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ABSTRACT

Analysis of Genomic and Proteomic Sequences using DSP Techniques

Raja Sekhar Kakumani, Ph.D.

Concordia University, 2013

Analysis of biological sequences by detecting the hidden periodicities and sym-

bolic patterns has been an active area of research since couple of decades. The hidden

periodic components and the patterns help locating the biologically relevant motifs

such as protein coding regions (exons), CpG islands (CGI) and hot-spots that char-

acterize various biological functions. The discrete nature of biological sequences has

prompted many researchers to use digital signal processing (DSP) techniques for their

analysis. After mapping the biological sequences to numerical sequences, various DSP

techniques using digital filters, wavelets, neural networks, filter banks etc. have been

developed to detect the hidden periodicities and recurring patterns in these sequences.

This thesis attempts to develop effective DSP based techniques to solve some of the

important problems in biological sequence analysis. Specifically, DSP techniques such

as statistically optimal null filters (SONF), matched filters and neural networks based

algorithms are developed for the analysis of deoxyribonucleic acid (DNA), ribonucleic

acid (RNA) and protein sequences.

In the first part of this study, DNA sequences are investigated in order to identify

the locations of CGIs and protein coding regions, i.e., exons. SONFs, which are

known for their ability to efficiently estimate short-duration signals embedded in noise

by combining the maximum signal-to-noise ratio and the least squares optimization

criteria, are utilized to solve these problems. Basis sequences characterizing CGIs and

exons are formulated to be used in SONF technique for solving the problems.

In the second part of this study, RNA sequences are analyzed to predict their
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secondary structures. For this purpose, matched filters based on 2-dimensional con-

volution are developed to identify the locations of stem and loop patterns in the RNA

secondary structure. The knowledge of the stem and loop patterns thus obtained are

then used to predict the presence of pseudoknot, leading to the determination of the

entire RNA secondary structure.

Finally, in the third part of this thesis, protein sequences are analyzed to solve

the problems of predicting protein secondary structure and identifying the locations

of hot-spots. For predicting the protein secondary structure a two-stage neural net-

work scheme is developed, whereas for predicting the locations of hot-spots an SONF

based approach is proposed. Hot-spots in proteins exhibit a characteristic frequency

corresponding to their biological function. A basis function is formulated based on

this characteristic frequency to be used in SONFs to detect the locations of hot-spots

belonging to the corresponding functional group.

Extensive experiments are performed throughout the thesis to demonstrate the

effectiveness and validity of the various schemes and techniques developed in this

investigation. The performance of the proposed techniques is compared with that of

the previously reported techniques for the analysis of biological sequences. For this

purpose, the results obtained are validated using databases containing with known

annotations. It is shown that the proposed schemes result in performance superior to

those of some of the existing techniques.
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Chapter 1

Introduction

1.1 General

Until the early nineteenth century, it was strongly believed that living matter and

the inanimate matter are completely different, and hence the normal laws of chem-

istry were not subjected to the former. Consequently, organisms were thought to be

made of chemical components unique to living creatures. In 1828, Friedrich Wohler

demonstrated the conversion of ammonium cyanate, a laboratory chemical, to urea, a

molecule generated by living animals. This demonstration had changed the perspec-

tive that there was something magical about the chemistry of living matters. Later,

the biological macromolecule, deoxyribonucleic acid (DNA), which is now well estab-

lished as a genetic material, was first discovered by Frederich Miescher in 1869, but

it was nearly after a century that its true significance was revealed.

The question of how DNA could act as the genetic information was answered

by James Watson and Francis Crick in 1953. They have suggested the now famous

double helix structure of DNA [1], which provided a chemical basis for the genetic

code, and the mechanism for DNA replication, which constitutes a basis for biological
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inheritance. In 1950 Maurice Wilkins and his assistant Raymond Gosling took the

first images of DNA using x-ray diffraction, which were later used by them as the

basis for their structural model [2]. Unraveling the chemical basis for inheritance won

Watson, Crick and Wilkins the Nobel Prize in Physiology or Medicine for 1962. This

central finding drives our understanding as to how all the living cells and consequently

the living organisms function.

The first complete genome of a living organism, bacterium (Haemophilus influen-

zae), was sequenced in 1995 [3]. Since then the genomes of several organisms have

been completely sequenced beginning a new era of biological data acquisition and

information accessibility. There are billions of nucleotides of DNA sequence data col-

lected from thousands of organisms available in databanks such as GenBank [?, 4]

at the National Center for Biotechnology Information (NCBI) [5], DNA Database of

Japan (DDBJ) [6] and European Bioinformatics Institute (EBI) [7]. In addition to

these there are several other databases consisting of DNA and/or protein sequence

data along with their structural information. A major challenge today in biology is to

make sense of the enormous amount of sequence data that is generated by large-scale

genome sequencing projects. This explosion of biological sequence data, along with its

high variability in acquisition and complex nature, warrants reliable and efficient com-

putational techniques to augment the biologists’ laborious wet laboratory techniques

for interpreting the newly sequenced data. Hence, a new discipline, bioinformatics,

which merges the current advances in molecular biology and computer algorithms has

become increasingly important. The focus of this discipline is to make use of computer

algorithms and sequence databases to analyze biological macromolecules/sequences,

such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins, found in

the cells of living organisms. The goal of bioinformatics is primarily to determine and

analyze the complete collections of DNA (the genome) that comprises an organism.

An efficient analysis of biological sequences require the knowledge and collective
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inputs from a diverse set of researchers such as biologists, statisticians and engineers.

Computational methods have proved to be very promising for understanding biologi-

cal sequences at the molecular level. The problem areas of mapping and sequencing,

sequence analysis, structure prediction, phylogenic inference and regulatory analy-

sis have been addressed successfully addressed using the techniques such as dynamic

programming, Markov models, expectation-maximization, string search, clustering al-

gorithms, etc. More recently, computer algorithms based on digital signal processing

(DSP) techniques are becoming increasingly popular for analyzing and interpreting

the features and functionality of DNA, RNA and protein sequences. Owing to the

alphabetical nature of the biological sequences, which when mapped to numerical se-

quences, DSP techniques can be readily applied for their analysis. Powerful signal

processing techniques, such as transform methods and digital filters, are now being

successfully applied to address the research problems of predicting biologically signif-

icant features and structural information of genomic sequences. The results of these

techniques have shown the need for further research in adapting the digital signal

processing techniques to analyze and comprehend the complex nature of biological se-

quences. The following section gives a brief background and the progress in analysis

of biological sequences using DSP techniques.

1.2 Background and a Brief Literature Review

Analysis of biological sequences involves identification of functionally significant pat-

terns and is one of the main research problems in bioinformatics. It is well established

that a great deal about the biological processes is better understood by studying these

functionally significant patterns [8]. Some examples of such patterns are genes and

CpG islands in DNA sequences, and hot-spots in proteins. Most of the biological

sequences in order to stabilize conform into three dimensional (3D) structure and this
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structural information of the biological sequences also aids in completely understand-

ing their functionality.

In order to analyze DNA sequences, they need to be first extracted by liberating

the cellular contents into a solution. The macromolecules in the solution such as DNA,

RNA and proteins are then separated using either a centrifuge or chemical means

(phenol extraction). Another technique of separating and purifying fragments of DNA

or RNA as well as proteins is gel electrophoresis. The basic idea of electrophoresis is

to separate the molecules based on their intrinsic electrical charge.

Once the DNA is isolated there are several experimental techniques available to

analyze them [9]. For example, the experimental isolation of protein coding sequences

(exons) in DNA is done using a method called exon trapping. This method relies

on the fact that exons are flanked by splice recognition sites that are used during

RNA processing to splice out the introns (non-coding sequences). The DNA con-

taining the exons to be trapped is cut into segments using an appropriate restric-

tion enzyme. Other experimental techniques for exon isolation are radiation hybrid

mapping and the classical genetic mapping. The structural features of RNAs are of

major importance to their biological functions such as coding, information transfer

and catalytic activities. Proper functioning of RNAs require the formation of intri-

cate three-dimensional (3D) structures. Protein sequences, like RNA, also fold into

3D structures and the knowledge of protein structure provides valuable information

on the architecture and chemistry of a protein-protein interaction during biological

processes. A technique known as x-ray crystallography has contributed to the determi-

nation of atomic-resolution large RNA and protein structures. The thermodynamics

of protein-protein interactions can now be probed experimentally by a process called

alanine scanning mutagenesis. It is now well established that only a small subset of

contact residues in proteins contribute significantly to the binding free energy. These

residues are known as “hot-spots” and if mutated they can disrupt the protein-protein

4



interaction. Although the above mentioned experimental techniques are very effective

in producing accurate results, they involve several intricate time consuming steps that

make the entire process laborious and expensive. Therefore, there is a strong need for

computational techniques which are effective, reliable and economical for the analysis

of biological sequences. The results obtained by the computational techniques can be

a precursor for the biologists to base their experiments accordingly, and save time and

resources.

There have been many computational methods [10–16] developed for solving the

problem of CpG island (CGI) prediction in DNA sequences. These methods can be

broadly categorized into two groups: (1) the traditional algorithms that are based on

the three sequence parameters (length, C+G nucleotide content, ratio of the observed

to expected CpG dinucleotides), and (2) the algorithms based on statistical properties

in the DNA sequence. Most of the traditional methods, apart from identifying CGIs,

have a tendency to falsely identify the other C and G rich motifs, e.g., Alu repeats as

CGIs. In the subsequent methods the above three sequence parameters were made

more stringent [17] in order to reduce false identification at the expense of missing some

true CGIs. The statistical based methods [18,19] , which rely on the physical distance

distribution of CpG dinucleoetides in a DNA sequence, have certain advantages, as

they are not window based, but they suffer from low identification specificity.

In eukaryotic DNA, the genes are seperated by intergenic regions. The genes

in turn has an alternating arrangement of protein coding (exons) and non-coding

(introns) regions. This complex structure of genes poses a challenge in solving the

problem of prediction of protein coding regions in eukaryotes. Most of the avail-

able gene finding methods, such as AUGUSTUS [20], GeneID [21], GenScan [22],

HMMgene [23] and the methods developed by combining several gene-finding pro-

grams [24,25], are data-driven. These methods involve performing a similarity search

between a given unannotated sequence and annotated sequences from a database to
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predict the properties of the former, and hence, are computationally expensive.

It is well established that an RNA sequence has a tendency to fold and twine

about itself forming a stable three-dimensional (3D) structure [9]. Prediction of this

stable RNA structure involves determining the locations of its sub-structures: stems,

loops and pseudoknots. Most of the early computational methods for RNA secondary

structure prediction were based on different heuristic search procedures minimizing

the molecular energy of the RNA. Two such methods, involving quasi-Monte Carlo

and genetic algorithm based search heuristics have been proposed in [26] and [27] re-

spectively. A method based on maximum weighted matching (MWM) was proposed

in [28], in which the possible base-pairs in RNA were determined by comparative se-

quence analysis. But this method is suitable only for RNA sequences for which the

information on multiple alignments exist. Subsequently, an RNA secondary structure

prediction algorithm called Mfold [29] was proposed, which is based on minimiz-

ing equilibrium free energy of RNA molecule using dynamic programming. There

are other similar methods proposed [30–33] for RNA secondary structure prediction.

Unfortunately, all the methods mentioned above fail to predict an accurate RNA sec-

ondary structure if it contains pseudoknots, which go undetermined. For determin-

ing pseudoknots in RNA secondary structure, dynamic programing based methods

such as Pknots [34] and PknotsRG [35] have been developed. Several grammatical

approaches [36–39] for RNA secondary structure prediction, which are based on mul-

tiple context-free grammar, have also been proposed which are capable of predicting

pseudoknots, but suffer from computational complexity issues.

Similar to RNA sequences, protein sequences also possess a three-dimensional

structure. Predicting protein secondary structure involves determining its substruc-

tures namely, α-helices, β-sheets, and loops. Early techniques, such as Chou-Fasman

technique [40] and GOR [41], based on statistical characteristics of protein residues

offered low prediction accuracies of 50-60%. In the late 1980’s, for the first time, a
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fully-connected multi-layer perceptron (MLP) neural network trained with backprop-

agation algorithm was used to achieve prediction accuracy of about 66% [42]. Later,

a relatively successful technique, named as PHD [43], was developed exploiting evolu-

tionary information contained in multiple sequence alignments of protein sequences.

The PHD technique further increased the prediction accuracy to around 70% [44].

This was followed by the development of several techniques that combined evolu-

tionary information of divergent proteins with neural networks [43, 45, 46]. Most of

the existing protein structure prediction methods use a complicated scheme of input

encoding to neural network prediction models in order to incorporate the evolution-

ary information. Moreover, the enormous growth of protein databases requires the

existing prediction models to be extended using huge amounts of training data and

developing large-scale neural networks.

The existing computational methods for hot-spot prediction [47, 48] in a protein

sequence require complex structural information on its chemical composition, num-

ber of hydrogen bonds and binding free energy. This information is obtained using

experimental techniques such as x-ray crystallography and alanine scanning. The

dependence of computational methods, for hot-spot prediction, on experimental tech-

niques slows down the entire prediction process. Moreover, the prediction of hot-spot

locations in newly-discovered proteins becomes difficult as the detailed structural and

physical information for these proteins is not yet available. Recently, techniques in-

volving estimating the binding free energy using simulations of molecular dynamics

has been proposed [49, 50] for prediction of hot-spots in proteins. Although, these

methods produce encouraging results, they are difficult to implement mainly due to

the complex models used for molecular dynamics.

The discrete nature of biological sequences has prompted many researchers to use

digital signal processing (DSP) techniques for the analysis of biological sequences.

The advent of sophisticated DSP techniques for analysis of biological sequences have

7



helped to alleviate the excessive cost and improve the accuracy of the computational

methods. After mapping the biological sequences, which are alphabetical in nature,

to appropriate numerical sequences, a number of DSP techniques [51–54] have been

employed for biological sequence analysis.

Most of the DSP based techniques for predicting protein coding regions (exons)

in DNA sequences exploit the period-3 property exhibited by exons. This period-

3 property is due to a specific periodic arrangement of nucleotides in exons. By

applying DSP techniques such as the sliding window DFT [55], digital filters [53,

56, 57], wavelet transform [58], and multirate DSP models [59, 60] researchers have

successfully identified the locations of exons by detecting the period-3 segments in

the DNA frequency spectrum. But most of the DSP techniques still fail to accurately

locate short exons or the exons separated by short introns. Since in these cases, it

is difficult to exactly locate the boundaries of exons. For predicting CGIs in DNA

sequences, advanced methods [61, 62] utilizing two Markov chain models, one for

CGIs and the other for non-CGIs, have been proposed. These two Markov models

differ in their respective model parameters characterized by the transition probabilities

between successive nucleotides. In these methods, a DNA segment is classified as CGI,

if the value of a log-score computed using Markov model for a CGI is greater than

that computed using Markov model for a non-CGI. More recently, CGI prediction

methods utilizing digital filters [63, 64] have been proposed. These methods also

make use of the Markov model parameters for identification of CGIs. The model

parameters used for CGIs and non-CGIs play a crucial role in CGI identification. The

use of different model parameters have sometimes produced contradicting results. A

DSP based method [65] based on matched filtering has been proposed to predict the

stem patterns in RNA secondary structure. The method significantly reduced the

computational complexity but fails to predict pseudoknots in the RNA secondary

structure. In recent years a number of DSP techniques, also for predicting hot-spots
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in proteins, have been proposed. These techniques are based on using short-time

discrete Fourier transform (STDFT) [66,67] and modified Morlet continuous-wavelet

transform [54]. These methods make use of the characteristic frequency of hot-spots.

Unfortunately, these methods are not quiet reliable, as they tend to produce false

positives.

From the above discussion, it is seen that the DSP techniques have come a long

way in solving many important problems in the analysis of biological sequences. How-

ever, the performance of these techniques is still limited by the amount of the infor-

mation on the characteristics of the biological sequences utilized as well as on the

relevance of the DSP techniques employed. Hence, it is imperative to look into other

relevant characteristics of biological sequences and incorporate these for the analysis

of these sequences. At the same time, it could be useful to employ other more sophis-

ticated DSP techniques for the analysis of these sequences with or without the use of

additional information on their characteristics.

1.3 Scope of the Thesis

The objective of this research is to develop efficient and reliable digital signal process-

ing (DSP) based techniques for the analysis of biological sequences. To this end, a

number of challenging problems in the analysis of genomic and proteomic sequences

are investigated in this thesis.

