — 3.13
=5 T%%x Y ox (3.13)
ou (3.14)
y
Eyy = W =0
ou, (3.15)
€zz = 0z =0
du, du, (3.16)
Yve=5, T, =0
ou, OJu, ow (3.17)

N P P
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ou, Ou, ov (3.18)
Vxy = dy +W— _ﬁz-l'a

The strain components in cylindrical coordinate system (X, 6, r) can be written in terms of

the strains in the Cartesian coordinate system (X, y, z) [20] as

F Exx 1 O 0 0 0 o] Exx
€96 o h* g* -—2gh 0 o |5
€rr — 0 gz hz Zgh 0 0 €zz (3'19)
Yor 0 —gh gh g?—h?> 0 01 |Vyz
Vr 0 o 0 0 h g Vxz
LY x0 - 0 0 o 0 g —hl LVxy

where g = cos @ and h = sin . Substituting Equations (3.13) — (3.18) into Equation

(3.19), one can get [20]

€Exy =T (5in O) % —1(cos ) aa'iz (3.20)

€gg — 0 (321)

€ =0 (3.22)

Yor =0 (3.23)
] ow av

Yar = (sinB) (E + ,By> + (cos 8) (—BZ + a) (3.24)
ow ] dv

Yo = (cos 8) (E + ,By) — (sin 6) (—ﬁz + &> (3.25)

Considering Equations (3.21)-(3.23), one can write Equation (3.7) as

61



_gll
QlZ

= Q13

0
0

—Ql6

0 Q16_

8 926 €Exx
0 Q36| |Ver (3.26)
—45 0 Yxo
Oss 0

O Q66-

In Timoshenko beam theory, the shear correction factor kg is used to adjust the stress

state. Introducing the shear correction factor kg and choosing its value can be a complex

issue especially for structure such as tapered composite shaft. And, because the objective

of this thesis is to develop finite element models for tapered composite shaft, no attention

is given for the shear correction factor k;. However, the way that, the correction factor k

is introduced and calculated in this thesis for uniform and tapered composite shafts, is

based on [20,27]. Therefore, the Equation (3.26) can be written as

3.2 Kinetic and strain energy expressions

|

6X'X'
Yar (3.27)

Yxo

The kinetic energy of the composite shaft is analogous to that of the isotropic shaft, so

equation (2.49) is used to obtain:

L

1 o 1

Teomp =3 jmc % +w?)dx + )
0

L

0
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L

(3.28)
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where mg,lgc,and [ are the mass per unit length, diametral mass moment of inertia, and

polar mass moment of inertia.

n
me =1 pu(i — 12 (329)
s=1
o (3.30)
lye = ZZ ps(roél's - ri‘;)
s=1
(3.31)

n
T
Ipc = Ez ps(rozlvs - rit‘)
s=1

where n is the number of the layers in the laminate, and 7,5 and r;; are the outer radius
and inner radius of the s-th layer; ps is the material density of the s-th layer. The strain

energy of the composite shaft can be written as:

Ups = %fff [0x0r]" [€xor]dV
14

1
= Efff [O-xxexx + Ogp€pe + Orr€pr + TorYor + TorVxr
|4

+ Txe)/xe]dV
(3.32)
Considering Equation (3.20) — (3.25), Equation (3.32) can be reduced to
1 L
Ups = Ef J [Oxx€xx + TarVar + TxaVxoldA | dx (3.33)
0
A
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Substituting Equation (3.20), Equation (3.24), and Equation (3.25) into Equation (3.33),

one can obtain the strain energy [20] as

1t 0B
Ugs = Ef [f [axx(r sin@ a_xy
0
A

zZ

—rcos6 o ) + Tr (By SO
ow dav v ]
+ asm 0+ F cosO — f,co080) + 1,9 (—a sinf + B,sinf

ow
+ By cos6 + a—cosQ) ] dA|dx
x (3.34)

From Equation (3.34), one can define the stress couples and the stress resultants [20] as:

M, = jA Oxyx T SiN6 dA (3.35)
M, = —L OxxT COS O dA (3.36)
o = JA Tyr SING dA (3.37)
2 = fA Tyr €OS 0 dA (3.38)
Q% = L 7,0 5in 0 dA (3.39)
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QJ(CZG) = f T, COs 0 dA (3.40)
A

The forces and moments on the cross-section of the composite shaft are illustrated in
Figure 3.3. Using Equations (3.35) — (3.40) in Equation (3.34), the strain energy can be

written [20] as

P e e (op) o e o

Where Q,, and @, are the shear force in y and z directions, respectively [20].

Q, = (2) Q(l) (3.42)

Q, = (1) + Q(Z) (3.43)

Figure 3.3 The forces and moments on the cross-section of the composite shaft
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Considering Equation (3.27), Equation (3.20), Equation (3.24), and Equation (3.25), one

can write the stress couples and the stress resultant in Equations (3.35) — (3.40) as

2T T, B B
My = f f (Q11€xx + ksQ16¥xp) T2sin6 dr df
0 T

2 7o 0
=.[; fri [Qu%r%ine

_aB o
— Q11 a—xzr3 cos 0 — ksQq12 asme

+ ksQ167%B,sin +ks Q14B,1r%c0s6

_ ow
+ ko Q12 T cosO|sin6 dr dé

(3.44)
2T Ty _ N
M, = _f f (Qllexx + st16yx9) rZcos6 dr d6
0 ri
2 7T, _ aﬁ
= — Q1 —>73sind
jo Jri [ 1 ox
~ a Z 3 — 2617 .
— Q11 Ix r°cosf — kSQlGT aslne
+ ksQ167°B,sind +ks Q16,72 cos0
- ow
+ k,Qq67 M cosf| cosO dr db (3.45)

66



2w To

oW = f f ko[ G16€re + Qesyaolr sind dr df

T

2w To

_ j‘ f y v
dx 0x
0 r;
aw
+ rB,sin8 + rf,cos6 + racose sin6 dr d6 (3.46)
2w To
(2) j f ks[Q16Exx + QecVxolr cosO dr dB
0 r;
2w To aﬁ oy
= j f kg [le(rzsine—y — 12 cos6 ﬁz) + Qg (—1sing —
dx 0x
aw
+ rB,sin8 + rf,cos6 + racose cosO dr do (3.47)
2w To
(1) f f ksQssVy, Sin@ r dr dé
0 r;
2 To
_ dav
=f f ksQss [r cos@a
0 r;
. ow . .
—1rf,cos 6 + B, sing + rasme sin@ dr d6 (3.48)
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2w To

,(52) f f QssVyr kscosO 1 dr do

Ti

2w To

_ dv
=f fstss [r cosHa—x

0 r

. w
— 1B, cos 6 + B, sind + rasme] cos6 dr d6 (3.49)

After performing the integration in Equations (3.44) — (3.49), the stress couples and the

stress resultants can be written [20] as:

0By

M = D11 a + k BlG(ﬁZ ax) (3.50)
d 1 3.51
M, = Dy Pe sk B16( +/3y) G3D)
ax 2
1 3B, v (3.52)
Q(l) = Bl6k x + ksAge (ﬁ a)
1 3B ow (3.53)
Q(Z) = - EksBma_xZ + ksAge(By + a)
ow (3.54)
o = Assks(By +5)
(3.55)

@ = Agsks(—B, + )
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where

n
_IN"5 (2 2
Ags = EZ Qes(Tos — Tis) (3.56)
s=1
n
_IN"5 (2 2
Ass = Ez Qss(75s — 1i5) (3.57)
s=1
n
2 A (+3 3
Bis =57 ) Qulris =) (3.58)
s=1
n
TN 5 (4 4
Dy; = ZZ Q11(Tos — 1) (3.59)
s=1

The strain energy Ugs in Equation (3.41) represents the strain energy of the composite
shaft that results from the bending moment and the shear force. In the case of the
composite shaft under a constant axial force, the total strain energy of the composite shaft
is

Ucomp=Ups + Ur (3.60)
where U is the work done on the composite shaft due to a constant axial force P and can

be written [9] as

U, = %LLP[(Z—DZ + (Z—:)Z]dx (3.61)
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3.3 Conventional-Hermitian finite element formulation

In chapter 2, Hermitian finite element formulation was used to develop the equations of
motion of the metal shaft. In this section, Hermitian finite element is used again but to
develop a model for uniform composite shaft. The same procedure that was used to
develop the finite element model for the metal shaft in chapter 2 is followed here to build
up the finite element model for the uniform composite shaft. Timoshenko beam theory is
considered to include the shear deformation; Figure 3.4 shows the relation between the
rotation of cross-section and the shear deformation angle in y-x plane. The element that is
used for the uniform composite shaft has two nodes located at its ends, and each node has

four degrees of freedom: two translations (v, w) and two rotations (8, B,). The relations

between the rotations and the shear angles in y-x plane and z-x plane are

v v
Pe=gr ~ Yoy =3~ Oy (3.62)
ow ow
ﬁy=_a+yx2=_a+®xz (3.63)

where @, and @, are the shear angles in z-x plane and y-x plane, respectively. To
derive the shape functions, one can consider the y-x plane and represent the lateral

displacement v(x, t) by a cubic polynomial with four parameters:

v(x,t) = ag + a;x + ax? + azx? (3.64)
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Figure 3.4 Deformed geometry of an edge of beam under the assumption of Timoshenko

Beam theory

The rotation and translation boundary conditions in y-x plane are:

v(0,t) =1, (3.65)

v(L,t) = v, (3.66)

d 3.67

B(0.0) = i1 = 5- Leco = By (0,) een
d 3.68

Bz(L,t) = By = % lx=1 — (ny(]-" t) ( )

The shear angle @, and the lateral displacement v should be related together, and to

obtain the relationship between them, the static equilibrium of the beam must be

considered. The equilibrium of the beam in y-x plane can be written as:
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ox Mzl = =0y (3.69)

a1 ap, 1 ow
axlPrigy T EksBm(a + By) ]

v 1 2B,y dv
A55ks <_.Bz + &) - EBl6ks E + ksA66 (lBZ - a_x>
(3.70)

Using Equation (3.62) in Equation (3.70), one can get

D 0 6(61)@) (1kB)6(GW)Bkaﬁy
Hox\ox\ox % 275716 ) 9x \ 0x 1675 9x

= —ks(Ags + As5) Dxy

(3.71)
Now, using Equation (3.63) in Equation (3.71), one can get
Dni(i@_v_@ >>_(1k B) 2 (2) - iy & (-2 40,
dx\ox\ox % 27°71) ax \ox % ax \ ax @ T
= —ks(Age + Ass)Dyy (3.72)

The shear angles in y-x plane and in z-x plane are constants with axial coordinate x, so

azq)xy _ a(sz

= 3.73
0x?2 0x 0 ( )

Using Equation (3.73) into Equation (3.72), one can obtain the shear angle as:

Di; %v 1 0w
- +okeBrosy
kS(ASS + A66)) 0x3 2 axz

Doy = (3.74)
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02w

Y has a small influence on the shear angle @, and can be neglected for simplification,

so the shear angle can be written as

Dy, 3y I? Teomp
__ __ 3.75
Oy = T (Ass + Aagy) 007 2 G-73)
where
12D,

I = 3.76
COMP ke (Ass + Age) L2 (3.76)

[comp 1s the shear deformation parameter for composite shaft, and it represents the ratio
between bending stiffness and shear stiffness. Applying the lateral and rotational

boundary conditions gives

v =a, (3.77)
Uz - Ul = a1L + azLZ + a3L3 (378)
I2 T (3.79)
ar = B21+®xy = le_% as
B, —B,, = 2a,L + 3asL? (3.80)

Substituting Equation (3.79) in Equation (3.78), one can get

I
v, — vy = LB, + ayl? + (1 — cozmp> asL3 (3.81)
From Equation (3.80)

_ _ 2
ﬁZZ BzzlL 3('131' (382)

a2:

Substituting Equation (3.82) in Equation (3.81) gives
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1

as = —m [2(772 - 171) - L(,le + BZZ)] (3-83)

Then, substituting Equation (3.83) in Equation (3.79) and Equation (3.82) to obtain a,and
a, as

1—‘comp

2L(1 + Teomp)

a; = P, + [2(v; —v1) = L(Bz1 + B22)] (3.84)

3

e [2(vy —vy) = LBy + By 3.85
2L2(1+Fcomp)[ (v —v1) = L(By1 + B22)] (3.85)

1
a, = i(ﬁzz —B1) +

Substituting Equations (3.83)-(3.85) and Equation (3.77) in Equation (3.64) to obtain the

lateral displacement v(Xx,t) as:

v(x,t) = Npp (0)v1(8) + Nz () B21(£) + Nz (x)v2(t) + Nea () B2(1) (3.86)
where
Ntl = HT [1 + 1_‘Comp - l—‘compf - 352 + 253] (387)
comp
L 2+ Teom 4+ Toomp) &2
Ve = 15 [( gmels 2 om: +€3] (3.88)
comp
Nt3 = 1+ Fcomp [1_‘comp§T + 352 - 253] (389)
L l—‘com l—‘com —2 z
New = 1777 [— 2p2+( pz )¢ +53I (3.90)
comp
X
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Substituting Equation (3.83) in Equation (3.75), then substituting Equation (3.75) and

Equation (3.86) into Equation (3.62), one can obtain f,(x, t) as:

B (x,t) = Npy (X)v1(£) + Npa (X) B4 () + Npz (x)v2(t) + Npg (%) B2(1)

where

6

Ny :L(1+—Fcomp)[€2_f]

Ny, = 1-45+ 3&;2 + l—‘comp(l - S;)]

1+ Fcomp [
6
No,=——[-&2

Nps = ———[362 — 26 + Toompé]
r4 1+ Fcornp comp

R

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

To obtain w(x, t) and B, (x,t), the previous procedure for obtaining v(x,t) and f,(x,t)

can be repeated again. Consequently, the internal displacements and rotations of the

composite element can be expressed in terms of the displacements and rotations of the

end points and the shape functions as

-y
w1
v Ny 0 0 N2 Nz 0 0 Nel|Br
Wl |0 Ny —Np 0 0 Ng —Negg 0 [|Bn
By]=l 0 =N,y N,y 0 0 —N,3 N, 0 [|72
Bl INy O 0 NoNs 0 0 N,l|lwe
Byz
—BZZ—
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Substituting Equation (3.98) into Equation (3.28) the kinetic energy expression and into
Equation (3.60) the strain energy expression and then applying the Lagrange’s equations

the equations of motion of the composite shaft element can be obtained.

Lagrange’s equation :

d (GL) dL _ (3.99)
dt\aq/ odq
where
L= Teomp — (Ugs + Up) (3.100)

q is the vector of generalized coordinates, and Q is the vector of generalized forces.
Since the composite shaft element has two nodes and each node has four degrees of
freedom, there are eight generalized co-ordinates. And, the generalized co-ordinates for
the shaft element are
{q} = {171 wi Byr Bz vz wy By2 ﬁzZ}T (3.101)
After applying Lagrange’s equation, the equations of motion can be written as
([Mrc] + [MpeD{G} + Q[ Gonare ] {43 + ([Kpel + [Ksnel + [Krcl + [K1){g)
= {0} (3.102)

where

L
[Mrc] = f m [N [NeJdx (3.103)
0
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L
[Mec] = f Ly [N;]7[N, ]dx (3.104)
0

L
0 1
[Gshate.c] = f Ip[N:]T _1 o] [N,] dx (3.105)
0
L
[Kpc] = f D1 [N7]T[N;]dx (3.106)
0
L
L* , .
[Konel = [ g TeompKs(Ass+Ace) [NE"TTINEdx (3.107)
0
L2
[Ke] = [ 57 Teompts Bas (N1 INE] + TN VDD el (3.108)
0
L
[Krc] = j PIN{JT[N{]dx (3.109)
0
— Ntl 0 0 NtZ Nt3 0 0 Nt4-
[Nd =14 Ny =Ny 0 0 Ng —Ne 0 (3.110)
0 -N, N, O 0 -— N, O

N..| = rl T2 r3 r4 111

[ r] er 0 0 er Nr3 0 0 Nr4 (3 )

More details on how to obtain Equations (3.103)-(3.111) are given in Appendix A.

3.4 Numerical examples
To validate the conventional-Hermitian finite element model of the uniform composite
shaft, a composite hollow shaft made of boron/epoxy lamina is considered for the

vibration analysis. The configuration geometry and the properties of the composite
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material are given in Table 3.1 and Table 3.2. A MATLAB® program has been written to
perform the vibration analysis of the composite shaft. The first critical speed of the
boron/epoxy shaft is calculated and compared with those given in the reference papers.
The results of the first critical speed are presented in Table 3.3 and from this table a good
agreement between the results that are based on the present model and that were
predicted using beam theories is observed. In this example, the shaft is modeled by nine
elements of equal length using the conventional-Hermitian finite element model while in
the model of Ref. [20] the shaft was modeled using Lagrangian finite element model by
20 finite elements of equal length. In addition, in Ref. [22] the composite shaft was
modeled using a hierarchical composite finite element and one element with ten

hierarchical terms was enough for convergence.

Moreover, in this example the wall thickness of the composite shaft is relatively small, so
the composite shaft can be considered as a shell structure which is advanced than a beam
structure. Therefore, it can be observed from Table 3.3 that the first critical speed
obtained using Sander’s shell theory [16] is near to the first critical speed obtained
experimentally [12] than those first critical speeds that were calculated using models
based on beam theories. The first five critical speeds of the composite shaft are given in
Table 3.4. The Campbell diagram of the boron/epoxy shaft is presented in Figure 3.5, and
it is clear that the natural frequencies are almost constant for all the rotor spin speeds and
the difference between the frequencies of the forward whirl and the backward whirl is
very small. Figure 3.6 shows the mode shapes of the composite shaft at 5000 rpm, and

78



one can see that the first and second modes are similar and the third and fourth are similar
modes and the fifth and sixth modes also are similar; this indicates that the gyroscopic

effect in this example is not effective even for high frequencies.

Table 3.1 The dimensions of the composite shaft and the properties of the bearing [20].

