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Abstract

Design and Evaluation of Algorithms for Parallel Classification of

Ontologies

Mina Aslani, Ph.D.

Concordia University, 2013

Description Logics are a family of knowledge representation formalisms with for-

mal semantics. In recent years, DLs have influenced the design and standardiza-

tion of the Web Ontology Language OWL. The acceptance of OWL as a web stan-

dard has promoted the widespread utilization of DL ontologies on the web. One

of the most frequently used inference services of description logic reasoners clas-

sifies all named classes of OWL ontologies into a subsumption hierarchy. Due to

emerging OWL ontologies from the web community consisting of up to hundreds

of thousand of named classes and the increasing availability of multi-processor

and multi- or many-core computers, the need for parallelizing description logic

inference services to achieve a better scalability is expected.

The contribution of this thesis has two aspects. On a theoretical level, it first

presents algorithms to construct a TBox in parallel, which are independent of
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a particular DL logic, however they sacrifice completeness. Then, a sound and

complete algorithm for TBox classification in parallel is presented. In this algo-

rithm all the subsumption relationships between concepts of a partition assigned

to a single thread are found correctly, in other words, correctness of the TBox

subsumption hierarchy is guaranteed. Thereafter, we provide an extension of the

sound and complete algorithm which is used to handle TBox classification concur-

rently and more efficiently. This thesis also describes an optimization technique

suitable for better partitioning the list of concepts to be inserted into the TBox.

On a practical level, a running prototype, Parallel TBox Classifier was imple-

mented for each generation of the classifier based on the above theoretical foun-

dations, respectively. The Parallel TBox Classifier is used to evaluate the practical

merit of the proposed algorithms as well as the effectiveness of the designed op-

timizations against existing state-of-the-art benchmarks. The empirical results

illustrate that Parallel TBox Classifier outperforms the Sequential TBox Classi-

fier on real world ontologies with a linear or superlinear speedup factor. Parallel

TBox Classifier can form a basis to develop more efficient parallel classification

techniques for real world ontologies with different sizes and DL complexities.
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Chapter 1

Introduction

Ontologies are the knowledge infrastructures of Description Logics and many in-

telligent systems. Ontologies require that an extensive knowledge about the world

be represented and stored in a knowledge base. Among the things that need to be

represented are: objects, properties, and relations between objects. A complete

representation of ”what exists” in a given domain forms an ontology. In order to

support the vision of the Description Logics, ontology classification needs to be

highly scalable and efficient.

Description logic (DL) is a family of first-order logic formalisms allowing the

representation of knowledge in the form of ”concepts” (class, unary predicate),

”roles” (object property, binary predicate), and ”individuals” (class instance). The

ability of DL languages to define concepts and relationships between concepts in a

systematic and formal manner, makes them ideal to capture the complex relation-

ships and semantics that are often part of many domains (e.g., medical domain).

DL is becoming very popular in Knowledge Representation and modelling as it

provides the logical foundation for the Web Ontology Language (OWL), defined

1



by the World Wide Web Consortium (W3C) as a standard for representing seman-

tic links and knowledge on the Semantic Web.

Due to the recent popularity of OWL ontologies in the web one can observe

a trend toward the development of large OWL-DL ontologies. For instance, well

known examples from the bioinformatics or medical community are SNOMED,

UMLS, GALEN, and FMA. Some (versions) of these ontologies consist of more

than hundreds of thousands of named concepts and have become challenging even

for the most advanced and optimized description logic (DL) reasoners. Although

specialized DL reasoners for certain sublogics (e.g., CEL for EL++) and OWL-

DL reasoners such as FaCT++, Pellet, HermiT, or RacerPro could demonstrate

impressive speed enhancements due to newly designed optimization techniques,

one can expect the need for parallelizing description logic inference services in the

near future in order to achieve a web-like scalability where we have to consider

hundreds of thousands of concepts that challenges subsumptions tests.

Parallel algorithms for description logic reasoning were first explored in the

FLEX system [9] where various distributed message-passing schemes for rule

execution were evaluated. The reported results seemed to be promising but the

research suffered from severe limitations due to the hardware available for experi-

ments at that time. Another approach on parallelizing description logic reasoning

[30] reported promising results using multi-core/processor hardware, where the

parallel treatment of disjunctions and individual merging (due to number restric-

tions) is explored. In [39] an approach on distributed reasoning for ALCHIQ is

presented that is based on resolution techniques but does not address optimiza-

tions for TBox (set of axioms) classification. There also exists work on parallel

distributed RDF inferencing (e.g., [49]) and parallel reasoning in first-order the-
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orem proving but due to completely different proof techniques (resolution versus

tableau) and reasoning architectures this is not considered as relevant here.

Our research is strongly motivated by recent trends in computer hardware

where processors feature multi-cores (2 to 8 cores) or many-cores (tens or even

hundreds of cores). These processors promise significant speed-ups for algo-

rithms exploiting so-called thread-level parallelism. This type of parallelism is

very promising for DL reasoning algorithms that can be executed in parallel but

might share common data structures (e.g. parallelism in classification of TBoxes,

ABox realization or query answering).

Although multi-processor, multi-core systems have become widespread but

the vast majority of OWL reasoners can process ontologies only sequentially,

therefore only one core is utilized. Imagine the most powerful DL reasoner, using

one core reasoning for 600 minutes. If we use 10 cores, with linear scalability to

the number of utilized cores, then the reasoning will take only 60 minutes. Hence,

the wall-clock time is significantly reduced.

The problem of the classification of large ontologies has existed for the past

decade in the field of knowledge representation and artificial intelligence and de-

spite some efforts in this area, there are no widely accepted algorithms available

and also there is not any clear sign of progress in the attempts to solve the problem

of concurrent ontology classification. These observations motivated us that there

is a need to direct our attention to propose a set of information able to reveal and

solve these fundamental problems.
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1.1 Thesis Objectives

The research presented in this thesis is focused on designing a parallel classifi-

cation approach for TBoxes as well as implementing it. The main objectives of

adopting such a classification approach can be described as follows:

• Improving computationally expensive TBox classification time: The clas-

sification approach must ensure that the classification time using parallel

computation is less than the sequential case.

• Correctness: Show that a classification procedure working in parallel en-

sures soundness and completeness. Soundness in the sense that every ”yes”

answer for an inference test is a valid answer. Completeness in the sense

that every ”no” answer for an inference test is a valid answer.

• Use of algorithms designed for sequential execution in parallel classifica-

tion: Examine that Enhanced Traversal optimization algorithms designed

for sequential execution, are also efficient for parallel classification, if ex-

tended correspondingly.

• Usability: The parallel classification procedure outperforms the sequential

scenario on real world ontologies. The usability of the approach with state

of the art ontologies will be assessed by an empirical analysis.

• Scalability: The classification procedure is able to be used with real world

benchmarks including ontologies of different complexity and size, partic-

ularly large size ontologies with hundreds of thousands of concepts. The

prototype needs to be able to tackle such a complexity.
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1.2 Thesis Contributions

The work presented in this thesis is of interest to the DL community and should

be of value to designers and developers of TBox classifiers as well as DL reason-

ers, who will be able to work into or utilize the classification approach together

with their implemented procedures. The main contributions of this thesis are as

follows:

• The first contribution is the design of the first parallel TBox classification

algorithm. This algorithm which is independent of a particular DL logic, is

represented in three generations :

– The first generation of the algorithm sacrifices completeness and was

published in [1]. The algorithm which is the first addressing parallel

TBox classification will be covered in Section 5.1.1

– The second generation of the algorithm is sound and complete. This

algorithm is the first sound and complete parallel TBox classification

algorithm and was proposed and published in [2] and [3]. The thor-

ough explanation of the design and corresponding algorithm will be

elaborated in Section 5.1.2.

– The third generation of the algorithm is also sound and complete. This

algorithm is an optimized concurrent extension of the second genera-

tion. The algorithm was proposed and published in [4], and will be

explained in Section 5.1.3.

• The second contribution relies on utilizing optimization algorithms in par-

allel which were mainly designed for sequential execution.
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• The third contribution is the design and implementation of a prototype for

each generation of parallel TBox classifier. The architecture of the proto-

type is described through Section 5.2.

• The last contribution relies on the performance of the proposed algorithms.

As will be explained in Chapter 6, the empirical evaluations show that the

first generation of the prototype as well as the second generation are lim-

ited to classify ontologies with only 10000 concepts. However, the third

generation is able to construct the ontologies of more than 379000 concepts

in parallel. Therefore, for the last generation, the scalability of more than

one order of magnitude is achieved. The assessment of the empirical re-

sults also supports a speedup factor that is linear to the number of utilized

processors/cores.

1.3 Thesis Outline

The rest of this thesis can be outlined as follows:

• Chapter 2 introduces a formal definition of Description Logics, its syntax

and semantics with a main focus on theAL family. It also gives an overview

of DL inference services as well as state-of-the-art DL reasoners.

• Chapter 3 gives a background review of research closely related to this the-

sis.

• Chapter 4 presents the parallel processing and the programming model in

MapReduce as well as an overview of the research work which are loosely

related to our work.
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• Chapter 5 consists of two main sections. In the first section, it discusses

an algorithm for parallel classification of TBoxes as well as its evolution

through three generations. In the second section, it presents the design of a

prototype for parallel TBox classifier and its underlying architecture.

• Chapter 6 provides the evaluation of the prototype, and also explains the

scalability of the Parallel TBox Classifier by using ontologies of different

complexity and size.

• Chapter 7 concludes this thesis with highlighting the scientific contributions

as well as a list of open problems for future work.
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Chapter 2

Preliminaries

This chapter introduces preliminary information relevant to the work presented in

this thesis. Section 2.1 explains the difference between Logic based system and

Non-logic based system. Section 2.2 describes what description logics is. Section

2.3 presents basic definitions, syntax, semantics of Description Logics as well as

the tableau algorithms as the most widely used reasoning procedures adopted by

most DL reasoners. In this section, there will also be explanation of DL inferences

services as well as an overview of the state-of-the-art DL reasoners.

2.1 Logic based versus Non-logic based systems

The field of knowledge representation started to gain popularity in 1970s and it

was divided into two main categories: logic-based formalism, which used predi-

cate calculus for their unambiguous representation, and non-logic based formal-

ism. Since first order logic provides very powerful and general machinery, logic-

based systems were more general-purpose from the very start. In logic-based sys-
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tems the representation language is often a variant of first-order predicate calculus

and reasoning is the result of verifying logical consequences. On the other hand,

non logic-based systems were usually task specific, yet they were used success-

fully as general purpose tools. In these approaches, graphical interfaces are used

for representing knowledge. Semantic networks and frames fall in this category

of representation [32].

Initially, most of the systems were developed on the network based approach

and were used in many applications. As more and more systems were developed,

the need for a technique was felt which can precisely characterize the meaning of

theses structures. This need resulted in the introduction of Description Logics. In

Description Logics, precise semantic of the structures can be given by defining

the language for the elements of the structures and by providing the interpretation

of the strings of the language [32].

It has been accepted that representing knowledge is one of the most important

and basic tasks in any knowledge base reasoning system, however the importance

of the reasoning system, which is on top of the represented knowledge can not

be denied. There are two important features which have to be considered while

designing a reasoning system: Sound and complete reasoning. There exists a

trade-off between the soundness and the completeness of a reasoning system.

2.2 Why Description Logic?

Description Logics is the most recent name for a family of knowledge repre-

sentation formalisms unifying and giving a logical basis to the well-known tra-

ditions of frame-based systems, semantic networks and KL-ONE-like [38] lan-
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guages, object-oriented representations, semantic data models and type systems.

It also expresses knowledge about concepts, concept hierarchies, roles and indi-

viduals. Description logic systems emphasize the use of classification and sub-

sumption reasoning as their primary mode of inference. Description Logics are

descended from so-called ”structured inheritance networks” [Brachman, 1977b;

1978]. Loom [31] and Classic [10], [12], [11] were two early examples of knowl-

edge representation systems that implemented description logics. In other words,

description logics is a formalism that represents the knowledge of an application

domain (”world”) by first defining the relevant concepts of the domain (its tax-

onomy), and then using those concepts to specify properties of the objects and

individuals in the domain. As its name indicates, they are equipped with formal

logic-based semantics. Another distinguished feature is reasoning which is being

used as central service: reasoning is to infer implicit knowledge from the knowl-

edge explicitly contained in the knowledge base. The classification of concepts

into terminologies means to compute the superconcept/subconcept (parent/child)

relationship and is called subsumption relationship in DL. The classification of in-

dividuals determines whether a given individual is an instance of a concept. There

are two features of DL that are not shared by most data description formalisms:

DL does not assume the Unique Name Assumption (UNA) or the Close World As-

sumption (CWA). UNA means that individuals with different names are assumed

to be distinct. Not having CWA, or in other words having Open World Assump-

tion (OWA) means that absence of knowledge in the KB does not imply that it

is false. The OWA assumes incomplete information, which will be explained in

Section 2.4.
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2.3 Basic Definitions in Description Logics

A Description Logic system sets up knowledge bases to do reasoning and manip-

ulation of its content. Figure 2.1 shows the architecture of such systems.

Figure 2.1: Architecture of Knowledge Representation System based on Descrip-
tion Logic [7].

As it is shown in Figure 2.1, a Knowledge Base (KB) consists of a TBox and an

ABox. A finite set of axioms is called a TBox or terminology which introduces the

vocabulary of the application domain. On the other hand, an ABox is a collection

of assertional axioms, which contains assertions about individuals.

Definition 2.3.1 (Interpretation) An interpretation is a pair I = (∆I , .I), ∆I is

a non-empty set called the domain of interpretation, and .I is the interpretation

function. The interpretation function maps each atomic concept A ∈ NC to a

subset of ∆I , each atomic role R ∈ NR to a subset of ∆I x ∆I , and each individual

a inNI to an element of ∆I .

Definition 2.3.2 (Concept Inclusion Axiom) TBox axioms have an expression of

the form:
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• Definitions

– CvD which is called Concept subsumption axiom (Concept inclusion

axiom), or

– C ≡ D which is called Concept equivalence axiom

Where C is a concept name.

• General Concept Inclusion axioms (GCIs)

– C v D where C is an arbitrary concept.

2.3.1 TBox - Terminologies

Terminologies (Terminological Axioms) make statements about how concepts or

roles are related to each other [7]. We can define our TBox using axioms in the

form shown in Table 2.1. The first type of axioms is called inclusions and the

second one equalities, where C and D are concepts, and R and S are roles.

CvD RvS

C≡D R≡S

Table 2.1: Different forms of axioms.

Now we can say that an interpretation I satisfies an inclusion C v D if CI

⊆ DI and it will satisfy an equality C ≡ D if CI ≡ DI . If T is a set of axioms,

then an interpretation I satisfy T iff it satisfies all the axioms in T . If I satisfies

an axiom/set of axioms, then I is a model for that axiom/set of axioms. Two

axioms/set of axioms are equivalent if they have the same models.
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As mentioned earlier, equality axiom whose left hand side is an atomic con-

cept, is called a definition. For example, we can define a concept (symbolic name)

Mother as below:

Mother ≡Woman u ∃ hasChild.Person

2.3.2 ABox - Assertions about individuals

ABox is a set of assertions. In the ABox we define individuals by giving them

names and also defining their properties. In an ABox, we have two kinds of asser-

tions:

• Concept assertion which asserts an individual for a concept, and is the form

of a:C.

• Role assertion which we introduce a role for two individuals, and is the

form of (a,b):R.

Considering MARY, PETER, and PAUL as individual names, if one wants to

assert concept PETER as a father in the ABox, the assertion PETER:Father can

be used, and (MARY,PAUL):hasChild which is a role assertion means that MARY

has a child named PAUL.

2.4 Open-world semantics vs. closed-world semantics

In order to explain open-world and closed-world semantics, databases on one hand

should be compared to DL on the other hand. The schema of a database can be

compared to a TBox and the database instances (data) to an ABox although the

semantics of ABoxes differ from the semantics of data in databases. While the
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data in a DB represents one interpretation, namely the relations in the schema are

interpreted by tuples in the data, an ABox can represent several interpretations,

namely all its models. In a simplified view, an ABox can be seen as an instance

of a relational database with only unary or binary relations. However, contrary

to the closed-world semantics of classical databases, the semantics of ABoxes is

an open-world semantics, since normally knowledge representation systems are

applied in situations where one cannot assume that the knowledge in the KB is

complete. Moreover, the TBox imposes semantic relationships between the con-

cepts and roles in the ABox that do not have counterparts in database semantics

[36]. An absence of information in databases usually means negative information,

however an absence of information in an ABox is interpreted as lack of informa-

tion. For example, if the only assertion about MARY is (MARY,PAUL):hasChild,

then in a database it can be deduced that PAUL is the only child of MARY. In an

ABox, it can be understood that MARY has a child who is named PAUL. How-

ever, the ABox might have several models, some in which PAUL is the only child,

and others in which he has brothers or sisters. If it is asserted that PAUL is a

male, one cannot deduce from this alone that all MARY’s children all male. The

only way to state that PAUL is the only child of MARY is by adding the asser-

tion ≤1 hasChild.PAUL. Therefore, while the information in databases is always

considered as complete, the information in ABoxes is incomplete. The semantics

of ABoxes is characterized as an “open-world” semantics, while the traditional

semantics of databases is characterized as a “closed-world” semantics.
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2.5 Description Languages

Description Languages are distinguished by the constructors they provide. In

this section, we will discuss about the family of AL-Languages (Attributive Lan-

guages). AL is a minimal language of practical interest and its sequels are just

extensions of AL languages.

