
A Hybrid Approach to Fault Diagnosis in Teams

of Autonomous Systems

Hanieh Agharazi

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

May 2013

c© Hanieh Agharazi, 2013

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Hanieh Agharazi

Entitled: “A Hybrid Approach to Fault Diagnosis in Teams of Autonomous
 Systems”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 __ Chair
 Dr. R. Raut

 __ Examiner, External
 Dr. A. Dolatabadi (M.I.E.) To the Program

 __ Examiner
 Dr. A. Aghdam

 __ Supervisor
 Dr. S. Hashtrudi Zad

Approved by: ___
 Dr. W. E. Lynch, Chair
 Department of Electrical and Computer Engineering

____________20_____ ___________________________________
 Dr. Robin A. L. Drew
 Dean, Faculty of Engineering and
 Computer Science

ABSTRACT

A Hybrid Approach to Fault Diagnosis in Teams of Autonomous Systems

Hanieh Agharazi, M.A.Sc.

Concordia Unviersity, 2013

Discrete event systems (DES) are dynamical systems equipped with a discrete

state set and an event driven state transition structure. An event in a DES occurs

instantaneously causing transition from one state to another. DES models have

emerged to provide a formal treatment of many man-made systems such as auto-

mated manufacturing systems, computer systems, communication networks and air

traffic control systems.

In this thesis, we study fault diagnosis in teams of autonomous systems. In

particular, one consider a team of two spacecraft in deep space. The spacecraft coop-

erate with each other in leader-follower formation flying. Formation flying demon-

strates the capability of spacecraft to react to each other in order to maintain a

desired relative distance autonomously without human intervention. In the system

considered here, instruments (actuators and sensors) may fail and cause error. Be-

cause of the communication delays in deep space, each entity should be able to

diagnose the failure and decide how to reconfigure itself.

Basically, fault diagnosis in such systems requires information exchange be-

tween the autonomous elements of the team. The exchanged information for exam-

ple may include position and velocity data. Our goal in the thesis is to propose a

method for fault diagnosis with reduced information exchange. One solution is to

transmit only discrete event information between autonomous systems. Transmis-

sion of discrete event data occurs less frequently than the transmission of continuous

streams of data. The discrete event data may include high level supervisory com-

mands issued every now and then and discretized values of continuous data that

iii

are transmitted only when a continuous-variable data (such as angle or accelera-

tion) crosses the threshold. The fault diagnosis scheme proposed in this thesis is an

adaptation of hybrid fault diagnosis for distributed autonomous systems.

This system is simulated using MATLAB/SIMULINK Software and DECK

Toolbox. We examined different maneuvers for spacecraft and investigated the effect

of faults on the overall system and the performance of our designed fault diagnoser.

iv

To my parents and my husband Hamid

for their constant support and unconditional love

v

ACKNOWLEDGEMENTS

This work would not be possible without the help and encouragement I received

from several people. First and foremost, I would like to express my most sincere

gratitude to my supervisor, Dr. Shahin Hashtrudi Zad for his continuous patience,

support and guidance in the development of this thesis.

I would also like to thank all my friends who have helped, supported and made

my time enjoyable in Concordia University. In particular, I would like to thank Dr.

Rasul Mohammadi for providing me with invaluable discussion and sharing the

wealth of knowledge and experience.

Most of all, I would like to thank my dear family whom have always been

present through out my life in spite of the distance. At last, but definitely not least,

I would like to thank my amazing husband, Hamid, for his love, support, patience

and encouragement throughout my studies.

vi

TABLE OF CONTENTS

List of Figures . ix

List of Tables . xii

List of Abbreviations . xiii

1 Introduction 1

1.1 Literature Review . 2

1.1.1 Formation Flying . 2

1.1.2 Fault Diagnosis . 5

1.2 Thesis Contributions . 10

1.3 Thesis Outline . 11

2 Fault Diagnosis in Hybrid Systems 12

2.1 Discrete Event Systems . 13

2.2 Hybrid System Modeling . 15

2.3 Diagnosis of Hybrid Automata . 18

2.4 Summary . 24

3 Hybrid Fault Diagnosis in Leader-Follower with One-Dimensional

Translational Motion 27

3.1 A Decentralized Hybrid Fault Diagnosis Design System 27

3.2 Leader-Follower Formation Flying Spacecraft 29

3.3 System Model . 33

3.3.1 DES Model of System Components 33

3.3.2 Interactions Among the Components 38

3.3.3 Follower Supervisory Controller 41

3.3.4 Hybrid Modeling . 43

3.4 Fault Diagnoser . 47

vii

3.4.1 Residual Generator Design . 47

3.5 Simulation Results . 49

3.5.1 Normal Mode of Operation . 50

3.5.2 Faulty Mode of Operation . 53

3.5.3 Remarks . 62

3.6 Summary . 62

4 Hybrid Fault Diagnosis in Leader-Follower with One-Dimensional

Translational Motion and Rotation Around a Fixed Axis 64

4.1 Leader-Follower Formation Flying Spacecraft 65

4.2 System Model . 67

4.2.1 DES Model of System Components 68

4.2.2 Interactions Among the Components 75

4.2.3 Supervisory Control . 80

4.2.4 Hybrid Model . 83

4.3 Fault Diagnoser . 83

4.3.1 Residual Generator Design . 84

4.4 Simulation Results . 85

4.4.1 Normal Mode of Operation . 85

4.4.2 Faulty Mode of Operation . 85

4.4.3 Remarks . 87

4.5 Summary . 92

5 Conclusion 94

5.1 Summary . 94

5.2 Future Work . 95

References 97

viii

List of Figures

2.1 A simple FSMA. 14

2.2 Synchronous Product Example: (a) two automata G1 and G2, (b)

sync(G1,G2) . 15

2.3 A simple spacecraft with two thrusters. 16

2.4 A hybrid automaton modeling a spacecraft with two faults. 17

2.5 The schematic of the hybrid diagnosis framework 19

2.6 System dynamics and Isolator in state q 20

2.7 The FSA modeling the isolators: (a) Is1, (b) Is2 21

2.8 Habs - The hybrid automaton model for the spacecraft example. . . . 22

2.9 Ĥabs - The modified DES abstraction for the spacecraft example. . . . 23

2.10 ASMIs - The FSA enforcing the assumption. 23

2.11 EDESA - EDESA Model of the spacecraft. 25

2.12 Part of the diagnoser constructed for the spacecraft example based

on EDESA model (Fig. 2.11) . 26

3.1 Proposed Method Scheme - A Decentralized Hybrid Diagnosis with

Discrete Information Exchange . 28

3.2 Two spacecraft in Leader-Follower formation on a line. 30

3.3 The follower and local diagnoser . 31

3.4 The Follower spacecraft . 32

3.5 Leader and Follower Formation. 33

3.6 FT - Follower Thrusters . 34

3.7 LT - Leader Thrusters . 35

3.8 RDS - Relative Distance Sensor . 35

3.9 RA - Relative Acceleration . 36

ix

3.10 ACC - Follower Accelerometer . 37

3.11 FSCN - Single Failure Scenarios . 38

3.12 Selfloops for Interactions among Follower Thrusters and Accelerometer 40

3.13 FollowerCommands - Follower Commands 42

3.14 FollowerSequences - Follower Sequences 43

3.15 Position of Leader and Follower spacecraft in: (a) Normal Mode of

Operation, (b) Faulty Mode of Operation 51

3.16 Normal Operation Mode . 52

3.17 Follower Accelerometer Output for: (a) 0 ≤ t ≤ 5000, (b) 0 ≤ t ≤ 35000 54

3.18 System Performance with Accelerometer’s Positive Bias Failure . . . 55

3.19 System Performance with Accelerometer’s Negative Bias Failure . . . 56

3.20 System Performance with Thruster T1 becomes stuck-on 57

3.21 System Performance with all Thrusters become stuck-off 58

3.22 System Performance with all Thrusters become stuck-off 59

3.23 System Performance with all Thrusters become stuck-off 60

3.24 Accelerometer Output Mean Signal: (a) Thruster T1 stuck-on, (b) All

Thrusters stuck-off . 61

4.1 Leader-Follower Spacecraft . 65

4.2 The Follower Spacecraft . 68

4.3 FT - Follower Thrusters . 69

4.4 LT - Leader Thrusters . 70

4.5 RDS - Relative Distance Sensor . 71

4.6 RA - Relative Acceleration . 71

4.7 ACC - Accelerometer . 72

4.8 ANGACC - Discretized Angular Acceleration 73

x

4.9 Discrete Levels of Angular Position with 0 : −δ ≤ θ < δ (a) P1 :

δ ≤ θ < 90, (b) P2 : 90 ≤ θ < 180,(c) P3 : 180 ≤ θ < 270, (d)

P4 : 270 ≤ θ < 360− δ . 74

4.10 TETA - Angular Position . 75

4.11 FSCN - Single Failure Scenario . 76

4.12 INTFGY : Interactions among Follower Thrusters and Angular Ac-

celeration . 79

4.13 FollowerCommands - Follower Commands for: (a) Step 1, (b) Step

2,(c) Step 3 . 81

4.14 FollowerSequences - Follower Sequences for: (a) Step 1, (b) Step 2,(c)

Step 3 . 82

4.15 Normal Operation Mode . 86

4.16 Accelerometer Failure: (a) Failure while Rotating, (b) Failure While

Moving . 88

4.17 Thruster T1 Failure: (a) Failure while Rotating, (b) Failure While

Moving . 89

4.18 All Thrusters Failure: (a) Failure while Rotating, (b) Failure While

Moving . 90

4.19 Gyroscope Failure . 91

xi

List of Tables

3.1 The Relative Acceleration with respect to the Follower and Leader

Thrusters . 41

4.1 Interactions among Follower Thrusters and Accelerometer 77

4.2 Mapping in Normal Condition . 78

4.3 Mapping in Faulty Condition . 80

xii

List of Abbreviations

DES Discrete Event System

EDESA Extended Discrete Event System Abstraction

FSA Finite State Automaton

FD Fault Detection

FDI Fault Detection and Isolation

DECK Discrete Event Control Kit

POE Planetary Orbital Environments

DS Deep Space

xiii

Chapter 1

Introduction

Fault Diagnosis plays an important role in protecting life and property, and increas-

ing reliability and productivity [28]. Therefore, it is of great importance in machinery

and management systems such as transportation systems (such as aerospace, auto-

mobile), industrial production facilities (i.e. power plant, water treatment plant),

household appliances (washer, dryer). In these systems, there are extensive amount

of sensors with different types of signals and large number of operational modes.

This makes them computationally complex systems and also makes fault diagnosis

a really challenging problem. The main issue is the to develop systematic fault de-

tection and isolation techniques to increase the accuracy and reliability along with

reducing the cost of maintenance and revisions. As a result, a considerable amount

of research has been conducted on fault diagnosis (e.g. [29], [30], [31], [33], [34]).

The behavior of many complex systems, such as spacecraft, can be described

in terms of continuous and discrete modes. As a result, they require modeling tools

that take into account both of these charactristics and their interactions. Hybrid

system models have been developed extensively for modeling such complex systems.

In hybrid systems, the dynamics in every mode evolve continuously until a

transition takes the system to a different mode of operation. This transition may

1

take place autonomously as a result of the continuous evolution of system variables

or because of a discrete event such as a supervisory command. These systems have

been used extensively by researchers in different engineering fields, as a modeling

tool, for developing algorithms in many domains such as control, data management

and fault diagnosis (see, e.g. [35], [36], [37], [38], [39]).

In this thesis, we consider fault diagnosis in teams of autonomous systems

and in particular a team of two spacecraft in formation flying. We would like the

spacecraft to maintain a desired formation as they are deployed in deep space.

The components in the spacecraft may fail. In this distributed system, in order

to increase the autonomy, each spacecraft should be able to do the diagnosis itself

and decide its next move based on the controller commands and diagnosis results.

For the purpose of fault diagnosis, a huge amount of information may have to be

exchanged between the members of the formation flying. In this work, we propose

a new method to decrease the volume of information exchange by transmitting only

the discrete event information to the other members of the team. For example, the

discretized acceleration and orientation data are to be sent to the other spacecraft

to be used for fault diagnosis. This will reduce the amount of exchanged data since

we transmit acceleration and orientation data when they cross certain thresholds.

In the following, we briefly review the research conducted in the literature as

related to the work in this thesis.

1.1 Literature Review

1.1.1 Formation Flying

Formation flying is used to describe the behavior of a set of more than one space-

craft that collaboratively work together as an alternative to a single, larger and

2

more expensive spacecraft. Cooperative smaller set of spacecraft has many bene-

fits over a single one including simpler designs, higher redundancy due to cheaper

replacements and also improved reliability, reduced cost and increased mission per-

formance. However, these benefits come with a new set of challenges such as relative

navigation, control and fault diagnosis [9]. The concept of formation flying has been

studied extensively in the literature with applications to the coordination of multiple

robots [10], [11], unmanned aerial vehicles [12], [13] and satellites [8].

Formation flying can be divided into two main categories based on the am-

bient dynamic environment: Deep Space (DS) and Planetary Orbital Envi-

ronments (POE). In deep space the formation is in heliocentric orbit rather than

earth orbit. In this case, the formation flying control focus on the tracking of space-

craft relative position and attitude [16]. On the other hand, in POE, the spacecraft

are around the earth orbit and thus they are subject to significant environmental

disturbances. In our work, we consider formation flying in deep space and assume

that the earth gravity is negligible.

The control architecture plays a key role in the performance of the formation.

According to [17] in spacecraft formation flying at least two of them use an active

control scheme to maintain the relative positions. An alternative definition is given

in [8] where formation flying is defined as a set of more than one spacecraft in which

any of spacecraft dynamic states are coupled through a common control law. This

definition is completed with two conditions: at least one spacecraft must (I) track

a desired state profile relation to another member, and (II) the associated control

law should, at the minimum, depend upon the state of this other member. This

common control law can be understood as the formation flying control.

The formation flying control architectures have been classified in the litera-

ture into five main categories based on the topology of communication between the

spacecraft controllers as follows [8].

3

• Multi-Input/Multi-Output: Controllers are designed based on the dy-

namic model of the entire formation. Therefore, the formation is considered

as a multi-input, multi-output plant.

• Leader-Follower: In this architecture one spacecraft, referred to as the

leader, moves based on its own absolute position and the others, known as the

followers, move based on their relative position with respect to the leader. This

architecture is also known as Chief-Deputy, Master-Slave or Target-Chase.

• Virtual Structure: This architecture considers all spacecrafts as rigid bodies

embedded in a large virtual body. The whole motion of the system takes into

account each individual spacecraft’s motion in order to determine the whole

rigid body motions.

• Behavioral Architecture: In this method , there is no globally accepted def-

inition of a primitive behavior according to [18]. Instead, each spacecraft is

designed to have its own objective and behavior. The outputs of multiple con-

trollers are then combined together to form a control signal with consideration

of the behavioral difference among the spacecraft.

