
Error Analysis and Verification of an IEEE 802.11
OFDM Modem using Theorem Proving 1

Abu Nasser Mohammed Abdullaha,3 , Behzad Akbarpourb,4 and
Sofiène Taharc,5

a Cadence Design Systems, Chelmsford, Massachusetts, USA 2

b Computer Laboratory, University of Cambridge, England
c Electrical and Computer Engineering Department, Concordia University, Montreal, Quebec, Canada

Abstract

IEEE 802.11 is a widely used technology which powers many of the digital wireless communication revolutions currently
taking place. It uses OFDM (Orthogonal Frequency Division Multiplexing) in its physical layer which is an efficient way
to deal with multipath, good for relatively slow time-varying channels, and robust against narrowband interference. In
this paper, we formally specify and verify an implementation of the IEEE 802.11 standard physical layer based OFDM
modem using the HOL (Higher Order Logic) theorem prover. The versatile expressive power of HOL helped us model the
original design at all abstraction levels starting from a floating-point model to the fixed-point design and then synthesized
and implemented in FPGA technology. We have been able to find a bug in one of the blocks of the design that is responsible
for modulation which implementation diverts from the constellation provided in the IEEE standard specification. The paper
also derives new expressions for the rounding error accumulated during ideal real to floating-point and fixed-point transitions
at the algorithmic level and performs a formal error analysis for the OFDM modem in HOL.

Keywords: Formal Verification, Theorem Proving, Error Analysis, OFDM, Wireless Communication.

1 Introduction

IEEE 802.11 [19] refers to a family of IEEE standards about local area and metropolitan
area wireless networks. The services and protocols specified in IEEE 802.11 map to the
lower two layers, namely Data Link layer (DLL) and Physical layer (PHY) of the seven-
layer OSI (Open Systems Interconnection) networking reference model. DLL consists of
two sub-layers named Logical Link Control (LLC) and Media Access Control (MAC). The
PHY of IEEE 802.11 is based on orthogonal frequency division multiplexing (OFDM) [28],

1 A two pages abstract preliminary version of this work has been published as a “short paper” at FMCAD 2006 [A. N.
M. Abdullah, B. Akbarpour, and S. Tahar: Formal Analysis and Verification of an OFDM Modem Design using HOL, in:
Proceedings IEEE International Conference on Formal Methods in Computer-Aided Design, IEEE Computer Society Press,
San Jose, California, USA, November 2006, pp. 189-190].
2 The work was done when this author was with Concordia University.
3 Email: nasser@cadence.com
4 Email: ba265@cl.cam.ac.uk
5 Email: tahar@ece.concordia.ca

c©2008 Published by Elsevier Science B. V.

a modulation technique that uses multiple carriers to mitigate the effects of multipath.
Usually, the analysis and functional verification of communications and other elec-

tronics designs, such as OFDM modems, are done using simulation. But, simulation is
inadequate to check all possible inputs of a design even of moderate size and thus leaves
the design partially verified. Formal verification is a technique which has proved itself as
a complement to simulation to achieve a rigorous verification. Among established formal
verification techniques theorem proving is particularly powerful for verifying complex sys-
tems at higher levels of abstraction.

In this paper, we use the general hierarchical methodology proposed by Akbarpour [2]
for the formal modeling and verification of DSP (Digital Signal Processing) designs, to
verify an implementation of the IEEE 802.11a physical layer OFDM modem [25] using the
HOL theorem prover [9]. The verification is performed at all levels of abstraction starting
from real, floating-point, and fixed-point number systems down to Register Transfer Level
(RTL) hardware implementation. For the purpose of verification, both the design specifi-
cation and implementation are modeled in formal logic and then mathematical theorems
are proved for correctness. We were able to find a bug in the modulation block where the
constellation used in the implementation did not follow the IEEE standard specification.
Besides, we derive new expressions for the round-off error accumulation while converting
from one number domain to the other and carry out a formal error analysis of the OFDM
modem in HOL.

The rest of the paper is organized as follows. Section 2 reviews some related work.
Section 3 describes details of the OFDM modem implementation to be verified and the
methodology used for verification. Section 4 describes the verification of RTL blocks of
the OFDM system. Section 5 describes the error analysis of the OFDM modem and its for-
malization using HOL. The last section concludes the paper and provides hints for future
work directions.

2 Related Work

There are numerous research work done on the design and implementation of the IEEE
802.11a physical layer. Although no significant work is done about using theorem proving
for the verification of the OFDM or part of the system, we still mention some important im-
plementations of OFDM systems. In [8], a coded OFDM system was developed using the
TMS320C6201 processor for telemetry applications in the racing and automotive environ-
ment. In [30] the authors developed a wireless LAN (Local Area Network) system using
the TI C6x platform. A real time software implementation of OFDM modem optimized
for software defined radio is implemented in [6]. Software modules representing discrete
system blocks are created and sequentially called upon as needed in this implementation.
This software reconfigurable system is developed on a TMS320C6201 evaluation module,
which is based on a fixed-point processor. The work also explored different combinations
of arithmetic precision and speed for the fixed-point operations. In this paper, we consider
the design of [25]. Unlike [8], the design under verification is not optimized for telemetry
applications and it does not use the coded OFDM technology. The OFDM design in [30]
is targeted for a specific platform and used the high level procedural language subroutine
provided by the platform extensively; whereas [25] used Xilinx library to implement some
high performance computational blocks. The work described in [6] also designed OFDM

2

system but it is optimized specially for software defined radio. Both [8] and [6] used the
same processor platform, but [25] has a more generic design that can be accommodated in
various applications.

There exists a couple of work related to the application of formal methods for the IEEE
802.11. Both use probabilistic model checking but none of them analyzes the design or
implementation of the system from the hardware viewpoint. The first one [23] models the
two-way handshake mechanism of the IEEE 802.11 standard with a fixed network topol-
ogy using probabilistic timed automata, a formal description mechanism, in which both
nondeterministic and probabilistic choices can be represented. Then from the probabilistic
timed automaton model a finite-state Markov decision process is obtained which in turn is
verified using PRISM [22], a probabilistic model checking tool. In the second work [29],
which identifies ways to increase the scope of application of probabilistic model check-
ing to the 802.11 MAC (Media Access Control), presents a generalized probabilistic timed
automata model optimized through an abstraction technique. Here also the results were
verified using PRISM. In contrast to these related work, we focus on a completely different
direction. While the first work performs model checking on a IEEE 802.11 network setting
and concentrates on the protocol issues, it is concerned more about the upper layers of the
OSI (Open System Interconnect) model than the physical layer. The second work also uses
model checking to verify the MAC protocol which resides just above the physical layer.
In this paper, we concentrate only on the physical layer and its hardware implementation.
Moreover, instead of model checking we use theorem proving techniques based on HOL.
The above two work are totally related with the protocol verification and address the ver-
ification issues related with the upper layers of OSI model and hence more related with
software verification. Besides, in the work we present here, we propose a formal error
analysis of the physical layer implementation, which is to the best of our knowledge the
first work of its kind to tackle this issue.

Previous work on the error analysis in formal verification was done by Harrison [11]
who verified floating-point algorithms such as the exponential function against their ab-
stract mathematical counterparts using the HOL Light theorem prover. As the main theo-
rem, he proved that the floating-point exponential function has a correct overflow behavior,
and in the absence of overflow the error in the result is bounded to a certain amount. He
also reported on an error in the hand proof mostly related to forgetting some special cases
in the analysis. This error analysis is very similar to the type of analysis performed for
DSP algorithms. The major difference, however, is the use of statistical methods and mean
square error analysis for DSP algorithms which is not covered in the error analysis of the
mathematical functions used by Harrison. In this method, the error quantities are treated
as independent random variables uniformly distributed over a specific interval depending
on the type of arithmetic and the rounding mode. Then the error analysis is performed
to derive expressions for the variance and mean square error. In another work, Huhn et
al. [17] proposed a hybrid formal verification method combining different state-of-the-art
techniques to guide the complete design flow of imprecisely working arithmetic circuits
starting at the algorithmic down to the register transfer level. The usefulness of the method
is illustrated with the example of the discrete cosine transform algorithms. In particular,
the authors in [17] have shown the use of computer algebra systems like Mathematica or
Maple at the algorithmic level to reason about real numbers and to determine certain error
bounds for the results of numerical operations.

3

Arithmetic errors in the implementation of digital filters and the FFT algorithm have
long been analysed using traditional mathematics and simulation. For instance, Tran-Thong
and Liu [31] presented a detailed analysis of roundoff error in various versions of the FFT
algorithm using fixed-point arithmetic. Jackson [20] analysed the roundoff noise for the
cascade and parallel realizations of fixed-point digital filters. Liu and Kaneko [24, 21] pre-
sented a general approach to the error analysis problem of digital filters and FFT algorithm
using floating-point arithmetic and calculated the error at the output due to the roundoff ac-
cumulation and input quantization. Error analysis is traditionally validated by comparing
such theoretical results with experimental simulations.