Composite Shaft
Length, Mean Wall thickness, | Lay-up from | Shear correction
[=2.47m | Diameter, D | t=1.321 mm | inside factor, ks=0.503
=12.69 cm [90/45/-45/06/90]
Bearing
Kyy= 1740 GN/m Kz,= 1740 GN/m

Table 3.2 Properties of the composite materials [20]

Properties Boron-epoxy Graphite-epoxy
E1; (GPa) 211 139

E»» (GPa) 24 11

G1,=G3 (GPa) 6.9 6.05

G23(GPa) 6.9 3.78

Vi2 0.36 0.313

Density (Kg/m®) 1967 1578
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Table 3.3 The first critical speed of the boron-epoxy composite shaft.

First critical

Theory or Method
speed (rpm)
Zinberg and Measured experimentally 6000
Symonds [12] Equivalent Modulus Beam Theory 5780
Bernoulli-Euler beam theory with
Dos Reis et al.[29] stiffness determined by shell finite 4942
elements

Kim and Bert [16] Sander’s shell theory 5872
Donnell’s shallow shell theory 6399
Bert and Kim [28] Bresse-Timoshenko beam theory 5788
Gupta and Singh Equivalent Modulus Beam Theory 5747
[14] Layerwise beam theory (LBT) 5620

Continuum-based Timoshenko beam
Chang et al. [20] 5762

theory
Timoshenko beam theory with the p
Boukhalfa et al.
and hp versions of the finite element 5760
[22,23]
method
Timoshenko beam theory with

The present model 5747

conventional finite element method
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Table 3.4 The first five critical speeds of the boron-epoxy composite shaft.

Critical speed (rpm) | 5747 | 5773 | 20679 | 20930 | 40944
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Figure 3.5 Campbell diagram of boron/epoxy composite shaft.
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683.0546Hz 684.4503Hz

Figure 3.6 Mode shapes of the boron/epoxy composite shaft at 5000 rpm.

In the following example, the frequencies, mode shapes, Campbell diagram and critical
speeds of a graphite/epoxy shaft-disk system are determined. The laminate lay-up of the
shaft is [90/45/-45/06/90] starting from inside; the composite shaft is attached at its center
to a uniform-thickness rigid disk and it is supported at the ends by two identical bearings.
The geometric properties of the composite shaft and the disk are in Table 3.5 as well as
bearing properties. This example is given in References [20,22], and it is given here for

further validation of the conventional-Hermitian finite element model.
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Table 3.5 The dimensions and properties of the composite shaft-disk system [20]

Composite Shaft

Shear
Inner Outer Lay-up from
Length, correction
diameter diameter inside
L=0.72m factor, ks =
ID=0.028 m | OD =0.048 m | [90/45/-45/0¢/90]
0.503
Disk
Mass, Diametral mass moment of | Polar mass moment of inertia,
m=24364 Kg | inertia, I4=0.1901 Kg.m? I,=0.3778 Kg.m’

Bearing

Kyy = 17.5 MN/m

Kz, =17.5 MN/m

Cyy=500 N.s/m

C,, =500 N.s/m

The mass eccentricity of the disk, e = 5x1075 m.
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Figure 3.7 shows the Campbell diagram containing the frequencies of the first two pairs
of bending whirling modes. The intersection points of the line R = 1 (R is a ratio between
the whirling bending frequency and the rotation speed) with the whirling frequency
curves represent the critical speeds of the composite shaft-disk system. In this example,
the shaft is modeled by ten elements of equal length using the conventional-Hermitian
finite element model, but in Ref. [22] the composite shaft was modeled by two elements

and ten hierarchical terms for each element. Unfortunately, no results on this example are




given in Ref. [22] except the Campbell diagram. Since the critical speeds can be obtained
from the Campbell diagram, the author of this thesis used the Campbell diagram in Ref.
[22] to obtain the first critical speed which is 7400 rpm. The first five critical speeds of
the composite shaft-disk system determined using the conventional-Hermitian finite

element model are illustrated in Table 3.6.

Table 3.6 The first five critical speeds of the graphite/epoxy composite shaft-disk

system.

Critical speed (rpm) 7294 8685 8700 73033 73702

Moreover, the eigenvalues of the composite shaft running at 6000 rpm and 0 rpm are
listed in Table 3.7, and the agreement in the results can be observed between the
conventional-Hermitian finite element model and Lagrangian finite element model [20].
There is no information given about the meshing in Ref. [20]. The mode shapes of the
composite shaft running at 6000 rpm are illustrated in Figure 3.8. The unbalance response
and phase angle of the shaft at the disk location which is the center of the composite shaft
are shown in Figure 3.9, and it is shown that the response is at its peak at the third critical
speed and this means that the unbalance force excites the forward frequencies. Also,
since the properties of the bearings are identical in z and y directions, the orbits in the
mode shapes at any point along the rotor take circular form and the response in z—x and

y-x planes are same.
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Table 3.7 The lowest five eigenvalues in rad/s of the graphite/epoxy composite shaft-disk

system running at 6000 rpm and 0 rpm.

Chang et al. [20]
The Present Modal
Modes Lagrangian finit element
0 rpm 6000 rpm 6000 rpm
IBW 909 909 902.9
1IFW 909 910 903.6
2BW 1311 835 826.7
2FW 1311 2057 2048.1
3BW 7779 7767 7841.5
3FW 7779 7794 7868.1
4BW 8149 8148 8215.4
4FW 8149 8151 8218.7
5BW 16205 16192 16305.4
5FW 16205 16217 16332.1
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Figure 3.7 The Campbell diagram of the graphite/epoxy composite shaft-disk system.
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Figure 3.8 The mode shapes of the graphite/epoxy composite shaft-disk system at 6000

rpm.
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Figure 3.9 Unbalance response and phase angle of the graphite/epoxy composite shaft at

the disk position in y and z directions
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In the next example, a stepped composite shaft-disk system is studied. The effects of the
fiber orientation angle and the shaft’s length on the natural frequencies are studied. The
stepped composite shaft-disk system consists of two segments with different diameters, a
disk of steel at the right end and a bearing at the left end; Figure 3.10 illustrates the
stepped composite shaft-disk system. The shaft is made of boron/epoxy material, and the
geometric properties of the stepped shaft are listed in Table 3.8. The thickness of each
layer is 0.5 mm and length of the first segment L; is 0.05 m. The properties of the

composite material were already given in Table 3.2.

d, d,

L>

L1

ANMARAN

Figure 3.10 The stepped composite shaft-disk system.

Table 3.9 shows the natural frequencies of the stepped composite shaft with different
lengths at different rotational speeds. The length of the segment 1 is fixed while the
length of the segment 2 changes by 20 percent every time. The segment 1 and the
segment 2 of the stepped composite shaft are divided into five elements for each. The
elements of the segment 1 have equal length and the same thing can be said about the
elements of the segment 2. The length of the elements in the segment 2 changes with
changing the length of the segment 2 while the length of the elements of the segment 1 is
always fixed. From Table 3.9, one can see that the natural frequency increases when the

length decreases.
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Table 3.8 The geometric dimensions and properties of the composite shaft-disk system

The Stepped Composite Shaft Properties

Segment

Outer Diameter

Inner Diameter

Lay-up

1

0.015m

0.005 m

[0/90/0/90/0/90/0/90/0/90]

2

0.011 m

0.005 m

[0/90/0/90/0/90]

Steel Disk

Density Outer Diameter Inner Diameter Thickness

7810 Kg/m’ 0.035m 0.011 m 0.005 m

Bearing

Kz =17.5 MN/m Kyy =17.5 MN/m

Furthermore, the natural frequencies of the stepped composite shaft with different fiber
orientation angles are presented in Table 3.10. The lengths of the segment 1 and the
segment 2 are each 0.05 m, and the number of layers for segment 1 and segment 2 are 10
and 6, respectively. The fiber orientation angle changes from 0° to 90° by increment of
30° for all the layers; the natural frequency is maximum when the fiber angle 1 is 0° and

then it reduces until it reaches the minimum value when the fiber orientation angle n is

90°.
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Table 3.9 Natural frequencies in Hz of stepped composite rotor with different lengths

Rotational

L,=0.8 L,=0.6 I,=04 | L,=0.2

Speed Mode L,=1,

L, L, L Ly
(rpm)

BW1 3145.2 3694.6 4399.8 53384 6680.7
FW1 3145.2 3694.6 4399.8 53384 6680.7
0 BW2 6461.2 6862.9 7354.8 8080.6 9487.4
FW2 6461.2 6862.9 7354.8 8080.6 9487.4
BW1 3122.1 3665.9 4363.7 5292.3 6623.3
FW1 3168.1 3722.9 44354 5384.1 6737.9
5000 BW2 6409.5 6814.2 7312.1 8047.1 9465.3
FW2 6514.2 6913 7399.2 8115.5 9510.6

In the following example, three cases are considered to study the natural frequency of the

stepped composite shaft-disk system. In the first case, the length of segment 1 is

increased and the length of segment 2 is decreased while the total length of the stepped

composite shaft remains the same. In the second case, the diameter of segment 2 reduces

by 20 percent each time. In the last case, the effect of the mass of the disk on the natural

frequencies is determined. The boron/epoxy composite material is used in all the three

cases, and the thickness of each layer is 0.5 mm.
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Table 3.10 Natural frequencies in Hz of stepped composite rotor with different fiber

orientation angles

Rotational
Speed Mode n=0° n=30° n=60° n=90°
(rpm)
BWI1 3978.7 2909.8 22343 2132.5
FW1 3978.7 2911.2 2234.5 2132.5
0 BW2 7515 6505.4 5484.5 4947.1
FW2 7515 6511.3 5485.2 4947.1
BWI1 3962.2 2882.2 2203.5 2104
FW1 3994.8 2938.7 2265.3 2160.8
5000 BW2 7456.7 6461.3 5441.1 4901.3
Fw2 7574.5 6556.7 5530.1 4994.7
Case 1

The dimensions of the composite shaft-disk system were already given in Table 3.8, and
the total length L of the stepped composite shaft is 10 cm. Five elements of equal length
are used for the segment 1 and the segment 2, and the length of the element in both the
segments changes with changing the segment length. Table 3.11 presents the natural
frequencies of the stepped composite shaft; one can see that when L, starts to increase

and L, starts to decrease the natural frequency decreases for all the speeds.
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Table 3.11 The natural frequencies of the stepped composite shaft-disk system with

different lengths of segment 1 and segment 2

Rotational
Ly=05L |L;=06L | L;=07L | L;=08L | L;=09L
Speed Mode
L,=05L |L,=04L | L,=03L | L,=02L | L,=0.1L
(rpm)
BW1 3145.2 3267.4 3454.8 3696.5 3944 .8
FW1 3145.2 3267.4 3454.8 3696.5 3944 .8
0
BW2 6461.2 6520 6667.8 7004.0 7838.2
FW2 6461.2 6520 6667.8 7004.0 7838.2
BWI1 3122.1 3245.6 3434.7 3679.2 3931.1
FW1 3168.1 3288.9 3474.5 3713.5 3958.2
5000 BW2 6409.5 6465.9 6610.9 6943.9 7775.4
FW2 6514.2 6575.6 6725.9 7065.3 7902.1
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Case 2

Here, the effect of the diameter of segment 2 on the natural frequency is studied. Table
3.12 lists the properties of segment 2 of the stepped shaft; the properties of segment 1, the
disk and the bearing are same as in case 1. The total length of the stepped shaft is 10 cm
and L, and L, are equal. The stepped composite shaft is divided into ten elements with
equal length for all the cases in Table 3.12. The polar mass moment of inertia I,, the
diametral mass moment of inertia I3, and the mass mq of the disk are calculated for the
first case in Table 3.12 then they are used for the other cases in the table. Table 3.13
shows the natural frequencies of the shaft with different diameters of segment 2 at
different rotation speeds. It is clear from Table 3.13 that the natural frequency decreases

when the diameter of segment 2 decreases.

Table 3.12 The geometric dimensions of segment 2 of the stepped shaft

Outer Diameter Inner Diameter Lay-up from inside
d,=4d, 0.005 m [0/90/0/90/0/90/0/90/0/90]
d=0.8 d, 0.005 m [0/90/0/90/0/90/0/90]
d=0.6 d, 0.005 m [0/90/0/90/0/90]
d>=04 d, 0.005 m [0/90/0/90]
d»=0.2 d, 0.005 m [0/90]
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Table 3.13 The natural frequencies of the stepped composite shaft-disk system with

different diameters of the segment 2

Speed
Mode d=d; d,=08d;, | d=0.6d;, | d,=0.4d, | d=0.24d,
(rpm)
BW1 4147.2 3752.2 3145.2 2330.7 1387
FW1 4147.2 3752.2 3145.2 2330.7 1387
’ BW2 9890 8221.8 6461.2 4742.1 2961.6
FW2 9890 8221.8 6461.2 4742.1 2961.6
BW1 4136.3 3736.8 3122.1 2296.9 1342.9
FW1 4158.1 3767.4 3168.1 2364.2 1431.3
5000 BW2 9847.6 8168.6 6409.5 4698.1 2926.8
FWwW2 9932.2 8275.5 6514.2 4788.1 2999.5
Case 3

In this case the effect of the mass of the disk on the natural frequency is studied; the

information about the composite shaft system in Table 3.8 is used here. The total length

of the stepped shaft is 10 cm; the segment 1 and the segment 2 have the same length. The

stepped composite shaft is divided into ten elements of equal length. The results of the

natural frequencies of the stepped shaft are given in Table 3.14; increasing the disk mass

reduces the natural frequency of the stepped composite shaft for all rotation speeds.
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Table 3.14 The natural frequencies of the stepped composite shaft-disk system with

different densities of the disk

Speed Density (Kg/m’)
Mode
(rpm) 1000 4000 7000 10000 13000
BW1 4165.8 3456.2 3199.9 3011.7 2850.8
FW1 4165.8 3456.2 3199.9 3011.7 2850.8
’ BW2 10732 80970 6704.2 5964.5 5522.5
FWwW2 10732 80970 6704.2 5964.5 5522.5
BW1 4161.0 3443.5 3179 2982.6 2814.2
FW1 4170.7 3468.7 3220.5 3040.5 2887.1
5000 BW2 10717 80452 6651.2 5917.1 5481.5
FW2 10747 81492 6758.3 6013.4 5565.3

In the last example, the effect of the axial load on the natural frequency of a composite
shaft is considered. Figure 3.11 shows a stepped composite shaft with two bearings and
one disk, and the required information of the composite shaft system is listed in Table
3.15. The axial force (compressive or tensile) starts from 100 N and then increases by
100 N until it reaches 500 N. The segment 1 of the stepped composite shaft is divided

into five elements of equal length and the same thing applies for the segment 2.
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Figures 3.12 — 3.14 illustrate the natural frequencies at 0 and 5000 rpm, and it can be
observed that the increase in the tensile force leads to increase in the natural frequencies
for all rotating speeds while increasing the compressive force reduces the natural
frequencies. This is so because the axial tensile force makes the shaft more stiffer thereby
increasing the natural frequencies while the compressive force reduces the shaft stiffness

and results in lower natural frequencies.

L1

-«—— Force

Figure 3.11 The stepped composite shaft under the axial load

Table 3.15 The geometric dimensions of the composite shaft-disk system

The Stepped Composite Shaft Properties
Segment | Length Outer Diameter | Inner Diameter Lay-up
1 Li=1Im 0.015m 0.005 m [0/90/0/90/0/90/0/90/0/90]
2 L,=05m 0.011 m 0.005 m [0/90/0/90/0/90]
Disk
Density Outer Diameter Inner Diameter Thickness
7810 Kg/m’ 0.105m 0.011 m 0.005 m
Bearing
Kyy =30 MN/m Kz, =30 MN/m
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Figure 3.12 The natural frequencies of the stepped composite shaft at 0 rpm under

different axial loads
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Figure 3.13 The backward natural frequencies of the stepped composite shaft at 5000

rpm under different axial loads
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3.5 Summary

This chapter presents the vibration analysis of composite shaft using conventional-
Hermitian finite element method. Timoshenko beam theory is adopted, and the effects of
the rotary inertia, shear deformation, gyroscopic forces, axial load, and the coupling
effects due to the lamination of composite layers were considered. The results obtained
using the conventional finite element model were validated with the results available in
the literature and a good agreement has been observed. In addition, a parametric study on
stepped composite shaft with a disk at the end has been carried out. The main conclusions

of this chapter are listed in the following:

1) The natural frequency of the composite shaft is affected significantly by changing

fiber orientation, the rotor’s length, the rotating speed and the axial load.

2) Element with four degrees of freedom per node is good enough to obtain results
that match those given in References [20, 22, 23] which used six degrees of

freedom per node.

3) In stepped composite shaft, when the length of the segment 1 that is thicker and
closer to the bearing is fixed, the natural frequencies of the stepped composite
shaft increase with decreasing the length and increasing the diameter of the

segment 2 that is thinner and connected to the disk.
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Chapter 4
Rotordynamic Analysis of Tapered Composite Shaft Using Finite

Element Method

4.1 Introduction

One method to improve the dynamic characteristics of a structure is tapering the
structure. For example, tapered beam and tapered plate have better dynamic
characteristics than those of non-tapered beam and plate [24]. Same thing can be said
about the rotating shaft, tapering the shaft can increase the bending stiffness, and this can
lead to an improvement of the dynamic characteristics of the shaft and reduction in
vibration. This chapter provides four computational models for free vibration analysis of

tapered shaft using finite element method and Rayleigh — Ritz method.

In this chapter, a hierarchical composite finite element, a conventional-Lagrangian
composite finite element, a conventional-Hermitian composite finite element, and
Rayleigh-Ritz method are used to model tapered Timoshenko rotating driveshaft; the
effects of taper angle, rotary inertia, gyroscopic forces, axial load, and coupling effect

due to the lamination of composite layers are taken into account.

4.2 Stress-strain relations for tapered cylinder layer
Figure 4.1 shows a single lamina deformed into a conical tube with taper angle a that can
change functionally in x direction. The principal material directions are denoted by 1, 2,

and 3. The axis 1’ extends along the tapered tube surface while 3’-axis is perpendicular to
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the same surface. The fiber angle 1 is the angle between 1-axis and 1’-axis and the angle

between 2-axis and 2’-axis.

2!

Figure 4.1 Single composite lamina deformed into tapered cylinder
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To determine the stress-strain relations of tapered tube lamina in cylindrical coordinate
system, transformation from the principal material coordinate system (1, 2, 3) to
cylindrical coordinate system (X, 8, r) must be done. To do this, it is necessary to apply

sequence of transformations as following:
1) n about 3-axis in principal material coordinate system (1, 2, 3).