• Cyclic: The formation is similar to the Leader-Follower architecture in the

sense that each spacecraft has its individual controller but it is different in

the sense that they are not in a hierarchical arrangement. The motion of each

spacecraft is controlled with respect to its neighbors, not with respect to the

leader.

Leader-Follower is the most studied formation flying architecture among the meth-

ods mentioned above. In our work, we consider a group of spacecrafts in formation

flying with this control architecture.

In practice, it is desired to minimize the amount of communication among the

spacecraft, as the data transmission and communication delay are grave issues in

4

deep space applications. Therefore, it is better to have some form of decentralization

in control structure which has a lower communication requirement.

On the other hand, one of the main issues in all the mentioned architectures

is the autonomy and robustness to faults in the formation. The system needs to

first detect and isolate the presence and location of any faults, and then recover by

reconfiguring the controllers.

One of the common methods of Fault Detection and Isolation (FDI) is the

design of detection filters or using observers such as ’Luenberger Observers ’ in a

deterministic setting whose residuals change when a fault occurs in the system [19],

[20], [21]. In the next section an overview of fault diagnosis and the various methods

of FDI are presented.

1.1.2 Fault Diagnosis

The term fault refers to a non permitted derivation of the behavior of components

of the system. A valve becoming stuck-closed, a bias in the sensor readings or a

loose connection in an electric circuit are examples of faults. Faults can be either

permanent or non-permanent. After the occurrence of permanent faults, the

system remains in faulty condition indefinitely while for non-permanent faults, the

system may recover and return to the normal condition. A broken valve can be an

example of a permanent fault and a loose wire in an electrical system may cause a

non-permanent fault.

With the possibility of failure occurrence, Fault Diagnosis (FD) is used

to improve the reliability of a system. A typical fault diagnosis system detects the

faults and isolate the source of failure before it causes a disaster in the system. Fault

diagnosis techniques are classified into model-free and model-based methods.

Expert systems and hardware redundancy are two commonly used tech-

niques in model-free methods in which it is difficult to obtain a model for the plant.

5

In expert systems, experience and knowledge of experts are stored as rules and

then an inference engine is used for fault diagnosis. Gathering the required ex-

pertise and information for building an expert system is usually difficult and time-

consuming [23], [24]. As a result, there will be no guarantee for the completeness

of the resulting diagnostic rules. However, in cases where models are not easy to

develop expert systems can be very effective. In hardware redundancy, however,

multiple sensors are used to measure the same variable. Their outputs are then

compared and the final value for that variable is determined by a voter. In case of

failure, the faulty sensor can be detected by comparing its value with other sensor

values. Although, this method is simple and fairly reliable, it is expensive. Moreover,

it is not suitable for detecting common-cause sensor failures.

In addition to the above model-free methods, several model-based techniques

for fault diagnosis have also been proposed in the literature. In a model-based

method, the observed behavior of the system is compared with the expected behavior

from system model. The condition of the system, normal or faulty, is then concluded

from this comparison. A large class of model-based techniques rely on parameter

estimations and state estimations for continuous variable systems. In these methods,

the system is modeled using differential and difference equations [25], [26] and [27].

In the following, we briefly review the model-based techniques which are suitable

for diagnosing failures in Discrete Event Systems (DES).

Fault Diagnosis in Discrete Event Systems

A discrete event system is a dynamic system with discrete input and output, whose

behavior can be described in terms of discrete state transitions. Fault diagnosis in

these systems was prompted by some works in Automatic Control Systems [40], [41],

[42] and Artificial Intelligence [43]. In [40], Lin proposed a discrete event approach

for fault diagnosis assuming that each component has some normal and faulty states,

6

and uses the output at each state for fault diagnosis. In this state-based approach,

a sequence of control commands are issued and the current condition of the system,

normal or faulty, is determined by observing the output of the system. The system

is said to be online-diagnosable if there exists a control sequence that diagnoses the

system. This method is an active state-based diagnosis approach as a sequence of

control commands are generated as the input to the system.

In [31], Hashtrudi Zad et al. proposed a passive on-line method for fault diag-

nosis in DES systems by constructing a fault diagnoser using a state-based approach.

The objective is to use the output sequence to determine the current condition of

the system; normal or faulty. This diagnoser can detect and isolate the failure by

assuming that a failure is diagnosable if it occurs before the diagnoser initialization.

To reduce the number of diagnoser states and the computational complexity of the

diagnoser design, a model reduction method has also been introduced.

In contrast to the above-mentioned methods, there is an event-based ap-

proach proposed by Sampath et al. in [42], [44]. In this method, the diagnoser

does not generate any control commands as the inputs to the system and only relies

on event observations. The faults are assumed to be unobservable. The diagnoser

then acts like a sensor to detect these unobservable faults.

Fault Diagnosis in Continuous-Variable Systems

Models with continuous variables are also studied in literature (see, e.g. [22], [46],

[45], [47], [48], [5]). Most of these approaches rely on Analytical Redundancy where

the expected outputs of the system are obtained analytically based on the mathe-

matical model of the system and then compared with sensors measurements. The

resulting difference is called the Residual. Probing the value of residuals, one can

determine the presence of a fault. The residual is zero, or close to zero, in the

absence of faults while it will be nonzero if a fault happens [49].

7

Parity Space and Fault Detection Filters are two approaches that are used

frequently. Parity approach is based on the consistency test of parity equations and

are built using the mathematical model of the system and the sensor measurements

(see, e.g. [22], [50], [51], [52], [46], [53], [54], [55]). In [50], Chow and Willsky derived

the parity equations from the state space model of the system. One can detect the

fault from the inconsistency of parity equations. In FD filter approach, special filters

are constructed for fault detection and isolation based on both linear (see [5], [56])

and nonlinear system models [6]. In order to decouple the faults, the effects of

different faults are mapped into different directions/planes and stored in the residual

vector space. Unique fault isolation can then be obtained independent of their

magnitude or the modes (time functions) [22].

Fault Diagnosis in Hybrid Systems

The term hybrid refers to a mixture of two fundamentally different forms of dy-

namics, discrete-event and continuous variable (e.g. differential equation). Some

conventional approaches for fault diagnosis in hybrid systems are based on discrete

abstraction of the continuous dynamics. For instance, in [60], the continuous state

of the system is quantized and discrete methods are applied for fault diagnosis.

In [32], Hashtrudi Zad et al. extended their diagnosis method for DES in [31]

to hybrid automata. They examine the question of whether or not a high-level DES

model contains enough information about the low-level hybrid model by introducing

the notion of consistency and defining a set of sufficient conditions for that. These

models are called consistent if the analysis and design based on the high-level and

low-level models yield to the same result. An output, from a set of symbols, is

assigned for each state of the hybrid automata and are assumed to be constant at

any discrete mode.

In [57], the hybrid fault diagnosis is performed by hybrid structure hypothesis

8

testing. In this case, the occurrence of a fault can be sensed by measuring system

variables at the time the faults occur and signaling this occurrence by observable

events. Two diagnosers are designed for continuous and DES levels of the system.

If an event is observed, the DES level diagnoser generates a discrete state estimate

of the system. The continuous level diagnoser will then perform hypothesis tests,

for example residual tests, of the discrete state estimate and generates sub-diagnosis

statements regarding the faults at the continuous dynamics. The final diagnosis

statement is then produced by a decision logic unit. In [57], it is implicitly assumed

that discrete events occurring in the system are observable which cannot be held in

many control applications.

As an example of a two level hybrid fault diagnosis, consider the system in [58].

The authors developed a hybrid fault diagnosis method for a team of UAVs using

the cooperative characteristics of a team of agents to detect and isolate the faults.

Their system consist of two fault diagnosis units: a low-level, agent level, which uses

the classical diagnosis techniques and a high-level, team level, which is formulated

in the DES framework. First, the state space equations for aircrafts are linearized.

Linear observers are then formulated and residuals are generated such that when

there are no faults, the residuals generated by the observer will approach to zero

asymptotically. In their method, they have used semi-decentralized observers for

a more accurate fault detection. However, depending on the team structure, when

the agents’ locations change, some of these semi-decentralized observers might no

longer perform better than fully decentralized ones. Because of this shortcoming,

as a remedy, a high-level DES supervisor uses different sets of semi-decentralized

observers to detect the faults according to the existing team structure.

Other approaches for hybrid fault diagnosis are, but not limited to, abstracting

the systems with a Timed Petri-Net Model in [38], abstractions of the continuous

dynamics by Temporal Causal Graphs in ([59], [61]) and fault diagnosis based on

9

Sequential Monte Carlo (SMC) in [39].

In this work, we focus on the problem of fault detection and isolation in hybrid

distributed systems. In this thesis, we intend to develop a framework for fault

diagnosis of these systems with minimum communication load between their entities.

Reduction of the communication load has been studied in literature. For

instance, the authors in [14] propose an optimal decentralized fault detection scheme

for a class of discrete time large scale systems with limited network communications

among subsystems by taking the advantage of network communications. Due to the

limited bandwidth of the network, the communications should be limited and usually

only one subsystem can access the network at the same time. As another example,

in [15], the communication load between the entities is lowered by restricting the

communication to only local information in continuous format to improve the time

and cost. In our work, we would like to do the fault diagnosis with minimum

information exchange while using both local and global information.

1.2 Thesis Contributions

As mentioned before, the problem of fault diagnosis in a team of autonomous systems

is studied with the objective of reducing the communication among the members

of the team. A hybrid approach is proposed where local continuous information

along with discrete event information transmitted from other members of the team

are used for fault diagnosis. Transmitting discrete information requires less com-

munication load than sending continuous variable signals. This has the advantage

of reducing the rate of information exchange. The exchanged information could in-

clude supervisory commands and discretized sensor readings (i.e. reporting sensor

reading when it crosses a threshold).

One of the applications of this method could be in ‘Safe Mode’ when minimal

10

communication and energy consumption is desirable. Another application is in

systems with restricted communication because of the environmental conditions. In

this thesis, this method is applied to a group of two spacecraft in a Leader-Follower

Formation Flying format with possible failures in the sensors and actuators. To our

knowledge, this approach to reduce the communications has not been explored in

the literature.

1.3 Thesis Outline

In Chapter 2 we describe the method for Hybrid Fault Diagnosis with a simple

example. We start this chapter by a brief introduction on Discrete Event Systems

and Hybrid Modeling. After that, we describe the method of hybrid fault diagnosis

and build a hybrid diagnoser by integrating the continuous-variable and discrete-

event information.

In Chapter 3 we propose our hybrid fault diagnosis framework. Then, we

introduce our system of Formation Flying Spacecraft with translational motion in

one axis and describe the system components and review the dynamics of the system.

The DES models of the system are built and the proposed hybrid fault diagnoser

is made. We test the performance of the proposed method by applying different

maneuvers to the system.

In Chapter 4 we consider the case when the spacecraft in the previous chapter

also have rotational movement around a fixed axis. The new system is modeled

and the proposed hybrid diagnosis method is applied to this system. Finally, in

Chapter 5, we present a summary of our results and discuss directions for future

research.

11

Chapter 2

Fault Diagnosis in Hybrid Systems

In this chapter, we apply the fault diagnosis method in hybrid systems in [7]. In

this approach diagnosis is based on both continuous and discrete information. Di-

agnosis purely based on discrete model cannot isolate the failures that result in

small (continuous) changes in the system output. So they have limitations in many

complex systems [2]. On the other hand, a purely continuous approach may lead

to very complex nonlinear relationships that are difficult to analyze. Moreover, due

to the limitations on sensor implementation, some continuous variables may not be

measurable and therefore, fault diagnosis based on purely continuous dynamics may

not be always possible or necessary. In a hybrid approach, the information available

at the DES level are integrated with the information coming from the continuous

dynamics through the continuous sensors.

In this chapter, we explain the method of hybrid fault diagnosis in [7] using

a running example. We first begin this chapter by a brief introduction to Discrete

Event Systems (DES) in Section 2.1. We will then present a hybrid system using an

example in Section 2.2 and perform the hybrid fault diagnosis on it in the following

section. We will conclude this chapter by presenting a summary.

12

2.1 Discrete Event Systems

Discrete event systems (DES) are dynamical systems equipped with a discrete state

set and an event driven state transition structure. An event in a DES occurs instan-

taneously causing transition from one state to another. DES models have emerged

to provide a formal treatment of many man-made systems such as automated man-

ufacturing systems, computer systems, communication networks, air traffic control

systems, integrated transport systems and healthcare systems.

There are several approaches to model a DES such as Finite State Automata

(FSA), Petri Nets, Queuing Networks and Pseudo Codes. Automata theory, [3],

provides one of the most comprehensive sets of mathematical tools for studying

discrete event systems. In this dissertation, we use Moore finite state automata to

model DES. First we review some basic definitions and operations on automata.

Languages and Finite State Automata

The dynamics of a discrete event system can be represented by sequences of events.

A sequence is also called a string or a word. The empty string, denoted as ε , is a

string without any events. If we consider the set of events as an alphabet, then a

sequence will be a language with words formed from the alphabet. Moreover, the

behavior of a discrete event system can be interpreted as the language that it speaks.

Definition 1. A language is any set of finite-length strings, including the empty

sequence, from the events in alphabet Σ.

Given an alphabet Σ, we denote the language that includes the empty string

and any finite-length string built from alphabet Σ as Σ∗. A language is a set of

sequences; therefore the basic set operations of two languages L1 and L2 such as

intersection (L1 ∩ L2), union (L1∩L2), complement (Lco
1) and relative complement

(L1 − L2) apply to them.

13

A B

C

a

a

b c

d00
d11

d22

Figure 2.1: A simple FSMA.

Languages can be used as a representation for DES behavior. However, it is

difficult to analyze their behavior based on languages. In this case automata are a

better choice.

Definition 2. A finite-state Moore automaton (FSMA) G is a six-tuple:

G = (Q,Σ, T,D, λ, q0) (2.1)

where Q is the state set; q0 is the initial state; Σ is the non-empty event set;

T : Q × Σ × Q is the set of transitions; D is the set of discrete outputs and λ : Q

→ D is the output map.

Example 1. A simple FSMA is shown in figure 2.1. Here, Q = {A,B,C}, Σ

= {a, b, c}, q0 = A, T = {(A, a,B), (B, b, C), (C, a,B), (C, c, A)}, D= {d0, d1.d2},
λ(A) = d0, λ(B) = d1 and λ(C) = d2.

Synchronous Product

The synchronous product of two automata G1 and G2 denoted by G1||G2 or

sync(G1,G2) models the joint operation of automata ([62], [63]). This is a commu-

tative and associative operation. The synchronous product of three automata G1,

14

x1 x2

x3

y1 y2

a

a

b

b

b

b a b

(a)

 (x3,y1) (x1,y1)

 (x3,y2)

 (x2,y1)

 (x1,y2)
 (x2,y2)

a

b b

a

b

b b b

(b)

Figure 2.2: Synchronous Product Example: (a) two automata G1 and G2, (b)
sync(G1,G2)

G2 and G3 is defined as:

sync(G1, G2, G3) = sync(G1, sync(G2, G3)) = sync(sync(G1, G2), G3) (2.2)

The synchronous product of more that three automata can be defined similarly.