In contrast to [17], Akbarpour [2] developed a framework for the error analysis of DSP
systems using the HOL theorem prover. He showed how the error analysis above, partic-
ularly those of Liu and Kaneko [24, 21], can be verified mechanically. He extended this
analysis to cover floating-point and fixed-point digital filters and FFT algorithms. Akbar-
pour’s analysis of DSP algorithms follows Harrison’s verification [11] of the floating-point
algorithm for the exponential function using the HOL Light theorem prover which is a prior
example of formalized error analysis.

In this paper, we intend to investigate error analysis in the same way as proposed by [2]
but on a larger case study, here an IEEE 802.11 OFDM modem. Our work proves that the
approach in [2] is scalable. On top of that, in contrast to [31, 21], which perform error anal-
ysis on single structures of FFT algorithm, we derive new expressions for the accumulation
of roundoff error in IFFT-FFT combination which is radix-4 and 64 point in computation
as a computation model for the whole OFDM structure. In ideal case, the output signal of
the modem should be equal to the input. But, we show that in the real implementation this
is never the case because of the finite precision effects.

3 IEEE 802.11 OFDM Modem and Verification Methodology

A standard block diagram implementation of the IEEE 802.11 physical layer OFDM mo-
dem is shown in Figure 1. The first block is the random data generator, which is shown
here merely for completion purpose. The next block is a quadrature amplitude modulation
block (QAM). For our specific implementation, 64-QAM is used. The next block is a serial
to parallel (S/P) block that can also be found in the receiver side of the block diagram. The
next block is the IFFT block, one of the most important blocks of OFDM. The design uses
a 64-point complex IFFT core from Xilinx Coregen Library [34].

The IFFT uses the same IP core as FFT block that comes in the receiver. The paral-
lel to serial (P/S) circuitry makes the next block. The next block in the transmitter line is
the guard interval insertion circuitry. In the receiver side, the first block is guard interval
removal block. We skip to QAM demapper (DQAM) block since we discussed the other
blocks before. From this block the data is serialized again and the output is received se-
quentially.

The design flow chosen for the OFDM modem implementation under study starts from
the floating-point modeling. For this OFDM modem design, the environment used for
floating-point modeling is the Signal Processing Worksystem (SPW) from Cadence [5].
The second step in the design flow is fixed-point modeling and simulation. The environ-
ment used for this purpose is the Hardware Design System (HDS), which is a set of libraries
from SPW. Then VHDL codes are generated automatically for the whole system using HDS

4

Random
Data

Generator

Serial
to

Parallel

Modulation
BPSK
QPSK

16-QAM
64-QAM

IFFT
Parallel

to
Serial

Guard
Interval
Insertion

Guard
Interval

Removal

Serial
to

Parallel
FFT

Parallel
to

Serial

DEModulation
BPSK
QPSK

16-QAM
64-QAM

Channel Model

OFDM Transmitter

OFDM Receiver

Data
Output

Fig. 1. OFDM Block Diagram [25]

also. But, for some blocks like FFT/IFFT there was no HDS counterpart and those were
imported from the Xilinx Coregen Library. Some of the VHDL codes were prepared man-
ually [25]. After VHDL code generation, these blocks are synthesized in Synopsys Design
Compiler targeting FPGA as the hardware for implementation. Finally, the synthesized cir-
cuitry is mapped into FPGA using “Place and Route” techniques and a bit file is generated.

(HOL)Embedding

Logical
Implication

(Synthesize)

RTL
Embedding (HOL)

RTLShallow

(Convert)

(Convert)

FP

FXP

(HOL)
FP

(HOL)

(HOL)
FP Real Value

FP Error
Analysis

FP to FXP Error
Analysis

FXP FXP Real Value
(HOL)

FXP Error
Analysis

Embedding

Embedding

Valuation

ValuationShallow

Shallow

Shallow
REAL REAL

Logical
Implication

(Synthesize)

Embedding (HOL)
Shallow

Netlist Netlist

Fig. 2. DSP Specification and Verification Approach [2]

The formal specification, verification and error analysis used in this paper is adopted
from DSP verification framework proposed by Akbarpour [2]. The commutating diagram
shown in Figure 2 demonstrates the basic idea of the framework. The methodology pro-
poses that the ideal real specification of the DSP algorithms and the corresponding floating-
point (FP) and fixed-point (FXP) representations as well as the RTL (Register Transfer
Level) and gate level implementations be modeled in higher order logic based on the idea
of shallow embedding [4] of languages using the HOL theorem proving environment.

For the transition from real to FP and FXP levels, an error analysis is used in which

5

the real values of the floating-point and fixed-point outputs are compared with the corre-
sponding output of the ideal real specification. The verification of the RTL is performed
using well-known classical hierarchical proof approaches in HOL. The verification can be
extended, following similar manner, down to gate level netlist either in HOL or using other
commercial verification tools as depicted in the figure. This analysis is not covered in this
paper.

4 Formal Functional Verification

In this section we describe the verification of the RTL blocks of OFDM using HOL ac-
cording to the methodology described in Section 3. The whole design is segmented into
different blocks and then modeled using HOL. The resulting model is in turn set against
an ideal specification and the HOL tool is used interactively to prove its correctness. In
the following sections we will describe in details the verification of QAM, DQAM, serial
to parallel (S/P) and parallel to serial (P/S) blocks. For the blocks described below, the
corresponding abstract models, HOL models and parts of the proof strategy are provided to
explain the verification in its entirety. For more details please refer to [1].

4.1 Verification of QAM and DQAM Block

QAM (Quadrature Amplitude Modulation) is a modulation scheme which conveys data
by changing the amplitude of two carrier waves. These two waves, usually sinusoids, are
out of phase with each other by 90◦ and are thus called quadrature carriers—hence the
name of the scheme. It is a kind of M-ary signaling technique where one of M possible
signals, s1(t), s2(t), . . . , sM (t) may be sent during each signaling interval of duration T.
Unlike M-ary PSK (Phase Shift Keying), where in-phase and quadrature components of the
modulated signals are interrelated in such a way that the envelope is constrained to remain
constant, QAM has this constraint removed. The general form of M-ary QAM is defined
by the following transmitted signal:

si(t) =

√
2E0

T
ai cos (2πfct) +

√
2E0

T
bi sin (2πfct) 0 ≤ t ≤ T (1)

where E0 is the energy of the signal with the lowest amplitude, and ai and bi are a pair
of independent integers chosen in accordance with the location of the pertinent message
point [14]. According to the IEEE 802.11a standard, the OFDM subcarriers shall be modu-
lated by using BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying),
16-QAM, or 64-QAM modulation depending on the rate requested. The encoded and inter-
leaved binary serial input data shall be divided into bit groups and converted into complex
numbers representing BPSK, QPSK, 16-QAM or 64-QAM constellation points. The con-
version shall be performed according to Gray-coded constellation mappings, illustrated in
Figure 3, with the input bit, b0, being the earliest in the stream. The output values, d, are
formed by multiplying the resulting I + jQ, where I and Q are the x-axis and y-axis of the
constellation respectively, value by a normalization factor KMOD

d = (I + jQ) KMOD (2)

6

The normalization factor, KMOD, depends on the base modulation mode, as prescribed in
Table 1. The purpose of the normalization factor is to achieve the same average power for
all mappings. In practical implementations, an approximate value of the normalization fac-
tor can be used, as long as the device conforms with the modulation accuracy as specified in
the draft standard of IEEE 802.11a in [19]. A question might arise in terms of what QAM
constellation should be used for OFDM? The answer lies in the fact that, although higher
constellation gives more bits per symbol, if the mean energy is to remain the same, the
points must be closer together and are thus more susceptible to noise and other corruption;
this results in a higher bit error rate and so higher-order QAM can deliver more data less
reliably than lower-order QAM.

Modulation KMOD

BPSK 1

QPSK 1√
2

16-QAM 1√
10

16-QAM 1√
42

Table 1
KMOD Normalization

For the OFDM design verified, 64-QAM constellation was chosen after simulating the
floating-point and fixed-point point models in Cadence SPW. The circuitry used for QAM
mapping is implemented using combinational logic. It maps the input integer data into a
constellation point as shown in Figure 3.