2) o about 2 -axis in primed coordinate system (1,2, 3).
The stress — strain relations for lamina with respect to the principal material coordinate
system were shown in Chapter 3 and they are repeated here again. So, the stress-strain

relations for a lamina in the principal material directions are

O 1- [Q11 Q12 Qi3 O 0 0 ] €11
0-22 Q12 QZZ Q23 O 0 O 622
033 Ql3 QZ3 Q33 0 0 0 €33 (4 1)
723 0 0 O Qu O O V23 '
T13 0 0 0 0 Qss O Y13
LT12 Y12
| 0 0 0 0 0 Q6
That is
[0123] = [Q][€123] 4.2)

where [Q] is the stiffness matrix of a single lamina, and it is a function of elastic moduli,
shear moduli and the Poisson’s ratio of the lamina. The stresses in primed coordinate
system (1, 2, 3”) are related to the stresses in principal material coordinate system (1, 2,

3) as [24]
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(9117 m?2 n2 0 0 0 2mn 7| [%1]
0272 [ n2 m?> 0 0 0 -—-2mn ] 022
03’3’ l o 0o 1 0 o0 0 |]os3
= 4.3
1273’ | 0 0 0 m —n 0 | T23 (4.3)
T1'3’ 0 0 0 n m 0 T13
[Ty l—mn mn 0 0 0 m2-— nZJ Tio
where m = cos 1 and n = sin . Equation (4.3) can be abbreviated as
[01’2’3’] = [T1][0123] (4.4)
Similarly, one can get the relation between the strains in both coordinate systems as:
€117 [ m? n 0 0 0 mn r€117
€22’ | n2 m? 0 0 o0 -mn |[%f2
€35’ | o 0 1 0 0 0 | ]éess
= 4.
1£5%3 | 0 0 0 m -n 0 | V23 (4-3)
Vi3 | 0 0 0 n m , 0 2| Y13
Y17 —2mn 2mn 0 0 0 m*—n*l ly,,]
Equation (4.5) can be abbreviated as
le125] = [T2]le123] (4.6)

Using Equations (4.4) and (4.6) into Equation (4.2), one can get the relation between
stresses and strains in primed coordinate system (1, 2, 3°) as [24]:
Oy ?11 Qiz Qi3 O 0 Q16] IO

O,y Qiz Q2 Q23 O 0 Q26 Ey'y!
033’ Qi3 Q23 Q33 O 0 Q36 |€3'3

- _ _ 4.7
123 0 0 0 Qu Qu O Y23’ @D
k) 0 0 0 Qu 0ss 0 | (V1%
5
LTy : °° V12

-616 626 636 0 0 666-
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The above equation can be written in the following form
lo123] = [Q1]er25] (4.8)
where [Q] is the transformed stiffness of the layer and can be calculated by the following

equation

[Q] = [TL][Q] [T2]7* (4.9)

Now, the stresses in primed coordinate system (1, 2, 3) are related to the stresses in

cylindrical coordinate system (x, 0, r) as in the following [24]:

[Oxx ] [¢2 0 s2 0 2sc 0] (0117
%0 |o 1 0 0 0 O]|%
or| _|s2 0 2 0 —=2sc 0] [033
tor| = | 0 0 o ¢ B R (4.10)
Tor l—sc 0 sc 0 (¢2—52 0J| Ty
LT 0 0 0 o0 S 0 ¢ L T17'

where ¢ = cos o and s = sin a. Equation (4.10) can be abbreviated as

[oxor] = [T3][01'2'3'] (4.11)

Similarly, one can get the relation between the strains in primed coordinate system (1, 2,

3') and cylindrical coordinate system (x, 6, r) as:

[ Exx | ¢z 0 s 0 sc 07 [511]
€06 0 1 0 0 0 01 |&22
Err 52 0 c? 0 —Sc 0 €3'3’
= = 4.12
Yor 0 0 o ¢ 0 , SIlyys (4.12)
Var —2sc 0 25¢ 0 c*—=s* 0 Y13
[ Vxo o 0 o s 0 ¢ I'lyp,d

Equation (4.12) can be abbreviated as
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[exor] = [Tal[e123]

(4.13)

Using Equations (4.11) and (4.13) into Equation (4.8), one can write the stress-strain

relation in cylindrical coordinate system (x, 8, r) as in the following [24]:

The above equation can be written as
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(4.14)

(4.15)

where [5] is the transformed stiffness of the layer and can be calculated by the following

equation :

[Q] = [T:1[Q] [Ta]™" = [T3][T41[Q] [T2]*[Ta] ™

(4.16)

Considering Equations (3.21)-(3.23) and introducing the shear correction factor kg in the

same way as in Equation (3.27), one can write Equation (4.14) as

[ éll
Ous
0s:

kS gél-l
ks@Sl

-kS 661

ks ?15
ksQas
ks QSS
ksQas
stSS
ksQes

ks§16 ]
kSQZG
ksq.%
ks@46
ksQse

ks 566 -
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4.3 Kinetic and potential energy expressions

Since the mass, the diametral mass moment of inertia and the polar mass moment of
inertia of a tapered composite shaft change with respect to the axial coordinate of the

shaft, the kinetic energy for tapered composite shaft is

L

Tamp =7 [ meC) 02+ w)ax +3 [[ 100 (85 + )
0

0

L
~ [ e ydx
> (4.18)

where m, Iy, I are the mass per unit length, diametral mass moment of inertia, and

polar mass moment of inertia.

me(x) = ) ps () = (X)) (4.19)

Lae() =% ) pa((0) = () (420)

e(®) =53 ps(r3h(x) = T4(x)) (421)
s=1

where n is the number of the layers in the laminate, and ps is the density of the layer.

Tos and 1;; are the outer radius and inner radius of the s-t4 layer. For conical shape, the

inner radius and outer radius are
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X X
oo () = (1= 7) or + 772 (4.22)
x x 4.23
ris(x) = (1 - Z) Tin + 77 (4.23)

where 174, 7i5, 751, and 1,5 are defined in Figure 4.2.

i
2 |lo2
o1 Fi1
Y Y - X

Figure 4.2 Typical tapered shaft element

From Equation (3.41), the strain energy of tapered composite shaft can be written as

Ups = f [My —+ M, ai + 0y ( ﬁz) +0Q, (,/j’y + —)] dx (4.24)

In chapter 3, the stress couples and the stress resultants were defined as

M, = f Oxy T SiN6O dA (4.25)
A
M, = —f Oxx? COS O dA (4.26)
A
o = f T, Sin 6 dA (4.27)
A
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fci) = f T,r COS O dA (4.28)
A

QW = f T,9Sin 0 dA (4.29)
A

Q(Z) = f T,g COS O dA (4.30)
A

Substituting Equation (3.20), Equation (3.24), and Equation (3.25) into Equation (4.17),

and then considering Equation (4.17) for Equations (4.25) - (4.30), one can write the

stress couples and the stress resultants of the tapered composite shaft as

21 To

= [ [ s 0 (3 romo - reoso)
s (5 )+ (37 ) o)
oie(G 4 )eoso - (G )amoforan
j“j"r 5[0 (2 rsns 2 o)
(GO RT ARSY

+ksQu6 ((Z—: + ﬁy) cos® = (g_z - ﬁz) s 9)] Ardd (4.32)
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2m To

d 0
(1) f frsme [k Q51<£x rsme—% rcosH)

Ty

+ksQss ((g—: + ﬁy) cos§ — (Z_Z —F Z) s 6)] drdo (4.33)

+ kQse (@_: + By) cos @ — (Z—Z - ,BZ> sin e)] dr do s

2m To

0
(1) ] ]rsme [k Q61< By rmnG—% rcosG)

s (G sino + (52 - ) oo

+ksQss <(g—: + ﬁy) cos® — (Z_Z - ﬁz) i e)] ardd (4.35)
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2m To

0
(2) f frcose [k Q61< By rsmH—aix rcosH)

+ksQes ((g—: + ﬁy) cos§ — (Z_Z —F Z) s 6)] drdo (4.36)

After applying the integrations in Equations (4.31) — (4.36), the stress resultants and

stress couples of the tapered composite shaft are

_ dp _ owy 1 _ Jv
My = Dyy =2 + Busk, ([)’y + E) +5 Biks (,BZ _ &) 4.37)
ap dv 1._ ow
M, = Diy 52 = Busks (52 = ) = 5 Busks(By + 5) (439)
ap adw ov
= Bay ks 52+ ks Ass (By +50) + ks Asg (B, — 5 (439)
9, v ] ow
P = By ks 2 ks Ass (5= B2 )+ ks s (By + 5 ) (440)
1._ aﬁ ow av
W _
(O §B61k x + ks Ags (ﬁy I )+k Ags </3z 6x> (4.41)
1 9, o ow
Q%) = 5 Bor ks =+ ks s ( ,BZ) + kA ([)’y 6x> (4.42)
where
n
1 T o 2 2
As() = ) Qes(1(0) = 12() (443)
=1
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NS
1=

EM@=FFM%@—@@)
Ass () = %Z Qs (T (0) = 12(0)
Asg(x) = %Zl Gse(T(0) = 1E(0)
Bia(x) = %nzl G670~ ()
Bus(x) = %Z Q15 (1300 = T3()
Boa () = EZ 051 (7500 = T2()
Ban ) = gnz Qan (120 =70

Dy (x) = %z 511( Tos(X) — T{;(x))

energy in terms of ABD matrix as:
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(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

Equations (4.43) - (4.51) represent ABD matrix of the tapered composite shaft. For zero
taper angle Bs; and Asg will vanish because (2215 = (2256 = 0. Increasing the taper angle
leads to increasing in Bs; and Asg, so the effect of Bg;and Asgwill be significant at high

taper angle. Substituting Equations (4.37) — (4.42) into Equation (4.24) gives the strain



&

(o e ) 5
(L2 i+ 2 - 2)

+(By

ow _ 0B, ow _ av
+a) ks | | Bsi W-I_ Ass (ﬁy +a) + Asg (ﬁz —a)

1_ 88, - /v ] aw
+ _5361 E + A65 (a - ﬁz) + A66 (ﬁy + a) dX
(4.52)

The strain energy Ugs Equation (4.52) represents the strain energy of the composite shaft
that results from the bending moment and the shear force, but when the composite shaft is

under a constant axial force, the total strain energy of the composite shaft is

Ucomp = Ups + Ur (4.53)
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where Uy is the external work done on the shaft due to a constant axial force P and can be

written as
1 (Y 0n\%  0wn?
- i -~ 4.54
Ur zfo P[(ax) +<0x) ldx (434

4.4 Finite element formulation
4.4.1 Hierarchical composite shaft element formulation

The shape functions in hierarchical finite element can be established from polynomial or
trigonometric functions. In this work the trigonometric function is chosen to build the
model. Figure 4.3 illustrates a hierarchical beam finite element for tapered composite
shaft. The element has two nodes and each of them have four degrees of freedom (two
translational and two rotational). In hierarchical finite element method, the transverse

displacement field of the beam element in y-direction can be expressed as

nmx
v=oc+ cz + Z cn+zsm— (4.55)

1 2
@ ® -X,g

A
Y

| L
&=0 €=1

Figure 4.3 Hierarchical beam finite element with two nodes
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The local coordinate x and non-dimensional coordinate & are related by
X
{=7, (0<§<1 (4.56)

So, Equation (4.55) can be written as

N
V=oc;+ ¢+ Z Cna2Sin (nmé) (4.57)
n=1

€1

C2

C3
v=|[1 & sinm¢ ... sinNmél| ¢, (4.58)

LCN+24

v = [K"]{c} (4.59)

where N is the number of the hierarchical terms of displacement. In local coordinate

system, the nodal displacements in y-direction are

[ [1 000 0] o
Ve 1L00 ol ¢
001
W=7 =001 oll @ (4.60)
LUN 42 0000 1 LCN +2-
{a,} = [KP]{c} (4.61)
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The displacement in y-direction can be expressed as

U1

V2

U3
v = [fl fZ f3 f4_ ...... fN+2] 17.4_ (462)

LUN 424
N
v =[N, {qp} = fivs + fov, + z fn+2Vn+2 (4.63)
n=1

Substituting Equations (4.59) and (4.61) into Equation (4.63)

[Ny1{av} = [NJ[K%]{c} = [K"]{c} (4.64)

The shape functions of the displacement v can be written as

[NJ=[1—-¢ ¢ sinmé sin2né sin3mé ... sin N7i¢]| (4.65)
where
fi=1-¢ (4.66)
f2=¢ (4.67)
fn+2 = sin(nms) (4.68)

where N is the number of the hierarchical terms, n=1, 2, 3, ...N.

The functions f; and f, are polynomial functions and they correspond to the nodal
displacements of the hierarchical element, whilst f,,,, function is trigonometric function

and it corresponds to the hierarchical terms and contributes only to the internal field of
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the displacement and does not affect the nodal displacement [22]. Repeating the previous
procedure, one can obtain the shape functions for w, B, and f,. As a result, the

displacement vector formed by the variables v, w, f,, and 8, can be written as [22]:

v1 [N,] [o] [0 o] [ 4} ]
wl_{ o1 v (01 o] || 4w} .69
BTl 101 10] [ng,] 10] ||{as,} '
B [0] [O] [0] [NBz] [{qﬁz}J
[Now,p,.6,] = s fo f3 oo fr+2l (4.70)
{qy} = {v1, V2, V3, cen . .. ,Ung2)! 4.71)
{qw} = Wi, wy, ws, .. .. R 4.72)
{a5,} = By1 Byas Bys o oo, Byavany}” (4.73)
{ap,} = (Bo1, Brzs Buzs e e o Bo+2}T (4.74)

Substituting Equation (4.69) into Equation (4.18), Equation (4.52), and Equation (4.54)
and then applying the Lagrange’s equations, one can get the equations of motion of free
vibration of spinning tapered composite driveshaft. In addition to the number of the
nodes, the number of the generalized co-ordinates depends on the number of the

hierarchical terms. So, the generalized co-ordinates are
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a1 =V 4z = V» 3 = V3 eeeenns p = Un+2

p+1 = W1 p+2 = W2 Ap+3 = W3 ceeeene Qz2p = Wn+2
(4.75)
q2p+1 = ﬁyl Q2b+2 = ﬁyz d2p+3 = By3 ------- qzp = .By(N+2)
d3p+1 = Bz1 d3p+2 = B2 Q3p+3 = Bzz ceeeens Qab = Bzn+2)
where b = N + 2. Also, the generalized co-ordinates can be expressed as
[{9)]
=
qs = (4.76)
|{qﬁy}|
{as.}]

After applying Lagrange’s equations, the equations of motion of free vibration of rotating

tapered composite driveshaft can be written as

[M1{g} + [G1{q} + (IK] + [Kp]){q} = {0} (4.77)

where

[0]
10 M) [0] o]
[M]‘[ 0] [0] [My] [0] (4.78)
0] [0] [0] [Ma]
e
0] |0 0 0
[G]zl[m 0] [0] Gl (4.79)
[0] [0] [Gas] [0]
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1
[Mas] = 1 [ (&) (g, I [Ny, ] 6
0
[Ma] = L [ m6) [N, 7 [N, g
0
(Gaal = =10 [ 1(6) [N, 7 [, ] ¢
0

(Gos] = LO f 1,() [Ng,1"[Ng, ] d¢
0
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(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)



[Ky] = f ke(Ass(©) + Ags () INJITINS1dg
[Ky3] = f ksB16() [N]T [N, | dg

[Ky4] = f [ = s Bas (&) INGIT[NG, | = keo(Ass () + Ag(©)) [N [st]ldf
[Kz2] = f ks (Ass(§) + Ao () INGITING 1dE

1

[Kz] = ] [ ksBas (&) INw T [Ng, | + ke(Ass(§) + Ags(©)) [N [N gy]ldf
0
[K24 = fk B16(f) [Ns ]df

[Kyy] = j ksBro(©) [N, 1TING] dé

[Ks2] = f [ ks Bas (O)ING, 1T ING ] + ko (Ass (&) + Ags () [Ng, ITING1 | dé

121

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)



1
Kol = | E 0@ [vg] [mg)]
0
+kaBis@® ([N, ] [N, ]+ [N, ] [N, ]) + KeliCAss(©)

+ Ag6(§)) |Ng, | [Ngy]] dé
(4.96)

: 1 _ 1 _
[Kza] = ] [EksBm(f) [N, 1" [Ng, | = 5 ksB1s() [Ngy]T[Néz]l d¢ (4.97)
0

1
1 _ _ _
[Ki] = f [—zksBls(f) [N 1IN = ks (Ass(E) + A (©)) [NéZ]T[Né]l df  (4.98)
0

1 1
[Ki] = =5 J (ks B1o(£) [Ng, T[Ny, 1] dg (4.99)
0
1 1 .
(K43l = (“Ekséle(f) [Ng ] [Néy] — 5 ksBi(§) [Ng, 1" [NBy]l % (4-100)

1

1_ _
[Ksa] = j lz D11(§) [Ng,I"[Ng, ] + ksBis(£) (INg, 1" [Ng,] + [Ng,1"[Ng,])
0

+ ksL(As5(8) + Ag6(8)) [NBZ][NBZ]l ds
(4.101)
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1
[Kyy] = f P [N;I"IN}]de (4.102)
0

(K] = f P IN,ITIN,]dE (4.103)

Appendix B shows in details how to obtain the mass sub-matrices, gyroscopic sub-
matrices and stiffness sub-matrices for tapered composite driveshaft using hierarchical

finite element method.
4.4.2 Lagrangian composite shaft element formulation

The Lagrangian interpolation functions are used here to approximate the displacement
fields of the tapered composite rotor. Figure 4.4 shows an element with three nodes; two
nodes are at the ends of the element and one node is at the center of the element. Each
node has four degrees of freedom, two translational in y and z directions and two
rotational about y and z axes. The displacement fields are approximated by a quadratic

approximation.

v(x) = a+ bx + cx? (4.104)
wkx) =d+ex+ fx? (4.105)
By (x) = @+ bx + éx? (4.106)
B,(x) = d + éx + fx? (4.107)
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Figure 4.4 Beam element with three nodes

