
Formal Verification of ASMs using MDGs

A. Gawanmeh a , S. Tahar a and K. Winter b

aDepartment of Electrical and Computer Engineering
Concordia University
Montreal, Canada

{amjad,tahar}@ece.concordia.ca

bSchool of ITEE
University of Queensland

Brisbane, Australia
kirsten@svrc.uq.edu.au

Abstract

We present a framework for the formal verification of Abstract State Machine (ASM)
designs using the Multiway Decision Graphs (MDG) tool. ASM is a state based lan-
guage for describing transition systems. MDG provides symbolic representation of
transition systems with support of abstract sorts and functions. We implemented
a transformation tool that automatically generates MDG models from ASM spec-
ifications. Then formal verification techniques provided by the MDG tool, such as
model checking or equivalence checking, can be applied on the generated models.
We illustrate this work with the case study of an ATM switch controller, in which
behavior and structure were specified in ASM and, using our ASM-MDG facility,
are successfully verified with the MDG tool.

Key words: Formal Verification, Abstract State Machines, Multiway Decision
Graphs, Model Checking

1 Introduction

With the increasing reliance on digital systems, errors in their design can cause
failures, resulting in the loss of time, money, and a long design cycle. Large
amounts of effort are required to correct an error, especially when the error is
discovered late in the design process. For these reasons, we need approaches
that enable us to discover errors and validate designs as early as possible. Con-
ventionally, simulation has been the main debugging technique. However, due

Preprint submitted to Elsevier Science 16 April 2007

to the increasing complexity of digital VLSI systems, it is becoming impos-
sible to simulate large designs adequately. Therefore, there has been a recent
surge of interest in formal verification and tool support for this task, such as
theorem proving, combinational and sequential equivalence checking, and in
particular model checking [18].

Abstract State Machines (ASM) [15] is a formal specification method for soft-
ware and hardware systems that has become successful for specifying and
verifying complex systems [5]. The formalism is used as a modeling language
in a variety of domains as it has been used both in academic and industry
contexts [5,16]. Multiway Decision Graphs (MDGs) [8] are decision diagrams
based on abstract representation of data and are used for modeling hard-
ware systems in first place. MDGs subsume and extend traditional ROBDDs
(Reduced Ordered Binary Decision Diagrams) [6] by abstract data sorts and
uninterpreted function symbols.

This paper presents a tool to interface the ASM Workbench [9] with the MDG
applications in order to enable the formal verification of ASM descriptions.
We chose to interface ASM with the MDG tool for three reasons: first, both
notions, ASM and MDGs, are closely related to each other since they are
both based on a subset of many-sorted first order logic. Second, MDGs as a
data structure for representing transition systems provide a powerful means
for abstraction that fit perfectly with those of ASMs. Both notations support
the use of abstract types and uninterpreted functions. This allows the user to
model and to verify large or potentially infinite models. Finally, providing the
MDG tool with a high-level modeling language, namely ASM, would allow
MDG users to model a wide range of applications in a more elegant and
succinct manner [12].

For behavioral models, we develop the ASM-MDG interface in two steps: in
the first step, the ASM model is transformed into a flat, simple transition
system, called the Intermediate Language (ASM-IL) [30]. The second step
provides a transformation from ASM-IL into the syntax of the input language
of the MDG tool, MDG-HDL. For structural models we implemented a syntax
transformation interface directly from ASM to MDG-HDL where the ASM
model is restricted to the MDG-HDL library components. This is proved to
be more efficient than translating via ASM-IL, which would provide a very
large model. We have applied the ASM-MDG interface to the Fairisle ATM
switch [20] as a case study, where we conducted MDG model checking on
the generated MDG-HDL models. We succeeded in model checking several
properties on the ATM switch controller.

Interfacing ASM and MDG, has been already introduced in [30]. This work is
closely related to ours and parts of the results have been re-used here. However,
the overall aim of [30] has been to map ASM models directly onto MDG data

2

structures, without utilizing the input notation MDG-HDL. As a consequence,
the interface is not providing the user with the facilities of the MDG tool as a
black-box verification tool since the tool is only working on MDG-HDL models.
The work in [30] also provided an interface from ASM models to the SMV
model checker [23] (using the SMV input language). In contrast to SMV, the
MDG tool provides a useful means for representing abstract models containing
uninterpreted functions, where SMV supports neither abstract data types nor
uninterpreted functions. This allows model checking on an abstract level at
which the state explosion problem can in some cases be avoided. This paper
extends our work presented in [12] and [13] by applying the methodology on a
real application, which is, the Fairisle ATM switch. The Fairisle ATM switch
is a major case study compared to the applications provided in [12] and [13].
It posed several experimental challenges and much space about it is devoted
in this paper.

The rest of the paper is organized as follows. Section 2 provides related work
to ours. In Section 3, we present the description of ASM and MDG. Section
4 presents our ASM-MDG interface. Section 5 illustrates the efficiency our
approach by applying the interface on the case study of the Fairisle ATM
switch. Finally, Section 6 concludes the paper with an outlook to future work.

2 Related Work

Related work on the verification of ASM models include the work of Spielmann
[28], who investigated the complexity of verifying a class of restricted abstract
state machine programs automatically. Also in the work on real-time systems
by Beauquier and Slissenko [3], the verification problem is discussed for ASMs.
These results are complemented by our work since they remain in theory and
neither of the work above provides actual tool support for the verification task.

Gargantini et al. [11] presented a framework for automatic translation from
ASM to PVS which is a theorem prover based on higher-order logic [25]. They
developed a set of PVS theories to define types and functions modeling ASM
universes and rules. A set of PVS strategies is provided in order to simplify the
proof conduction. In [26], Schellhorn defined a generic proof for the correctness
of ASM refinement. The author provided an embedding of ASM into dynamic
logic that allows formalizing properties of ASM, then developed a theory for
the modularization of correctness proofs for ASM refinements. The results are
integrated into the KIV (Karlsruhe Interactive Verifier) system.

Similar to the above two works, we are proposing a framework to allow the
verification of ASM models. We differ, however, through the fact that we
intend to apply automatic verification techniques, namely model checking and

3

sequential equivalence checking, rather than interactive theorem proving such
as in PVS. Furthermore, our approach is founded on the use of the same
natural level of abstraction in both ASM and MDG. Finally, our framework
is targeted towards the modeling and verification of hardware systems.

In [19], Kort et al. describe a hybrid formal hardware verification tool linking
MDG and the HOL theorem prover [14] obtaining the advantages of both ver-
ification paradigms. They provide an embedding of the MDG input language
in HOL, implementing a linkage between HOL and MDG and a series of HOL
tactics that automate hierarchical verification. The MDG tool can be called
from HOL to perform verification of components that are within its capabili-
ties. Our work provides an external interface to verify ASM designs, while this
work is based on using the MDG tool to verify sub-gaols for the HOL theorem
prover.