2.5.1 Basic Description Language AL

In AL, negation can be applied only to atomic concepts and only the top concept

can be used over the existential quantification. The following are examples of

axioms expressed in AL.

Person u Female

Person u ¬Female

Person u ∃hasChild.>

Person u ∀hasChild.Female

Person u ∀hasChild.⊥

The sub-language of AL, which disallows limited negation, is FL− and the

one, which disallows limited existential quantification, is named FL0. In Figure

2.2, the syntax of AL is presented.

AL-concept→ A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬ A | (atomic negation)

C u D | (intersection)
∀ R.C | (value restriction)
∃ R.> | (limited existential quantification)

Figure 2.2: AL Syntax [7].
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As described earlier, we can extend the AL language by adding more con-

structs.

2.5.2 The family of AL-Languages

We obtain more expressive languages if we add further constructors to AL [7].

And as it will be shown, various letters forming names of DLs indicate other

extension, e.g. [27]:

• H for role hierarchy (hasDaughter v hasChild)

• I for inverse roles (isChildOf ≡ hasChild−)

• N for number restrictions (of form ≤nR, ≥nR)

• O for nominals/singleton classes ({Canada})

• Q for qualified number restrictions (of form ≤n R.C, ≥n R.C e.g.

≤2 hasChild.Doctor)

• S often used for ALC with transitive roles (R+)

Therefore, using this scheme we can introduce the SHIQ language as ALC +

transitive roles + role hierarchy + inverse roles + qualified number restriction. An

example for SHIQ follows:

”Individuals all of whose children are human and have 2 parents who are hu-

man”

Human v ∀hasChild.Human u =2 hasParent.Human
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”HumanParent is a human who is a parent too”

HumanParent ≡ Human u Parent

”hasChild is the inverse of hasParent”

hasChild ≡ hasParent−

if (MARY,PAUL):hasChild then

(PAUL,MARY):Parent

2.5.3 Description Language ALC

ALC, is the smallest propositionally closed DL, which includes AL. In ALC,

negation and existential quantification are not limited, concepts are constructed

using (u, t, ¬), existential value restriction (∃), and universal restriction(∀).

ALC-concept→ A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)

C u D | (intersection)
C t D | (disjunction)
¬ C | (negation)
∀ R.C | (value restriction)
∃ R.C | (existential quantification)

Figure 2.3: ALC Syntax [27].

Let NC , NR, and NI be non-empty and pair-wise disjoint sets of concept

names, role names, and individual names respectively. A is used to denote an

atomic concept (A ∈ NC), and R an atomic role (R ∈ NR). Figure 2.3 expresses

the syntax of the ALC language, where C, D are ALC-concepts and > and ⊥ are

used to abbreviate (C t ¬ C) and (C u ¬ C) respectively.
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2.5.4 A Tableau Algorithm for ALC

Tableau algorithms are used to test concept satisfiability (consistency). Given an

ALC-concept description C0, a tableau algorithm tries to find a finite interpreta-

tion to satisfy C0 [8]. It will be convenient to assume that all concept descriptions

are in NNF (Negation Normal Form).

Definition 2.5.1 (Negation Normal Form (NNF)) A concept expression is said

to be in NNF if the negation sign only appears in front of a concept name. Using

De Morgan Laws and usual rules for quantifiers, anALC-concept description can

be transformed in linear time into an equivalent one in NNF such that negation

appears only in front of the atomic concept.

¬(CuD) ⇐⇒ ¬C t ¬D

¬(CtD) ⇐⇒ ¬C u ¬D

¬(∀R.C) ⇐⇒ ∃R.¬C

¬(∃R.C) ⇐⇒ ∀R.¬C

¬(¬C) ⇐⇒ C

To check the satisfiability of C, the algorithm starts with A0 := {C0(x0)} and

applies the completion rules in Figure 2.2.

Definition 2.5.2 An ABox A is called complete iff none of the transformation rules

of Figure 2.2 applies to it. The ABox A contains a clash iff {P(x), ¬P(x)} ⊆ A for

some individual name x and some concept name P. An ABox is called closed if it

contains a clash, and open otherwise[8].
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The→u - rule
Condition : A contains x:(C1 u C2), but not both x:C1 and x:C2.
Action : A’ := A ∪ {x:C1, x:C2}.

The→t - rule
Condition : A contains x:(C1 t C2), but neither x:C1 nor x:C2.
Action : A’ := A ∪ {x:C1} , A” := A ∪ {x:C2}.

The→ ∃ - rule
Condition : A contains (x:∃ r.C), but there is no individual name z
such that x:C and x,z:r are in A.
Action : A’ := A ∪ {y:C, (x,y):r} where y is an individual name not occurring in A.

The→ ∀ - rule
Condition : A contains (x:∀ r.C) and (x,y):r, but it does not contain y:C.
Action : A’ := A ∪ {y:C}

Table 2.2: Tableau Rules of Satisfiability Algorithm for ALC [8].

2.6 DL Inference Services

The goal of reasoning in Description Logics is to reason about a KB σ = (T , A),

where T is TBox and A is ABox, which are expressed in the concept language L

[15]. Therefore, we can categorize reasoning into two groups: TBox Reasoning

and ABox Reasoning and the main task of each category is listed below:

2.6.1 TBox Reasoning

• Satisfiability/Consistency When using a DL satisfiability/consistency rea-

soner, various reasoning problems can be transformed into knowledge base

satisfiability problems. For TBox satisfiability, we check for a model for the

TBox and if there exists one, we say that the TBox is satisfiable.
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• Subsumption Represents an is-a relation, and one has to check whether a

concept C is subsumed by a concept D or if every instance of C is also a D.

• Classification Computation of atomic concept hierarchy based on sub-

sumption.

Note that all reasoning services can be reduced to concept satisfiability.

2.6.2 ABox Reasoning

• Satisfiability/Consistency Checks if all the assertions in an ABox are con-

sistent with the TBox-Axioms.

• Instance Checking Checks if an individual is an instance of a given con-

cept.

• Realization Finds the most specific atomic concept of an individual by

traversing the TBox subsumption. Starting from the top node, repeatedly

calls the instance checking procedure.

2.7 DL Reasoners

Most DL reasoners implement tableau-based algorithms with a set of optimiza-

tion techniques. The practical DL reasoners are KAON21, FaCT++2, JFact3, Rac-

erPro4, Pellet 5 and HermiT6 which will be described below:
1http://kaon2.semanticweb.org/
2http://owl.man.ac.uk/factplusplus/
3http://jfact.sourceforge.net/
4http://www.racer-systems.com/
5http://clarkparsia.com/pellet/
6http://www.hermit-reasoner.com/
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2.7.1 HermiT

HermiT is a DL reasoner based on the hypertableau algorithm supporting OWL 2

[19]. It is equipped with optimization techniques for classification and reasoning

discussed in [17], [16], [34].

2.7.2 KAON2

Contrary to most currently available DL reasoners, such as FACT++, JFact, Racer-

Pro, or Pellet, KAON2 [13] does not implement the tableau calculus. Rather, rea-

soning in KAON2 is implemented by novel algorithms which reduce a SHIQ(D)

knowledge base to a disjunctive datalog program.

2.7.3 Pellet

Pellet [44] is a highly optimized open-source tableau-based DL reasoner support-

ing OWL 2. It incorporates optimizations for nominals, conjunctive query an-

swering, and incremental reasoning [43].

2.7.4 FaCT++

FaCT++ [46] is a tableau highly optimized OWL 27 DL reasoner and the new

generation of the well-known FaCT OWL-DL8 reasoner. FaCT++ uses the estab-

lished FaCT algorithms, but with a different internal architecture. Additionally,

the implementation language C++ was chosen in order to create a more efficient

7http://www.w3.org/TR/owl2-overview/
8OWL DL is a sub language of OWL which places a number of constraints on the use of the

OWL language constructs. See http://www.w3.org/TR/owl-ref/ for more details.

21



software tool, and to maximize portability. During the implementation process,

new optimizations were also introduced, and some new features were added.

2.7.5 JFact

JFact [47] is the Java implementation of the FaCT++ OWL 2 DL reasoner, that

has extended data types support. JFact is a port of FaCT++, so it uses the same

techniques and contains the same optimizations.

2.7.6 RacerPro

The RacerPro [21] system, the successor of the Racer system [20], is a knowledge

representation system that implements a highly optimized tableau calculus for a

very expressive description logic. It is implemented in LISP and offers reason-

ing services for multiple TBoxes and for multiple ABoxes as well. The system

implements the description logic SRIQ(D-) [18]. This is the basic logic ALC

augmented with qualifying number restrictions, role hierarchies, inverse roles,

transitive roles and role chains. In addition to these basic features, RacerPro also

provides facilities for algebraic reasoning including concrete domains for dealing

with:

• Min/max restrictions over the integers

• Linear polynomial (in-)equations over the reals or cardinals with order re-

lations

• Nonlinear multivariate polynomial (in-)equations over complex numbers

• Equalities and inequalities of strings
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RacerPro supports the specification of general terminological axioms. Multi-

ple definitions or even cyclic definitions of concepts can be handled by RacerPro.

Given a TBox, various kinds of queries can be answered, which are listed below:

• Concept consistency with respect to a TBox: Is the set of objects described

by a concept not empty?

• Concept subsumption with respect to a TBox: Is there a subset relationship

between the set of objects described by two concepts?

• Find all inconsistent concepts mentioned in a TBox. Inconsistent concepts

might be the result of modeling errors.

• Determine the parents and children of a concept with respect to a TBox:

The parents of a concept are the most specific concept names mentioned in

a TBox which subsume the concept. The children of a concept are the most

general concept names mentioned in a TBox that the concept subsumes.

Considering all concept names in a TBox, the parents (or children) relations

defines a graph structure which is often referred to as taxonomy.

This chapter described a formal definition of Description Logics, its syntax

and semantics with a main focus on AL family, DL languages, DL inference

services and also explanation on some of the DL reasoners. The following chapter

will discuss the background and related work.
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Chapter 3

Background and Related Work

In the last couple of years, there has been a rapid growth in providing information

from large knowledge bases and due to limitations in performance gain in con-

ventional processors, parallelization has become an important area of research.

Hence, when it comes to a large and/or distributed knowledge base, we have to

face different kinds of issues such as

• How we do reasoning with homogeneous/heterogeneous reasoners?

• What kind of topology we use for theorem proving in distributed systems?

• Which algorithms are more efficient for parallel reasoning?

• What are the algorithms that provide a good partitioning? and so on.

One of the attempts in parallelizing reasoning is Octopus [37]. Octopus is a

parallel ATP (Automated Theorem Proving) system,which is an improved version

of the singled processor ATP system THEO [33]. Inference rules used by Octo-

pus include binary resolution, binary factoring, instantiation, demodulation, and

24



hash table resolutions. Octopus performs 3000-10000 inferences/second on each

processor. It runs on a network of 20-40 PCs and the processors communicate us-

ing the PVM (Parallel Virtual Machine). Octopus combines learning and theorem

proving together.

PVM is a software package that permits a heterogeneous collection of Unix

and/or Windows computers hooked together by a network to be used as a single

large parallel computer. Thus, large computational problems can be solved more

cost effectively by using the aggregate power and memory of many computers.

In the rest of this chapter, the algorithms for some optimization techniques

which guided my work, will be explained.

3.1 Algorithms for Computing Concept Hierarchy

The subsumption relation induces the computation of concept hierarchy1.

In this part, we assume that subsumption costs are dominating the classifica-

tion costs and are considerably higher than the costs incurred by extra operations.

The following methods identify the computation of concept hierarchy, and are

taken from [6]:

• Brute Force Method

• Simple Traversal Method

• Enhanced Traversal Method
1We assume that our concept hierarchy always contain a top element > and a bottom element

⊥.
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3.1.1 Brute Force Method

The top search for Brute Force method, computes for every atomic concept c its

predecessors and can be explained as follows:

Blindly tests c v x for all x ∈ Xi, where Xi is atomic concept in the TBox.

Definition 3.1.1 (Top Search) Top Search returns a set of immediate predeces-

sors in Xi for a given element c.

The bottom search explained in definition 3.1.2, computes for every atomic

concept its successors and is done in a dual way.

Definition 3.1.2 (Bottom Search) Bottom Search returns a set of immediate suc-

cessors of c.

This method uses 2 * | Xi | comparisons for the step of inserting c in Xi.

Summing over all steps leads to n * (n-1) comparison operations to compute the

representation of a partial ordering for n elements. This is not only the worst-case

complexity but also the best-case complexity of this method.

3.1.2 Simple Traversal Method

In order to avoid many of the ”brute force” method’s comparisons and instead of

testing the new element c blindly with all elements; in the top search phase of

”simple traversal” method, c is pushed down the tree, and in the bottom search,

phase c is pushed up, stopping when immediate predecessors or successors have

been determined.

• Top Search
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Algorithm 1 Top search phase of the ”simple traversal” method [6].
1: top search(c,x) =
2: mark(x,‘visited’)
3: for all y ∈ successors(x) do
4: if simple top subs(y,c) then
5: pos-succ← pos-succ ∪ {y}
6: if pos-succ = ∅ then
7: result← x
8: else
9: for all y ∈ pos-succ do

10: if y not marked as ‘visited’ then
11: result← result ∪ top search(c,y)

Algorithm 2 Simple top subsumption of the ”simple traversal” method [6].
1: simple top subs?(y,c) =
2: if y marked as ‘positive’ then
3: result← true
4: else if y marked as ‘negative’ then
5: result← false
6: else if subs?(y,c) then
7: mark(y,‘positive’)
8: result← true
9: else

10: mark(y,‘negative’)
11: result← false

Starting at the top of the hierarchy, for each concept x of Xi (x is child of

top), it is determined whether x has an immediate successor y satisfying c

v y. If there are such successors, they are considered as well. Otherwise, x

is added to the result list of the top search. To avoid multiple visits of ele-

ments and multiple comparison of the same element with c, this algorithm

employs one label to indicate whether a node was ”visited” and another la-

bel to indicate whether the subsumption test was ”positive”, ”negative”, or

has not been made. The top-search is depicted in Figure 3.1. The figure
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only shows the details for the upper half of the tree, as traversal is done

from top. The top-search procedure is illustrated in Algorithm 1, and will

be explained next. The algorithm gets two arguments as its input:

T

T T T

T T

x1 x1x1 x2x2 x2x3 x3 x3x4 x4
x4

y1 y1y1 y2
y2y2

y3y3y3 y4
y4y4

C CC

Figure 3.1: Insert a concept c through top search [6].

– Concept c which should be inserted

– Element x of Xi, which is under consideration

For the concept x, we already know that c v x holds; and top-search looks

at its direct successors. Initially, the procedure is called with x = >.

To check whether any direct successor y of x subsumes c we will call

”simple-top-sub?” shown in Algorithm 1, line 4. Since our hierarchy does

not need to be a tree, y may have been checked before and if we memo-

rized the result of the previous test, we do not need to invoke the expensive

subsumption procedure ”subs?(y,c)”(see Algorithm 2, line 6). The direct

successor for which the test was positive is located in a list called Pos-Succ.
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T T T

T T T

x1 x1 x1

x2 x2 x2

x3 x3x3

X4 X4 X4

y1 y1 y1y2 y2 y2
y3

y3y3 y4
y4

y4

c
c c

Figure 3.2: Insert a concept c through bottom search [6].

If it remains empty, x is added to the result list; otherwise top-search is

called for each positive successor, but only if the concept has not been vis-

ited before.

• Bottom Search

Bottom Search is symmetric to Top Search, therefore it is performed in a

dual way. This means that if the tree is rotated upside down, then bottom is

like top. Bottom Search is illustrated in Figure 3.2. The figure shows only

the lower half of the tree, as bottom search traversal is done bottom-up.

Starting at the bottom of the hierarchy, for each concept x of Xi (x is parent

of bottom), it checks whether x has an immediate predecessor z which sat-

isfies cv z. If there are such predecessors, they are considered as well. The

bottom-up traversal is done till the immediate successors of c are found.
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3.1.3 Enhanced Traversal Method

The ”simple traversal” method performs much better than the ”brute force” method

but it does not use all the available information. Therefore in the ”enhanced traver-

sal” method, first we can take advantage of the tests that have been performed

during the top search; second, in the bottom search we can use all the information

collected during the top search.

• Top Search

To exploit all the information, which has been recorded during the top

search, we either focus on negative information (i.e. a subsumption test did

not succeed) or on positive information (i.e. a subsumption test succeeded).

– Using negative information

We check whether for any predecessor z of y the test c v z has failed.

If this is the case (see line 6 of Algorithm 3), we can conclude that c 6v

y) without performing the costly subsumption test. To gain maximum

advantage, all predecessors of y should have been tested before the

subsumption test will be done on y. Algorithm 3 shows ”enhanced-

top-sub” procedure.

– Using positive information

Before checking c v y, one can look for a successor z of y that has

passed the test c v z. If there is such a successor one can conclude

that c v y without any subsumption test. Although we are interested

in minimizing the number of comparisons, it is more efficient to prop-

agate positive information up through the subsumption hierarchy in-
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Algorithm 3 Top search phase of the ”enhanced traversal” method. The pro-
cedure top-search is the same as the ”simple traversal” method, but instead of
the ”simple-top-sub?” procedure, it calls the ”enhanced-top-sub?” procedure
[6].