By considering the displacement in y-direction, one can write the displacements of the

three nodes in y-direction as [31]

v, = a+ bx; + cx? (4.108)
v, = a+ bx, + cx2 (4.109)
v; = a+ bx; + cx3 (4.110)

Equations (4.108) — (4.110) can be written in matrix form as

U1 1 %1 *{| ra
[Vzl = |1 x2 x2 Ibl v} = [Al{A} (4.111)
U3 1 X3 x§ c
2 _1
a 1 X1 Xi 12
Ibl =1 %2 x2 [vzl A} = [A]7 v} (4.112)
c 1 %3 42 U3
where
la 1 61 62 63 vl
bl = [61 EZ 63] [vzl (4113)
] P |
81 = x,x2 —x3x2 € =x2—x% L =x3—Xx (4.114)



(4.115)

8 = X3x{ — x1x3 € = X5 — x{ Hz = X1 — X3
O3 = x1x% — X% €3=x}—x2 U3 =x,—x; (4.116)
Substituting Equation (4.112) into Equation (4.104) for v(x), one can get
U(X) = N11171 + szvz + N33U3 (4117)
where
Ny, = (1 Zx) (1-3) 4.118)
1 = L L .
N _4_x(1_f) (4.119)
) L
(4.120)

= G-

Ni1, N5, and N353 are the shape functions that are used to approximate field solution of
v(x). Repeating the previous procedure for w(x), B, (x), and B,(x), one can get same

shape functions as those of v(x). So, the displacement field variables can be written as

3

V(@) = ) B(ON:() (4.121)
3 (4.122)

W) = ) wiON(x)
(4.123)

3
By = ) BNy ()
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3 (4.124)
B0 = D Bu(O)Nu()
i=1

Substituting Equations (4.121) - (4.124) into Equation (4.18), Equation (4.52), and
Equation (4.54) and then applying the Lagrange’s equations, one can get the equations of
motion of free vibration of tapered composite driveshaft. After applying Lagrange’s
equations, the equations of motion of the tapered composite shaft based on Lagrangian

composite shaft element formulation can be written as:

[M1{G} + [G1{q} + ([K] + [Kp]){q} = {0} (4.125)
where
{gd=Ua} {42} {as} {qu}}" (4.126)
{g.}={v1 v2 3} (4.127)
{2} ={w1 w2 ws} (4.128)
{as} = {Byr Byz Bys} (4.129)
{@a} =821 Baz Bz} (4.130)

[Mi1]axz [0]sxs [0lsxs  [0]sxs
[0]3xs [Ma2lsxs [0lsxs [0]sxs
[0]3xs [0lsxs [Maz]sxs [0O]
[0]

3
3X3 [0]3><3 [0]3><3 [M4—4-]3><3 12%x12

[M] = (4.131)

X3
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(4.132)

~
—
X
N
—
e ]
w o @ o
X X XX
m o 2 =
]]4.]
S O N O
[[G[

—~
on
on
—
N
N

N

—

X

N

—

———

m m omn oM

X X X X

m M ;n oM

(4.134)

(4.135)

[Nll N22 N33]

[N:]

(4.136)

33]

N.

I
22

N.

1
11

(4.137)

[Mi1]sxs = j m(x) N7 [N ]dx

(4.138)

[Mys a5 = f m(x) [N,]" [N ]dx

(4.139)

(4.140)

127



L
[G3alsxs = —0 f 1, (o) [N, [N;]dx (4.141)
0

(Gaslaxs = Q f 1,Go) N7 [N, dx (4.142)
[Kunlyes = [ s(lss ) + Ao N[N (4.143)
1 _
[K13]3x3 = _EJ ksBl6(x) [Ni']T[Ni']dx (4.144)
0

L

[K14l3x3 = f[—ksgw(x) [N/1T[N/] — ks(Ass(x) + Ags(x)) [N/IT[N;]] dx  (4.145)
0

[Kzolsxs = f ko (Ass (0) + Age()) [N{IIN/] dx (4.146)
Kaslss = [ [sBasG) INITIND + (s () + Ao @) INTTING]dx (4147
0
1 . _
[K24l3x3 = _Ej[ksBm(x) [Ni’]T[Ni’]] dx (4.148)
0
1 L
Kalsws = =5 [ [ksBro ) INEITINGT) dx (4.149)
0
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L
[K32]3x3 = f k sB1s(0) [N/1T[N/] + ks(Ass5(x) + A (X)) [N; ]dx
0

[Kyalaxs = f [Din o) INITING] + ey By Go) (NI [N + [N IN/T)

0

+ ke(Ass () + Agg(x)) [NITIN] | dx

L 1 1 _
[K34]3x3 j[ k Bl6(x) [N;] _Ekst(x)[Ni]T[Ni’]l dx
0
L
KT = | [=eBas ) INEITINGT = K (s ) + g (€0) [N [N
0
) L
[Ksz2l3x3 = —Ef k B1s(x) Ni,]] dx
0
) L
[Kazlaxs = Ef[ksgm(x) [N:IT[N{] = kesB1(x)[N]1"[N;]] dx
0

[K44l3x3 = D11(x) 1+ ksBys(x) ([N, ] [N:] + [Ni]T[Ni’D

o\h

+ ks (Ass(x) + Age(x)) [NIT[N]] dx

[va]3x3 = fP [N/]7[N{]dx
0
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(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

(4.155)

(4.156)

(4.157)



L

[KPW]3X3 = fP [N/ 17 [N{]dx (4.158)
0

Appendix C shows in details how to obtain the mass sub-matrices, gyroscopic sub-
matrices and stiffness sub-matrices for tapered composite driveshaft using Lagrangian

composite shaft element formulation
4.4.3 Conventional-Hermitian composite shaft element formulation

In chapter 3, conventional-Hermitian composite shaft element was used to build up
uniform composite shaft element and then to develop the equations of motion of the
uniform composite shaft. The same procedure that was used in section 3.5, to develop the
equations of motion of the uniform composite shaft, is followed here to obtain shaft
element for the tapered composite shaft and then to develop the equations of motion of
the tapered composite shaft. Herein, the tapered composite shaft element has two nodes at
its ends, and each node has four degrees of freedom, two translations (v and w) and two
rotations (f, and f,). From section 3.5, 8, and f5,, are related to the shear angles in y-x

plane and z-x plane, respectively as:

dv dv
_ov__ _0v_ 4.159
ow ow (4.160)
ﬁy:_a_i'yxz:_a-l'@xz
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To derive the shape functions for the tapered composite shaft element, one can consider

the y-x plane and represent the lateral displacement v(x,t) by a cubic polynomial with
four parameters as:

v(x,t) = ag + a;x + a,x? + azx3 (4.161)
The translational and rotational boundary conditions in y-x plane of the tapered shaft

element are

v(0,t) =1, (4.162)
v(L,t) = v, (4.163)
0
Bo(0,0) = B = 5= lxco — By (4.164)
Jdv
Bz (L, t) = Bgz = ox lx=2 — wxy (4.165)

The shear angle @, and the lateral displacement v should be related together. To obtain
the relationship between them, the static equilibrium of the beam must be considered.

Thus, the equilibrium of the beam in y-x plane can be written as

2 [M,] =-Q, (4.166)

dr_ B, _  (Ov 1_ ow
| S Busks (52— B:) — 5 Basks By + 50|



Using Equation (4.159) in Equation (4.167), one can get

566(817(2)) §k8(6v)+§ka(6v¢)
1 ox \ ox \ox Xy 15%s ax \9x 15%s ax\ox 9

1=k6,8y 1 = 6(6w>
27167 gy 27570 gx \ox

.- 1 - 0B
- Qxy) - ks(ASS + A66)¢xy + EksB61 a_xy

0 (av
155 9x \ox

ool

(4.168)

where ]311,515, §16, fT55, and fT66 are the averages of D;q, Bis, Bis, Ass, and Agg,
respectively. Since ABD matrix changes with axial coordinate x, it is easier to use the
average of ABD matrix in Equation (4.167) to obtain @y Now, using Equation (4.160)

in Equation (4.168), one can get
5 0 6(617 @) 5k 6(617) Eka<aw+(z)>
Mox\ox\ox B gx\ax) T ax\ ax T

(4.169)

The change of the shear angles @,, and @,, along the axial coordinate x of the tapered

composite shaft is assumed to be small, thus

~ 0 (4.170)

0x? 0x

Considering Equation (4.170), one can write the shear angle as

132



- 0% - 0%*v 1 02w

1 = =
IDM 33 ksBsq 3%z + EksBﬂ Wl (4.171)

ks(Ass + Ag)

Qxy =

The coupling term is neglected for simplification, so the shear angle can be written as

By = : 51 Y Bk, O 4.172
xy — ks(z‘T55 +£66) 11 dx3 51%s 02 ( . )
If one considered the z-x plane, the shear angle @,., is
Brr = ! A 4173
xz = ks(/Tss +Zee) 15,3 51Ks 52 (4.173)

Substituting Equation (4.161) into Equation (4.172), the shear angle @, can be written as

Byy = —[[1az + La, + 3hL,a3x] (4.174)
where
6 D.
r, = _ 11 _ (4.175)
ks(Ass + Age)
—2B
r 15 (4.176)

2T (Ass + Age)
Since the shear angle is assumed to be constant along the axial coordinate x of the tapered
composite shaft, one can put 3l,azx = 0. So, the shear angle in Equation (4.174) can be
written as:

Byy = —Laz — I;a, (4.177)
Applying the lateral and rotational boundary conditions gives
v, =a, (4.178)

vy, —V; = a;L + a,L? + azL3 (4.179)

133



ay =B+ Q)xy = B — l1as — La, (4.180)
ﬁZZ - ﬁZl = ZazL + 3a3L2 (4181)

From Equation (4.181)

1
az = 2L [B22 = Bz — 3asL?] (4.182)
Substituting Equation (4.182) into Equation (4.180) gives

oI, — 3L
;> (4.183)

L
a, :ﬁz1—ﬁ(ﬁz2—ﬁz1)—a3( )
To obtain a3, one can Substitute Equation (4.183) and Equation (4.182) into Equation

(4.179).

as = %[—z(vz o) 4 LA DB + L= [)Byo] (4.184)

where

I3 — 30,12 +2T,L
T, = 22 ! (4.185)

Substituting Equation (4.184) into Equation (4.183) and Equation (4.182), gives a,

and a,, respectively.

@1 = o1~ 52 (Ba — Bor) — =200, —v0) + (L4 ) + (L= BBl (4186)

1
a, = ﬁ(ﬁzz —Bz1) —[-2(w, —v) + (L + L)fz1 + (L — L) B2] (4.187)
where
r, = 22— 3L 4.188
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312
I = (4.189)

Now, substituting a,, a;, a, and az into Equation (4.161), one can obtain the lateral

displacement v(x, t) as :

v(x,t) = Nep (0)v1 () + Nez () B21 (1) + Nez(x)v2(8) + Nea(x) B2(8) (4.190)

where

213
Ny = |1 = 2LT,E = 21T + ¢ (4.191)
3

r 1
Ny = l(1 +5r—L(L+T3) ) Lg- <ﬁ + (L + Fz)) L7g?

L3
I3

(4.192)
Ny = [sz + 2T 1282 — %L3§3] (4.193)
Ny = [(—3— (- r2>) L+ (i— ry(l - rz)) 12
2L 2L
Loy 1? §3l
Iy 2 (4.194)
£ = % (4.195)

Substituting Equation (4.190) and Equation (4.172) into Equation (4.159) gives the

rotation 3, as:

Bz(x,t) = Npy ()1 (1) + Nip (X)B21(8) + Nig () v2(8) + Nea () B2 () (4.196)
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where
20 6T, 6 .,
N, = (——2F4—2F2F5+(——4I“5)LE+—L 13 ) (4.197)
I3 I3 I3

I, I, (1 I
Ny, = 1+E—F4(L+F2)—7 z+2F5(L+I‘2) +F—3(L+1“2)

3L, 1
3
+i(L+1“)L2§2
I3 2 (4.198)
~ r, T, 6 ..,
Ny =2T, + 2Tl —2— + (4T — 6 2 ) LE— —12¢ (4.199)
l—‘3 1-‘3 l—‘3
N —( T, + LT +F1)(L r)+( ! 2T, +3F2)(L I,)L
r4d — 4 215 F3 2 L(L_FZ) 5 F3 2 E

+ 2 (L —T,)L% &2
Iy z (4.200)

If the z-x plane is considered and the previous procedure followed, the internal
displacements and rotations of the tapered element can be expressed in terms of the

displacements and rotations of the end points and the shape functions as:

_vl
wq
v Nyy 0 0 Neg Nz 0 0 N By1
wl [0 Ny —Ny, 0 0 Ng —Ngy 0 (|8
ﬁy — 0 _er er O O _NT3 NT4— O vz (4~201)
ﬁz er 0 0 NT‘Z NT‘3 0 0 Nr4_ w»
ﬁyz
—ﬁzz—
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Equation (4.172) and Equation (4.173) can be written as:

b = ov [y ocv N I, 0%v 4202)

X 9x Bz = 6 0x3 2 0x2 (4.

b =g 4 ow [Ty o°w N T, 0%w (4.203)
xz = By dx |6 9x3 2 9x2 '

Substituting Equation (4.202) and Equation (4.203) into Equation (4.52), the strain

energy Ugg can be written as
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L
10(38y\ (= 8By L 9w 0%
UBS:E[( )(D“a Bisks 6 6x3+26x2
0
+1§ " 1“163v+1“262v
2 175\ 60x3 " 2 0x2
B, [~ 9B, - . (3% [d%v
(ax)<D“a +Bl5k5<€$+iﬁ
+1§ kg L 63W+F262
27106 9x3 ' 2 Ox2
L03v L, 0% _ dB, - [(L0*v Lo%v
‘(2%*7@ TPk T s\ Y 2o
1B By i 1“16317_'_1}621)
2761 9x T T\ 6 0x3 " 2 0x2
rn o’w
6 0x3
I“Zazw> _ 0B, _ (L Pw [ d*w
= Be: — — Ao | — — 42—
+2(’)x2 ks <516x 5566x3+26x2

+( 1o 9, (G 63W+1"262W ;
2P g~ sl T taae) ) ||
* * x (4.204)
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Using Equation (4.201) in Equation (4.204) and Equation (4.54), one can obtain the total
strain energy in Equation (4.53) in terms of the nodal displacements the shape functions,
and the derivatives of the shape functions. Moreover, to obtain the kinetic energy in terms
of the nodal displacements and the shape functions, one needs to substitute Equation
(4.201) into the kinetic energy equation of the tapered composite shaft, Equation (4.18).
Since the total strain energy and the kinetic energy are expressed in terms of the nodal
displacements and the shape functions, one can apply Lagrange’s equations to obtain the
equations of motion. Herein, the generalized co-ordinates for the tapered composite shaft

element are

@={m wi B Bu v2 wo By Bz} (4.205)

After applying Lagrange’s equations, the equations of motion of the tapered composite

driveshaft can be written as:

([Mre] + MecD{E} + QGgpare e (@} + ([Krp + Ker]){g} = 0 (4.206)
where
L
[Mrc] = f m(x) [NJ"[NJdx (4.207)
0
L (4.208)

[Mrc] = f La() [N;]"[N,]dx

0
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L
[Gomarer] = [ 1pGOINAT[, o] el s
0

L
I? _ _
[Kz] = | 3¢ks(ss + Aes) (N1 [N{"] dx
0

‘T, .
(K] = [ =252 ks Clss + Age) CINE"INE') + [N TTINE D
0

r? _ _
(Kl = [ ks Clss + Ao) NV N dn
0

L
| B
(K51 = [ 5 ksBrs CINETTINGD + INZITINE']
0

L

| P
(K6l = [ 22 koBrg CINETING] + INZTING ]y
0
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(4.210)

4.211)

(4.212)

(4.213)

(4.214)

(4.215)

(4.216)

(4.217)



L
| D
(K51 = | 2 koBas (VT[]
0

0

Kol = [ ZhsBos (VT[S

4.5 Rayleigh — Ritz solution

o [

0

S+ w2

-1
0

-1
0

| vy yax

| (V1)

(4.218)

(4.219)

In this section, Rayleigh — Ritz method is utilized to obtain an approximate solution for

the tapered composite shaft. The reason behind using Rayleigh — Ritz method is to

validate the models in section 4.4 which were established using finite element method.