In [4], Börger and Stark provide a history and survey of ASM research includ-
ing ASM verification, tool integration and linking ASM to verification tools.
From a more general perspective, the work described by Shankar [27] and
Katz and Grumberg [17] are also related in that they provide a tool frame-
work comprising a general intermediate language which allows one to interface
a high-level modeling language with a variety of tools.

3 Preliminaries

3.1 Abstract State Machines

Abstract State Machines (ASM) [15,16] is a specification method for software
and hardware modeling. The system is modeled by means of states and tran-
sition rules. The latter specify the behavior of the system in terms of state
changes which might be guarded. The notation of ASM is efficient for mod-
eling a wide range of systems and algorithms as the number of case studies
demonstrates [16].

States are many-sorted first-order structures. A structure is given with respect
to a signature which is a finite collection of function names, each of a fixed
arity. The given structure fixes the syntax by naming sorts and functions. An
algebra provides domains (i.e., carrier sets) for the sorts and a suitable symbol
interpretation for the function symbols on these domains, which assigns a
meaning to the signature. Therefore, a state is defined as an algebra of a given
signature with domains and an interpretation for each function symbol.

ASM provides static functions, dynamic functions and external functions. Sta-

4

tic functions have a fixed interpretation in each computation state and there-
fore, static functions never change their evaluation during a run. They repre-
sent constants or primitive operations of the system, such as combinational
logic blocks (in hardware specifications). Dynamic functions change their in-
terpretation during a run as a result of the specified system’s behavior. Their
evaluation can be changed through the transitions occurring in a computation
step. They represent the internal state of the system. The interpretation of
external functions is determined in each state by the environment. Changes
in external functions which take place during a run are not controlled by the
system.

Variables and terms are used over the signature as objects of the structure.
A state transition into the next state occurs when dynamic functions change
their evaluation. Locations and updates capture this notion.

A location of a state is a pair loc = (f, a), where f is a dynamic function symbol
and a is a tuple of elements in the domain of the function. The element f(a)
at a state is the value of the location (f, a) in that state.

For changing values of locations the notion of an update is used. An update
of a state is a pair α = (loc, val) where loc = (f, a) is a location and val, the
update value, is a value in the function domain. To fire an update at a state,
the update value is set to the new value of the location. As a consequence,
the overall dynamic function f is redefined to map the location onto the new
value.

Transition rules define the state transitions of an ASM. While terms denote
values, transition rules denote update sets, which define the dynamic behavior
of an ASM. At each state all update sets are fired simultaneously which causes
a state change. All locations that are not referred to in the update sets remain
unchanged. The ASM-SL is a specification language developed for modeling
in ASM [9].

3.2 Multiway Decision Graphs

Multiway Decision Graphs (MDGs) [8] have been proposed as a solution to
the state space explosion problem of verification tools based on ROBDD (Re-
duced Order Binary Decision Diagrams) [6]. MDGs subsume ROBDDs, while
accommodating abstract sorts and uninterpreted function symbols. This sig-
nificantly enhances the capability to verify a broader range of systems than
classical ROBDD-based tools.

MDGs are based on a subset of many-sorted first order logic, with a distinction
between abstract and concrete sorts (including the Boolean sort). Concrete

5

sorts have an enumeration while abstract sorts do not. The enumeration of
a concrete sort is a set of distinct constants of that sort. If a function is of
a concrete sort, while at least one of its domain variables is abstract, then
the function is referred to as a cross-operator. The constants occurring in the
enumeration are referred to as individual constants, and other constants as
generic constants. Concrete function symbols must have an explicit definition;
they can be eliminated and do not appear in the MDG. Abstract function
symbols and cross-operators are uninterpreted.

Logic gates can be represented by MDGs similarly to ROBDDs, because all
inputs and outputs are of Boolean type. Design descriptions at the RTL involve
the use of more complex functions and data structures. For system descriptions
the MDG tool comes with a hardware description language called MDG-HDL
[32]. It allows the use of abstract as well as concrete variables for representing
data operations. A circuit can be described on the structural level, as an
implementation, or on the behavioral level, as a specification. Often models
on both levels of abstraction are given and shown to have equivalent behavior
(e.g., by means of sequential equivalence checking). A structural description
is a collection of components connected by signals that can be of abstract
or concrete type. A behavioural description (specification) ia an MDG table,
whivh is similar to a truth table, but it allows first order terms as entries
in addition to concrete variables. Tables usually describe the transition, the
output relation, or the combinational functionality of the system.

Based on MDGs, a tool set for the formal verification of finite state systems
(machines) has been developed. It includes application procedures for com-
binational and sequential equivalence checking [8], invariant checking [8] and
model checking [31]. The MDG tool has been used to verify a number of non-
trivial systems such as communication switches and protocols [2,7,29,33–35].
In order to verify designs with this tool, we first need to specify the design in
MDG-HDL in terms of a behavioral and/or structural model. Moreover, an al-
gebraic specification is to be given to declare sorts, function types, and generic
constants that are used in the MDG-HDL description. Rewrite rules that are
needed to interpret function symbols should be provided here as well. Like for
ROBDDs, a symbol order according to which the MDG is built should be pro-
vided by the user. However, there are some requirements on the node ordering
of abstract variables and cross-operators (but not for concrete variables). This
symbol order can affect critically the size of the generated MDG.

4 ASM-MDG Interface

To interface ASM and MDG we can benefit from the fact that both formalisms
have similar features. Especially when modelling hardware systems, the sim-

6

Variable

Order

Transformation

Algorithm

ASM Model

YES/NO(Counter-example)

MDG Verification Tool

(ASM-SL)

Behavioral Model

(MDG-HDL)

(ASM-SL)

Structural Model

Structural Model

MDG-HDL Model

Behavioral Model

(MDG-HDL)Algebraic

Specification

Fig. 1. Proposed ASM-MDG framework

ilarities in the way of modelling become apparent. Both formalism provide a
powerful means to model data issues using abstract types and uninterpreted
function symbols in order to fit larger models into the validation and verifi-
cation process. ASM uses the notion of many-sorted first-order structures to
describe states of a system and adds transition rules for modeling the system
behavior during a run. The MDG approach uses so called “Abstract State
Machines” too in order to identify the system that is to be analyzed. In ASM,
we treat specific sorts as abstract sorts and thus every function that is applied
to parameters of these sorts is either a cross-term or an abstract function
and has to be left uninterpreted. MDG is able to handle these abstract sorts,
cross-terms, and uninterpreted functions since they can be part of the graph
structure as well as the MDG-HDL syntax [32]. This interface will ultimately
allow the formal verification of ASM models using the MDG tool. Figure 1
shows an overview of the expected ASM-MDG verification framework.