Figure 2.2 illustrates the synchronous product of two automata G1 and G2.

2.2 Hybrid System Modeling

In this section, we explain the definition of Hybrid Automata and then describe

a hybrid system with some faults. A hybrid system is a system which is described

15

Spacecraft T1 T2

Figure 2.3: A simple spacecraft with two thrusters.

by continuous and discrete dynamics. This system can be modeled as a hybrid

automata along with its low-level continuous dynamics and high-level DES model.

The following hybrid automata definition is a modified form of the definition in [4]

as explained in [7].

Definition 3. A Hybrid Automata is a 14-tuple of the form

H = (Q,X,U,Y, FT, Init, S,Σ, T, G, ρ,D, λ, q0) (2.3)

where Q is the set of finite discrete states; X⊆Rn, U⊆Rp and Y⊆Rr are the set of

vector spaces of continuous state, control input and output, respectively; FT is the

set of m fault types f 1,. . .,fm with f i(t)∈R for 1≤i≤m; Init⊆X is the set of initial

continuous states; S={Sq|q∈Q} is the set of dynamic models defining the continuous

dynamics of the system; Σ is a set of symbols representing the discrete events labeling

the transitions among discrete states; T⊆Q×Σ×Q is the set of discrete transitions;

G:T×X×U→{True;False} is the set of guard conditions; ρ:T×X→X is a reset

map; D is the set of discrete output symbols; λ:Q→D is the discrete output map

and q0 is the initial discrete state.

Figure 2.3 shows a spacecraft with two thrusters. These thrusters could be on

or off moving the spacecraft to the right or left direction on x-axis. They may fail,

thruster T1 may become stuck-on and T2 may become stuck-off.

The hybrid automaton for this spacecraft is depicted in Figure 2.4. There

are four discrete states for the normal behavior of the thrusters and four discrete

16

on, on’

on’

on’, off

 on’

2

on, off’

4 3

off’

1

off, off’

6
F1

F1 8

7
 on, off
 on’, off’

5

on

off

off’

on

off

F2

F2 on, off
 on’, off’

 on, off
 on’, off’

 on, off
 on’, off’

Figure 2.4: A hybrid automaton modeling a spacecraft with two faults.

states for the faulty behavior. Events on/off and oń/off́ correspond to the power

condition of thrusters T1 and T2 respectively. F1 and F2 represent T1’s stuck − on

and T2’s stuck − off faults. We assume that the faults are permanent, i.e. the

system stays in the faulty state indefinitely.

Assume that S is the set of linear systems modeling the spacecraft dynamics at

each discrete state. We can then write Sq, the continuous dynamics at the discrete

states q of the hybrid automaton model, as

Sq =

⎧⎪⎪⎨
⎪⎪⎩
Ẋ(t) = AqX(t) + BqU(t) + LqF (t)

Y (t) = CqX(t)

(2.4)

where

X(t) =

⎡
⎣x(t)
ẋ(t)

⎤
⎦ , Y (t) =

⎡
⎣y1(t)
y2(t)

⎤
⎦ =

⎡
⎣x(t)
ẋ(t)

⎤
⎦ (2.5)

In the above equation, U(t), F (t) and Lq represent the matrices of thruster power

level (zero/one for on/off conditions), thrusters failure and the vector of the fault

signatures in the discrete state q, respectively. Also, x(t) is the position of the

17

spacecraft and ẋ(t) is the spacecraft velocity. The output y1(t) is the position and

the output y2(t) is the velocity of the spacecraft. Therefore, overall, the hybrid

model contains an automaton (DES abstraction) in Figure 2.4 plus the continuous

variable models in Eq. (2.4) and (2.5).

2.3 Diagnosis of Hybrid Automata

In this section, we describe a hybrid fault diagnosis method for hybrid automata [7].

In this method, the diagnosis is performed by integrating the information from the

continuous sensors of the system with the information from discrete sensors at the

DES level. In this approach, based on the continuous dynamics of the system, a

bank of Residual Generators (isolators) are designed to isolate the fault types at

the continuous level by producing a residual using the continuous input and output

of the system. In [5] and [6], the solvability conditions for the existence of residual

generators for fault isolation in linear and nonlinear dynamical systems have been

studied.

The framework for designing the diagnoser for this method of fault diagnosis is

depicted in Figure 2.5. First, the DES abstraction of residual generator is generated.

It will then be integrated with the DES abstraction of the system to construct the

Extended DES Abstraction (EDEAS) of the system and isolators. The hybrid

diagnoser will be then designed based on the EDESA as described in the following

steps:

1. Residual generators (isolators) are described by DES models.

2. Appropriate self-loop transitions are added to the DES abstraction of the

system (Habs) to make the transitions in isolator’s DES model consistent with

the system’s transition model.

3. We assume that the system stays at each discrete state long enough so that

18

Bank of Residual
Generators (Isolators)

DES Abstraction of the
Residual Generators

(Isolators)

DES Abstraction of the
System

System
(Hybrid Automaton)

Extended DES Abstraction

y(t)
u(t)

Discretized Output of
Residual GeneratorsDiscrete Output

Hybrid Diagnoser

Integration
Module

System
Condition

Output of the
Extended DES

Abstraction

Figure 2.5: The schematic of the hybrid diagnosis framework

the transient response dies out. This assumption is enforced by having each

isolator event happen between the occurrence of any two consecutive events

in the system.

4. EDESA is constructed by synchronous product of the DES models in steps 1

to 3.

5. Finally, the diagnoser is built based on the EDESA from the previous step

using a diagnoser design for discrete-event models.

In the following, we apply these steps to our previous example of the simple space-

craft with two thrusters.

Step 1 - Modeling of Isolators

The isolators are designed by taking the continuous input and output of the system

and producing a residual vector to isolate some fault types from the others while

19

 = + +

=

= +

=

Figure 2.6: System dynamics and Isolator in state q

the system is in one of the discrete states. This is shown in the block diagram in

Figure 2.6. This figure shows the continuous dynamics of the system in discrete

state q along with the isolator Is for that state. We assume that at the beginning

the isolators are initialized at zero. They will remain at zero as long as no fault

is present in the system. If a failure occurs, they will change to a nonzero signal.

The discretized value of the isolators is 0 when normal and 1 when the fault has

occurred. The design procedure of isolators is outside the scope of this thesis. The

reader could refer to [5], [6] and [7] for more details.

The designed isolators are then modeled as a finite state Moore automaton

with two states of ZERO and ONE. In our spacecraft example, there are two faults

of F1 and F2. Therefore, there will be two isolators, Is1 and Is2, used for detection

and isolation of the respected faults. Figure 2.7 shows the FSA model of both

isolators. The events ’Isi:0→1’ and ’Isi:1→0’ represent the transition of residual

signal from state ZERO to ONE and from state ONE to ZERO, respectively. The

self-loops ’Isi : 0’ and ’Isi : 1’ are unobservable events added for design consistency.

20

ZERO ONE

: 0 1

: 1 0

: 1 : 0

0 1

(a)

ZERO ONE

: 0 1

: 1 0

: 1 : 0

0 1

(b)

Figure 2.7: The FSA modeling the isolators: (a) Is1, (b) Is2

Step 2 - Consistency between the DES Model of System and Isolator

The abstract DES models for the system and isolators capture the interactions be-

tween them, i.e. any changes in the system such as mode changes and the occurrence

of the faults should lead to the changes in the output of isolators. The DES model

of the system is then modified to enforce this consistency requirement by adding

appropriate self-loop transitions.

Let Habs be the abstract DES model of the spacecraft example (shown in

Figure 2.8). The continuous dynamics of the system are defined at each state in

terms of Eq. (2.4).

The modified DES abstraction of the spacecraft example, Ĥabs, is constructed

from Habs by adding certain self-loop transitions at each discrete state as shown in

Figure 2.9. For instance, at state q0, the self-loop transitions are ’Is1 : 0’, ’Is1:1→0’,

’Is2 : 0’ and ’Is2:1→0’. This implies that the isolators Is1 and Is2 cannot have the

transition from ZERO to ONE as this is a healthy state of the system with no

present faults. Di for i=0,. . . ,3 are the outputs of the DES model at each state.

Step 3 - Enforcing the Assumption by DES Model

As described earlier in this section, we need to introduce a new automaton enforcing

our assumption of the time between the occurrence of two consecutive events. The

21

() =
2 0

0 3

()

()

()

()
=

1 0

0 1

()

()

() =
2 0

0 3

()

()
 + 0 0

0 5

()

()
=

1 0

0 1

()

()

() =
2 0

0 3

()

()
 + 0 0

0 5
+

0

5

()

()
=

1 0

0 1

()

()

() =
2 0

0 3

()

()
 + 3 0

0 5
+ 0

5

()

()
=

1 0

0 1

()

()

() =
2 0

0 3

()

()
 + 3 0

0 0

()

()
=

1 0

0 1

()

()

() =
2 0

0 3

()

()
 + 3 0

0 5

()

()
=

1 0

0 1

()

()

() =
2 0

0 3

()

()
 + 3 0

0 5
+ 3

0

()

()
=

1 0

0 1

()

()

() =
2 0

0 3

()

()
 + 3 0

0 0
+ 3

0

()

()
=

1 0

0 1

()

()

on

on

off

off

,

, , ,

,

,

,

, , ,

, , ,

, , ,

Figure 2.8: Habs - The hybrid automaton model for the spacecraft example.

22

r0,r3,r4,r7
on, on’

on’

r0,r3,r4,r7
off, on’

 on’

q1

r0,r3,r4,r7
on, off’

q3 q2

off’

q0

r0,r3,r4,r7
off, off’

q5
F1

F1 q7

q6

r0,r3,r5,r6
 on, off
 on’, off’

q4

on

off

off’

on

off

F2

F2

r1,r2,r4,r7
 on, off
 on’, off’

r1,r2,r4,r7
 on, off
 on’, off’

r0,r3,r5,r6
 on, off
 on’, off’

D0 D1

D2 D3

D0

D1

D1

D3

Figure 2.9: Ĥabs - The modified DES abstraction for the spacecraft example.

automaton ASMIs shown in Figure 2.10 models the above assumption.

Step 4 - Constructing EDESA

The EDESA of the hybrid system and isolators, denoted as H̃ , is defined as the

synchronous product of Ĥabs, the modified DES abstraction, (Is1,Is2), the automata

modeling the isolators, and ASMIs, the automaton enforcing the assumption. This

1 2

Is1:0→1, Is1:1→0, Is1:0, Is1:1

Is2:0→1, Is2:1→0, Is2:0, Is2:1

Figure 2.10: ASMIs - The FSA enforcing the assumption.

23

is shown in Eq. (2.6).

H̃ = sync(Ĥabs, Is1, Is2, ASMIs) (2.6)

Figure 2.11 shows the EDESA of the spacecraft example. The output at each

state is the 3-tuple [Dx,r1,r2] where Dx was given in Figure 2.9 and r1 and r2 are

the discretized output of the isolators.

Step 5 - Building the Diagnoser

A part of the diagnoser is designed and shown in Figure 2.12 where the failure mode

F2 is detected. The discrete outputs of the EDESA are observed and based on the

EDESA model, the possible states of EDESA and consequently the health condition

of the model are estimated. We continue probing the outputs of the model until

the condition of the model is defined. Overalls, the diagnoser combines discrete

information (thrusters on/off status) and continuous information (obtained from

sensors, processed to generate residuals) to arrive at a diagnoser.

2.4 Summary

In this chapter, a method for hybrid fault diagnosis is described with a simple

example. This approach develops a systematic method to integrate the information

in continuous variable data, such as pressure sensor in a valve, with discrete value

data, such as threshold sensors, to achieve more accurate diagnosis.

A bank of residual generators are first constructed to detect and isolate the

faults. They will then be abstracted by DES models and integrated with the DES

abstraction of the system to construct an extended DES model. Finally, this ex-

tended model is used to build the fault diagnoser.

24

4

2

1

3

��������

��������

��������

��������

r0

r4

r4

r0

off, off ' on

8

5

9

14

off

on'
17

21

22

28

off '

6 15

10

11

off '

��������

��������

��������

��������

r4

r0

r0

r4

off, off '

on

off

F2

7

12

��������

��������

��������

��������

r5

r0

r0

r5

16

13

27

20

on,off,on',off ' r0

r5

r6

��������

��������

F1

31

34

35

38

��������

��������

��������

��������

r4

r1

r1

r4

39

40

on,off,on',off '

r4
r2

r2

��������

��������

��������

��������

��������

��������
r0

r4

r4

r0

on, off '
��������

��������

��������

��������

r0

r4

r4

r0

on, on '

F2

F1

32 18

23

��������

��������

��������

��������

r4

r1

r1

r4

��������

��������

��������

��������

r0

r5

r5

r0

29

36

24

on,off,on',off '

r4

r2

r2

��������

��������

19

26

25

30 33

37

on,off,on',off '
r0

r6

r6

��������

��������

Figure 2.11: EDESA - EDESA Model of the spacecraft.

25

Z0

N, F1, F2

4, 7, 8, 13, 17, 23, 18, 24

N, F1, F2

7,8, 4,17,18, 0, 23, 24

N, F1, F2

0, 25, 29, 32

F2

29, 32, 25, 36

 F2

[D1, 0, 0]

[D1, 0, 0]

[D1, 0, 1]

[D1, 0, 1]
[D1, 0, 1]

State Estimate

Condition Estimate

Output
D1: T1 on, T2 off

residual one=0

residual two=0

D1: T1 on, T2 off

residual one=0

residual two=1

Figure 2.12: Part of the diagnoser constructed for the spacecraft example based on
EDESA model (Fig. 2.11)

26

Chapter 3

Hybrid Fault Diagnosis in

Leader-Follower with

One-Dimensional Translational

Motion

In this chapter, we propose a decentralized implementation of the hybrid diagnosis

method described in the previous chapter. This method is applied for fault diagno-

sis in decentralized systems that are distributed geographically such as spacecraft

formations and teams of robots.

3.1 A Decentralized Hybrid Fault Diagnosis De-

sign System

The proposed method in this thesis is illustrated in Figure 3.1. In this scheme,

diagnosis is performed by local diagnosers who have access to both local continuous

data (e.g. sensor readings) and discrete data (e.g. output of threshold sensors,

27

discrete-event data

System 1

continuous data discrete-event data

Local Diagnoser 1

System n

continuous data discrete-event data

Local Diagnoser n

. . .

Figure 3.1: Proposed Method Scheme - A Decentralized Hybrid Diagnosis with
Discrete Information Exchange

supervisory commands to change mode of operation). In order to reduce the amount

of communicated data, the local diagnosers only exchange the discrete data or the

discretized versions of the continuous data.