The simply supported condition at the ends of the tapered composite shaft is used to

obtain the model, and the series solution functions are assumed for v, w, B, and 3, in the

form [16]
v = pel®t
w = we'®t
ﬁy — 'B_yeimt
B, = Ezeiwt
where
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(4.223)

(4.224)



_ o jmx
w(x) = z 14 sin—— (4.225)
j=1
n .
_ X
By(x) = Z Byj cos—— (4.226)
j=1
n .
_ X
Bz(x) = ) Bjjcos T (4.227)

j=1
Here, n is the number of Ritz terms and w is whirl frequency. To obtain the equations of
motion, Equations (4.220) - (4.223) must be substituted in Equation (4.18) and Equation
(4.52) which represent the kinetic energy of the tapered composite shaft and the strain
energy of the tapered composite shaft, respectively. After obtaining the energy
expressions in terms of the series solution of v,w, B, and f8,, Lagrange’s equations can
be used to establish the equations of motion of the tapered composite shaft. The equations

of motion of free vibration of the rotating tapered composite shaft are

[M1{g} + [G,]{q} + [K:]{q} = {0} (4.228)

where

[Mylnxn [0 lnxn [0 Jxn [0 ]nxn

[01nxn [Mylnxn LOJmxn [0]nun
Ml =107 [ominxn [MBy] [0l (4.229)
[O]nxn [O]nxn [O]nznn [MBZ]an nxam
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Inxn [0 an]

[[0luxn  [0lwxn L0
G.] ZI[O]nxn [0 Jnxn [g]”x" [0 e | (4.230)
r | [0 ]nxn [0 ]n><n [ ]nxn [GBz]nxn | .
(00w 00w [G5,] [0 Ten ),

[[KV1]n><n [ 0 luxn [Kyzlaxn [KV4]nxn]
[ 0 ]nX‘n [KWZ nxn KW3 nxn [KW4]an

]
(K5, [Ksye] [Koys]  [Kaye] (4.231)
L [k J

n [ BZ3]n><n [KBZ4]

nxn Bzl NXN-4nx4an
T
{q} ={Vi,Vo, .. Vi Wy, Wy, . ,Wy Byy,Bya, o, Byn By, Buay oo, B} (4.232)
1mx 27X nmwx
[H] = [Hy Hy oo Hylin = [sin = sin == ... sin" = (4233)
L L L 1Xn
1mx 27X nmwx
[F]=1[F F;.... Elixn = [cos COS— ... ... cos — (4.234)
L L L lixn
[My T = f m(x) [H]" [H]dx (4.235)
(MLm= f m(x) [H]" [H]dx (4.236)
[MBy J m(x) [F (4.237)
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L
[M5,],.., = [ MG [FI[F1dx
0
Gs,] ., =—Q f I,(x) [F]"[F]dx
[65,], . =0 [ GO IFVIFldx
0
Koalnsn = [ Ko@) + Ags () [H'T [
0
1 L
K3l = = [ KsBroG) LT[ Ndx
0
L
[Kvalnxn = f[—ksE15(x) [H']"[F'] - ks(/Tss(x) + I‘Tes(x)) [H’]T[F]] dx
0
Koz Ten = [ sCGss () + Ao ) TH'T[H'] i
0

[Kwslnxn = j[ksém(X) [H'T[F'] + ks(Ass (x) + Age(x)) [H'T'[F]] dx
0
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(4.239)

(4.240)

(4.241)

(4.242)

(4.243)

(4.244)

(4.245)



[KBy3]n><n -

+ ks(Ass5(x) + Age(x)) [F]

[F'T'[H'] + ks(Ass(x) + Ags (X)) [F
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T[F]] dx

H']] dx

f[ﬁn(x) [F'I"[F'] + ksBys(x) ([F']"[F1 + [FI'[F'])

]dx

(4.246)

(4.247)

(4.248)

(4.249)

(4.250)

4.251)

(4.252)



L
1 _
(K] = 5 | [EsBao o) TFITIH) = kB COTE'T 1] dx (4.253)
0

Kol . f D1 (0) [F'T[F') + ks Bys () ([F'TT[F] + [FIT[F'])

+ ks (Ass (%) + Age(x)) [FIT[F]] dx (4.254)

4.6 Validation

In the following example, the fundamental natural frequency and first critical speed of the
tapered composite shaft are studied using finite element method and the Rayleigh-Ritz
method. In this analysis, a hollow tapered composite shaft made of graphite-epoxy lamina
is considered. The shaft is simply supported at the ends; the outer diameter of the
composite shaft at the left end is 12.69 cm while the outer diameter at the right end
increases with changing the taper angle. The outer diameter of the composite shaft at the
left end is constant for all the taper angles. Figure 4.5 shows the configuration of the
tapered graphite - epoxy composite shaft. The properties of the graphite-epoxy composite
material are listed in Table 4.1. The wall thickness of the tapered composite shaft is 1.321
mm, and the composite shaft is made of ten layers, each with the same thickness. In
addition, the configuration of the composite shaft is [90°/45°/-45°/0°%/90°] and the lay-up
starts from the inside. The total length of the composite shaft is 2.47 m. The correction
factor kg for the composite shaft at the zero taper angle is 0.503 [20], yet this value is

considered for all taper angles in this example.
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Table 4.1 Properties of the composite materials [20]

Properties Boron-epoxy Graphite-epoxy
Ei; (GPa) 211 139
E» (GPa) 24 11
Gi2=Gy3 (GPa) 6.9 6.05
Ga; (GPa) 6.9 3.78
Vi2 0.36 0.313
Density (Kg/m’) 1967 1578

@

o

Figure 4.5 The configuration of the tapered graphite - epoxy composite shaft

Six elements, twenty elements, nine elements with equal length are used for hierarchical
finite element, Lagrangian finite element, and Hermitian finite element, respectively; the
same number of the elements was used for all the taper angles in the three models. Also,
in Rayleigh-Ritz method five Ritz terms were used. The first critical speeds of the tapered
composite shaft calculated using finite element method are illustrated in Table 4.2 beside

the speeds obtained using the Rayleigh-Ritz method. It can be seen from Table 4.2 that
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the difference is small between finite element method and the Rayleigh-Ritz method in
obtaining the first critical speed. And the difference does not exceed 4 percent between
Rayleigh-Ritz method and Lagrangian finite element method in obtaining the first critical

speed when the taper angle is 4°.

Table 4.2 First critical speed in rpm of the tapered composite shaft with different taper

angles using finite element method and Rayleigh-Ritz method

Taper Finite element method
Rayleigh-
angle, Hierarchical Lagrangian finite | Hermitian finite )
Ritz method
degrees finite element element element

0 5220 5219 5220 5220

1 6647 6645 6650 6667

2 7721 7718 7730 7820

3 8531 8525 8548 8772

4 9126 9121 9155 9510

Another observation from Table 4.2 is that the critical speed of the composite shaft
increases when increasing the taper angle, because the circumference of the cross-section
increases through the length of the shaft from the left end to the right end when
increasing the taper angle. This means the amount of composite material increases
through the length of the shaft when increasing the taper angle, which makes the tapered

composite shaft stiffer than the uniform composite shaft. The natural frequencies of the
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tapered composite shaft are shown in Table 4.3; the results were obtained at 10,000 rpm
and the results obtained by finite element models are comparable with the results

predicted using the Rayleigh-Ritz method.

Table 4.3 The natural frequencies in Hz of the tapered composite shaft at 10000 rpm with

different taper angles obtained using finite element method and Rayleigh-Ritz method.

Taper
Hierarchical Lagrangian Hermitian Rayleigh-
angle, Mode
finite element | finite element | finite element | Ritz method
degrees
BWI1 87 86 86 87
FW1 88 87 87 88
’ BW2 317 316 317 316
FWwW2 319 319 320 319
BW1 111 110 110 110
FW1 112 112 112 112
1 BW2 387 386 388 386
FWwW2 390 390 391 389
BW1 128 128 128 130
FW1 131 131 131 132
’ BW2 437 436 439 436
FwW2 441 440 443 441
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BWI 142 142 142 146
FW1 146 145 145 149
’ BW2 473 472 476 473
FW2 477 476 480 477
BWI1 152 152 152 159
FW1 157 157 157 163
! BW2 499 499 504 500
FW2 504 502 508 504

4.7 Summary

Herein, hierarchical finite element, Lagrangian finite element, Hermitian finite element
are used to develop three different finite element models of tapered composite driveshaft
for rotordynamic analysis. These models are based on Timoshenko beam theory, so
rotary inertia and shear deformation are accounted for in these models. In addition, the
effect of axial load, gyroscopic force, coupling due to the lamination of composite layers,
and taper angle are incorporated in the three finite element models. The kinetic energy
and the strain energy of the tapered composite driveshaft were determined and then
Lagrange’s equation was used to obtain the equations of motion. For the purpose of
comparing with the finite element models, Rayleigh-Ritz method was used to develop a
model of tapered composite driveshaft. A numerical example was given to validate the
finite element models, and a good agreement was found between the results of the finite

element models and Rayleigh-Ritz solution.
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Chapter 5

Parametric Study of Tapered Composite Shaft

5.1 Introduction

In the previous chapter, different mathematical models were established for vibration
analysis of the tapered composite shaft; these mathematical models are the conventional-
Hermitian finite element model, the hierarchical finite element model, and the
Lagrangian finite element model. It is important to assess these models in terms of their
ability to predict the natural frequencies and the critical speeds of the tapered composite
shaft, so in chapter 4 the finite element models were validated using Rayleigh-Ritz

formulation and a good agreement between these models was observed.

Therefore, the conventional-Hermitian finite element model, the hierarchical finite
element model, and the Lagrangian finite element model are credible enough to perform
rotordynamic analysis and to study the effects of different parameters, such as the taper
angle, fiber orientation, and axial load, on the natural frequencies and the critical speeds
of the tapered composite shaft. Two cases of the tapered composite shaft are considered
to perform rotordynamic analysis; the effects of different parameters, such as the taper
angle, fiber orientation, and axial load, on the natural frequencies and the critical speeds
of these two tapered composite shafts are studied in this chapter. In addition, in this
chapter in the analysis of the tapered composite shafts it is assumed that torque buckling

does not happen.
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5.2 Tapered composite shaft case A

In this section, rotordynamic analysis of the tapered composite shaft is performed using
the conventional-Hermitian finite element model, the hierarchical finite element model,
and the Lagrangian finite element model. The tapered composite shaft has a disk at its
middle and two bearings at the ends; the configuration of the tapered composite shaft is
illustrated in Figure 5.1. The shaft is made of a graphite-epoxy composite material, and
the geometric properties of the composite shaft are given in Table 5.1. Different taper
angles are considered in the analysis. The inner and outer diameters at the left end of the
shaft do not change with changing the taper angle, while at the right end they increase
when increasing the taper angle. The tapered composite shaft is modeled by ten elements,
twenty elements, eight elements of equal length using the conventional-Hermitian finite
element model, the Lagrangian finite element model, and the hierarchical finite element

model, respectively.

Figure 5.1 The configuration of the tapered composite shaft with disk in the middle
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Table 5.1 The geometric dimensions and properties of the tapered composite shaft

Composite Shaft
Inner Outer Shear
Length, Lay-up from
diameter , diameter , correction
L=0.72 inside
ID=0.028 | OD=10.048 factor, ks =
m [90/45/-45/06/90]
m m 0.56
Disk
Diametral mass Polar mass moment of
Mass,
moment of inertia, Iq= inertia,
m=24364 Kg
0.1901 Kg.m* I,=0.3778 Kg.m’
Bearing
Kyy = K;, =17.5 MN/m C, =Cyy =500 N.s/m

Table 5.2 shows the first critical speeds of the tapered composite shaft for different taper
angles, and it can be seen from the table that the first critical speed increases when
increasing the taper angle. However, Figure 5.2 - Figure 5.4 show that the increase in the
first critical speed when increasing the taper angle does not continue because the first
critical speed reaches its maximum at 10° taper angle and then starts to drop off when
increasing the taper angle; to understand why this happens, one needs to return to
Equations (4.43) — (4.51) and to look at Figure 5.5 — Figure 5.8. The equations represent

the ABD matrix that depends on the stiffness and the radius of the layer. Whereas, Figure
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5.5 — Figure 5.8 represent the material stiffnesses for each single layer of the tapered
composite shaft; from the figures it is clear that 511 is much higher than (=215, 516, 555 and

566 for all the layers and the taper angles, and 511 decreases with increasing the taper
angle except for the layer with fiber orientation of 90°. Consequently, in Figure 5.2 -
Figure 5.4, the inner and the outer radii of the layer control the first critical speed for
taper angle of 0° < a < 10° while 511 controls the first critical speed for taper angle of

10° < a < 20°.

Table 5.2 The first critical speed in rpm of the tapered composite shaft for different

taper angles.

Taper Hierarchical finite
Lagrangian finite element | Hermitian finite element
element
angle
0° 7295 7328 7328
1° 9710 9772 9760
2° 11467 11551 11537
3° 12820 12912 12903
4° 13855 13935 13935
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Figure 5.2 The first critical speeds of the tapered composite shaft for different taper

angles obtained using Hermitian finite element model
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Figure 5.3 The first critical speeds of the tapered composite shaft for different taper

angles determined using Lagrangian finite element model
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Figure 5.4 The first critical speeds of the tapered composite shaft for different taper

angles determined using Hierarchical finite element model
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Figure 5.7 (=)11, 515, 516, 555, and 566 for the layer of graphite-epoxy with fiber
orientation angle of 45°
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Figure 5.8 (2211, 615, 516, 555, and 566 for the layer of graphite-epoxy with fiber

orientation angle of -45°

Moreover, the effect of the disk position on the first critical speed is studied. Figure 5.9
shows the tapered composite shaft with different disk positions. Table 5.3 illustrates the
first critical speed of the tapered composite shaft for different disk positions and taper
angles. For taper angles of 0° and 1° the maximum value of the first critical speed
happens when the position of the disk is located at the center, while for taper angles
between 2° and 4° the maximum value of the critical speed happens when the disk is
located at a distance of 4L/10 from the left end. It can be said for high taper angles that
the critical speed reaches its maximum as the disk approaches the left bearing where the
inner and outer diameters are smaller than that at the right end. The results in Table 5.3

are determined using only the conventional-Hermitian finite element model.
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Figure 5.9 Tapered composite shaft with different positions of the disk.

Table 5.3 First critical speed in rpm of the tapered composite shaft for different taper

angles and positions of the disk

Taper angle, The position of the disk
degrees 3L/10 4L/10 S5L/10 6L/10 7L/10
0 5748 6602 7328 6602 5748
1 8144 9570 9760 8889 8159
2 10448 12011 11537 10829 10273
3 12532 13511 12903 12405 12033
4 14224 14408 13935 13639 13440
5 15285 15002 14699 14573 14527

Furthermore, the effect of the stacking sequence of the layers on the first critical speed of

the tapered composite shaft is analyzed. Table 5.4 — Table 5.6 illustrate the first critical
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speed for different stacking sequences and taper angles. The lay-up for the layers starts

from inside, and there are ten layers with four different fiber orientation angles.

The layers near the outer surface have larger circumferences and volumes than those near
the inner surface of the shaft, and they resist more bending moment than those layers that
near form the inner surface; as a result, the outer surface layers control the stiffness of the
shaft. Consequently, it can be observed from Table 5.4 — Table 5.6 that laying up the
layers that have high stiffness near the outer side of the shaft increases the critical speed.
For example, at a taper angle of 4°, the first critical speed of the configuration [0¢°
/90°/45°/-45°/90°] is 13474 rpm, and in this configuration the layers that have fiber
orientation of 0° are laid up on the inner side of the shaft. The layers with fiber
orientation of 0° have higher stiffness than other layers, so laying up them near the outer
surface increases the critical speed. Thus, the configuration [90°/45°/-45°/90°/04°], where
the layers with 0° fiber orientation are laid-up on the outer side of the shaft, has higher
first critical speed than the other configurations in Table 5.4 — Table 5.5. Moreover, it can
be observed from the Table 5.4 that the difference between the first critical speeds of the
configurations A and E decreases when increasing the taper angle; for example, at 0°, 2°,
and 4° the differences in first critical speeds between the configurations A and E are 19%,
9.4%, and 5.1%, respectively. This is an indication that increasing the taper angle
eliminates to some extent the effect of stacking sequence on the first critical speed and

the natural frequencies.
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Table 5.4 The first critical speed in rpm of the tapered composite shaft for different taper

angles and stacking sequences obtained using Hermitian finite element model

Taper angle, degrees

Configuration Stacking sequence
0° 1° 0 30 40
A [06° /90°/45°/-45°/90°] | 6475 | 8949 | 10832 | 12324 | 13474
B [90“04° /45°/-45°/90°] | 6821 | 9296 | 11151 | 12604 | 13713
C [90°/45°/06° /-45°/90°] | 7056 | 9514 | 11333 | 12744 | 13818
D [90°/45°/-45°/06°/90°] | 7328 | 9760 | 11537 | 12903 | 13931
E [90°/45°/-45°/90° /0¢°] | 7707 | 10117 | 11853 | 13174 | 14164

Table 5.5 The first critical speed in rpm of the tapered composite shaft for different taper

angles and stacking sequences determined using Lagrangian finite element model

Taper angle, degrees

Configuration Stacking sequence
0° 1° 0 30 40
A [06° /90°/45°/-45°/90°] | 6475 | 8962 | 10848 12333 13478
B [90”04° /45°/-45°/90°] | 6821 | 9308 11166 12613 13718
C [90°/45°/06° /-45°/90°] | 7060 | 9530 | 11354 12758 13823
D [90°/45°/-45°/06°/90°] | 7328 | 9772 | 11551 12912 13935
E [90°/45°/-45°/90° /06°] | 7707 | 10129 | 11868 13184 14167
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Table 5.6 The first critical speed in rpm of the tapered composite shaft for different taper

angles and stacking sequences determined using Hierarchical finite element model

Taper angle, degrees
Configuration Stacking sequence
0° 1° 2° 3° 4°
A [06° /90°/45°/-45°/90°] | 6456 | 8920 | 10787 12265 13418
B [90“04° /45°/-45°/90°] | 6798 | 9260 | 11099 12538 13653
C [90°/45°/06° /-45°/90°] | 7032 | 9477 | 11278 12676 13751
D [90°/45°/-45°/06°/90°] | 7295 | 9710 | 11467 12820 13855
E [90°/45°/-45°/90° /06°] | 7668 | 10059 | 11776 13084 14078

In addition, Figure 5.10 — Figure 5.15 illustrate the mode shapes and Campbell diagrams
for the tapered composite shaft with configuration of [90°/45°/-45°/0s°/90°] for three
different taper angles. It can be observed that increasing the taper angle increases the
natural frequency and affects the mode shape. These figures were obtained using the

conventional-Hermitian finite element model
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Figure 5.10 The mode shapes of the tapered composite shaft with taper angle of 0° at
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Figure 5.11 Campbell diagram of the tapered composite shaft with taper angle of 0°.
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Figure 5.12 The mode shapes of the tapered composite shaft with taper angle of 3° at
6000 rpm
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Figure 5.13 Campbell diagram of the tapered composite shaft with taper angle of 3°.
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Figure 5.14 The mode shapes of the tapered composite shaft with taper angle of 5° at
6000 rpm
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Figure 5.15 Campbell diagram of the tapered composite shaft with taper angle of 5°.
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5.3 Tapered composite shaft Case B

In the following example, vibration of a tapered composite shaft subjected to different
effects is studied. The tapered composite shaft is fixed by a bearing at one end and is free
at the other end. The shaft is made of boron-epoxy composite material, and the properties
of the composite material are listed in Table 4.1. The tapered composite shaft is made of
ten layers, and the thickness of each layer is 0.25 mm. Also, the length of the shaft L is
0.5 m and the inner diameter d; at the free end is 1 cm. The hierarchical finite element

model only is used here, and seven elements of equal length are considered for the

analysis.
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Figure 5.16 Different lengths of the tapered composite shatft.
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5.3.1 Effect of length on natural frequencies and first critical speed

In this section, the effect of the length on the natural frequencies and first critical speed of
the tapered composite shaft is discussed. Figure 5.16 shows the configuration of the
tapered composite shaft with different lengths. The length of the tapered composite shaft
changes from L to 0.7 L by 10 percent every time, and the natural frequencies and critical
speeds were obtained for different taper angles for each length. The inner diameter at the
free end of the tapered composite shaft is kept at 1 cm, whereas the inner diameter of the
other end changes with the changing taper angle and length. The stiffness of the bearings
K,y and K, are 10 GN/m. The configuration of the tapered composite shaft is [90°/45°/-
45°/06°/90°] and the lay-up starts from inside. Table 5.7 and Table 5.8 show the natural
frequencies and critical speeds, respectively, of the tapered composite shaft with different
lengths and taper angles. Two rotational speeds, 0 rpm and 5,000 rpm, are considered to
calculate the natural frequencies. One can observe from the tables that the natural
frequencies and first critical speed increase either when the length decreases or when the

taper angle increases.