It consists of two complementary parts: the first part generates MDG-HDL
behavioral models from ASM specifications, while the second part generates
MDG-HDL structural models. The two ASM models, one describing the be-
havior in terms of transition rules, the other describing the structure of the
design in terms of static functions, are separately transformed into the corre-

7

sponding MDG-HDL models.

4.1 ASM-MDG Interface using ASM-IL

In order to provide a generic interface for the ASM-WB with different tools,
ASM models are automatically translated into the intermediate language ASM-
IL as proposed in [30]. Based on ASM-IL, we propose to built an interface to
the MDG tool. To transform an ASM model into an ASM-IL model, all nested
transition rules of the original ASM model are flattened and complex data
structures and functions are unfolded. Thus, ASM-IL provides an interface
language for representing state transitions in a very general way. It can be
readily transformed into the different input languages when interfacing var-
ious tools. This generality, however, comes at the price of loosing structural
information of the original ASM model.

Starting from the ASM-IL language, we built our interface to the MDG tool
as shown in Figure 2.

In an ASM-IL representation each location is associated with a set of guarded
updates, each consisting of a Boolean guard and an update value. Locations are
identified with state variables by mapping each location to a unique variable
name. Guards are mapped into simple Boolean terms. Thus, an ASM model
is represented by a set of guarded updates in the form (loc, [guard, val]). This
set specifies for each location a set of guarded updates. The new value of a
location in the next state will be the one for which the corresponding guard
is satisfied in the current state. If none of the given guards evaluates to true
in a state, the value of the location remains unchanged in the next state.

To transform ASM transition rules into an ASM-IL representation as above,
all nested rules are flattened then mapped into simple guarded updates using
a simplification function. Each term that occurs in an ASM rule is simpli-
fied until the result contains only constants, locations and variables. Abstract
functions and cross-operators are left uninterpreted in ASM-IL. Only cross-
operators that match one of the standard relational operators are mapped into
a cross-term.

4.1.1 Transforming ASM-IL to MDG Behavioral Models

To treat behavioral ASM-SL specifications, ASM models are first translated
into the ASM-IL as shown in Figure 3. The model is first parsed for syntax
check, ASM universes, functions, and transition rules are collected. Then an
analyzer generates the ASM-IL representation. The behavior of the model
is described as a set of guards and updates for each state variable (update

8

L MDG)

Property

(MDG−HDL)

Str. Model

Spec.

Algebraic

Order

Variable

Model

ASM−IL

(

(ASM−SL)

Structural Model Behavioral Model

(ASM−SL)

IL to MDG−HDL

(MDG−HDL)

Beh. Model

MDG Tool

MDG−HDL Str.

ASM−IL to

MDG−HDL Beh.

ASM−IL to

ASM−IL

ASM−SL to

Algeb. Spec.

Generate

Var. Order

Generate

Fig. 2. ASM-MDG interface via ASM-IL

location), the next state value for each location is the corresponding value to
the first satisfied guard in the list. Otherwise, if there is no guard satisfied,
the location keeps its current state value in the next state. From this ASM-IL
model, MDG-HDL behavioral descriptions are generated in terms of MDG
tables. In addition, variable order and algebraic specifications are produced.

For each location in the ASM model, we generate one table. The first row of
the table contains all variables in the model and any cross term or function
that occurs in the ASM-IL guarded update expression of that location. The
last element is the location itself, it represents the variable in the next state.
Then we treat the list of (guard, value) pairs one by one. An expression with
one variable in the guard is mapped into one row with all other variables
are set to the “don’t care” (“*”) symbol. A conjunction is mapped into one
row with each variable or cross term assigned its value (val i), or “don’t care”
if it does not occur in the expressions. The result value becomes the entry
of the last element in the row, which gives the valuation of the location. A
disjunction is mapped into as many rows as the number of variables and cross
terms in the expression. In each row, a value is assigned to the corresponding
variable, all others are “don’t care” values. The last element of each of these
rows contains the value of the location as shown in Figure 4.

9

11
),)loc

1 i i

... , update (guard
nn

(guard , update (guard , update ...

...

ASM-IL

Analyzer

, update

loc
k mm

loc

ParserStructral Model

(ASM-SL)

Behavioral Model

(ASM-SL)

Generator for

Beh. MDG-HDL

Generator for

Str. MDG-HDL

)

(guard),
11

)
0

... , update (guard , update (guard),
11

(guard
00
),

, update (guard
00
),

Order

Variable

Spec.

, update

ASM

Domains Functions

ASM Transition

Rules

, update (guard
00
),

Algebraic

(MDG-HDL)

Structural Model

(MDG-HDL)

Behavioral Model

Order

Variable

Spec.

Algebraic

Fig. 3. ASM-MDG transformation using ASM-IL

[

],val, *, ... ,
... ,

[*,

val1
val2

2val2var,), val11var

, ..., 2, var result1var

valdisj)val,(("=" , ("=" , ... ,,)
, ..., 2, var result1var[]

, *, * , ... ,],

[

)val,,(("=" , conj 2val2var,), val11var

,) , (("=" , val)ivalivar

("=" ,

]
]val, * , [*, * , ival

, ..., 2, var result1var[) ,...
1val 2val[, val], ... ,

]

Fig. 4. Generating MDG tables from guarded updates

10

Reg Loc

n n

nguard

Muxvalue

1 1

1guard

Muxvalue

0 0

0guard

Muxvalue

Fig. 5. Mapping ASM-IL expressions for one location into MDG-HDL

4.1.2 Transforming ASM-IL to MDG Structural Models

To transform an ASM-IL representation into MDG-HDL structural code, we
map locations, guards and values into registers and signals. First, for each
location we create a state component in MDG-HDL, represented as register.
Each location name is mapped into a signal that is connected to the register’s
output. The resulting value of the location is mapped to a signal that is con-
nected to the register’s input. Transforming a whole model results in a state
machine (sequential circuit) in which the number of state variables is equal to
the number of updated locations in the model.

Second, guards and values are transformed into MDG-HDL components that
are interconnected with signals that evaluate to the next state value of the
location. Each pair (guard, value) is mapped into a multiplexer where the
guard is the control and the value is one input. We connect these multiplexors
together in a hierarchical way as shown in Figure 5. The output of the cascade
is connected to the input of the state element representing the location. The
location is fed back into the last multiplexer in the hierarchy to represent
the case in which no guard is satisfied and the value of the location remains
unchanged.

A guard is a Boolean ASM-IL expression. It might contain concrete functions,
uninterpreted functions, or cross terms. Concrete functions can be default
Boolean operators or any other function. We map these operators into MDG-
HDL components that perform the same functionality. We apply the mapping
function recursively to each guard expression - creating the corresponding
MDG-HDL components until we get a constant value, or a variable.