In the first part of the thesis, a study is undertaken to investigate the problem

of identifying CpG islands and protein coding regions (exons) in DNA sequences. In

this investigation, statistically optimal null filters (SONFs) are studied to effectively

predict the locations of the characteristic properties pertaining to CpG islands and

exons. Statistically optimal null filters are known for their ability to efficiently es-

timate short-duration signals embedded in noise and hence are expected to perform
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efficiently in the above mentioned problems.

In the second part of the thesis, a systematic study is conducted for predicting

the presence of pseudoknots in RNA sequences. Based on this study, matched filters

are designed to determine the stem patterns in the dot-plot representation of RNA.

These stem patterns in turn are expected to reveal the presence of pseudoknots.

Finally, in the third part of the thesis, the problems of predicting the secondary

structure of proteins, and identifying hot-spots in proteins are investigated. Through

this study a two-stage neural network based model is developed for accurately pre-

dicting the secondary structure of proteins. A scheme based on statistically optimal

null filters is also developed for identifying hot-spots in protein sequences.

1.4 Organization of the Thesis

This thesis is organized as follows.

In Chapter 2, the background material necessary for the research work under-

taken in this thesis is given. The chapter begins with a brief introduction to genomics

describing the central dogma of molecular biology, which explains how proteins are

synthesized from DNA. This is followed by description of various mappings of bio-

logical sequences to numerical sequences. The statistically optimal null filters, which

are used extensively in this work, are also briefly reviewed. Finally, a brief account of

various performance measures employed for the performance analysis of the proposed

techniques is given.

In Chapter 3, DNA sequences are analyzed in order to investigate the two impor-

tant research problems (1) identification of CpG islands and (2) prediction of protein

coding regions (exons). An identification feature that characterizes a CGI is used

to develop statistically optimal null filters (SONF) for the identification of CGIs in

DNA sequences. The problem of predicting protein coding regions (exons) in DNA
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sequences is also investigated using SONF. For this purpose, a basis function based on

the well known period-3 property exhibited by exons is designed. The performance of

each of the techniques developed is compared with the other existing state-of-the-art

methods for the analysis of DNA sequences.

In Chapter 4, RNA sequences are studied to predict their secondary structure

with pseudoknots. For this purpose, matched filters based on 2D convolution are

developed to first identify the numbers and locations of stem and loop patterns in the

RNA secondary structure. The knowledge of the stem and loop patterns are then used

to deduce the presence of pseudoknot in an RNA structure. A graphical user interface

(GUI) is also developed using MATLAB which displays the secondary structure of the

RNA sequence.

In Chapter 5, protein sequences are investigated to solve the important problems

of prediction of the protein secondary structure and prediction of the locations of

hot-spots in proteins. The first problem is solved by developing a two-stage neural

network scheme. The second problem of predicting the locations of hot-spots in

proteins is solved using statistically optimal null filters. Hot-spots in proteins exhibit

a characteristic frequency corresponding to their biological function. SONF is used to

detect the locations of hot-spots belonging to a functional group by formulating basis

functions having the characteristic frequency corresponding to that functional group.

Finally, Chapter 6, summarizes the study undertaken in this thesis and highlights

its contributions. Some suggestions for further work based on the ideas and schemes

developed in this thesis are also given.
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Chapter 2

Background Material

2.1 Introduction

The Human Genome Project [5], which aims at sequencing and mapping of all the

genes in humans, has garnered an immense interest in the scientific community.

This project has resulted in large sets of genetic data and analyzing this data is

of paramount importance. The recent statistical approaches for data analysis, sig-

nal processing techniques and control theory are well suited for this type of study.

Consequently, the full potential of the area of genomics, which concerns the study of

genomic data, can only be tapped by collective skills and creativity of a diverse set of

researches including biologists, statisticians and engineers.

Before one proceeds with the analysis of biological sequences, it is essential to

have some basic understanding of the molecular structures and the underlying cel-

lular processes within these sequences. The objective of this chapter is to provide

background in genomics and proteomics necessary for the analysis of biological se-

quences. Some discussions on numerical mappings of genomic and proteomic data,

and statistically optimal null filters (SONF) are also provided in this chapter in view
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of their importance in the DSP based approaches for the analysis of the biological

sequences. Finally, some of the metrics to be used to evaluate the performance of the

techniques for biological sequences are also briefly reviewed.

2.2 Biological Cells

The most fascinating thing about life is not its diversity but its fundamental build-

ing block. All living organisms are made up of microscopic fundamental biological

structures called cells. Even though the cells are very tiny, each of them are in turn

made up of complex cellular substructures. Each living cell generates its own energy

and synthesizes its own macromolecules required for other biological processes. Some

organisms such as bacteria and baker’s yeast are unicellular, i.e., they contain only

a single cell. Most other organisms are multicellular, containing many different type

of cells. For example, the human body is composed of around 60 trillion cells with

varying biological and structural properties.

Living cells may be divided into two types, the simpler prokaryotic cell and the

more complex eukaryotic cell. By definition, prokaryotes are those organisms whose

cells are not subdivided by membranes into a separate nucleus and cytoplasm. All

prokaryote cell components are located together in the same compartment. In con-

trast, the larger and more complicated cells of higher organisms (animals, fungi and

plants) are subdivided into separate compartments and are called eukaryotic cells.

Figure 2.1 depicts the composition of prokaryotic and eukaryotic cells.

All living cells contain the essential chemical and structural components necessary

for supporting life. For example, each bacterial cell has a single chromosome carrying

a full set of genes providing it with the genetic information necessary to operate as a

living organism. More complex organisms have genetic information much more than

that of a bacteria. Humans have two duplicate sets of 23 different chromosomes,
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Figure 2.2: The DNA molecule. (a) DNA double helix and (b) Flattened DNA
molecule. Source [68].

Figure 2.3: The chromosome, DNA molecule and the RNA transcript being created.
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stick out sideways. Nucleotides are joined by linking the phosphate on the 5́-carbon

of the (deoxy) ribose of one nucleotide to the 3́-position of the next as shown in

the Figure 2.2. The phosphate group is joined to the sugar on either side by ester

linkages known as a phosphodiester linkage. Conventionally, a strand of nucleic acids

has direction and the 5́-end is regarded as the beginning of a DNA strand. The two

strands of a DNA molecule are anti-parallel, as they point in opposite directions. This

means that the 5́-end of one strand is opposite the 3́-end of the other strand. The DNA

double helix is stabilized both by hydrogen bonds between the bases (Figure 2.2(a))

and by stacking of the aromatic rings of the bases towards inside the double-helix.

Ribonucleic acid (RNA) is a working copy of DNA resulting form a process known

as transcription based on the information contained in DNA. RNA is very similar to

DNA except that in RNA the nucleotide uracil (U) replaces thymine (T) in DNA,

and RNA is normally found as a single-stranded molecule, whereas DNA is double

stranded. From the viewpoint of genetic information, T in DNA and U in RNA are

equivalent. The main job of RNA is to transfer the genetic information contained in

DNA from nucleus to ribosome for the creation of proteins. This process prevents

the DNA from having to leave the nucleus. This process keeps the DNA and genetic

code protected from being corrupted. Figure 2.3 shows chromosome containing DNA

molecule and the process of RNA transcription.

2.2.2 Proteins

In eukaryotic cells, the RNA created from the process of transcription leaves the

nucleus and enters the cytoplasm as shown in Figure 2.4. The sequence of nucleotides

in RNA are ‘read’ in groups of three by the ribosomes present in the cytoplasm,

and translated into a chain of amino acids called protein. This process of synthesis

of proteins using the genetic information coppied in RNA is called translation. In

translation, a group of three consecutive nucleotides in RNA, referred to as a codon,
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Figure 2.4: Transcription and translation of genetic information.

is responsible for the creation of a particular amino acid. Thus, the linear sequence

of nucleotides in the RNA corresponds to the linear sequence of the amino acids

that constitute a molecule of protein. The proteins are sometimes also reffered to

as polypeptide chains as its constituent amino acids are joined by peptide bonds.

There are 20 different amino acids, given in Table 2.1, which make up different kinds

of proteins. Since there are four different nucleotides in RNA, there are 64 possible

groups of three bases; i.e, 64 different codons in the genetic code (given in Table 2.2).

As there are only 20 different amino acids, some of these are encoded by more than

one codon. The codon AUG, in addition to encoding methionine, also acts as a start

codon, which starts the process of translation. The three codons UAA, UAG and

UGA are used for punctuation to stop the process of translation. Thus every new

protein starts with the amino acid methionine (Met). An example of translation of

RNA is shown in the Figure 2.5.

Proteins make up about two-thirds of the organic matters in a typical cell, and are

directly responsible for most of the processes of metabolism. Proteins also perform

most of the enzyme reactions such as catalyzing biochemical reactions, generating
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Table 2.1: The Twenty Amino Acids

Leucine (L, Leu) Tyrosine (Y, Tyr)
Isoleucine (I, Ile) Tryptophan (W, Trp)
Asparagine (N, Asn) Glutamine (Q, Gln)
Glycine (G, Gly) Methionine (M, Met)
Valine (V, Val) Serine (S, Ser)
Glutamic acid (E, Glu) Cysteine (C, Cys)
Proline (P, Pro) Threonine (T, Thr)
Histidine (H, His) Phenylalanine (F, Phe)
Lysine (K, Lys) Arginine (R, Arg)
Alanine (A, Ala) Aspartic acid (D, Asp)

of energy, synthesizing of nucleotides, and transport functions of the cell such as

transporting nutrients or taking part in cell movement. Generally, the molecules,

such as proteins and most non-translated RNA, that form cellular structures or have

active roles in carrying out reactions are normally folded into three-dimensional (3D)

structures.

This scheme of transfer of genetic information from DNA to RNA and finally to

protein as shown in the Figure 2.6 is known as central dogma of molecular biology.

2.3 Numerical Mapping of Biological Sequences

The biological sequences are alphabetical in nature, for example, the DNA sequences

consists of an alphabet of four, and the protein sequences consists of an alphabet of

twenty. Due to this reason these sequences need to be first mapped to numerical se-

quences in order to employ digital signal processing (DSP) based techniques for their

Figure 2.5: Translation of codons to amino acids.
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Figure 2.6: Central dogma of molecular biology. (Source [68])

analysis. There are several mapping techniques reported in the literature [69]. One of

the earliest and a popular mapping is that of Voss’s binary indicator sequences [70].

According to this mapping, a DNA sequence, X, can be mapped to a set of four digital

signals, also called as binary indicator sequences, namely, XA, XT , XG and XC . In

each of these binary indicator sequences, ‘1’ represents the presence and ‘0’ the absence

of the corresponding nucleotide bases A, T, G and C in X. For instance, considering

a DNA sequence X = {ATCCGAAGTATAACGAA}, the binary indicator sequence

corresponding to G, i.e., XG can be expressed as XG = {00001001000000100}. Indi-

cator sequences for the remaining three nucleotides can be represented in a similar

fashion as shown in Figure 2.7.

Another scheme of mapping is the one in which the electron-ion interaction po-

tential (EIIP) values of the nucleotides are used to map the DNA sequence to a

numerical sequence. EIIP values are physical quantities denoting average energy of

valence electrons in the nucleotide bases [71]. Table 2.3 gives the EIIP values of the
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Figure 2.7: Binary indicator sequences. (a) Nucleotide A. (b) Nucleotide T. (c)
Nucleotide G. (d) Nucleotide C.
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Table 2.2: Genetic Code

AAA: K (Lys) GAA: E (Glu) UAA: STOP CAA: Q (Gln)
AAG: K (Lys) GAG: E (Glu) UAG: STOP CAG: Q (Gln)
AAU: N (Asn) GAU D (Asp) UAU: Y (Tyr) CAU: H (His)
AAC: N (Asn) GAC: D (Asp) UAC: Y (Tyr) CAC: H (His)

AGA: R (Arg) GGA: G (Gly) UGA: STOP CGA:R (Arg)
AGG: R (Arg) GGG: G (Gly) UGG: W (Trp) CGG: R (Arg)
AGU: S (Ser) GGU: G (Gly) UGU: C (Cys) CGU: R (Arg)
AGC: S (Ser) GGC: G (Gly) UGC: C (Cys) CGC: R (Arg)

AUA: I (Ile) GUA: V (Val) UUA: L (Leu) CUA: L (Leu)
AUG: M (Met)/START GUG: V (Val) UUG: L (Leu) CUG: L (Leu)
AUU: I (Ile) GUU: V (Val) UUU: F (Phe) CUU: L (Leu)
AUC: I (Ile) GUC: V (Val) UUC: F (Phe) CUC: L (Leu)

ACA: T (Thr) GCA: A (Ala) UCA: S (Ser) CCA: P (Pro)
ACG: T (Thr) GCG: A (Ala) UCG: S (Ser) CCG: P (Pro)
ACU: T (Thr) GCU: A (Ala) UCU: S (Ser) CCU: P (Pro)
ACC: T (Thr) GCC: A (Ala) UCC: S (Ser) CCC: P (Pro)

Table 2.3: EIIP Values for the Nucleotides in a DNA Sequence

Nucleotide EIIP Value

Adenine (A) 0.1260
Thymine (T) 0.1335
Guanine (G) 0.0806
Cytosine (C) 0.1340

four nucleotides present in a DNA sequence. Figure 2.8 shows the EIIP sequence for

the DNA sequence X = {ATCCGAAGTATAACGAA}.

EIIP-sequence can be interpreted as a weighted sum of the four indicator binary

sequences as shown below where weights are the corresponding EIIP values.

XEIIP = wAXA + wTxT + wGXG + wCXC (2.1)

where wA, wT , wG and wC are the EIIP values as given in Table 2.3 and XA, XT , XG

and XC are the respective indicator sequences. EIIP sequences involve only a single

numerical sequence instead of four binary indicator sequences and hence this mapping
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Figure 2.8: Mapping using EIIP values.

Table 2.4: EIIP Values of the Twenty Amino Acids in a Protein Sequence

Amino acid EIIP Amino acid EIIP

Leucine (Leu) 0.0000 Tyrosine (Tyr) 0.0516
Isoleucine (Ile) 0.0000 Tryptophan (Trp) 0.0548

Asparagine (Asn) 0.0036 Glutamine (Gln) 0.0761
Glycine (Gly) 0.0050 Methionine (Met) 0.0823
Valine (Val) 0.0057 Serine (Ser) 0.0829

Glutamic acid (Glu) 0.0058 Cysteine (Cys) 0.0829
Proline (Pro) 0.0198 Threonine (Thr) 0.0941
Histidine (His) 0.0242 Phenylalanine (Phe) 0.0959
Lysine (Lys) 0.0371 Arginine (Arg) 0.0959
Alanine (Ala) 0.0373 Aspartic acid (Asp) 0.1263

more efficient in computational approaches.

Protein sequences can also be mapped numerical sequences using the EIIP values

of its twenty amino acids. Table 2.4 gives the EIIP values of the twenty amino acids

of a protein sequence.

2.4 Statistically Optimal Null Filters

In this section, a brief review of statistically optimal null filters (SONFs) [72], exten-

sively used in this thesis, is given. Essentially, SONF is equivalent to a Kalman filter

with a much simpler implementation and is able to effectively process short duration

signals [72,73]. Therefore, this property of SONF could be useful in identifying short
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motifs in biological sequences. A brief description of SONF is now given in the context

of processing genomic and proteomic sequences.

Consider a genomic or a proteomic sequence X, of length N . Now, the challenge

is to identify the locations of occurrence of certain motifs such as CGIs, exons or hot-

spots. In this work, statistically optimal null filters are utilized to perform this task as

they are known for effective estimation of short duration signals embedded in noise.

Here, the motifs are the short duration signals (or the message signals) and the residual

signal is the noise. To be able to input the sequence, X, to SONF, it is first mapped to

an appropriate numerical sequence. SONF being a window based approach, a sliding

window of length L is used to determine whether a windowed numerical sequences,

Xn = {xn(m)}, where n = 1, 2, . . . , N −L+1 and m = n, n+1, . . . , n+L− 1, belong

to a particular motif or not. It can be noted that each of the windowed sequence, Xn,

can be expressed as

Xn = Sn +Rn (2.2)

where Sn = {s(m)} is a message signal corresponding to the motif of interest and

Rn = {r(m)} is a residual signal. Sn and Rn are each of length L. SONF takes the

windowed sequence, Xn = {xn(m)}, as input and produces the output signal, Yn,

which is an optimal estimate of the message signal Sn. We define an SNR gain as the

ratio of the variance of Yn to the variance of Xn, given by

G(Xn) =

∑L
m=1(yn(m)− Ȳn

2
)

∑L
m=1(xn(m)− X̄n

2
)
, (2.3)

where Ȳn = (1/L)
∑L

m=1 yn(m) and X̄n = (1/L)
∑L

m=1 xn(m). A windowed sequence

can then be classified by comparing G(Xn) with a prespecified threshold, η.