Furthermore, Table 5.7 shows that, in this example, the gyroscopic effect does not
influence the natural frequency. For instance, the first backward natural frequency at 0
rpm and 5,000 rpm are almost the same for all taper angles. The natural frequencies in
Table 5.7 are obtained using the hierarchical finite element. Moreover, Figure 5.17 shows
the first critical speeds obtained using the hierarchical finite elements. From the figures,
the difference between the first critical speeds increases with an increasing taper angle.
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Table 5.7 Natural frequencies in Hz of the tapered composite shaft with different lengths

Rotational Mode Taper angle, degrees
Length,
speed
m 0° 1° 2° 3° 4° 5°

(rpm)
BWI1 | 416 737 | 1235 1272 1483 | 1658
FW1 416 737 | 1235 1272 1483 | 1658

0
BW2 | 1297 | 2001 | 2508 | 2876 3146 | 3348
FW2 | 1297 | 2001 | 2508 | 2876 3146 | 3348
L=0.5

BW1 | 415 737 | 1022 1271 1482 | 1657
FW1 416 738 | 1024 1273 1484 | 1660

5000
BW2 | 1297 | 2001 | 2507 | 2875 3145 | 3347
FW2 | 1298 | 2002 | 2509 | 2876 3147 | 3349
BW1 511 864 | 1175 1444 1672 | 1860
FW1 511 864 | 1175 1444 1672 | 1860

0
BW2 | 1582 | 2335 | 2871 3258 3542 | 3754
FW2 | 1582 | 2335 | 2871 3258 3542 | 3754
09L

BW1 511 864 | 1175 1444 1671 1859
FW1 512 865 | 1177 1446 1673 | 1862

5000
BW2 | 1582 | 2335 | 2870 | 3257 3541 | 3753
FW2 | 1583 | 2336 | 2873 3260 3543 | 3755
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BW1 644 1035 | 1376 1669 1914 | 2118
FW1 644 1035 | 1376 1669 1914 | 2118
0
BW2 | 1970 | 2774 | 3342 3748 4045 | 4269
FW2 | 1970 | 2774 | 3341 3748 4045 | 4269
0.8L
BWI1 644 1034 | 1375 1667 1913 | 2117
FW1 644 1036 | 1377 1669 1915 | 2120
5000
BW2 | 1969 | 2774 | 3341 3747 4045 | 4268
FW2 | 1971 | 2775 | 3343 3750 4047 | 4270
BWI1 835 1272 | 1648 1968 2236 | 2458
FW1 835 1272 | 1648 1968 2236 | 2458
0
BW2 | 2514 | 3371 | 3969 4395 4707 | 4941
FW2 | 2514 | 3371 | 3969 4395 4707 | 4941
0.7L
BW1 835 1271 | 1647 1968 2235 | 2457
FW1 836 1273 | 1649 1970 2237 | 2459
5000
BW2 | 2514 | 3370 | 3968 4396 4706 | 4940
FW2 | 2516 | 3372 | 3970 4397 4708 | 4942
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Table 5.8 First critical speed in rpm of the tapered composite shaft with different lengths

and taper angles

First critical speed based on Hierarchical finite element,
Length, m | Taper angle
rpm
0° 24952
1° 44130
2° 61079
L=0.5
3° 75764
4° 88166
5° 98457
0° 30682
1° 51702
2° 70124
09L
3° 85987
4° 99340
5° 110410
0° 38613
1° 61839
0.8 L 2° 82001
3° 99239
4° 113690
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Figure 5.17 First critical speeds for different lengths determined using hierarchical finite

element
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5.3.2 Effect of shaft diameter on natural frequencies and first critical speed

In this section, the effect of the inner diameter on the natural frequencies and first critical
speed is analyzed. The length of the tapered composite shaft L is fixed at 0.5 m and the
configuration of the tapered composite shaft and the stiffness of the bearing are the same
as in section 5.3.1. To see its influence on the natural frequencies and first critical speed
of the rotating tapered composite shaft, the inner diameter d; at the free end is 1 cm and it
is varied form d; to 0.7d;. The natural frequency results are illustrated in Table 5.9, and it
can be observed that the natural frequency decreases when the inner diameter at the free

end decreases.

In addition, the first critical speeds of the tapered composite shaft are represented in
Table 5.10, and Figure 5.18. These show that reducing the inner diameter at the free end
reduces the critical speed. Also, when the taper angle increases, the difference between
first critical speeds decreases. For instance, when the taper angle is 0° the first critical
speeds of the tapered composite shaft obtained using the hierarchical finite element are
24,952 rpm and 19,427 rpm for inner diameters d; and 0.7 d;, respectively. But, when the
taper angle is 5° the first critical speeds become 98,457 rpm and 96,671 rpm for d; and
0.7 d;, respectively. The difference between first critical speed values for 5° is less than

the difference for 0°.
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Table 5.9 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm for

different diameters obtained using hierarchical finite element.

Diameter, Taper angle, degrees
Mode
cm 0° 1° 2° 3° 4° 5°
BW1 415 737 1022 1271 1482 1657
FWI 416 738 1024 1273 1484 1660
di=1cm

BW2 1297 2001 2507 2875 3145 3347
FWwW2 1298 2002 2509 2876 3147 3349
BWI 385 709 998 1252 1467 1647
FW1 386 710 1000 1254 1469 1649

0.9 d;
BW2 1208 1928 2451 2833 3114 3324
FW2 1209 1930 2453 2835 3116 3327
BW1 354 680 9744 1232 1452 1636
FW1 355 681 975 1234 1455 1639

0.8 d;
BW2 1117 1853 2393 2789 3082 3301
FW2 1118 1855 2395 2791 3084 3303
BW1 323 651 950 1213 1438 1624
FW1 323 653 951 1210 1440 1629

0.7 d;
BW2 1025 1776 2333 2744 3049 3277
FW2 1026 1778 2335 2746 3051 3280
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Table 5.10 First critical speed in rpm of the tapered composite shaft for different

diameters.
First critical speed based on Hierarchical
Diameter, cm Taper angle
finite element, rpm
0° 24952
1° 44130
2° 61079
di=1cm
3° 75764
4° 88166
5° 98457
0° 23118
1° 42453
2° 59661
0.9 d;
3° 74636
4° 87313
5° 97597
0° 21275
1° 40697
0.8 di 2° 58234
3° 73511
4° 86471
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5° 97242
0° 19427
1° 39054
2° 56846
0.7 d;
3° 72394
4° 85650
5° 96671
1
10x 10 !
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First critical speed. rpm
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Taper angle, degrees

Figure 5.18 First critical speeds for different diameters obtained using hierarchical finite

element
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5.3.3 Effect of fiber orientation on the natural frequencies and first critical speed

In the following example, the influences of ply orientation angle on natural frequencies
and first critical speed of the tapered composite shaft are studied. The configuration and
material properties of the tapered composite shaft from section 5.3.1 are considered. The
ten layers have the same fiber orientation, and the lamination angles vary from 0° to 90°

to investigate their effects on the natural frequencies and the first critical speed.

Table 5.11 — Table 5.13 present the natural frequency and first critical speed of the
tapered composite shaft with different lamination angles. According to the results in the
tables, the natural frequencies and first critical speed of the tapered composite shaft
decrease with increasing fiber orientation angles of the layers and vice versa. Moreover,
Figure 5.19 shows the first critical speeds that were obtained using hierarchical finite
element. According to the results in Figure 5.19, at 0° taper angle, the first critical speeds
of the tapered composite shaft are close to each other for fiber orientation angle 45° <
1 < 90°, for example the first critical speed for 45° and 90° are 14796 rpm and 13934,
respectively, and the difference between the two first critical speeds is 5.8 %. However
when the taper angle is 5°, the variation between the first critical speeds for fiber
orientation angle 45° < i < 90° is clearly noticeable where the first critical speed for 45°
is 70189 rpm and for 90° is 63428 rpm and the difference between the two critical speeds

is 9.8 %.
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Table 5.11 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm with

different fiber orientation angles obtained using hierarchical finite element - I

Fiber orientation

Taper angle, degrees

Mode
angle 0° 1° 2° 3° 4° 5°

BWI1 469 810 1078 1281 1431 1542
. FWI1 469 811 1079 1282 1432 1543
’ BW2 1409 2039 2405 2629 2775 2878
FW2 1410 2039 2405 2629 2776 2879
BW1 316 563 788 988 1162 1312
. FW1 316 564 789 990 1165 1315
2 BW2 1001 1581 2028 2374 2641 2848
FW2 1002 1583 2031 2377 2644 2852
BWI1 270 487 692 886 1065 1228
) FW1 270 488 694 888 1068 1232
¥ BW2 866 1401 1850 2228 2547 2814
FW?2 867 1403 1853 2232 2552 2820
BWI1 244 445 640 831 1016 1192
FWI1 245 446 642 832 1019 1196
. BW2 790 1299 1749 2153 251 2839
FW2 792 1300 1752 2158 2521 2847
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Table 5.12 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm with

different fiber orientation angles obtained using hierarchical finite element - II

Fiber Taper angle, degrees
orientation Mode
0° 10 20 30 40 50
angle
BWI1 236 432 624 813 999 1179
) FW1 237 433 626 816 1002 1183
» BW2 764 126 1707 2112 2480 2815
FW2 765 126 1711 2117 2486 2822
BW1 233 426 615 800 980 1154
FW1 234 428 617 803 984 1158
70°

BW2 752 1238 1666 2049 2392 2698

FW2 754 1240 1670 2053 2398 2704

BWI 232 4223 605 782 951 1109
) FW1 233 4232 607 785 954 1113
» BW2 742 1208 1601 193 2225 2470
FW2 744 1209 1604 194 2229 2475
BWI 232 420 599 769 928 1073
FW1 232 421 601 771 930 1076

90°

BW2 738 1186 1551 1851 2097 2299

FW2 739 1188 1553 1854 2100 2302
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Table 5.13 First critical speed in rpm of the tapered composite shaft with different fiber

orientation angles

Fiber Orientation First critical speed based on Hierarchical finite
Taper angle
angle element, rpm
0° 28140
1° 48605
2° 64648
00
3° 76758
4° 85717
5° 92115
0° 19208
1° 34108
2° 47642
20°
3° 59622
4° 69956
5° 78717
0° 16403
1° 29367
30°
2° 41612
3° 52866
4° 63147
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5° 72900
0° 14796
1° 26863
2° 38558
45°
3° 49687
4° 60886
5° 70189
0° 14242
1° 25948
2° 37432
60°
3° 48621
4° 59429
5° 69748
0° 14036
1° 25592
2° 36784
70°
3° 47651
4° 58095
5° 68029
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0° 13938
1° 25300
2° 36138
80°
3° 46493
4° 56269
5° 65390
0° 13934
1° 25188
2° 35785
90°
3° 45749
4° 54983
5° 63428
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Figure 5.19 First critical speeds for different fiber orientation angles based on

hierarchical finite element
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5.3.4 Effect of the stiffness of the bearing on the first critical speed

This section shows how a bearing’s stiffness can influence the first critical speed of the
tapered composite shaft. This analysis is conducted using the tapered composite shaft
from section 5.3.1. The stiffness of the bearing varies from 0.01 MN/m to 10 GN/m.
Figure 5.20 presents the variation of the first critical speed of the tapered composite shaft

for various levels of bearing stiffness.

The figure shows that, at low bearing stiffness, increasing the taper angle decreases the
first critical speed; despite the fact that, at high bearing stiffness, increasing the taper
angle increases the first critical speed. In addition, it can be observed from the figure that
at a small taper angle the required stiffness for the bearing to be considered as simply
supported condition, which is the condition that increasing the stiffness of the bearing
does not affect the first critical speed and the natural frequencies any more, is lower than

the stiffness required for the bearing at large taper angle.
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Figure 5.20 First critical speed for different bearing stiffness values determined using

hierarchical finite element.

184



5.3.5 Effect of axial load on natural frequencies and first critical speed

To study the consequence, on the natural frequencies and first critical speed, of applying
axial load, the tapered composite shaft in section 5.3.1 is considered. The tensile and
compressive loads are applied at the free end of the tapered composite shaft, and the
compressive loads are less than the buckling loads. The results of the natural frequencies
and first critical speed of applying the tensile and compressive loads on the tapered
composite shaft are illustrated in Table 5.14, Table 5.15 and Figure 5.21 — Figure 5.26.
The natural frequencies and critical speeds are obtained using the hierarchical finite

element.

According to the results in the tables and figures, the tensile load increases and the
compressive load decreases the natural frequency and critical speed. This is because the
tensile load increases the stiffness of the tapered composite shaft, while the compressive
load decreases it. In addition, increasing the taper angle increases the natural frequency

and the first critical speed for both the tensile and compressive loads.
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Table 5.14 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm with

different tensile loads using the hierarchical finite element

Tensile Taper angle, degrees
Load Mode
0° 1° 20 30 40 50
(KN)
BW1 433 744 1027 1274 1484 1659
FW1 434 746 1029 1276 1486 1662
1 BW2 1311 2008 2512 2878 3148 3349
FW2 1312 2010 2514 2880 3149 3351
BW1 463 759 1037 1281 1489 1664
FW1 464 760 1038 1283 1491 1665
’ BW2 1339 | 2022 2522 2886 3154 3354
FW2 1334 | 2024 2524 2888 3156 3357
BW1 506 781 1051 1291 1497 1669
FWI 507 782 1052 1293 1499 1672
‘ BW2 1379 | 2043 2536 2897 3162 3361
FW2 1380 | 2045 2538 2899 3166 3364
BW1 545 802 1064 1301 1504 1675
FWI1 546 803 1066 1303 1507 1677
’ BW2 1418 2064 2550 2908 3171 3369
FW2 1418 2066 2553 2910 3173 3371
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Table 5.15 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm with

different compressive loads using hierarchical finite element

Compressive Taper angle, degrees
Mode
Load (KN) 0° 1° 2° 3° 4° 5°

BW1 398 729 1018 1268 1479 1655
FW1 398 731 1019 1270 1481 1658

1 BW2 1283 1993 2502 2871 3142 3345
FW2 1284 1996 2504 2873 3.144 3346
BW1 361 713 1008 1261 1474 1651
FW1 362 715 1006 1263 1477 1654

’ BW2 1254 1979 2492 2864 3136 3340
FW2 1255 1981 2494 2866 3138 3342
BWI 295 688 993 1250 1466 1645
FW1 296 690 995 1253 1468 1648

‘ BW2 1210 1957 24717 2852 3127 3332
FW2 1211 1958 2479 2855 3129 3335
BW1 214 662 977 1240 1459 1639
FWI1 214 663 979 1242 1461 1641

’ BW2 1163 1934 2463 2841 3118 3325
FW2 1165 1936 2464 2843 3120 3327
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Figure 5.21 First critical speed of the tapered composite shaft with taper angle of 0° for

different axial loads obtained using hierarchical finite element
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Figure 5.22 First critical speed of the tapered composite shaft with taper angle of 1° for

different axial loads obtained using hierarchical finite element
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Figure 5.23 First critical speed of the tapered composite shaft with taper angle of 2° for

different axial loads obtained using hierarchical finite element
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Figure 5.24 First critical speed of the tapered composite shaft with taper angle of 3° for

different axial loads obtained using hierarchical finite element
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Figure 5.25 First critical speed of the tapered composite shaft with taper angle of 4° for

different axial loads obtained using hierarchical finite element
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Figure 5.26 First critical speed of the tapered composite shaft with taper angle of 5° for

different axial loads obtained using hierarchical finite element
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5.3.6 Effect of the disk on the natural frequencies and first critical speed

Another factor that can influence the natural frequencies and critical speeds of the tapered
composite shaft is the attached disk. Therefore, this section discusses the influence of the
disk’s mass on the natural frequencies and first critical speeds. The tapered composite
shaft in section 5.3.1 is considered for the analysis, and Figure 5.27 shows the tapered
composite shaft with the attached disk. The disk is attached at the free end of the shaft,
the thickness of the disk is 0.02 m, and the outer and inner diameters of the disk are 0.06
m and 0.015 m, respectively. Table 5.16 and Table 5.17 illustrate the natural frequencies
and first critical speed of the tapered composite shaft for different disk masses, and the
results in Table 5.16 were obtained using the hierarchical finite element. From the tables,
one can observe that increasing the density reduces the natural frequencies and first
critical speed; thus, to eliminate the effect of the disk’s density, increasing the taper angle
can be helpful because increasing the taper angle can increase the natural frequencies and

first critical speed.
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Figure 5.27 The tapered composite shaft with the attached disk
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Table 5.16 Natural frequencies in Hz of the tapered composite shaft at 5000 rpm with

different material densities of the disk

Density Taper angle, degrees
Mode
Kg/m’ 0° 1° 2° 3° 4° 5°
BWI 300 491 653 796 920 1029
FW1 302 494 657 800 925 1033
1000
BW2 1039 1555 1931 2209 2418 | 2575
FW2 1047 1566 1942 2221 2428 | 2585
BW1 267 421 543 645 729 798
FW1 275 429 552 653 738 807
4000
BW2 928 1347 1650 188 2074 | 2229
FW2 960 1393 1705 1944 2133 | 2286
BWI 252 395 507 5978 671 731
FW1 267 411 522 613 686 746
8000
BW2 820 1136 1359 1534 1680 | 1808
FW2 878 1218 1452 1633 1782 1911
BW1 241 378 484 570 640 696
FW1 262 401 507 593 662 718
12000
BW2 738 997 1177 1319 1439 1545
FW2 812 1090 1278 1425 1548 1656
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Table 5.17 The first critical speed in rpm of the tapered composite shaft for different

material densities of the disk

Density, Taper angle, First critical speed based on Hierarchical

Kg/m® degrees finite element, rpm
0 17840
1 29160
2 38847

1000
3 47394
4 54942
5 61590
0 15556
1 24369
2 31422

4000
3 37359
4 42416
5 46746
0 14318
1 22091

8000 2 28189
3 33273
4 37588
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5 41278
0 13385
1 20435
2 25915
12000
3 30484
4 34385
5 37754

5.4 Summary

In this chapter a comprehensive parametric study of the tapered composite shaft is carry
out. Two cases are considered. In case A the tapered composite shaft with a disk at the
center and with two bearings at the ends, is considered; the hierarchical, the Lagrangian,
and the conventional-Hermitian finite element models are used to study the effects of the
taper angle and stacking sequence on the natural frequencies and first critical speeds.
Furthermore, in case B the effects of the length, diameter, fiber orientation angle, bearing
stiffness, axial load and disk’s mass on the natural frequencies and first critical speeds are
studied; the tapered composite shaft is fixed by bearing at one end and is free at the other
end. In case B the results of the natural frequencies and first critical speeds are

determined using the hierarchical finite element model.
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Chapter 6

Conclusions, contributions, and future work

6.1 Conclusions

In the present dissertation three finite element models have been developed for
rotordynamic analysis of the tapered composite shaft. These models were developed
using the hierarchical finite element formulation, Lagrangian finite element formulation,
and conventional-Hermitian finite element formulation. The three finite element models
are based on Timoshenko beam theory, and the effects of rotary inertia, transverse shear
deformation, gyroscopic force, axial load, coupling due to the lamination of composite
layers, and taper angle are incorporated in the three finite element models of the tapered

composite shaft.