All default binary operators are mapped into MDG-HDL logic gates. An equal-

11

ity expression for a variable and the value true is simply mapped into a signal
with the variable name. Equality expressions for a variable and the value false
is mapped into the corresponding negation MDG-HDL component, not. Re-
lational operators, as >, >=, <, <=, etc., are mapped into MDG transform
components that can be viewed as uninterpreted. All other cross terms, ab-
stract functions, and uninterpreted functions are also mapped into transform.

Relational operators can be used with different data sorts in ASM models,
when they are used with abstract data sorts, they are mapped into a cross-
operator. Operators which can be used with concrete data types other than
Boolean, equal(=) and not equal(! =), are mapped into tables. A table indi-
cates that the output signal of the table equals to true (1) when var equals
to val and false (0) otherwise.

4.2 ASM-MDG Syntactic Transformation for Structural Models

When an ASM model is translated into the ASM-IL rules, all structured func-
tions are flattened into the primitive ones. The location-update pairs are used
to build the MDG-HDL structural model, which is a set of components in-
terconnected by internal signals. The resulting MDG-HDL structural model
becomes very large as only the predefined basic MDG-HDL components are
used. Moreover, a large number of components results in a large number of
variables which makes it very hard to generate a good variable order. As a
consequence, the transformation as introduced in Section 4.1.2 provides a po-
tential bottleneck in our approach.

To solve this problem, we provide for structural designs a direct interface be-
tween ASM-SL and MDG-HDL without using the intermediate representation
of ASM-IL. In order to keep this interface simple and feasible, we implement
it for a set of predefined ASM functions without going into their semantics. In
other words, we define ASM static functions that correspond to MDG-HDL
primitive components. We use these to built our ASM structural model, which
then can be readily translated into MDG-HDL structural model.

Figure 6 shows the proposed ASM-MDG direct interface for structural designs.
In the first part, ASM universes including all type declarations, ASM functions
including static, dynamic and external functions, and transition rules that
describe the structure of the model are collected and then used to construct
design components, variables, functions and sorts that represent the design.
Finally, MDG-HDL models are generated based on the information collected
in the previous step. Algebraic specifications are produced based on the generic
constants, concrete sorts, abstract sorts, and uninterpreted functions. Variable
ordering in turn is generated according to the relationship between variables

12

Components

Components

Predefined

Design

Algebraic

Spec.

Variable

Order

Structural Model

(MDG-HDL)

Analyzer

Structural Model

(ASM-SL)

Function

Dynamic

Parser

Generator

Variables

State

Constants

Generic

Rules

Transition

Function

ExternalStatic

Function

ASM

FunctionsDomains

ASM

Sorts

Abstract

Sorts

Concrete

Functions

Uninterpreted

Variables

Input

Fig. 6. ASM-MDG syntactic transformation for structural models

and functions in the design such that the order obeys the restrictions imposed
by the MDG tool [32]. It includes all variables and internal signals used in the
model.

The generated MDG-HDL structural model is a circuit description given as a
netlist of components interconnected with signals. Besides uninterpreted func-
tions and cross-operators, the current implementation of the tool supports
the set of ASM functions that can be mapped directly to MDG-HDL library
components [32]. Figure 7 shows a structural modeling of an ASM dynamic
function (a), its mapping into MDG-HDL components (b), and the generated
MDG-HDL components (c), where f1, . . ., fn can be any of the MDG-HDL
library functions, an uninterpreted function or a cross operator, var is the
state variable, Sij are internal signals, and finally x and y are ASM variables.
All functions are declared as function((inputs), output). This structure is re-
cursively treated until a predefined function is found, which is syntactically

13

f2

f3

fn

reg var

var := (f2(...) , f3f1 (f31(...) , ,... fn(...))
(a)

(c)

(b)

y
x

f1

f31

component(

component(
component(
component(
component(

component(
reg(S1, var))

((S11, S12, ..., S1n), S1))f1
f2
f3
f31((S311, S312, ..., S31m),S31))
fn((Sn1, Sn2, ..., Sni), S1n))

((S31, x, y), S2j))
((S21, S22, ..., S2j),S11))

, x,y)

Fig. 7. Mapping structural ASM-SL into MDG-HDL components

mapped into the corresponding MDH-HDL library components.

4.3 Algebraic Specifications

We have to declare all data sorts and functions before we use them in our
MDG-HDL models. In the MDG tool, there is a default abstract sort wordn
(for n-bit words) and a default concrete sort bool with the enumeration of
[0,1]. Any other abstract or concrete sorts must be declared explicitly. An
ASM-IL representation preserves the enumeration for each variable. Based on
this, we declare a concrete sort for each different enumeration. Abstract sorts
are declared according to the distinguished sorts used in the ASM-SL model.

All functions and cross terms are also declared in the algebraic specification in
the same way. This includes uninterpreted functions, cross terms and relational
operators. We declare any function that occurs in the ASM-IL expressions in
the algebraic specification according to its arguments and target sorts. We
find its target sort from the domain of the expression where it occurs.

4.4 Variable Order

MDGs have some restrictions on the order of abstract variables and cross-
operators [32]. In order to obey these restrictions, we explore all functions and
cross-operators in the ASM-IL expressions and order the variables according

14

var1 var2= f ()

var1

<var2 var1

< funfun (var1), ...

Fig. 8. Variable order constraints

to the dependencies between abstract variables themselves and also between
abstract variables and cross terms or functions. If a variable var1 depends
on another variable (or function) var2, then var2 is sorted above var2 in the
order file. Also if a cross term f depends on a variable var1, then var1 should
appear above f. Figure 8 depicts these dependencies.

For the direct syntactic mapping of structural models, we build the variable
order in the same way as the design structure is constructed. Since dependent
variables or signals come last while building the components, we just put them
on bottom of the variable order (e.g., signal S1 comes below S12 in Figure 7).

We illustrate the transformation on a case study of an Island Tunnel controller
[10], where we provide ASM models for the specification and implementation
of the controller. Using our ASM-MDG tool, we generated the correspond-
ing MDG-HDL models for both behavioral and structural models for each
block, including: circuit description, algebraic specifications, and variable or-
der 1 [13].

5 Case Study: Fairisle ATM Port Controller

In this section, we present our results of formally verifying an ATM (Asyn-
chronous Transfer Mode) switch [20] using the ASM-MDG tool proposed in
this paper. By this example, we show how to use model checking to verify a
design modeled in ASM. The device we investigated is a part of a network
which carries real user data: the Fairisle ATM network, designed and in use at
the Computer Laboratory of the University of Cambridge. The switch consists
of a Fairisle 4 by 4 switch fabric and four Fairisle ATM port controllers. It per-
forms the actual switching of data cells and forms the heart of the ATM Fairisle
communication network. Figure 9 shows the Fairisle ATM switch ports.