SONF produces the output Yn by combining maximum signal-to-noise ratio and

least squares optimization. The implementation of the two-fold optimization in SONF
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approach is shown in Figure 2.9, where the instantaneous matched filter (IMF) [74]

is first used to detect the presence of a short duration signal embedded in noise by

maximizing the signal-to-noise ratio over variable-time observation interval, m.

The IMF output, In, is then scaled by a locally generated function, Λn, using

least squares (LS) optimization procedure to obtain the optimal estimate, Yn, of the

message signal Sn. The key aspect of SONF is the formulation of a fixed binary basis

sequence, Φ = {φ(m)}, of length equal to the size of the window, L. By modeling

Φ according to some characteristic property of the motif, the message signal in the

windowed sequence can be expressed as Sn = VnΦ, where Vn = {v(m)} is also of

length L. It is obvious that the sequence VnΦ is obtained by multiplying together the

corresponding elements of Vn and Φ. The SONF output, Yn, is determined such that

Yn → Sn by minimizing the SONF output error (see Figure 2.9) in least square sense.

The following subsections explain in detail the steps involved in the SONF ap-

proach.

2.4.1 Instantaneous matched filter

The objective of instantaneous matched filter (IMF), which is the first stage of SONF

(shown in Fig. 2.9), is to detect the presence of the waveform of the basis sequence, Φ,

in the input sequence Xn. IMF is an improvement over a matched filter; the difference

being, in IMF the optimal SNR is repeatedly calculated at every sample m, over an

observation interval m ∈ [n, n+ L− 1]. IMF takes Xn and Φ as inputs and produces

an output sequence In = {ι(m)}, where

ι(m) =
m
∑

i=n

xn(i)φ(i) (2.4)

and m = n, n + 1, . . . , n + L − 1. It can be seen that at each sample m, ι(m) is

calculated over a varying interval i ∈ [n,m].
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Note that, assuming ι(0) = 0, ι(m) can also be calculated using the recursive

relation given by

ι(m) = ι(m− 1) + xn(m)φ(m). (2.5)

The output ι(m) leads to an optimal detection of Φ at each sample m, and can be

expressed as

ι(m) = v(m)c(m) + r
′

0(m) (2.6)

where, v(m) ∈ Vn is an unknown gain, r
′

0(m) is the residual signal in IMF output,

and c(m) is given by

c(m) =
m
∑

i=n

φ2(i). (2.7)

2.4.2 Least square optimization

The objective of the second stage of SONF is to determine a sequence Λn = {λn(m)},

which when used to scale the IMF output In, produces the SONF output, Yn, such

that Yn → Sn in least square sense. Thus, Yn = ΛnIn, is an estimate of Sn, which in

turn, is an element wise product of Vn and Φ.

Let us consider the suboptimal case in which a sample of the IMF output ι(m)

in (2.6), when scaled by λ(m) = φ(m)/c(m), yeilds

y(m) = v(m)c(m) + r
′

0

φ(m)

c(m)

= v(m)φ(m) + r0(m)

= s(m) + r0(m), (2.8)
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where y(m) is an element of the SONF output, Yn. As we ideally desire y(m) = s(m),

the residual element, r0(m), needs to be entirely eliminated. Alternatively, the output

error, Zn = {z(m)}, given by

z(m) = x(m)− y(m)

= s(m) + r(m)− λ(m)ι(m) (2.9)

should ideally be zideal(m) = r(m).

The optimal Λn, Λopt = {λopt(m)}, is now determined by minimizing the mean

square error, E[e2λ(m)], with respect to λ(m), where

eλ(m) = zideal(m)− z(m)

= y(m)− s(m)

= λ(m)ι(m)− v(m)φ(m). (2.10)

The optimal IMF scaling sequence λopt(m) obtained by carrying out the above mean

square minimization [72] is given by

λopt(m) =
φ(m)

c(m) + 1/SNR
(2.11)

where SNR is the input signal-to-noise ratio (considering r(m) to be noise). According

to this equation it is necessary to have the knowledge of input SNR in order to

implement SONF. Since the input SNR is not readily available, a suboptimal case

given by
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λsubopt(m) →
φ(m)

c(m)
. (2.12)

is considered assuming 1/SNR << c(m). It can be shown that as m increases,

λsubopt(m) → λopt(m) since the second term in the right side of the equation

λsubopt(m)

λopt(m)
= 1 +

1

(SNR)c(m)
(2.13)

approaches zero, since the value of c(m) progressively increases as m increases. Thus,

the value of input SNR in (2.11) will influence only the starting few samples in Yn.

The SONF can be easily implemented by performing the steps given by the fol-

lowing set of equations [72]

ι(m) = ι(m− 1) + xn(m)φ(m) (2.14)

P (m) = P (m− 1)−
P (m− 1)φ(m)φ(m)P (m− 1)

1 + φ(m)P (m− 1)φ(m)
(2.15)

λ(m) = P (m)φ(m) (2.16)

y(m) = ι(m)λ(m). (2.17)

In this work, the initial value of the gain P (0) is chosen to be equal to 1, and it is

assumed that ι(0) = 0.

The block diagram of the SONF based analysis of genomic and proteomic se-

quences is given in Figure 2.10.

2.5 Performance Metrics

It is important to device appropriate performance metrics in order to effectively eval-

uate the performance of any algorithm. The objective of this thesis is to develop
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by

Sn =
TP

TP + FN
. (2.18)

Similarly, specificity is defined as the proportion of the predicted motifs that are true,

and is given by

Sp =
TP

TP + FP
. (2.19)

The values of both the sensitivity and specificity range from 0 to 1. For a perfect

prediction, Sn = 1 and Sp = 1. Neither sensitivity nor specificity alone can provide

a good measure of the global accuracy, since high sensitivity can be achieved with

little specificity and vice versa. A metric that combines the values of sensitivity and

specificity is called the Matthews correlation coefficient (CC), and is given by

CC =
(TP × TN)− (FN × FP )

√

(TP + FN)(TN + FP )(TP + FP )(TN + FN)
. (2.20)

The CC is in essence a measure of association between the actual and predicted

locations of motif. The value of MCC ranges from -1 to 1, where a value of 1

corresponds to a perfect prediction; a value of -1 indicates that every positive location

has been predicted as negative, and vice versa. Another important measure, called

the performance accuracy (Acc), used in the performance evaluation of algorithms is

Actual location of a motif Predicted location of a motif

TP FP TN FNTP TNFN

5'

5' 3'

3'

Figure 2.11: Four possible outcomes of a prediction algorithm.
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given by

Acc =
TP + TN

TP + FP + TN + FN
. (2.21)

Performance accuracy conveys the degree of closeness of predicted to the true locations

of motif.

As mentioned, the four prediction outcomes, namely TP, TN, FP and FN, depend

on the choice of the threshold parameter. The value of the threshold parameter chosen

in turn would affect the performance metrics as they are determined using the four

prediction outcomes. Hence, it is important to determine an optimal value of the

threshold for accurate depiction of the performance metrics. For this purpose, a

receiver operator characteristics (ROC) curve is generally utilized.

The ROC curves are obtained by plotting the true positive rate (TPR), which

is same as Sn against the false positive rate (FPR), which is equal to 1 − Sp, for

different values of classification threshold parameter. An example of ROC curves for

two classifiers C1 and C2 is given in Figure 2.12. The points on the curves are the

values of TPR and FPR calculated for different thresholds. Since both TPR and

FPR assume values in the range 0 to 1, the total area of the ROC plane is unity.

The bottom left corner, (0, 0), represents the situation where the classifier predicts

no positives. Another extreme situation of classification, represented by the top right

corner, (1, 1), is when all instances are classified as positives. The top left corner, (0,

1), represents an ideal classifier with perfect classification with neither false positives

nor false negatives. Finally, the bottom right corner, (1, 0), represents the worst

classification with no true positives or true negatives.

The optimal threshold for a classifier is the one corresponding to the point on its

ROC curve that is closest to the top-left corner. Additionally, by comparing the area

under the ROC curves obtained for different prediction algorithms using the same

dataset, the relative performance of these algorithms can also be examined. Greater
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the genetic information, are present in only one compartment enclosed by the cell

membrane. Whereas, complex organisms, such as eukaryotes, are multicellular, and

in each of these cells the chromosomes are enclosed in a nucleus, separated from other

cellular constituents by a nuclear membrane. Chromosomes consists of the macro-

molecule, deoxyribonucleic acid (DNA), tightly wound around the protein called hi-

stone. Some segments of DNA, called the genes, carry genetic code in the form of a

specific sequential arrangement of the nucleotides. The genetic code in genes is copied

to ribonucleic acid (RNA) molecule by a process called transcription. This genetic

code in RNA is then used by ribosomes present in the cytoplasm of the cell for the

synthesis of proteins by a process called translation. Proteins perform a vast array

of functions in living organisms, including catalyzing metabolic reactions, replicating

DNA, responding to stimuli and many transport functions.

Biological sequences are alphabetical in nature and need to be mapped to nu-

merical sequences so that many numerical techniques can be developed for biological

sequence analysis. Hence, Two such mappings, the Voss’s binary indicator mapping

and the one using EIIP values of the nucleotides in biological sequences, have been

briefly described. The statistically optimal null filters (SONFs), which are used exten-

sively for the analysis of biological sequences in this thesis, have also been reviewed in

this chapter. SONFs have the ability to track rapidly changing signals by combining

maximum signal-to-noise ratio and least squares optimization criteria, leading to more

practical processing of short-duration signals. Finally, a brief account of various per-

formance metrics, such as sensitivity, specificity, correlation coefficient, performance

accuracy and the ROC technique, which are extensively used for evaluation of the

algorithms developed in this thesis, is given.
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Chapter 3

Analysis of DNA Sequences

3.1 Introduction

Chromosomes in the nucleus of eukaryotic cells are made up of DNA containing about

three billion base pairs. DNA contains around twenty five to thirty thousand genes

with an average length of about three thousand base pairs. Identifying the locations

of these genes is one of the important problems in the analysis of DNA sequences. As

only about one percent of the DNA contains genes, which get transcribed into RNA,

identifying the locations of genes is a huge challenge.

This problem of identifying the locations of genes in DNA can be dealt with

by first finding the regions called promoters, which immediately precede the genes.

The promoter regions are the binding sites for enzymes which perform the process of

transcription of genes, thus serving as transcription start sites. Similarly, the regions

which immediately follow the genes called, terminators, serve as transcription stop

sites. The entire unit, shown in the Figure 3.1, comprising the gene along with the

promoter and the terminator is called transcription unit. As every gene is preceded

by a promoter, finding the promoter regions helps us in determining the locations of
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Figure 3.1: A transcription unit.

genes in DNA. The promoter regions contain CpG islands, which are the sequences

dominated by the presence of CG dinucleotides [76]. The promoter regions can be

identified by detecting such islands. These CpG islands have a certain characteristic

property, which can be readily modeled for their identification using computational

approaches.

CGIs, apart from playing an important role in promoter prediction, and con-

sequently in the prediction of genes [77, 78], they also help promoters regulate the

functionality of genes [79–82]. The CGIs in the promoter regions can be either methy-

lated or unmethylated. Methylation of CGIs is a biochemical modification resulting

from addition of a methyl group to the nucleotide cytosine (C). The unmethylated

condition of CGIs help the promoters to regulate the genes they control by turning

their gene expression ‘ON’. On the contrary, the methylated condition of CGIs turn

CpG Island Gene

Gene Expression ON

CpG Island Gene

Gene Expression OFF

Methylated

Unmethylated

5' -

5' -

- 3'

- 3'

Figure 3.2: Difference between mythelated and unmythelated CpG island.
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‘OFF’ the genes leading to gene silencing as shown in Figure 3.2. For example, if

the CGIs belonging to promoters that regulate certain tumor suppressor genes are

methylated, then the corresponding cells are prone to cancer. Thus, the methylated

or unmethylated condition of CGIs can be used for early detection of deceases such

as cancer [83–87]. Due to these reasons, identification of CGIs in DNA sequences has

become indispensable for genome analysis and annotation.

The genes in eukaryotic DNA have an alternating arrangement of exons and in-

trons. Exons and introns are respectively the protein coding and the non-coding

regions of a gene. During the process of transcription the exons and introns in a

gene are first transcribed to an initial RNA transcript, to which a cap and a tail

are added as shown in the Figure 3.3. This allows the ribosome in the cytoplasm

to recognize the RNA during translation. Before the RNA enters the cytoplasm, the

segments of transcript corresponding to introns are removed resulting in a transcript

containing only exons. The resulting RNA, called the messenger RNA (mRNA), is

used for the synthesis of proteins. Therefore, it is necessary to predict the locations

of exons in a gene, so that, the resulting protein sequence synthesized from mRNA

can be accurately determined. The identification of exons has helped genetic engi-

neers to isolate proteins performing the desired biological functions and has resulted

in designing customized drugs for curing various diseases. Due to these reasons, the

prediction of exons in DNA sequences is an important step in tackling the larger task

of understanding biological processes. However, the alternating arrangement of exons

and introns, with their varying lengths, poses a challenge in solving the problem of

prediction of locations of exons in eukaryotic DNA.

In this chapter, the two above-mentioned important problems, namely, identifi-

cation of CpG islands (CGIs) and prediction of protein coding regions (exons), in

DNA sequences, are investigated [88–90]. Both these problems are investigated using

statistically optimal null filters (SONFs), reviewed in Chapter 2. The characteristic
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Figure 3.3: A gene containing exons and introns (Source [68]).

properties of CGIs and exons are individually modeled as the basis functions to be

utilized by SONFs for solving the above two problems.

3.2 Identification of CGIs

A typical CpG island (CGI) in a DNA sequence consists of a high-frequency CpG

dinucleoetides. CGIs vary in length from a few hundred to a few thousand base pairs

(bp), but rarely exceeding 5000 bp. The ‘p’ in CpG refers to the phosphodiester bond

between the adjacent C and G nucleotides of a DNA strand [61, 62]. This bond is

different from the hydrogen bond that exists between C and G across two strands
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in a DNA double helix. Formally, a CGI is defined as a DNA segment fulfilling the

following three conditions: (i) length of segment is at least 200 bp, (ii) G and C

content is ≥ 50%, and (iii) observed CpG to expected CpG ratio (o/e) is ≥ 0.6.

Observed CpG is the number of CpG dinucleoetides in a segment and expected CpG

is calculated by multiplying the number of ‘C’s and the number of ‘G’s in a segment

and then dividing the product by the length of the segment.

The following section gives a brief review of some of the existing DSP based

techniques for identification of CGIs.

3.2.1 Previous work

In this section a brief review of some of the existing CGI identification methods is

given, which will be used for comparing the the performance of the method to be

proposed in Section 3.2.2.

Markov chain approach

In this method, a DNA sequence X = {x(1), x(2), . . . , x(n), . . . , x(N)} of length N ,

where each symbol x(n) ∈ {A,C, T,G}, is considered to be a first-order Markov

chain [91]. This is due to the conditional independence property of X, i.e., the nu-

cleotide occurring at the location (n− 1) does not provide any information over and

above that at n in order to predict the nucleotide occurring at (n + 1). In a CpG

island, the probability of transition from the nucleotide C to the nucleotide G is

higher in comparison with that in a non-CGI. Let the probability of transition from

a nucleotide β to a nucleotide γ in a CGI and a non-CGI be denoted as p+βγ and p−βγ

respectively. Table 3.1 and Table 3.2 taken from [62], show the transition probabilities

for CGI and non-CGI Markov models. These tables are derived from 48 putative CGIs

and non-CGIs in human DNA sequences. Each row in these tables contains transition
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Table 3.1: Transition Probabilities Inside a CGI [62]

p+βγ A C G T

A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.188
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

probabilities from a specific nucleotide base to each of the four bases. These transition

probabilities p±βγ are calculated using

p±βγ =
n±
βγ

∑

k∈{A,T,G,C}

n±
βk

, (3.1)

where n±
βγ is the number of dinucleoetides βγ in a DNA sequence. Naturally, every

row in these tables adds up to unity. As expected, in Table 3.1, which corresponds to

the CGI Markov model, the probability that a C is followed by a G is very high as

compared with that in Table 3.2.