-7 -5 -3 -1

-7

-5

-3

-1

1

3

5

7

1 53 7

000 000

000 001

000 011

000 010

000 110

000 111

000 101

000 100

Q
001 100

001 101

001 111

001 110

011 100

011 101

011 111

011 110

010 100

010 101

010 111

010 110

110 100

110 101

110 111

110 110

111 100

111 101

111 111

111 110

101 100

101 101

101 111

101 110

100 100

100 101

100 111

100 110

I
110 010

110 011

110 001

110 000

111 010

111 011

111 001

111 000

101 010

101 011

101 001

101 000

100 010

100 011

100 001

100 000

001 010

001 011

001 001

001 000

011 010

011 011

011 001

011 000

010 010

010 011

010 001

010 000

Fig. 3. 64-QAM Constellation Bit Encoding

The VHDL modeling is done using a look-up table approach [25]. The QAM block
takes only 3 bits as inputs and maps to an output of 16 bits as shown in Figure 4a. The

7

QAM block is instantiated two times and designed to generate the real and imaginary com-
ponents as two separated outputs. Each of them is formatted in 16-bit 2’s complement
against a 3-bit input chosen from an input of six for each block. These outputs are shown
by out qam r and out qam i in Figure 4b. The circuitry is fed by the input continuously,
therefore out qam r and out qam i are generated as continuous streams. The outputs are
processed in groups of 48 symbols which are stored in two separated dual port RAMs called
“Dual Port RAM image” and “Dual Port RAM real”, respectively. Since, this type of RAM
is generated automatically using the Xilinx Coregen Library [35] it is not discussed further.

QAM

3 bits 16 bits

(a) QAM Block

QAM

6 bits

16 bits
QAM

16 bits
out_qam_i

out_qam_r

(b) Instantiation of QAM Block

Fig. 4. QAM Block and its Instantiation

The modeling of QAM is done in HOL using different existing theories. An IF-THEN-
ELSE construct is used to embed the VHDL code as shown in the following code:

`def ∀input qam_out.
qam_imp (input qam_out) =
(WORDLEN input = 3) ∧
(if input = WORD [F; F; F] then
qam_out = WORD [T; F; F; T; F; F; F; F; F; F; F; F; F; F; F; F]
else

(if input = WORD [F; F; T] then
qam_out = WORD [T; F; T; T; F; F; F; F; F; F; F; F; F; F; F; F]
else

(if input = WORD [F; T; F] then
qam_out = WORD [T; T; T; T; F; F; F; F; F; F; F; F; F; F; F; F]
else

(if input = WORD [F; T; T] then
qam_out = WORD [T; T; F; T; F; F; F; F; F; F; F; F; F; F; F; F]
else

(if input = WORD [T; F; F] then
qam_out = WORD [F; T; T; T; F; F; F; F; F; F; F; F; F; F; F; F]
else

(if input = WORD [T; F; T] then
qam_out = WORD [F; T; F; T; F; F; F; F; F; F; F; F; F; F; F; F]
else

(if input = WORD [T; T; F] then
qam_out = WORD [F; F; F; T; F; F; F; F; F; F; F; F; F; F; F; F]
else
qam_out = WORD [F; F; T; T; F; F; F; F; F; F; F; F; F; F; F; F])))))))

The above model is based on the wordTheory [33]. The data types of VHDL can be
modeled using this theory. The VHDL type BIT can be modeled using T and F where
these represent 1 and 0 respectively. BIT VECTOR can be modeled using WORD[...]
where the dots can be replaced with any sequence of T or F separated by “;” as above.
As an example, bit vector “110” can be modeled as WORD[T;T;F]. The above model is
constrained using the condition WORDLEN input = 3 since the input is always 3 bits
and thus the model does not need to be generalized for n bits. Here, WORDLEN is a function
that takes any WORD as input and returns the length of it. The model above now can be
used (or in HDL terminology can be instantiated) as many times as required to model any

8

complex design. For our case, it is used two times to embed the port-mapped component in
HOL, and named as qam mod2. We stick to the same nomenclature used by the designer.
Below is the corresponding HOL modeling.

`def ∀ input out_qam_r out_qam_i.
qam_mod2_imp (input out_qam_r out_qam_i) =
(WORDLEN input = 6) ∧ (WORDLEN out_qam_r = 16) ∧
(WORDLEN out_qam_i = 16) ∧ qam_imp (WSEG 3 0 input) out_qam_i ∧
qam_imp (WSEG 3 3 input) out_qam_r

This model has the same characteristics as the one before except the input is now con-
strained to six bits since the input of qam mod2 will always be six.

Now that the modeling of the RTL block is completed it is time to model the specifica-
tion of QAM in HOL. After that we will use the logical techniques of the tool to prove that
the implementation is conformed to the specification. Since the design is based on IEEE
802.11a we have used the standard [19] itself as a specification in order to verify the QAM
implementation. Accordingly, for every six bits entering the qam mod2 block, the bits are
divided into three bits each, which acts as an input to the qam block. Then, as described
above, the qam mod2 block outputs two vectors containing real and imaginary parts of the
modulated input. Table 2 shows the encoding of bits for I and Q.

Input bits
(b0,b1,b2)

I − out

000 -7

001 -5

011 -3

010 -1

110 1

111 3

101 5

100 7

Input bits
(b3,b4,b5)

Q− out

000 -7

001 -5

011 -3

010 -1

110 1

111 3

101 5

100 7

Table 2
64−QAM Encoding Table [19]

One point can be noticed from the two tables is the similarity of bit encoding both for I

and Q and this helps us to model only one specification for both, while it is trivial to model
them separately. Modeling a table in HOL can be done by using predicates as follows:

val TABLES_QAM =
`def ∀ I_OUT.

TABLES_QAM (I_OUT) =
(I_OUT (F,F,F) = ¬7) ∧ (I_OUT (T,F,F) = ¬5) ∧
(I_OUT (T,T,F) = ¬3) ∧ (I_OUT (F,T,F) = ¬1) ∧
(I_OUT (F,T,T) = 1) ∧ (I_OUT (T,T,T) = 3) ∧
(I_OUT (T,F,T) = 5) ∧ (I_OUT (F,F,T) = 7)

In the above model I OUT is a triplet which will accept three bits similar to the left
columns of Table 2. For each and every argument of I OUT, a unique number will be

9

mapped as given in the tables and ‘∧’ is used as a composition operator to construct all
rows. Having covered all the pertinent details about the implementation and a very reliable
means to extract the specification, qam spec can be written in terms of TABLES QAM as
follows:
`def ∀ b0 b1 b2 I_OUT.

qam_spec (b0 b1 b2 I_OUT) =
∃OUT. TABLES_QAM OUT ∧ (I_OUT b0 b1 b2 = OUT (b0,b1,b2))

The specification qam spec is mirrored, in the same way its implementation qam imp is
instantiated in qam mod2 imp,

`def ∀ input I_OUT_R I_OUT_I.
qam_mod2_spec (input I_OUT_R I_OUT_I) =
qam_spec (BIT 0 input) (BIT 1 input) (BIT 2 input) I_OUT_I ∧
qam_spec (BIT 3 input) (BIT 4 input) (BIT 5 input) I_OUT_R

With the specification above we have finished all the groundwork to set the goal for
verification of the QAM RTL block. Next we will discuss the verification in details and
the proof strategies adopted to bolster the correctness of RTL implementation. The general
goal is to prove that for all inputs and outputs the correctness theorem holds, under certain
constraints, which can be stated as

∀ n inputs outputs. constraints =⇒ (implementation ≡ specification)

The equivalence can be replaced by implication which will set space for some allowance
in the correctness theorem by proving only specific behaviors of the system, which will
certainly weaken the sole purpose of verification. But, there are cases where the engineer
(or anybody who is carrying out the proof work) can categorically exclude some cases
given the certainty that those will never occur. For our case, it is an implication due to the
constraints we have imposed in the definitions since we are certain that there can be no
other combination occurring other than those. This justification leaves us only to state our
goal, except we need one more definition to do so, which is as follows:

`def ∀ x.
TCOMP_VAL x =
¬& (BV ()) * 2 pow 3 + & (BV (BIT 2 x)) * 2 pow 2 +
& (BV (BIT 1 x)) * 2 pow 1 + & (BV (BIT 0 x))

It is a simple definition based on boolLibrary of HOL to convert a bool word into
its real number equivalent. The function TCOMP VAL accepts a bool word and returns
a real number. The “&” symbol is an overloaded HOL operator that converts any natural
number to real number. And, BV is also a function, defined in theory numTheory, that uses
another function to convert the boolean value into a natural number.

`def ∀ b. BV b = (if b then SUC 0 else 0)

The function SUC takes a natural number and returns the consecutive natural number.
So, SUC 0 will return 1. And, BIT x input chooses a particular bit positions from
input defined in x. Now, we can state that our goal as - for all input and output and con-
straints, the QAM implementation implies the QAM specification

∀ n inputs outputs. constraints =⇒ (implementation =⇒ specification)

Formalized in HOL as

10

∀ input qam_out.
qam_imp (input qam_out) =⇒
qam_spec (BIT 0 input) (BIT 1 input) (BIT 2 input)
(λ b0 b1 b2. TCOMP_VAL (WSEG 4 12 qam_out))

The definition WSEG m k WORD selects a portion of WORD from k to k+m-1. The
function qam spec takes three arguments and gives a corresponding output. One λ abstrac-
tion is used to convert the selected qam out word into real number. Now, the stage is set to
apply the tactics of HOL to prove the goal. We have used the existing theories of wordThe-
ory and realTheory to build many helpful definitions and lemmas to prove the above goal
and thus established the correctness of the RTL block formally. We prove the theorem and
name it as qam imp spec correct. Due to textual brevity, we do not include the whole proof
procedure here line by line. But, proving this theorem just ensures us about the QAM block
and we are yet to prove the implementation of qam mod2 imp. In order to do so we set a
goal as -

∀ input out_qam_r out_qam_i.
qam_mod2_imp (input out_qam_r out_qam_i) =⇒
qam_mod2_spec input (

¯
0 b1 b2. TCOMP_VAL (WSEG 4 12 out_qam_r))

(λ b0 b1 b2. TCOMP_VAL (WSEG 4 12 out_qam_i))

We use the same libraries as before to prove this goal too. Below is the HOL proof
steps.

