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Abstract. We describe an approach for formally verifying the linkage
between a symbolic state enumeration system and a theorem proving sys-
tem. This involves the following three stages of proof. Firstly we prove
theorems about the correctness of the translation part of the symbolic
state system. It interfaces between low level decision diagrams and high
level description languages. We ensure that the semantics of a program
is preserved in those of its translated form. Secondly we prove linkage
theorems: theorems that justify introducing a result from a state enu-
meration system into a proof system. Finally we combine the translator
correctness and linkage theorems. The resulting new linkage theorems
convert results to a high level language from the low level decision dia-
grams that the result was actually proved about in the state enumeration
system.They justify importing low-level external verification results into
a theorem prover. We use a linkage between the HOL system and a sim-
plified version of the MDG system to illustrate the ideas and consider a
small example that integrates two applications from MDG and HOL to
illustrate the linkage theorems.

1 Introduction

Deductive theorem proving and algorithmic verification based symbolic state
enumeration are complementary approaches to formal verification. In the for-
mer, the correctness condition for a design is represented as a theorem in a
mathematical logic, and a mechanically checked proof of this theorem is gen-
erated using a general-purpose theorem prover. In symbolic state enumeration
systems, the design being verified is represented as a decision diagram. Algo-
rithmic techniques such as reachability analysis are used to automatically verify
given properties of the design or machine equivalence. Much of this work is based
on Binary Decision Diagrams (BDD) [7].



Deductive theorem proving systems often use interactive proof methods. The
user interactively constructs a formal proof which proves a theorem stating the
correctness of an implementation. Theorem proving systems allow a hierarchical
verification method to be used to model the overall functionality of designs with
complex datapaths. They are very general in their application. Theorems cannot
only be used to formalize a specific design but also can be abstracted as a general
situation of this class of design. Theorem proving systems are semi-automated.
To complete a verification, experts with good knowledge of the internal structure
of the design are required to guide the proof searching process. This enables the
designer to gain greater insight into the system and thus achieve better designs.
However, the learning curve is very steep and modeling and verifying a system
is very time-consuming. This is a major problem for applying theorem proving
systems in industry.

In contrast, symbolic state enumeration systems are automated decision di-
agram based approaches. In this kind of approach, an implementation and its
behavioral specification are represented as decision diagrams. A set of algorithms
is used to efficiently manipulate the decision diagrams so as to get the correct-
ness results. The symbolic state enumeration verification method can be viewed
as a black-box approach. During the verification, the user does not need to un-
derstand the internal structure of the design. The strength of this approach is its
speed and ease of use. However, it does not scale well to complex designs since it
uses non-hierarchy state-based descriptions of the design. Situations where con-
trol and data paths are mixed can also be problematic. An increase in complexity
can result in the state space growing exponentially.

There has been a great deal of work concerned with combining theorem
proving and symbolic state enumeration systems to gain the advantages of both.
Shankar [40], for example, argues that significant breakthroughs can be achieved
from the synergies between automated tools and interactive, deductive proof sys-
tems. A common approach to combining proof tools is to use a symbolic state
enumeration system as an oracle that receives problems and returns answers to
the theorem proving system. For example, the HOL system [25] provides ap-
proaches for tagging theorems that are dependent on the correctness of external
verification tools. An oracle can be built in the HOL system and viewed as a
plug-in. The issue in such work is to guarantee that the results provided by
external tools are theorems within the theory of the proof system.

Some symbolic state enumeration based systems such as MDG [15] consist
of a series of translators and a set of algorithms. In essence there is a core veri-
fication system for a low-level language into which different high level languages
can be translated for verification. Higher level languages such as hardware de-
scription languages are used to describe the specification and implementation of
the design. The specification and implementation are then translated into the
decision diagrams via intermediate languages. The algorithms in the system are
used to efficiently and automatically deal with the decision diagrams so as to
obtain the correctness results.

This process raises several questions:



1. Does the core automated verification system produce correct results?

2. Do the translators correctly translate between the higher level languages
used in the proof systems and the lower level languages used by the core
algorithmic verification system?

3. Have the verification results from the automated verification system been
correctly converted into a valid theorem in the theorem proving system?

We are not directly concerned with the answer to the first question here.
Rather we are concerned with the linkage between the theorems in the theorem
prover and the results proved by the core verification system. This entails both
the latter two questions.

The main contribution of this paper is that we describe an approach for
formally verifying the linkage between a symbolic state enumeration system and
a theorem proving system. In particular the approach involves developing a series
of theorems about the hybrid system.

— Theorems about the correctness of the translation part of the symbolic state
system are proved. They interface between low level decision diagrams and
high level description languages. It must be proved that the semantics of a
program is preserved in those of its low level translated form.

— Generic linkage theorems are proved. They are theorems that justify intro-
ducing a result from a state enumeration system into a proof system. Their
antecedent is a result of a form produced by the slave state enumeration sys-
tem and conclusion of a form, such as an implication, of use in the master
proof system. The generic linkage theorems can be instantiated with the se-
mantics of a particular system’s language to give concrete linkage theorems
for that system.

— The translator correctness and concrete linkage theorems are combined to
give new linkage theorems. They convert results about low level decision
diagrams to results about the high level language programs. These theorems
justify importing low level external verification results into a theorem prover.

To illustrate this approach, we look at how aspects of a linkage between the
HOL system and a simplified version of the MDG system are verified based on
the importing of MDG results to HOL theorems [46]. We combine translator
correctness theorems with the linkage theorems in order to allow low level MDG
verification results to be imported into HOL in terms of the semantics of the
high level language MDG-HDL. Full details of this work can be found in [45].

We chose HOL and MDG specifically because this work is part of a collabo-
ration with the Hardware Verification Group at Concordia University. They are
developing an implementation of a practical hybrid system (MDG-HOL) [32]
which combines the MDG system and the HOL system.

We verify a specification of a hybrid verification system rather than an im-
plementation of a system in a similar way to e.g. Basin et al [4] and following a
standard approach of compiler verification work from which this project in part
derives. In this sense the verification is applicable to any implementation of an
MDG-HOL linkage that meets the specification.



Basing our illustrative example on real verification systems rather than a
toy combination ensures the work is grounded in reality. The intention is that
the ideas have application to other systems which adopt a similar architecture
too. Specifically the general approach is applicable to hybrid systems where
the architecture involves the state enumeration system being called upon as an
oracle to provide externally verified “theorems” to a theorem prover, and where
the results are expressed in terms of high level languages translated down by
the external systems into some low level language such as BDDs to which the
reasoning algorithms apply.