The CGIs, in the DNA sequence X, are identified by analyzing each of the win-

dowed sequences of length L, Xn = {x(n), x(n + 1), . . . , x(n + L − 1)}, which are

obtained by shifting the window by one position at a time. The probability of observ-

ing a windowed sequence, Xn, assuming that it belongs to a CGI is given by

Table 3.2: Transition Probabilities Inside a Non-CGI [62]

p−βγ A C G T

A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292
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P (Xn|CGI)

= P (x(n) . . . x(n+ L− 1)|x(n− 1),CGI model)

=
L−1
∏

i=0

p+x(n−1+i)x(n+i). (3.2)

Similarly, the probability of observing, Xn, assuming it belongs to a non-CpG island

region is

P (Xn|non-CGI)

= P (x(n) . . . x(n+ L− 1)|x(n− 1), non-CGI)

=
L−1
∏

i=0

p−x(n−1+i)x(n+i) (3.3)

If P (Xn|CGI) > P(Xn|non-CGI), then, it is concluded that the sequence Xn belongs

to a CGI. Otherwise, it is considered to be a non-CGI. A CGI can also be identified

by formulating a log-likelihood ratio, given by

S(n) =
1

L
log

P(Xn|CGI)

P(Xn|non-CGI)
. (3.4)

If S(n) > 0, the given DNA sequence is considered to belong to a CGI, and if S(n) < 0

the sequence is considered to be a non-CGI.

IIR low-pass filter approach

Byung-Jun Yoon et al. [63], have noted that the log-likelihood ratio given in (3.4) can

be expressed as
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S(n) =
1

L
log

L−1
∏

n=0

p+
x(n−1)x(n)

p−
x(n−1)x(n)

=
1

L

L−1
∑

i=0

y(n+ i)

= y(n) ∗ have(n), (3.5)

where y(n) is a sequence representing the log-likelihood ratio of a single transition

given by

y(n) = log

(

p+
x(n−1)x(n)

p−
x(n−1)x(n)

)

(3.6)

and, have(n) is a simple averaging filter defined as

have(n) =

{

1/L, for −L+ 1 ≤ n ≤ 0

0, otherwise. (3.7)

Then, they proposed using a bank of M filters, each having different bandwidth,

instead of using simply one low pass filter have(n). Specifically, the filter used in the

kth (k = 0, . . . ,M − 1) channel has a transfer function given by

Hk(z) =
1− αk

1− αkz−1
, (3.8)

where 0 < α0 < α1 < · · · < αM−1 < 1. Since impulse response of a filter in the bank

is have(k) = (1 − αk)α
k
ku(n), more recent inputs are given larger weights, than that

to those preceding them, in the averaging process of y(n) . The filter bank consists

of forty channels (M = 40), and the filter parameter αk is chosen from 0.95 to 0.99

with an increment of 0.001. The log-likelihood ratio obtained from the output of the
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kth channel is given by

Sk(n) = y(n) ∗ hk(n). (3.9)

The values of Sk(n) obtained for all k and n are then used to obtain a two-level

contour plot. The bands corresponding to Sk(n) > 0 determine the locations of CGIs.

In this method, the computational overhead increases considerably as the number

of channels in the filter bank is increased.

Multinomial statistical model

This method by Ahmad Rushdi et al. [64], differs from the previous method by the

way the transition tables are obtained and the type of digital filter used to calculate

the log-likelihood ratio. Instead of using (3.1) to obtain the transition probability

tables, they are generated using a multinomial model [92]. Transition probabilities,

p±βγ for the windowed sequence, Xn, are calculated as

p±βγ =
c±βγ

∑

k∈{A,T,G,C}

c±βk
(3.10)

where

c±βγ =
frequency±βγ

(frequency±β )(frequency
±
γ )
, (3.11)

the symbols frequency±βγ and frequency±β representing, respectively, the frequency of

occurrence of the dinucleotide βγ and that of the nucleotide β. This method uses an

FIR digital filter with variable coefficients generated using the Blackman window to

calculate the log-likelihood ratio, S(n). The locations having S(n) greater than zero

are considered to be CGIs.

All the above mentioned methods rely on the transition probability tables to
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calculate log-likelihood ratio used to identify CGIs. The methods given in [63, 64]

vary specifically by the way the weighting function is used to average y(n), which is

obtained from the respective transition tables. It is shown later in Section 3.3 that the

choice of the transition tables may produce contrasting results. Hence, a more reliable

and efficient scheme, that does not depend on the transition tables, is necessary for

identifying CGIs.

3.2.2 Proposed SONF based method

In this work, the use of statistically optimally null filters (SONFs) is proposed [88,89]

to solve the problem of CGI identification in DNA sequences.

Consider an unannotated DNA sequence X, of length N , in which the locations

of CGIs need to be identified. As mentioned in Section 2.4, SONFs are suitable to

perform this task as they are known for effective estimation of short duration signals

embedded in noise. Here, the CGIs are the short duration signals (or the message

signals) in the DNA sequence X, and the residual signal is the noise. To be able to

feed the sequence X to SONF, it is first mapped to an appropriate numerical sequence

XCG = {xCG(n)}. SONF being a window based approach, a sliding window of length

L is used to determine whether or not a windowed sequences of XCG, Xn = {xn(m)},

where n = 1, 2, . . . , N − L + 1 and m = n, n + 1, . . . , n + L − 1, belong to a CGI. It

can be noted that each windowed sequence, Xn, can be expressed as

Xn = Sn +Rn, (3.12)

where Sn = {s(m)} is a message signal corresponding to the CGI, and Rn = {r(m)} is

a residual signal. Sn and Rn are each of length L. SONF takes the windowed sequence,

Xn = {xn(m)} and a basis sequence, Φ = {φ(m)}, having some characteristic property

of CGI, as inputs and produces the output signal, Yn, which is an optimal estimate of
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the message signal Sn. Now, by formulating an appropriate threshold on SNR gain,

G(Xn), which is the ratio of variance of Yn to the variance of Xn, each of the windowed

sequences can be classified as belonging to a CGI or not.

In the following, we will now describe in detail the numerical mapping of DNA

sequences, formulation of the basis sequence based on some characteristic properties

of CGIs, choice of the window length, and finally the algorithm for CGI identification.

Numerical mapping of DNA sequences

In Section 2.3, it was shown that a DNA sequence, X, can be mapped to a set of four

digital signals by forming four binary indicator sequences, namely, XA, XT , XG and

XC . In each of these binary indicator sequences, ‘1’ represent the presence and ‘0’ the

absence of the corresponding bases A, T, G and C in X. For instance, considering a

DNA sequence X = {ATCCGAAGTATAACGAA}, the binary indicator sequence

corresponding to G, i.e., XG can be expressed as XG = {00001001000000100}. Indi-

cator sequences for the remaining three nucleotides can be represented in a similar

fashion.

The problem of CGI identification deals with G and C content in a DNA se-

quence. Hence, we define a new indicator sequence XCG = {xCG(n)}, which indi-

cates the presence of both the nucleotides C and G in a DNA sequence. For ex-

ample, the binary indicator sequence XCG of the DNA sequence X given above is

XCG = {00111001000001100}.

Formulation of the basis sequence

A formulation of basis sequences, based on some characteristic properties of CGIs, is

very important for identifying CGIs in the input DNA sequence. For this purpose,

the CGIs in sequence L44140 [5] taken from the chromosome X of Homo sapiens are

studied for some characteristic property. This sequence is of length 219447 bp and has
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Figure 3.4: Comparison of relative occurrence of dinucleotides in CGIs and non-CGIs
of L44140.

17 CGIs, whose locations have been reported in the NCBI website [5]. We calculate

the occurrences of all the possible dinucleotides in the CGIs and the non-CGIs of

the sequence L44140. The bar chart in Figure 3.4 depicts the relative occurrences

of the dinucleotides in this sequence. Here, the relative occurrence of a particular

dinucleotide is defined as the ratio of the number of times the dinucleotide occurs in

the sequence to the sequence length. In the barchart of Figure 3.4, the darker bars

corresponding to the dinucleotides CC, CG, GC, and GG are taller in CGIs; whereas,

the darker bars corresponding to the other dinucleotides (AA, AC, AG, AT, CA, CT,

GA, GT, TC, TG, TT, and TA) are shorter. It is evident from Figure 3.4 that the

dinucleotides CC, CG, GC, and GG occur more frequently in CGIs, whereas the other

dinucleotides occur more frequently in non-CGIs. Hence, it would be appropriate to

consider the relative occurrences of the four dinucleotides CC, CG, GC, and GG,

instead of only CG, in order to distinguish between a CGI and non-CGI.

Next we study the difference in gap sizes between the dinucleotides CC, CG, GC,

and GG in CGIs and non-CGIs of the sequence L44140. The gap size between a

pair of two consecutive dinucleotides, from these set of four, is defined as the number

of nucleotides occurring between the pair. Figure 3.5 shows the relative occurrence

of gaps of various sizes in a CGI and that in a non-CGI in this sequence. Here,
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Figure 3.5: Relative occurrences of various gap sizes in CGIs and non-CGIs of L44140.

the relative occurrence of a particular gap size is defined as the ratio of the number

of times the gap size occurs in the sequence to the sequence length. It is seen in

Figure 3.5 that, the gap of size 0 occurs more frequently in a CGI as compared to

that in a non-CGI. It is found that the gap size in a non-CGI can go up to 40 where

as in CGIs the maximum gap size was found to be 19. It is also seen from Figure 3.5

that the gaps of sizes 0, 1 or 2 occur more frequently in a CGI, and the gap sizes of

3 or larger occur more frequently in a non-CGI. This observation, coupled with the

fact that in a CGI atleast 50% of the nucleotide content is due to C and G, favors a

formulation of the basis sequence as

Φ = {1100110011 . . . 001100}. (3.13)

A ‘11’ in the basis sequence Φ is meant to capture the presence of one of the four

dinucleotides CC, CG, GC, and GG; whereas, a ‘00’ is meant to capture the presence
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of one of the remaining dinucleotides in a window of DNA sequence.

Window size

Now, in order to obtain the length of Φ (window size), we analyze CGIs and non-CGIs

of different lengths for the relative occurrences of various gap sizes. Figure 3.6 shows

the plot of ∆, the difference of relative occurrence of a particular gap in a CGI and a

non-CGI, versus the window size for various gap sizes.

It can be seen from Figure 3.6 that, as the window size increases, ∆ also increases

before it reaches a steady value. Irrespective of the gap size considered, ∆ stabilizes

for window sizes greater than 200. As the number of computations increases with

increasing size of the window, in the proposed method a window size of 200 is chosen.

It can be also seen from Figure 3.6 that ∆ is maximum for gap size 0. The value

of ∆ is negative for gap size 3, signifying that the gap sizes of 3 or larger are more

probable in non-CGIs than in CGIs.
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Figure 3.6: Difference of relative occurrence of a particular gap in a CGI and a non-
CGI for different window lengths.
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Algorithm

Recall that, SONF produces the output, Yn, by combining maximum signal-to-noise

ratio and least squares optimization criteria. The implementation of the the two-

fold optimization in SONF approach is shown in Figure 2.9, where the instantaneous

matched filter (IMF) is first used to detect the presence of a short duration signal

embedded in noise by maximizing the signal-to-noise ratio over variable-time obser-

vation interval m. The IMF output, In, is then scaled by a locally generated function,

Λn, using least squares (LS) optimization procedure to obtain the optimal estimate,

Yn, of the message signal Sn. For the implementation of this algorithm, the set of

relations (2.17) are utilized choosing the initial value of the gain P (0) to be equal to

1 and assuming ι(0) = 0.

The steps of the proposed SONF based CGI identification scheme for a DNA

sequence is given in the following algorithm.

Algorithm 3.1

Initialization: Set the base location index n = 0.

• Step 1: Apply a rectangular window of length L = 200 starting at the base

location n of the DNA sequenceX, of lengthN , to obtain the windowed sequence

Xn.

• Step 2: Obtain the binary indicator sequence XCG for the windowed sequence,

Xn, obtained from Step 1.

• Step 3: XCG from Step 2, along with the binary basis sequence Φ, given in 3.13,

form the inputs to SONF. The corresponding SONF output sequence, Yn, is

evaluated using the set of relations given in (2.17), by assuming P (0) = 1 and

ι(0) = 0.

• Step 4: Compute the SNR gain G(Xn), which is the ratio of the variance of

the SONF output Yn to the variance of the corresponding input Xn.
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• Step 5: Increment the value of n by 1, i.e., n = n + 1. If n ≤ (N − L) go to

step 1, else go to step 7.

• Step 6: Plot G(Xn) as a function of n + L and get its upper envelope. The

peaks in the resulting plot which are above a certain choice of threshold, η,

indicate the locations of CGIs identified in X.

• Step 7: Exit the algorithm.

As an illustration, the various signals involved in the implementation of the pro-

posed SONF scheme is shown in the Figure 3.7. For this purpose, segments of a CGI

and non-CGI are considered as shown in the Figure 3.7(a) and Figure 3.7(b) respec-

tively. Naturally, in Figure 3.7(a) there are greater number of ones. Figure 3.7(c) and

Figure 3.7(d) show the IMF output for a CGI and a non-CGI respectively. It can be

seen that the IMF output corresponding to a CGI progressively increases to a greater

value of 35 as compared to 6 of that of a non-CGI. Figure 3.7(e) and Figure 3.7(f) are

the scaling functions for a CGI and a non-CGI respectively. They are obtained using

the relation λ(m) = P (m)φ(m) in (2.17). Finally, the Figure 3.7(g) and Figure 3.7(h)

show the estimated CGI characteristic in a CGI and a non-CGI respectively. The

SONF output corresponding to a CGI has greater amplitude as compared with that

of a non-CGI.

Note that in the above figures segments of CGI and non-CGI, each of length 80

bp, are shown for the sake of clarity of the illustrations.

3.3 Results and Discussion

The proposed CGI prediction scheme is tested on several genomic sequences of varying

lengths taken from the human chromosomes 21 and 22. Specifically, we have used the

three contigs, NT 113952.1, NT 113954.1 and NT 113958.2 from chromosome 21, and
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Figure 3.7: SONF implementation. (a) An example of a CGI. (b) An example of a
non-CGI. (c) IMF output for CGI. (d) IMF output for non-CGI. (e) Scaling function
for CGI. (f) Scaling function for non-CGI. (g) SONF output for CGI, and (h) SONF
output for non-CGI.
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the contig NT 028395.3 from chromosome 22 for our analysis. All the sequence data

considered for this study is obtained from the GenBank database [5]. The performance

of the proposed scheme is compared with that of other popular DSP based approaches

such as Markov chain [62], IIR low-pass filters [63] and multinomial model [64]. First,

a DNA sequence from human chromosome X with the GenBank accession number

of L44140 is analyzed for obtaining the values of threshold, η, used by the above

methods considered in this study. The sequence is of length 219447 bp, and is already

annotated, i.e., the locations of its CGIs are already known and can be obtained

from [5].

Figure 3.8 shows the comparative performance of CGI prediction by the above

mentioned four approaches. Figure 3.8(a) shows the performance of Markov chain

approach, where log-likelihood ratio S(n) is plotted against base location index n

of the sequence. The transition probability tables given in Table 3.1 and Table 3.2

are used to calculate S(n). All the base locations, n, with S(n) > 0 imply that

they are very likely to be a part of a CGI. A window length of 200 bp is considered

for the method. Markov chain method is able to detect most of the CGIs in the

DNA sequence, and it can be seen that the CGIs and non-CGIs can be reasonably

differentiated by looking at the sign of S(n). However, one of the major drawbacks of

this method is the presence of a lot of false positives that falsely categorize non-CGIs

as CGIs.

The Figure 3.8(b) shows the performance of IIR low-pass filter approach where the

log-likelihood ratio, S(n), is plotted against the base location index n of the sequence.

The transition probability tables given in [63] are used to calculate S(n).

For a fair comparison, instead of a bank on M filters, we have used one pole

filter with optimized parameter α = 0.99. All the base locations, n, with S(n) > 0

imply that they are very likely to be a part of a CGI. A window length of 200 bp is

considered for this method. Similar to the Markov chain method, this method also
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Figure 3.8: CGI prediction in the DNA sequence L44140 using (a) Markov chain
method (b) IIR Filter method (c) Multinomial model (d) SONF scheme.
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produces a lot of false positives affecting the prediction accuracy.