This hybrid approach is applied to a system consisting of two spacecraft in

Leader-Follower Formation to investigate faults in actuators and sensors in the

system. Specifically, we explore the design of the local diagnoser for the follower

spacecraft. The orientation of spacecraft in space can be described by continuous

state space equations. On the other hand, the dynamics of the spacecraft com-

ponents such as thrusters and accelerometer sensor can be described in terms of

discrete transitions, and then can be presented by DES models. We develop a hy-

brid automaton model representing the behavior of the system and perform a hybrid

diagnosis to detect and isolate the faults of the follower spacecraft. As discussed

previously, the only data that is to be exchanged between the spacecraft has to be

discrete-event data to limit communications. In this study, we explore the possi-

bility and limitations of decentralized fault diagnosis subject to the aforementioned

constraint on data exchange between the spacecraft.

The remainder of this chapter is organized as follows. In Section 3.2, we

explain our system of a Leader-Follower spacecraft with equations and relationships

28

between the components. In Section 3.3, we develop a hybrid model for our system.

Fault diagnosis based on the constructed hybrid model is explained in Section 3.4.

In Section 3.5, we investigate different scenarios for the system and employ the

diagnoser to detect and isolate possible existing faults.

3.2 Leader-Follower Formation Flying Spacecraft

In our work, we consider the formation flying spacecraft in deep space, i.e. far

from the Earth. In deep space, the gravity is small and almost the same for both

spacecraft. There its contribution to equations of motion is small. To maintain

the performance of the system, it is important to keep the orientation and relative

position of the spacecraft in a desired range.

The fundamental devices for spacecraft stabilization in the space are Actu-

ators and Sensors. Angles, velocity and acceleration are measured by sensors

to determine the position and orientation of spacecraft with respect to a reference

system. Some of the most commonly used sensors are Sun Sensor, Earth Sensor,

Star Sensor,Magnetometer, Gyroscope, Accelerometer and Laser Relative Distance.

On the other hand, actuators generate the required torque for the spacecraft to

push them around the space. Some of the well-known actuators are reaction wheel,

magnetotorquer and thrusters.

In our work, we consider a group of two spacecraft in a Leader-Follower forma-

tion as shown in Figure 3.2. We study fault diagnosis in the follower. The leader’s

components are subject to failure and are monitored by a separate local diagnosis

system. So, from the follower’s diagnosis perspective, the leader is fault-free. For

the purpose of maintaining the relative distance between the spacecraft, we have

chosen some of the mentioned actuator and sensors as listed below.

• Thrusters, ‘on-off’ thrusters are used. These thrusters, shown as Ti’s in the

29

Leader Follower

T1’

T4’

T2’

T3’

T1

T4

T2

T3

x

Figure 3.2: Two spacecraft in Leader-Follower formation on a line.

model, are either ‘on’ or ‘off ’. While active, they push the spacecraft to the

right or left direction at a constant speed. Four thrusters are placed in four

corners as illustrated in Figure 3.2. Leader thrusters are assumed fault-free

while follower thrusters may fail. We have considered two types of failures

for follower thrusters: thruster T1 may become stuck-on or all thrusters may

become stuck-off at the same time. We also assumed that the follower thrusters

are more powerful than the leader thrusters to enable it to track the leader’s

maneuvers.

• Distance Sensor, a laser sensor which measures the relative distance between

leader and follower spacecraft. In our problem, this sensor is in the follower and

notifies the follower supervisor if the relative distance becomes low, high or

normal. We assume that the health of this sensor is monitored using hardware

redundancy and from the diagnoser’s perspective, this sensor is fault-free.

• Accelerometer, measures the acceleration of spacecraft. Accelerometer may

fail and show the value of the acceleration with a bias. Here we consider

negative bias, but positive bias can be handled similarly.

In this chapter, we consider translation motion in one axis for spacecraft. In

the next chapter we consider the case in which the spacecraft also have the rotational

30

Leader Thruster Commands Local Diagnoser

Follower Thruster

Commands

Relative Distance and

Accelerometer Data

Follower

Figure 3.3: The follower and local diagnoser

motion in addition to translational motion.

The objective of this chapter is to develop a hybrid fault diagnoser for the

follower spacecraft. We assume that the leader maneuver commands constitute the

discrete data which is transmitted from the leader to the follower. The follower

supervisor observes the distance sensor output and issues the necessary commands

based on this value to maintain the required distance. This is illustrated in Fig-

ure 3.3.

Assuming that the spacecraft are initially deployed far from each other, the

follower attempts to decrease the distance and moves towards the leader. When the

relative distance is detected to be in the desired range, a ‘stop’ command will be

issued for the follower. On the other hand, if the relative distance becomes less than

the desired value, the ‘increase distance’ command will be issued. In the meantime,

the leader may change its position.

In the presence of a failure, the system shows the same behavior which may

lead to a different result. As an example, assume that while the follower is moving,

the thruster T1 fails, stuck-on. If the relative distance becomes low, the ‘stop’ and

shortly after that the ‘increase distance’ commands will be issued for the follower.

31

T1

T4

T2

T3 u4

u1 u2

u3

x

Figure 3.4: The Follower spacecraft

But the follower will continue moving in the previous direction because of the stuck-

on T1. As the faults are assumed to be permanent, the system remains in the faulty

condition indefinitely.

Based on what we discussed so far, let us model the dynamical behavior of the

system. Consider the follower spacecraft model in Figure 3.4. The laws of motion

for this spacecraft are

ẋ = v (3.1)

Mv̇ = F (3.2)

where x is the absolute position of follower, v is the velocity, M is the total mass of

the spacecraft and F is the net force applied to it.

In Figure 3.4, ‘ui’ refers to the applied force to the spacecraft resulting from

thruster Ti. The arrows show the direction of the force. Therefore, we have

F = u1 − u2 − u3 + u4 (3.3)

On the other hand, the gravity is negligible as the system operates in deep

space. For simplicity, we assume that the spacecraft mass is normalized to 1. Hence,

we have

ẍ = F = u1 − u2 − u3 + u4 (3.4)

32

Leader Follower

T1’

T4’

T2’

T3’

T1

T4

T2

T3

x

Figure 3.5: Leader and Follower Formation.

3.3 System Model

We first start by modeling individual components, controller and interaction among

the components and then use MATLAB/SIMULINK Software along with DECK

Toolbox [1] to build the final model.

3.3.1 DES Model of System Components

Based on the discrete behavior of the system components, we can model the whole

system by discrete-event models. Our leader-follower system is shown in Figure 3.5.

Follower Thrusters

As spacecraft move to the right or left, we can consider follower thrusters (T1,T4)

or (T2,T3) as single components that push the spacecraft to right or left. These

thrusters can be either normal or faulty. Two fault types may occur in the follower

thrusters: all thrusters are stuck-off or only T1 is stuck-on. We have assumed single

failure scenario for the system, i.e., no two faults happen at the same time.

The automaton modeling follower thrusters is shown in Figure 3.6. There are

seven states and five events ‘T1, T4−on’, ‘T2, T3−on’, ‘off ’, ‘all−fail’ and ‘T1−fail’

33

T2T3 – on
T1T4 – on

off

T2T3 - on

7

off

all-fail

all-fail all-fail

T2T3 - on
T1T4 - on

T2T3 - on

2

T1T4 - on

off

T2T3 - on
T1T4 - on

4 3

off

1

off

6

T1T4 - on

5

T2T3 - on
T1T4 - on

off

off

T1-fail

T2T3 – on
T1T4 – on

Figure 3.6: FT - Follower Thrusters

representing the commands on, off and failures all stuck− off and T1 stuck− on.

For simplicity, fault events are shown by dashed-lines. Event ‘all − fail’ enters the

system in the mode that all thrusters are stuck-off at the same time. On the other

hand, event ‘T1 − fail’ means that thruster T1 has become stuck-on. We assume,

for simplicity, that all stuck− off failure may happen when thrusters are either on

or off while T1 stuck − on can only happen when the pair (T1,T4) is on.

We assume that in our system leader components are fault-free. The automa-

ton modeling the leader thrusters is shown in Figure 3.7.

Relative Distance Laser Sensor

This laser sensor measures the relative distance between the leader and follower. In

our model, the distance is divided into three discrete levels: high, normal and low.

The automaton in Figure 3.8 models the changes in the output of the sensor. Each

event represents a transition in the sensor output from one discrete level to another.

For example, event ‘r : H2N ’ is generated when the sensor output changes from

34

T2’T3’ - on
T1’T4’ - on

 T2’T3’ - on

2

T1’T4’ - on

off’

T2’T3’ - on
T1’T4’ - on

3

off’

1

off

Figure 3.7: LT - Leader Thrusters

1 2

r:H2N

r:N2H
3

r:N2L

r:L2N
High Normal Low

Figure 3.8: RDS - Relative Distance Sensor

High to Low. We assume that the measured distance is reliable and the sensor is

fault-free.

The relative acceleration between leader and follower is calculated by taking

the second derivative of relative distance and is used for fault diagnosis. This will be

further discussed in section 3.4.1. The relative acceleration can be zero, positive or

negative. The discrete event model for acceleration is shown in Figure 3.9. Similar

to the relative distance, event ‘r̈ : +20’ is generated when the acceleration changes

from a positive value to zero.

35

_

2 1

:+20

:02+

3

:02-

:-20

+ 0

Figure 3.9: RA - Relative Acceleration

Accelerometer

There is an accelerometer in the follower spacecraft that measures its acceleration.

For fault diagnosis purpose, the acceleration is divided into 5 levels: negative, very

negative, positive, very positive and zero. It shows positive when the spacecraft

is moving to the right direction but only thruster T1 is firing. On the other hand,

very positive acceleration happens when both thrusters T1 and T3 are active and

push the spacecraft to the right direction.

Figure 3.10 illustrates the automaton model for the follower accelerometer.

There are eight events ‘acc : P2Z’, ‘acc : Z2P ’, ‘acc : P2PP ’, ‘acc : PP2P ’, ‘acc :

N2Z’, ‘acc : Z2N ’, ‘acc : N2NN ’ and ‘acc : NN2N ’ representing the transition

of accelerometer output between five levels. For example, event ‘acc : Z2P ’ is

generated when the accelerometer output changes from zero to positive and so

on. The accelerometer may encounter loss of effectiveness as defined by the event

‘acc− fail’. It means that there may be a bias in the measured values. We assume

that the accelerometer shows a value less than the actual value. For example, it

may show positive instead of very positive.

Single-Failure Scenarios

In this thesis, the system is examined in a single-failure mode, i.e. only one fault at

a time could happen. We assume that faults are permanent. This means that if the

36

acc: Z2P acc: P2Z

acc-fail acc-fail acc-fail acc-fail

Very Positive Very Negative

Positive
Negative

Very Positive Positive

Zero

Zero

Negative
6

12

7 8

acc: N2Z

acc: Z2N

acc: NN2N acc: N2NN
acc: N2Z

acc: Z2N

acc: P2Z

acc: PP2P

acc: Z2P

acc: P2PP

2

3

1

4

5

13

9

11 10

Negative Very Negative

Positive

Zero

acc: P2Z

acc: PP2P

acc: Z2N acc: N2NN

acc: N2NN

acc: NN2N

Figure 3.10: ACC - Follower Accelerometer

37

1

acc-fail

2

3

4

acc-fail

T1-fail

T1-fail

all-fail

all-fail

Figure 3.11: FSCN - Single Failure Scenarios

system enters a failure mode, it stays in that failure mode forever. This assumption

can be included in the model using the discrete event model in Figure 3.11.

3.3.2 Interactions Among the Components

Due to the interactions among the components, changes in status of one may affect

other’s behaviors. The interactions considered in our system are:

• Interactions among follower thrusters and accelerometer,

• Interactions among leader thrusters, follower thrusters and their relative ac-

celeration.

Interactions among follower thrusters and accelerometer

As discussed in the previous section, the acceleration measured by accelerometer

depends on the number of active thrusters and their health status. The interaction

model is obtained by first forming the synchronous product of the DES model of

38

accelerometer, follower thrusters and fault scenarios

INTFACC = sync(FT,ACC, FSCN) (3.5)

where FT is the model of follower thrusters, ACC is the model of accelerometer

and FSCN is the single failure scenario model.

Next, selfloops are added to the interaction model as shown in Figure 3.12. For

example, in the state (2, H), the thruster pair (T1, T4) is active and the accelerometer

is healthy. In this case, the measured acceleration is very positive. The selfloops

represent the events in which the accelerometer output changes to very positive or

PP .

Interactions among follower thrusters, leader thrusters and relative ac-

celeration

The relative acceleration is calculated by taking the second derivative of relative

distance between leader and follower and is a function of thruster pairs (T1, T4), (T2,

T3), (T1 ,́ T4)́ and (T2 ,́ T3)́ and their health status. The relative acceleration can be

zero, positive or negative depending on the leader and follower moving direction with

respect to each other. We define this value as the acceleration of follower with respect

to the acceleration of the leader. For example, if the leader is accelerating to the

right direction while the follower is accelerating to the left, the relative acceleration

will be negative. The relative acceleration with respect to the state of leader and

follower thrusters is shown in Table 3.1. For example, in state (2,1), where the

leader thruster pair (T1 ,́ T4)́ is on and all the thrusters in the follower are off, the

relative acceleration is negative.

39

 1,H

 2,H

 3,H

 4,H

 5,H

 6,H

 2,F

 3,F

 7,H

acc: NN2N
acc: N2Z
acc: Z2P
acc: P2PP

acc: PP2P
acc: P2Z
acc: Z2N
acc: N2NN

acc: PP2P
acc: P2Z
acc: NN2N
acc: N2Z

acc: NN2N
acc: N2Z
acc: Z2P
acc: P2PP

acc: NN2N
acc: N2Z
acc: Z2P
acc: PP2P

acc: P2Z
acc: Z2N
acc: PP2P
acc: NN2N

acc: PP2P
acc: P2Z
acc: Z2N
acc: NN2N

acc: PP2P
acc: P2Z
acc: Z2N
acc: N2NN

acc: PP2P
acc: P2Z
acc: NN2N
acc: N2Z

 1,F

acc: NN2N
acc: N2Z
acc: Z2P
acc: PP2P

Figure 3.12: Selfloops for Interactions among Follower Thrusters and Accelerometer

40

Table 3.1: The Relative Acceleration with respect to the Follower and Leader
Thrusters

State Number (L,F) Leader State Follower State Relative Acceleration
(1,1) All Thrusters Off All Thrusters Off 0
(1,2) All Thrusters Off (T1, T4) On +
(1,3) All Thrusters Off (T2, T3) On -
(1,4) All Thrusters Off All Thrusters Fail 0
(1,5) All Thrusters Off T1 - fail and (T1, T4) On +
(1,6) All Thrusters Off T1 - fail and other Thrusters Off +
(1,7) All Thrusters Off T1 - fail and (T2, T3) On -

(2,1) (T́1, T́4) On All Thrusters Off -

(2,2) (T́1, T́4) On (T1, T4) On +

(2,3) (T́1, T́4) On (T2, T3) On -

(2,4) (T́1, T́4) On All Thrusters Fail -

(2,5) (T́1, T́4) On T1 - fail and (T1, T4) On +

(2,6) (T́1, T́4) On T1 - fail and other Thrusters Off -

(2,7) (T́1, T́4) On T1 - fail and (T2, T3) On -

(3,1) (T́2, T́3) On All Thrusters Off +

(3,2) (T́2, T́3) On (T1, T4) On +

(3,3) (T́2, T́3) On (T2, T3) On -

(3,4) (T́2, T́3) On All Thrusters Fail +

(3,5) (T́2, T́3) On T1 - fail and (T1, T4) On +

(3,6) (T́2, T́3) On T1 - fail and other Thrusters Off +

(3,7) (T́2, T́3) On T1 - fail and (T2, T3) On +

3.3.3 Follower Supervisory Controller

The relative distance between leader and follower should remain in a certain range.