1: enhanced top subs?(y,c) =
2: if y marked as ‘positive’ then
3: result← true
4: else if y marked as ‘negative’ then
5: result← false
6: else if for all z ∈ predecessors(y)

always enhanced top subs(z,c)
and subs?(y,c) then

7: mark(y,‘positive’)
8: result← true
9: else

10: mark(y,‘negative’)
11: result← false

stead of searching for a successor that has passed the search. This

can be done by an easy modification of the ”simple-top-sub?” proce-

dure. When the call ”subs?(y,c)” yields true, not only y is marked

”positive” but also all of y’s predecessors. This technique cannot be

combined with the ”enhanced-top-subs?” in Algorithm 3 since it re-

duces the number of tests if there are predecessors that have not been

tested yet; however the enhanced top search tests all predecessors be-

fore making a subsumption test. None of the alternatives is better than

the other one and we can see it in the Figure 3.3 and Figure 3.4.

Considering the fact that the new element c is a direct successor of y1

but not a successor of y2 and having the same hierarchy as Figure 3.3,

two tests should be performed in order to place c in the right place

in the hierarchy while using negative information in the top search
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x1 x2 xn

T

y1 y2

Figure 3.3: The new element c is a direct successor of y1, but not a successor of

y2, x1,. . . , xn. Taken from [6].

algorithm: first it tests y1, then checks x1 but before testing x1, its

direct predecessor y2 is tested. The negative result of this test prevents

x1,. . . , xn from being tested. However, the top search using positive

information tests n+2 nodes in order to place c in the hierarchy: first

y1 and then its successors x1,. . . , xn and finally y2.

In Figure 3.4, using negative information, n+1 tests should be done: it

first checks the subsumption relation between c and x1, then checks y,

but before testing y, it checks all its direct predecessors, i.e, x2 . . . xn.

However, using positive information, two tests will be performed: first

x1 and then y; and the positive result of the test is propagated to x2,

. . . , xn. There is a significant difference in performance between the

two different top search methods.
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x1 x2 xn

y

T

Figure 3.4: The new element c is a direct successor of y. Taken From [6].

• Bottom Search

Bottom search optimizations can be applied dual to top search. This op-

timization is achieved by a modification of the ”enhanced-bottom-search”

procedure (which is dual to ”enhanced-top-search”).

3.2 Preprocessing optimization techniques to simplify a knowledge base

The axioms that constitute a DL KB may contain considerable redundancy and

may make unnecessary use of general axioms (general axioms are costly to reason

with due to the high degree of non-determinism that they have) [25]. Hence, it is

useful to preprocess a KB, applying syntactic simplifications and manipulations.

These optimizations are as follows:

• Normalization

Tries to simplify the KB by identifying syntactic equivalences, contradic-

tions and tautologies. For example, (D � C) could be simplified to �{C,D}.
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The formal definition of normalization and simplification functions for ALC

has been explained in [26]. It can be extended to more expressive DLs. Ad-

ditional simplifications would clearly be possible. For example, ∀R.C u

∀R.D could be simplified to ∀R.Norm(CuD).

Normalizations help the subsumption-testing algorithm to detect contradic-

tions like u{C,D},¬(u{C,D}) directly without the need for further expan-

sion.

Definition 3.2.1 (Lazy Unfolding) In the lazy unfolding technique, con-

cept names are unfolded, using the concept definitions in TBox, but as re-

quired by the progress of the tableau completion rules. The advantage of

this technique is that the tableau algorithm can find contradictions between

concept names before adding expressions derived from TBox (for further

information see [25] and [26]).

– Advantages

It is easy to be implemented and can be used with most logics and

algorithms. Normalization simplifies or even avoids subsumptions/

satisfiability problems by detecting syntactically obvious satisfiability

and unsatisfiability. It complements lazy unfolding and improves easy

clash detection. While normalizing, the elimination of redundancies

and the sharing of syntactically equivalent structure may lead to a KB

that can be more compactly stored [26].

– Disadvantages
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The overhead involved in the procedure, although this is relatively

small. For very unstructured KBs there may be no benefit, and it might

even slightly increase size of KBs [26].

• Absorption

Since general axioms are costly to reason with due to the high degree of

non-determinism that they can introduce, it makes sense to eliminate them

from a KB whenever it is possible. The basic idea is that a general axiom

of the form C v D, where C may be a non-atomic concept, is manipulated

(using the equivalence in Table 3.1 so that it has the primitive definition of

A v D. where A is an atomic concept name.

C1 u C2 v D ⇐⇒ C1 v D t ¬C2

C v D1 uD2 ⇐⇒ C v D1, C v D2

Figure 3.5: Axiom equivalences used in absorption [26].

C1 u C2 v D ⇐⇒ C2 v D t ¬C1 ⇐⇒ C1 v D t ¬C2

C v D1 uD2 ⇐⇒ C v D1 and C v D2

Table 3.1: Axiom equivalences used in the absorption technique [26].

– Advantages

It can lead to a dramatic improvement in performance. It is logic and

algorithm independent [26].

– Disadvantages

The disadvantage is the overhead required for the pre-processing, al-

though this is generally small compared to classification times [26].
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3.3 Optimization techniques to avoid subsumption tests

The classification optimization described in Section 3.1 helps to reduce the num-

ber of subsumption tests that are performed when classifying a KB and the com-

bination of normalization, simplification, and lazy unfolding facilitates the de-

tection of obvious subsumption relationships. However, detecting obvious non-

subsumption (satisfiability) is more difficult in tableau algorithms and this is un-

fortunate. In this section, we will review some related works, which describe the

optimization techniques to avoid subsumption tests. These techniques are applied

to different parts of the classification process and can be done by using relations,

which are obvious when we are looking at the concept definition.

• First technique: Told (non.) subsumers

Assume that we are inserting concept c whose description mentions x or ¬x

explicitly as a conjunct, then it is obviously the case that c v x or c disjoint

to x (x is a told subsumer of c). The information that c is subsumed by its

told subsumers can be propagated through the existing hierarchy prior to

the top search, e.g. by pre-setting the markers to positive for told subsumers

and all its predecessors [6].

• Second technique is applicable if concepts are conjunctive and are in-

serted in the subsumption hierarchy following the definition-order

In this case, the bottom search case can be completely avoided if a primitive

concept has to be classified. Such a concept C can only subsume the bottom

concept and concepts for which C is a told subsumer. Since the second

type of subsumees are not present in the actual hierarchy when inserting
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according the definition order, the result of the bottom search is just the

bottom concept ⊥. In this case, there are no GCIs in the TBox [6].

• Third Optimization technique can be used as a pre-test before calling

the subsumption algorithm

By extracting and caching all the primitive components of all concepts, it

becomes possible to check whether there is a subsumption relation. C can

only be subsumed by D if the set of primitive components of D is a subset of

the set of primitive components of C. Thus if the subset test gives a negative

result, the subsumption algorithm need not be called. Obviously, this is

faster than a subsumption test [6].

• Final Optimization technique is caching partial tableau expansion trees

In this technique, we try to use cached results from previous tableau tests

to prove non-subsumption without performing a new satisfiability test. For

example, given the two concepts A and B defined by the following axioms

[26]:

A ≡ C u ∃R1.C1 u ∃R2.C2

B ≡ ¬D t ∀R3.¬C3

Then B does not subsume A if the concept A u¬B is satisfiable. If the

tableau expansion trees for A and B have already been cached, then the

satisfiability of the conjunction can be shown by a tree consisting of the

trees for A and ¬B that joined at their root node, as shown in Figure 3.6.

Figure 3.6 show that the union of root node labels does not contain a clash

and that no tableau expansion rules are applicable to the new tree. The
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{A,     B,C,D,    R1.C1,    R2.C2,   R3.C3}
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¬ 

¬ 

Figure 3.6: Joining expansion trees for A and ¬B [26].

caching technique can be expanded in order to avoid construction of obvi-

ously satisfiable and unsatisfiable sub-trees during the tableau expansion.

For example, if a leaf node x is about to be expanded and L(x) = {A}, un-

folding and expansion of L(x) is unnecessary if A has already been cached

as satisfiable (Lc(x) 6= ⊥) or unsatisfiable (Lc(x) = ⊥).

– Disadvantages

One of the disadvantages of this technique is to have the overhead of

sorting partial trees. It also has the overhead of satisfiability tests on

concepts and their negation in order to create the partial trees that will

be cached. To determine if the cached partial trees can be merged, this
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technique puts overhead on the system; which is wasted if they can

not be merged. This optimization technique can be used in classifying

a KB or performing many similar satisfiability tests, however it does

not have a value for performing single tests.

3.4 Optimization techniques for speeding up subsumption tests

In this section, optimization techniques of the subsumption algorithm will be con-

sidered. These techniques show how we can take advantage of the already com-

puted and stored subsumption relationships during the classification process. The

subsumption relationships between concepts can be determined by using satis-

fiability algorithms. A satisfiability algorithm may detect a contradiction during

model generation if the previous subsumption relationships are taken into account.

Suppose we have A subsumes B, if during the model generation a concept is de-

fined to be both instance an of ¬A and B, then a contradiction will be detected

without expanding the definition of A and B. This approach only works if we do

not expand the concept definitions before the satisfiability check. If an expansion

is done ”by need” during the satisfiability test (lazy unfolding), then the order of

concept name expansion may have a considerable impact on the runtime behavior.

To make the expansion process more efficient, we expand the concept names ac-

cording to the inverse of their definition order, however, this means that for each

expansion operation one has to go through the list of all expandable names, look

for the maximal one with respect to the definition order.

To avoid searching for a maximal name there is another approach, which ex-

pands the concept definitions in arbitrary order. In this approach when a name is
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expanded it is not removed, but just marked as expanded and it takes more mem-

ory. To optimize the satisfiability algorithm employed in KRIS2, three versions

have been implemented:

• The first one takes expanded concept descriptions as input. Since these

descriptions do not contain names of defined concepts, contradictions can

only appear between ”primitive concepts”, i.e., concepts names which are

not defined in the TBox.

• The second one successively expands the concept description during model

generation but keeps the names as described above. This allows the algo-

rithm to detect a contradiction not only between primitive concepts but also

between names of defined concepts.

• The third one is the refinement of the second one, in a way that already

computed subsumption relationships are taken into account when looking

for obvious contradictions.

After having explained the optimization techniques for computing the concept

hierarchy, avoiding the subsumption tests, and speeding up the subsumption test

in this section, there will be an overview of atomic decomposition in the next

section.
2It is an implemented prototype of a KL-ONE system where all reasoning facilities are real-

ized by sound and complete algorithms. KRIS provides a concept language, and an assertional
language [5].

40



3.5 Atomic Decomposition

In recent years modules have frequently been used for ontology development and

understanding. This happens because a module captures all the knowledge an

ontology contains in a given area, and often is much smaller than the whole on-

tology. One useful modularization technique for expressive ontology languages

is locality-based modularization, which allows for fast (polynomial) extraction of

modules. In order to better understand the modular structure of an ontology, a

technique called Atomic Decomposition can be used [45]. It efficiently builds the

structure for all possible modules of an ontology, which can be used for quick

extraction of modules, or investigate dependencies between modules, and so on.

In this section, we will present an overview of the work of other researchers

for Atomic Decomposition. The details of the work as well as the corresponding

algorithms are described in [45].

In [45], it is assumed that the reader is familiar with the notion of OWL 2

axiom, ontology and entailments. An entity is a named element of the signature

of an ontology. For an axiom α, the signature of that axiom is denoted by ã, i.e.

the set of all entities in α.

Definition 3.5.1 (Signature) Let NC be be a set of concept names, and NR a set

of role names. A signature Σ is a set of terms, i.e., Σ v NC ∪ NR. We can think

of a signature as specifying a topic of interest. Axioms using only terms from Σ

are on-topic. For instance, if Σ = {Animal,Duck,Grass,eats} then Duck ⊆ ∃eats

is on-topic, while Duck v Bird is off-topic. Given an ontology O (axiom a), its

signature is denoted with Õ(ã) [50].
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Definition 3.5.2 (Module) Let O be an ontology and Σ be a signature. A subset

M of the ontology is called a module of O w.r.t. Σ if M |= α⇐⇒ O |= α for every

axiom α with ã ⊆ Σ.

One of the ways to build modules is to use locality of axioms.

Definition 3.5.3 (Semantic Locality) An axiom α is called >(⊥)-local w.r.t a

signature Σ if replacing all named entities in ã \ Σ with >(resp. ⊥) makes that

axiom a tautology. An axiom α is called a tautology if it is local w.r.t. ã. An axiom

α is called global if it is non-local w.r.t. ∅.

It is assumed that the locality checker provides a method isNonLocal(α) that

returns true iff the axiom α is non-local.

Definition 3.5.4 (Atomic Decomposition) A set of axioms A is an atom of an

ontology O, if for every module M of O, either A ⊆ M or A
⋂

M = ∅. An atom A

is dependent on B (written B � A) if A ⊆ M implies B ⊆ M, for every module M.

An Atomic Decomposition of an ontology O is a graph G = (S,�), where S is the

set of all atoms of O.

In other words, Atomic Decomposition is a method to partition an ontology

into pieces called atoms. An atom is a set of axioms that appear in every module

all together (or none of them). They could be viewed as a smallest pieces of

modules.

In our research, Atomic Decomposition is considered as a black box. Hence,

we decompose ontologies using a jar file provided by Manchester University.

In this section, we briefly explained atomic decomposition of ontologies; in

the next section, we will provide an overview of concurrent classification of EL

Ontologies.
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3.6 Concurrent Classification of EL Ontologies

Many works have focused on the development of techniques to reduce classifi-

cation times. Numerous approaches have been proposed for optimizing the un-

derlying (mostly tableau-based) procedures by reducing the number of redundant

inferences and making the computation more goal-directed. Another way of re-

ducing the classification time, which is studied in this section, is to perform sev-

eral inferences at the same time, i.e., concurrently. Concurrent algorithms and

data structures have gained substantial practical importance due to the widespread

availability of multi-core and multi-processor systems [28]. In [28] an optimized

consequence-based procedure for classification of ontologies expressed in a poly-

nomial fragment ELHR+ of the OWL 2 EL profile. As mentioned earlier, the pro-

cedure can take advantage of multiple processors/cores, which increasingly pre-

vail in computer systems. The solution is based on a variant of the given clause

saturation algorithm for first-order theorem proving, where derived axioms are

assigned to contexts within which they can be used and which can be processed

independently.

In this section, we will briefly present the implementation of the procedure

within the Java-based reasoner ELK, which is developed by another researcher.

The thorough explanation of the implementation as well as the corresponding al-

gorithms are described in [28].

The implementation is light-weight in the sense that an overhead of managing

concurrent computations is minimal. This is achieved by employing lock-free data

structures and operations such as compare-and-swap [28].

The key idea of the system design is based on the notion of active context. A
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context is active if the scheduled queue for this context is not empty. The algo-

rithm maintains the queue of active contexts to preserve this invariant. For every

input axiom, the algorithm takes every context assigned to this axiom and adds

this axiom to the queue of the scheduled axioms for this context). Because the

queue of scheduled axiom becomes non-empty, the context is activated by adding

it to the queue of active contexts. Afterwards, each active context is repeatedly

processed in the loop. The conclusions of computed inferences are inserted into

(possibly several) sets of scheduled axioms for the contexts assigned to this con-

clusion, in a similar way as it is done for the input axiom. Once the context is

processed, i.e., the queue of the scheduled axioms becomes empty and the loop

quits, and the context is deactivated.

This chapter described the background review on the closely related works. In

the following chapter, parallel processing in general will be discussed.
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Chapter 4

Toward Parallel Processing With

Semantic Web

This chapter presents the parallel processing and the programming model in MapRe-

duce. It also gives an overview of the related research work.

4.1 MapReduce

MapReduce is a programming model and an associated implementation for pro-

cessing and generating large data sets. Users specify a map function that processes

a key/value pair to generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with the same intermedi-

ate key [14].

MapReduce is inspired by the map and reduce primitives present in Lisp and other

functional languages. In MapReduce, a map operation is applied to each logical

”record” in the input in order to compute a set of intermediate key/value pairs, and
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then applying a reduce operation to all values that shared the same key, in order

to combine the derived data properly.

4.1.1 Programming Model

The computation takes a set of input key/value pairs and produces a set of output

key/value pairs. It consists of two functions, Map and Reduce.

The Map function, takes an input key/value pair and produces a set of intermedi-

ate key/value pairs. MapReduce combines all the intermediate values associated

with the same intermediate key I and passes them to the Reduce function.

The Reduce function, accepts an intermediate key I and all the values for that key.

It merges those values to form a smaller set of values. Zero or one output value

is produced per Reduce function. An iterator provides value from intermediate

values to the Reduce function.

Map (k1,v1) → list (k2,v2)
Reduce (k2,list(v2)) → list (v2)

Figure 4.1: Map-Reduce [14].

The input keys and values are drawn from different domain than output keys

and values; however, the intermediate keys and values are from the same domain

as output keys and values.

4.1.2 Execution

First, MapReduce splits the input intoM pieces and many copies of the program

runs on a cluster of machines. The special copy of the program is called Master
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and the rest are workers. Master picks the idle worker and assigns a M map task

or a R reduce task.