The Fairisle ATM switch consists mainly of a port controller and a switching
fabric. The port controller does only VCI (Virtual Channel Identifier) mapping

1 The full specification models in ASM as well as the generated MDG-HDL models
can be obtained from http://hvg.ece.concordia.ca/Tools/ASMMDG/ITC/

15

Switch

Fabric

FIFO

Transmission

Board
Input port controller

DRAM

framestart

ctr_sz ctr_id

Output port controller

Fig. 9. The Failisle ATM switch.

and FIFO (First In First Out) queuing. In the original design, a Xilinx chip
controls all its functions, and it uses triple ported DRAMs to look up the new
VCI. It also uses a FIFO to do speed matching with the transmission board.
As shown in Figure 9 , the port controller is connected to the Fairisle ATM
switch fabric, transmits ATM cells to the fabric and receives acknowledgment
signals from it. Both the port controller and the switch fabric use the same
framestart signal to synchronize the overall behavior [22].

The port controller consists of an input port controller and an output port
controller. It is able to transmit one cell every 128 clock cycles. With a clock
frequency of 20 MHz, the maximum bit rate is 80 Mbps. There are no service
classification, no scheduling or traffic shaping, no monitoring and policing in
this port controller, but we can give a priority to an ATM cell, and this is
done by preloading the priority bit into the memory. The priority bit will be
used for arbitration in the switch fabric.

Figure 10 shows the format of an ATM cell. Received cells have 52 bytes:
48 data bytes, 2 VCI bytes and 2 FAS (Frame Assignment Sequence) bytes.
Transmitted cells have 54 bytes: 48 data bytes, 1 Fabric Routing Byte (FRB),
1 Port controller Routing Byte (PRB), 2 VCI bytes and 2 FAS bytes. Since
each cell consumes 64 bytes memory, the memory, which is 256k x 8 bit, can
contain 4096 ATM cells. This means that the port controller supports 4096
connections. To prevent two cells with the same VCI arriving at the memory
consecutively, only one cell is allowed in the memory [22].

16

FRB PRB
NEW

VC10 00
NEW

VC11 00 00 0

FRB PRB
NEW

VC10 FAS1FAS0
NEW

VC11 Data 0 0

VC10 FAS1FAS0VC11 Data

VC10 FAS1FAS0VC11 Data

Cell for Transmission

VCI used as memory lookup

Received Cell

Memory setup via CPU Interface

48 bytes

48 bytes

48 bytes

64 bytes

Fig. 10. Format of received and transmitted cells

5.1 Behavior of the Fairisle Port Controller

The Fairisle port controller consists of an input port controller and an out-
put port controller. The input port controller receives ATM cells from the
transmission board, and writes them into the memory at an address based on
the value of the VCI. In addition, the input port controller reads ATM cells
out of the memory and transmits them into the switch fabric. If it receives a
positive acknowledgement signal, the input port controller will continue trans-
mitting data; otherwise, it will stop sending data. The output port controller
receives data cells from the fabric, and sends acknowledgment signals back to
the fabric. If the output port controller receives a data cell, it gives a positive
acknowledgment signal; otherwise, it sends a negative acknowledgment.

The state transition of the input port controller with 8 states (ip idle, rx wait,
rx store1, rx store2, rx data, tx addr, tx first 5 and tx data) is shown in Fig-
ure 11, where conditions numbered from 1 to 15 are guards for the transition
from one state to another. Basically, rx idle is the idle state; rx wait means
the state of waiting for the start of the cell signal (rx ip soc) to be asserted;
rx store1 and rx store2 indicate the states that the input port controller stores
the first and second VCI byte, respectively; rx data is the state of data transfer
from the transmission board to the input port controller; tx addr is the state
of setting the memory address; tx first 5 means the state of transmitting the
first 5 bytes of data to the fabric; tx data indicates the state of transmitting
the remaining data into the fabric [22].

17

ip.idle

rx.str.2

rx.str.1

rx.wait

rx.data

tx.addr

tx.fir.5

tx.data

1

2

3

4

5

6

7

89

10

11

12

14

13

15

1: ip_empty = 1 * framestart = 1

* rx_rd_req = 1 * ctr_id = 0

2: else

3: else

4: rx_ip_soc = 1

5:

6:

7: else

8: ip_cell_cnt = 1

9: ip_empty = 0 * framestart = 1

* ctr_id = 0

10:

11: else

12: ip_cell_cnt = 49 * fab_ip_ack = 1

13: ip_cell_cnt = 1

14: else

15: ip_cell_cnt = 49 * fab_ip_ack = 0

Fig. 11. State transition diagram of the ATM switch controller.

5.2 Structure of the Fairisle Port Controller

Figure 12 shows the structure of the port controller. It consists of an input port
controller and an output port controller. The input port controller processes
the signals from the transmission board, the memory and the fabric. The out-
put port controller interfaces with the signals from the fabric and the output
FIFO.

The input port controller consists of an ip controller, an ip cell counter and an
address accumulator. The ip controller, which coordinates the ip cell counter
and the address accumulator, controls the data reception, transmission, and
memory read and write. The ip cell count and address accumulator are up
counters that increment by 1 per data byte transfer. In Figure 12, the signals
ip mem data, ip mem wr en, ip mem addr r, ip mem addr c, ip mem rd req
and mem ip data are the interface signals between the input port controller
and the cell memory. The signals ip mem data and mem ip data mean the
data outputs to the cell memory and the data inputs from the cell memory,
respectively. Both signals have an 8-bit bus width. The signals ip mem wr en
and ip mem rd req are the memory write enable and memory read request
signals, respectively. The memory row and column addresses are provided by
ip mem addr r and ip mem addr c, respectively. The rx ip data is an 8-bit
data bus which is the data input from the transmission board. The signals

18

ip

controller

ip cell

controller

Address

Accumulator

Input port controller

op

controller

op cell

controller

framestart

ctr_sz ctr_id

op_fifo_data

op_fifo_wr_en

op_fifo_soc

rx_ip_data

rx_rd_req

rx_ip_soc

ip_rx_wr_en

op_fab_ack

fab_op_data

fab_ip_ack

ip_fab_data

ip
_

m
e

m
_

d
a

ta

ip
_

m
e

m
_

w
r_

e
n

ip
_

m
e

m
_

a
d

d
_

r

ip
_

m
e

m
_

a
d

d
_

c

ip
_

m
e

m
_

rd
_

re
q

m
e

m
_

ip
_

d
a

ta

Output port controller

Fig. 12. Structure of the port controller.

rx rd req and rx ip soc indicate cell availability in the transmission board and
the start of a cell, respectively. The rx ip soc signal corresponds to the frames-
tart mentioned above. The signal ip rx wr en demonstrates whether the input
port controller is able to accept a cell or not. The ip fab data is an 8-bit data
bus which transfers data from the input port controller to the fabric. The
fab ip ack is the acknowledgment signal which indicates whether the current
cell succeeded the transfer to the destined switch fabric.