REPEAT GEN_TAC THEN
ARW_TAC [qam_mod2_spec,qam_mod2_imp]THEN
ARW_TAC[BIT_WSEG_input]THEN
ARW_TAC [qam_imp_spec_correct]THEN
ARW_TAC[BIT_WSEG_input]THEN
ARW_TAC [qam_imp_spec_correct]

We use only built in tactics. The REPEAT GEN TAC tactic removes all the universal
and existential quantifications. Next, ARW TAC is a tactic defined using a rewriting tactic
RW TAC using simpset [16] arith ss. This defined tactic is used to rewrite the the goal
with the specifications and proved theorems as shown in the code segments above. We
name this last proved theorem as qam imp spec correct.

Having proved the correctness of qam mod2 imp and qam imp using the theorems
qam imp spec correct and qam mod2 imp spec correct it can be concluded that the QAM
is formally verified. The implementation conforms the specification given in the standard.

Following a similar approach we have proved the correctness of DQAM block. The
details can be found in [1].

4.2 Verification of the S/P and P/S Blocks

In this section we will verify the serial to parallel block, later written as S/P, which is an
indispensable part of the whole OFDM system. Most of the basics related to S/P are simi-
lar to those of the Parallel to Serial block, to be discussed later, and thus will cover almost
all the important aspects of both blocks in this section. The concept of serial to parallel
conversion is trivial. A long stream of data is divided into several equal or approximately
equal length of chunks which can all be operated upon at the same time. From the math-
ematical point of view, it is the manipulation of a vector into several columns of a matrix.
However, S/P conversion is very important in OFDM. The length of the blocks produced in
S/P determine the number of spectral coefficients to be used by the IFFT, which is essential
in choosing how many frequencies are to be used. Usually, the block length is a power of

11

2, which makes the IFFT and FFT algorithms most computationally efficient. Moreover, in
OFDM, the data is divided among a large number of closely spaced carriers. Since the en-
tire bandwidth is filled from a single source of data, it is necessary to transmit in a parallel
way so that only a small amount of the data is carried on each carrier, and by this lowering
of the bitrate per carrier, the influence of intersymbol interference is significantly reduced.

The S/P circuitry is very simple to implement. It has its presence both in the transmitter
and receiver of the system. In the transmitter side, it is placed between QAM and IFFT
block, and in the receiver side between Guard Removal and FFT block. The design at hand
has the same functionality of of “Bits to fixp” block of SPW [5] in fixed-point model. It
consists of a shift register and a latch, which are both clocked with the same rate as the
input data. Six bits from input stream are serially shifted into a register. Then they are
latched for six clock cycles. There are two control signals enable and clear to synchronize
the whole process.

Modeling of the S/P block in HOL is done in a different way than what we have seen in
Section 4.1. The modeling is not exactly one to one mapping because a VHDL PROCESS
is involved here. In fact, a PROCESS never terminates itself, and it can only be controlled
using WAIT statements and sensitivity lists. After executing the last statement, a PROCESS
will be suspended only to be resumed later on an event in the sensitivity list. This last
behavior poses a difficulty in modeling it in HOL due to non-termination problem. Higher
order logic is a logic of total function and it does not allow the definition of any partial
function. But, there are exceptions which motivates us to define our specification for S/P
in a simpler way without resorting to complex definition. For example, the following is a
total and non-recursive function that uses the expressive power of HOL [16]:

λ x. if (? n. P (FUNPOW g n x))
then

FUNPOW g (@n. P (FUNPOW g n x) ∧ (!m. m < n ==> ¬ P (FUNPOW g m x))) x
else ARB

The function FUNPOW is a tail recursive function from the theory arithmeticTheory
to define function iteration. The above function does a case analysis on the iterations of
function g. The finite ones return the first value at which P holds and the infinite ones
are mapped to a constant named ARB that holds all the arbitrary values. ARB is a way to
convert partial-functions into total functions in HOL. But, using ARB will only complicate
our model without any added benefit. A VHDL PROCESS is more than a simple loop and
we have no cases to deal with infinity rather we only have finite sets of statements to be
dealt with infinitely. This discussion is to justify why we did not use certain features of
HOL to model our system which seems apparently helpful in doing so. The other aspect
of the model is that three signals clk, enable, and clear are not used since we are verifying
this module independently of other blocks, and there are no pipelining issues involved here.
Having said that we introduce the implementation of S/P in HOL as follows

`def ∀ cnt out_parallel input.
Serial_Parallel_IMP (cnt out_parallel input) =
∃ shift_reg.

(WORDLEN out_parallel = 6) ∧
(shift_reg input = SHRN_bit cnt input out_parallel)

Apparently a simplification of the corresponding VHDL code but a little analysis will
support its correct functionality. From the code, the variable cnt is a natural number whose
type is defined as num; out parallel is a bool word and input is of bool type.

12

The implementation takes three arguments where cnt is defined to keep track of the time
or bit index which is a model of the signal count. The second variable has the same
name of its VHDL counterpart and so is the last one - input. A function shift reg
is defined as shift reg:bool→bool word to mimic the VHDL signal of the same
name. Variable out parallel is constrained to six using WORDLEN function as before
because the design specifies so. Since the system will receive only one input at a time and
then latches all till it fills the whole shift register, so we write another definition in HOL to
manipulate every new bit entering the system and filling the empty places with zeros

`def ∀ N M w.
SHRN_bit (N M w) =
WCAT (WORD (REPLICATE (WORDLEN w − (N + 1)) F),WORD [M])

This definition uses WCATwhich concatenates two lists is defined in word baseTheory [16]
as

`def ∀ l1 l2. WCAT (WORD l1,WORD l2) = WORD (l1 ++ l2)

The symbol ‘++’ is an infix operator that appends two lists in the above definition. The
recursive definition of REPLICATE is in the theory rich listTheory which replicates any
variable repeatedly as specified. It is defined as

`def (∀ x. REPLICATE 0 x = []) ∧
∀ n x . REPLICATE (SUC n) x = x::REPLICATE n x

Here the REPLICATE function fills the rest of the places of the shift register with ‘F’
depending on the current value passed to it by the function and then adds the input to it.
In this way at the end of the iteration the whole register will be populated with serial data
and will be ready to be latched out.

Having completed the modeling of implementation we describe the specification of the
block so that we can explain the verification in the next section. We state the specification
of the block as

`def ∀ t out input.
Serial_Parallel_SPEC (t out input) = (BIT t out = input)

It simply puts the relation between the input and output of the block in terms of bit
position. At every time t, we have one input entering the block which goes in the bit
position related to the current index of t of the output. A more general approach would be
to use the modulo arithmetic to model the specification, but it is not required here due to
the proof strategy we will follow next.

Unlike the verification strategy of QAM explained in Section 4.1, we adopt a case
analysis approach to prove the goal. We can define the goal as following:

∀ out input t.
(0 ≤ t ∧ t ≤ 5) =⇒

Serial_Parallel_IMP (t out input) =⇒
Serial_Parallel_SPEC (t out input)

It has a very generic pattern like any other goal except the constraint which bounds
t as, 0 ≤ t ≤ 5. Bounding t helps to get over with the problem of looping which we
stated earlier. We flatten one whole iteration which is enough to demonstrate the functional
correctness of the given block. That is why we bound the variable only to check the cases
starting from t = 0 to t = 5. Once we finish with case analysis we prove following trivial
lemma

13

∀ t. (0 ≤ t ∧ t ≤ 5) =⇒
(t = 0) ∨ (t = 1) ∨ (t = 2) ∨ (t = 3) ∨ (t = 4) ∨ (t = 5)

which simply states that when t is bound between 0 and 5, then the only values for which
the correctness theorem needs to hold are t = 0, 1, 2, 3, 4, 5. We proved the goal and thus
verified the functionality of the said RTL block.

Following a similar approach, we have proved the correctness of the P/S block. The
details can be found in [1].