A worker which gets a map task, reads the input and parses the key/value pair

and passes to the Map function. The intermediate key/value pair results from

Map function is buffered into memory. Periodically, the buffered pairs are stored

on a local disk, partitioned into R region by partitioning function. The locations

of buffered pairs on disk are passed to Master which is forwarding them to the

Reduce workers.

As soon as a reduce worker is notified by master about the locations, through RPC,

it gets the data from local disk of map workers. It reads all intermediate data and

sorts based on the key so that all occurrences of the key are grouped together.

Sorting is done as typically many different keys are mapped to the same reduce

task.

Reduce worker then iterates over the data and for each key, it passes the key and

the corresponding set of values to the Reduce function. The output is appended to

the output file of this reduce partition.

When execution is completed, master worker returns the handle to the program

[14].

4.1.3 Examples

There are some researches about MapReduce which are loosely related to our

work. Some examples of MapReduce in Semantic Web follows:

A distributed technique is introduced in [49] to materialize the closure of an

RDF graph based on MapReduce. Another research, [35], explains a MapReduce
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Algorithm for EL+. Another work in MapReduce, is named WebPIE [48], which

is a distributed technique, introduced to reason under RDFS and OWL with Horst

Semantics using MapReduce.

In this section, we mentioned some examples of MapReduce. In the following

section, we will note some examples for Distributed Reasoning/Inferencing in

Semantic Web.

4.2 Distributed Reasoning/Inferencing

In this section, we will present some research on Distributed Reasoning. These

works loosely relate to our work. SAOR is an optimizations of rule-based materi-

alization approaches for reasoning over large static RDF datasets [24]. Distributed

reasoning over large scale RDF datasets, and a solution to speeddating in elastic

regions is described in [29]. Another distributed reasoning method is proposed in

[40] that preserves soundness and completeness of reasoning under the original

OWL import semantics. The method is based on resolution methods for ALCHIQ

ontologies that is modified to work in a distributed setting. A partitioning scheme

for abox partitioning is defined in [51]. This research also introduces classes of

rules which can be used to perform complete parallel inferencing on abox parti-

tions.

In this chapter, we had an overview of parallel processing in Semantic Web,

and we browsed some researches on MapReduce as well as Distributed Reason-

ing. In the next chapter, Parallel TBox Classification will be presented in detail.
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Chapter 5

Parallel TBox Classification

This chapter presents the main contributions of the thesis on parallel TBox classi-

fication and the evolution of its underlying algorithms. The content of this chapter

is divided into two sections.

First, in Section 5.1, which contains the theoretical contributions of the thesis, the

algorithms for Parallel TBox Classifier and their evolution will be explained as

follows:

• First Generation : First generation of Parallel Classifier is a set of sound

but incomplete algorithms. In Section 5.1.1, we will explain that in this

generation, we explored how parallel classification was done with deliberate

sacrifice in completeness.

• Second Generation : Second generation of Parallel Classifier is a set of

sound and complete algorithms. The algorithms are thoroughly explained

in Section 5.1.2. This section will also elaborate the scenarios which can

cause incompleteness, and discuss the corresponding algorithms to achieve

49



completeness.

• Third Generation : The third generation of Parallel TBox Classifier, which

also can be referred to as Concurrent TBox Classifier, is where the employed

algorithms are sound and complete, and it classifies the TBox concurrently,

and more efficiently utilizing a benchmark with much bigger ontologies.

The algorithms for third generation of Parallel TBox Classifier are described

in Section 5.1.3.

Then, in Section 5.2, the design of a running prototype for Parallel TBox Clas-

sifier will be demonstrated.

The prototype is independent of a particular logic or reasoner. This archi-

tecture was deliberately designed to facilitate our experiments by using existing

OWL reasoners to generate auxiliary information as well as making the TBox

Classifier independent of particular DLs. Racer is only used for generating the

input files for our prototype.

This prototype was utilized for the assessment of the algorithms in Section

5.1, and its main components follow:

• Ontology Loader : The Ontology Loader is responsible for loading an on-

tology selected by the user. The Ontology Loader is described in Section

5.2.1.

• Configuration Manager : The Configuration Manager is responsible for

checking and utilizing user preferences about how the Parallel TBox Classi-

fier should be configured. The Configuration Manager is described in Sec-

tion 5.2.2.
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• Parser : The Parser is responsible for parsing the ontology input file which

is provided by Racer. The Parser is described in Section 5.2.3.

• Preprocessor : The Preprocessor is responsible for preprocessing of the

parsed information and computing a Topological Sort Order. The Prepro-

cessor is described in Section 5.2.4.

• Partition Manager : The Partition Manager is responsible for partitioning

the list of concepts to be inserted. The list can be a Topologically Sorted

list which is generated by Preprocessor component or a non-sorted list. The

details of Partition Manager are described in Section 5.2.5.

• Serializer : The Serializer is responsible for serialization of logs as well as

the statistics. The Serializer is described in Section 5.2.6.

• TBox Classifier : The TBox Classifier is the main component and respon-

sible for classification of TBox in parallel. The description of how TBox

Classifier works, is explained in Section 5.2.7.

5.1 Algorithms for Parallel TBox Classifier

5.1.1 First Generation

This section describes the algorithms for the first generation of Parallel TBox

Classifier. In contrast to starting to implement a parallel TBox classifier, we de-

cided to first conduct a field study with the goal to evaluate the impact of two

control parameters, number of threads and partition size1, on the completeness of
1Number of concepts assigned to every thread and are expected to be inserted by a correspond-

ing thread.
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the classifier if one assumes a type of parallelization that deliberately sacrifices

completeness. By using such a strategy, we wanted to get some experience about

the quality of a sound but incomplete parallel classifier, or, in other words, we

wanted to find out how many nodes are misplaced during TBox classification.

To manage concurrency in the system, at least two shared-memory approaches

could be taken into account by using either (i) sets of local trees (so-called ParTree

approach) or (ii) one global tree. In the ParTree algorithm [42] a local tree would

be assigned to each thread, and after all the threads have finished the construc-

tion of their local hierarchy, the local trees need to be merged into one global

tree. TBox classification through a local tree algorithm would not need any com-

munication or synchronization between the threads. ParTree is well suited for

distributed systems which do not have shared memory. The global tree approach

was chosen because it implements a shared space which is accessible to different

threads running in parallel, avoids the large scale overhead of ParTree on synchro-

nizing local trees and also we were not planning to design a distributed system.

To ensure data integrity, a locking mechanism for single nodes is used. This

allows a proper lock granularity and helps to increase the number of simultaneous

write accesses to the subsumption hierarchy under construction.

To ensure avoiding unnecessary tree traversals and tableau subsumption tests

when computing the subsumption hierarchy, the parallel classifier adapts the en-

hanced traversal method, explained in Section 3.1.3, which is an algorithm that

was designed for sequential execution (see Algorithms 6 and 7). Algorithm 6 is

used in Algorithm 5.

The procedure parallel tbox classification is sketched in Algorithm 4. It is

called with a list of named concepts, which are sorted in topological order w.r.t. to
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the initial taxonomy created from the already known predecessors and successors

of each concept (using the told subsumer information). Alternatively, the proce-

dure parallel tbox classification can be also executed with a random order of the

given concept list. The classifier assigns partitions with a fixed2 or dynamically3

increased size from the concept list to idle threads and activates idle threads with

their assigned partition using the procedure insert partition sketched in Algorithm

5. All threads work in parallel, and there exists either a fixed number of threads

or the number of threads grows dynamically.

Algorithm 4 parallel tbox classification(concept list,shuffle flag)
topological order list← topological order(concept list)
if shuffle flag then

topological order list← random shuffle(topological order list)
repeat

assign each idle thread ti a partition pi from topological order list
run idle thread ti with insert partition(pi)

until all concepts in topological order list are inserted
compute missing subsumptions and ratio
print statistics

The procedure insert partition inserts all concepts of a given partition into the

global taxonomy. For updating a concept or its predecessor or successors, it locks

the corresponding nodes. It first performs for each concept the top-search phase

(starting from the top concept>) and afterwards the bottom-search phase (starting

from the bottom concept ⊥).

In the First Generation of Parallel TBox Classifier, the degree of incomplete-

ness caused by classifying partitions of concepts in parallel was tested, which is

documented in Section 6.2. For a variety of ontologies it turned out that a sur-
2If Partition Size n is initialized to 5, then each partition contains n1 (e.g. 5) concepts.
3If Partition Size n is initialized to 5, then each partition contains ni, where i={1,2,3,..}, (e.g.

5,25,125,...) concepts.
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Algorithm 5 insert partition(partition)
for all new ∈ partition do

parents← top search(new,>)
lock(new)
set predecessors of new to parents
for all pred predecessor of new do

lock(pred)
add new to successors of pred
unlock(pred)

unlock(new)
children← bottom search(new,⊥)
lock(new)
set successors of new to children
for all succ successor of new do

lock(succ)
add new to predecessors of succ
unlock(succ)

unlock(new)

Algorithm 6 top search(new,current)
mark(current,‘visited’)
pos-succ← ∅
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result← result ∪ top search(new,y)

return result
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Algorithm 7 enhanced top subs(current,new)
if current marked as ‘positive’ then

return true
else if current marked as ‘negative’ then

return false
else if for all z ∈ predecessors(current)

always enhanced top subs(z,new)
and subsumes(current,new) then

mark(current,‘positive’)
return true

else
mark(current,‘negative’)
return false

Algorithm 8 subsumes(subsumer,subsumee)
Checks whether subsumer subsumes subsumee using computed subsumer
information provided by Racer.

prisingly few number of subsumptions were missed. This motivated the work to

improve the Parallel TBox Classifier which will be explained in next section. The

scenarios for the incompleteness as well as the algorithms for its resolution will

also be described in the next section.
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Figure 5.1: Complete subsumption hierarchy for yaya-1

5.1.2 Second Generation

In this section, first two scenarios will be illustrated which may cause that a con-

cept is misplaced in the taxonomy due to parallel classification, and therefore

causes incomplete classification.

Then, underlying sound and complete algorithm for parallel classification of

DL ontologies is described.

Example Scenario

We use a very small ontology named yaya-1 with 16 concepts (see Figure 5.1 and

5.2).

For this example, the system is configured so that it runs with 4 threads and

partition size 3 (e.g. number-of-tasks-per-thread). First, the list of concepts which

is preprocessed to the form of Topological Sort Order, is partitioned using fixed-

size partitioning (See Sections 5.2.4 and 5.2.5). Then, the partitions are assigned

to the threads (e.g. round-robin). For instance, in Figure 5.3 a list of concepts

allocated to each thread is shown. The two possible scenarios that may lead to a

situation where the correct place of a concept in the hierarchy is overlooked, are

described as follows.
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Figure 5.2: Told subsumer hierarchy for yaya-1

Scenario I: In top search, as the new concept is pushed downward, right after

the children of the current concept have been processed, at least one new child is

added by another thread. In this scenario, the top search for the new concept is not

aware of the recent change and this might cause missing subsumptions if there is

any interaction between the new concept and the added children. The same might

happen in bottom search if the bottom search for the new concept is not informed

of the recent change to the list of parents of the current node.

Scenario II: Between the time that top search has been started to find the

location of a new concept in the taxonomy and the time that its location has been

decided, another thread has placed at least one other concept into the hierarchy,

which the new concept has an interaction with. Again, this might cause missing

subsumptions and is analogously also applicable to bottom search.

In our example (yaya-1), due to the small size of the taxonomy, scenario I
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thread#1 −→ (female not-male), girl, parent
thread#2 −→ woman, mother, (male not-female)
thread#3 −→ man, boy, father
thread#4 −→ not-boy, not-father, not-girl
thread#1 −→ not-man, not-mother, not-parent, not-woman

Figure 5.3: Concept assignments to each thread for classifying yaya-1

was not encountered, however, scenario II occurred in our experiments because

thread#1 inserted (female not-male)4 and thread#2 added woman independently

into the taxonomy and due to the parallelism each thread did not have any infor-

mation regarding the latest concept insertion by other threads (see Figure 5.3).

Hence, both (female not-male) and woman were initially placed under the top

concept although woman should be a child of (female not-male) (see Figure

5.1). This was discovered and corrected by executing lines 6-7, 16-17, and 25-36

in Algorithm 10 as shown below.

The procedure parallel tbox classification is sketched in Algorithm 9. It is

called with a list of named concepts and then preprocessing of the list results in

topological order w.r.t. to the initial taxonomy created from the already known

told ancestors and descendants of each concept (using the told subsumer informa-

tion). Then, the topological sort order list is partitioned into fixed-size partitions,

which are assigned in a round-robin manner to idle threads. These threads are ac-

tivated with their assigned partition using the procedure insert partition outlined

in Algorithm 10. All threads work in parallel with the goal to construct a global

subsumption tree (taxonomy). They also share a global array inserted concepts

indexed by thread identifications. Nodes in the global tree as well as entries in the

array are locked for modification.

4This notation indicates that the concepts female and not-male are synonyms for each other.
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Algorithm 9 parallel tbox classification(concept list)
topological-order-list← topological order(concept list)
repeat

wait until an idle thread ti becomes available
select a partition pi from topological-order-list
run thread ti with insert partition(pi, ti)

until all concepts in topological-order-list are inserted
compute ratio and overhead
print statistics

The procedure insert partition inserts all concepts of a given partition into the

global taxonomy. For updating a concept or its parents or children, it locks the cor-

responding nodes. In order to avoid unnecessary tree traversals and tableau sub-

sumption tests when computing the subsumption hierarchy, the parallel classifier

adapts the enhanced traversal method, explained in Section 3.1.3. (see Algorithms

7 and 11, which outline the traversal procedures for the top-search phase).

Therefore, the classifier for each concept new performs the top-search phase

(starting from the top concept) and possibly repeats the top-search phase for new

if other threads updated the list of children of its parents. Then, it sets the parents

of new and adds new for each parent to its list of children (line 5 to 14). After-

wards the bottom-search phase (starting from the bottom concept) is performed.

Analogously to the top-search phase the bottom search is possibly repeated and

sets the children of new and updates the parents of the children of new (line 15 to

24). After finishing the top and bottom search for new it is checked again whether

other threads updated its entry in inserted concepts and the top and/or bottom

search needs to be repeated (line 26 to 36). Finally, new is added to the entries in

inserted concepts of all other busy threads. Hence, other threads are notified of

added concept (line 37 to 40).
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Algorithm 10 insert partition(partition,id)

1: lock(inserted concepts(id))
2: inserted concepts(id)← ∅
3: unlock(inserted concepts(id))
4: for all new ∈ partition do
5: parents← top search(new,>)
6: while ¬ consistent in top search(parents,new) do
7: parents← top search(new,>)
8: lock(new)
9: predecessors(new)← parents

10: unlock(new)
11: for all pred ∈ parents do
12: lock(pred)
13: successors(pred)← successors(pred) ∪ {new}
14: unlock(pred)
15: children← bottom search(new,⊥)
16: while ¬ consistent in bottom search(children,new) do
17: children← bottom search(new,⊥)
18: lock(new)
19: successors(new)← children
20: unlock(new)
21: for all succ ∈ children do
22: lock(succ)
23: predecessors(succ)← predecessors(succ) ∪ {new}
24: unlock(succ)
25: check ← check if concept inserted(new , inserted concepts(id))
26: if check 6= 0 then
27: if check = 1 ∨ check = 3 then
28: new predecessors← top search(new,>)
29: lock(new)
30: predecessors(new)← new predecessors
31: unlock(new)
32: if check = 2 ∨ check = 3 then
33: new successors← bottom search(new,⊥)
34: lock(new)
35: successors(new)← new successors
36: unlock(new)
37: for all busy threads ti 6= id do
38: lock(inserted concepts(ti))
39: inserted concepts(ti)← inserted concepts(ti) ∪ {new}
40: unlock(inserted concepts(ti))
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Algorithm 11 top search(new,current)
mark(current,‘visited’)
pos-succ← ∅
captured successors(new)(current)← successors(current)
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result← result ∪ top search(new,y)

return result

To resolve the possible incompleteness caused by parallel classification ex-

plained earlier, we utilize Algorithms 12 and 13.

The procedure consistent in bottom search is not shown as it is symmetric to

consistent in top search.

Algorithm 12 consistent in top search(parents,new)
for all pred ∈ parents do

if successors(pred) 6= captured successors(new)(pred) then
diff← successors(pred) \ captured successors(new)(pred)
for all child ∈ diff do

if subsumption possible(child,new) then
return false

return true

Algorithms 12 illustrates the solution for Scenario I, described in Section 5.1.2

on page 57. As already described, in top search we start traversing from the top

concept to locate the concept new in the taxonomy. At time t1, when top search

is called, we capture the children information “captured successors” of the con-
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cept current; the children information is stored relative5 to the concept new being

inserted (we use an array of arrays) and captures the successors of the concept

current (see Algorithm 11). As soon as top search is finished at time t2, and the

parents of the concept new have been determined, we check if there has been any

update on the children list of the computed parents for new between t1 and t2 (e.g.,

see Algorithm 12 on how this is discovered). If there is any inconsistency and also

if there is a possible subsumption6 between new and any concept newly added to

the children list, we rerun top search until there is no inconsistency (see line 6 in

Algorithm 10).

The same process as illustrated in Algorithm 12 happens in bottom search. The

only difference is that parents information is captured when bottom search starts;

and when bottom search finishes, the inconsistency and interaction is checked be-

tween the parent list of the computed children for new and the “captured predecessors”.