By investigating a multiway decision diagram (MDG) based hybrid system
we do not preclude the results applying to binary decision diagrams (BDDs) as
MDGs extend BDDs. In fact an early subset considered was a boolean subset of
a hybrid MDG-HOL system. We have not considered here the full MDG-HDL
language as used in the Concordia MDG-HOL implementation, but a significant
subset (as described subsequently) that is sufficient to illustrate the general
approach to verifying a hybrid system linkage. We do not believe verifying a full
specification would be problematic. We did not do so simply due to the limited
time and resource constraints of our particular project.

Justifying whether the best hybrid system is one combining MDG and HOL
as opposed to other pairs of systems (why HOL rather than ACL2? Why MDGs
over BDDs? etc) is not the issue of this paper as we are concerned here specifically
with the verification of such systems not specifically their use. However, we note
that Zhou et al [50] showed the advantages of MDGs over BDDs using an island
tunnel controller example. Whilst BDD checkers (SMV and VIS) were faster
than MDG for fixed bit length examples, in MDG it was possible to verify a
generic, parameterized n-bit version that was not possible with BDDs. As already
discussed, there are potential benefits from combining automated and interactive
verification tools in general. This is discussed for example by Tahar et al [41] who
compared VIS, MDG and HOL. We review the literature on combining systems
in detail in the next section.

We consider a small example that integrates two applications to illustrate the
linkage theorems developed here: hardware verification (in MDG) and usability
verification (in HOL). The linkage theorems are applied directly to the MDG
results giving a HOL hardware correctness theorem that can be combined with
the HOL usability correctness theorem. In this way a single HOL theorem is
proved that integrates the two results. This example is given for illustration of
the linkage theorems only. We do not envisage that a practical verification would
be done in this way. The results from our approach would rather be used as a
justification for increased trust in an implementation of a combined system such
as the MDG-HOL system developed at Concordia University.

The structure of the rest of this paper is as follows: in Section 2, we re-
view related work. In Sections 3 and 4, we briefly introduce the MDG and HOL
systems, respectively. The main contribution of the paper describing the link-
age theorem approach, illustrated with a linkage between HOL and MDG, is
described in Section 5. Section 6 illustrates the linkage theorems developed by



looking at a very simple application that involves combining two verification
applications from MDG and HOL. Finally, our conclusion and suggestions for
further work are presented in Sections 7 and 8. The HOL files related to the
work in this paper giving full formal specifications and proof developments in-
cluding semantics of the languages, definition of the translator, development of
the linkage theorems and the example proof development can be accessed from:
http://www.dcs.qmul.ac.uk/~pc/research/mdg/program.zip

2 Related Work

Many different technologies have been used to link verification systems. We will
briefly review a range of work linking proof systems to external, automated
verification tools to give a flavour of the approaches most connected to the kind
of linkage we are verifying. We concentrate on higher-order logic proof systems
since that is the main focus of this paper. A more general review of combined
systems is given by Uribe [44].

Joyce and Seger [31] presented a hybrid verification system, HOL-Voss, which
links HOL to a symbolic trajectory system, VOSS [28]. Predicates were defined
in the HOL system, which created a mathematical link between the specification
language of the Voss system and that of the HOL system. Aagaard et al. built on
this work in developing the Forte verification system [1]. Forte combines model
checking in Voss and the theorem proving system, ThmTac. ThmTac is written
in f1 (a strongly-typed functional language in the ML family [37]) and is an
LCF (Logic of Computable Functions) style implementation of a higher-order
classical logic. Both specification and implementation language of Forte are f1
which has been deeply embedded in itself so as to be lifted. In other words, the
system can execute f1l functions in Voss and reason about the behavior of f1
functions in ThmTac. More recently, with industrial take-up at Intel, Forte [34]
has become one of the most mature formal verification environments based on
tool integration. It has been used in large-scale industrial verification projects at
Intel. Its power comes from the very tight integration of the two provers based
on reflection and using a single functional language as both the theorem prover’s
meta-language and its object language.

Rajan et al. [38] proposed an approach for the integration of model checking
with PVS [16]: the Prototype Verification System. The u-calculus, which consists
of quantified Boolean formula and predicates defined by means of the least and
greatest fixpoint operators, was used as a medium for communicating between
PVS and a model checker. Shankar [39] gives a more recent state of the art
with respect to integrating automated tools of various kinds with PVS [40].
Shankar [39] also argues that model checking and deductive proof systems are
best used to generate properties of specifications rather than to prove correctness
as we do here. SAL [5], a Symbolic Analysis Laboratory, has been developed to
further this approach providing a framework for combining different analysis
tools around a single specification language.



Computer algebra tools are another class of tool that can provide useful au-
tomated results for a theorem prover. Harrison and Théry [27], for example,
combined the theorem prover system (HOL) and the Maple [29] computer alge-
bra system. A software bus with three different processes: HOL, Maple, and a
bridge were used to connect the theorem prover and computer algebra system. A
request is sent by HOL which is received and translated by the bridge, and then
sent to the computer algebra system. The answer from the computer algebra
system is then transferred back to the prover through the bridge.

Adams et al [2], also implemented an interface between Maple and a theo-
rem prover, here PVS. Their work shows an alternative approach — to have the
theorem prover as the black box tool. PVS provided automated support to the
computer algebra system, allowing it to prove, for example, side conditions.

In the above cases the effort was to link a single tool to a proof system. Other
work has looked at providing more general infrastructure for linking a variety of
tools. For example, the PROSPER toolkit [22] provides a uniform way of linking
HOL with external proof tools. The specification of its integration interface has
been implemented in several languages allowing components written in these
languages to be used together. A range of different external proof tools can
access the toolkit and act as servers to a HOL client. It also tags theorems
produced by its plug-in with a label which can be used in the HOL system. The
MDG-HOL system [32] used the PROSPER/Harness Plug-in Interface to link
the HOL system and the MDG system.

The VeriTech project [26] developed an interactive tool to integrate a variety
of formal verification tools together. It is based on a set of tools translating from
each component verification tool to a core representation and from the core to
each tool. This translation allows the user to directly import one verification
tool’s specification and implementation files into another verification tool. The
user can thus take advantage of the different verification tools.

It is clear from the above discussion that there are many ways to link systems,
from the direction of the control, how tight the linkage is and whether the link-
age is a general infrastructure. We are not specifically concerned here with the
development of combined systems, but with their verification, and more specifi-
cally the verification of the linkage. We are therefore specifically concerned with
ways of increasing trust in linked systems.