The supervisory controller generates a sequence of events for the system in or-

der to maintain this distance. For example, it commands the follower to increase

its distance from the leader when the relative distance becomes low. The con-

troller events for maintaining this distance are shown in Figure 3.13. The events

‘decrease distance’ and ‘increase distance’ are generated whenever the relative dis-

tance sensor output changes from normal to high and normal to low, respectively.

Suppose the relative distance becomes low. The supervisory controller commands

the follower to increase the distance. The method of firing the thrusters is bang-

bang . It means that to increase the distance, the sequence of generated events

are:

1. Turn on the thrusters T1 and T4

2. wait for time τ

41

1 2

r:H2N

r:N2H
3

r:N2L

r:L2N

High Normal Low

increase_distancedecrease distance

Figure 3.13: FollowerCommands - Follower Commands

3. Turn off the thrusters

4. wait for time τ

5. Turn on the thrusters T2 and T3

6. wait for time τ

7. Turn off the thrusters

where 2τ is the length of thruster firing. Suppose that δ>0 is the desired accuracy

in adjusting the relative distance, τ is then chosen so that the distance traveled

through the above sequence is less than δ. The automata enforcing these sequences

is presented in Figure 3.14.

The automaton modeling the sequence controller is obtained by integrating the

automata of Figure 3.13 and Figure 3.14 using the synchronous product operator.

Let FollowerCommands and FollowerSequences denote the automata modeling

the controller events of Figure 3.13 and controlling sequences of Figure 3.14, respec-

tively. The FollowerControllerDES can be obtained as

FollowerControllerDES = sync(FollowerCommands, FollowerSequences)

(3.6)

As depicted in Figure 3.14, there is an event ‘pulse’ between each ‘on’ and

‘off ’ command. This represents the duration in which the thruster pairs (T1,T4) or

42

1

pulse

increase_distance T1T4 - on

11

2

7

8

13

3

6

9

12

decrease_distance

off

off
pulse

pulse

pulse

off
T2T3 - on

T1T4 - on

4

5

off
T2T3 - on

10

Figure 3.14: FollowerSequences - Follower Sequences

(T2,T3) are on.

3.3.4 Hybrid Modeling

The DES abstraction of the follower can be formed using the synchronous product of

the automata modeling the components, the automata modeling their interactions

and the sequence controller automata. Let the automaton

SystemDESabs = (Qabs,Σabs, Tabs, Dabs, λabs, qabs,0) (3.7)

be the DES abstraction of the leader-follower system. We have

SystemDESabs = sync(ComponentDES, InteractionsDES, SequenceController, FSCN)

(3.8)

where

ComponentDES = sync(FT1T4, FT2T3, LT,RDS,RA,ACC) (3.9)

and

InteractionsDES = sync(INTFACC, INTLFA) (3.10)

43

The hybrid automaton of the system can be written as

System = (Q,X,U, FT, Y, Init, S,Σ, T,D, λ, q0) (3.11)

where

X,U, FT, Y, Init ⊂ R
2;

Q = Qabs;

Σ = Σabs;

T = Tabs;

D = Dabs;

λ = λabs;

q0 = qabs,0;

(3.12)

The system has a total of 6 components. Therefore, each discrete state of the

system can be describes as a 6-tuple q=(q1,...,q6), where qi represents the state of

each component. The hybrid automaton model of the system has 5074 discrete

states and 33306 transition

The faults in the system can be modeled by additive fault signals. We can

write Sq, the dynamics in state q, as

Sq =

⎧⎪⎪⎨
⎪⎪⎩
Ẋ(t) = AqX(t) + BqU(t) + LqF (t)

Y (t) = CqX(t)

(3.13)

where

X(t) =

⎡
⎣x(t)
ẋ(t)

⎤
⎦ , Bq = Lq (3.14)

In the above equation, U(t), F (t) and Lq represent the matrices of applied forces to

the follower, follower failures and the vector of the fault signatures in the discrete

44

state q, respectively. Also, x(t) is the position of the follower and ẋ(t) is the follower

velocity. Therefore, the dynamics in state q can be rewritten as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
ẋ(t)

ẍ(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1

0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x(t)

ẋ(t)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0 0 0

1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1(t)

u2(t)

u3(t)

u4(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣
0 0 0 0

1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(t)

f2(t)

f3(t)

f4(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(t) =

[
0 1

]
⎡
⎢⎢⎣
x(t)

ẋ(t)

⎤
⎥⎥⎦

(3.15)

Note that the accelerometer bias failure is not included in these equations. We can

simply show the accelerometer failure by adding the bias value to the output of the

accelerometer.

In equation (3.15), the output y(t) is the velocity of the follower while the input

U(t) is the applied force to it from the thrusters in which ui(t) = 1.2 if thruster Ti

is on and ui(t) = 0 if thruster Ti is off . The values in matrix F (t) are chosen based

on the follower failure mode. For example, if the system enters the failure mode in

45

which all thrusters are stuck-off, equation (3.15) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
ẋ(t)

ẍ(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1

0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x(t)

ẋ(t)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0 0 0

1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1(t)

u2(t)

u3(t)

u4(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣
0 0 0 0

1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u1(t)

−u2(t)

−u3(t)

−u4(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(t) =

[
0 1

]
⎡
⎢⎢⎣
x(t)

ẋ(t)

⎤
⎥⎥⎦

(3.16)

46

Also, the dyanamics in state q when thruster T1 is stuck-on will be as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
ẋ(t)

ẍ(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1

0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x(t)

ẋ(t)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0 0 0

1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1(t)

u2(t)

u3(t)

u4(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣
0 0 0 0

1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(t) =

[
0 1

]
⎡
⎢⎢⎣
x(t)

ẋ(t)

⎤
⎥⎥⎦

(3.17)

In this equation, f1(t) = 1.2 is the applied force to the follower from thruster T1

which is stuck-on.

3.4 Fault Diagnoser

In this section, we design the residual generators (or isolators) for the system. Then,

the hybrid fault diagnoser for the system will be constructed.

3.4.1 Residual Generator Design

There are three approaches for residual generators: parity space, observer-based

and parameter estimation. In this work we apply the parity space approach. This

approach is based on the ‘parity check ’, i.e. testing the parity equations that are

based on the system equations and measured signals. If there is any inconsistency

47

in these parity equations, the occurrence of a failure can be estimated.

As mentioned in Section 3.2, the acceleration of the follower is measured by the

accelerometer. We also calculate the Expected Acceleration from equation (3.4).

The parity check is then applied by comparing the measured and expected accel-

erations. If there is an inconsistency between these two values, we can say that a

failure has happened. The parity residual signal, PD, can be written as

PD = Expected Acceleration−Measured Acceleration (3.18)

PD is then used for Fault Detection ; as PD = 0 if the system is in normal mode

of operation and PD 	= 0 if the system is in faulty mode of operation.

As mentioned in Section 3.2, there are three fault types in the system: ac-

celerometer bias failure, thruster T1 stuck-on and all follower thrusters stuck-off. A

proper fault diagnosis includes Fault Isolation as well as fault detection. There-

fore, after detecting the presence of a failure, we have to distinguish the active fault.

Note that single failure scenario is assumed.

Fault isolation is performed by observing the parity signal PI . The parity equa-

tion compares the Expected Relative Acceleration with the Actual Relative

Acceleration .

PI = sgn(Expected Relative Acceleration)− sgn(Actual Relative Acceleration)

(3.19)

where sgn(.) is the Sign Function. The actual relative acceleration is calculated by

taking the second derivative of the relative distance sensor output as

Actual Relative Acceleration (t) =
d2r(t)

dt2
(3.20)

In Equation (4.11), sgn(Actual Relative Acceleration) is calculated by probing the

48

sign of the actual relative acceleration using Equation (3.21) below.

sgn(Actual Relative Acceleration) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 ifActual Relative Acceleration < 0,

0 ifActual Relative Acceleration = 0,

1 ifActual Relative Acceleration > 0.

(3.21)

The sign of expected relative acceleration is listed in Table 3.1 with respect to the

status of leader and follower thrusters. If this sign is consistent with the sign of actual

relative acceleration in Equation (3.21), we can say that this is the accelerometer

that shows the wrong acceleration and therefore it is faulty. On the other hand, if

there is an inconsistency between these values the failure is from thrusters.

Finally, isolation between thruster faults is done by probing the accelerometer

sensor output. If all thrusters are stuck-off, the accelerometer will not pick any

acceleration. The above comparison process (including PD, PI) is performed by the

hybrid diagnoser. In the next section, we will discuss more about the fault detection

and isolation procedure in the follower.

3.5 Simulation Results

We use the MATLAB/SIMULINK software to simulate the system behavior.

Discrete Event Control Kit (DECK) software is also used for constructing

the DES model of the system. DECK is a toolbox written in the programming

language of MATLAB for the analysis and design of supervisory control systems

based on discrete-event models [1]. In this section, we assume different maneuvers

for the leader spacecraft and analyze the response of the follower in both normal

and faulty modes of operation.

Figure 3.15 shows the position of leader and follower spacecraft in normal and

49

faulty modes of operation in normalized time units. The solid line shows the leader

position on the x-axis at each time with the origin being its initial position and the

dashed line represents the follower position. The decrease in this values mean that

the spacecraft is accelerating to left, while an increase means it is accelerating to

the right direction. We set the desired relative distance between the spacecraft to

be 12 distance units.

In Figure 3.15(a), at the beginning, the spacecraft are deployed 20 units apart

from each other which is ‘high’. That makes the follower decrease its distance with

the leader and accelerates to the left direction till the distance falls in the ‘normal’

range. A similar scenario will happen if the relative distance becomes less that 10

units or ‘low’. Figure 3.15(b) shows the same maneuver for the leader except that

at the time around t = 65 all the follower thrusters become ‘stuck − off ’. This

makes the follower continue moving in the same direction at a constant speed.

In the next section, different maneuvers are defined for the leader and the

reaction of the follower and the values of fault detection and isolation signals will

be explained in both normal and faulty conditions.

3.5.1 Normal Mode of Operation

In this scenario, the system operates in a fault-free mode. The follower follows the

leader maneuver while keeping the relative distance at a desirable range; 12 units.

Figure 3.16 demonstrates the spacecraft maneuver in normal mode of operation

when the initial relative distance is ‘high’.

Figure 3.16 shows the position of the leader and follower spacecraft on a line

with the origin being the initial position of the leader, fault detection signal PD

and fault isolation signal PI , respectively. We mentioned in Section 3.4 that the PD

signal is used for detecting the presence of the faults. We also assumed that the

Bang-Bang Control Policy is used to command the spacecraft to move. This

50

(a)

(b)

Figure 3.15: Position of Leader and Follower spacecraft in: (a) Normal Mode of
Operation, (b) Faulty Mode of Operation

51

Figure 3.16: Normal Operation Mode

52

means that when follower receives the command to move towards the right, it first

accelerates to the right and then to the left. The same can be said for going to the

left direction; first it accelerates to the left and after that to the right. This makes

the accelerometer pick up both positive and negative accelerations while moving in

a single direction. It is observed that the accelerometer output signal has several

sudden variations, as depicted in Figure 3.17.

The reader may note that if the ‘decrease − distance’ command is activated

during the bang-bang firings, the follower will not decrease its distance till the end

of bang-bang firings. This may cause some delays in the response of the follower as

shown in Figure 3.16.

The parity signal PD in Eq. (3.18) is the difference between the expected

and measured accelerations. The expected acceleration is the total force applied

to the follower as defined in Eq. (3.4) and can be 0, ±1.2 or ±2.4. The measured

acceleration is , however, the output of accelerometer and is shown in Figure 3.17.

From Eq. (3.18) and this figure, we expect the parity signal PD to have similar

sudden variations. Because of these fluctuations, it is reasonable to use the mean

value of the signal for fault diagnosis. The same is true for PI signal in fault isolation.

The mean of PD and PI signals are shown in Figure 3.16. Based on these plots, one

can say that the system evolves in the normal mode and no failure has happened.

3.5.2 Faulty Mode of Operation

In this section we assume different failures for the follower and observe its behavior.

The leader is assumed to be fault-free.

Accelerometer Bias Failure

At time t = 3×104 the accelerometer fails and develops a bias of ’+2’ in its readings,

i.e. showing more acceleration. The maneuver, PD and PI parity signals are shown

53

(a)

(b)

Figure 3.17: Follower Accelerometer Output for: (a) 0 ≤ t ≤ 5000, (b) 0 ≤ t ≤ 35000

54

Figure 3.18: System Performance with Accelerometer’s Positive Bias Failure

in Figure 3.18. As one can see from this figure, the follower continues its maneuver

correctly even after the occurrence of failure. We can say that the accelerometer

failure does no affect the maneuver of the follower. This was expected, because

controlling the maneuver of the follower is only based on the relative distance.

On the other hand, the parity signal PD decreases after accelerometer fails.

As the signal is no longer zero, we can say that a failure has happened. Now that

we have detected the occurrence of a failure, we have to isolate it, i.e. see whether

it is from thrusters or accelerometer. We observe that the parity signal PI , depicted

in Figure 3.18, is approximately zero. Therefore, the failure is from accelerometer.

Figure 3.19 shows the spacecraft maneuvers and fault diagnosis signals for a

’−2’ bias in the accelerometer output.

55

Figure 3.19: System Performance with Accelerometer’s Negative Bias Failure

56

Figure 3.20: System Performance with Thruster T1 becomes stuck-on

Thruster T1 stuck-on

In this part, we consider the failure of thruster T1. The spacecraft maneuver and

parity signals are shown in Figure 3.20. At time t = 22 × 103 thruster T1 fails and

follower continues moving right at a rapidly increasing pace. Note that the parity

signals PD and PI become nonzero after failure happens.

All Thrusters stuck-off

Figure 3.21 illustrates the system performance when all thrusters become stuck-off

before starting the operation. This may happen because of a common failure in the

actuation system of the spacecraft.