In order to validate the three finite element models, Rayleigh - Ritz method is used to
obtain an approximate solution for simply supported tapered composite shaft. In chapter
4 a numerical example is given, and it is found that the bending natural frequencies and
first critical speeds, for different taper angles of the tapered composite shaft, determined
using Rayleigh-Ritz method are in agreement with those obtained using the hierarchical,

the Lagrangian, and the conventional-Hermitian finite element models.

In this thesis, the tapered composite shaft means that the inner and outer diameters of
one end are constant while the inner and outer diameters of the other end increase with

increasing the taper angle. Consequently, it is found that increasing the taper angle
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increases the bending natural frequencies and first critical speed of the tapered composite
shaft. However, it is seen from the numerical results of Case A in chapter 5 that this
direct relationship between the first critical speed and the taper angle does not sustain
because the first critical speed reaches its maximum value at 10° and then starts to drop

off with increasing the taper angle.

In chapter 5 an extensive parametric study of the rotordynamic response of tapered
composite shaft is presented, and the effects of stacking sequence, fiber orientation
angles, taper angle, axial load, bearing stiffness, disk’s position, the inner diameter, and
the length of the tapered composite shaft are studied. The important points that can be

said about the results in chapter 5 are the following:

v’ Stacking the layers that have high stiffness near the outer surface of the shaft
increases the natural frequencies and first critical speed; because the layers near
the outer surface have higher volume and circumference than those near the

inner surface of the shaft.

v" Increasing the taper angle when using low stiffness bearing decreases the first
critical speed; whereas, increasing the taper angle when using high stiffness

bearing increases the first critical speed.

v The natural frequencies and first critical speed of the tapered composite shaft
increase with applying tensile load and decrease with applying compressive

load along the axial coordinate of the tapered composite shaft.
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v Decreasing the length of the tapered composite shaft and increasing the
diameter increase the natural frequencies and the first critical speed and vice

versa.

6.2 Contributions

Using the conventional — Hermitian finite element formulation and following the same
procedure as in References [8,25] to obtain the finite element model for uniform metal
driveshaft, the author of this thesis develops in chapter 3 a finite element model for
uniform composite driveshaft based on Timoshenko beam theory and uses this model to
carry out rotordynamic analysis of the stepped composite shaft.

Three finite element models for tapered composite shaft are developed. These models are
developed using:

1) The hierarchical finite element formulation.
2) The Lagrangian finite element formulation.

3) The conventional-Hermitian finite element formulation.

6.3 Future work

Rotordynamic analysis of the tapered and the uniform composite shafts can be continued,

and the following recommendations can be considered:

v Using any one of the three finite element models, dynamic stability of the

tapered composite shaft can be studied.
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The effect of damping on the response of the tapered composite shaft can be

considered.

The Rayleigh-Ritz model of the tapered composite shaft can be extended to
include the effect of the rigid disk and the bearings rather than considering only

the simply supported condition as it has been done in this thesis.

Manufacturing the tapered composite shaft using the advanced fiber placement

machine and performing experimental rotordynamic analysis.

One of the new applications of the composite material in oil and gas industries
is manufacturing the drill pipe using the composite materials; the drill pipe is
part of the drillstring which is considered as driveshaft. The present work can
be extended to develop a finite element model for drillstring made of composite

materials and to perform the rotordynamic analysis.
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Appendix A

Uniform Composite shaft-Conventional finite element

The displacement field of the shaft element in terms of nodal displacements and shape

functions is

_vl

Wy

v Ny 0 0 N2 Nz 0 0 Nel|Pn

WI |0 Ny =N 0 0 Ngg —Neg 0 |8

By 0 =Ny N,, 0 0 —N,; N,, 0 ||v2

ﬁz er 0 0 er NT3 0 0 NT4 w,

Byz

-BZZ-

The kinetic energy of the uniform composite shaft is

L L L

1 2 g 1 0 s :

Teomp =5 | mc (V2 +W?) dx +3 Iic(B2 + B2) dx — | I,c Q B,By dx

0 0 0

The strain energy of the uniform composite shaft due to axial load is

o= PG + (5 e

(A.1)

(A.2)

(A3)

The strain energy of the uniform composite shaft due to bending moments and shear

forces is
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(e (. g—;;)) (Z-p)
(% B16k + ksAge (ﬁz gz>> (Z_v - ﬁz)
o (1t (39 ) e 50

1 2B, ow ow
(- ghabo G+ (B + 57) ) (8 + 55) | @

(A4)
From chapter 3, the shear angles in y-x plane and z-x plane are
ov
By = o B, (A.S)
ow
@xz = a + ﬁy (A‘6)
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Substituting Equations (A.5) and (A.6) into Equation (A.4), one can obtain the following

1t B, 1 B
Ups = EJ. [(Dlla_xy + EksB16(_®xy) >6_xy
0

B, 1 9B,
+ (D11 ax 7 KsB16(Px2) >—

1 B
+ ks(ASS + A66)(¢xy2 + ¢xzz) - E ks Blﬁ ¢xy a_;

1 ap,
- E kS B16 Q) r— dx

XZ ax
(A.7)
Also, from chapter 3, the shear angles can be expressed as
D 93 LT, 03
Oy = — u S com 27 (A.8)
kS(A55 + A66) 0x 12 dx
D 93 L* T, 03
Dyy = — H l/: = - —F M; (A.9)
kS(ASS + A66) dx 12 ox
where
12Dy, ,,
) = A.10
OMP kg (Ass + Age) L2 (4.10)

Substituting Equations (A.8) and (A.9) into Equation (A.7), one can obtain
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B, 1 L* T, 23v\ \ dp
<D11a—xy+§ksB16< 1C20mp 6x3>> axy

ap, 1 L? Lcomp 23w\ \ 08,
+<Dua—x‘§"53w<‘ 12 9x3) ) ox

12 Toomp 33v\” 12 Teomp 03w\’
¥ ks(dss + Aso) ((‘T W) ¥ (‘T W)

1 < L? Tcomp 6377) dBy
16 \ —

——=k.B
2% 12 0x3) ox

1 12 Teomp 03w\ 5,
2 ks Bio <_ 12 0x3 ) ox dx

1 L
Ups = =
BS z-fo

(A.11)

Substituting Equation (A.1) into Equation (A.2), Equation (A.3), and Equation (A.11),
and then applying Lagrange’s equations, one can obtain the equations of motion of the

uniform composite shaft. The generalized co-ordinates for the shaft element are

T
{@={vi wi By1 Ba v2 wy Byz Pz} (A.12)
Using Lagrange’s equations

(A.13)

d (6L> dL .
aq,

dt S aq

where

L= Tcomp - (UBS + Ur)

Applying Lagrange’s equation gives
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i [aTCOmP] _ aTCOmp
del 04, dq,

L
= f [me (¥ Nep Neg + By Ney Neg + 3 Neg N
0
+ .gzz N¢y Ney)
+ Iy (D3 Npy Npy + Boy Npy Ny + Uy Npy Npg + S0 Npq Nyy)
- Ip (_Wl erer + ,Byl er er - WZ er Nr3

+ By2 Nyt Nyy)]dx (A.14)

i [aTCOmp] _ aTCOmp
dtl 04q, 99,

L
= j [mc(W1Nt1Nt1 — By1Nt1Nig + Wy Ny Nis — ﬁyth1Nt4)
0

+ Id(wlerer - ,glerlNrZ + WZerNr3 - ByZerNr4)

=1 (1'71 NyiNy1 + leerer + U Ny Np3 + ,BZZerNr4)]dx (A.15)

i aTcomp] _ aTcomp
dtl 0dq; daq;
L .o ..
= J [mc(_W1Nt2Nt1 + By1NezNiz — Wy NeaNes + ﬁythsz)
0

+ Id(_WINTZer + ,glerZNrZ - WZNTZNT3 + ,gyZNrZert)

+ I (1'71 Ny Npy + Bz1Nr2Nr2 + Uy NppNps + Bzersz)]dx (A.16)
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i aTcomp] _ aTcomp
dtl 0q, 0q,

L
= f [me($1Ne2Ney + BraNeaNez + 92Ny Nes + B22NiaNey)
0

+ I4(D1NyyNpy + B3 NyoNpy + D3NpgNig + B2NpaNps)

- p(_W1 Ny2Ny1 + BleerrZ — Wy Ny Npz + Byersz)]dx (A.17)

i I:aTCOmp:I _ a’I-'C'O‘f'flp
dt aCI5 aqS

L
= j [mc (ﬁ1 N3Ny + Bz1Nis Nep + U Nez Nig + B3 Nes Nt4)
0
+ 1 (1 Ny3 Nyt + Bo1 Nz Ny + ¥ Nig Npg + B2 Nyg Ny

- Ip (_W1 Nr3 Nr1 + ,Byl Nr3 er - Wz Nr3 Nr3

+ Byz Ny3 NM)]dx (A.18)

i aTcomp] _ aTcomp
dtl 0qg 09,

L
= J [mc(W1 Ni3Niy — By1NegNeg + Wy NegNis — .ByZNt3Nt4)
0

+ Id (WlNr3Nr1 - BleT3NT2 + WZNT'3NT'3 - ,gyZNr3Nr4)

— I (7'71 Ny3Nyy + BoiNysNeg + U3 NpgNps + Bzer3Nr4)]dX (A.19)
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i aTcomp] _ aTcomp
dtl 094, aq;

L
= f [me(—W1NeuNpy + By1NegNey — WyNegNes + ByaNegNiy)
0

+ Id(_wlNrthrl + ﬁleMNrZ - WZNr4Nr3 + ﬁyZNr4Nr4)

+ I (1'71 Ny4Nyy + Bz1Nr4Nr2 + Uy NpyNp3 + Bzer4Nr4)]dx (A.20)

i [aTcomp] _ aTcomp
dtl 0gg dqg

L
= j [mc(ﬁ1Nt4Nt1 + Bz1NeaNpy + U NeyNes + ﬁzth4Nt3)
0

+ Iy(D1NyyNpy + By NpyNpy + 93Ny Npg + B2NpaNps)

-1, (_W1 Nyy4Npy + ,By1Nr4Nr2 — Wy NpyNps + Byer4Nr4)]dx (A.21)

aUBS L LZ A L A . z -
aq B 24 Teomp Bis Ks (_Wleer + By1NuNrz = waNiy Nig
1 0

+ By K Nyy)

+ D11(V1Nr1Nr1 + BsaNpy Ny + v, Ny Ny + ﬁzer1Nr4)

L? .2 . .z
+ 24 Fcomp Bi6 Ks (WlerNtl - .BlerthZ + w,NpNig

4

- ﬁyZerNm) + m rcomp2 ks (A66 + ASS) (lethtl

+ BsaNe1 Ny + v, Ny Nes + ﬁzszNm)] dx
(A.22)
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a9,

0Ugs
dqs

L
= J. [Dll(wlerer - .Blerler + Wy Ny Ny — 5y2Nr1Nr4)
0

2

W
W

- -

o2 Tcomp B1s Ks (VlerNtl + BN Niy 4+ v, Ny Nis
.2 2 ;o ;o
+ .BZZerNM) + >4 Fcomp B16 Ks (Vthler + ;1N Ny,

+ Vth1Nr3 + ;BzzNuNM)

4 ;%
+ m rcomp2 ks(A66 + A55) (Wththl - ﬁyl

2\\\
=

t14Vt2

+ Wy Ny Ny — .ByZNthM)] dx

(A.23)
L
= j [D11(_W1Nr2Nr1 + ,3y1Nr2Nr2 — W Ny Npg + ﬁyerzNM)
0
2 .2 .z .z
+ 24 Fcomp B K (VlNrZNtl + B,1N2 Ny + Vo N Nig
+ ﬁzersz)
2 z z z
- ﬁ l—‘comp Bl6 ks (VthZer + ﬁletZNrZ + VZNtZNrB
+ ﬁZZNtZNT4)
L* 5 ;g ;2
+ 2 Teomp” ks(Aee + Ass) (~wiNeoNey + ByaNioNo
— Wy Ny Nz + 3y2Nt2Nt4)] dx
(A.24)
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aUBS L LZ s, ; z .
9 = .f 24 lcomp Bie Ks (_WthZer + By1NiaNrz — WoNiaNig
4 0

+ By2 N Nr4)

+ D11(V1Nr2Nr1 + ﬁz1Nr2Nr2 + Uerer3

. L? . z
+ .BZZNrZNM) + ﬁ 1-‘comp B16 ks (WlNrZNtl - .BlerZNtZ

+ Werth3 - ﬁyerZNm)

L* A ;2
+ 142 Fcompz ks(Ags + Ass) (771Nt2Nt1 + B2z1Ne2 Nz

+ v, Ny Nps + ,BZZNtZNM)] dx

(A.25)
OUgs Lrypz ;o ;o ;.
305 = P Tcomp B1e Ks (_WthBer + By1NiNrz — Wy NgNig
0
+ ﬁyth3Nr4)
+ Dll(ler3Nr1 + ﬁz1Nr3Nr2 + UZNrBNrB + .Bzer3Nr4)
12 .2 .2 .
+ ﬁ 1—‘comp B16 ks (WlNr3Nt1 - ﬁlerSNtZ + WZNr3 Nt3
Z ) o : 2
- ﬁyZNr3Nt4 + m 1—‘compz ks (A66 + ASS) (letSNtl
+ Bs1NisNyy + v, NisNes + /3z21\7t3Nt4)] dx
(A.26)
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aq = J. Dll(WlNr3Nr1 - .BlerBNTZ + Wy N3Ny — 5y2Nr3Nr4)
6 0
2 z z z
o2 Tcomp B1s Ks (V1Nr3Nt1 + B,1Np3Ni; + v NisNig
z 2 z z
+ .BZZNr3Nt4) + >4 Fcomp B16 Ks (Vth3Nr1 + B,1 N3Ny,
+VyNzNp3 + ﬁzth3Nr4)
4 : s : s
) ;g ;g
+ 142 Tecomp” Ks(Age + Ass) (Wth3Nt1 — By1NzNe,
+ Wy N3 Nps — .ByZNt3Nt4)] dx
(A.27)
0Ugs L . . . .
aq = [D11(_W1Nr4Nr1 + ﬁy1Nr4Nr2 — W Ny Nps + ﬁyer4Nr4)
7 0
2 .2 .2 .2
+ 24 Fcomp Bi6 Ks (VlNr4Nt1 + 1NNz + Vo N Nis
+ ﬁzZNMNH)
2 z z z
- ﬁ l—‘comp B16 ks (Vth4Nr1 + ﬁletzl-er + VZNt4-Nr3
+ .BZZNt4Nr4)
L* 5 ;2 ;2
2 Toomp” ks(Ags + Ass) (—wiNeaNes + By Nealeo
— Wy Ny Nz + 3y21\7t41vt4)] dx
(A.28)
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aUBS L LZ z , , Z %
q N .f 24 Tcomp B1s K (_Wth4Nr1 + By1NwNrz = WoNiyNes
8 0

+ .ByszNm)

+ D11(V1Nr4Nr1 + ﬁz1Nr4Nr2 + Uer4Nr3

-

+ WZNr4Nt3 - ﬁyer4Nt4)
L4-

+ 142 Fcompz ks(Age + Ass) (V1Nt4Nt1 + Br1NeaNpy

+ v, Ny Nps + ,Bzth4Nt4)] dx
(A.29)
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Appendix B

Hierarchical shaft element formulation

The displacement filed of hierarchical shaft element is [22]

N
v=vifi +vfy + Z Un+2 fusz (B.1)
n=1
N
w = wify +wof; + Z Wn2 fnt2 (B.2)
n=1
N
By = Bynfi + Byafo+ ) Bynsn) fusa B3)
n=1
N
Be = Barfi+ Brafo+ ) Baneay faro B.4)
n=1

The kinetic energy of the tapered composite shaft in terms of non-dimensional coordinate

&is
1

L q L . .
Temp =35 | me®) 02 4wt +5 [ 1ac(©) (85 + B2)d
0

0

1

- f L Lo ()08, B, dé
0 (B.5)

The strain energy of the tapered composite shaft due to the axial load in terms of non-

dimensional coordinate ¢ is
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IR R

The strain energy of tapered composite shaft due to bending moments and shear forces in

term of non-dimensional coordinate ¢ is

(1= ([N (9B,
Ups = bf [ﬁDn <<6_§> + (G_E) )

_ 96, , , 0, 196, 0w _10p,0v
+ Bisks <'8y P A T AL a_z)

1_
+ _Bl6ks

By . 9B, 10B,0v 10, 0w
3Bk 1 =)

ag_ﬁy 9t L 0t 9t L Ot 0%

9 1 /0w\? ]
+ = (A66 + A55)< (6;) (6_‘;]> + L,Byz + LﬁZZ + Z,B’ya—‘g

dg

ov
2.5

(B.7)