One approach to trusting proof systems is that adopted by LCF [23]: having
a small, trusted core of primitive inference rules, with all proof implemented
ultimately as calls to these primitives. If the core is correct the theorems proved
by the combined system can be trusted. One approach to the linkage of systems
is therefore just to implement a linked system as calls to the primitive inferences.
The type system then guarantees soundness of the combined system.

In work such as that described above an external tool is trusted to provide
results to the proof system. The external system is assumed to produce cor-
rect results (at least with a similar level of confidence as the proof system).
Shankar [40] argues that in the near future it will be both ‘prudent and feasi-
ble’ to verify the deductive algorithms to be combined thus arguing that fully



expansive approaches are not needed in the long term. Our interest is in the
use of verification to increase the trust in linkages (where we focus here on the
verification of the linkage rather than the algorithm). However, increased trust
can be obtained in other ways to verification as we now briefly consider.

Gordon [24] investigated a way that such trust can be increased. He inte-
grated the BDD based verification system BuDDY [33] into HOL by implement-
ing BDD-based verification algorithms inside HOL, building on top of primitives
provided. Since “LCF-Style” general infrastructure was provided, by implement-
ing BDD primitives in HOL — as long as those primitives are correct — not
only could the standard state enumeration algorithms be efficiently and safely
programmed in HOL, but it also made it possible to achieve the advantages of
both theorem proving tools and state enumeration algorithms, without the need
to trust a complete external package, just a set of primitives.

Amjad [3] continued in this line, developing a model checker within HOL. The
model checking algorithm is implemented using HOL proof. Each model checking
step is based on a theorem proved in HOL. However, where BDD computation is
needed, calls are made to BDD primitive inference rules embedded in the HOL
logic. The logic is thus extended with these extra primitives. In essence in this
approach the interface between the trusted theorem prover and external tool is
pushed downwards so that as much as possible is done within the tool. Empirical
evidence suggests that the efficiency loss in this approach is within reasonable
bounds. However the comparison was with a model checker implemented in
ML rather than a standard model checker and only on a small example. This
approach also still leaves results reliant on the soundness of the underlying BDD
tools, though they are much simpler than a full external tool. A high assurance of
soundness is obtained at the expense of some efficiency. Whereas this approach
involves writing a new tool embedded in the theorem prover to give the trusted
linkage, our work focusses more on how one can raise the level of assurance of
existing tools that can then be used as black box provers, thus avoiding any loss
of efficiency.

Mhamdi and Tahar [36] follow a similar approach to the BuDDY work de-
veloping invariant checkers and model checkers in HOL but deeply embedding
MDGs rather than BDDs. This work builds on the MDG-HDL [32] project, but
uses a tightly integrated system with the MDG primitives written in HOL rather
than two tools communicating as in the MDG-HOL system that we verify as-
pects of here. The potential advantages of combining HOL and MDG are also
illustrated by the island tunnel controller study [36]. The shallow linked tools
approach provides a slightly worse CPU time and better memory usage than the
MDG tool alone. However, with the deeply embedded tools method, the CPU
time is much slower but memory usage is significantly better.

Hurd [30] used a different method to combine the strengths of two systems
without loss of trust. He considered two theorem-prover systems—Gandalf [42]
and HOL. He wrote functions to simulate the Gandalf proof according to the
Gandalf logged file so reconstructing the proof in HOL to form the HOL the-
orems. Gandalf thus finds a proof externally but that proof is then actually



recreated in HOL. As a result, the Gandalf proof results need not be tagged into
HOL and the degree of trust is high. If the Gandalf proof is incorrect, HOL will
just fail to create a theorem when following it. Harrison and Théry’s architec-
ture [27] combining HOL and Maple noted above similarly used Maple to find
witnesses that could then be used in fully expansive HOL proofs so avoiding
compromising the soundness of their results.

Such approaches do increase the trust, but do so at the expense of efficiency
at least to some extent. An alternative is to take a standard linkage and use a
deductive theorem prover to verify the algorithmic model checker as noted by
Shankar [40]. This of course can be done independently of whether the systems
are to be combined.

Early work in this area is Chou and Peled’s work [14]. They verified correct-
ness properties about the preservation of safety and liveness properties of the
partial-order reduction technique used by SPIN for model checking. This proof
was done using the HOL verification system.

Théry [43] has performed a machine-checked verification using Coq of Buch-
berger’s Grobner bases algorithm used to solve algorithms in commutative alge-
bra and contained in all major computer algebra software systems. Buchberger
has gone further [9], outlining a way the algorithm could be automatically syn-
thesised.

Basin et al [4] were also concerned with the verification of model checkers
though used for a specific application: to verify bytecode. As with our work,
rather than verifying model checker implementations they are in essence verifying
specifications of model checkers. They verify the ‘approach’. The essence of the
theorem proved is that if their declarative model checking specification is followed
then the bytecode it was applied to has a well-typing; i.e. it is free from runtime
errors. They argue that by verifying the specification, the work applies to a
range of different model checkers implemented from it, hence the claim that they
have verified multiple model checkers — though no claim is made that actual
implementations have been verified. The theorem proved is a form of linkage
theorem in our terms in that it links the result of a model checker to a result
about a specific domain: the type checking of bytecode. However, the focus of
this work is not as ours strictly about the verification of general linkage results
from an external tool. The application area also differs in that we specifically
consider modular, compositional hardware verification systems in this paper.

The above work suggests that the machine-checked verification of external
algorithms linked to interactive systems is likely to be feasible in the longer term.
Here, as with the work above as noted, we are considering a step towards the
verification of full implementations in that we verify a specification of a hybrid
verification system.

In our approach, the external system is not trusted unreservedly as in the
earlier linkage work. Instead the proof system is used to verify aspects of its
correctness. Furthermore the linkage is not trusted implicitly either — linkage
theorems verify the way results are turned into theorems in the proof system. We
focus on the verification of a symbolic state enumeration system (using the MDG



system as exemplar) and provide a theoretical underpinning to the formal linkage
of such a system and a theorem proving system (MDG and HOL are used here).
We verify the correctness of translators of the MDG system by using the HOL
system and prove theorems that formally convert the MDG verification results
of MDG’s different applications into the traditional HOL hardware verification
theorems. By combining the translator correctness theorems with the linkage
theorems, the MDG verification results can be imported into HOL in terms of
the MDG input language (MDG-HDL). We illustrate the correctness theorems
developed using a concrete example that integrates two distinct applications:
hardware verification (in MDG) and usability verification (in HOL). A single
HOL theorem is proved that integrates the two results.