As mentioned in section 3.3.1, thrusters may become stuck-off when they are

either on or off . Therefore, the follower may stop or continue moving based on

57

Figure 3.21: System Performance with all Thrusters become stuck-off

58

Figure 3.22: System Performance with all Thrusters become stuck-off

the last received command. In Figure 3.22, the failure happens when the follower

was moving to the left direction. As we can see, it continues going left even when

the relative distance becomes low. Moreover, Figure 3.23 demonstrates the system

behavior in which the follower was going right before the failure happens.

Note that the parity signals, PD and PI , are both non-zero when the failure

is active. This is similar to the case where only thruster T1 was stuck-on. To

differentiate these two faults, one may refer to the mean of the accelerometer output

signal as shown in Figure 3.24.

Discarding the initial fluctuations due to the transients in sensor measurements

in Figure 3.24(a), we can see that the mean of measured acceleration in the presence

of thruster T1 failure is nonzero. This signal is almost zero when all thrusters become

stuck-off, as shown in Figure 3.24(b).

59

Figure 3.23: System Performance with all Thrusters become stuck-off

60

(a)

(b)

Figure 3.24: Accelerometer Output Mean Signal: (a) Thruster T1 stuck-on, (b) All
Thrusters stuck-off

61

3.5.3 Remarks

Remark 1 - The impact of discretization

In this chapter, the output of the relative distance and accelerometer sensors are

discretized into 3 and 5 levels, respectively. These levels of discretization do not

have any impacts on the accuracy of the diagnosis in this particular system. The

reason is that we have used parity signals PD and PI for fault diagnosis and neither

signal is affected by the discretizations.

Remark 2 - Spacecraft mass

In Eq. (3.2) we assumed that the mass of the spacecraft is constant and we normal-

ized its value to 1. In the case of variable mass, the construction of parity signals

would not change. Therefore, the diagnoser will perform similarly in this system.

However, the simulations will be different from the constant mass as the continuous

dynamics of the system are changed.

3.6 Summary

In this chapter, we investigated fault diagnosis in a system of Leader/Follower space-

craft in deep space. We described the system components and reviewed the dynam-

ics of the system. We introduced different modes of operations and developed the

state-space equations for one of the operating modes. Moreover, we developed a

DES model of the system. Parity signals were also formulated from sensor output

signal. Subsequently, the fault diagnoser was built based on the system model and

parity signals. We considered three fault scenarios for the system and investigated

the performance of diagnoser for each mode of operation. We also discussed how to

isolate the faults by applying parity signals.

In this work, we studied failure diagnosability using simulation. A formal

62

test for failure diagnosability for hybrid diagnoser has been presented in [1]. The

implementation of this test in the form of a software code would provide a more

comprehensive assessment of our approach. This implementation is beyond the

scope of this thesis.

In the next chapter, however, we will extend the problem presented in Chap-

ter 3 to the case involving spacecraft rotation.

63

Chapter 4

Hybrid Fault Diagnosis in

Leader-Follower with

One-Dimensional Translational

Motion and Rotation Around a

Fixed Axis

In this chapter, we apply our hybrid fault diagnosis approach to a leader-follower

pair spacecraft similar to the one in the previous chapter. In this case, the spacecraft

rotate as well around an axis perpendicular to the translation axis. There are three

possible faulty components in the follower; Actuators, Accelerometer and Gyroscope.

Similar to the previous chapter, we describe the dynamics of the components by DES

models. We will then develop a hybrid automaton model representing the behavior

of the system and perform a hybrid diagnosis to detect and isolate the faults in the

follower.

64

Leader

x T1’

T4’

T2’

T3’
T1

T4

T2

T3

θ' θ

Follower

a

Figure 4.1: Leader-Follower Spacecraft

The rest of this chapter is as follows. In Section 4.1, we explain the mathe-

matical equations of spacecraft and the relationship between the components. In

Section 4.2, a hybrid model for our system is developed. Fault diagnosis based on the

constructed hybrid model is then explained in Section 4.3. Finally, in Section 4.4, we

study different scenarios for the system and use the diagnoser to detect and isolate

possible faults.

4.1 Leader-Follower Formation Flying Spacecraft

In this chapter, we consider a group of two spacecraft in a Leader-Follower forma-

tion flying in deep space. In this problem, the spacecraft move along a fixed axis

while rotating around an axis perpendicular to the translation axis as illustrated in

Figure 4.1. In this formation flying, we would like to keep their relative distance

at a desired range and their angular orientation similar to each other. Each space-

craft has four Thrusters, one Distance Sensor, one Accelerometer and also

one Gyroscope. Similar to the previous model, we assume that all the elements in

the leader are fault free. In the follower, however, elements may fail according to

the list below. Note that the faults are considered to be permanent.

65

• Thrusters, thruster ‘T1’ may become stuck-on or all thrusters may become

stuck-off at the same time.

• Accelerometer, measuring the acceleration with a positive or negative bias.

• Gyroscope, measures the angular velocity of the spacecraft and it may fail

and its data become unavailable.

• Distance Sensor, this sensor may fail. However, we assume that the health of

this sensor is monitored using hardware redundancy and from the diagnoser’s

perspective, this sensor is fault-free.

The gyroscope measures the angular velocity. Using this angular velocity, we

calculate angular acceleration and also angular position denoted by θ in Figure 4.1.

The follower supervisor observes the distance sensor output and the angular position

and issues the necessary commands based on these values to maintain the required

distance and angular position. A general procedure in the system is as follows.

Assuming that the spacecraft are initially deployed far from each other, the

follower receives the command to decrease the distance and moves towards the

leader. Before decreasing the distance, the follower should rotate to the vertical

position (θ=0). If the gyroscope shows a nonzero value, a ‘turn clockwise’ or ‘turn

counterclockwise’ command will be issued for the follower. It rotates by firing the

opposite side thrusters until θ becomes zero. Then, based on the relative distance

between the spacecraft, the appropriate commands will be issued as discussed in

the previous chapter. Finally, follower rotates so that its angular position becomes

similar to the follower’s. Note that in the meantime, the leader may change its

position.

The dynamics of the system is similar to the previous chapter. The laws of

motion, however, should be modified to incorporate the angular rotation as shown

66

in the following equations.

ẋ = v (4.1)

Mv̇ = F · cos (θ) (4.2)

where x is the absolute position of the follower, v is the velocity, M is the mass

of the spacecraft and F is the net force applied to it. Without loss of generality,

we assume that the spacecraft mass equals 1. The gravity is also negligible as the

system operates in deep space. Hence, we have

ẍ = F · cos (θ) = (u1 − u2 − u3 + u4) · cos (θ) (4.3)

where ‘ui’ refers to the applied force to the spacecraft resulting from thruster ‘Ti’ as

shown in Figure 4.2. For rotation we have

ω = θ̇ (4.4)

Iω̇ = (−F1 + F2 − F3 + F4) · a
2

(4.5)

where I is the moment of inertia and a is the length of spacecraft side. For simplicity,

we assume that

a

2I
= 1. (4.6)

4.2 System Model

We begin this section by modeling individual components, controller and interactions

among the components. We will then use MATLAB/SIMULINK Software along

with DECK Toolbox [1] to build the final model.

67

u1

u4

u2

u3
T1

T4

T2

T3

Figure 4.2: The Follower Spacecraft

4.2.1 DES Model of System Components

As discussed before, the considered leader-follower formation has discrete charac-

teristics. We use discrete-event models to show the discrete behavior of the system.

The DES model of the system components are described in the following.

Follower Thrusters

The follower has two types of movement, translation in one axis and rotation around

its center of gravity. To model the thrusters, we group them based on the movement

of the spacecraft as follows.

• Translation, (T1,T4) for accelerating to the right direction and (T2,T3) for

accelerating to the left direction.

• Rotation, (T1,T3) for rotating clockwise (cw) and (T2,T4) for rotating coun-

terclockwise (ccw).

Figure 4.3 illustrates the DES model of these thrusters. The configuration of the

events and faults are similar to the system in the previous chapter.

68

3

21

5

11

T2T4 - on

T1T3 - on

T1T4 - on T2T3 - on

off

off

4

off

off

off
all - fail

all - fail

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on. off

T1T3 - on

T1T4 - on

T2T4 - on

off

8

10

9

6

off

all - fail

7

all - fail

all - fail

T1 - fail

T1 - fail

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on.

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on.

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on.

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on,

off

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on.

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on.

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on.

T1T3 - on, T2T4 - on,
T2T3 - on, T1T4 – on.

off

off

T2T3 - on

Figure 4.3: FT - Follower Thrusters

69

Figure 4.4: LT - Leader Thrusters

The fault-free DES model of leader thrusters is also pictured in Figure 4.4.

Relative Distance Sensor

Similar to the previous chapter, a laser sensor measures the relative distance between

the leader and follower and is assumed to be fault-free. The output of this sensor is

divided into three discrete levels, high, normal and low. A DES model representing

this sensor is shown in Figure 4.5. Taking the second derivative of this sensor’s

output, we calculate the actual relative acceleration and build a DES model for

that as illustrated in Figure 4.6. The relative acceleration can be zero, positive or

negative.

70

1 2

r:H2N

r:N2H
3

r:N2L

r:L2N
High Normal Low

Figure 4.5: RDS - Relative Distance Sensor

_

2 1

:+20

:02+

3

:02-

:-20

+ 0

Figure 4.6: RA - Relative Acceleration

Accelerometer

The accelerometer measures the acceleration of the follower spacecraft. It may fail

and have a bias in its output, e.g. showing a smaller acceleration than the actual

value. Similar to the previous chapter, this value is divided into five discrete levels:

negative, very negative, positive, very positive and zero. As an example, it

shows positive when the spacecraft is moving to the right direction but only thruster

T1 is firing. In the case of rotation, firing of pairs (T1,T3) and (T2,T4), accelerometer

shows a zero acceleration. Therefore, the DES model of accelerometer is similar to

the model of the previous chapter as shown in Figure 4.7. Note that the fault in the

accelerometer means that there is a negative bias in the measured value, showing a

smaller acceleration than the actual value. For example, it may show zero instead

of positive.

71

acc: Z2P acc: P2Z

acc-fail acc-fail acc-fail acc-fail

Very Positive Very Negative

Positive
Negative

Very Positive Positive

Zero

Zero

Negative
6

12

7 8

acc: N2Z

acc: Z2N

acc: NN2N acc: N2NN
acc: N2Z

acc: Z2N

acc: P2Z

acc: PP2P

acc: Z2P

acc: P2PP

2

3

1

4

5

13

9

11 10

Negative Very Negative

Positive

Zero

acc: P2Z

acc: PP2P

acc: Z2N acc: N2NN

acc: N2NN

acc: NN2N

Figure 4.7: ACC - Accelerometer

72

Figure 4.8: ANGACC - Discretized Angular Acceleration

Gyroscope

The gyroscope measures the angular velocity in rotation. We use this value and

calculate the angular acceleration and angular position by taking the derivate

and integral of angular velocity.

The angular acceleration value is discretized into five discrete levels: negative,

very negative, positive, very positive and zero. For example, it shows positive

when the spacecraft is rotating counterclockwise and thruster T1 is stuck-on. If T1

is normal, the gyroscope shows very negative when (T1,T3) fires. Figure 4.8 shows

the DES model for this discretized value. We assume that the gyroscope may fail

and its data becomes unavailable.

The angular position is the angle between y-axis and the body axis of the

spacecraft which is perpendicular to the thrusters as shown in Figure 4.2. This

value is divided into five discrete levels, zero, P1, P2, P3 and P4 as illustrated in

73

(a) (b)

(c) (d)

Figure 4.9: Discrete Levels of Angular Position with 0 : −δ ≤ θ < δ (a) P1 : δ ≤
θ < 90, (b) P2 : 90 ≤ θ < 180,(c) P3 : 180 ≤ θ < 270, (d) P4 : 270 ≤ θ < 360− δ

Figure 4.9 where δ is a small positive number. The spacecraft is in vertical position

when the output is zero.

The discrete event model for the angular position is depicted in Figure 4.10.

We can see that the discrete values become unavailable when the gyroscope fails.

There are five events ‘θ : 0’, ‘θ : P1’, ‘θ : P2’, ‘θ : P3’ and ‘θ : P4’ representing

changes in the angular position. The event ’gy − fail’ occurs when the gyroscope

fails and becomes unavailable. The outputs Pj´ are similar to Pj but gyroscope data

is unavailable.

74

5 1 2

4 3
gy-fail

: 0

: 0

: 4

: 1

: 4 : 3

: 3

: 2

: 1 : 2

6

: 0

: 4

: 0

: 4

7

: 4 : 3 : 4 : 3

8

: 3

: 2

9

10
gy-fail

gy-fail

gy-fail

gy-fail

Figure 4.10: TETA - Angular Position

Fault Scenario

Single failure scenario with permanent faults is assumed, i.e. only one fault at a

time is present and that the faults are permanent. This assumption is enforced by

the DES model in Figure 4.11.

4.2.2 Interactions Among the Components

We expect from our system that the change in the status of one of the components

affect the other components’ behavior due to the interactions among them. These

interactions can be modeled using discrete event models and are:

• Accelerometer reading as a function of follower thruster and angular position.

• Angular acceleration as a function of follower thrusters.

• Relative acceleration as a function of leader thrusters, follower thrusters and

their angular positions.

75

15

4 3

2

all-fail

all-fail

T1-fail

T1-fail

gy-fail
gy-fail

acc-fail
acc-fail

Figure 4.11: FSCN - Single Failure Scenario

Accelerometer reading as a function of follower thruster and angular po-

sition

In this part we model the relationship between the follower thrusters and the accel-

eration. The output of the accelerometer at each state depends upon the angular

position of the follower. For example, when the thrusters pair (T1, T4) is active

and the spacecraft is moving to the right direction, the accelerometer will show

‘very positive’ if θ ∈ P1 while it will show ‘very negative’ if θ ∈ P2.

The output of accelerometer in both healthy and faulty conditions is shown

in Table 4.1 with respect to the follower thrusters and angular position. Note that

thrusters and accelerometer failures are not active at the same time due to the

single-failure scenario.