Figure 3.8(c) shows the prediction of CGIs using the method of [64], which employs

the multinomial model. The multinomial model has been employed in this method

to obtain the transition probability tables. A Blackman window of length 100 bp

is employed for calculating the filtered log-likelihood ratio. The Blackman window

gives larger weights for central samples of the window, thus reducing the edge effects.

Windows with the positive filtered log-likelihood ratio are considered to be a part of

a CGI. As seen in Figure 3.8(c), this method shows considerably high false positives

making the CGI prediction unreliable.

Figure 3.8(d) shows performance of the proposed SONF scheme in predicting the

CGIs. Unlike the above mentioned methods, this scheme utilizes the binary basis

sequence Φ, given in 3.13, instead of the probability transition tables. Effectiveness

of the proposed scheme is clearly seen in Figure 3.8(d), which depict more prominent

peaks as compared to the other three approaches. These peaks facilitate more accurate

identification of CGIs.

It can be seen from the Figure 3.8, that the default threshold on η = 0 produces a

lot of false positives for the methods using transition probability tables. The optimal

threshold values for the methods is obtained by calculating the prediction accuracy

(Acc) for varying thresholds for each method (Figure 3.9). The optimal values of

thresholds obtained for the Markov chain method, IIR filter method and the proposed

SONF approach are 0.1, 0.05 and 0.6 respectively. The true locations of the CGIs,

obtained from NCBI website, present in the sequence L44140 are represented by red

horizontal spots in Figure 3.8.

The receiver operating characteristic (ROC) curves, shown in Figure 3.10, is ob-

tained for the four methods. It can be seen in Figure 3.10 that the proposed approach

has better overall performance for the sequence L44140 with the area under the curve

0.7460. The Markov chain method is next with the area under the ROC curve 0.6072.
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Figure 3.10: ROC curves obtained for the sequence L44140.
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The area under the curve for IIR filter method is 0.3106. It can be seen that the

multinomial model method has the least area under the ROC curve. The dismal

performance of this method is not a reflection on the method itself rather on the use

of the transition probability tables.

Figure 3.11, shows only the first 15000 bps of L44140, in Figure 3.8, comparing

the prediction of the four methods. The red horizontal lines in Figure 3.11 are the

true locations of CGIs. The blue binary decision curve depicts the locations of the

predicted CGIs. The binary decision curve for each of the methods is obtained by

making the window outputs either equal to 1 or 0 depending upon its value being

greater than or less than the corresponding threshold. It can be seen in Figure 3.11(c),

that the multinomial based approach fails to detect the CGI located between base

pairs 3095 and 3426 as opposed to other three methods implying that the probability

transition parameters used for the CGI identification play a crucial role. Hence, it is

important to have a CGI identification characteristic which is devoid of any ambiguity

considering the choice of different probability transition tables available. The binary

basis sequence Φ in the proposed scheme successfully identifies the CGIs and can be

reliably used as a CPG identification characteristic.

In this work, the performance of different CGI identification methods is evaluated

at the nucleotide level. For example, the value of TP is obtained by adding all the

nucleotides predicted to to true positive, and the other outcomes are calculated in

the similar manner. Table 4.1 presents the summary of performance measures Sn,

Sp, CC and Acc obtained for the analysis of four contigs NT 113952.1, NT 113954.1,

NT 113958.2 and NT 028395.3. The performance of the proposed scheme is also

compared with that of CpGCluster [18], which uses the distance between CpG din-

ucleotides (and not the transition probability tables) for identifying CGIs. The pro-

posed approach has the highest values of Sn for all the contigs, and has the high values

of CC for the contigs NT 113954.1 and NT 113958.2. The performance accuracy is
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Figure 3.11: CGI prediction in the first 15000 bps of L44140 using (a) Markov chain
method (b) IIR Filter method (c) Multinomial model (d) SONF scheme. Binary
decision based on respective threshold is plotted against the base location index.

also above 97%.

The above discussion shows that the proposed method is reliable and the proposed

binary basis sequence Φ can be used as a CGI identification characteristic. The

multinomial method didnt identify any of the CGIs in the contig NT 028395.3 and

hence its Sn and Sp values are zero. The corresponding Acc value is high because the

method predicting most of the true negatives correctly. The contig NT 028395.3 has

short CGIs of the order of 200 bps and the proposed approach with better sensitivity

is capable of identifying them.
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Table 3.3: Comparison Of Different Methods For Identification Of CGIs

Contig. Performace Methods

Markov IIR Filter Multinomial CpGCluster SONF

Chain model

NT 113952.1 Sn 0.8466 0.8656 0.4524 0.5046 0.8677

Length = 184355 Sp 0.8728 0.8320 0.2833 0.9995 0.4457
CC 0.8621 0.8180 0.3609 0.6941 0.6192
Acc 0.9955 0.9848 0.4948 0.9778 0.9878

NT 113954.1 Sn 0.3285 0.2226 0.0055 0.2986 0.5420

Length = 129889 Sp 0.3082 0.2585 0.0021 0.9946 0.2094
CC 0.3152 0.2369 0.0040 0.4381 0.4382
Acc 0.9940 0.9940 0.4989 0.9690 0.9894

NT 113958.2 Sn 0.4555 0.3561 0.2938 0.2716 0.8852

Length = 209483 Sp 0.4652 0.4439 0.0202 0.9994 0.2880
CC 0.4527 0.3899 0.0119 0.4996 0.4954
Acc 0.9849 0.9845 0.4960 0.9532 0.9705

NT 028395.3 Sn 0.5440 0.4200 0.0000 0.4489 0.8789

Length = 647850 Sp 0.8233 0.7590 0.0000 0.9947 0.4534
CC 0.6667 0.5616 -0.0116 0.9753 0.6267
Acc 0.9945 0.9932 0.8710 0.9532 0.9887
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Additionally, we have evaluated the time complexity of the proposed method

using the tic-toc function in MATLAB. Taking the necessary precautions (such as all

applications except MATLAB were closed, a fresh session of MATLAB was started

for each run, and MATLAB was warmed up with the code, i.e., the first run of the

code was ignored), the CPU time for processing a fixed length of sequence was found

to be the least for the Markov chain method. This method was followed by SONF,

IIR and multinomial approaches taking an additional CPU time of 1.29%, 1.78% and

1.82% respectively.

3.4 Prediction of Protein Coding Regions

The locations of CGIs help in finding the promoter regions in a DNA sequence. As

every gene is preceded by a promoter, finding CGIs in turn help us in determining the

locations of genes. The genes in eukaryotic DNA have an alternating arrangement

of exons and introns. Predicting the locations of exons in a gene is an important

problem as they are responsible for coding proteins. The exons in a gene determine

the messenger RNA (mRNA) transcript, which is in turn used for the synthesis of

a protein. Sometimes, a single gene can produce multiple proteins due to a process

called alternate splicing. In this process, particular exons of a gene may or may not

be included in the mRNA transcript, as shown in Figure 3.12, resulting in multiple

mRNA transcripts. The proteins translated from these alternatively spliced mRNAs

will differ in the respective sequence of amino acids. Hence, finding the locations

of exons in a gene is an important step in the analysis of DNA sequences as they

determine the exact protein they synthesize.

It has been observed that exons in genes exhibit a period-3 property [93], i.e., the

frequency spectrum of DNA segments corresponding to exons tend to exhibit a strong

component at the frequency, 2π/3. This property can be attributed to the triplet
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Figure 3.12: Alternative splicing of a gene.

nature of the codons and their unequal usage in coding regions along with the biased

usage in genomic DNA [55]. The period-3 property is regarded by researchers as a

good preliminary indicator of exon locations, although there are some exceptions in

which exons do not satisfy this period-3 property.

3.4.1 Frequency analysis of DNA sequences

A DNA sequence, X, can be mapped into a set of four digital signals XA, XT , XG

and XC using Voss’s binary indicator sequences [70] as explained in Section 2.3. Since,

exons exhibit the period-3 property, whereas, introns do not, the Fourier spectrum of

the binary indicator sequences can be used for predicting the locations of exons [51,53,

55]. For this purpose, a window of size L can be first applied to each binary indicator

sequence starting at index n = 0. The discrete Fourier transform (DFT) [94] of the

windowed sequence of length L can then be computed. The DFT XA(k) of the binary

sequence, say XA, is given by
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XA(k) =
L−1
∑

m=0

e−j2πkm/L, 0 ≤ k ≤ (L− 1), (3.14)

where the window length, L, is a multiple of 3. The DFTs of the other binary

sequences can be evaluated in a similar fashion. The total magnitude spectrum of the

windowed sequence can be obtained as

S(k) = |XA(k)|
2 + |XT (k)|

2 + |XG(k)|
2 + |XC(k)|

2, (3.15)

where XT (k), XG(k) and XC(k) are the DFTs of the binary indicator sequences XT ,

XG and XC , respectively.

The period-3 property of exons in a DNA sequence implies that the DFT coeffi-

cients corresponding to k = L/3 are larger in an exon region as compared to the other

L− 1 coefficients for that window. This process of computing S(L/3) is repeated by

sliding the window by one or more bases at a time. The magnitude spectrum value

S(L/3) can be plotted as a function of the window index n. Peaks occurring in the

plot of S(L/3) versus index n indicate the possible locations of exons as shown in

Figure 3.13. Researchers have used other DSP techniques such as the sliding window

DFT [55], digital filters [53, 56, 57], wavelet transform [58], and multirate DSP mod-

els [59, 60], employing this period-3 property for predicting the locations of exons in

DNA sequences.

3.4.2 Proposed SONF based method

In this work, the use of statistically optimally null filters, reviewed in Section 2.4, is

proposed to solve the problem of prediction of exons in DNA sequences [90].

Consider an unannotated DNA sequence X, of length N , in which the locations of

exons need to be identified. SONFs can be employed to solve this problem by consid-

ering the period-3 property of exons as the signal of interest that need to be estimated
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happen this, one or more of the binary sequences themselves should therefore have the

period-3 property. Thus, the basis function must be chosen to have the capability of

capturing this feature in a binary sequence, if this sequence indeed has such a feature.

In view of these reasons, a sequence of length L given by

φ = {100100100 . . . 100100}, (3.17)

could be a reasonable choice for the basis function. In this sequence ‘1’ can then be

expected to capture the presence and ‘0’ the absence of the nucleotide that gives rise

to particular binary sequence. It is noted that this choice of the basis function satisfies

the period-3 property and its magnitude spectrum is marked by a peak at k = L/3,

as seen from Figure 3.15. However, a DNA sequence has three reading frames, and

in an windowed DNA sequence belonging to an exon, the period-3 property could

arise from any of these three reading frames. Due to this reason, the basis function

Φ = {φ1, φ1, φ1} containing an orthogonal set of sequences, each having the period-3

property, given by

φ1 = {100100100 . . . 100100}

φ2 = {010010010 . . . 010010}

φ3 = {001001001 . . . 001001}

is chosen to predict the protein coding regions using SONF.
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Figure 3.15: Frequency spectrum of the basis sequence Φ.

Algorithm

The steps of the proposed SONF based exon identification scheme for a DNA sequence

is given in the following algorithm.

Algorithm 3.2

Initialization: Set the base location index n = 0.

• Step 1: Apply a rectangular window of length L = 300 starting at the base

location n of the DNA sequenceX, of lengthN , to obtain the windowed sequence

Xn.

• Step 2: Obtain the four Voss’s binary indicator sequences XA, XT , XG and

XC for the windowed sequence, Xn, obtained from Step 1.

• Step 3: Each of the four binary signals from Step 2, along with the binary

basis sequence Φ, given in 3.17, form the inputs to an SONF resulting in four

SONF output sequence YA, YT , YG and YC . These are evaluated using the set

of relations given in (2.17), by assuming initial P to be an identity matrix of

order 3 and ι(0) = 0.
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• Step 4: Compute the sum of the SNR gains for each of the SONF outputs from

Step 3 to obtain G(Xn).

• Step 5: Increment the value of n by 1, i.e., n = n + 1. If n ≤ (N − L) go to

step 1, else go to step 7.

• Step 6: Plot G(Xn) as a function of n + L and get its upper envelope. The

peaks in the resulting plot which are above a certain choice of threshold, η,

indicate the locations of exons identified in X.

• Step 7: Exit the algorithm.

3.5 Results and Discussion

The proposed exon prediction scheme is tested on the DNA sequences taken from the

chromosome III of C. elegans. The performance of the proposed scheme is compared

with that of other popular DSP based approaches such as DFT method [55] and anti

notch filters [95]. We have used the DNA sequence containing the gene with geneID

F56F11.4 taken from GenBank [5] for our analysis. This sequence is analyzed for

obtaining the values of threshold, η, used by the above methods considered in this

study. The sequence is of length 8000 bp, and has five protein coding regions whose

locations are reported in [5].

Figure 3.16 shows the comparative performance of exon prediction by the above

mentioned three approaches. Figure 3.16(a) shows the performance of DFT based

method, where S(L/3) is plotted against base location index n of the sequence. A

window length of 351 bp is considered to be appropriate for predicting exons [51].

The peaks in the spectrum correspond to regions where three base periodicity is

dominant. The Figure 3.16(b) shows the performance of anti notch filter approach

where the output, Y (n), is plotted against the base location index n of the sequence.
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Figure 3.16: Exon prediction in the gene F56F11.4 using (a) DFT method. (b) Anti
notch method. (c) Proposed SONF scheme.

Finally, Figure 3.16(c) shows performance of the proposed SONF scheme in predicting

the exons. The red horizontal lines in Figure 3.16 are the actual locations of the exons,

and are plotted at height equal to the threshold values of 580, 0.02 and 0.075 used

for the respective method. The first coding region in F56F11.4 is very short and is

of length 112 bp. It can be seen from Figure 3.16 that the proposed SONF based

method is capable of predicting this exon more accurately. The performance metrics

of the prediction results obtained for the sequence F56F11.4 are given in Table 3.4.

The high values of sensitivity and the correlation coefficients show the effectiveness
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Table 3.4: Comparison of Different Exon Prediction Methods

Methods Performance Criteria

Sensitivity Specificity Correlation Coefficient

Sn Sp CC

DFT method 0.8676 0.8375 0.8483
Anti notch filter 0.8202 0.8036 0.8122

Proposed SONF scheme 0.8994 0.8622 0.8694

of the proposed SONF based method over the other two methods.

An exhaustive analysis is done on the DNA sequences taken from the chromosome

III of C. elegans using the three methods. The receiver operating characteristic (ROC)

curves, shown in Figure 3.17, is obtained as a result of this analysis. It can be seen

in Figure 3.17 that the proposed approach has better overall performance for the

sequence F56F11.4 with the area under the curve 0.8206. The DFT method is next

with the area under the ROC curve 0.7872. The area under the curve for anti notch

filter method is 0.7519.
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Figure 3.17: The ROC curves of the exon prediction methods.
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3.6 Summary

In this chapter, DNA sequences have been analyzed in order to investigate the prob-

lems of identifying the locations of CpG islands and protein coding regions (exons).

For the problem of identifying the locations of CGIs, an SONF based approach

has been proposed. For this purpose, a basis function has been formulated having

a characteristic property of a CGI, i.e., the G and C content is ≥ 50% and the

nucleotide G tends to immediately follow C in a CGI. This basis sequence has then

been used in SONF, to identify the locations of the CGIs. SONF is implemented

using two-fold optimization of maximizing the signal-to-noise ratio and least square

optimization. The instantaneous matched filter, which maximizes the signal-to-noise

ratio, is first used to detect the presence of CGI followed by application of least

squared optimization to obtain the optimal estimate of the signal pertaining to CGIs.

It has been shown that unlike the use of the transition tables that are dependent on

training data, the proposed basis sequence is more reliable in identifying CGIs. The

performance of the proposed technique for the prediction of CGIs has been tested on

four randomly chosen contigs in chromosomes 21 and 22 of human beings. The results

obtained have been shown to be more accurate than those obtained using the existing

methods.