4.3 Discussion

The modeling, specification and verification done above for the OFDM RTL blocks demon-
strate a way to incorporate formal methods in the verification of digital systems. We have
described the implementation of the RTL blocks in HOL using formal logic. For the QAM
block, it was straightforward to embed the if-then-else HDL code in HOL and the speci-
fication is obtained from IEEE 802.11 specification. Although the demodulator block has
a similar implementation and its formal description was similar to the QAM block, but
finding a specification to check the design could not be done using IEEE standard since
this block resides in the receiver side and the designer has the freedom to choose any way
to implement it. Both the specifications for QAM and demodulator are based on look-up
tables and the implementations were proved against those. For the S/P and P/S blocks, the
specifications and implementations were also formalized after much consideration about
the VHDL PROCESS. The verification of all blocks were done using existing theories in
HOL on real numbers, natural numbers, boolean logic, lists, words and others. Many lem-
mas were proved in order to aid the proof steps. Some lemmas were very trivial but HOL
requires each and every proof step to be sound and complete and that is why there is no
ambiguity in the HOL proof. The built-in rewriting tactics RW TAC was heavily used with
the powerful simplification sets augmented with the required lemmas and theorems. In
most cases, the proof strategy starts with a rough proof sketch by hand and then formalized
in HOL. But, some lemmas and intermediate theorems were simple enough to not resort to
this approach.

The main purpose for using formal verification was to find bugs in the design. We did
not find any bug in the blocks. But, some comments are in order. Namely, for the QAM
block, it is given in the standard that the input for a 64-QAM modulation must follow the
constellation diagram shown in Figure 3. The constellation gives output between −7 to
7 but the implementation used 16 bit 2’s complement number to represent these numbers
while 3 bits would have done the same job. If the standard is followed exactly, then this
issue might have resulted in a bug in the design. But, the standard gives some flexibility to
the designers in order to have more precise results from the IFFT block, as explained before
in Section 4.1. As, we were aware about it at the time of verification, we constrained the
implementation using the proper number of bits. The same comments are applied to the
DQAM block. For the rest of the blocks we did not find any issue like this.

A pertinent question can be raised about the higher-order logic used for the modeling
and verification of OFDM that - whether first-order logic can also be used for this purpose.
The reason is of course automation of proofs and completeness in some cases. It is men-
tioned in Chapter 3 that higher-order logic is expressive and the variables in this logic can
be functions and predicates those in turn can take functions and predicates as arguments
and return them too. Whereas first-order logic can only quantify over objects and variables.

14

For the design verified none of the RTL blocks can be specified or verified using first-order
logic fully. For instance, the QAM block cannot be modeled completely using first-order
logic, although the implementation of the block—a pure combinational logic circuit—can
be modeled in first-order since simple predicate logic is used. But, the instantiated spec-
ification of QAM block needs universal quantification on functions which were used to
access the tables of the I and Q values for modulation. For, the S/P block, first-order logic
cannot be used due to the use of existential quantification on the shift register in the formal
modeling of the implementation. The same can be told for the P/S block. The implementa-
tion of the DQAM block can be modeled using first-order logic but the instantiation of the
demapping function for modeling the decision region for specification needs to be univer-
sally quantified.

There are other blocks in the OFDM that we did not verify; namely, guard interval in-
sertion and guard interval removal. The reason is that the RTL codes for those blocks were
not available for the design at hand. The guard insertion block in the transmitter side has a
portion of its behavioral code but the whole code mostly contains port-mapping [3] to the
IP blocks. In general, the whole design contains many IP blocks and thus the verification
of the design in its entirety is not practical using any theorem-proving tool like HOL. Still,
this chapter demonstrates the scope and feasibility of formal methods in a comprehensive
way in parts of the OFDM RTL blocks.

5 Formal Error Analysis

This section describes the error analysis of OFDM modem in a formal way. We first de-
rive expressions for the accumulation of round-off error in the OFDM structure and then
describe how we proved the corresponding theorems in HOL. Mainly we focus on the two
computational blocks of the design—FFT and IFFT. Among all the blocks only FFT and
IFFT are computational blocks doing arithmetic operation. Other blocks carry out merely
mapping operations of bits from one domain to another. We take IFFT-FFT combination as
the model for the error analysis of the OFDM modem. Figure 5 shows the block diagram
of the IFFT-FFT combination.

CONJUGA
TION

FFT 1/N FFT
CONJUGA

TION

x(n2,n1,n0) B(q2,q1,q0)
A(p2,p1,p0)x* A3 A*

3

Fig. 5. Construction of IFFT-FFT

We first derive the equations for this system as [1]:

B(q2, q1, q0) =
1
64

∑
p

∑
n

x(n2, n1, n0)(W64)(L−M)
(3)

15

where

∑
p

=
3∑

p0=0

3∑

p1=0

3∑

p2=0

∑
n

=
3∑

n0=0

3∑

n1=0

3∑

n2=0

L = 16q0n2 + (4q1 + q0)4p1 + (16q2 + 4q1 + q0)p0

M = 16p0n2 + (4p1 + p0)4n1 + (16p2 + 4p1 + p0)n0

(4)

Next we represent this mathematical model in real, floating-point and fixed-point do-
mains. The signal x(n) and twiddle factor W64 are complex numbers and can be written
in terms of their real and imaginary components. In Equation (3) these two functions are
multiplied with each other. We denote the real and imaginary parts of x(n), B(q), and W64

like C0, D0, C, D, U64, and V64 and rewrite the Equation (3) as following

C(q2, q1, q0) =
1
64

∑
p

∑
n

C0(n2, n1, n0)(U64)(L−M) −D0(n2, n1, n0)(V64)(L−M)

(5)

D(q2, q1, q0) =
1
64

∑
p

∑
n

C0(n2, n1, n0)(V64)(L−M) + D0(n2, n1, n0)(U64)(L−M)

(6)

Mimicking the analysis of real numbers we ought to define the equations for floating-
point and fixed-point number and state fl(.) and fxp(.) as floating-point and fixed-point,
respectively. The characters prime and double primes are used to point to floating-point and
fixed-point numbers and we will stick to this convention in the analysis set forth. Using
these notations we denote the floating-point and fixed-point conversions of C and D as C ′,
C ′′, D′, D′′, respectively.

In analyzing the effects of floating-point roundoff, the effect of rounding is presented
multiplicatively. Let ∗ denote any of the operations +, −, ×, ÷. It is known [32, 7] that if
p represents the precision of the FP format, then

fl(x ∗ y) = (x ∗ y)(1 + δ), where |δ| ≤ 2−p. (7)

While the rounding error for floating-point arithmetic enters into the system multiplica-
tively, it is an additive component for fixed-point arithmetic. In this case, the fundamental
error analysis theorem can be stated as

fxp(x ∗ y) = (x ∗ y) + ε, where |ε| ≤ 2−fracbits (X) (8)

and fracbits is the number of bits that are to the right of the binary point in the given FXP
format X.

The real part of floating-point, C ′ , can be written with all the errors due to floating-
point round-off as follows, where δ accounts for the round-off error due to multiplication

16

of C
′
0 and (U64)(L−M) according to Equation (7).

C
′
(q2, q1, q0) =

1
64

[∑
p

∑
n

((
C
′
0(n2, n1, n0)(U64)(L−M)

(1 + δ1024p2+256p1+64p0+16n2+4n1+n0)
)
−

(
D
′
0(n2, n1, n0)(V64)(L−M)

(1 + ε1024p2+256p1+64p0+16n2+4n1+n0)
))

(1 + ξ1024p2+256p1+64p0+16n2+4n1+n0)
4095∏

i=1024p2+256p1
+64p0+16n2

+4n1+n0

(1 + λi)

]
(1 + τ)(1 + ρ)

(9)

The function ε represents the error due to the round-off error after the multiplication of
D
′
0 and (V64)(L−M). The error due to the subtraction of [C

′
0(U64)(L−M)−D

′
0(V64)(L−M)]

is represented using ξ. Based on the errors due to one single iteration, the error due
to the two summations

∑
p

∑
n (which is actually an abbreviation for six summations∑3

p0=0

∑3
p1=0

∑3
p2=0

∑3
n0=0

∑3
n1=0

∑3
n2=0 can be stated as products of λ where the up-

per index is set as 4095 due to six iterations each ranging from 0 to 3 giving 4 × 4 × 4 ×
4× 4× 4− 1 = 4095. It should have eclipsed all the rounding errors in the whole system
of equation, but still the fraction 1

64 incurs two round-off errors. One of them due to the
division of 1 by 64, denoted as τ and the other is for the multiplication thereafter with the
rest of the equations, denoted as ρ. These errors can be generalized on the same line of
reasoning for the other equations.