Angular acceleration as a function of follower thrusters

The gyroscope output depends on the number of active thrusters and their health

status. We will explain in Section 4.3 that for fault diagnosis the value of angular

76

Table 4.1: Interactions among Follower Thrusters and Accelerometer

Follower State Angular Position
Accelerometer Output
Healthy Faulty

1

P1 or P1´ Zero Negative
P2 or P2´ Zero Negative
P3 or P3´ Zero Negative
P4 or P4´ Zero Negative

2

P1 or P1´ Very Positive Positive
P2 or P2´ Very Negative Very Negative
P3 or P3´ Very Negative Very Negative
P4 or P4´ Very Positive Positive

3

P1 or P1´ Zero Negative
P2 or P2´ Zero Negative
P3 or P3´ Zero Negative
P4 or P4´ Zero Negative

4

P1 or P1´ Very Negative Very Negative
P2 or P2´ Very Positive Positive
P3 or P3´ Very Positive Positive
P4 or P4´ Very Negative Very Negative

5

P1 or P1´ Zero Negative
P2 or P2´ Zero Negative
P3 or P3´ Zero Negative
P4 or P4´ Zero Negative

6

P1 or P1´ Very Positive ——
P2 or P2´ Very Negative ——
P3 or P3´ Very Negative ——
P4 or P4´ Very Positive ——

7

P1 or P1´ Zero ——
P2 or P2´ Zero ——
P3 or P3´ Zero ——
P4 or P4´ Zero ——

8

P1 or P1´ Positive ——
P2 or P2´ Negative ——
P3 or P3´ Negative ——
P4 or P4´ Positive ——

9

P1 or P1´ Negative ——
P2 or P2´ Positive ——
P3 or P3´ Positive ——
P4 or P4´ Negative ——

10

P1 or P1´ Positive ——
P2 or P2´ Negative ——
P3 or P3´ Negative ——
P4 or P4´ Positive ——

11

P1 or P1´ Zero ——
P2 or P2´ Zero ——
P3 or P3´ Zero ——
P4 or P4´ Zero ——

77

Table 4.2: Mapping in Normal Condition
(Leader Angular Position, Follower Angular Position) Relative Acceleration

(P1,P1) zero, negative, positive
(P3,P1) negative
(P1,P4) positive

acceleration is required. Therefore, in this part we model the interactions between

the follower thrusters and the angular acceleration which is the derivative of the

gyroscope output. This interaction model is illustrated in Figure 4.12. Deriving the

model is similar to the previous chapter and will not be discussed here.

Relative acceleration as a function of leader thrusters, follower thrusters

and their angular positions

Next, we discuss the interactions among leader/follower spacecraft, their relative

acceleration calculated using the relative distance sensor output and angular position

calculated from the gyroscope output.

Each state of this model has three outputs: angular position of leader, angular

position of follower and the relative acceleration. The relative acceleration at each

state is a function of angular position at that state as shown in equation 4.7 below.

r̈ = FFollower · cos (θ)− FLeader · cos
(
θ
′
)

(4.7)

For simplicity, we build a mapping from angular positions to the relative acceleration

to show this relationship. Table 4.2 list some of the values from this mapping for a

normal condition when both spacecraft are firing (T1, T4) and (T1 ,́ T4)́ thrusters.

Table 4.3 shows these values in the faulty condition when thruster T1 of follower is

stuck-on and the leader is firing (T2, T3).

Note that r̈ can have different values at each state in these tables because the

tables show relative acceleration as a function of discretized values of θ and θ
′
. For

78

 1,H

 2,H

 3,H

 4,H

 5,H

 6,H

AA: NN2N
AA: N2Z
AA: PP2P
AA: P2Z

AA: Z2P
AA: P2PP
AA: NN2N
AA: N2Z

AA: PP2P
AA: P2Z
AA: NN2N
AA: N2Z

AA: PP2P
AA: P2Z
AA: Z2N
AA: N2NN

AA: PP2P
AA: P2Z
AA: NN2N
AA: N2Z

AA: PP2P
AA: P2Z
AA: NN2N
AA: N2Z

 9,H

AA: P2Z
AA: Z2N
AA: PP2P
AA: NN2N

AA: N2Z
AA: NN2N
AA: Z2P
AA: PP2P

AA: PP2P
AA: P2Z
AA: NN2N
AA: N2Z

10,H

 11,H

 7,H
AA: PP2P
AA: P2Z
AA: Z2N
AA: N2NN

 8,H
AA: Z2N
AA: NN2N
AA: P2Z
AA: PP2P

 1,F gy-fail

 2,F

 3,F

 4,F

 5,F

gy-fail

gy-fail

gy-fail

gy-fail

Figure 4.12: INTFGY : Interactions among Follower Thrusters and Angular Ac-
celeration

79

Table 4.3: Mapping in Faulty Condition
(Leader Angular Position, Follower Angular Position) Relative Acceleration

(P1,P1) positive
(P3,P1) negative
(P1,P4) positive

more precision, one can divide the angular position into more discrete levels. How-

ever, this leads to a more complex model and requires more information exchange

between the components and this is not desirable.

4.2.3 Supervisory Control

The supervisory controller generates sequence of commands for the follower in order

to maintain its relative distance and angular position. The sequence involves three

main steps:

1. The follower should rotate so that it goes to the vertical position, i.e. θ ∼= 0.

2. The relative distance is maintained by firing appropriate thrusters.

3. Based on the leader’s angular position, Pi, the appropriate rotation command

is sent to the follower. The follower rotates until its angular position becomes

similar to the leader’s angular position.

The FSAs for these three steps are shown in Figure 4.13.

The sequence of commands are similar to the previous chapter and are shown

in Figure 4.14. As mentioned in the previous chapter, the event ‘pulse’ represents the

duration in which the thruster pairs are on. Calculating the synchronous product

of automata in Figure 4.13 and Figure 4.14, one can obtain the sequence controller

of this system.

80

5 1 2

4 3

: 0

: 0: 4

: 1

: 4 : 3

: 3

: 2

: 1 : 2

turn-left

turn-left

turn-right

turn-right

Zero

(a)

3 1

:

2

PositiveZeroNegative

turn-leftturn-right

: :

:

(b)

2

3

1

4

5

turn-left turn-left

turn-right turn-right

: :

: :

::

: :

(c)

Figure 4.13: FollowerCommands - Follower Commands for: (a) Step 1, (b) Step
2,(c) Step 3

81

1
pulse

turn-cw
T1T3 - on

11

2

8

3

7

9

6

turn-ccw

off

pulse

pulse

off
T2T4 - on

4

5

off

T2T4 - on

T1T3 - on

10

(a)

1
pulse

increase-distance
T1T4 - on

11

2

8

3

7

9

6

decrease-distance

off

pulse

pulse

off
T2T3 - on

4

5

off

T1T4 - on

10

(b)

1

pulse

T2T4 - on

12

2

8 11

3

7

9

13

turn-ccw

pulse

pulse

pulse

off

T1T3 - on

T2T4 - on

4

off

T1T3 - on
 <

 <

5

6

turn-cw

turn-ccw

turn-cw

 <

(,)

(,)

10

(c)

Figure 4.14: FollowerSequences - Follower Sequences for: (a) Step 1, (b) Step 2,(c)
Step 3

82

4.2.4 Hybrid Model

The DES of this system can be modeled using the synchronous product of the

automata modeling the components (Section 4.2.1), their interactions (Section 4.2.2)

and the sequence controller (Section 4.2.3).

The hybrid model of the system is similar to the hybrid model in the previous

chapter for a formation flying without rotation. We can then write the dynamics of

the new system in state q as,

Sq :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1(t) =

⎡
⎢⎢⎣
0 1

0 0

⎤
⎥⎥⎦X1(t) +

⎡
⎢⎢⎣
0 0 0 0

1 −1 −1 1

⎤
⎥⎥⎦U(t) cos (θ) +

⎡
⎢⎢⎣
0 0 0 0

1 −1 −1 1

⎤
⎥⎥⎦F (t) cos (θ)

Ẋ2(t) =

⎡
⎢⎢⎣
0 1

0 0

⎤
⎥⎥⎦X2(t) +

⎡
⎢⎢⎣

0 0 0 0

−1 1 −1 1

⎤
⎥⎥⎦U(t) +

⎡
⎢⎢⎣

0 0 0 0

−1 1 −1 1

⎤
⎥⎥⎦F (t)

Y (t) =

⎡
⎢⎢⎣
0 1 0 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
X1(t)

X2(t)

⎤
⎥⎥⎦

(4.8)

where

X1(t) =

⎡
⎣x
v

⎤
⎦ , X2(t) =

⎡
⎣θ
ω

⎤
⎦ . (4.9)

4.3 Fault Diagnoser

The residual generators for the system are designed in this section. We will then

construct the hybrid fault diagnoser for the system. For the purpose of fault diagno-

sis, the follower diagnoser receives information about the leader thruster commands

and discretized values of leader’s angular position.

83

4.3.1 Residual Generator Design

The method of designing the residual generators are similar to the previous chapter

and we will not discuss it here. For Fault Detection, the parity signal PD is

generated as expressed in Equation 4.10. PD = 0 if the system is in normal mode

of operation and PD 	= 0 if the system is in faulty mode of operation.

PD = ExpectedAcceleration−MeasuredAcceleration (4.10)

For Fault Isolation, PI is generated based on the following equation.

PI = sgn(Expected Relative Acceleration)− sgn(Actual Relative Acceleration)

(4.11)

where sgn(.) is the Sign Function. The actual relative acceleration is calculated by

taking the second derivative of the relative distance sensor output as

Actual Relative Acceleration (t) =
d2r(t)

dt2
(4.12)

If the parity signal PI = 0, we conclude that the accelerometer is faulty and

shows a wrong value for acceleration. On the other hand, if the parity signal is

nonzero, the failure is from the thrusters. Finally, probing the accelerometer sensor

output will give us the exact fault in the system. If all thrusters are stuck-off, the

accelerometer will not pick any acceleration. Note that if the gyroscope fails, its

data will become unavailable. It means that we can no longer calculate the angular

position of the spacecraft.

In the next section, we will discuss more about the fault detection and isolation

procedure in the system.

84

4.4 Simulation Results

We simulate our system using MATLAB/SIMULINK software and use DECK Tool-

box [1] for constructing the DES model of the system. In the following, we assume

different maneuvers for the system and analyze the response of the follower in both

normal and faulty modes of operation.

4.4.1 Normal Mode of Operation

In this scenario, there is no fault in the system and all the components are func-

tioning well. The follower follows the leader maneuver while keeping its relative

distance and angular position in a desired range as shown in Figure 4.15. In this

scenario, the leader rotates counterclockwise around 20 degrees at time t = 0.8×104

and changes its rotation to clockwise at time t = 1.2×104. It rotates till the time

t = 2.6×104 where it stops rotating and starts moving to the right direction. As we

can see, the follower follows the leader maneuver very well. The first signal, shows

the positions of both spacecraft with respect to their initial positions. The second

graph depicts their angular positions. Parity signals are shown in the third and the

last figures and we can see that they are both zero, as we expected.

4.4.2 Faulty Mode of Operation

Now, we examine different failure scenarios for the system and observe its behavior.

Accelerometer Bias

Figure 4.16 shows the parity signals for accelerometer failure. In Figure 4.16(a)

the failure happenes while the follower spacecraft is rotating. In Figure 4.16(b)

the failure happens after the follower rotation while translating. We can see that

the behavior of the system, the maneuver and angle, is not affected by this failure.

85

Figure 4.15: Normal Operation Mode

86

However, the PD parity signal becomes nonzero and this shows the fault in the

accelerometer.

Thruster T1 Stuck-on

Figure 4.17 shows the parity signals for thruster T1 failure. In Figure 4.17(a) the

failure happenes while the follower spacecraft is rotating. In Figure 4.17(b) the

failure happens after the follower rotation, while changing position. We can see

that the behavior of the system is affected by this failure. Also, both parity signals

becomes nonzero and this shows the fault in the thrusters.

All Thrusters Stuck-off

Similarly, Figure 4.18 shows the parity signals for all thrusters failure. In Fig-

ure 4.18(a) the failure happenes while the follower spacecraft is rotating while In

Figure 4.18(b) the failure happens after the follower rotation, while changing posi-

tion. We can see this fault affects the behavior of the system and also made both

parity signals nonzero, as we expected.

Gyroscope Failure

Figure 4.19 shows the system behavior for gyroscope failure. We can see that al-

though the maneuver and the parity signals did not change, the angle data becomes

unavailable.

4.4.3 Remarks

Remark 1 - The impact of discretization

In this chapter, we have discretized the output of the relative distance sensor, ac-

celerometer and spacecraft angular position into different discrete levels. Changing

the levels of discretization of the angular position will increase the speed of diagnosis

87

(a)

(b)

Figure 4.16: Accelerometer Failure: (a) Failure while Rotating, (b) Failure While
Moving

88

(a)

(b)

Figure 4.17: Thruster T1 Failure: (a) Failure while Rotating, (b) Failure While
Moving

89

(a)

(b)

Figure 4.18: All Thrusters Failure: (a) Failure while Rotating, (b) Failure While
Moving

90

Figure 4.19: Gyroscope Failure

91

in this system. For example, there is a delay in the change of parity signals in Fig-

ure 4.17 after the fault occurs. If we increase the level of discretization of the leader

angular position, the parity signal PI will change sooner after the presence of the

fault. This will reduce the delay of diagnosis. In general, finer discretization may

also improve diagnosis accuracy. The price for faster or more accurate diagnosis,

however, is the higher complexity of the discrete event models.

Remark 2 - Spacecraft mass

In Eq. (4.2) we assumed that the moment of inertial of the spacecraft was constant

and we normalized its value to 1. If we considered variable moment of inertial for

the spacecraft, the generation of the parity signals and hence the diagnosis system

would remain the same.

4.5 Summary

In this chapter, we examined the proposed hybrid fault diagnosis scheme on a system

of Leader/Follower spacecraft in deep space with translation motion in one direction

and rotation around a axis perpendicular to translational motion using computer

simulations. As pointed out in the previous chapter, a formal test of diagnosability

is also available but requires extensive software development. This is left for future

work.

We described the system components and reviewed the dynamics of the system.

We then developed the DES model of the system. Parity signals were also formulated

from sensors output signals. Subsequently, the fault diagnoser was built based on

the system model and parity signals. We considered one normal scenario and four

fault scenarios for the system and investigated the performance of diagnoser for each

mode of operation. We also discussed how to isolate the faults by applying parity

92

signals.

Our study was limited to one-dimensional motion with single-axis rotation for

a system whose dynamics is described in terms of simple integration. Therefore the

scope of our study as indeed limited. A discussion on possible future extensions is

provided in the next chapter.

93

Chapter 5

Conclusion

5.1 Summary

In this thesis, we proposed an adaption of a framework for fault diagnosis of hy-

brid systems for teams of autonomous systems. The dynamics of hybrid systems are

characterized by a Discrete Event System (DES) representing transitions among var-

ious modes of operation, and a set of continuous models (i.e. differential equations)

describing the system’s behavior in the discrete modes. In a hybrid system, there

are usually two types of sensors: continuous sensors (generating continuous-time

readings) and discrete sensors (generating discrete outputs like ‘high’ and ‘low’).

Discrete outputs can be used for the diagnosis of drastic failures such as a stuck-off

actuator and continuous outputs can be used for the diagnosis of faults that slightly

change the system dynamics such as a small loss of effectiveness in a sensor.

First, the DES model of the hybrid system is constructed based on the discrete

states of the system. A bank of residuals is then generated based on the continuous

models of the system to detect the faults. Then, we model these residuals by DES

and integrate them with the DES abstraction of the system to construct an extended

DES model. Finally, we use this extended model to build the fault diagnoser.