Algorithm 13 describes the solution for Scenario II, explained in Section 5.1.2

on page 57. Every time a thread inserts a concept in the taxonomy, it notifies

the other threads by adding the concept name to their “inserted concepts” list.

Therefore, as soon as a thread finds the parents and children of the new concept by

running top search and bottom search; it checks if there is any interaction between

new concept and the concepts located in the “inserted concepts” list. Based on the

interaction, top search and/or bottom search need to be repeated accordingly.

The fact that algorithms are sound is obvious as every ”yes” answer for a

subsumption test is a valid answer. Therefore, soundness is preserved.

5Otherwise a different thread could overwrite captured successors for node current. This is
now prevented because each concept (new) is inserted by only one thread.

6This is checked by subsumption possible using pseudo model merging [22], where a sound
but incomplete test for non-subsumption on pseudo models of named concepts and their negation
is utilized (pseudo model information is provided in the input file).
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Algorithm 13 check if concept inserted(new,inserted concepts)
The return value indicates whether and what type of re-run needs to be done:
0 : No re-run in needed
1 : Re-run TopSearch because a possible parent could have been overlooked
2 : Re-run BottomSearch because a possible child could have been overlooked
3 : Re-run TopSearch and BottomSearch because a possible parent and child
could have been overlooked
if inserted concepts = ∅ then

return 0
else

for all concept ∈ inserted concepts do
if subsumption possible(concept,new) then

if subsumption possible(new,concept) then
return 3

else
return 1

else if subsumption possible(new,concept) then
if subsumption possible(concept,new) then

return 3
else

return 2
return 0
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Proposition 1 (Completeness of Parallel TBox Classifier) The proposed algo-

rithms are complete for TBox classification.

TBox classification based on top search and bottom search is complete in the

sequential case. This means that the subsumption algorithms will find all sub-

sumption relationships between concepts of a partition assigned to a single thread.

The threads lock and unlock nodes whenever they are updating the information

about a node in the global subsumption tree. Thus, we need to consider only

the scenarios where two concepts C and D are inserted in parallel by different

threads (e.g., thread#1 inserts concept C while thread#2 inserts concept D). In

principle, if top (bottom) search pushed a new concept down (up), the information

about children (parents) of a traversed node E could be incomplete because an-

other thread might later add more nodes to the parents or children of E that were

not considered when determining whether the concept being inserted subsumes or

is subsumed by any of these newly added nodes. This leads to two scenarios that

need to be examined for incompleteness.

W.l.o.g. we restrict our analysis to the case where a concept C is a parent of a

concept D in the complete subsumption tree (CT ). Let us assume that our algo-

rithms would not determine this subsumption, i.e., in the computed (incomplete)

tree (IT ) the concept C is not a parent of D.

Case I: top search incomplete for D: After D has been pushed down the

tree IT as far as possible by top search (executed by thread#2) and top search has

traversed the children of a concept E and E has become the parent of D, C is

inserted by thread#1 as a new child of E. In line 6 of Algorithm 10 top search is

iteratively repeated for the concept new as long as consistent in top search finds
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a discrepancy between the captured and current successors of the parents of the

newly inserted concept new. After finishing top and bottom search, Algorithm

10 checks again in lines 27-28 whether top search needs to be repeated due to

newly added nodes. If any of the newly added children of D would subsume C

and become a parent of C, the repeated execution of top search would find this

subsumption. This contradicts our assumption.

Case II: bottom search incomplete for C: After C has been pushed up the

tree IT as far as possible by bottom search (executed by thread#1) and bottom

search has traversed the parents of a concept E and E has become a child of

C, D is inserted by thread#2 as a new parent of E. In line 16 of Algorithm

10 bottom search is iteratively repeated for the concept new as long as consis-

tent in bottom search finds a discrepancy between the captured and current pre-

decessors of the children of the newly inserted concept new. After finishing top

and bottom search, Algorithm 10 checks again in lines 32-33 whether bottom

search needs to be repeated due to newly added nodes. If C would subsume any

of the newly added parents of D and it would become a child of C, the repeated

execution of bottom search would find this subsumption. This contradicts our

assumption.

This section explained the sound and complete algorithms for the Parallel

TBox Classifier. The third generation of algorithms, Concurrent TBox Classifier,

which is more efficient will be described in the next Section.
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5.1.3 Third Generation

In Section 5.1.2, we introduced our algorithms for sound and complete parallel

classification. In this section, the enhanced concurrent version of those algorithms

are introduced. (i.e., Algorithms 15, 17 and 18); others are similar.

In this generation of Parallel TBox Classifier, similar to previous generations,

to manage concurrency and multi-threading in the system, a single-shared global

tree approach is used. Also, to avoid unnecessary tree traversals and tableau sub-

sumption tests when computing the subsumption hierarchy, the parallel classifier

adapts the enhanced traversal method in Section 3.1.3, Algorithms 7 and 11 out-

line the traversal procedures for the top-search phase, and bottom search is sym-

metric to top search.

Algorithm 14 informed partitioning(topological sort list)
1: atoms← get-atomic-decomposition-atoms(owlfile)
2: partition-counter← 0
3: ignore-list← 0
4: for all list ∈ topological sort list do
5: for all c ∈ list do
6: if ignore-list not contain c then
7: ad-partition← get-ad-partition-no(c, atoms)
8: set informed-partitions(partition-counter) to ad-partition
9: add ad-partition to ignore-list

10: increment partition-counter

The procedure parallel tbox classification is also similar to the one sketched

in Algorithm 9, and is called with a list of named concepts. After preprocessing

of the list, topological order is generated with respect to the initial taxonomy cre-

ated from already known told ancestors and descendants of each concept (using

the told subsumer information). The sorted list is partitioned using either fixed-

size partitions, or atomic decomposition (explained in Section 3.5.4), or informed
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Algorithm 15 insert partition(partition,id)
for all new ∈ partition do

rerun← 0
finish rerun← false
parents← top search(new,>)
while ¬ consistent in top search(parents,new) do

parents← top search(new,>)
predecessors(new)← parents
children← bottom search(new,⊥)
while ¬ consistent in bottom search(children,new) do

children← bottom search(new,⊥)
successors(new)← children
for all busy threads ti 6= id do

located concepts(ti)← located concepts(ti) ∪ {new}
check ← check if concept has interaction(new , located concepts(id))
while (check 6= 0) and ¬finish rerun do

if rerun < 3 then
if check = 1 then

new predecessors← top search(new,>)
rerun← rerun + 1
predecessors(new)← new predecessors

else
if check = 2 then

new successors← bottom search(new,⊥)
rerun← rerun + 1
successors(new)← new successors

check ←
check if concept has interaction(new , located concepts(id))

else
finish rerun← true
for all busy threads ti 6= id do

located concepts(ti)← located concepts(ti) \ {new}
if ¬finish rerun then

insert concept in tbox(new, predecessors(new), successors(new))

partitioning (see Algorithm 14); (the partitioning methods will be explained in

Section 5.2.5 and the corresponding evaluation of each partitioning method is

documented in Section 6.4.6).
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To improve the partitioning, Informed Partitioning algorithm was designed.

Using Informed Partitioning, we had the hypothesis that number of re-run will be

reduced, as the concepts which have interactions are placed in the same partition

(Section 6.4.6 shows the preliminary evaluation of using Informed Partitioning).

As it is shown in Algorithm 14, a topological sorted list is passed as the input.

In line 1 of the algorithm, the atomic decompositions are computed using a li-

brary provided by Manchester University (explained in Section 3.5.4). In Atomic

Decomposition, the collections of signatures of atoms are usually overlapping. In

other words, the atoms’ signatures in Atomic Decomposition are not generally

pairwise disjoint. Therefore, to avoid adding a concept redundantly into different

informed-partitions, as it is shown in line 6 of Algorithm 14, a list named ignore-

list is utilized. In line 6, everytime a concept c from Topological Sort Order list is

going to be processed, it is checked if is already placed in ignore-list (e.g. added

to previous partitions). If it is the first time that concept c is to be processed, then

the first AD partition which contains c is returned (line 7). Then, the AD partition

is added to the informed-partitions as a new partition (line 8). As it is shown in

line 9, all the concepts of the new partition, are added to the ignore-list. The itera-

tion continues till all the concepts in the Topological Sort Order list are processed

and therefore, all the partitions for the informed-partitions are generated.

Then, classifier assigns in a round-robin manner partitions to idle threads

and activates these threads with their assigned partition using the procedure in-

sert partition outlined in Algorithm 15. All threads work in parallel with the goal

to construct a global subsumption tree (taxonomy). They also share a global array

located concepts indexed by thread identifications. The located concepts array is

used when a thread has inserted a concept into the subsumption tree and wants to
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notify other threads about the concept.

The procedure insert partition inserts all concepts of a given partition into the

global taxonomy. However, for updating a concept or its parents or children, no

locking mechanism is used. Therefore, all the assignments in Algorithm 15 are

lock-free assignments.

Algorithm 15 first performs for each concept new the top-search phase (start-

ing from the top concept (>)) and possibly repeats the top-search phase for new

if other threads updated the list of children of its parents. Then, it sets the parents

of new. Afterwards the bottom-search phase (starting from the bottom concept

(⊥)) is performed. Analogously to the top-search phase, the bottom search is pos-

sibly repeated and sets the children of new. After finishing the top and bottom

search for new, the node new is added to the entries in located concepts of all

other busy threads; it is also checked whether other threads updated the entry in

located concepts for this thread. If this was the case, the top or bottom search

need to be repeated correspondingly.

To prevent redundant re-runs, it only runs twice. If the concept new is still not

ready to be inserted; e.g., there is any interaction between new and a concept in

located concepts; it will be added to the partition list of concepts (to be located

later), and also eliminated from the other busy threads’ located concepts list, oth-

erwise, new can be inserted into the taxonomy using Algorithm 18. Hence, for

cases that we need more re-runs, as there are lots of interaction, after re-running

for the second time, we postpone it and the concept is added to the partition list of

concepts, in order to be inserted later.

The scenarios explained in Section 5.1.2, are properly addressed in Algo-

rithm 15 to ensure completeness. Every time a thread locates a concept in the
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Algorithm 16 consistent in top search(parents,new)
for all pred ∈ parents do

if successors(pred) 6= captured successors(new)(pred) then
diff← successors(pred) \ captured successors(new)(pred)
for all child ∈ diff do

if found in ancestors(child,new) then
return false

return true

taxonomy, it notifies the other threads by adding this concept name to their “lo-

cated concepts” list. Therefore, as soon as a thread finds the parents and chil-

dren of the concept new by running top search and bottom search; it checks if

there is any interaction between concept new and the concepts located in the ”lo-

cated concepts” list. Based on the interaction, top search or bottom search needs

to be repeated accordingly. If no possible situations for incompleteness are dis-

covered anymore, Algorithm 18 is called. To resolve the possible incompleteness

we utilize Algorithms 16 and 17. Algorithm 17 is the optimized version of Algo-

rithm 13. The procedure consistent in bottom search is not shown here because

it mirrors consistent in top search.

As mentioned earlier, beside using fixed-partition size, Concurrent TBox Clas-

sifier (e.g. Parallel TBox Classifier - Third generation) also utilizes atomic decom-

position partitions as well as informed partitioning.

In this section, the sound and complete algorithms for the Concurrent TBox

Classifier were explained and the evaluation will be described in Section 6.4. In

the next section, the implemented prototype will be elaborated.
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Algorithm 17 check if concept has interaction(new,located concepts)
The return value indicates whether and what type of re-run needs to be done:
0 : No re-run in needed
1 : Re-run TopSearch because a possible parent could have been overlooked
2 : Re-run BottomSearch because a possible child could have been overlooked
if located concepts = ∅ then

return 0
else

for all concept ∈ located concepts do
if interaction possible(new,concept) then

if found in ancestors(new,concept) then
return 2

else
return 1

else if interaction possible(concept,new) then
if found in ancestors(new,concept) then

return 2
else

return 1
return 0

Algorithm 18 insert concept in tbox(new,predecessors,successors)
for all pred ∈ predecessors do

successors(pred)← successors(pred) ∪ {new}
for all succ ∈ successors do

predecessors(succ)← predecessors(succ) ∪ {new}

Algorithm 19 interaction possible(new,concept)
Uses pseudo model merging information [23], pre-computed by Racer, to
decide whether a subsumption is possible between new and concept.

Algorithm 20 found in ancestors(new,concept)
Checks if concept is an ancestor of new.
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5.2 A Prototype for Parallel TBox Classifier

In this section, the implemented prototype for Parallel TBox Classifier will be

explained.

The input of the prototype is a file generated by Racer. The file contains a list

of concept names to be classified and information about them. The per-concept

information available in the file includes its name, parents (in the complete tax-

onomy), told disjoints, told subsumers, and pseudo model [23] information. The

information about parents is used to compute the set of ancestors and descendants

of a concept. Told information consists of disjoints and subsumers.

The told disjoints’ information is not utilized due to time constraints. The in-

formation was provided by Racer in order to be used for optimization techniques

in pruning the classification tree. However, the information is not instrumental to

parallelization procedure.

The told subsumers information is used for creating the initial taxonomy for gen-

erating a topological sort list.

The ancestors’ (descendants’) information is only used for (i) emulating a tableau

subsumption test, i.e., by checking whether a possible subsumer (subsumee) is in

the list of ancestors (descendants) of given concept, and (ii) in order to verify the

completeness of the taxonomy computed by the parallel classifier. This informa-

tion substitutes for an implemented tableau reasoning procedure. In other words,

using the pre-computed parents information by Racer was deliberately designed

to avoid implementing the tableau subsumption tests.

The output of the prototype is an XML file, which includes the computed

statistics during Parallel TBox Classification.
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The prototype has seven main components as follows.

5.2.1 Ontology Loader

The Ontology Loader lets Parallel TBox Classifier accept an ontology file gener-

ated by Racer. One can load an ontology by selecting a file through setting the

corresponding name and path in the configuration file.

5.2.2 Configuration Manager

The Configuration Manager allows Parallel TBox Classifier to get user prefer-

ences before running classification. The name of the ontology to be processed as

well as the control parameters are set in a configuration file. The Control Param-

eters are:

• Number of Threads

• Partition Size Number of concepts assigned to every thread and are ex-

pected to be inserted by corresponding thread.

• Number of Processors

Users can also select the strategies that will be used to partition a given set of

concepts (e.g. Atomic Decomposition) as well as the logging level to be utilized

by serializer.

5.2.3 Parser

The Parser parses the ontology input file generated by Racer.
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5.2.4 Preprocessor

The Preprocessor utilizes told subsumer information and generates a topological

order list (e.g., using a depth first traversal). In the topological order list, from left

to right, parent concepts precede their children concepts.

5.2.5 Partition Manager

Partition Manager gets a concept list and partitions it. Based on the partitioning

strategies defined in the configuration file, the following scenarios can be chosen

for partitioning.

Fixed-size Partitioning

In this scenario, Partition Manager divides the Topological Sorted List of con-

cepts from left to right into fixed-size partitions. The partition size is provided by

Configuration Manager.

Dynamic-size Partitioning

Using Dynamic-size partitioning, Partition Manager partitions the Topological

Sorted List of concepts from left to right, using partition size is provided by Con-

figuration Manager. The partition size is increased dynamically.

Atomic Decomposition Partitioning

In Atomic Decomposition, Partition Manager uses a library provided by Manch-

ester University, which applies Atomic Decomposition and therefore, creates par-

titions based on the computed atoms. The information about Atomic Decompo-
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sition was explained in Section 3.5.4. Using Atomic Decomposition partitioning,

no preprocessing is done and the partition size is not fixed, as the partition size is

mandated by the atom size.

Informed Partitioning

Partition Manager uses Algorithm 14 to generate Informed Partitioning partitions.

Here, preprocessing is done and the order in the Topological Sorted List of con-

cepts is utilized for ordering the computed atoms, generated by Manchester Uni-

versity’s library (see Atomic Decomposition explanation in Section 3.5.4).

5.2.6 Serializer

Serializer allows the information to be logged into the files. The level of log-

ging is provided by Configuration Manager. Serializer also serializes the statistics

computed during the classification.

5.2.7 TBox Classifier

TBox Classifier is the core of the prototype and it classifies the TBox in parallel

using a multi-threaded architecture. The classifier utilizes the partitions generated

by Partition Manager and assigns them to threads (See Algorithms 15, 16, 17, and

18).

In the third generation of TBox Classifier, we use Concurrent collections from

the java.util.concurrent package. This package supplies Collection implementa-

tions which are thread-safe and designed for use in multi-threaded contexts. Using

the Concurrency package in Java, synchronization on the nodes of the global tree
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as well as the entries in the global array have been eliminated. Therefore, for up-

dating a concept or its parents or children, no locking mechanism for the affected

nodes of the global tree is needed anymore.
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Chapter 6

Performance Evaluation

The implementation of Parallel Classification of TBox has the following main

objectives :

1. To show that efficient classification is possible in parallel.

2. The optimization techniques explained in Section 3.1.3 and designed for

sequential execution, are also efficient for parallel classification, if extended cor-

respondingly.

The objectives can be met by evaluating the Parallel TBox Classifier using real

world ontologies.