The output port controller consists of an op controller and an op cell counter.
The op controller generates the acknowledgment and SOC signals, and con-
trols the op cell counter. The op cell counter, which is very similar to the ip
cell counter, increments by one per data transfer. In Figure 12, op fab ack
and fab op data are the signals in the interface between the output port con-
troller and the fabric. fab op data is an 8-bit data bus from the fabric to the
output port controller. fab op ack is acknowledgment signal generated by the
output port controller. In addition, there are op fifo data, op fifo wr en and
op fifo soc signals between the output port controller and the output FIFO.
The op fifo data is an 8-bit data path from the output port controller to the
FIFO. The op fifo wr en is the write enable signal for the output FIFO. The
signal op fifo soc indicates the start of a cell, and it is asserted before the first
byte data transfer. The switch controller has, in addition, an external reset

19

signal (npc rst n).

There are two control signals (ctr id and ctr sz) and one signal (ip empty) in-
side the port controller. ctr id is an input disable register. When ctr id asserts,
all the inputs are disable. During the period of ctr id =1, the microprocessor
could pre-load the new VCIs, FRB and PRB into the memory. The register
ctr sz is for debugging purpose. When ctr sz is high, the memory address of
the incoming cell is not based on the old VCI values, instead, the row address
of the incoming cell is 0 and the column address is from 0 to 63. The control
signal ip empty is used to indicate the status of the port controller. When it
is asserted, the input port controller can accept a cell from the transmission
board; otherwise, a cell can be transmitted into the fabric from the input port
controller [22].

5.3 Modeling in ASM

We first modeled the behavioral state machine of the port controller in ASM.
The bytes counter can be taken in ASM as a parameter of an abstract type
that represents any natural number. For illustration purposes. Figure 13 shows
parts the ASM code for the state machine which describes the behavior of the
port controller.

We first define a concrete domain CS SORT, that represents the state of
the controller, with all the enumerated state values. Then we define an ab-
stract data type and an abstract function ip cell cnt that represents the bytes
counter. We use the dynamic function controllerState of sort CS SORT to
represent the state of the controller. Then we define the inputs of the con-
troller as external functions. At this point, we can describe the behavior of
the controller using transitions, where each transition is guarded with a set of
conditions as shown above.

Next, we modeled in ASM the structural model of the Fairisle port controller.
This model represents an implementation model, with abstraction applied
on the data transmission, since we consider transmitting one byte similar to
transmitting the rest of data as discussed above. For illustration purposes,
Figure 14 shows parts of the ASM code for the implementation of the state
transition system of the controller.

In the ATM switch, 50 bytes data are transferred from transmission board
to the input port controller. Because a byte of data transfer has the same
behavior as the data transfer of other 49 bytes, we could reduce the number
of data transfers in the verification. In the port controller, the number of data
transfer is controlled by counters, so we abstract the scale of the counter to

20

freetype CS_SORT == {ip_idle, rx_wait, rx_store_1, rx_store_2,
rx_data, tx_addr, tx_first_5, tx_data, ip_idle}

static function Data == { abstract }
static function one == abstract
static function zero == abstract

dynamic function ip_cell_cnt: DATA with
ip_cell_cnt in Data initially zero

dynamic function controllerState: CS_SORT initially ip_idle
external function ip_empty: BOOL
external function framestart: BOOL
external function rx_rd_req: BOOL

transition T2 == block
if (controllerState = rx_wait) then

if(irx_ip_soc = true) then
controllerState = rx_store_1

else
controllerState = rx_wait

endif
endif

endblock transition T3 == block
if (controllerState = rx_store_1) then

controllerState = rx_store_2
endif

endblock transition T4 == block
if (controllerState = rx_store_2) then

controllerState = rx_data
endif

endblock

Fig. 13. ASM code for the port controller behavioral state machine

simplify our verification. In the port controller, the acknowledge signal should
be available 5 clock cycles after the input port controller sends the first byte
of data to the fabric, so we could apply 12 bytes data in a cell which includes
2 bytes VCIs, 2 bytes FAS and 8 bytes data. Accordingly, the counter size
should be reduced by 40 (52-12). Then we have to change our environment
machine from 64 state to 15 states (10 states for data transfers and 5 states
for handshaking).

We also implemented the counter as a state transition system in ASM as shown
in Figure 15 below. Note in here that we use the abstract values one, zero, and

21

transition IP_MAIN == block
if(clk = true or npc_rst_n = true) then

if (npc_rst_n = false)
Dx := false
Dy := false
Dz := false

else
block
if(x = false and y = false and z = false) then

if (ip_empty = true and framestart = true and
rx_rd_req = true and ctr_id = false) then

Dx := false
Dy := false
Dz := true

else if (ip_empty = false and framestart = true and
ctr_id = false) then

Dx := true
Dy := true
Dz := true

else
Dx := false
Dy := false
Dz := false

endif
endif

elseif(x = false and y = false and z = true) then
if (rx_ip_soc = true) then

Dx := false
Dy := true
Dz := false

endif
elseif(x = false and y = true and z = false) then

Dx := false
Dy := true
Dz := true

endif

Fig. 14. ASM code for the main state implementation

max to represent the abstract counter. Similarly, the uninterpreted function
decr is used to represent the operation of decrementing the counter, and is
defined in ASM as static function decr == MAP TO FUN{abstract →
abstract}.

22

transition IP_CNTR ==
block

if(clk = true or npc_rst_n = true) then
if (npc_rst_n = false)

ip_cell_cnt = zero;
elseif (x = false and y = true and z = true) then

// ip_state_i == ‘rx_store2)
ip_cell_cnt = max;

elseif (x = true and y = false and z = true) then
//(ip_state_i == ‘tx_addr)
ip_cell_cnt = max;

elseif (ip_cell_cnt = one or ip_cell_cnt = zero)
ip_cell_cnt = zero;

else
decr(ip_cell_cnt);

endif
endif
endif
endif

endif
endblock

Fig. 15. ASM code for the abstract counter in the port controller

5.4 MDG Verification

Using our ASM-MDG tool, we generated the corresponding MDG-HDL mod-
els for both behavioral and structural models for each block, including: circuit
description, algebraic specifications, and variable order 2 .

Once the generated MDG-HDL structural and behavioral models were com-
piled successfully with the MDG tool, we applied model checking on the gen-
erated models. A set of properties were specified in LMDG for this purpose.
The Fairisle port controller appends the new VCIs, FRB and PRB onto ATM
cells and transfers them into the fabric, so its major properties could include
registers reset, memory addressing, cell counting, data and acknowledgment
transfer. Accordingly, we defined the following six major properties, includ-
ing safety and liveness properties. Then we described them formally in LMDG,
where the symbols AG means “for all paths, in all states”, F means “eventually

2 The full specification models in ASM as well as the generated MDG-HDL models
can be obtained from http://hvg.ece.concordia.ca/Tools/ASMMDG/ATM/

23

/ in the future”, “&” is the logical AND, and “!” is the logical NOT.