There is no single right approach to increasing trust in hybrid verification
systems. Ultimately in the long term, if it proves practical, having fully formally
verified implementations of linked systems would seem to be most desirable, as
it avoids loss of efficiency in using the tool. This is an important issue if formal
verification tools are to be used industrially as standard. However, this is still
beyond the state of the art, and may not be desirable for all verification systems.
In some cases, for example where the aim of using formal verification tools is
to find bugs, not give high assurance that there are none, the fact that the
tools used are not completely sound may not be a major issue. Furthermore, in
the short term fully verified hybrid systems do not yet exist so there are clear
advantages of gaining trust in other more immediately tractable ways such as the
LCF/BuDDY approach or that of using the external tool to provide witnesses
from which to build a proof.

Ultimately there is a trade-off between the time expended in verifying ver-
ification tools and the time saved by then having a more efficient tool that is
trusted. If the core of a verification system stabilizes then it is worth the effort
invested in verifying it. Whilst verification systems are still research vehicles
undergoing continued development, with different combinations of hybrid sys-
tems being experimented with and new more powerful external verifiers being
added, the advantages of verifying any one combination are reduced. However,
the leverage in verifying verification systems in general is great as the benefit of
the verification of a tool spreads to all uses of it. Research into such approaches
is thus very important. Whilst the verification of a tool specification as in our
example here does not give the same amount of trust as verifying an implemen-
tation, it is a useful step on the way that does give an additional level of trust.
A similar issue applies to the fact that we do not consider here the verification
of the decision diagram algorithms. Without that step the trust we can have in
the soundness of the system is reduced greatly. However, that does not preclude
the benefit gained from verifying the other aspects.

3 The MDG System

The MDG system [15] is an automated verification tool for hardware verification.
It uses a new class of decision graphs called Multiway Decision Graphs, which



subsume the class of Bryant’s Reduced and Ordered Binary Decision Diagrams
(ROBDD) [8] while accommodating abstract sorts and uninterpreted function
symbols.

A multiway decision graph (MDG) is a finite directed acyclic graph G where
the leaf nodes are labeled by formulas, the internal nodes are labeled by terms
and the edges issuing from an internal node, N, are labeled by terms of the same
sort as the label of N. Such a graph represents a formula defined inductively as
follows:

1. If G consists of a single leaf node labeled by a formula P, then G represents
P

3

2. If G has a root node labeled A with edges labeled B;...B,, leading to sub-
graphs Gy’...G,’, and if each G;’ represents a formula P;, then G represents
the formula Vi<i<n ((A = Bz) A R)

When an MDG has been constructed as a graph, it must obey the restrictions
that any path from the root to leaf yields a canonical representation. Like ROB-
DDs, an MDG must be reduced and ordered. Unlike ROBDDs, all the variables
used in an MDG must have appropriate sort, and sort definitions must be pro-
vided for all functions. MDG can also represent the transition and output rela-
tions of a state machine, as well as the set of possible initial states and the sets
of states that arise during reachability analysis.

The underlying logic of MDG is a subset of many-sorted first-order logic with
a distinction between concrete and abstract sorts. A concrete sort has an enumer-
ation while an abstract sort does not. Therefore, a data signal can be represented
by a single variable of abstract sort rather than a vector of Boolean variables,
and a data operation can be represented by an uninterpreted function symbol.
It partially fulfills the aim of interactive verification to verify hardware designs
automatically at a high level of abstraction. It also lifts many ROBDD tech-
niques from the boolean domain to a more abstract domain. Therefore, MDGs
are more compact than ROBDDs for circuits having a datapath, and this greatly
increases the range of circuits that can be proved.

The MDG package [49] is implemented in Prolog. Algorithms such as dis-
junction, relational product (combination of conjunction and existential quan-
tification), pruning-by-subsumption (for testing of set inclusion) and reachability
analysis (using abstract implicit enumeration) have been developed. Applications
for hardware verification such as combinational verification, sequential verifica-
tion, invariant checking and model checking are provided.

The input language of the MDG system is a Prolog-style hardware description
language (MDG-HDL) [49], which supports structural specification, behavioral
specification or a mixture of both. A structural specification is usually a netlist
of components connected by signals, and a behavioral specification is given by a
tabular representation of transition/output relations or a truth table.

10



4 The HOL System

HOL [25] is a theorem proving environment, which uses higher-order logic to
model and verify systems. There are two main proof methods used: forward
and backward proof. In forward proof, the steps of a proof are implemented by
applying inference rules chosen by the user, and HOL checks that the steps are
safe. It is an LCF [23] style proof system: all derived inference rules are built
on top of a small number of primitive inference rules. In backward proof, the
user sets the desired theorem as a goal. Small programs written in SML [37],
called tactics and tacticals, are applied that break a proof goal into a list of
subgoals. Tactics and tacticals are repeatedly applied to the subgoals until they
can be proved. A justification function is also created mapping a list of theorems
corresponding to subgoals to a theorem that solves the goal. In practice, forward
proof is often used within backward proof to convert a goal’s assumptions to a
suitable form. Table 1 shows the notation of higher-order logic and corresponding
meaning used in this paper.

Notation | Meaning

T truth
F falsity
P(x) x has property P

t1 At2 | tl and t2

t1Vvt2 |tlort2

tl D t2 | tl implies t2

V x. t[x] | for all x, it is the case that t[x]

3 x. t[x] | for some x, it is the case that t[x]

Table 1. Higher-order Logic Notation

Theorems in the HOL system are represented by values of the SML abstract
type thm. In a pure system (where mk_thm which creates arbitrary theorems is
not used), a theorem is only obtained by carrying out a proof based on the
primitive inference rules and axioms. More complex inference rules and tactics
must ultimately call a series of primitive rules to do the job. In this way, the
SML type system protects the HOL logic from the arbitrary construction of a
theorem, so that every computed value of the type representing theorems is a
theorem. The user can have a great deal of confidence in the results of the system
provided mk_thm and the axiom definition facility are not used.

HOL has a rudimentary library facility which enables theories to be shared.
This provides a file structure and documentation format for self contained HOL
developments. Many basic reasoners are given as libraries such as mesonLib,
simpLib, decisionLib and bossLib. These libraries integrate rewriting, con-
version and decision procedures that automate a proof. They free the user from
performing low-level proof.

11



( MDG-HDL )
1.
— — — - Verify the translator
Thm(1)

2.
— — — —| Verify the algorithms

( Results (Yes/No) )
3.
_ — — 4 Verify the conversion
Thm(5)

El“raditiona] HOL theoremsj

MDG verif. algorithms

Fig. 1. Overview of the Formal Linkage Project

5 Formally Linking a Verified MDG and HOL System

Our work explores a way of increasing the degree of trust of linked systems. To
illustrate the approach we consider the verification of a linkage between the HOL
system and the MDG system in terms of the MDG input language as shown in
Figure 1. This work is divided into three steps.