The scalability of the Parallel TBox Classifier, is tested by using ontologies

of different complexity and size. Note that the ontologies of generally large size

(hundreds of thousands of concepts) are also considered, although the size greatly

affects the complexity of classification, the prototype is able to tackle such a com-

plexity.
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6.1 Benchmarks

The benchmarks used are publicly available real world ontologies. These are the

typical benchmarks utilized by Racer and other reasoners on a regular basis. Note

that the chosen test cases exhibit different sizes, structures, and DL complexities.

In this section, the state of the art ontologies as well as their Xmas trees1 will be

explained.

6.1.1 Cyc

The Cyc knowledge base (KB)2 is a formalized representation of a vast quantity of

fundamental human knowledge: facts, rules of thumb, and heuristics for reason-

ing about the objects and events of everyday life. The KB consists of terms and

assertions which relate those terms. These assertions include both simple ground

assertions and rules. Cyc is not a frame-based system: the Cyc team thinks of the

KB instead as a sea of assertions, with each assertion being no more ”about” one

of the terms involved than another. The Cyc KB is divided into ”microtheories”,

each of which is essentially a bundle of assertions that share a common set of as-

sumptions; some microtheories are focused on a particular domain of knowledge,

a particular level of detail, a particular interval in time, etc. Figure 6.1 shows

the taxonomy. In the figure, the length of the line per level is proportional to the

number of concepts in this tree level.

1Xmas trees were designed to show the shape of taxonomies. In the tree, from top to bottom
the number of concepts on each level is represented by a line with a width scaled to the maximum
number of concepts over all level. All levels of the taxonomy are shown in the tree.

2http://www.cyc.com/cyc/technology/technology/whatiscyc dir/whatsincyc
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Figure 6.1: CYC Ontology.

DL Expressivity # of Concepts
ALH(D) 25,566

6.1.2 eCl@ss

The EClass ontology3 is part of eClassOWL. eClassOWL is an OWL ontology

for describing the types and properties of products and services on the Semantic

Web (also known as the ”Web of Linked Data”). eClassOWL is meant to be used

in combination with the GoodRelations ontology for e-commerce, which covers

the commercial aspects of offers and demand, e.g. prices, payment, or delivery

options.

eClassOWL is a project that has been initiated by Martin Hepp in 2003 and is

now being hosted and maintained by the E-Business and Web Science Research

Group at the Universität der Bundeswehr München.

3http://notes.3kbo.com/eclassowl
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Figure 6.2: ECLASS Ontology.

DL Expressivity # of Concepts
AL(D) 76,975

eCl@ss covers a wide range of products and services. However, when we want

to use such categorization standards for the Semantic Web, we have to make sure

that we properly understand the meaning and structure of the existing standard

and create a consistent and correct transformation. This work has already been

done in the case of eCl@ss. Figure 6.2 shows the taxonomy.

6.1.3 Embassi

EMBASSI 4 is in the framework of the program MTI ( interaction in the knowl-

edge society), which during the four-year term, 7 research and university institutes

as well as 12 companies involved in the projects. Overall, EMBASSI (Multimodal

operator and service assistant) is used for the development of an intelligent user

assistance that will allow people a natural, intuitive control of electronic devices.

The aim is to achieve a flexible, extensible and configurable architecture so that,

for example a user equipment from different manufacturers can always operate in

the same manner. In 2001, significant improvements to structure, stability, main-

tainability and performance of the scenario-demonstrators in private household

and automotive applications have been achieved. Figure 6.3 shows the taxonomy.

4http://univis.uni-erlangen.de/formbot/dsc 3Danew 2Fresrep view 26rprojs
3Dtech 2FIMMD 2FIMMD8 2Fembass 26dir 3Dtech 2FIMMD 2FIMMD8 26ref 3Dresrep

80



Figure 6.3: EMBASSI Ontology.

Variations DL Expressivity # of Concepts
EMBASSI-1 ALCF 313
EMBASSI-2 ALCF 731
EMBASSI-3 ALCF 1,178

6.1.4 Fungal Web

The FungalWeb Ontology [41] is a formal ontology in the domain of fungal ge-

nomics, which provides a semantic web infrastructure for sharing knowledge us-

ing four distinct sub-ontologies: enzyme classification based on their reaction

mechanism, fungal species, enzyme substrates and industrial applications of en-

zymes. The ontology was developed in OWL-DL by integrating numerous online

textual resources, interviews with domain experts, biological database schemas

and reusing some existing bio-ontologies, such as GO and TAMBIS. Figure 6.4

shows the taxonomy.

6.1.5 Generalized Architecture for Languages, Encyclopedia

and Nomenclatures in medicine (GALEN)

Generalized Architecture for Languages, Encyclopedia and Nomenclatures in medicine

(GALEN)5 has been modeled to represent clinical information to support clini-

cians and is intended to generate a formal multilingual coding system for medicine.

5http://www.openclinical.org/prj galen.html
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Figure 6.4: FungalWeb Ontology.

DL Expressivity # of Concepts
ALCHOIN (D) 3,601

It originally evolved from the Pen&Pad electronic medical record system, which

was modeled using Structured Meta Knowledge (SMK), in the way that terms

were described through relationships to other terms. The core of GALEN is an

ontology, the Common Reference Model, formulated in a specialized description

logic, GRAIL, that does not support the use of disjunction or negation. GALEN

has been employed as a basis for studying nursing terminologies, surgical vocab-

ularies, anatomy, and decision support systems. The major strengths of GALEN

are the formal representation of clinical information and the use of a formal struc-

ture based on description logic. GALEN also allows multiple views of relevant

detail as needed. Figure 6.5 shows the taxonomy.

6.1.6 Gene Ontology (GO)

The Gene Ontology (GO) project6 is a collaborative effort to address the need for

consistent descriptions of gene products in different databases. The project began

6http://www.geneontology.org/GO.doc.shtml
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Figure 6.5: GALEN Ontology.

Variations DL Expressivity # of Concepts
GALEN SHF 2,730

GALEN1 ALC 2,730
GALEN2 ALE 3,926

as a collaboration between three model organism databases, FlyBase (Drosophila),

the Saccharomyces Genome Database (SGD) and the Mouse Genome Database

(MGD), in 1998. Since then, the GO Consortium has grown to include many

databases, including several of the world’s major repositories for plant, animal

and microbial genomes.

The Gene Ontology project provides an ontology of defined terms representing

gene product properties. The ontology covers three domains: cellular compo-

nent, the parts of a cell or its extracellular environment; molecular function, the

elemental activities of a gene product at the molecular level, such as binding or

catalysis; and biological process, operations or sets of molecular events with a

defined beginning and end, pertinent to the functioning of integrated living units:

cells, tissues, organs, and organisms.

The GO ontology is structured as a directed acyclic graph, and each term has de-

fined relationships to one or more other terms in the same domain, and sometimes

to other domains. The GO vocabulary is designed to be species-neutral, and in-
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Figure 6.6: GO Ontology.

DL Expressivity # of Concepts
ALE+ 22,566

Figure 6.7: LargeTest Ontology.

DL Expressivity # of Concepts
ALE+ 5,584

cludes terms applicable to prokaryotes and eukaryotes, single and multicellular

organisms. Figure 6.6 shows the taxonomy.

6.1.7 LargeTest Ontology

The LargeTest Ontology is a variant/extract of Gene Ontology(GO). Figure 6.7

shows the taxonomy.
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6.1.8 Systematized Nomenclature of Medicine Clinical Terms

(SNOMED CT)

SNOMED Clinical Terms (SNOMED CT)7 is the most comprehensive, multilin-

gual clinical healthcare terminology in the world.

SNOMED CT contributes to the improvement of patient care by underpinning the

development of Electronic Health Records that record clinical information in ways

that enable meaning-based retrieval. This provides effective access to information

required for decision support and consistent reporting and analysis. Patients ben-

efit from the use of SNOMED CT because it improves the recording of EHR

information and facilitates better communication, leading to improvements in the

quality of care.

SNOMED CT is owned, maintained and distributed by the International Health

Terminology Standard Development Organisation (IHTSDO). The IHTSDO is a

not-for-profit association which is owned and governed by its national Members.

In January 2012 eighteen countries were Members of IHTSDO, more countries

are joining every year.

SNOMED CT is

• a clinical healthcare terminology

• a resource with comprehensive, scientifically-validated content

• essential for electronic health records

• a terminology that can cross-map to other international standards

• already used in more than fifty countries.
7http://www.ihtsdo.org/snomed-ct/
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Figure 6.8: SNOMED Ontology.

Variations DL Expressivity # of Concepts
SNOMED-2 ELH 182,869
SNOMED-1 ELH 223,260
SNOMED ELH 379,691

SNOMED CT provides the core general terminology for the electronic health

record (EHR). When implemented in software applications, SNOMED CT can be

used to represent clinically relevant information consistently, reliably and com-

prehensively as an integral part of producing electronic health records.

6.1.9 Transparent Access to Multiple Bioinformatics Informa-

tion Sources Ontology (TAMBIS)

TAMBIS8 was a joint research project between the School of Biological Sciences

and the Information Management Group, part of Computer Science in the Univer-

8http://www.cs.man.ac.uk/ stevensr/tambis/text/details.html
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Figure 6.9: TAMBIS Ontology.

Variations DL Expressivity # of Concepts
TAMBIS-0 ALEH+ 340
TAMBIS-2a ALEH+ 10,114

sity of Manchester in the UK. TAMBIS aims to aid researchers in biological sci-

ence by providing a single access point for biological information sources round

the world.

TAMBIS’s9 ontology enables biologists to ask questions over multiple exter-

nal databases using a common query interface. The TAMBIS ontology (TaO)

describes a wide range of bioinformatics tasks and resources, and has a central

role within the TAMBIS system.

An interesting feature of TaO is that it does not contain any instances. The TaO

only contains knowledge about bioinformatics and molecular biology concepts

and their relationships - the instances they represent still reside in the external

databases.

The TaO is a dynamic ontology, in that it can grow without the need for either

conceptualizing or encoding new knowledge. Figure 6.9 shows the taxonomy.

9http://www.cs.man.ac.uk/ stevensr/onto/node10.html
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Figure 6.10: UMLS Ontology.

Variations DL Expressivity # of Concepts
UMLS-1 ALCHIN 297
UMLS-2 ALCHIN 9,479
UMLS-3 ALCHIN 160,035

6.1.10 Unified Medical Language System (UMLS)

The Unified Medical Language System (UMLS)10 was created by the National Li-

brary of Medicine (NLM) to facilitate the development of computer systems that

behave as if they ”understand” the meaning of the biomedicine/health language.

To that end, the NLM produces and distributes the UMLS knowledge sources

(databases) and associated software tools (programs) to system developers for use

in informatics research and in building or enhancing electronic information sys-

tems that create, process, retrieve, integrate, and aggregate biomedical/health data

and information. The UMLS Knowledge Sources are multipurpose, and can uti-

lize a variety of data and information, such as patient records, scientific literature,

guidelines and public health data. Figure 6.10 shows the taxonomy.

6.2 Evaluation of Parallel TBox Classifier - First Gen-

eration

To evaluate the adequacy of ”Parallel TBox Classifier - First Generation”, ex-

plained in Section 5.1.1, and also to assess the performance of the corresponding

10http://www.nlm.nih.gov/pubs/factsheets/umls.html
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Table 6.1: Used test ontologies.

Ontology Name DL Expressivity No. of named concepts
Galen SHF 2,730

Galen1 ALC 2,730
Umls-2 ALCHIN 9,479

algorithms, the prototype is configured on a Intel Single Core Dell laptop using

1 GHZ memory, so that it runs various experiments over ontologies with various

sizes, complexity and expressivity.

Two types of experiments were conducted. In the first experiment, Preprocessor

generates a topological sort order using a corresponding algorithm. However, in

the second experiment, Preprocessor randomly shuffle the generated topological

order, using a custom random shuffle algorithm, and thereafter the shuffled list is

partitioned. Once the shuffle order has been computed, it is saved and later reused

for more tests.

The experiments were conducted on three different scenarios (will be explained

in Sections 6.2.1, 6.2.2, and 6.2.3) using the ontologies listed in Table 6.1. The

ontologies of the benchmark were explained in Section 6.1.

The two control parameters which influence the ”Parallel TBox Classifier - First

Generation”, namely partition size, and the number of threads, vary in the follow-

ing three scenarios. The results are measured on the basis of the number of missed

subsumptions in the taxonomy produced by Parallel Classifier vs. the complete

taxonomy.
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Figure 6.11: Scenario 1: Missing Subsumptions for Galen using 4 settings:
P2,false, P5,false, P2,true, P5,true (Pthreads,shuffle).

6.2.1 Partition size and number of threads are constant

In this scenario, Partition Manager divides the topological order list into fixed-size

partitions. After each test the partition size is increased by a factor of 5. As shown

in Figure 6.11, when the system is configured to run with 2 threads, the number

of missing subsumptions decreases and then slightly increases as the partition

size increases. Running the simulation with 5 threads, the number of missing

subsumptions decreases when the topological order is not shuffled; however, if it

is shuffled the missing subsumptions decreases and then dramatically increases as

the partition size increases. In the worst case, the missing subsumptions make 2%

of all detected subsumptions.

Figure 6.12 shows the ratio for passed subsumption tests11 and failed sub-

11Total number of passed (successful) subsumption tests in the parallel case divided by the total
number of passed subsumption tests in the sequential case.
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Figure 6.12: Scenario 1: Ratio of passed and missed subsumption tests for
Galen using 8 settings: Ppassed,2,false, Pfailed,2,false, Ppassed,5,false, Pfailed,5,false,
Ppassed,2,true, Pfailed,2,true, Ppassed,5,true,Pfailed,5,true (Psubsumptiontest ,threads,shuffle).

sumption tests.12 The intention of the ratio is to measure the effect of parallelism

on number of subsumption tests (e.g. passed, failed) vesus sequential. As shown

in this figure, the increase of the number of threads results a better ratio. In other

words, when more threads are added, the ratio decreases. Conducting the same

tests for Umls-2 one gets at most 1% of missed subsumptions and the ratio has the

same trend as for Galen.

6.2.2 Partition size is dynamic and grows exponentially and the

number of threads is constant

In this scenario, the partition size grows exponentially (5n), however the number

of threads remains constant in each test run. As displayed in Figure 6.13, in all the

12Total number of failed (unsuccessful) subsumption tests in the parallel case divided by the
total number of failed subsumption tests in the sequential case.
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Figure 6.13: Scenario 2: Missing Subsumptions for Galen using 4 settings:
P2,false, P5,false, P2,true, P5,true (Pthreads,shuffle).

cases the missing subsumptions decrease except for the case when the topological

order list is shuffled and the number of threads is equal to 5. The percentage

of missing subsumptions in the worst case is 0.25%. When the partition size

increases, the ratio (e.g. passed, failed subsumption tests) is close to 1. This

means that the number of passed and failed subsumption tests is similar to the

sequential case. For Umls-2 the number of missing subsumptions is 0.02% and

the ratio follows a trend close to Galen.

6.2.3 Number of threads is dynamic and grows exponentially

In this scenario, the number of threads grows exponentially (2n) but the partition

size remains constant. Figure 6.15 shows the test results for the cases when a

topological and a random order is used. In this figure, it is observed that the num-

ber of missing subsumptions goes up and down based on the number of threads.
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Figure 6.14: Scenario 2: Ratio of passed and missed subsumption tests in
Galen using 8 settings: Ppassed,2,false, Pfailed,2,false, Ppassed,5,false, Pfailed,5,false,
Ppassed,2,true, Pfailed,2,true, Ppassed,5,true,Pfailed,5,true (Psubsumptiontest ,threads,shuffle).

Figure 6.16 displays the ratio for passed and failed subsumption tests. This figure

shows a smooth decrease of the ratio.

The experimental evaluation of the proposed algorithms for ”Parallel TBox

Classifier - First Generation” shows that the results are very promising because

the number of missed subsumptions is small. Due to missing subsumptions in

classification, the algorithm is sound but incomplete. In the next section, the

experimental results for the second generation of the prototype, ”Parallel TBox

Classifier - Second Generation”, will be described.
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Figure 6.15: Scenario 3: Missing Subsumptions for Galen using 2 settings:
P5,false, P5,true (Ppartitionsize,shuffle).

6.3 Evaluation of Parallel TBox Classifier - Second

Generation

In this section, the adequacy of ”Parallel TBox Classifier - Second Generation”,

explained in Section 5.1.2 will be evaluated. This generation of the prototype was

tested on a high performance parallel computing cluster. The nodes in the cluster

run an HP-version of RedHat Enterprise Linux for 64 bit processors, with HP’s

own XC cluster software stack.

The Parallel TBox Classifier has been developed to speed up the classification

time especially for large ontologies by utilizing parallel threads sharing the same

memory. Using Configuration Manager, the benchmark can be configured so that

it runs various experiments over ontologies. The evaluation is done with a col-

lection of 8 mostly publicly available ontologies. Their name, size in number of
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Figure 6.16: Scenario 3: Ratio of passed and missed subsumption tests
in Galen using 4 settings: Ppassed,false, Pfailed,false, Ppassed,true, Pfailed,true

(Psubsumptiontest ,shuffle).

Table 6.2: Characteristics of the used test ontologies.

Ontology name DL language No. of named concepts
Embassi-2 ALCHN 657
Embassi-3 ALCHN 1,121

Galen SHN 2,730
Galen1 ALCH 2,730
Galen2 ELH 3,928

FungalWeb ALCHIN (D) 3,603
Umls-2 ALCHIN (D) 9,479

Tambis-2a ELH 10,116

named concepts, and used DL is shown in Table 6.2 (see Section 6.1 for further

information).