Substituting Equations (B.1) — (B.4) into Equations (B.5) — (B.7) and then applying
Lagrange’s equations, one can obtain the equations of motion of the tapered composite

shaft.
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The generalized co-ordinates for the shaft element are

qG1 =" q; =7 s = V3  eeeeens dp = Un+2
dp+1 = W1 Ap+2 = W3 p+3 = W3 eeeeene q2p = Wn+2
(B.8)
q2p+1 = ﬁyl Q2b+2 = ﬁyz d2p+3 = ;By3 ------- qzp = .By(N+2)
d3p+1 = Bz1 d3p+2 = B2 Q3p+3 = Bzz  ceeeene Qap = 'BZ(N+2)
Lagrange’s equation is
d ( dL ) dL _0
dt\aqg ) aq (B.9)
where
L= Tcomp - (UBS + Ur)
Applying Lagrange’s equation gives
i aTcomp] _ aTcomp
dtl dq, dq,
) N
= J Lm.(§) <i7'1 Lht+tUfifa+ Z Untz f1 f2+n) d¢
0 (B.10)
i [aTcomp] _ aTcomp
datl 04q, aq;
1 N
= f Lmc($) (171 LAtV 2+ Z Untz f2 f2+n> d¢
0 (B.11)
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i aTcomp] _ aTcomp
dt aqb aqb

= f Lmg($) <ﬁ1 fuvz fr + V2 faez f2
0

N
+ Z Uns2 ez f2+n> ds
n=1

(B.12)
i [aTcomp] _ aTcomp
dt 1 0qp4q 0qp+1
1 N
= j Lm(&) <W1 Lfitw fifot+ Z Wni2 f1 f2+n) d¢
0 (B.13)
i [aTcomp] _ aTcomp
dtl 0qp4; 0qp+2
1 N
= j Lm.(&) <W1 LA+tw, frfa+ z Wniz f2 f2+n> d¢
0 (B.14)
i aTcomp] _ aTcomp
dtl 04z 0q2p
1
= J Lm.(&) <W1 Ine2 f1 +Wo fyga fo
0
N
+ Z Witz fn+2 f2+n> dé
n=1 (B.15)
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i aTcomp _ aTcomp
dt 10q2p41 0q2p+1

1
= f L [Idc(f) (.gyl fifit+ B.yZ fife

+ i Bym+2) fi fn+2>

N
+Q1,($) <B.Zl fifi+Bafife+ Z Bz(n+2) fi fn+2>] d¢
n=1

(B.16)
i aTcomp _ aTcomp
dt L0q4zp42]  0q2p42
L N
= f L [Idc(f) (ﬁm i+ Eyz fafo+ Z ﬁy(n+2) f2 fn+2)
0 n=1
N
+Q1,($) (ﬁm ffitBafafa+t Z Bz(n+2) f2 fn+2>] d¢
n=1 (B.17)
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[aTcomp] _ aTcomp

d
dtl 9qsp 0q3p

= J; L[Idc(€)<,éy1f1v+zf1+ﬁyzf1v+2f2

N
+ Z Ey(n+2) fN+2 fn+2>
n=1

+QL,($) (ﬁ.zl fausa fr + Bz faea fo

N
+ ) Banea) fusz far )] dg
; (n+2) IN+2 Jn+2 (B.18)

i aTCOmp _ aTCOmp
dtl0qzps1]  0q3p41

) N
= f L[Idc(f) (ﬁm fifi+Bahifa +Zﬁz(n+2) fi fn+2)
0 n=1

—Q1,($) <ﬁy1 i+ 33'/2 fHfz+ Z .By(n+2) f fn+2>] d¢

(B.19)
i [aTcomp _ aTcomp
dtl0qzpi2]  0qsps2
) N
= j L [Idc(f) <le ffitbBafafa+ Z .gz(n+2) f2 fn+2)
0 n=1
N
- Q1) <,3;/1 f2fi+ 33.12 fofz+ Z ﬁy(n+2) f2 fn+2>] as
ne1 (B.20)
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i aTcomp] _ aTcomp
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Appendix C

Lagrange’s interpolation formulation

The displacement field for the shaft element with three nodes in terms of nodal

displacements and shape functions is

3

v(x) = Z v (D) Nyi (x) (C.1)
3

W) = ) wiOONu() (€2)
i=1
3

By() = ) Bu(ONu(0) ©3)
i=1
3

B0 = ) Ba(O)Ny() (€4
i=1

The kinetic energy of the tapered composite shaft

L

L
7um,=%fn%@)W2+Wﬁ¢»+%!h4@0%+ﬁﬂdx
0

L

- j Ipc (X)Qﬁ'zﬁydx
0 (C.5)

The strain energy of the tapered composite shaft due to axial load is
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U - 1fLP (av)z N (GW)Z 4
F=3) [ax o ldx (C.6)
The strain energy of tapered composite shaft due to bending moments and shear forces is
1 (/o 3B w1 9
— _ w — v
=3 [|(5) (D”a—xy # Bisks By + ) + 5 Buoks (B - a))
0
B\ (= 9B, - ov 1_ ow
+ () (P Gy~ Busks (5 = ) = 3 Bueks (8 + )
(av
* 0x

- ) ks <_E15 o s () (5, +?’_¥>>

ow _ ﬁy ow _ ov
+a>ks Bs1 —— I +A55(.By 6x>+ Ase( z‘&)

)|

Substituting Equations (C.1) — (C.4) into Equations (C.5) — (C.7), and then applying

(C.7)

Lagrange’s equations, one can get the equations of motion of the tapered composite shaft.
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The generalized co-ordinates for the shaft element are

1 =" 2 = V2
s = Wy s = W
q7; = .3y1 qs = .Byz
q10 = Bn q11 = B2

Using Lagrange’s equation

d ( aL)
dt \dq

where

L= Tcomp - (UBS + Ur)

Applying Lagrange’s equation gives

d _aTcomp_ . aTcomp

d aTcomp] _ aTcomp

a 94 093 B

oL
dq
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0

4z = V3
s = W3
qo = By3
q12 = B3

L
= f me(x)(P1Ny1Nyg + U,Ny1Npp + U3N11N33) dx
0

L
f me(x)($1N33Nyy + U, N33Np, + U3N33N33) dx
0

(C.8)

(C.9)

(C.10)

d 10T 1 0T L
TP - 2T = f me(x) (1 NppNyg + U NppNyp + 3Ny, N33) dx (C.1D)
0

(C.12)
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- EksBl6(W1N22N11 + wy Ny, Ny + W3N22N33)

1 _ . . .
- EksBl6(,By1N22N11 + Byz Nya Ny, + By3N22N33)

1 _ . . .
+ EksBl6(ﬁy1N22N11 + By NogNoy + ﬁy3N22N33)

+ 511(,3z11\7221\711 + Br2Nyy Ny + ﬁz3N22N33)
+ ks§15(,3z11\722N11 + Baz Nyy Ny, + ﬁz3N22N33)

+ kSEIS(,leNZZNll + ﬁzZ NZZNZZ + ﬁZ3N22N33)

+ ks(Ags + Ass)(B,1N2a N1y + BraNop Ny + ﬁz3N22N33)] dx (C.32)
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L
P) f [_ksB15(v1N33N11 + v, N33N,, + 173N33N33)
d12 0

— ks(Age + I‘Tss)(v1N33N11 + v, N33N,, + U3N33N33)

1 _ . . .,
- EksBl6(W1N33N11 + wy N33 Ny, + W3N33N33)

1 _ . . .
- EksBl6(,By1N33N11 + Byz N33N,, + By3N33N33)

1 _ . . .
+ EksBl6(ﬁy1N33N11 + By N33Ny, + ﬁy3N33N33)

+ 511(,3z11\7331\711 + Br2N33Ny, + ﬁz3N33N33)
+ ks§15(,3z1N33N11 + Bsz2 N33Ny, + ﬁz3N33N33)

+ kSEIS(,leNZZNll + ﬁzZ NZZNZZ + ﬁZ3N22N33)

+ ks(Ags + Ass)(B,1N2a N1y + BraNop Ny + ﬁz3N22N33)] dx (C.33)

aUF L - < i ( ] \/
e f P (v1N11Ny3 + v, N1 Ny + v3N;1 N33 )dx (C.34)
1 Jo
L
aUF - e (7 ] \7 7
ErN = f P (1N2,Nyy + 02N, Nop + v3N,, N33 ) dx (C.35)
2 Jo
L
aUF - - (7 7 \/ \
90" f P (v1N33Ny1 4 v, N33N55 + v3N33N33)dx (C.36)
3 Jo
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aUF L - i’ i (i ] \]
W = P (W1N11N11 + W2N11N22 + W3N11N33)dx
4 0
L
aUF i’ < i (7 ] \/
0
L
aUF - ’ (] ] \7 \J
W = f P (W1N33N11 + w,N33N,, + W3N33N33)dx
6 0

aUF aUF aUF aUF al]F aUF

dq; 0qg 099 0Gio 0G1 0G|

0
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Appendix D

Conventional finite element

The displacement field of the shaft element in terms of nodal displacements and shape

functions is

_
Wy
v Ny 0 0 N2 Nz 0 0 Nel|Pn
Wl _ |0 Ny —Np 0 0 Nz =Ny 0 ||Bn
By|]=l0 =N,y N,, 0 0 =N N, 0 ||7z (D.1)
Bl INy 0 0 NoNs 0O 0 Nollw
Byz
-BZZ-

The kinetic energy of tapered composite shaft is

L L
Tamp =5 [ me@) (2 + w2+ 2 [ LG (85 + B2
0

0

L

~ | e ydx

(D.2)
0

The strain energy of the tapered composite shaft due to axial load is

1L o ow\?
d ZJ;) [ ox ox Jax (0-3)
The strain energy of the tapered composite shaft due to bending moments and shear

forces is
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1 0By\ (= 9By L *w L, 0w
Ubs =§f ( ) (Dll 0x Bisks 6 0x3 2 2 9x?
0

+1§ " 1“163v+1“262v
2717\ 6 0x3 " 2 0x2
BN [~ B, - (L% [d%v
D B 22—
(6x)< 1 T 15k$<6ax3+26x2
+1§ kg L 63W+F262
27175 \6 ax3 " 2 ax?
L0%v I,0%v _ 0B, _ [(d%v L, 0%
‘(2%*7@ TP T s Gae T 2o

1B 9By i 1“163v+1“262v
2761 5x %6\ 6 9x3 ' 2 0x2

rn o’w
6 0x3
I“Zazw> _ dp, _ (L *w L 0*w
£ - Be, —Y _ A2 =422 —
+ 2 0x2 ks 1 ox S\ 6 9x3 + 2 0x2
1_ 0B, _ (I 93w L, 0%w
—oBgy - A (2 =+ 22— ] |4
+( 2 % ox 66(6 dx3 * 2 0x? x (D.4)
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Substituting Equation (D.1) into Equations (D.2) — (D.4), and then applying Lagrange’s
equations, one can obtain the equations of motion of the tapered composite shaft. The

generalized co-ordinates for the shaft element are

T D.5
{q} = {Ul Wy :By1 Bz1 V2 Wy PBy2 Bzz} (D-5)
Using Lagrange’s equation
d(aL) aL_O (D.6)
dt \dq aqg ‘
where
L= Tcomp - (UBS + UF)
Applying Lagrange’s equation gives
i [aTcomp] _ aTcomp
datl 0dq, 0q,
L ..
= j [me(x) (¥ Ney Ney + Bz Ney Nep + U2 Ny Nes
0
+ fz2 Nig Nia)
+ I3(x) (771 Nyq Npq + ,3.21 Nypq Npp + Uy Npq Nps
+ ﬁzz er Nr4)
- Ip (x) (—W1 Ny Npi + ,3y1 Nyq Npy — Wy Npy Npg
+ Byz er Nr4)]dx (D7)

250



i [aTcomp] _ aTcomp
dtl 0dq, daq,

L
= f [mc(x)(W1Nt1Nt1 - ;BlenNtz + Wy Niy Nis
0
~ By2Ne1Nea)
+ I4(x) (W1Nr1Nr1 - BlerlNrZ + Wy Ny Ny — ﬁyerle)

— I, (x) (91 Nya Ny + Bz1Ny1Nyy + 5 Ny Npg + By Ney Ny ) | dx (D.8)

i [aTcomp] _ aTcomp
dtl 04, dq;

L
= j [mc(x)(—W1Nt2Nt1 + By1 N2 Ny — WoNip Nig
0

+ ByththzL)
+ 1y (x)(_W1Nr2Nr1 + .glerZNrZ — Wy Ny N3 + ﬁyersz)

+ 1, (x) (91 Nyo Ny + Bz1Ny2Nyy + 5 NypNpg + Bra Ny Ny ) | dx (D.9)

i [aTcomp] . aTcomp
dtl 04, 0q,

L
= j [mc(x)(iiththl + 71NNy + VN Nes + .BZZNtZNM-)
0

+ 14(x) (ileerrl + EZINTZNrZ + Uy Npo Ny + ,gzererzL)
- Ip (x)(—v'v1 Nyo Ny + Bleerrz — Wy Ny Npg

+ ,ByZNrZNr4)]dx (D.IO)
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i [aTcomp] _ aTcomp
dt aqS aqS

L

= f [mc(x) (ﬁl Ni3Niy + B71Niz Nz + V3 Nig Nies
0

+ B2 N3 Nea)

+ I4(x) (17'1 Ny3 Ny + fz1 Nps Npg + U Npg Ny

+ ﬁzz Nr3 Nr4)

-1, (x) (_W1 Ny3 Npq + Byl Ny3 Npy — Wy Npz Nps

+ Byz Nr3 Nr4)]dx (D.ll)

i [aTcomp] _ aTcomp
dtl 0ge dqe

L
= j [mc(x)(ﬁﬁ Ni3Niy — By1NezNey + WoNizNes
0

~ By2NesNia)
+14(x) (W1Nr3Nr1 - Bler3Nr2 + Wy N3 Nps — ,gyZNr3Nr4)

—1I, (x) (7'71 Np3Npq + ,leNr3Nr2 + U, NpgNp3 + BZZNr3Nr4)]dx (D.12)

i [aTcomp] _ aTcomp
dtl 0qy aq;

L
= j [mc(x)(—W1Nt4Nt1 + By1NeaNgz — Wy Ny Nis
0

+ EyZNt4Nt4)
+ 1y (x)(_W1Nr4Nr1 + ,élerthrZ — Wy Ny Nps + .éyer4Nr4)

+ L,(x) (1'71 NyaNpy + BsaNpaNyg + 5 NpgyNpg + BZZNr4Nr4)]dx (D.13)
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i aTcomp] _ aTcomp
dtl 0dqg dqg

L
= f [me(x)(# NeaNey + 21NNz + D NegNeg + B2 NeaNyi3)
0

+ 14(x) (ﬁlNrél»er + B21NpaNpy + Do NpyNps + ﬁzszNm)
-1, (x)(—W1 Nyy4Npy + By1Nr4Nr2 — Wy NpyNps

+ By2NyalNys)]dx (D.14)

OUgs Lrry _ ;. ;. A ;o
:f [_Bmk (_Wthler + By1NeiNpp — W N Nig +ﬁy2Nt1Nr4)
0

[~ z . o
+ 4 BieKs (_Wthler + ,3y1Nt1Nr2 — W, N Nig
+ .ByZNthM)

+ 511(U1Nr1Nr1 + ﬁz1Nr1Nr2 + Ver1Nr3 + ﬁzszNM)

F — A . A .
+ 2Bk, (v1 (NerNs + NyyNey ) + By (Nealiyy + NipNey )

+ U2 (]\th3NT'1 + Nr31\zlt1) + ﬁZZ (l\zltél-NTl + Nrél-]\zltl))

I,

?E Kk, (v1 (1\;&11\,@1 + erl\;/n) + b1 (KltZer + erﬁtl)

+ v, (Nt3Nr1 + Nr3Nt1) + B2 (Nt41vr1 + Nr4Nt1))
F ., Z .,z ., Z ., 2
+— B16k (WlerNtl - ,BlerthZ + Wy N Nz — .ByZerNtéL)

12

F . Z ~ Z . Z
+— 4 Bl6k (W1 rthl ﬁy1Nr1Nt2 + W, NNz — ﬁyerthzL)
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1 — — ;  Z z  Z z  Z z  Z
+ _6ks(A66 + Ass) (V1Nt1Nt1 + Bz1NeaNiz + v Ny Nis + .BZZNthM)

W
NY

[T _ _
+ ?ks(Aee + Ass) | 1 (Nthtl + Nthtl)

WA
WA
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2

2 p— — Z Z Z Z Z Z
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WA

zm

+ B2 (Ntht4 + Nt

+ BZZNtht4)l dX (D 15)
aUBS —_— Ve ya Y Y 7, 7, 7 7
aq = f D11(W1Nr1Nr1 - ﬁy1Nr1Nr2 + wy Ny Npg — ﬁyer1Nr4)
2 0

— Wy (]\thlNr3 + Ny, N ) + By2 (Nthr4- + erNt4-)>

[ . .z . .z
= Bk (-wa (Kealoy + Koales) + Bun (s + 1K)

— Wy (ﬁthr3 + erl\;/t3) + .ByZ (1\;/1:11\77«4 + erl\;ltél-))
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[1 = A A A A
EBmks (Vthler + Bz1Nt1 Ny + Vo Niy Npg + 3z2Nt1Nr4)

P z z z :
+ Z Bieks (V1Nt1Nr1 + Bz1Nt1Npp + Vo Ney Npg + ﬁzth1Nr4)

2

I — — A A A
+ %ks (Age + Ass) (Wththl - ﬁy1Nt1Nt2 + Wy Ney Nes
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1-‘11-‘2 — j— E A A E
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z z z
7

— By1 (l\zlul\;]tz + ﬁtﬂ\gltz) +w; (Ntht3 + Ntll\zlw)

— By2 (ﬁﬂl\;’m + ﬁtll\zltél»))

FZZ — — ;2 : : oz
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(D.16)
dUgs Lr_ S . . S
9 = f Dll(_Wlerer + By1 N2 Npy — Wy Ny Nog + ﬁyersz)
3 0
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