Property 1: The port controller will be reset properly when either the reset
signal (npc rst n) is zero or the port controller input disable signal (ctr id) is
asserted.

AG(((npc_rst_n = 0) or (ctl_id = 1))
=> (x = 0 and y = 0 and z = 0))

Property 2: When the input port controller can accept a cell, the transmis-
sion board has a cell to send, and the input port controller is in debugging
state (ctr sz = 1), then the cell will be transferred to the input port controller
and stored in the memory at the right location.

AG(((x = 1) and (y = 0) and (z = 1) and (rx_rd_req = 1) and
(ctr_sz = 1)) => (ip_mem_data = rx_ip_data))

Property 3: When the input port controller can accept a cell, the transmis-
sion board has a cell to send, and the input port controller is in the normal
operation state (ctr sz = 0), then the cell will be transferred to the input port
controller and stored in the memory at the right location.

AG(((x = 1) and (y = 0) and (z = 1) and (rx_rd_req = 1) and
(ctr_sz = 0)) => (ip_mem_data = rx_ip_data))

Property 4: While the input port controller is receiving data, if the cell
counter is equal to ”1”, it will go to the initial state. In order to model this
property, we have to use the cross-operator iseq(ip cell cnt, one) which only
returns true if the counter has the abstract value one.

AG((iseq(ip_cell_cnt, one_)) and (x = 1 and y = 0 and z = 0) =>
(x = 0 and y = 0 and z = 0))

Property 5: The memory cannot be read and written at the same time.

AG(!((ip_mem_rd_req = 1) and (ip_mem_wr_en = 1)))

Property 6: The output port controller will send an acknowledgment signal
after it detects an incoming cell.

AG((fab_op_data_0 = 1) => (op_fab_ack = 1))

All properties were verified successfully. The verification results for the set of
properties on the Fairisle ATM switch controller are given in Table 1. The table
indicates the CPU time in seconds, the memory usage in MB, and the number
of generated MDG nodes. We clearly notice that the CPU time, memory usage
and MDG nodes heavily depend on the property under verification. Thanks
to the abstraction, we have a smaller number of MDG nodes than the number

24

Table 1
MDG model checking results

CPU Time Memory MDG
Property (Sec) (MB) Nodes
Property 1 35 8 12644
Property 2 47 11 15678
Property 3 132 17 22462
Property 4 82 13 18551
Property 5 22 7 9832
Property 6 10 4 7225

Table 2
VIS model checking results

CPU Time Memory BDD
Property (Sec) (MB) Nodes
Property 1 52 92 12644
Property 2 198 198 284563
Property 3 109 156 293354
Property 4 378 201 304731
Property 5 34 77 153980
Property 6 76 89 197091

of BDD nodes generated by the VIS tool for the same properties, in addition
to less memory usage and less CPU time (see Table 2).

This ATM switch has been verified previously using different approaches.
Tahar et al. [29] used the MDG tool to model the switch in MDG-HDL and
verified several properties for this switch. In another work, Lu et al. [21,22]
used the VIS model checker in order to verify a Verilog implementation of the
switch, and they succeeded in verifying several properties. Table 2 shows the
verification results they achieved. The fourth property in our experiments is
different from the one shown in [21] in order to illustrate the use of cross-
operators and abstract data types in the modeling of the property. We also
model the switch on a higher level of abstraction and used an automatic trans-
lation in order to generate an MDG model that could be verified in the MDG
tool. In addition, we achieved better performance in terms of CPU time, mem-
ory consumed, and complexity of the graph built by the verification tool, this
is because the VIS tool is based on BDDs and therefore has no support for
abstract data types. The abstraction we applied on the model, which is sup-
ported by ASM modeling and MDG verification, cannot be supported in other
verification tools such as VIS.

In our previous work [13], we applied the ASM–MDG interface on the Island

25

Tunnel Controller as a case study. We conducted MDG model checking and
equivalence checking on the generated MDG–HDL models where we verified
several properties on the design, and also verified that the implementation is
equivalent to its specifications 3 .

6 Conclusion

We introduced a formal verification framework interfacing ASMs (Abstract
State Machines) to the MDG (Multiway Decision Graph) tool. This new in-
terface, called “ASM-MDG”, enables ASM users to exploit the fully automated
verification techniques provided by the MDG tool, namely equivalence check-
ing and model checking. On the other hand, MDG users will be provided with a
high-level modeling language, namely ASM, which as MDG, supports abstract
data sorts and uninterpreted functions. The interface automatically transforms
models in the ASM specification language, ASM-SL, into descriptions in the
MDG hardware description language, MDG-HDL. This transformation is done
in two ways. Firstly, we translate ASM-SL behavioral and structural models
into an intermediate language, ASM-IL, and then transform this intermediate
model into the appropriate MDG-HDL behavioral code. Secondly, we trans-
late ASM-SL structural models directly into MDG-HDL netlist components
using syntactic analysis and transformation. Besides the MDG-HDL code, the
interface produces a static variable ordering that satisfies the restrictions given
by the MDG approach, as well as the algebraic specification necessary for the
checking procedures, such as sort and function definitions.

We have applied the ASM-MDG interface on the Fairisle ATM switch con-
troller as a larger case study. We conducted MDG model checking on the
generated MDG-HDL models and succeeded in verifying several properties
on the switch controller. Although the case study of the Fairisle ATM switch
Controller is a hardware example and could have also been modeled directly in
MDG-HDL, the benefits of extending the MDG tool with a general high-level
modeling language like ASM are easy to realize once the user focuses on behav-
ioral problems, which can be modeled on different levels of abstraction in the
same formalism (namely ASM). Furthermore, the case study clearly demon-
strates the benefits of the MDG tool over ordinary ROBDD-based tools, like
VIS, namely, parameterized models can be checked without instantiating the
parameters. In the case of the ATM switch Controller, the model could be
checked for an arbitrary number of transferred bytes over the switch.

3 The full specification models in ASM as well as the generated MDG-HDL models
can be obtained from http://hvg.ece.concordia.ca/Tools/ASMMDG/ITC/

26

As a future work, we think that linking our work to the MDG-HOL [19] hybrid
tool will further enable theorem proving for ASM models. Then, different veri-
fication approaches can be applied on one model: equivalence checking, model
checking and theorem proving. This is not yet available in any verification
framework for ASMs. The idea is basically to divide the verification process
into tasks, that can be scheduled semi-automatically according to the most
suitable verification approach. Interfacing new ASM languages, such as AsmL
[24], to the MDG tool can be interesting and implemented following the same
approach. Also properties can be specified in a standard language such as PSL
[1] instead of the limited syntax of the LMDG.