— We must verify the correctness of the MDG system using the HOL system.
It consists of two phases: (1) verification of the translators (step 1 of Figure
1) [47] and (2) verification of the algorithms (step 2 of Figure 1).

— We then must prove theorems which we refer to as “linkage theorems” (step
3 of Figure 1), which formally convert the verification results of the MDG
applications into traditional HOL hardware verification theorems [46].

— By combining the correctness theorems (theorems obtained from step 1 and
step 2 of Figure 1) about the MDG system with the linkage theorems (ob-
tained from step 3 of Figure 1), MDG verification results can be formalized
in terms of the MDG input language (MDG-HDL) in a form suitable for use
in HOL.

During this study, we concentrate on the verification of the translation phase
of the MDG system (step 1 in Figure 1) using the HOL theorem prover, importing
the MDG results into HOL to form the HOL theorems (step 3 in Figure 1) [46]
and how the two are combined. Chou and Peled’s work [14] verifying a partial-
order reduction technique for model checking is an example of research concerned

12



with Step 2. Verifying the algorithms is beyond the scope of this paper: we are
primarily concerned with the linkage and how correctness theorems about an
external system, as exemplified by the translation theorems, can be combined
with linkage theorems.

We use a “deep embedding” [6] of the MDG-HDL and other intermediate
languages. In particular this means that we introduce the abstract syntax of
expressions as a new higher-order logic type and then define the semantics of
expressions for this syntax within HOL. This contrasts with a “shallow embed-
ding” where the abstract syntax is not formally represented in the logic, only
in the meta-language. In general, a deep embedding allows one to reason about
the language itself rather than just the semantics of programs in the language.
In our work this is important as we wish to reason about translators that act on
the syntax. In particular it means we can prove separate translator correctness
theorems and combine them with each other and with the linkage theorems.

As an aside to this main thrust of the work, we also summarize a general
method for proving stronger consistency theorems, which occur as existential
assumptions to the linkage theorems. These tools remove the burden from the
user of a combined system [47] in proving such theorems manually. They are
needed specifically to justify importing sequential verification results on sequen-
tial designs into the theorem proving system.

In the remainder of this section, we discuss the individual steps that we have
undertaken: verifying the translator correctness theorems, proving the general
linkage theorems, instantiating the linkage theorems with the semantics of a
particular system’s languages, combining the translator correctness theorems
with the linkage theorems and discharging the existential assumptions.

5.1 Verifying the MDG Translators

The input language of the MDG system (MDG-HDL) supports structural speci-
fication, behavioral specification or a mixture of both. The various specifications
of a design are input as a series of files. In particular, a circuit description file
declares signals and their sort assignment, components network, outputs, initial
values for sequential verification and the mapping between state variables and
next state variables. In the components library, there is a large set of predefined
components such as logic gates, flip-flops, registers, constants, etc. Among the
predefined components there is a special component called a Table, which is used
to describe a functional block in the implementation and specification.

The Table constructor is similar to a truth table, but allows first-order terms
in rows. It also allows the high-level description to construct If-Then-Else and
CASE formulas. A table is essentially a series of lists, together with a single final
default value. The first list contains variables and cross-terms. The last element
of the list is the output of the table which must be a variable (either concrete
or abstract). For example, a two input AND gate can be described as a table as
shown in Figure 2. It states that if x1 is equal to true and x2 is true then the
output y is equal to true, otherwise the output y is equal to false.
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Table([[x1, x2,y],[1, 1, 1] | 0)

INPUTS OUTPUTS
T
x1 x2 y
i
T | T T
|
F

Fig. 2. The AND Table

MDG-HDL ——U—= core MDG-HDL —2— = MDGs

Fig. 3. Overview of the MDG Translation Phases

We specify the translation of the MDG-HDL program in stages (Figure 3).
The library components are each first compiled into a table representation. This
is possible because the Table construct provides a general specification mecha-
nism. We refer to resulting programs that use only the TABLE construct in this
way as being core MDG-HDL programs. The resulting core MDG-HDL program
can then be compiled into an internal MDG.

Adopting this approach makes the translation phase more amenable to ver-
ification. Note we are not verifying the actual MDG implementation. Although
an MDG system could be implemented in this way, the existing implementation
is not - whilst most components are translated into tables, some components,
such as registers, are implemented directly in terms of an MDG for efficiency.
However, our formalization of the translator is a specification of it. Once com-
bined with a translator from core MDG-HDL to MDGs, it would be specifying
the output required from the implementation. This would be used as the basis
for verifying such an implementation. We thus split the problem of verifying the
translator into the two problems of verifying that the implementation meets a
functional specification, and that the functional specification then meets the re-
quirement of preserving semantics. We are concerned with the latter step here.
This split between implementation and specification correctness was advocated
by Chirica and Martin [13] with respect to compiler correctness.

As part of the translator verification we define a deep embedding semantics
of a subset of the MDG-HDL language. This subset includes all of MDG-HDL
except for three predefined components: the Multiplexer, the Driver and the
Transform construct used to apply functions. These components are omitted
from our subset, even though they are implemented in the actual MDG system,
as they have non-boolean inputs or outputs. We consider this subset since our
aim is to explore the feasibility of our approach. The subset considered does allow
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MDG-HDL core MDG-HDL

Syntax Syntax
p TransProgMC TransProgMC p
MDG-HDL core MDG-HDL
Semantics Semantics
MDG-HDL core MDG-HDL
SemProgram (p) Thm(1) SemProgram_Core (TransProgMC p)

Fig. 4. Compilation Correctness

a program to contain concrete sorts. In other words, the inputs and outputs of a
table could be of boolean sort or of concrete sort. The concrete sort of boolean
values is treated separately as it is predefined in MDG and used with most
components. It is therefore treated as a special case. In the rest of this paper, we
will refer to this simplified version of the MDG system as “the MDG system”.

In the rest of this subsection, we describe the verification of the first trans-
lation step of the MDG system (phase 1 in Figure 3) based on the syntax and
semantics of a subset of the MDG input language (MDG-HDL) and the core
MDG-HDL language, using the HOL theorem prover. The syntax and semantics
of these languages are defined. A translation function TransProgMC is defined
that translates each MDG-HDL program to give the corresponding core MDG-
HDL program (see Figure 4). The correctness theorem for this translation has
been proved in HOL. It states that the semantics of the low level core MDG-HDL
program is equal to the semantics of the high level MDG-HDL (the MDG input
language).