Two control parameters, which are explained in Section 5.2.2 influence the paral-

lel TBox classification, namely number of threads, and partition size; the partition

size was set to 5 and number of threads to 2 in our empirical experiments.
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To better compare the performance between the sequential and parallel case, it

is assumed that every subsumption test runs in constant time t1 and in the sequen-

tial and parallel case the same amount of time is used for an executed subsumption

test. Subsumption tests can be expensive and, hence, are preferred to be avoided

by optimization techniques such as pseudo model merging [22]. The ratio illus-

trated in Equation 6.1 uses TotSubsTestss, the number of times a subsumption

test was computed in the sequential case, and MaxOfSubTestsInEachThread, the

maximum number of subsumption tests performed in all threads. Similarly, Equa-

tion 6.2 defines the overhead (where the index p refers to the parallel case).

Ratio =
MaxOfSubTestsInEachThread

TotSubsTestss

(6.1)

Overhead =
TotSubsTestsp − TotSubsTestss

TotSubsTestss

(6.2)

Table 6.3 shows an excellent performance increase and a surprisingly small

overhead when using the Parallel TBox Classifier. Using two threads the maxi-

mum of number of subsumption test for all ontologies could be reduced to roughly

one half compared to the sequential case. The overhead as defined in Equation 6.2

varies between 0.13% and 2.62%. The overhead is mostly determined by the qual-

ity of the told subsumers , the imposed order of traversal within a partitioning, and

the division of the ordered concept list into partitions using fixed-size partitioning.

In general, one should try to insert nodes as close as possible to their final order

in the tree using a top to bottom strategy.

The results for Parallel TBox Classifier, the Sound and Complete generation

are promising, however, there is small overhead. As the benchmark shows, the
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Table 6.3: Subsumptions tests and their ratio for the test ontologies.

Embassi-2 Embassi-3 Galen Galen1
Subs. Tests in sequent. 154,034 420,912 2,706,412 2,688,107
Subs. Tests in thread#1 76,267 217,324 1,363,321 1,367,302
Subs. Tests in thread#2 77,767 214,633 1,354,297 1,348,281

Worst Case Ratio 50.48% 51.63% 50.37% 50.86%
Overhead 1.64% 2.62% 0.41% 1.02%

Galen2 FungalWeb Umls-2 Tambis-2a
Subs. Tests in sequent. 5,734,976 4,996,932 87,423,341 36,555,225
Subs. Tests in thread#1 2,929,276 2,518,676 44,042,203 18,342,944
Subs. Tests in thread#2 2,893,716 2,490,329 44,025,988 18,261,532

Worst Case Ratio 51.07% 50.40% 50.37% 50.17%
Overhead 1.53% 0.24% 0.73% 0.13%

prototype could only classify the ontologies with up to 10,000 named concepts.

To overcome this limitation, which was caused by design and architecture of the

prototype, the third generation was designed and implemented, and the evaluation

is documented in the following section.

6.4 Evaluation of Concurrent TBox Classifier - Third

Generation

In the previous section, we explained the evaluation of algorithms used in ”Parallel

TBox Classifier - Second Generation”.

In this section, the ”Concurrent TBox Classifier - Third Generation”, which

the algorithms illustrated in Section 5.1.3, will be evaluated. Hence, the scalabil-

ity and performance of the prototype will be examined; also, the behavior of the

system when it is run in a (i) sequential or (ii) parallel multi-processor environ-

ment will be explained.
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This section, also describes how the prototype performs when we have huge

real-world ontologies with different DL complexities. The performance is also

examined, using different schemes of partitions generated by Partition Manager

(e.g. Fixed-Size partitions, Atomic Decomposition partitions, and Informed Par-

titioning partitions).

In the following, a description of the used platform and the implemented pro-

totype are provided. Then, the benchmarks used to evaluate ”Concurrent TBox

Classifier - Third Generation” are described and an overview of the parameters

used in the experiments is explained. Finally, the results are shown and the per-

formance of the classifier is discussed. In addition, the measured runtimes in the

figures are shown in seconds using a logarithmic scale.

Platform and Implementation The experiments were conducted on a high per-

formance parallel computing cluster. The nodes in the cluster run an HP-version

of RedHat Enterprise Linux for 64 bit processors, with HP’s own XC cluster soft-

ware stack. The environment is same as “Parallel TBox Classifier - Second Gen-

eration”.

As explained in Section 5.2.7, Concurrent TBox Classifier has been implemented

in Java using lock-free data structures from the java.util.concurrent package with

minimal synchronization.

As discussed in Section 5.1.3, in Concurrent TBox Classifier no specific optimiza-

tion techniques for classification have been implemented. For instance, there are

well-known optimizations which can avoid subsumption tests or eliminate the bot-

tom search for some DL languages or decrease the number of bottom searches in

general (see Section 3.3). The system is not intended to be competitive compared

to highly optimized DL reasoners or special-purpose reasoners designed to take

98



Table 6.4: Characteristics of the used test ontologies (e.g., LH denotes the DL
allowing only conjunction and role hierarchies, and unfoldable TBoxes).

Ontology DL language No. of named concepts
Embassi-2 ALCHN 657

Galen1 ALCH 2,730
LargeTestOntology ELHR+ 5,584

Tambis-2a ELH 10,116
Cyc LHF 25,566

EClass-51En-1 LH 76,977
Snomed-2 ELH 182,869
Snomed-1 ELH 223,260
Snomed ELH 379,691

advantage of the characteristics of the EL fragment (e.g., see [28]), however, it

can easily classify ontologies that are outside of the EL fragment.

Test Cases Table 6.4 shows a collection of 9 mostly publicly available real-world

ontologies, which were described in Section 6.1. Note that the chosen test cases

exhibit different sizes, structure, and DL complexities. The benchmark ontologies

are characterized by their name, size in number of named concepts or classes, and

used DL.

Parameters Used in Experiments The parameters used in our empirical evalua-

tion and their meaning are described below (the default parameter value in shown

in bold).

• Number of Threads: To measure the scalability of our system, we have

performed our experiments using different numbers of threads (1, 2, 4, 6, 8,

16).

• Partition Size: The number of concepts (5, 25, 65, 125) that are assigned to

every thread and are expected to be inserted by the corresponding thread.
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Similar to the number of threads, this parameter is also used to measure the

scalability of our approach.

• Number of Processors: For the presented benchmarks we always had 8 pro-

cessors or cores13 available.

In the following experiments, Pthreads,partition size is used to indicate a parallel

multi-core setting where the subscripts give the number of threads created, and the

partitions size used (from left to right). These parameters are set exponentially to

the bases of P2 ,5 using the exponent starting from 1 (e.g. P2 ,5 , P4 ,25 , etc). This

setting was chosen for the historic reasons.

Performance In order to test the effect of these parameters in the system, the

benchmarks are run with different parameter values. The performance improve-

ment is measured using the speedup factor which is defined as Speedupp = T1

Tp
,

where Speedupp is the speedup factor or efficiency, and

• p is the number of threads. In the cluster environment, 8 cores are always

available and in most of the experiments more than 8 threads are not used,

so, each thread can be considered as mapped to one core exclusively.

• T1 is the CPU time for the sequential run using only one thread and one

single partition containing all concept names to be inserted;

• Tp is the CPU time for the parallel run with p threads as maximum over all

threads.
13For ease of presentation we use the terms core and processor as synonyms here.
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Ideally, speedup should scale linearly with p, means that doubling the number

of processors/threads doubles the speed.

Superlinear speedup Superlinear speedup occurs when the speedup grows

faster than the number of processors/threads. Surely, the sequential program,

which is the basis for the speedup computation, could just simulate the p pro-

cesses of the parallel program to achieve an execution time that is no more than

p times the parallel execution time. There are reasons why a superlinear speedup

occurs.

The most common reason is that the computations working set - that is, the set of

pages needed for the computationally intensive part of the program - does not fit

in the cache when executed on a single processor, but it does fit into the caches

of the multiple processors when the problem is divided amongst them for parallel

execution. In other words, with the larger accumulated cache size, more or even

all of the working set can fit into caches and the memory access time reduces

dramatically, which causes the extra speedup in addition to that from the actual

computation. In such cases the superlinear speedup derives from improved execu-

tion time due to the more efficient memory system behavior of the multi-processor

execution.

Also, a good use of cluster has to do with managing very large data sets. Hence,

when the data set to be crunched is sufficiently large that it cannot reside in a sin-

gle machines RAM and if the computation can be spread across multiple CPUs

so a subset of the total data can fit in a single machines RAM, then a ”superlinear

speedup” is possible. Therefore, a superlinear speedup can occur for large data

given the effect of memory and disk swapping. In other words, if one has 8 proces-

sors in a cluster, the performance of the cluster could be more than 8 times faster
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than that of a single processor due to the software overhead involved in memory

swapping in the sequential case.

6.4.1 Effect of changing only the number of threads

To measure the performance of the classifier in this case, EClass-51En-1 was se-

lected as the test case and the tests were run with fixed-size partitions (5 or 25)

and a different number of threads (2 and 4), as shown in Figure 6.17. In the test

cases P2,5 and P4,5, an ideal speedup was achieved that is proportional to the num-

ber of threads, as shown in Figure 6.18. As it is shown, doubling the number of

threads from S to P2,5 and to P4,5, each time doubles the speedup, in other words,

decreases the CPU time by the number of threads.

Comparing the test cases S, P2,25, and P4,25, we get an even better speedup, also

shown in Figure 6.17 and 6.18. In this case, the CPU time decreases almost to 1
10

compared to the sequential case (S). This speedup is due to the reasons explained

in ”Superlinear speedup” section. When we increase the number of threads to 4,

the speedup is again proportional to the number of threads and this is what we

expected. Here, by doubling the number of threads, the speedup doubles.

In order to better visualize the effect of increasing number of threads, we also

examined the galen-1 ontology using a different number of threads (e.g. 1, 2, 4, 8,

16) and partition size 5 (see Figure 6.19 and Figure 6.20). As shown in Fig. 6.19,

the CPU time decreases when increasing number of threads from 1 - 4; however,

increasing the thread numbers more than 4 causes the CPU time to increase. Using

16 threads shows that the CPU time is higher than in the sequential case. The
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Figure 6.17: Runtimes for eclass-51en-1 using 5 settings: S (sequential), P2,5,
P4,5, P2,25, P4,25 (Pthreads,partition size).

performance degradation is because each thread does I/O and also, 16 number

of threads is over the optimal number of threads that a system with 8 cores can

manage.

The same explanation is for the speedup, shown in Figure 6.20. The speedup

increases using 1 - 4 threads and it slows down after 4 threads. This behaviour

is expected as increasing the number of threads means more re-runs or in other

words, increase in number of corrections.

6.4.2 Effect of changing only partition sizes

The performance of the classifier in this case for EClass-51En-1 is also shown in

Figure 6.17 with a fixed number of threads (2 or 4) but different partition sizes (5

or 25). When using 2 threads, compared to case S, we get the ideal speedup for

P2,5, as shown in Figure 6.18. As we can see, doubling the number of threads,
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Figure 6.18: Speedup for eclass-51en-1 from Figure 6.17.
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Figure 6.19: Runtimes for galen-1 using 5 settings: S (sequential), P2,5, P4,5, P8,5,
P16,5 (Pthreads,partition size).

doubles the speedup, in other words, decreases the CPU time by half. This is the

ideal case which is what we were expecting to happen. Again, compared to case

S if the partition size is increased to 25, it shows the same speedup as shown in
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Figure 6.20: Speedup for galen-1 from Figure 6.19.

Figure 6.18. In this case, the CPU time decreases almost to 1
5

compared to the

previous case.

In the scenario with 4 threads, we get a corresponding speedup, as shown

in Figure 6.18. In this case, the CPU time decreases to almost 1
10

compared to

the sequential case. This speedup is again due to the reasons mentioned in the

”Superlinear speedup” section. When we increase the partition size to 25, the

speedup is what we expected. Here, by multiplying the partition size by 5, the

speedup is multiplied by five too.

Increasing the partition size, means that more concepts are assigned to one

thread; therefore, all the related concepts are inserted into the taxonomy by one

thread. Hence, increasing the partition size, reduces the number of corrections.

Comparing P2,5 and P2,25 shows that increasing the partition size from 5 to 25,

makes the number of re-runs for P2,25 half of P2,5.
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6.4.3 Effect of increasing both the number of threads and the

partition size

In this scenario, we measured the CPU time when increasing both the number of

threads and the partition size. In Figure 6.21 and 6.22, our test suite includes the

ontologies Embassi-2, Galen1, LargeTestOntology, Tambis-2a, Cyc, and EClass-

51En-1. The CPU time for each test case is shown in Figure 6.21 and the speedup

factor for each experiment is depicted in Figure 6.22. As the results show, in the

scenario with 2 threads and partition size 5, the speedup doubles compared to the

sequential case and is around 2 and this is what we were expecting. When we

increase the number of threads as well as the partition size, for the scenario with

4 threads and partition size 25, the CPU time decreases dramatically and there-

fore the speedup factor is above 20 for most test cases. This is more than a linear

speedup, and it is the result of increasing the thread number as well as partition

size together with the reasons previously explained in ”Superlinear speedup” sec-

tion.

Increasing the number of threads to 6 and the partition size to 65, speedup does

not show a dramatic change for small ontologies comparing to scenario P4,25, how-

ever, for Cyc and EClass-51en-1 the speed up is superlinear. Considering scenario

with 8 threads and partition size 125, cpu time decrease more than 1/30 compared

to the sequential case. The good scalability is due to combination of decreasing

number of total subsumption tests as well as re-runs per threads.
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Figure 6.21: Runtimes for ontologies using 5 settings: S (sequential), P2,5, P4,25, ,
P6,65, P8,125.

6.4.4 Experiment on very large ontologies

We selected 3 Snomed variants as very large ontologies with more than 150,000

concepts. Snomed-2 with 182,869 concepts, Snomed-1 with 223,260 concepts,

and Snomed with 379,691 concepts were included in our tests. Figure 6.25 shows

an excellent improvement of CPU time for the parallel over the sequential case.

In Figure 6.26, the speedup factor is almost 2, which is the expected behavior.

The best speedup factor is observed for test case Snomed. Increasing the number

of threads as well as partition size for Snomed family (e.g. P4,25, P8,125), shows

a great performance. In scenario P4,25, the speedup factor is close to 17 and for

P8,125 the speedup factor is around 35. Therefore, increasing the number of threads
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Figure 6.22: Speedup for ontologies from Figure 6.21.

as well as partition size results to a superlinear speedup.

6.4.5 Observation on the increase of size of ontologies

We chose Cyc, EClass-51en-1, Snomed-1, Snomed-2, and Snomed as test cases.

Here, as shown in Figure 6.23 and 6.25, in a parallel setting with 2 threads, the

CPU time is divided by 2 compared to the sequential case. The speedup, shown

in Figure 6.24 is linear for P2,5 and superlinear for P4,25, P6,65 and P8,125.

In Figure 6.26, speedup is linear for P2,5 and superlinear for P4,25 as well as

P8,125. The result is consistent for our benchmark ontologies even when the size

of the ontologies increases.
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Figure 6.23: Runtimes for cyc and eclass-51en-1 using 4 settings: S (sequential),
P2,5, P4,25, P6,65, P8,125.
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Figure 6.24: Speedup for ontologies from Figure 6.23.

6.4.6 Effect of changing partitioning scheme

To optimize the partitioning, as explained in Section 5.2.5, a new partitioning

algorithm was designed. This Informed Partitioning algorithm, will open the win-
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Figure 6.25: Runtimes for snomed using 3 settings: S (sequential), P2,5, P4,25,
P8,125.
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Figure 6.26: Speedup for ontologies from Figure 6.25.

dow for the future works as well. The evaluation of the algorithm is done with

ontologies shown in Table 6.5, which are only proof of concept. Their name, size

in number of named concepts, and used DL are also shown in Table 6.5. To mea-
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sure the performance of the prototype using different partitioning, three scenarios

are investigated:

Scenario I In this scenario, Partition Manager utilizes Fixed-Size Partitioning as

explained in Section 5.2.5. Therefore, Partition Manager partitions the topological

sort order list generated by Preprocessor into Fixed-Size partitions.

Scenario II In this scenario, Partition Manager uses Atomic Decomposition

Partitioning, described in Section 5.2.5. Here, no preprocessing is done, and in

other words topological sort order list is not generated. Hence, Partition Manager

generates partitions based on the order of partitions using Atomic Decomposition

partitioning, explained in Section 5.2.5. In this scenario, the partition size is not

fixed.

Scenario III In this scenario, Partition Manager exploits Informed Partitioning,

described in Section 5.2.5. Here, preprocessing is done, and a topological sort

order list is generated. Hence, Partition Manager generates partitions based on the

order of topological sort order list. In this scenario, the partition size is not fixed.

As it is shown in Figure 6.27, classification time for Scenario III, using In-

formed Partitioning is better than Scenario I, which is Fixed-Size Partitioning.

This means that generating the topological order through preprocessing and ap-

plying Atomic Decomposition on top of it, gives a better classification time. Sce-

nario II, which is Atomic Decomposition, is the worst case scenario for all the

test cases. The comparison between Scenario I and Scenario II, emphasizes that

using topological sort order gives a better performance for the tested ontologies.