The error related with the imaginary part D
′

of the floating-point can be written as

D
′
(q2, q1, q0) =

1
64

[∑
p

∑
n

((
C
′
0(n2, n1, n0)(V64)(L−M)

(1 + δ
′′
1024p2+256p1+64p0+16n2+4n1+n0

)
)
−

(
D
′
0(n2, n1, n0)(U64)(L−M)

(1 + ε
′′
1024p2+256p1+64p0+16n2+4n1+n0

)
))

(1 + ξ
′′
1024p2+256p1+64p0+16n2+4n1+n0

)
4095∏

i=1024p2+256p1
+64p0+16n2

+4n1+n0

(1 + λ
′′
i)

]
(1 + τ

′
)(1 + ρ

′
)

(10)

where the previous function symbols used in Equation (9) are modified with double/single
prime, namely δ

′′
, ε

′′
, ξ

′′
, λ

′′
, τ

′
, ρ

′
; but the meaning remains the same. A point to em-

phasize is that all error functions are in multiplication relation with the variable and this is
what makes the floating-point round-off error much complicated. Similar formulas can be
derived for the real and imaginary parts of fixed-point number, C

′′
and D

′′
.

17

Adding the error parameters leaves us just one step away before we start to formalize
the analysis after deriving the error that occurred in the conversion from one domain to
another. We start with the real to floating-point conversion and the round-off error differ-
ence between the complex floating-point implementation and complex real implementation
of IFFT-FFT denoted as e(q2, q1, q0). We derive the following equation that expresses the
round-off error accumulated due to real to floating-point conversion,

e(q2, q1, q0) =
1
64

[∑
p

∑
n

e0(n2, n1, n0)(W64)(L−M) + f(n,p)

]
(11)

where we assume

e0(q2, q1, q0) = C
′
0(n2, n1, n0)− C0(n2, n1, n0) + j

(
D
′
0(n2, n1, n0)−D0(n2, n1, n0)

)

(12)
and f(n,p) is written according to Equations (9) and (10)

f(n,p) = C
′
0(n2, n1, n0)(U64)(L−M)

[
(1 + δ(p,n))(1 + ξ(p,n))

4095∏

i=(p,n)

(1 + λi)(1 + τ)− 1
]

−D
′
0(n2, n1, n0)(V64)(L−M)

[
(1 + ε(p,n))(1 + ξ(p,n))

4095∏

i=(p,n)

(1 + λi)(1 + τ)− 1
]

+ j

[
C
′
0(n2, n1, n0)(V64)(L−M)

[
(1 + δ

′′
(p,n))(1 + ξ

′′
(p,n))

4095∏

i=(p,n)

(1 + λ
′′
i)(1 + τ

′
)− 1

]

−D
′
0(n2, n1, n0)(U64)(L−M)

[
(1 + ε

′′
(p,n))(1 + ξ

′′
(p,n))

4095∏

i=(p,n)

(1 + λ
′′
i)(1 + τ

′
)− 1

]
]

(13)

The two variables n and p are used for the function as a short-hand for n = n2, n1, n0

and p = p2, p1, p0.
The above analysis can be adopted similarly to come at the following error function,

e
′
(q2, q1, q0), for the round-off error due to conversion from real to fixed-point domain

e
′
(q2, q1, q0) = C

′′
(q2, q1, q0)− C(q2, q1, q0) + j

[
D
′′
(q2, q1, q0)−D(q2, q1, q0)

]
(14)

Denoting the error as f ′(n,p), the final error can be written as

e
′
(q2, q1, q0) =

1
64

[∑
p

∑
n

e0(n2, n1, n0)(W64)(L−M) + f ′(n,p)

]
(15)

18

where f ′(n,p) is constructed as follows

f ′(n,p) =δ
′
(p,n) + ε

′
(p,n) + ξ

′
(p,n) +

4095∑

i=(p,n)

λ
′
i + τ

′

+ j

δ

′′′
(p,n) + ε

′′′
(p,n) + ξ

′′′
(p,n) +

4095∑

i=(p,n)

λ
′′′
i + τ

′′′

(16)

Equation 16 is much simplified than its real to floating-point counterpart since this error
is additive but not multiplicative. To derive the errors due to floating-point to fixed-point
conversion, we do not resort to derive those mammoth equations as above, rather we use
the previous derivations. If the two error results derived previously are subtracted then the
result gives the error we are looking for. Denoting this error as e

′′
(q2, q1, q0), it can be

written as

e
′′
(q2, q1, q0) = e

′
(q2, q1, q0)− e(q2, q1, q0) (17)

Figure 6 summarizes all the error analysis discussed so far in a flow-graph format. They
refer to the errors incurred in the real parts of the floating-point and fixed-point model.

),,(
012

''

0
nnnC

),,(
012

'

0
nnnC

),,(
012

''

0
nnnD

),,(
012

'

0
nnnD

)(
64

MLV −)(
64

MLU −

'

,PN
δPN ,

1 δ+
PN ,

1 ε+

PN ,
1 ξ+PN ,

'ξ

PN ,
'ε

-1
1

),,,,,(
012012

'' nnnpppE
),,,,,(

012012

' nnnpppE

(N,P)=1024p2+256p1+64p0+
16n2+4n1+n0

(a) Error Flow Graph for C
′

and C
′′

),,(
012

''

0
nnnC

),,(
012

'

0
nnnC

),,(
012

''

0
nnnD

),,(
012

'

0
nnnD

)(
64

MLU −)(
64

MLV −

'''

,PN
δ''

,
1

PN
δ+ ''

,
1

PN
ε+

''

,
1

PN
ξ+'''

,PN
ξ

'''

,PN
ε

-1
1

),,,,,(
012012

'''' nnnpppE
),,,,,(

012012

''' nnnpppE

(N,P)=1024p2+256p1+64p0+
16n2+4n1+n0

(b) Error Flow Graph for D
′

and D
′′

………

N
1

''τ

ρ+1

τ+1

''ρ

0
1 λ+

1
1 λ+

2
1 λ+

1212
1

−
+ λ

'

0
λ '

1
λ '

2
λ

1212−
λ

'C
''C

(c) Error Flow Graph for C
′

and C
′′

(contd.)

………

N
1

''τ

ρ+1

τ+1

''ρ

'D
''D

''

0
1 λ+ ''

1
1 λ+ ''

2
1 λ+ ''

1212
1

−
+ λ

'''

0
λ '''

1
λ '''

2
λ '''

1212−
λ

(d) Error Flow Graph for D
′

and D
′′

(contd.)

Fig. 6. Error Flow Graphs

Starting with C
′
0(n2, n1, n0) from the left branch of Figure 6a, it is multiplied with

19

U64(L−M) as shown between the edge of the first two nodes. Next, the error occurring in
the previous operation is multiplied in the edge between second and third node. In the same
way we can reach in the similar calculation for D

′
0(n2, n1, n0). When the two branches

meet in the bottom node, they are subtracted from each other due to multiplication of the
D
′
0 with −1 and this operation adds to the next error which is expressed as 1+ ξN,P . Here,

(N, P) refers to 1024p2 + 256p1 + 64p0 + 16n2 + 4n1 + n0. Now, this error is labeled as
E
′
(p2, p1, p0, n2, n1, n0).
If the same calculation is repeated for C

′′
0 (n2, n1, n0) and D

′′
0 (n2, n1, n0), the error

at the end is labeled as E
′′
(p2, p1, p0, n2, n1, n0). But, this time the error functions are

all additive not multiplicative. We now look into Figure 6c which is the continuation of
Figure 6a to define the errors related with the six summations each having four iterations.
As stated before, the error here is denoted as 1 + λi for floating-point and λi for fixed-
point. The error calculation starts from E

′
(0, 0, 0, 0, 0, 0) and E

′′
(0, 0, 0, 0, 0, 0) and the

corresponding errors are multiplied or added till E
′
(3, 3, 3, 3, 3, 3) and E

′′
(3, 3, 3, 3, 3, 3).

At this point, we are left with two more errors. The branch starting with node label 1
N

adds errors due to division operation, which are denoted as ρ
′

and 1+ ρ for fixed-point and
floating-point respectively. And then the same constant is multiplied with the rest of the
what is calculated so far and adds another error denoted as τ

′
and 1 + τ for fixed-point and

floating-point respectively. In the end C
′

and C
′′

are found as we calculated earlier.
The above discussion can be applied as is for the calculation of the imaginary part of

floating-point and fixed-point model using the flow-graphs in Figure 6b and Figure 6d.