References

[1] Accellera Organization. Accellera Property Specification Language Reference

Manual, version 1.1. www.accellera.org, 2007.

[2] S. Balakrishnan. A Hierarchical Approach to the Formal Verification of

Embedded Systems Using MDGs. Master’s Thesis, Concordia University,

Department of Electrical and Computer Engineering, November 1999.

[3] D. Beauquier and A. Slissenko. The Railroad Crossing Problem: Towards

Semantics of Timed Algorithms and their Model-Checking in High-Level

Languages. In Theory and Practice of Software Development, LNCS 1214,

Springer-Verlag, 1997, pp. 202–212.

[4] E. Börger and R. Stark. Abstract State Machines: A method for High-Level

System Design and Analysis. Springer Verlag, 2003.

[5] E. Börger and J. Huggins. Abstract State Machines 1988-1998: Commented

ASM Bibliography. In Formal Specification Column, EATCS Bulletin 64,

February 1998, pp. 105–127.

27

[6] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation,

IEEE Transactions on Computers, Vol. C-35, No. 8, August 1986, pp. 677–691.

[7] E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, Z. Zhou. Automated

Verification with Abstract State Machines Using Multiway Decision Graphs.

In Formal Hardware Verification: Methods and Systems in Comparison, LNCS

1287, State-of-the-Art Survey, Springer-Verlag, 1997, pp. 79–113.

[8] F. Corella, Z. Zhou, X. Song, M. Langevin and E. Cerny. Multiway Decision

Graphs for Automated Hardware Verification. Formal Methods in System

Design, Vol. 10, February 1997, pp. 7–46.

[9] G. Del Castillo. The ASM Workbench: A Tool Environment for Computer-

Aided Analysis and Validation of Abstract State Machine Models. Ph.D. Thesis,

Heinz Nixdorf Institute, Paderborn, Germany, 2000.

[10] K. Fisler and S. Johnson, Integrating design and verification environments

through a logicsupporting hardware diagrams. In Proc. IFIP Conference on

Hardware Description Languages. IEEE Computer Society Press, Sep 1995, pp.

669–674.

[11] A. Gargantini and E. Riccobene, Encoding Abstract State Machines in PVS.

Abstract State Machines. TIK-Report 87, Swiss Federal Institute of Technology

(ETH) Zurich, March 2000, pp. 152–173.

[12] A. Gawanmeh, S. Tahar and K. Winter: Interfacing ASMs with the MDG Tool.

In Abstract State Machines - Advances in Theory and Applications, LNCS

2589, Springer Verlag, March 2003, pp. 278–292.

28

[13] A. Gawanmeh, S. Tahar, and K. Winter: Formal Verification of ASM

Designs using the MDG Tool. In IEEE International Conference on Software

Engineering and Formal Methods. IEEE Computer Society Press, September

2003, pp. 210–219.

[14] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving

Environment for Higher-Order Logic, Cambridge, U.K., Cambridge Univ. Press,

1993.

[15] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Specification and

Validation Methods, Oxford University Press, 1995.

[16] J.K. Huggins. Abstract State Machines home page. EECS Department,

University of Michigan. http://www.eecs.umich.edu/gasm/.

[17] S. Katz and O. Grumberg. A Framework for Translating Models and

Specification. In Integrated Formal Methods. LNCS 2335, Springer- Verlag,

2002, pp. 145–164.

[18] C. Kern and M. Greenstreet. Formal Verification in Hardware Design: A Survey,

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, April

1999, pp. 123–193.

[19] S. Kort, S. Tahar, and P. Curzon: Hierarchical Formal Verification Using

a Hybrid Tool. In International Journal on Software Tools for Technology

Transfer, Vol. 4, Springer Verlag, 2002, pp. 1–10.

[20] I. Leslie and D. McAuley. Fairisle: An ATM Network for the Local Area. ACM

Communication Review, Vol. 19, No. 4, Sep. 1991, pp. 327-336.

29

[21] J. Lu. On the Formal Verification of ATM Switches, MaSc. Thesis, Concordia

University, Canada, 1999.

[22] J. Lu, S. Tahar, D. Voicu, and X. Song. Model Checking of a real ATM Switch.

Proc. IEEE International Conference on Computer Design. October 1998, IEEE

Computer Society Press, pp. 195–198.

[23] M.L. McMillan. Symbolic Model Checking, Kluwer, 1993.

[24] AsmL for Microsoft .NET (version 2.1.5.7), Microsoft.

http://www.research.microsoft.com/foundations/asml, 2003.

[25] S. Owre, J.M. Rushby, and N. Shankar. PVS: a Prototype Verification System.

In Automated Deduction, LNCS 607, Springer-Verlag, 1992, pp. 748–752.

[26] G. Schellhorn. Verification of Abstract State Machines. PhD thesis, University

of Ulm, Germany, 1999.

[27] N. Shankar. Symbolic Analysis of Transition Systems. In Abstract State

Machines, Theory and Applications, LNCS 1912, Springer-Verlag, 2000, pp.

287–302.

[28] M. Spielmann. Automatic verification of abstract state machines. In Computer

Aided Verification, LNCS 1633, Springer Verlag, 1999, pp 431–442.

[29] S. Tahar, X. Song, E. Cerny, Z. Zhou, M. Langevin and O. Ait- Mohamed.

Modeling and Verification of the Fairisle ATM Switch Fabric using MDGs.

IEEE Transactions on CAD of Integrated Circuits and Systems, Vol. 18, No. 7,

July 1999, pp. 956–972.

30

[30] K. Winter. Model Checking Abstract State Machines, Ph.D. Thesis, Technical

University of Berlin, Germany, 2001.

[31] Y. Xu, E. Cerny, X. Song, F. Corella, O. Mohamed. Model Checking for First-

Order Temporal Logic using Multiway Decision Graphs. In Computer Aided

Verification, LNCS 1427, Springer Verlag, 1998, pp. 219–231.

[32] Z. Zhou and N. Boulerice. MDG Tools (v1.0) User’s Manual. University of

Montreal, Dept. of Information and Operation Research, 1996.

[33] Z. Zhou. Multiway Decision Graphs and their Applications in Automatic

Verification of RTL Designs. PhD. Thesis, University of Montreal, Dept. of

Information and Operational Research, 1997.

[34] M.H. Zobair. Modeling and Formal Verification of a Telecom System Block

using MDGs. M.A.Sc. Thesis, Concordia University, Department of Electrical

and Computer Engineering, 2001.

[35] Z. Zhou, X. Song, S. Tahar, E. Cerny, F. Corella, M. Langevin. Formal

Verification of the Island Tunnel Controller using Multiway Decision Graphs.

In Formal Methods in Computer-Aided Design, LNCS 1166, Springer Verlag,

1996, pp. 233–246.

31