In Figure 6.28, total subsumptions for Scenario III shows better partitioning as
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Table 6.5: Characteristics of the used test ontologies.

Ontology DL language No. of named concepts
Espr-gcis FL −HN 143

Stereo-nums ALEHN 395
Embassi-2 ALCHN 657
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Figure 6.27: Classification Time for ontologies using 3 settings: Scenario I, Sce-
nario II, Scenario III.

opposed to Scenario II, and it is similar to the classification time. And as it is

presented in Figure 6.29, the same theme is existed for the Rerun ratio, which

is WastedRerun
Rerun

. The ratio measures the percentage of the total re-runs which are

wasted. As it is shown in the evaluation of the different scenarios of partition-

ing, Informed Partitioning shows that it is more efficient comparing to the other

partitioning scenarios.

112



espr-gcis stereo-nums embassi-2

104

105

T o
ta

lS
ub

su
m

pt
io

ns

Scenario I
Scenario II
Scenario III

Figure 6.28: Total Subsumptions for ontologies using 3 settings: Scenario I, Sce-
nario II, Scenario III.
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Figure 6.29: Wasted Rerun/Rerun for ontologies using 3 settings: Scenario I,
Scenario II, Scenario III.
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Chapter 7

Conclusion and Future Work

The main objective of this thesis as outlined in Section 1.1 was to design sound

and complete algorithms to handle TBox classification in parallel, as no existing

general system classifies TBoxes in parallel. Hence, the research methodology

utilized consists of devising new sound and complete classification algorithms,

designing a practical implementation of such algorithms, as well as conducting

an evaluation of the corresponding prototypes with (large) real world ontologies.

Therefore, the need for a new classification algorithm led to the design, imple-

mentation and evaluation of three generations of Parallel Classifier.

7.1 Theoretical Contributions

• A set of algorithms to construct a TBox in parallel, which is independent

of a particular DL logic, although it sacrifices completeness was proposed

and published in [1]. This algorithm was the first one focusing on TBox

classification in parallel. The algorithm was fully explained in Section 5.1.1.
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• A sound and complete algorithm for TBox classification in parallel was

proposed and published in [2] and [3]. The algorithm was the first sound

and complete algorithms for TBox classification in parallel, and described

thoroughly in section 5.1.2 along with the proofs for completeness.

• An optimized extension of the sound and complete algorithm which is used

to handle TBox classification concurrently, was proposed and published in

[4]. This algorithm was detailed in section 5.1.3.

• Optimization technique suitable for partitioning the list of concepts to be

inserted into the TBox was designed and described in Section 5.2.5. The

goal of the proposed Informed Partitioning is to achieve performance im-

provement for classification time.

7.2 Practical Contributions

A running prototype, Parallel TBox Classifier, was developed for every generation

of the classifier and evaluated against existing SOTA benchmarks, as described in

Sections 6.2, 6.3 and 6.4, respectively. To the best of our knowledge, Parallel

TBox Classifier is the first general TBox classifier which runs concurrently with

linear scalability to the utilized number of processors/cores.

Parallel TBox Classifier consists of seven components. The Configuration

Manager, checks, verifies and utilizes the user preferences specified in the config

file. The Ontology Loader, gets the input ontologies file, selected from the com-

puter directory. The Parser parses the loaded ontologies and fills the correspond-

ing data structures with the per-concept information available in the file such as
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its name, parents (in the complete taxonomy), told disjoints, told subsumers, and

pseudo model information. The Preprocessor, sorts the list of the concepts to be

inserted in the TBox using Topological Sort Order. The Partitioning Manager par-

titions the concept list using one of the four partitioning methods, e.g. Fixed-size

Partitioning, Dynamic-size Partitioning, Atomic Decomposition Partitioning and

Informed Partitioning. The Serializer, captures the statistics while classification

is running. Finally and most importantly, TBox classifier, constructs the TBox in

parallel.

The empirical evaluation in Chapter 6 illustrated that the prototypes for Paral-

lel TBox Classifier in the first and second generations were restricted to classify

TBoxes of up to 10000 node. However, in the third generation, the prototype can

classify TBoxes with more than 370000 nodes. Therefore, the scalability is more

than one order of magnitude. The assessments also show that Parallel TBox Clas-

sifier outperforms the Sequential TBox Classifier in all the test cases (all of them

are real world ontologies), particularly with very large ontologies (e.g. Snomed

with over 370,000 named concepts) with a linear or superlinear speedup factor

of over 30. Hence, the usability and scalability of the approach for the SOTA

ontologies, are met. Also, utilizing the Informed Partitioning, which is a parti-

tioning optimization technique, depicted that it results up to 20% of performance

improvement for classification time.

7.3 Future Research

Our proposed approach can be extended for improvement in the following high-

lighted aspects. Some of these open works were not explored due to time con-

116



straints, and some were noticed while conducting the experimental evaluation.

• Utilizing per-concept’s told disjoint and told-subsumer information avail-

able in the input file provided by Racer. Once enabled as an optimization

for reducing the number of subsumption tests, one should see improvement

in qualitative and quantitative metrics.

• Using heuristics to reduce wasted re-running of Top Search and Bottom

Search while the concepts are inserted in TBox concurrently. The opti-

mization technique should not sacrifice the completeness of the algorithm

explained in Section 6.4.

• Exploiting well-known optimizations to reduce the number of subsumption

tests. These optimizations can avoid subsumption tests or eliminate the

bottom search for some DL languages or decrease the number of bottom

searches in general.

• Extending Informed Partitioning to run with larger ontologies. The algo-

rithm was explained in Section 5.2.5.
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[28] Y. Kazakov, M. Krötzsch, and F. Simancik. Concurrent classification of EL

ontologies. In Proc. of the 10th Int. Semantic Web Conf., pages 305–320,

2011.

[29] S. Kotoulas, E. Oren, and F. van Harmelen. Mind the data skew: distributed

inferencing by speeddating in elastic regions. In Proc. 19th Int. Conf. on

World Wide Web, pages 531–540, 2010.

[30] T. Liebig and F. Müller. Parallelizing tableaux-based description logic rea-

soning. In Proc. of 3rd Int. Workshop on Scalable Semantic Web Knowledge

Base Systems (SSWS ’07), Vilamoura, Portugal, Nov 27, volume 4806 of

LNCS, pages 1135–1144. Springer-Verlag, 2007.

[31] R. MacGregor. The evolving technology of classification-based knowledge

representation systems. In In Principles of Semantic Networks: Explorations

in the Representation of Knowledge, Morgan Kaufmann., pages 385–400,

1991.

[32] H. Majid. Knowledge representation: Historical perspective, state of the art

and future prospects. In Department of Computer Science and Information

Systems, University of Limerick, Limerick, Ireland.

[33] N. Monty. Automated theorem proving: Therory and practice. In McGill

University, Computer Science Department.

[34] B. Motik, R. Shearer, and I. Horrocks. Hypertableau reasoning for descrip-

tion logics. In Journal of Artificial Intelligence Research, pages 457–471,

2009.

122



[35] R. Mutharaju, F. Maier, and P. Hitzler. A MapReduce algorithm for EL+. In

Proc. 23rd Int. Workshop on Description Logics, pages 464–474, 2010.

[36] D. Nardi and R. J. Brachman. An introduction to description logics. In

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors, The Description Logic Handbook: Theory,

Implementation, and Applications, pages 1–40. Cambridge University Press,

2003.

[37] M. Newborn and Z. Wang. Octopus: Combining learning and parallel

search. In Journal of Automated Reasoning, Volume 33, Number 2.

[38] G. A. Ringland and D. A. Duce. Approaches to knowledge representation :

an introduction. In Research Studies Press Ltd, 1988.

[39] A. Schlicht and H. Stuckenschmidt. Distributed resolution for expressive

ontology networks. In Web Reasoning and Rule Systems, 3rd Int. Conf. (RR

2009), Chantilly, VA, USA, Oct. 25-26, 2009, pages 87–101, 2009.

[40] A. Schlicht and H. Stuckenschmidt. Distributed resolution for expressive

ontology networks. In Proc. 3rd Int. Conf. on Web Reasoning and Rule

Systems, pages 87–101, 2009.

[41] A. Shaban-Nejad. A framework for analyzing changes in health care lex-

icons and nomenclatures. A PhD Thesis In The Department of Computer

Science and Software Engineering, Concordia University.

[42] H. Shan and J. P. Singh. Parallel tree building on a range of shared address

space multiprocessors: Algorithms and application performance. In 12th

123



Int. Parallel Processing Symposium (IPPS ’98), March 30 - April 3, 1998,

Orlando, Florida, USA, pages 475–484, 1998.

[43] E. Sirin, B. Cuenca Grau, and B. Parsia. Pellet: a practical owl-dl reasoner.

In Proceedings of the International Conference on the Principles of Knowl-

edge Representation and Reasoning (KR)., pages 90–99, 2006.

[44] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: a

practical owl-dl reasoner. In Journal of Web Semantics, pages 51–53, 2007.

[45] D. Tsarkov. Improved algorithms for module extraction and atomic decom-

position. In Description Logics, 2012.

[46] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner:system de-

scription. In In Proc. of the Int. Joint Conf. on Automated Reasoning(IJCAR

2006), volume 4130 of Lecture Notes in Artificial Intelligence., pages 292–

297. Springer, 2006.

[47] D. Tsarkov and I. Palmisano. Chainsaw: a metareasoner for large ontologies.

In OWL Reasoner Evaluation Workshop (ORE 2012) collocated with IJCAR

2012 Conference, Manchester, UK., pages 19–27, 2012.

[48] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. Bal. WebPIE: a

webscale parallel inference engine using mapreduce. In J. of Web Semantics,

2011.

[49] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen. Scalable distributed

reasoning using MapReduce. In International Semantic Web Conference,

pages 634–649, 2009.

124



[50] Ch. Del Vescovo, B. Parsia, U. Sattler, and Th. Schneider. The modular

structure of an ontology: Atomic decomposition and module count. Univer-

sity of Manchester, UK and Universität Bremen, Germany.

[51] J. Weaver and J.A. Hendler. Parallel materialization of the finite RDFS clo-

sure for hundreds of millions of triples. In Proc. 8th Int. Semantic Web Conf.,

pages 87–101, 2009.

125



Appendix A

Complete Pseudo code for Parallel

TBox Classification

In this chapter, in order to have the convenience of reading all the pseudo codes,

the corresponding pseudo codes for each of the prototypes explained in chapter 5

and evaluated in chapter 6, will be provided.

A.1 First Generation

Algorithm 21 parallel tbox classification(concept list,shuffle flag)
topological order list← topological order(concept list)
if shuffle flag then

topological order list← random shuffle(topological order list)
repeat

assign each idle thread ti a partition pi from topological order list
run idle thread ti with insert partition(pi)

until all concepts in topological order list are inserted
compute missing subsumptions and ratio
print statistics
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Algorithm 22 insert partition(partition)
for all new ∈ partition do

parents← top search(new,>)
lock(new)
set predecessors of new to parents
for all pred predecessor of new do

lock(pred)
add new to successors of pred
unlock(pred)

unlock(new)
children← bottom search(new,⊥)
lock(new)
set successors of new to children
for all succ successor of new do

lock(succ)
add new to predecessors of succ
unlock(succ)

unlock(new)

Algorithm 23 top search(new,current)
mark(current,‘visited’)
pos-succ← ∅
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result← result ∪ top search(new,y)

return result
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Algorithm 24 enhanced top subs(current,new)
if current marked as ‘positive’ then

return true
else if current marked as ‘negative’ then

return false
else if for all z ∈ predecessors(current)

always enhanced top subs(z,new)
and subsumes(current,new) then

mark(current,‘positive’)
return true

else
mark(current,‘negative’)
return false

Algorithm 25 subsumes(current,new)
Checks whether subsumer subsumes subsumee using computed told subsumer
information provided by Racer.
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A.2 Second Generation

Algorithm 26 parallel tbox classification(concept list)
topological-order-list← topological order(concept list)
repeat

wait until an idle thread ti becomes available
select a partition pi from topological-order-list
run thread ti with insert partition(pi, ti)

until all concepts in topological-order-list are inserted
compute ratio and overhead
print statistics
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Algorithm 27 insert partition(partition,id)

lock(inserted concepts(id))
inserted concepts(id)← ∅
unlock(inserted concepts(id))
for all new ∈ partition do

parents← top search(new,>)
while ¬ consistent in top search(parents,new) do

parents← top search(new,>)
lock(new)
predecessors(new)← parents
unlock(new)
for all pred ∈ parents do

lock(pred)
successors(pred)← successors(pred) ∪ {new}
unlock(pred)

children← bottom search(new,⊥)
while ¬ consistent in bottom search(children,new) do

children← bottom search(new,⊥)
lock(new)
successors(new)← children
unlock(new)
for all succ ∈ children do

lock(succ)
predecessors(succ)← predecessors(succ) ∪ {new}
unlock(succ)

check ← check if concept inserted(new , inserted concepts(id))
if check 6= 0 then

if check = 1 ∨ check = 3 then
new predecessors← top search(new,>)
lock(new)
predecessors(new)← new predecessors
unlock(new)

if check = 2 ∨ check = 3 then
new successors← bottom search(new,⊥)
lock(new)
successors(new)← new successors
unlock(new)

for all busy threads ti 6= id do
lock(inserted concepts(ti))
inserted concepts(ti)← inserted concepts(ti) ∪ {new}
unlock(inserted concepts(ti))
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Algorithm 28 top search(new,current)
mark(current,‘visited’)
pos-succ← ∅
captured successors(new)(current)← successors(current)
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result← result ∪ top search(new,y)

return result

Algorithm 29 consistent in top search(parents,new)
for all pred ∈ parents do

if successors(pred) 6= captured successors(new)(pred) then
diff← successors(pred) \ captured successors(new)(pred)
for all child ∈ diff do

if subsumption possible(child,new) then
return false

return true
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Algorithm 30 check if concept inserted(new,inserted concepts)
The return value indicates whether and what type of re-run needs to be done:
0 : No re-run in needed
1 : Re-run TopSearch because a possible parent could have been overlooked
2 : Re-run BottomSearch because a possible child could have been overlooked
3 : Re-run TopSearch and BottomSearch because a possible parent and child
could have been overlooked
if inserted concepts = ∅ then

return 0
else

for all concept ∈ inserted concepts do
if subsumption possible(concept,new) then

if subsumption possible(new,concept) then
return 3

else
return 1

else if subsumption possible(new,concept) then
if subsumption possible(concept,new) then

return 3
else

return 2
return 0
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A.3 Third Generation

Algorithm 31 informed partitioning(topological sort list)
atoms← get-atomic-decomposition-atoms(owlfile)
partition-counter← 0
ignore-list← 0
for all list ∈ topological sort list do

for all c ∈ list do
if ignore-list not contain c then

ad-partition← get-ad-partition-no(c, atoms)
set informed-partitions(partition-counter) to ad-partition
add ad-partition to ignore-list
increment partition-counter
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Algorithm 32 insert partition(partition,id)
for all new ∈ partition do

rerun← 0
finish rerun← false
parents← top search(new,>)
while ¬ consistent in top search(parents,new) do

parents← top search(new,>)
predecessors(new)← parents
children← bottom search(new,⊥)
while ¬ consistent in bottom search(children,new) do

children← bottom search(new,⊥)
successors(new)← children
for all busy threads ti 6= id do

located concepts(ti)← located concepts(ti) ∪ {new}
check ← check if concept has interaction(new , located concepts(id))
while (check 6= 0) and ¬finish rerun do

if rerun < 3 then
if check = 1 then

new predecessors← top search(new,>)
rerun← rerun + 1
predecessors(new)← new predecessors

else
if check = 2 then

new successors← bottom search(new,⊥)
rerun← rerun + 1
successors(new)← new successors

check ←
check if concept has interaction(new , located concepts(id))

else
finish rerun← true
for all busy threads ti 6= id do

located concepts(ti)← located concepts(ti) \ {new}
if ¬finish rerun then

insert concept in tbox(new, predecessors(new), successors(new))
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Algorithm 33 consistent in top search(parents,new)
for all pred ∈ parents do

if successors(pred) 6= captured successors(new)(pred) then
diff← successors(pred) \ captured successors(new)(pred)
for all child ∈ diff do

if found in ancestors(child,new) then
return false

return true

Algorithm 34 check if concept has interaction(new,located concepts)
The return value indicates whether and what type of re-run needs to be done:
0 : No re-run in needed
1 : Re-run TopSearch because a possible parent could have been overlooked
2 : Re-run BottomSearch because a possible child could have been overlooked
if located concepts = ∅ then

return 0
else

for all concept ∈ located concepts do
if interaction possible(new,concept) then

if found in ancestors(new,concept) then
return 2

else
return 1

else if interaction possible(concept,new) then
if found in ancestors(new,concept) then

return 2
else

return 1
return 0

Algorithm 35 insert concept in tbox(new,predecessors,successors)
for all pred ∈ predecessors do

successors(pred)← successors(pred) ∪ {new}
for all succ ∈ successors do

predecessors(succ)← predecessors(succ) ∪ {new}

Algorithm 36 interaction possible(new,concept)
Uses pseudo model merging information [23], pre-computed by Racer, to
decide whether a subsumption is possible between new and concept.
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Algorithm 37 found in ancestors(new,concept)
Checks if concept is an ancestor of new.
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