5.1 Formal Error Analysis in HOL

For implementing the above error analysis in HOL, we first construct complex numbers
on reals similar to [12]. We define in HOL a new type for complex numbers, to be
in bijection with R × R. The bijections are written in HOL as complex : R2 → C
and coords : C → R2. We use convenient abbreviations for the real (Re) and imagi-
nary (Im) parts of a complex number, and also define arithmetic operations such as addi-
tion, subtraction, and multiplication on complex numbers. We overload the usual symbols
(+,−,×) for C and R. Similarly, we construct complex numbers on floating- and fixed-
point numbers. Then we define the principal N -roots on unity (e−j2π/N = cos (2πn/N)−
j sin (2πn/N)), and its powers (OMEGA) as a complex number using the sine and cosine
functions available in the transcendental theory of the HOL reals library [10]. We specify
expressions in HOL for expansion of a natural number into a binary form in normal and
rearranged order. The above enables us to specify the IFFT-FFT combination algorithm in
real (REAL IFFT FFT), floating- (FLOAT IFFT FFT), and fixed-point (FXP IFFT FFT)
abstraction levels using recursive definitions in HOL as described in Equations (3) and (4).
Then we define the real and imaginary parts of the IFFT-FFT algorithm (IFFT FFT RE,
IFFT FFT IM) and powers of the principal N -roots on unity (OMEGA RE,OMEGA IM).
Later, we prove in separate lemmas that the real and imaginary parts of the FFT algo-
rithm in real, floating-point, and fixed-point levels can be expanded as in Equations (5)
and (6). Then we prove lemmas to introduce an error in each of the arithmetic steps in
real and imaginary parts of the floating- and fixed-point IFFT-FFT algorithms according to
the Equations (9) and (10). We prove these lemmas using the fundamental error anal-
ysis lemmas for basic arithmetic operations [2]. Then we define in HOL the error of
the pth element of the floating- (REAL TO FLOAT IFFT FFT ERROR) and fixed-point

20

(REAL TO FXP IFFT FFT ERROR) IFFT-FFT algorithms at step q, and the correspond-
ing error in transition from floating- to fixed-point (FLOAT TO FXP IFFT FFT ERROR).
Thereafter, we prove lemmas to rewrite the errors as complex numbers using the real and
imaginary parts. Finally, we prove the following lemmas to determine the accumulation of
roundoff error in floating- and fixed-point IFFT-FFT combination algorithm by recursive
equations and initial conditions according to the Equations (11) to (17).

∀ x q0 q1 q2. ∃ f. (IFFT_FFT_REAL_TO_FP_ERROR x q0 q1 q2 =
complex_64 * complex_sum (0,4) (λp0. complex_sum (0,4) (λp1.
complex_sum (0,4) (λp2. complex_sum (0,4) (λn0. complex_sum (0,4)
(λn1. complex_sum (0,4) (λn2.

ERROR_0 x n2 n1 n0 * OMEGA n0 n1 n2 p0 p1 p2 q0 q1 q2 +
f n0 n1 n2 p0 p1 p2 q0 q1 q2))))))) ∧

∃ t l d e z t′ l′′ d′′ e′′ z′′. f n0 n1 n2 p0 p1 p2 q0 q1 q2 =
complex (Val (float_Re ((λn0 n1 n2. float_complex_round (x n0 n1 n2)) n0 n1 n2)) *

Val (FLOAT_OMEGA_RE n0 n1 n2 p0 p1 p2 q0 q1 q2) *
((1 + d n0 n1 n2 p0 p1 p2 q0 q1 q2) *
(1 + z n0 n1 n2 p0 p1 p2 q0 q1 q2) *
mul (ER_K n0 n1 n2 p0 p1 p2,4097 − ER_K n0 n1 n2 p0 p1 p2)
(λi. 1 + l i) * (1 + t) − 1) −

Val (float_Im ((λn0 n1 n2. float_complex_round (x n0 n1 n2)) n0 n1 n2)) *
Val (FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2) *

((1 + e n0 n1 n2 p0 p1 p2 q0 q1 q2) *
(1 + z n0 n1 n2 p0 p1 p2 q0 q1 q2) *
mul (ER_K n0 n1 n2 p0 p1 p2,4097 − ER_K n0 n1 n2 p0 p1 p2)
(λi. 1 + l i) * (1 + t) − 1),

Val (float_Re ((λn0 n1 n2. float_complex_round (x n0 n1 n2)) n0 n1 n2)) *
Val (FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2) *

((1 + d′′ n0 n1 n2 p0 p1 p2 q0 q1 q2) *
(1 + z′′ n0 n1 n2 p0 p1 p2 q0 q1 q2) *
mul (ER_K n0 n1 n2 p0 p1 p2,4097 − ER_K n0 n1 n2 p0 p1 p2)
(λi. 1 + l′′ i) * (1 + t′) − 1) −

Val (float_Im ((λq0 q1 q2. float_complex_round (x q0 q1 q2)) q0 q1 q2)) *
Val (FLOAT_OMEGA_IM n0 n1 n2 p0 p1 p2 q0 q1 q2) *

((1 + e n0 n1 n2 p0 p1 p2 q0 q1 q2) *
(1 + z n0 n1 n2 p0 p1 p2 q0 q1 q2) *
mul (ER_K n0 n1 n2 p0 p1 p2,4097 − ER_K n0 n1 n2 p0 p1 p2)

(λi. 1 + l i) * (1 + t′) − 1))

∀ X M V x q0 q1 q2. ∃ f′. (IFFT_FFT_REAL_TO_FXP_ERROR X M V x q0 q1 q2 =
complex_64 *
complex_sum (0,4) (λp0. complex_sum (0,4) (λp1.
complex_sum (0,4) (λp2. complex_sum (0,4) (λn0.
complex_sum (0,4) (λn1. complex_sum (0,4) (λn2.
ERROR′_0 X M V x n2 n1 n0 * OMEGA n0 n1 n2 p0 p1 p2 q0 q1 q2 +
f′ n0 n1 n2 p0 p1 p2 q0 q1 q2))))))) ∧
∃t′ l′ d′ e′ z′ t′′′ l′ d′′′ e′′′ z′′′.
f′ n0 n1 n2 p0 p1 p2 q0 q1 q2 =

complex (d′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +
e′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +
z′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +
sum (ER_K n0 n1 n2 p0 p1 p2,4096 −
ER_K n0 n1 n2 p0 p1 p2)(λi. l′ i) + t′,
d′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +
e′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +
z′′′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +
e′ n0 n1 n2 p0 p1 p2 q0 q1 q2 +
sum (ER_K n0 n1 n2 p0 p1 p2,4096 −
ER_K n0 n1 n2 p0 p1 p2) (λi. l′′′ i) + t′′′)

∀ X M V x q0 q1 q2. IFFT_FFT_FP_TO_FXP_ERROR X M V x q0 q1 q2
= right−hand side of [REAL to FP error theorem] −
right−hand side of [REAL to FXP error theorem]

5.2 Discussion

The error analysis done above covers the OFDM rounding error analysis thoroughly be-
tween different number domains. To establish the complete theory of error analysis we

21

proved three main theorems with the help of formalized real and imaginary part of FFT-
IFFT expansion and also the theorems related to the error for arithmetic operations. All def-
initions were derived heavily from existing theories, e.g., realTheory, boolTheory, ieeeThe-
ory, floatTheory, fxpTheory, wordTheory, etc. There is a very strong relationship between
mathematical models and their formal counterpart which might have been observed above.
The definitions built on top of established theories in turn helped to build the FFT and IFFT
components; which build the theory for the FFT-IFFT combinations. Then this theory is
extended and the operators are overloaded for establishing the real, floating-point and fixed-
point counterparts of the design using the floatTheory and fxpTheory.

For all the theorems and assumptions in the whole error analysis work it is imperative
that higher-order logic be used. The error analysis is based on the floating-point and fixed-
point theory of HOL, which are two of the most important additions in HOL’s rich theory
base. Besides quantification over variables and objects, there are many theorems in both
theories that make use of quantification over functions. Moreover, almost all the definitions
required to model the FFT-IFFT combination needed higher-order logic for the same rea-
son. The error analysis functions of both floating-point and fixed-point (δ, ε, ξ, λ ,τ , and
ρ) are all existentially quantified in the main theorems proved and these theorems construct
the core of the final result.

Throughout the proof of the theories built-in tactics and tacticals were used. In many
of these proofs case analysis and induction were used. Our main approach to prove the
theorems was to have a rough paper and pencil sketch of the approach and then formalize
it using the techniques available in the HOL tool. Many times it happened that it was hard
to prove the theorem as a whole in one shot and then we break the goal in manageable
size to prove the parts separately to combine later. To accomplish this in a different way
sometimes theorems are assumed in the proof to concentrate in the core goal and later the
assumed theorem is proved. Thus we prove the theorems till the final error analysis between
floating-point to fixed-point. Through the course of the modeling and proof, many lemmas
are developed, some are trivial but essential and some are crucial to move to the next step
in establishing a theorem. But, it is important to mention that the current theorems can
be proved in a better way which is realized gradually as we moved to much complicated
proofs and so the latter proofs are better and concise than the previous ones.