The Syntax of the MDG-HDL Language The full abstract syntax of the
subset of the MDG-HDL language used is given in the Appendix. The MDG-
HDL commands consist of predefined MDG-HDL components, an operation to
set the initial value of a variable, a next state variable command, a composition
operation and a localisation operation. The syntax of this language introduces a
specially-defined recursive data type of component terms to provide an explicit
representation in logic of the MDG-HDL commands. We define a recursive type
Mdg hdl with 34 constructors for this purpose. The first 28 constructors are gates,
flip-flops and registers. For example, the circuit term ‘NOT ip op’ represents a
NOT gate with one input labelled ip and one output labelled op.

A concrete sort is a set of distinct constants of that sort. We use a string
to represent them. As the inputs and outputs of many basic components in the
MDG-HDL library are of boolean value, we define a new type Mdg Basic in HOL
that represents both boolean and concrete sorts.
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Mdg_Basic ::= UNBOUND | BOOL of bool | CONCRETE of string

The constructor INIT represents the initial value of a state variable. SNXT v
nv states that nv is the next state variable of the state variable v. If c1 and c2 are
two values of type Mdg_hdl, then the term JOIN c1 c2, represents the composition
of the two terms represented by c1 and c2. The INTERNAL constructor represents
the localisation operation. If c is a term representing a circuit and w is a string
(internal wire), then the circuit ‘INTERNAL w c’ represents the circuit obtained
by hiding the wire labelled w in the circuit represented by c.

The constructor TABLESYN represents the syntax of the Table component
which has five arguments. The first argument is a list of input variables. The
second argument is the single output variable. This output could be either a cur-
rent state variable or a next state variable. We define a new HOL type out_type
to represent these options:

out_type = NOWV of string |
NEXTV of string

The third argument of the constructor TABLESYN is a list of table rows. Each row
is a list itself giving one allocation of values to the inputs, and each input is
an Mdg Basic term. In other words, an input could be a (BOOL bool) term or a
(CONCRETE string) term. The entries in the list can be either actual values or
a special don’t care marker. This is realised by defining a new type (as given
in [21]).

Table_Val = TABLE_VAL of « | DON’T_CARE

TableVal_to_Val (TABLE_VAL (v:a)) = v

The fourth argument of TABLESYN has the type of ((Mdg_Basic) list). Each ele-
ment of this argument gives the output for the corresponding allocation of values
to the inputs. The final argument is the default value, taken by the output if
the input values do not match any row. The default value could be an arbitrary
Mdg Basic value, a current state variable or a next state variable. Again we define
a new HOL type default_type in terms of the type out_type.

default_type = DENORMAL of Mdg Basic |

DEOUT of out_typel

The abstract syntax of an MDG-HDL program as a whole is given by the
constructor PROG. It consists of an external output wire list Exoutput, an external
input wire list Exinput, an internal wire list Invariable and a component term,
Mdg Hdl.

Mdg_Program ::= PROG of Exoutput => Exinput => Invariable => Mdg_Hdl
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The Syntax of the Core MDG-HDL Language Core MDG-HDL is a
minimal subset of MDG-HDL using TABLES in place of the library components.
The abstract syntax of the core MDG-HDL language is defined in terms of four
arguments — an external output wire list, an external input wire list, an internal
wire list and a core component term. A core component term consists of four
constructors. i.e. INITC, SNXTC, TABLESYNC and JOINC.

Mdg-Hdl_Core ::=
INITC of (string#Mdg Basic) |
SNXTC of string => stringl
TABLESYNC of (string list) => Out_Type => ((Mdg_Basic Table_Val list) list)
=> (Mdg-Basic list) => Default_Typel
JOINC of Mdg-Hdl _Core => Mdg_Hdl_Core

The abstract syntax of a whole core MDG-HDL program is:

Mdg_Core Program ::=
PROGC of Exoutput => Exinput => Invariable => Mdg_Hdl Core

Translating MDG-HDL into the Core MDG-HDL Language For the
translator we first define a set of functions that given a component return its
core MDG-HDL code. For example, a NOT gate is translated into

Fiey TRANSNOT (x:string) y =
TABLESYNC [x] (NOWV y) [[TABLE_VAL (BOOL T)1;
[TABLE_VAL (BOOL F)1]
[BOOL F; BOOL T] (DENORMAL ARB)

We then define a function TransGT inductively over the syntactic structure
of MDG-HDL component terms translating each into the equivalent core MDG-
HDL form.

Faes (TransGT (NOT ip op) = TRANS_NOT ip op) A

(TransGT (TABLESYN y1 y2 y3 y4 y5) = TRANS_TABLE y1 y2 y3 y5 y5) A
(TransGT (JOIN (codel:Mdg_Hdl) code2) =
JOINC (TransGT codel) (TransGT code2))

Finally, a higher-order logic function TransProgMC is defined in terms of the
function TransGT which translates a whole MDG-HDL program into its core
MDG-HDL program.

Fdes TransProgMC (PROG exv exi inv p) = PROGC exv exi inv (TransGT p)

The Semantics of the MDG-HDL Program In this section we outline
the semantics of MDG-HDL programs used in the verification. We first define
semantic functions for each component in the MDG-HDL component library. We
then define the semantics of MDG-HDL component terms (SemMdghdl). Finally,
we define the semantics of MDG-HDL programs as a whole (SemProgram).
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The primitive components of MDG-HDL component terms are logic gates,
flip-flops, table, initial value etc. The semantics of logic gates and flip-flops have
different sorts. We must first define predicates that ensure that each variable
does not have mismatched sorts. For example, it is meaningless for a NOT gate
to have non-boolean input. We need to check if the input or output for the
different components and different applications is either a BOOL bool term, a
CONCRETE string term or an UNBOUND term as appropriate.

The semantics of logic gates and flip-flops are a conjunction of the sort judg-
ment of its inputs and outputs together with a relation between the input values
and the output values. For example, the semantics of the NOT gate can be ex-
pressed by

Fdey SEM_NOT ip op =
(V t. ISBBOOL (x t) A (ISBOOL (y t)) A
((MDG_TO_BOOL (y t)) = (~ MDG_TO_BOOL (x t))))

where predicate IS_BOOL is used to check if a Mdg Basic term’s value is BOOL T
or BOOL F, and MDG_TO_BOOL converts the Mdg Basic terms BOOL T and BOOL F to
boolean values T and F.