The problem of predicting protein coding regions (exons) in DNA sequences has

also been investigated using SONF. For this purpose, a basis function having a char-

acteristic property of an exon has been formulated. The period-3 property exhibited

by exons has been chosen to formulate the basis sequence. The DNA sequence is

mapped to the four binary indicator sequences each of which is processed by a sep-

arate SONF to capture its period-3 property individually. The performance of the

method developed has been compared with the other existing methods for predicting

exons in DNA sequences. It has been shown that the proposed algorithm is quite

effective especially in predicting short exons.
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Chapter 4

Analysis of RNA Sequences

4.1 Introduction

Ribonucleic acid (RNA) is a working copy of DNA resulting form a process known as

transcription based on the information contained in DNA. The main task of RNA is

to transfer the genetic information contained in DNA from nucleus to ribosome for

the creation of proteins. There are different types of RNAs that play various kinds

of roles in synthesizing proteins. For example, messenger RNA (mRNA) regulates

how the genes in DNA sequences are expressed, transfer RNA (tRNA) carries amino

acids in the cell during the process of translation, and ribosomal RNA (rRNA) helps

in putting amino acids together in chains forming protein sequences. Apart from the

above cellular roles, RNAs also have structural and catalytic roles. Another type of

RNA, called the non-coding RNAs (ncRNAs) [96–98] do not code for proteins but

play a vital role in various biological functions such as chromosome replication, RNA

modification, etc. Due to the above reasons, the study of RNAs has become pivotal

to understand fully the biological processes of complex organisms.

A molecule of RNA consists of a sequence of nucleotides attached to one another
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by covalent chemical bonds. The nucleotides contain one of the four bases: adenine

(A), cytosine (C), guanine (G) or uracil (U). RNA is very similar to DNA except that

in RNA the nucleotide uracil (U) replaces thymine (T) in DNA, and RNA is normally

found as a single-stranded molecule, whereas DNA is double stranded. The linear

sequence of nucleotides in an RNA molecule is called its primary structure. An RNA

sequence has a property of folding and twining about itself such that the nucleotides

in close proximity form weak chemical bonds (hydrogen bonds) with another if they

are complementary. The set of nucleotide-pairs existing in a RNA is called its sec-

ondary structure. An example of an RNA secondary structure resulting in stem and

loop patterns is shown in the Figure 4.1. The complimentary nucleotide base pairs

(Watson-Crick pairs) are the base A bonding with U and similarly, G with C. The

folding and twining of RNA sequence about itself imparts it a stable three-dimensional

structure, called the tertiary structure. Similar to proteins, there is a correlation be-

tween RNA structure and its functionality [62]. Predicting the secondary structure

of an RNA sequence is an initial step in predicting its tertiary structure and con-

sequently its functionality. Two of the main substructures present in an RNA are

loop and stem patterns as seen from Figure 4.1. Another important substructure of

an RNA secondary structure, called the pseudoknot, is very common in all classes of

RNAs. Pseudoknots are involved in several biological processes [26] and play a crucial

role in the determination of RNA tertiary structure. The problem of predicting pseu-

doknots in RNA secondary structure is very crucial and its complexity is considered

to be NP-hard [39].

In this chapter, an efficient and reliable technique for predicting the secondary

structure of RNA sequences including pseudoknots using a matched filtering approach

is presented [99, 100].
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Figure 4.1: RNA secondary structure of the sequence Tomato mosaic virus.1.

4.2 RNA Secondary Structure

As mentioned in Section 4.1, an RNA sequence has a tertiary structure and its

study is greatly simplified by just concentrating on its secondary structure, i.e.,

the nucleotide base pairs involved. Consider an RNA sequence of length N , X =

x(1), x(2), · · · , x(N), where x(i) ∈ {A,C,G, U} ∀ i = 1, 2, · · · , N . For 1 ≤ i < j ≤ N ,

let x(i) · x(j) denote the pairing of base x(i) with x(j). The secondary structure S,

of the sequence X is a set of base pairs P such that a base is paired with at most

one other base. Alternatively, any two base pairs in S, x(i) · x(j) and x(i
′

) · x(j
′

) are

either identical, or else i 6= i
′

and j 6= j
′

. There can be several valid secondary struc-

tures for a RNA primary structure. However, most of the possibilities can be easily

eliminated using chemical and stereochemical constraints. Most of these constraints

may be formulated in terms of the thermodynamic instability of structures containing

certain base-pairs or sets of base-pairs. Such constrains can be utilized in developing

algorithms which maximize the stability of RNA structure.
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Figure 4.2: RNA having a pseudoknot. (a) Primary structure. (b) Bracket notation.
(c) Linear representation. (d) Circular representation. (e) Radiate representation.
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4.2.1 Substructures of RNA secondary structure

An RNA secondary structure S is composed of substructures or components such as

loops, stems, bulge, pseudoknots, interior loops, exterior loops, etc. This work con-

siders only on three substructures: loops, stems and pseudoknots shown in Figure 4.2.

A loop is an unpaired section of an RNA sequence that is created when it folds and

forms base pairs with another section of the same sequence. A stem is formed by

several stacked base pairs such as x(i) ·x(j), x(i+1) ·x(j−1), · · · , x(i+m) ·x(j−m),

where m > 0 and (j − i− 2m) > 0. And finally, a necessary and sufficient condition

for an RNA secondary structure to contain a pseudoknot is to have two base pairs

x(i) · x(j) and x(i
′

) · x(j
′

) in the structure such that i < i
′

< j < j
′

or i
′

< i < j
′

< j.

This condition causes crossing of base-pairs resulting in a twisted/knotted structure.

4.2.2 Representation of RNA secondary structure

There are a number of ways of representing an RNA secondary structure. The RNA

primary structure (Figure 4.2(a)) can be represented using bracket notation as shown

in Figure 4.2(b). In this bracket notation, the base-pairs are represented by the cor-

responding opening and closing brackets, and the unpaired bases are represented by

colon. The stack of successive opening or closing brackets corresponds to a stem

pattern and the colons correspond to a loop pattern. In the linear representation

(Figure 4.2(c)) the RNA molecule is stretched into a line and circular arcs are used to

represent the base-pairs. The presence of a pseudoknot is suggested by the intersec-

tion/crossing of the arcs joining the base-pairs. In circular representation the bases

of the RNA molecule are placed equidistant to one another along the circumference

of a circle and the base-pairs are represented by chords as shown in Figure 4.2(d).

The presence of a pseudoknot is suggested by the intersection of the cords joining

the base-pairs. Figure 4.2(e) shows the radiate representation in which the difference
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between a stem pattern and a pseudoknot is better visualized.

4.3 Proposed Technique

It is well established that an RNA sequence X assumes the most energetically stable

configuration. In other words, X assumes a configuration with minimum free energy

- which is the energy stored in the chemical bonds of a molecule. As the RNA folds,

some bases form bonds with others forming stems and some remain free forming loops.

The stem patterns tend to stabilize the RNA structure, where as, the loops tend to

destabilize it. Of the possible several sets of secondary structrues of X, the challenge

is to predict the most stable structure. Stability of an RNA molecule can be assessed

by calculating its free energy. Stems have negative free energy and loops have positive

free energy [29]. Consequently, searching for long possible stem patterns in X can

lead us to the most energetically stable structure. Predicting the secondary structure

of an RNA sequence involves predicting the number of stems, the number of loops,

and the presence of pseudoknots, if any, given an RNA primary structure.

In the proposed approach, we utilize the base-pair matrix representation of an

RNA sequence of length N , X = x1, x2, · · · , xN where xi ∈ {A,G,C, U}. The base-

pair matrix B of the above RNA sequence X is an N ×N matrix, and is formulated

such that its (m,n)th element bmn has a value of either 0 or 1 according to the criteria

bmn =







1 if xm and xn form base pair

0 otherwise.
(4.1)

An example of a base-pair matrix B is shown in the Figure 4.3. All the locations

having a value of 1 are shaded in the matrix. The remaining locations have a value

of 0. It can be noticed that the matrix is always symmetric and the number of

diagonal patterns of shaded locations in either the upper triangle or lower triangle
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Figure 4.3: Diagonal stem patterns in RNA secondary structure. (a) Radiate repre-
sentation. (b) Base-pairing matrix. Note: The non-zero elements corresponding to
the base-pairs are shaded.
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of B determines the possible number of stem patterns in the secondary structure of

RNA shown in Figure 4.3(a). In the Figure 4.3(b), the stem pattern is shaded in

dark color. Gaps between the diagonal stem patterns corresponding to the upper and

lower triangular matrix of B determine the length of loops. A stem pattern can never

intersect the dotted diagonal line drawn in the Figure 4.3(b). This constraint can

used to validate if the diagonal elements identified in base pairing matrix are really

stem patterns or not. Now, in order to identify the possible stem patterns in an RNA

sequence, an efficient approach is needed to get the locations of the diagonal patterns

in the matrix B. A two dimensional convolution of the upper triangular matrix Bu,

obtained from B, with a diagonal matrix D of size M ×M given by

C = Bu ∗D (4.2)

can be used to locate the stem patterns in B. Mathematically, the discrete 2D

convolution operation is defined as

C(m,n) =
M
∑

j=1

M
∑

i=1

Bu(m+ i, n+ j) ·D(i, j). (4.3)

This operation is shown in the Figure 4.4 for both the cases when M is odd and

even respectively. The location of the maximum value in the convolution output C

is shaded in Figure 4.4(a) and in Figure 4.4(b). If the size of the mask, M , is equal

to the length of the stem pattern in an RNA secondary structure, then the maximum

value of any element in C is M . Hence, by varying the size of mask, M , the stem

patterns of different sizes present in an RNA can be identified.

4.3.1 Prediction of stem and loop patterns

By varying the size ofM , i.e., the size of matrix D (also called as mask), the locations

of stems of various length can be determined. For the mask of size odd, and if the
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Figure 4.4: Matched filtering. (a) Using a mask of odd size. (b) Using a mask of even
size.
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location of the maximum element of C is (m,n) then, the terminal locations of the

stem pattern, (i, j) and (i
′

, n
′

), are given by,

(i, j) → (m+ int(M/2), n− int(M/2)) and (4.4)

(i
′

, n
′

) → (m− int(M/2), n+ int(M/2)) (4.5)

respectively. Here, int(M/2) rounds the value of M/2 to the nearest integer less

than or equal to M/2.

For the mask of size even, and if the location of the maximum element of C is

(m,n) then, the terminal locations of the stem pattern, (i, j) and (i
′

, n
′

), are given by

(i, j) → (m+ (M/2), n− (M/2) + 1) and (4.6)

(i
′

, n
′

) → (n+ (M/2),m− (M/2) + 1) (4.7)

respectively.

The terminal locations of a stem pattern are sufficient to determine the locations

of the remaining bases in the stem. Now, all the base-pairs (i, j) corresponding to the

stem pattern identified are given by

(m− int(M/2) ≤ i ≤ (m+ int(M/2) and (4.8)

(n− int(M/2)) ≤ j ≤ (n+ int(M/2)) (4.9)

for M being odd. From the values of i’s and j’s obtained from the equations (4.8)

and (4.8), the base-pairs (i, j) are generated by associating the lowest value of i with
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the highest value of j, continuing the process until the highest value of i is associated

with the lowest value of j.

And, all the base-pairs (i, j) corresponding to the stem pattern, when M is even,

are given by

(m+M/2) ≤ i ≤ (n+ (M/2)) and (4.10)

(n− (M/2) + 1) ≤ j ≤ (m−M/2 + 1)). (4.11)

From the values of i’s and j’s obtained, the base-pairs (i, j) are generated in the similar

fashion to the case of odd M . After all the base-pairs are calculated, the locations of

the nucleotides in a loop, l, are obtained using max(i) < l < min(j).

For example, if M = 3, and the location of max(C) = 3 is at (4, 10), then the

terminal locations of the stem pattern are (5, 9) and (3, 11). Now, the locations of

all the base-pairs forming stem of size 3 are given as x3 · x11, x4 · x10 and x5 · x9.

Similarly, when M = 4, and if the location of max(C) = 4 is at (3, 10), then the

terminal locations of the stem pattern are (5, 9) and (2, 12). Now, the locations of all

the base-pairs forming stem of size 4 are given as x2 · x12, x3 · x11, x4 · x10, and x5 · x9.

The nucleotide bases x6, x7 and x8 form the loop.

4.3.2 Prediction of pseudoknots

The 2D convolution is repeatedly calculated by reducing the size of D each time

starting with the size int(N/2) until M ≥ 3. Each time a stem pattern is identified,

the base pairing matrix B is modified eliminating the columns corresponding to the

stem pattern found. Then the convolution is carried on the remaining columns of

B with reduced mask size M . The locations of the stem patterns found are used to

update the RNA structure (bracket notation) after each iteration. When M = 2,
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the algorithm exits and outputs the RNA secondary structure in the form of bracket

notation.

From the set of all base pairs in the RNA secondary structure predicted from the

stem patterns obtained using convolution, the presence of a pseudoknot is determined

if there exist two base pairs x(i) · x(j) and x(i
′

) · x(j
′

) in the structure such that

i < i
′

< j < j
′

.

The following is the summary of the proposed algorithm.

Algorithm 4.1

Initialization: Input the RNA sequence X of length N . Obtain the mask D of

size M = int(N/2).

• Step 1: Obtain the base pair matrix B and the upper triangular matrix Bu of

the input RNA sequence, X.

• Step 2: Evaluate the 2D convolution C = Bu ∗D and find the location, (m,n),

of the largest element in C.

• Step 3: Using the values of m and n obtained in Step 2, and M being odd or

even, find the terminal locations,(i, j) and (i
′

, n
′

), of the probable stem pattern.

• Step 4: Validate the obtained stem pattern in Step 3 by checking if it intersects

the diagonal of Bu.

• Step 5: If the stem pattern in Step 3 passes the validation, find all the base

pairs in the stem pattern for M being odd or even.

• Step 6: Modify the matrix Bu eliminating the columns corresponding to the

stem pattern found in Step 4.

• Step 7: Reduce the size of the mask to be equal to the largest element in C,

i.e., M = max(C) and go to Step 2.
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• Step 8: Continue the procedure untilM ≥ 3, recording the base pairs obtained

in the form of bracket notation.

• Step 9: The presence of the pseudoknot is detected by checking if there exist

two base pairs x(i)·x(j) and x(i
′

)·x(j
′

) in the structure such that i < i
′

< j < j
′

.

• Step 10: Exit the algorithm for M = 2.

4.4 Results and Discussion

The performance of the proposed algorithm is validated by testing it against several

different RNAs, specially containing pseudoknots. For this purpose, we have used the

RNA sequences from PseudoBase database [101]. PseudoBase is a database containing

structural, functional and sequence data [102] related to RNA pseudoknots. For each

pseudoknot in the database, information such as the number of stems and the number

of loops in the pseudoknot is reported along with other information such as the EMBL

accession number of the sequence. Results obtained from the proposed approach are

compared with the actual secondary structure information given in the PseudoBase

database.

The screen shot shown in the Figure 4.5 is the MATLAB based tool developed

implementing the proposed RNA secondary structure prediction algorithm. The

screen shot shows the prediction result obtained for the RNA sequence PKB111 taken

from [101]. Figure 4.6 shows the base pair matrix for the sequence PKB111. In Fig-

ure 4.5, the field ‘Input RNA Sequence’ is used to input the primary structure of the

RNA sequence whose secondary structure is to be determined. The ‘Process’ but-

ton below the input field is to start the prediction process. The prediction output

is generated in the form of bracket notation and is displayed in the field ‘Bracket

Notation’.
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Figure 4.5: A screen shot of the RNA secondary structure prediction tool developed
showing the input RNA sequence, the secondary structure output in both bracket
notation and radiate notation.

Figure 4.6: Base pairing matrix representation of the sequence PKB111.
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At the bottom of the tool there is a provision to visualize the predicted RNA

secondary structure in different representations such as Radiate, Circular, Naview

and Linear. The VARNA [103] java applet is used to create the visualizations in

MATLAB. The tool also displays the number of stem patterns, number of loops,

and the number of pseudoknots (NOPK in the tool) in the input RNA sequence.

The tool developed is tested on several RNA sequences taken from PseudoBase [101].

The test sequences were chosen such that their length doesnot exceed 100 bases and

contain atleast one pseudoknot. The prediction results obtained are validated with

the standard PseudoBase results. Both the prediction results and the PseudoBase

results are in bracket notation.