Another important issue needs to be addressed and also equally applicable for all the
theorems proved in Chapter 4 is that how it can be assured that the definitions created by
the user themselves are sound and really characterize what the system user intends to for-
malize. In short, there is no way to verify that the modeling in HOL done by the user
reflects the hardware exactly. The tool can check all the type requirements based on the
initial information of the system provided by the user, and if these information are wrong
then the final formalization will also be wrong. The HOL system is based on five axioms
and eight primitive inference rules. All the HOL theories are built on top of them and this
is another reason of the lengthy installation time required since all the built-in theories are
to be proved before becoming part of the initial system. This is why there is no chance
to have ambiguity in the proof system of HOL. Although highly improbable, but a wrong
implementation can be verified against a wrong specification. Each and every possible sce-
nario can happen. The tool itself might not be free from bugs. That is, however, why a tool
like HOL needs expert users who have good knowledge of formal methods and also of the
system under verification. The same can be told about the real RTL design in simulation

22

where only the functionality of the system can be verified but it can never be assured com-
pletely that the final product will exactly behave as the specification due to manufacturing
difficiencies or other factors.

Since HOL is an interactive tool where the user needs to guide every step of the proof,
it is also possible that the theorem prover can be guided to falsely proof a system. But,
HOL strongly checks the type of the terms and functions entered into the system. This
particular constraint also makes it very difficult to make simple mistakes in defining wrong
theorems thus also answers partially the concern mentioned in the previous paragraph. Still,
if any user wants to trick the tool to generate proof arbitrarily, he/she has to use oracle [15]
mechanism that enables arbitrary formulas to become elements of the thm type. By use
of this mechanism, HOL can utilize the results of arbitrary proof procedures. To avoid un-
soundness, a tag is attached to any theorem coming from an oracle. This tag is propagated
through every inference that the theorem participates in and if falsity becomes derived, the
offending oracle can be found by examining the tags component of the theorem. A theorem
proved without use of any oracle will have an empty tag, and can thus be considered to have
been proved solely by deductive steps in the HOL logic. Thus, the tool ensures its security
against misuse.

6 Conclusion

This paper is mainly concerned to demonstrate the use of formal verification techniques,
here theorem proving, to verify an implementation of an OFDM modem based on the IEEE
802.11a physical layer standard for wireless communication. The OFDM design is fairly
complex and some important design blocks were chosen for verification purposes. We for-
mally modeled and verified the RTL blocks such as QAM, DQAM, S/P, and P/S against
the corresponding specifications in the standard. We were able to find a bug in the QAM
modulation block which implementation was diverted from the constellation provided in
the IEEE standard specification.

We also analyzed the errors in the OFDM system occurring at the time of converting
from one number domain to the other, for all three domains—ideal real, floating-point, and
fixed-point numbers. We used the IFFT-FFT combination as a model for the error analysis
of the whole system. Then we derived new expressions for the accumulation of round-off
error in the OFDM system and proved the corresponding theorems in HOL. This formal-
ization can be considered as a large application of the formal error analysis framework
described before and shows the viability of such analysis even for larger scale systems as
the one analyzed.

The future work that can be carried out pertaining to this paper might elucidate new and
interesting ideas and some suggestions are following:

• Verifying the RTL implementation of the OFDM blocks by taking into account clock
transitions and other timing constraints.

• Development of a parameterized error analysis pattern for any FFT or IFFT design of
arbitrary computing point and radix.

• Performing statistical error analysis for the OFDM modem to find average and mean
square errors for IFFT-FFT combination. To perform such an analysis mechanically,
we need to use a formal theory on the properties of random variables and random pro-

23

cesses [13, 18].
• Verifying the OFDM system using a combination of HOL and another powerful com-

puter algebra system such as Maple [26] or Mathematica [27].

References

[1] A. N. M. Abdullah. Formal Analysis and Verification of an OFDM Modem. Master’s
thesis, Department of ECE, Concordia University, Montreal, QC, Canada, 2006.

[2] B. Akbarpour. Modeling and Verification of DSP Designs in HOL. PhD thesis, De-
partment of ECE, Concordia University, Montreal, QC, Canada, 2005.

[3] P. J. Ashenden. Designer’s Guide to VHDL. Morgan Kaufmann, 2001.

[4] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J.Van-Tassel. Experi-
ence with Embedding Hardware Description Languages in HOL. In Theorem Provers
in Circuit Design, pages 129–156, North-Holland, 1992.

[5] Cadence Design Systems Inc. Signal Processing Worksystems (SPW) User’s Guide,
July 1999.

[6] A. L. Cinquino. A Real-Time Software Implementation of an OFDM Modem Suit-
able for Software Defined Radios. Master’s thesis, Department of ECE, Concordia
University, Montreal, QC, Canada, 2004.

[7] G. Forsythe and C. B. Moler. Computer Solution of Linear Algebraic Systems.
Prentice-Hall, 1967.

[8] F. Frescura, S. Andreoli, S. Cacopardi, and E. Sereni. An OFDM Radio Transmitter
based on TMS320C6000 DSP for Telemetry Applications. In Proceeding of Inter-
national Conference Signal Processing Applications and Technology, Dallas, Texas,
USA, October 2000.

[9] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher-Order Logic. Cambridge University Press, 1993.

[10] J. Harrison. Constructing The Real Numbers in HOL. Formal Methods in System
Design, 5(1-2):35–59, 1994.

[11] J. Harrison. Floating Point Verification in HOL Light: the Exponential Function.
Technical Report 428, University of Cambridge Computer Laboratory, Cambridge,
UK, 1997.

[12] J. Harrison. Complex Quantifier Elimination in HOL. In Supplemental Proceedings of
Theorem Proving in Higher Order Logics, pages 159–174. Edinburgh, UK, September
2001.

[13] O. Hasan. Formal Probabilistic Analysis using Theorem Proving. PhD thesis, Depart-
ment of ECE, Concordia University, Montreal, QC, Canada, 2008.

[14] S. Haykin. Communication Systems. Wiley, 1994.

[15] HOL Sourceforge Project. The HOL System Description. September 2005.

[16] HOL Sourceforge Project. The HOL System Reference. September 2005.

[17] M. Huhn, K. Schneider, T. Kropf, and G. Logothetis. Verifying Imprecisely Working

24

Arithmetic Circuits. In Proceedings of Design Automation and Test in Europe, pages
65–69, Munich, Germany, March 1999.

[18] J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University of
Cambridge, Cambridge, UK, 2002.

[19] IEEE 802.11 Working Group. IEEE Std 802.11a-1999. The Institute of Electrical
and Electronics Engineers,Inc, 1999.

[20] L. B. Jackson. Roundoff-Noise Analysis for Fixed-Point Digital Filters Realized in
Cascade or Parallel Form. IEEE Transactions on Audio and Electroacoustics, AU-
18:107–122, June 1970.

[21] T. Kaneko and B. Liu. Accumulation of Round-Off Error in Fast Fourier Transforms.
Journal of Association for Computing Machinery, 17(4):637–654, Oct. 1970.

[22] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic Model
Checker. In Computer Performance Evaluation, Modelling Techniques and Tools,
LNCS 2324, pages 200–204. Springer-Verlag, 2002.

[23] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic Model Checking of
the IEEE802.11 Wireless Local Area Network Protocol. In Process Algebra and
Probabilistic Methods, Performance Modeling and Verification, LNCS 2399, pages
169–187. Springer-Verlag, 2002.

[24] B. Liu and T. Kaneko. Error analysis of digital filters realized with floating-point
arithmetic. Proceedings of the IEEE, 57:1735–1747, October 1969.

[25] F. Manavi. Implementation of OFDM Modem for the Physical Layer of IEEE802.11a
Standard Based on XILINX VIRTEX-II FPGA. Master’s thesis, Dept. of ECE, Con-
cordia University, Montreal, QC, Canada, 2004.

[26] Maplesoft. Waterloo Maple Inc. http://www.maplesoft.com, 2006.

[27] Mathematica. Wolfram Research Inc. http://www.wolfram.com, 2006.

[28] R. V. Nee and R. Prasad. OFDM for Wireless Multimedia Communications. Artech
House Publishers, 2000.

[29] A. Roy and K. Gopinath. Improved Probabilistic Models for 802.11 Protocol Verifica-
tion. In Computer Aided Verification, LNCS 3576, pages 239–252. Springer-Verlag,
2005.

[30] M. Tariq, Y. Baltaci, T. Horseman, M. Butler, and A. Nix. Development of an OFDM
based High Speed Wireless LAN Platform using the TI C6x DSP. In Proccedings of
IEEE International Conference on Communications, pages 522–526, New York, NY,
USA, May 2002.

[31] T. Thong and B. Liu. Fixed-point fast fourier transform error analysis. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, ASSP 24(6):563–573, Dec. 1976.

[32] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, 1963.

[33] W. Wong. Modeling Bit Vectors in HOL: The Word Library. In Higher Order Logic
and Its Applications, LNCS 780, pages 371–384. Springer-Verlag, 1994.

[34] Xilinx Inc. High-performance 64-point complex fft/ifft v2.0, product specification.
http://www.xilinx.com/ipcenter, 2000.

[35] Xilinx Inc. Xilinx Coregen Library. http://www.xilinx.com/ipcenter/coregen, 2005.

25