94

In the fault diagnosis scheme proposed here for a team of autonomous sys-

tems, each member of the team has a local diagnoser and to reduce the amount of

communication between the team members, only discrete-event data are exchanged

among the local diagnosers.

The proposed fault diagnosis system is applied to a team of two spacecraft

in a Leader-Follower Formation Flying format. Each spacecraft has a set of four

thrusters, one accelerometer, one relative distance sensor and a gyroscope. We

assume that the leader and relative distance sensor are fault free while follower

thrusters, accelerometer and gyroscope may fail.

Our goal is to maintain their relative position and orientation at a desirable

range while detecting faults at the moment they occur. To minimize the communi-

cation between these two spacecraft, we keep the continuous information locally and

only communicate the discretized data to the other spacecraft. The fault diagnosis

for the follower is designed. A number of simulations for different maneuvers were

conducted to demonstrate and verify the performance of our proposed hybrid fault

diagnoser.

5.2 Future Work

In the following, some of the possible extensions to the results obtained in this thesis

are presented.

• Formation Flying - In this work we first considered a formation flying of two

spacecraft with translation motion in one axis in Chapter 3. Then, we added

rotational movements around a fixed axis in Chapter 4. We considered this

simple example to show the basic idea of our proposed method and examine

the performance of it in different maneuvers. In general, in formation flying,

the number of spacecraft is more than two and also they move in 3-dimensional

95

space.

• Thrusters - In our work, we considered on/off thrusters with bang-bang control

as these were more suitable for our diagnosis method. If, for example, contin-

uous thrusters are suggested for an application, we should change the system’s

mathematical model to incorporate the continuous behavior of thrusters. This

will lead to a more computationally complex model and is left as a future work.

• Disturbance and Noise - We assumed that the system is disturbance and noise-

free. Investigating the performance of the proposed fault diagnosis method in

the presence of disturbance and noise and uncertainties in the system’s model

is also an interesting topic for future work.

96

Bibliography

[1] Shahin Hashtrudi Zad, Discrete Event Control Kit. Department of Electrical

and Computer Engineering, Concordia University, 2012.

Available at http://www.ece.concordia.ca/~shz/deck.

[2] Charles H. Goodrich, James Kurien, “Continuous measurements and quan-

titative constraints − challenge problems for discrete modeling mechniques”.

i−SAIRAS 2001, Canadian Space Agency, St-Hubert, Quebec, Canada, June

18-22, 2001.

[3] J. E. Hopcroft, R. Motwani and J. D. Ullman, “Introduction to automata

theory, languages, and computation”. Addison-Wesley, 3rd edition, 2006.

[4] K. H. Johansson, J. Lygeros, S.N. Simic, J. Zhang and S. Sastry, “Dynamical

properties of hybrid automata”. IEEE Trans. on Automatic Control, vol. 48,

no. 1, pp. 2-17, 2003.

[5] M. A. Massoumnia, “A geometric approach to failure detection and identifica-

tion in linear systems”. Ph.D. Dissertation, Massachusetts Institute of Tech-

nology, Cambridge, MA, USA, 1986.

[6] C. De Persis and A. Isidori, “A geometric approach to nonlinear fault detection

and isolation”. IEEE Trans. on Automatic Control, vol. 46, no. 6, pp. 853-865,

2001.

97

[7] Rasul Mohammadi, “Fault diagnosis of hybrid systems with applications to gas

turbine engines”. Ph.D Dissertation, Concordia University, Montreal, QC, CA,

2009.

[8] Daniel P. Scharf, Fred Y. Hadaegh and Scott R. Ploen, “A survey of space-

craft formation flying guidance and control (part II): control”. Proceedings of

American Control Conference, pp. 29762985, 2004.

[9] Navid Dadkhah, Luis Rodrigues and Amir G. Aghdam, “Satellite formation

flying controller design using an optimal decentralized approach”. Proceedings

of American Control Conference, pp. 31623167, 2007.

[10] P.Wang, “Navigation strategies for multiple autonomous mobile robots moving

in formation”. Journal of Robotic Systems, vol. 8, no. 2, pp. 177195, 1991.

[11] J. A. Fax and R. M. Murray, “Information flow and cooperative control of

vehicle formations”. IEEE Transaction Automatic Control, vol. 49, no. 9, pp.

14651479, 2004.

[12] F. Giulietti, L. Pollini, and M. Innocenti, “Autonomous formation flight”.

IEEE Control Systems Magazine, vol. 20, no. 6, pp. 3444, 2000.

[13] D. M. Stipanovic, G. Inalhan, R. Teo, and C. J. Tomlin, “Decentralized over-

lapping control of a formation of unmanned aerial vehicles”. Automatica, vol.

40, no. 8, pp. 12851296, 2004.

[14] W. Li, W.H. Gui, Y.F. Xie and S.X. Ding, “Decentralized fault detection of

large-scale systems with limited network communications”. IET Control The-

ory and Applications, vol. 4, no. 9, pp. 18671876, 2010.

[15] S. Azizi, K. Khorasani, “A hierarchical architecture for cooperative actua-

tor fault estimation and accommodation of formation flying satellites in deep

98

space”. IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no.

2, pp. 1428-1450, 2012.

[16] Roy S. Smith and Fred Y. Hadaegh, “Distributed control topologies for deep

space formation flying spacecraft”. International Symposium on Formation

Flying: Missions and Technologies Toulouse, France, 2002.

[17] Folta, Newman, and Gardner, “Foundations of formation flying for mission to

planet earth and new millenium”. AIAA-96-3645-CP, NASA Goddard Space

Center, 1996.

[18] R.C. Arkin, “Behavior-based robotics”. Cambridge, MA, MIT Press, 1998.

[19] P. M. Frank and X. Ding, “Survey of robust residual generation and evaluation

methods in observer-based fault detection systems”. Journal of Process Control,

vol. 7, no. 6, pp. 403-424, 1997.

[20] R. J. Patton and J. Chen, “Observer-based fault detection and isolation: ro-

bustness and applications”. Control Engineering Practice, vol.5, no. 5, pp.

671-682, 1997.

[21] S. Azizi, K. Khorasani, “A sub-optimal distributed Kalman filter with fusion

feedback for acyclic systems”. IEEE Conf. on Decision and Control, pp. 5151-

5157, 2009.

[22] P. M. Frank, “Analytical and qualitative model-based fault diagnosis-A survey

and some new results”. European Journal of Control, pp. 6-28, 1996.

[23] R. Milne, “Strategies for diagnosis”. IEEE Transactions on Systems, Man and

Cybernetics, vol. 17, no. 3, pp. 333-339, 1987.

99

[24] J. Jr. Sottile and L. E. Holloway, “An Overview of Fault Monitoring and Di-

agnosis in Mining Equipment”. IEEE Transactions on Industry Applications,

vol. 30, no. 5, pp. 1326-1332, 1994.

[25] A. S. Willsky, “A survey of design methods for failure detection in dynamic

system”. Automatica, vol. 12, pp. 29-32, 1976.

[26] R. Isermann, “Fault diagnosis systems: an introduction from fault detection

to fault tolerance”. Springer, 2006.

[27] W. Li, S. Shah, “Data-driven kalman filters for on-uniformly sampled multirate

systems with application to fault diagnosis”. Proceedings of American Control

Conference, vol. 4, pp. 2768-2774, 2005.

[28] J.J. Gertler, “Fault detection and isolation in engineering systems”. CRC

Press, 1998.

[29] R. J. Patton, P. M. Frank and R. N. Clark, “Issues of fault diagnosis for

dynamic systems”. Springer, 1st edition, 2000.

[30] R. Isermann, “Supervision, fault detection and fault diagnosis methods - an

introduction”. Control Engineering Practice, vol. 5, no. 5, pp. 639-652, 1997.

[31] S. Hashtrudi Zad, R.H. Kwong andW.M.Wonham, “Fault diagnosis in discrete

event systems: framework and model reduction”. IEEE Trans. on Automatic

Control, vol. 48, no. 7, pp. 1199-1212, 2003.

[32] S. Hashtrudi Zad, R.H. Kwong and W.M.Wonham, “Fault diagnosis and con-

sistency in hybrid systems”. Proc. 38th Annual Allerton Conf. on Communi-

cation, Control, and Computing, University of Illinois at Urbana-Champaign,

pp. 1135-1144, 2000.

100

[33] R. Patton, P. Frank and R. Clark, Eds., “Fault diagnosis in dynamic systems:

theory and applications”. New York: Prentice-Hall, 1989.

[34] R.J. Patton and J. Chen, Eds., “Fault detection, supervision and safety for

technical processes”. Proc. IFAC Symp., Kingston Upon Hull, UK, 1997.

[35] P. J. Antsaklis, X. D. Koutsoukos and J. Zaytoon, “On hybrid control of

complex systems: a survey”. European Journal of Automation, vol. 32, pp.

1023-1045, 1998.

[36] T. Koo, F. Hoffmann, H. Shim, B. Sinopoli and S. Sastry, “Hybrid control

of an autonomous helicopter”. IFAC Workshop on Motion Control, Grenoble,

France, pp. 285-290, 1998.

[37] R. Alur, C. Courcoubetis, T.A. Henzinger and P.H. Ho, “Hybrid automata: an

algorithmic approach to the specification and verification of hybrid systems”.

Hybrid Systems, vol. 736 of Lecture Notes in Computer Science, pp. 209-229,

Springer, 1993.

[38] F. Zhao, X. Koutsoukos, H. Haussecker, J. Reich and P. Cheung, “Monitoring

and fault diagnosis of hybrid systems”. IEEE Trans. on Systems, Man and

Cybernetics - Part B, vol. 35, no. 6, pp. 1225-1240, 2005.

[39] S. McIlraith, G. Biswas, D. Clancy and V. Gupta, “Hybrid systems diagnosis”.

Hybrid Systems: Computation and Control, vol. 1790 of Lecture Notes in

Computer Science, pp. 282-295, Springer-Verlag, 2000.

[40] F. Lin, “Diagnosability of discrete event systems and its application”. Discrete

Event Dynamic systems, vol. 4, pp. 197-212, 1994.

[41] S. Bavishi and E. K. Chong, “Automated fault diagnosis using a discrete event

systems framework”. Proc. of the 9th IEEE Intl. Symposium on Intelligent

Control, Columbus, Ohio, USA, vol.16, no.18, pp. 213-218, 1994.

101

[42] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen and D. Teneketzis,

“Diagnosability of discrete event systems”. IEEE Trans. Automatic Control,

vol. 40, no. 9, pp. 1555-1575, 1995.

[43] P. Baroni, G. Lamperti, P. Pogliano and M. Zanella, “Diagnosis of large active

systems”. Arti

cial Intelligence, vol.110, no.1, pp. 135-183, 1999.

[44] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen and D. Teneket-

zis, “Failure diagnosis using discrete event models”. IEEE Trans. on Control

System Technology, vol. 4, no. 2, pp. 105-124, 1996.

[45] P. M. Frank, “Fault diagnosis in dynamic systems using analytical and

knowledge-based redundancy - A survey and some new results”. Automatica,

vol. 26, no. 3, pp. 459-474, 1990.

[46] A. S. Willsky, “A survey of design methods for failure detection in dynamic

systems”. Automatica, vol. 12, no. 6, pp. 601-611, 1976.

[47] J. Gertler, “Analytical redundancy methods in fault detection and isolation -

A survey and synthesis”. IFAC/IMACS SAFEPROCESS, pp. 9-21, 1991.

[48] E. Isermann, “Process fault detection based on modeling and estimation meth-

ods - A survey”. Automatica, vol. 20, no. 4, pp. 387-404, 1984.

[49] J. Chen and R. Patton, “Robust model-based fault diagnosis for dynamic sys-

tems”. Kluwer Academic Publishers, 1999.

[50] E. Y. Chow and A. S. Willsky, “Analytical redundancy and the design of robust

failure detection systems”. IEEE Trans. on Automatic Control, vol. AC-29, pp.

603-614, 1984.

102

[51] I. E. Potter and M. C. Sunman, “Thresholdless redundancy management with

arrays of skewed instruments”. Integrity in Electronic Flight Control Systems,

AGARDOGRAPH-224, pp. 15-11 to 15-25, 1977.

[52] M. Desai and A. Ray, “A fault detection and isolation methodology”. Proc.

of the 20th IEEE Conf. on Decision and Control, San Diego, CA, USA, pp.

1363-1369, 1981.

[53] A. Misra, G. Provan, G. Karsai, G. Bloor and E. Scarl, “A generic and symbolic

model-based diagnostic reasoner with highly scalable properties”. Proc. of the

IEEE Conf. on Systems, Man, and Cybernetics, vol. 4, pp. 3154 - 3160, San

Diego, CA, USA, 1998.

[54] P. Mosterman and G. Biswas, “Diagnosis of continuous valued systems in

transient operating regions”. IEEE Trans on Systems, Man, and Cybernetics,

vol. 29, pp. 554-565, 1999.

[55] J. Lygeros, C. J. Tomlin and S. Sastry, “Controllers for reachability specifica-

tions for hybrid systems”. Automatica, vol. 35, pp. 349-370, 1999.

[56] M. A. Massoumnia, G.C. Verghese and A.S. Willsky, “Failure detection and

identification”. IEEE Trans. on Automatic Control, vol. AC-34, no. 3, pp.

316-321, 1989.

[57] G.K. Fourlas, K.J. Kyriakopoulos and N.J. Krikelis, “Model-based fault diag-

nosis of hybrid systems based on hybrid structure hypothesis testing”. Proc.

of the 11th IEEE Mediterranean Conf. on Control and Automation, Rhodes,

Greece, 6 pages, 2003.

[58] M.M. Tousi, A.G. Aghdam and K. Khorsani, “’A Hybrid Fault Diagnosis for

a Team of Unmanned Aerial Vehicles”. IEEE International Conference on

System of Systems Engineering, 2009.

103

[59] E.J. Manders, S. Narasimhan, G. Biswas and P.J. Mosterman, “A combined

qualitative/quantitative approach for efficient fault isolation in complex dy-

namic systems”. Proc. of the 4th symposium on Fault Detection, Supervision,

and Safety Processes, Budapest, Hungary, pp. 512-517, 2000.

[60] J. Lunze, “Diagnosis of quantized systems by means of timed discrete event

representations”. IEEE Tran. on Systems, Man and Cybernetics, Part A: Sys-

tems and Humans, vol. 30, no. 3, pp. 322-335, 2000.

[61] S. Narasimhan and G. Biswas, “Model-based diagnosis of hybrid systems”.

IEEE Tran. on System, Man, and Cybernetics, Part A: Systems and Humans,

vol. 37, no. 3, pp. 348-361, 2007.

[62] W.M.Wonham, “Supervisory control of discrete-event systems”. Department

of Electrical and Computer Engineering, University of Toronto, July 2012.

[63] C.G. Cassandras and S. Lafortune, “Introduction to discrete event systems”.

Springer, 2008.

104