In order to quantify the results, the prediction accuracy in terms of sensitivity,

Sn, and specificity, Sp and correlation coefficient CC were calculated. Table 4.1 enu-

merates the prediction results of the proposed algorithm compared with that of the

recent popular methods such as HotKnots [104], DotKnot [105], RNAalifold [106] and

IPknot [107]. A dataset compiled from PseudoBase [101] consisting of 367 sequences

has been used for this work. This dataset has been tested against Rfam [108] to

obtain the multiple alignments required by RNAalifold and the sequences for which

alignments are available have been selected. After excluding the redundant sequences,

the dataset used for the comparative evaluation includes 86 sequences whose lengths

are less than 100 nucleotides. The RNA sequences used for the analysis are taken

from PseudoBase and contain at least one pseudoknot. The method RNAalifold takes

sequence alignments as input to predict the RNA secondary structure. Similar meth-

ods which use multiple RNA homologs to compute the RNA secondary structure are

accurate but they consume enormous computational resources. For example, as the

number of the input RNA sequences increases, the complexity increases exponen-

tially [109]. From Table 4.1 it can be seen that the proposed method has the highest

value of correlation coefficient (CC) for all the sequences tested making it a reliable
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Table 4.1: Comparison of Different Prediction Methods

Methods Performance Criteria

Sensitivity Specificity Correlation Coefficient

Sn Sp CC
RNAalifold 0.8330 0.7404 0.5649

IPknot 0.8798 0.6995 0.6176
Hotknots 0.9543 0.6516 0.6212
Dotknot 0.8779 0.7294 0.6137

Proposed Approach 0.9824 0.7222 0.6444

and accurate method.

The proposed approach involves convolution of the matrices Bu and D. So the

computational complexity would be similar to that of a 2D convolution which is

O(N2M2). Here, N is the size of matrix Bu and M is the size of D. As can be

seen in Figure 4.3, the base pairing matrix contains mostly ‘zeros’. In fact, the only

elements in the base pairing matrix containing the non-zero elements are the ‘ones’

corresponding to the base pairs. Moreover, we are convoluting the upper triangular

matrix of B with the diagonal matrix D and without zero padding. This keeps the

size of the convolution output C same as the size of B. Hence, the computational

complexity would be much less than O(N2M2) and depends on the number of base-

pairs present in the structure. The proposed approach does not attempt to solve

the NP-hardness of the problem. It tries to simplify the problem by considering

RNA sequences of short lengths of the range less than 100 base-pairs (N < 100).

On an average the time taken to process a sequence of length 100 base pairs is 0.28

seconds on a P4, 2.83 GHz computer having 4GB RAM. Online webservers of the

methods Hotknots [110], Dotknot [111], RNAalifold [112] and IPknot [113] have been

used to compare the results with the proposed method. This is the reason the time

complexity of the methods is not included. But, Table 1 in [107] gives some details of

the time taken by various methods. The main advantages of the proposed approach

is the presence of a pseudoknot in a short RNA sequence is detected fast. Hence, the
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proposed approach can be used at places where sorting of RNA sequences is required

based on structural similarity. One of the short comings of the approach is failure to

detect the non-canonical base-pair between G and U. Moreover, the algorithm tends

to maximize the stem patterns which are counter effective in some RNA sequences.

Methods based on simultaneous maximization of stem patterns and minimization of

the free energy of RNA molecule need to be explored.

4.5 Summary

In this chapter, a reliable and efficient method for predicting the RNA’s secondary

structure that also includes pseudoknots has been proposed. Prediction of the sec-

ondary structure of an RNA sequence involves prediction of the number of stems,

the number of loops and the number of pseudoknots, and their corresponding loca-

tions. A matched filtering technique has been employed to find the long stem patterns

and the corresponding loops in the base pairing matrix of the RNA. This has been

achieved by convolving the base paring matrix of the RNA with a diagonal mask of

varying size which represents a stem pattern. Once the stems have been identified,

this knowledge is then utilized to determine the locations of loops and the presence of

pseudoknots. The proposed method has been shown to be computationally efficient

as it involves convolution of matrices whose elements are mostly zeros and ones. The

proposed method determines the presence of a pseudoknot in an RNA sequence more

successfully as compared to other methods such as Hotknots, Dotknot, RNAalifold

and IPknot. Experimental results demonstrate the effectiveness and ease of the pro-

posed approach. A graphical tool has also been developed implementing the proposed

algorithm to display the secondary structure of an RNA.
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Chapter 5

Analysis of Protein Sequences

5.1 Introduction

Proteins are a class of macromolecules synthesized from RNA by the process called

translation. Proteins are responsible for carrying out most of the cellular activities.

It is interesting to note that cells are made up largely of proteins, such as structural

proteins that give the cell rigidity and mobility, proteins that form pores in the cell

membrane to control the traffic of small molecules into and out of the cell, and receptor

proteins that regulate cellular activities. Proteins are also responsible for most of the

metabolic activities of cells. They are essential for the synthesis and breakdown of

organic molecules, and for generating the chemical energy needed for cellular activities.

In Chapter 2, it was mentioned that the protein sequences are long chains of amino

acids (also referred to as residues) joined by peptide bonds. Due to this reason, pro-

teins are sometimes also referred to as polypeptide chains. Proteins have a tendency

to fold into three dimensional (3D) structures, which in turn influence their function-

ality [9]. The process of protein folding is very complex, in which a polypeptide chain
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attains a stable 3D structure through short and long range chemical interactions be-

tween amino acids which are nearby and in different parts of the molecule, respectively.

During this folding process, the polypeptide chain twists and bends until it achieves a

state of minimum energy that maximizes the stability of the resulting structure. The

three levels of protein structure are shown in Figure 5.1. The primary structure of

a protein is the sequence of amino acids present in it. The secondary structure of a

protein gives information about the locations of amino acids forming one of the three

substructures: α-helix, β-sheet, and loop. Finally, the tertiary structure refers to the

three-dimensional arrangement of these substructures forming a complex convoluted

protein molecule. For a particular polypeptide, there are many short and long range

interactions resulting in several possible folded conformations. A reliable prediction

of protein folding is a major challenge.

By virtue of its 3D structure, proteins perform various cellular processes by chem-

ically interacting with other cellular constituents, called targets. These chemical in-

teractions are very specific in nature and occur at specific locations, known as active

sites, in the 3D structures. These active sites have particular shapes so that they can

fit into the target molecules during their interaction. In and around these active sites

are subregions known as hot-spots that are responsible for both the chemical stability

of active sites as well as supplying the binding energy for the protein-target inter-

actions. A hot-spot may consist of one or more amino acids arranged in an unique

pattern in the protein sequence. As the hot-spots play an important role in enabling

proteins to perform their functions, a thorough knowledge about their locations is es-

sential for understanding protein function. Therefore, reliable and efficient techniques

for identifying the locations of hot-spots in proteins are necessary.

In this chapter, protein sequences are investigated to solve the problems of pre-

dicting the protein secondary structure and identifying the locations of hot-spots.

For solving the problem of predicting protein secondary structure, a two-stage neural
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Figure 5.1: Protein secondary structure containing α-helix, β-sheet, and a loop
(Source [68]).

network based technique is proposed [114]. The second problem of predicting the

locations of hot-spots in protein sequences is investigated using statistically optimal

null filters [115].

5.2 Prediction of Protein Secondary Structure

Experimental techniques, such as, x-ray crystallography and nuclear magnetic res-

onance spectroscopy can provide high resolution structural information of proteins.

Unfortunately, these methods are expensive, tedious, time-consuming, and at times
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inaccessible. Also, the enormous growth of protein databases (e.g., due to large-scale

genome sequencing projects) continues to increase the number of unknown protein

sequence-structure pairs. In this scenario, efficient computational techniques, which

aid biologists in protein structure prediction, are in great demand. The determina-

tion of 3D structure of a protein using computational techniques is rather complicated.

Instead, a common practice is to first predict the secondary structure, which can ulti-

mately help determine the 3D structure. Prediction of secondary structure of a protein

includes associating each of the amino acids in it to one of the three substructures:

α-helix, β-sheet, and loop.

In the last couple of decades, several techniques for protein secondary structure

prediction have been proposed as described in Section 1.2. Most of the existing struc-

ture prediction methods use a complicated scheme of input encoding to incorporate

the evolutionary information. Moreover, the enormous growth of protein databases

necessitates the existing prediction models to be extended using huge amounts of

training data and developing large-scale neural networks, thereby demanding alter-

native more efficient modeling techniques. The following section gives the building

blocks necessary for prediction of the protein secondary structure using the proposed

two-stage neural network models.

5.2.1 Building blocks

Dataset

The development of neural network based models involves the training and validation

processes using a suitable data. The protein dataset considered for modeling should

be a good representative of the entire protein database. In this work, the widely

used RS126 protein dataset developed by Rost and Sander [44] is used for developing

the neural models of both the stages. This dataset consists of 126 non-homologous
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globular proteins. No two proteins in the dataset have pair-wise sequence similarity

greater than 25% for lengths greater than 80 residues. The dataset contains a total

of 24,395 amino acids with 32% α-helices, 21% β-sheets and 47% loops.

Encoding scheme for inputs and outputs

The utilization of the neural modeling techniques for the protein prediction problem

requires appropriate encoding of input and output data. The secondary structure

formed by a residue in a protein sequence is influenced by its neighbors. Therefore, a

window approach is adopted to generate the input data. Specifically, the secondary

structure formed by the central element or jth residue, Rj, is predicted from a window

of amino acids Rj−n, . . . , Rj,. . . , Rj+n, where the window size, W , is 2n+1. Usually,

n is chosen to be 6, leading to window size, W = 13. Each of the residues in the input

windowed sequence is encoded using 5-bits. Where as, each of the secondary structure

prediction model outputs corresponding to the three substructures, is encoded using

3 bits.

Prediction based on sequence profiles

In this section, an alternative encoding scheme, based on sequence profiles generated

is briefly described. The multiple sequence alignments, inferring protein homology,

contain additional information about the protein structure. Hence, the use of the

multiple sequence alignment information of a given protein, as input to the prediction

model, considerably increases the accuracy of secondary structure prediction [44].

Such an approach requires the frequencies of occurrence of all 20 amino acids for

each alignment position to be used as the input to the model. Each of these residue

frequencies is represented by 3 bits. Further, the N- and C- terminals of the protein

are encoded using 3 bits. In essence, a single residue position is encoded using 63

bits (20 × 3 + 3), which in the case of 13 residues of the windowed sub-sequence
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translates to an prohibitive number of input neurons (i.e., 13 × 63 = 819) making

the model training challenging. This complicated encoding scheme is replaced in the

proposed technique by the neural model of first stage which is trained to identify the

corresponding bin of the input protein. This enables us to use the simple encoding

scheme as discussed in the subsection above i.e., the single input sequence is used as

input instead of all its homologues.

Neural network models

In the proposed two-stage modeling technique, fully-connected multilayer perceptrons

(MLP) neural network models with one hidden layer are used in both the stages.

Each node in a layer is connected to all the nodes in the next layer by links associated

with real-valued weight parameters. These parameters are first initialized, and then

updated during the training process. Backpropagation algorithm, which involves two

algorithm-specific parameters, i.e., learning rate and momentum, is used for training

the neural models. During training, the kth weight parameter wk is updated as

∆wk(i) = −γ
∂E

∂wk

+ h∆wk(i− 1), (5.1)

where, E is the model error, γ is the learning rate, h is the momentum, and i represents

ith iteration/update.

Accuracy measures

A meaningful accuracy measure is critical for evaluating the quality of the models.

One of the widely used accuracy measures for secondary structure prediction is given

by

Q3 = [
Pα + Pβ + Ploop

N
]× 100 (5.2)

91



where Pα, Pβ and Ploop are the number of correctly predicted α-helices, β-sheets,

and loops respectively, and N is total number of residues in a given protein sequence.

This measure is also known as three-state overall residue accuracy. Another widely

used accuracy measure is the Matthew’s correlation coefficient, which in the case of

α-helix is defined as

Cα =
(pαnα)− (uαoα)

√

(nα + uα)(nα + oα)(pα + uα)(pα + oα)
(5.3)

where, pα is the number of correctly predicted positive cases, nα is the number

of correctly rejected negative cases, oα is the number of over-predicted cases (false

positives), and uα is the number of under-predicted cases (misses). Coefficients Cα

and Cloop can be defined for β-sheet and loop respectively. The coefficients equal

1.0 if the model predictions are 100% correct, equal -1.0 if the predictions are 100%

incorrect.

5.3 Proposed Two-stage NN Based Technique

In this section, the proposed two-stage neural network (NN) based technique for

protein secondary structure prediction is discussed. The homology information of

the input protein can lead to better prediction accuracies of the protein’s secondary

structure. The 126 non-homologous protein sequences in the RS126 dataset are allot-

ted to 126 different bins. Each of the bins is then populated with the corresponding

homologous protein sequences. In other words, all the protein sequences in a bin

are homologous and exhibit structural similarities. By doing this, we decompose the

structure prediction problem into two tasks. Given a windowed protein sub-sequence,

the first task is to associate the sub-sequence to one of the 126 bins. Correspondingly,

the first stage of the proposed technique involves development of a neural network

model, which can perform this task of associating the input to its corresponding bin.
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Having obtained the bin ID of the sequence from the first stage, the second task is to

predict the secondary structure. Correspondingly, the second stage of the proposed

technique involves development of a neural network model for each of the 126 bins.

The output of the second stage neural model is the secondary structure formed by the

central residue of the input windowed sub-sequence. In the following sub-sections, we

describe the implementation of the two stages.

5.3.1 First stage

The objective of the first stage is to develop a neural network model for bin identi-

fication. Input to this model is the windowed protein sub-sequence, and the output

is the bin ID to be identified based on its homology. Considering one of the 126

proteins at a time, all its homologues (containing evolutionary information based on

multiple sequence alignment) are obtained using PSI-BLAST [116] and are placed

in the corresponding bin. By doing so, 126 distinct bins each containing proteins

sharing structural similarity are generated. Each bin is assigned a distinct ID, which

is encoded as a 7-bit binary number (since 27 = 128). We then divide the protein

sequences in each bin into two sets, namely, the training data and the validation data.

This completes the preparation of training data.

The next step is to select a neural network to learn the task of bin identification.

It is to be noted that the first stage neural network is to be trained using the windowed

sub-sequences of proteins (in the training set) as inputs and their corresponding bin

IDs as outputs. In this work, the length of the window is set to be 13. Each of the

13 residues is encoded using a 5-bit binary number, since each residue can be one of

the 20 amino acids (i.e. 25 = 32). As such, the neural network is selected to have 65

(i.e., 13×5) input neurons. Considering that the bin ID is a 7-bit binary number, the

network requires 7 output neurons. Backpropagation option in NeuroModeler [117] is

used for training the neural network.
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Figure 5.2: Conceptual diagram of the proposed two-stage technique for protein secondary structure prediction
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The bin ID predicted by the first-stage neural network is used to select the cor-

responding neural model from one of the 126 neural models developed for the second

stage (see Figure 5.2). It is to be noted that the 65 input and 7 output neural network

involves a relatively simpler training process as compared to the standard 819 input

and 3 output network described in Section 5.2.1.

5.3.2 Second stage

The objective of the second stage is to develop a set of neural models, where each

neural model corresponds to one of the 126 bins. Input to the neural network is

the windowed protein sequence, while the output is the secondary structure of the

central residue of the windowed sequence. We obtained the structural information

of the input protein sequences from the DSSP [118] standard. The next step is to

train several neural networks to learn the aforementioned data. Since the input to such

neural models is the windowed protein sub-sequence of length 13, each neural network

has 65 input neurons similar to the neural network in the first stage. As the output

of each of these neural models (secondary structure) is encoded using a 3-bit binary

number, the number of output neurons is set to be 3. A total of 126 neural networks

are trained using the Backpropagation option in NeuroModeler. After training, the

resulting neural models are tested using validation data.

5.3.3 Model utilization

At the end of the two stages described earlier, we have neural models for bin identifi-

cation and structure prediction. Given a protein sequence, a windowed sub-sequence

of length 13 is fed as input to the bin identification neural model, which outputs a

bin ID. The same sub-sequence is then used as input to the corresponding neural

structure prediction model, which outputs the protein secondary structure. To be
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able to predict the structure of the entire protein sequence under consideration, the

window needs to be shifted along the protein sequence. In other words, the two-stage

neural models are used L times, where L is the length of the protein sequence. In our

implementation, zeros are added to the positions of the window where the residues

are absent, in order to obtain a window positioning each of the amino acids as the

central element.

5.4 Results and Discussion

The proposed two-stage secondary structure prediction model is implemented using

the NeuroModeler. The obtained model is trained and validated using the RS126

dataset. The accuracy of the predictions for the validation set obtained using the

proposed method is compared with that of the standard PHD method. Both the

three-state overall residue accuracy (Q3) and the Matthew’s correlation coefficients

are used to assess the performance of each method. A summary of the comparison

of both techniques is presented in Table. 5.1. The overall three-state residue accu-

racy of the proposed technique is 73.4 % using seven-fold cross-validation, which is

higher than the standard PHD technique. Considering the complexity of the protein

structure prediction problem, this is a considerable improvement. The proposed ap-

proach mainly highlights the advantage of binning as compared to the neural model

input scheme in the conventional methods. The, Matthew’s correlation coefficients

obtained suggest that the secondary structure, β-sheet is predicted with less accuracy

as compared with the other two secondary structures.