Faey (MDG_TO_BOOL (BOOL v) = v)

The semantics of the other logic gates, flip-flops and table are defined similarly.
The semantics of MDG-HDL component terms is defined as a higher-order
logic function SemMdghdl:

Fies (SemMdghdl (NOT x y) env = SEM_NOT (env x) (env y)) A

(SemMdghdl (TABLESYN y1 y2 y3 y4 y5) env =
TABLE (MAP env y1) (SEM_OUTVAR y2 env) y3
(CONST_TO_FUNCT y4) (SEM_DEFAULTVAR y5 env) envstbl) A
(SemMdghdl (JOIN (codel:Mdg Hdl) code2) env =
SemMdghdl codel env A SemMdghdl code2 env )

Finally, the semantics of the program is defined in terms of the environment.
It maps a syntactic object to a history function of type (num—Mdg Basic). Func-
tion Dsem Ext adds an extra entry to this environment for each external wire
(input and output). A list ip is used to represent all the values of the external
inputs and a list op is used to represent all the values of the external outputs.
The semantics of the program can then be represented explicitly in terms of the
external inputs ip and outputs op. The function Dsem_Int uses existential quan-
tification to hide local variables from the environment. The entries for internal
variables are added to the environment. The function Check_External _Sort makes
sure that the external wires do not get sort mismatched. The semantics of the
MDG-HDL program is defined in terms of these functions.

Fdes SemProgram (PROG exoutput exinput inv c) ip op =
let envl = (Dsem_Ext (SemExinput exinput) EmptyEnv ip)
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in
let env2 = Dsem Ext (SemExoutput exoutput) envl op
in
((Check_External_Sort c env2 (SemInvariable inv)) D
Dsem_Int (SemInvariable inv) c env2)

The Semantics of the Core MDG-HDL language The semantics of core
component terms (SemMdghdl Core) is similarly defined in terms of the semantic
function for each component.

Fies (SemMdghdl_Core (INITC init) env =

SEM_INIT ((env (FST init)), (SND init))) A
(SemMdghdl _Core (SNXTC op st) env = SEM_SNXT (env op) (env st)) A
(SemMdghdl_Core (TABLESYNC y1 y2 y3 y4 y5) env =

TABLE (MAP env y1) (SEM_OUTVAR y2 env) y3

(CONST_TO_FUNCT y4) (SEM_DEFAULTVAR y5 env)) A
(SemMdghdl_Core (JOINC codel code2) env =
((SemMdghdl_Core codel env) A (SemMdghdl_Core code2 env)))

The semantics of core programs is also defined from auxilliary functions in a
similar way to MDG-HDL itself. Dsem_Int_Core gives the semantics of the circuit
in terms of the semantics of core component terms (SemMdghdl Core) and uses
existential quantification to hide the local variables from the environment of
the circuit. The function Check_External_Sort_Core finds the proper sort for the
external wires of the circuit. The semantics of the core MDG-HDL language is
then defined as follows:

Fies SemProgram Core (PROGC exoutput exinput inv code) ip op =
let envl = Dsem_Ext (SemExinput exinput) EmptyEnv ip
in
let env2 = Dsem_Ext (SemExoutput exoutput) envl op
in
(Check_External_Sort_Core ¢ env2 (SemInvariable inv)) D
Dsem_Int_Core (SemInvariable inv) code env2

Translator Correctness Theorem We are now in a position to verify the
correctness of the translator as we outlined at the start of this section. We
have formally defined in higher-order logic the syntax and semantics of the two
languages as well as the translation between them. We now have to obtain a
theorem that quantifies over its syntactic structure stating that the semantics of
the MDG-HDL program is equivalent to the semantics of the Table program it
is translated to. We have proved a HOL theorem that states this formally:

Finm V exv exi inv c.
SemProgram (PROG exv exi inv c) ip op =

SemProgram Core (TransProgMC (PROG exv exi inv c¢)) ip op (1)
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Specification Verification

A

| Submodule | | Submodule |

____________ J[___________-

Fig. 5. Hierarchical Verification

This correctness theorem is straightforward to prove by structural induction on
the syntax domain of the MDG-HDL program. For each component a separate
proof shows that the semantics of the component and the semantics of the table
that results from expanding the definition of the translator are equivalent. It is
long-winded given the number of cases, but essentially straightforward.

5.2 The Linkage Theorems

Generally, when we use HOL to verify a design, the design is modeled as a hi-
erarchy structure with modules divided into submodules as shown in Figure 5.
The submodules are repeatedly subdivided until the logic gate level is eventually
reached. Both the structural and behavioral specifications of each module are
given as relations in higher-order logic. The verification of each module is car-
ried out by proving a theorem asserting that the implementation (its structure)
implements (implies) the specification (its behavior). They have the very general
form:

implementation D specification (2)

The correctness theorem for each module states that its implementation down
to the logic gate level satisfies the specification. The correctness theorem for each
module can be established using the correctness theorems of its submodules. The
submodule is treated as a black-box. A consequence of this is that different tech-
nologies can be used to address the correctness theorem for the submodules. In
particular, we can use the MDG system instead of HOL to prove the correctness
of submodules.

In order to convert MDG verification results into HOL, we have formalized
the results of the MDG verification applications in HOL. These formalizations
have different forms for the different verification applications, i.e., combinational
verification gives a theorem of one form, sequential verification gives a different
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Fig. 6. The Product Machine used in MDG Sequential Equivalence Checking

form and so on. The most natural and obvious way to formalize the MDG results
is in terms of what is in effect virtual hardware constructed so as to give a true
output if given equivalent circuit descriptions. This does not give theorems of
the form (an implication of those specifications) that we can easily integrate into
a hierarchical proof. Therefore, we have to convert the MDG results into a form
that can be used. We have proved a series of general linkage theorems that ex-
press the conversion produced by several different MDG verification applications
These linkage theorems have the structure:

formalized_MDG_result D

implementation O specification (3)

The linkage theorems are general in the sense that they do not explicitly refer
to the MDG-HDL semantics or multiway decision graphs. Rather they are given
in terms of general relations on inputs and outputs. As they are independent of
any specific language, the theorems proved could therefore be applied to other
verification systems with similar architectures based on reachability analysis
or equivalence checking. For example, suppose the behavioral equivalence of
two state machines (Figure 6) is verified by some system (as it is in MDG)
by checking that the machines produce the same sequence of outputs for every
sequence of inputs. The same inputs are fed to the two machines M and M’
and then reachability analysis is performed on their product machine using an
invariant asserting the equality of the corresponding outputs in all reachable
states. This effectively introduces new “hardware” (see Figure 6) which we refer
to here as PSEQ (the Product machine for SEQuential verification). PSEQ has the
same inputs as M and M’, but has as output a single boolean signal (f1lag). The
outputs op and op’ of M and M’ are input into an equality checker. On each cycle,
PSEQ outputs true if op and op’ are identical at that time, and false otherwise.
The result proved (e.g. by MDG) about PSEQ is that the flag output is always
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true. This can be formalized as
V ip op op’ flag. PSEQ ip op op’ flag M M’ D (V¥ t. flag t = T) (4)