It should be noted that additional bins can be easily incorporated in the pro-

posed approach, expanding the neural model to accommodate more divergent protein

sequences. The neural structure prediction models of the second stage are compact

and hence easy-to-manage using a bin controller as shown in Figure 5.2. However, it
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Table 5.1: Comparison of Protein Secondary Structure Prediction

Method Three-state Accuracy Correlation Coefficients

Q3 Cα Cβ Cloop

PHD 70.8% 0.58 0.50 0.50
Proposed Method 73.4% 0.61 0.49 0.52

is important to appreciate that the first stage neural model needs to be as accurate

as possible, since errors in this model propagate to the second stage. A practical

difficulty could be that some of the bins might contain inadequate/limited protein

sequences, thereby making the neural network training challenging.

5.5 Prediction of Hot-Spots in Proteins

As previously mentioned, proteins are long chains of amino acids, also referred to

as residues, joined by peptide bonds. These protein sequences have a tendency to

fold into three dimensional (3D) structures, which in turn influence the protein func-

tion [119]. Proteins function through interacting with other molecules called targets

and the active sites in proteins aid their interaction with targets. The active sites

apart from lending a stable structural configuration to the protein sequence, they also

help fitting into specific regions of target molecules thereby facilitating the chemical

interaction. Figure 5.3 shows the interaction interface of protein A and protein B. The

group of amino acids at this interaction interface are called hot-spots. It is well es-

tablished that the hot-spots exhibit a characteristic frequency corresponding to their

function. Knowing the characteristic frequency of a particular hot-spot, new similar

hot-spots can be predicted in other unannotated protein sequences.

There are a number of computational techniques based on digital signal process-

ing proposed in the literature for predicting hot-spots in proteins. More recently,

transform techniques such as short-time discrete Fourier transform (STDFT) [66]
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Figure 5.3: Protein-protein interaction.

and modified Morlet continuous-wavelet transform [54] have become popular. Un-

fortunately, these methods are not entirely reliable, especially the modified Morlet

continuous-wavelet transform technique produces more false positives. Moreover, the

enormous growth of protein databases (e.g. due to large-scale genome sequencing

projects) continues to increase the number of unknown protein sequences to be ana-

lyzed for hot-spots. Therefore, to unravel the protein functionality, there is a great

need for computational techniques which are more accurate and reliable in locating

the hot-spots in proteins.

5.5.1 Related work

The following sections give a brief description of the components required to solve

the problem of hot-spot detection in protein sequences. One of the popular methods

for hot-spot detection using modified Morlet continuous-wavelet transform is also

given. In this work, electron-ion interaction potential (EIIP) values of amino acids
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(Table 2.4) are used to map the alphabetical protein sequence to a numerical sequence.

EIIP values are physical quantities denoting average energy of valence electrons in the

amino acids [67].

Consensus spectrum

In [120], it is observed that a set of protein sequences sharing a common biological

function also share a common characteristic frequency. For example, consider a set

of M protein sequences sharing a common biological function. Now, the magnitude

of the product of the Fourier transforms associated with the numerical sequences of

these proteins is defined as

P (ejω) =
∣

∣X1(e
jω)X2(e

jω) . . . XM(ejω)
∣

∣ (5.4)

where X1(e
jω)X2(e

jω) . . . XM(ejω) are the discrete Fourier transforms correspond-

ing to M proteins respectively. The multiple cross spectrum P (ejω), also referred

to as the consensus spectrum, is observed to reveal an interesting feature about the

biological function that is common to this set of M proteins and has a distinct peak

at the characteristic frequency. As an example, the consensus spectrum of pRb tumor

suppressor proteins is shown in Figure 5.4 [121].

Modified Morlet Continuous-Wavelet technique

The modified Morlet continuous-wavelet technique [54] uses the function given by

ψ(t) = exp(−
t2

a
)cos(bt) (5.5)

where, a and b are two constants. Since the constant a determines the waveform

amplitude modulation degree and the constant b determines the center frequency, they

are named as amplitude and frequency factors, respectively. This technique optimizes
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Figure 5.4: Consensus spectrum of pRb proteins. The peak corresponds to character-
istic frequency.

the to be applicable for predicting hot-spots in different protein sequences. Optimizing

the values of amplitude and frequency factors in the above wavelet function for each

and every protein being analyzed makes it computationally inefficient. Moreover, it

is shown later that the visual inspection of the high energy regions in the scalogram,

produced by the technique, which determine the location of hot-spots can result in

a lot of false positives demanding for more accurate and reliable hot-spot prediction

techniques.

5.5.2 Proposed SONF based method

In this work, the use of statistically optimally null filters is proposed to solve the

problem of hot-spot prediction in protein sequences.

Consider an unannotated protein sequence X, of length N , in which the locations

of hot-spots need to be identified. Statistically optimal null filters are utilized in the

proposed approach to identify the locations of hot-spots in proteins. In this case, the

hot-spots are considered to be the short duration signals (or the message signals) to

be located in the DNA sequence X, and the residual signal is the noise. To be able to
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feed the sequence X to SONF it is first mapped to an appropriate numerical sequence

XEIIP = {xEIIP (n)}. SONF is a window based approach, and thus a sliding window

of length L is used to evaluate if each of the numerical windowed sequences of XEIIP ,

Xn = {xn(m)}, where n = 1, 2, . . . , N−L+1 and m = n, n+1, . . . , n+L−1, contains

a hot-spot or not. It can be noted that each of the windowed sequence, Xn, can be

expressed as

Xn = Sn +Rn (5.6)

where Sn = {s(m)} is a message signal corresponding to the hot-spot and Rn =

{r(m)} is a residual signal. Sn and Rn are each of length L. SONF takes the windowed

sequence, Xn = {xn(m)}, as input and produces the output signal, Yn, which is

an optimal estimate of the message signal Sn. Now, by formulating an appropriate

threshold on Yn, each of the windowed sequence can be classified as belonging to an

hot-spot or not.

SONF produces the output Yn by combining maximum signal-to-noise ratio and

least squares optimization criteria. The implementation of the the two-fold optimiza-

tion in SONF approach is shown in the Figure 2.9, where the instantaneous matched

filter (IMF) is first used to detect the presence of a short duration signal embedded in

noise by maximizing the signal-to-noise ratio over variable-time observation interval

m. The IMF output, In, is then scaled by a locally generated function, Λn, using

least squares (LS) optimization procedure to obtain the optimal estimate, Yn, of the

message signal Sn.

Now, by formulating a binary basis sequence, Φ, according to some characteristic

property of the hot-spot, the SONF output, Yn, can be determined using the recursive

relations (2.17). In this case, the initial value of the gain P (0) is chosen to be an

identity matrix of order 2, and it is assumed that ι(0) = ι(1).

A window size of 35 is utilized for our technique and the window is shifted by one

101



location. The SNR gain obtained from the ratio of the variance of SONF output to

the variance of input signal is plotted against amino acid base index of the protein

sequence. Peaks in the resulting plot determine the locations of hot-spots in protein

sequences.

5.5.3 Formulation of the basis sequence

A formulation of basis sequence, based on the characteristic frequency of the hot-

spot, is very important for identifying them in the input protein sequence. For this

purpose a basis sequence containing a set of orthogonal sequences, represented as

Φ = {φ1, φ2}, each of which having the characteristic frequency is considered. For

example, the basis sequence having the characteristic frequency f can be obtained by

using the orthogonal sequences is φ1 = sin(2πfnT ) and φ2 = cos(2πfnT ), where f is

the characteristic frequency and T is the period.

5.6 Results and Discussion

In the proposed SONF based technique, the characteristic frequency which deter-

mines the location of hot-spots in protein sequences is modeled as the sinusoidal basis

functions. Knowing the characteristic frequency of hot-spots of interest, their pres-

ence can be predicted in other annotated protein sequences. The following examples

illustrate the effectiveness of the SONF approach over the popular modified Morlet

continues-wavelet technique [54].

Hemoglobin human α protein active site prediction.

The protein hemoglobin human α has 141 amino acids. The principle function of

this protein is to carry oxygen. The modified Morlet continuous-wavelet transform
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(CWT) approach is applied on this protein to predict the hot-spots that have affinity

to oxygen. The characteristic frequency component of hemoglobin proteins is known

to be at f = 0.0234± 0.008, as mentioned in [120].
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Figure 5.5: Hot-spots in hemoglobin human α protein. (a) Modified Morlet wavelet
technique. (b) SONF technique.

The continuous scalogram of this protein obtained by the modified Morlet CWT

using an amplitude factor a = 4 and a frequency factor of b = 6 is shown in Fig-

ure 5.5(a). The result of the proposed SONF approach applied to the same hemoglobin
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sequence is shown in the Figure 5.5(b). The peak in the plot determines the pres-

ence of the hot spot. The basis functions used for the analysis are sin(2πfnT ) and

cos(2πfnT ) where f = 0.0234± 0.008 is the characteristic frequency. It can be seen

that its difficult to precisely locate the hot-spot represented by encircled high energy

white spot in modified Morlet technique.

HIV envelope protein active site prediction

The infection of host cells by the HIV is due to the interaction between the glycopro-

teins HIV envelope and the CD4 surface antigen [122]. The characteristic frequency

bands assigned to the HIV are 0.06, 0.18, and 0.21 [122]. The modified Morlet tech-

nique is applied for the prediction analysis of hot spots of gp120 HIV-1 which is of

length 511. The Figure 5.6(a) shows the hot-spot predicted using modified Morlet

technique. The modified wavelet with an amplitude factor of 8 and a frequency factor

of 5 was used for the gp120 sequence. Again, it is very difficult to accurately locate

the bright spot in the scalogram determining the location of the hot-spot. There are

other bright spots in Figure 5.6(a) which can be considered as false positives. The

result of the proposed SONF approach applied to the gp120 HIV-1 sequence is shown

in the Figure 5.6(b). The peak in the plot determines the location of the hot-spot.

The peak in the plot determine the location of hot-spots. The above two examples

show that the proposed SONF based technique is more reliable in comparison with

the modified Morlet technique as it involves optimization of the wavelet parameters

for every protein being analyzed and the visual inspection of the bright areas in the

scalogram for the location of hot spots is difficult.
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gp120 HIV-1 protein sequence
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Figure 5.6: Hot-spots in gp120 HIV-1 protein sequence. (a) Modified Morlet wavelet
technique. (b) SONF technique.

5.7 Summary

In this chapter, protein sequences have been analyzed in order to investigate the

problems of predicting the protein secondary structures and identifying the locations

of hot-spots.
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A two-stage neural network based scheme for the prediction of protein secondary

structure has been proposed. In the first stage, a neural network has been trained

to be able to associate a given input protein sequence to one of the several bins. In

the second stage, the corresponding neural network trained for the bin identified in

the first stage has been used to predict the protein structure. The proposed two-

stage neural network model incorporates additional structural information obtained

by the homologues of a protein in order to predict its secondary structure. The RS126

database has been used to validate the prediction results obtained using the proposed

method. The proposed two-stage neural network based scheme has been shown to be

more effective in accurately predicting the protein secondary structures in comparison

to the standard PHD technique.

For predicting the locations of hot-spots in protein sequences, an SONF based ap-

proach has been proposed. Hot-spots in a protein exhibit a characteristic frequency

corresponding to its functionality. In order to identify hot-spots having a particular

functionality, a basis function has been formulated using the characteristic frequency

corresponding to the functionality and then employed in the SONF approach. For

the formulation of the basis function, two orthogonal sinusoids, having the character-

istic frequency of the hot-spots to be predicted, have been used. The SONF based

technique utilizes the maximum signal-to-noise ratio and least-squares optimization

criteria to predict the hot-spots in protein sequences. The peaks of the SONF output

determine the locations of hot-spots. The prediction results obtained by the proposed

SONF based approach have been compared with that obtained by the method using

the Morlet wavelets, and have been shown to be more accurate.
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Chapter 6

Conclusion

6.1 Concluding Remarks

This study has been concerned with an investigation of the problems related to biolog-

ical sequence analysis using DSP techniques. For this purpose, some of the problems

on the analysis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins

have been studied. Several methods, based on DSP techniques such as statistically

optimal null filters (SONF), matched filters and neural networks, have been developed

as a result of this investigation.

In the first part of this study, DNA sequences have been analyzed to identify the

locations of CpG islands (CGIs) and protein coding regions (exons). These analyses

have been carried out by developing techniques based on an SONF approach. For

locating CGIs, a basis function has been formulated and used in SONF, which is im-

plemented by combining the criteria of maximization of signal-to-noise ratio and least

square optimization. The performance of the proposed technique for the prediction of

CGIs has been tested on four randomly chosen contigs in chromosomes 21 and 22 of

human beings. One of the main features of the proposed approach is that it does not
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depend on the transition probability tables utilized by some of the existing methods.

It has been shown that the use of the basis sequence instead of the transition proba-

bility tables, obtained from training data, is more reliable. The prediction accuracy

of the proposed approach has been shown to be more than 97%. For predicting the

locations of protein coding regions, i.e., exons, a basis function based on the period-3

property has been formulated and used by SONF to predict the locations of exons in

DNA sequences. The proposed algorithm has been tested using chromosome III of C.

elegans and the results have been validated making use of the existing knowledge of

annotations of this sequence.

In the second part of this thesis, RNA sequences have been analyzed in order

to predict their secondary structures. For this purpose, matched filters based on 2-

dimensional convolution have been developed to identify the numbers and locations of

stem and loop patterns. The knowledge of the stem and loop patterns thus obtained

has been used to predict the presence of pseudoknots, thereby providing the entire

RNA secondary structure. The proposed matched filtering based method has been

tested using the Pseudobase database. The proposed algorithm is compared with

some of the existing methods, and it has been shown to provide a better result in

the context of the already known results on the existance of the RNA secondary

structure in the sequences of the database. The stem patterns in an RNA structure

are manifested as diagonal lines in the dotplot of the RNA. It has been shown that

these diagonal lines, representing the stem patterns, can be identified more easily

using the proposed matched filtering approach in comparison to that using other

techniques such as dynamic programming, thermodynamic energy considerations, etc.

A graphical user interface (GUI), which predicts and displays the RNA secondary

structure, has also been designed.

Finally, in the last part of this thesis, protein sequences have been analyzed to

predict their secondary structures and to identify the locations of the hot-spots. A
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two-stage neural network scheme has been proposed for predicting the protein sec-

ondary structures. In the first stage, a neural network model is trained to be able to

associate the protein sequence to one of the several bins containing its homologues.

In the second stage, a neural network trained for the bin identified in the first stage is

used to predict the protein structure. The proposed two-stage neural network based

scheme has been tested using the RS126 database and its performance compared with

that of an existing method, namely PHD. It has been shown that the proposed scheme

provides more accurate predictions in terms of the three-state accuracy and correla-

tion performance metrics. The solution to the problem of predicting the hot-spots in

proteins has been obtained using the SONF approach. A hot-spot in protein sequence

exhibits a characteristic frequency corresponding to its biological function. This fre-

quency has been used to formulate a basis function, which is used in SONF to detect

the locations of the hot-spots belonging to the functional group characterized by this

frequency. The proposed technique has been compared with that using the Morlet

wavelets, and it has been shown to be more accurate in obtaining the locations of the

hot-spots.

6.2 Scope for Further Investigation

The DSP based techniques proposed in this thesis for analyzing biological sequences,

focuses mainly on predicting motifs such as exons, CGIs and hot-spots. In these

techniques, the characteristic properties of these motifs have been used to formulate

the basis sequences, and then employed in the SONF approach. Further investigations

can be carried out to identify other possible characteristic properties of these motifs

with a view to enhancing their prediction. Problems, such as sequence alignment

and sequence comparison, could also be investigated using the SONF approach. In

these cases, one of the two sequences being compared could be considered as the
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input sequence, and the other as the basis sequence. The peaks in the SONF output

obtained could then be used for determining the extant of similarity between the

sequences [123, 124]. Finally, for predicting the RNA secondary structure, energy

considerations could also be incorporated in the proposed matched filtering approach

to enhance its prediction performance.
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