We have proved the corresponding linkage theorem which converts such re-
sults to an implicative form:

Fihm Y M M.
((V ip op op’ flag.
PSEQ ip op op’ flag M M’ D (V t. flag t = T)) A
(Vip. 3 op’. M’ ip op’)) D
(V ip op. M ip op D M’ ip op) (5)

Any verification system that formulates sequential verification as a product
machine as in Figure 6 could use theorem 5 directly as the definition of PSEQ
just specifies the structure of a general product machine. In particular, as MDG
does it this way, this theorem can be used as an MDG linkage theorem.

Note this theorem suggests that the MDG results can only safely be im-
ported into HOL when an additional assumption ( V ip. 3 op’. M’ ip op’)
is proved. We summarize a general method for proving this additional assump-
tion of the design in Section 5.4.

In some cases, as here, equivalences rather than implications could be proved.
For the above this would require an additional existential clause. As not all MDG
applications verify equivalence all the linkage theorems we have developed are
of an implicative form for consistency. It would be trivial to extend them to
equivalences where the situation was symmetrical as with PSEQ.

5.3 Combining the Translator Correctness Theorems with the
Linkage Theorems

In this section, we introduce the basic idea about how to combine the trans-
lator correctness theorems with linkage theorems, based on a deep embedding
semantics. This combination allows MDG results to be reasoned about in HOL
in terms of the MDG input language (MDG-HDL). Ultimately in HOL we want
a theorem about input language artifacts. However, the MDG verification re-
sult is obtained based on a low level data structure — an MDG representation:
that is what the algorithms apply to. Therefore, the formalization of the MDG
verification results in the linkage theorems ought to be based on the semantics
of these low level MDG representations. We show here how the theorem about
the translator’s correctness can be used to overcome this problem. By combining
the translator correctness theorems with the linkage theorems, we obtain new
linkage theorems which convert low level MDG verification results into HOL
theorems in terms of the semantics of the high level MDG-HDL.

The whole MDG verification and linking process is as illustrated in Figure 7,
checking that three NOT gates are equivalent to a single NOT gate. Step 1 of
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Fig. 7. The MDG Verification Process illustrated by proving that three NOT gates are

equivalent to a single NOT gate
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the figure gives the main part of the two circuit description files (in the MDG-
HDL input language), which are translated into the core MDG-HDL (tabular
representations) language as shown in step 2. The core MDG-HDL programs are
then translated into the low level MDG language (step 3). The MDG algorithm
is applied to the low-level MDGs in order to obtain two canonical MDGs. The
MDG tool checks whether the two canonical MDGs are identical and returns
true or false (step 4). In our example the MDG tool returns true. From this
result a HOL theorem is created.

The MDG verification results are about the low level MDGs that the algo-
rithms manipulate rather than the high level language MDG-HDL. However, the
translator correctness theorems state that the semantics of the low level MDG is
equal to the semantics of the high level MDG-HDL (the MDG input language).
By combining the low level MDG result with the translator correctness theo-
rems, the MDG verification results can be converted into HOL ones based on
the semantics of the high level language (MDG-HDL). The combination also
allows the additional assumptions that need to be proved for sequential verifi-
cation to be proved in terms of the semantics of the high level MDG-HDL. In
this paper we consider the verification of the first translator only so here the
low-level formalization of the MDG results is in terms of core MDG-HDL rather
than MDGs. However, the principle is the same. Further translators could be
verified and those translators combined into a single verified one.

We now describe how to obtain the new sequential verification linkage the-
orem. Our combinational linkage theorem is treated similarly. That is, given
a linkage theorem about low level code (with semantics SemProgram Core), we
use the translator correctnesss theorem to obtain one that converts results from
low to high level code (with semantics SemProgram). We first instantiate the two
machines in terms of the semantics of the core MDG-HDL language in the link-
age theorem (5). We obtain the linkage theorem based on the semantics of the
core MDG-HDL language alone as shown below. Note it refers to semantics
(SemProgram_Core) throughout.

Finm YV IMP SPEC.
(V ip op op’ flag.
PSEQ ip op op’ flag
(SemProgram_Core (TransProgMC SPEC))
(SemProgram_Core (TransProgMC IMP))
D (Vt. flagt =T)) A
(V ip. 3 op’. SemProgram Core (TransProgMC SPEC) ip op’) D
(V ip op.(SemProgram Core (TransProgMC IMP) ip op) D
(SemProgram_Core (TransProgMC SPEC) ip op)) (6)
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For any specific verification, we will need to prove the additional assumption
about the actual program specification (e.g. SPEC).

Y ip. 3 op’. SemProgram_Core(TransProgMC SPEC) ip op’ (7)

From the translator correctness theorem (1), we obtain a theorem Ezist_Equ_Thm
(8). This theorem states that the additional assumption based on the semantics
of the core MDG-HDL language is equivalent to that based on the semantics of
MDG-HDL. In other words, we can prove the additional assumption in terms of
the semantics of MDG-HDL. We discuss how this is done in Section 5.4.

l_thm V SPEC.
(V ip. 3 op’. (SemProgram_Core (TransProgMC SPEC)) ip op’) =
(V ip. 3 op’. SemProgram SPEC ip op’) (8)

We next prove a theorem using the translator correctness theorem (1), Imp_Equ_Thm,
which states that the HOL theorem based on the semantics of the core MDG-
HDL language is equivalent to that based on the semantics of MDG-HDL.

Finm ¥V IMP SPEC.
(V ip op.
(SemProgram_Core (TransProgMC IMP)) ip op D
(SemProgram Core (TransProgMC SPEC)) ip op) =
(V ip op. (SemProgram IMP) ip op D
(SemProgram SPEC) ip op) (9)

Finally, a new linkage theorem Import_Mdghdl_Thm is obtained by rewriting
theorem (6) with the theorems (8) and (9).

Fihm ¥V IMP SPEC.
(V ip op op’ flag.
PSEQ ip op op’ flag
(SemProgram_Core (TransProgMC SPEC))
(SemProgram_Core (TransProgMC IMP))
D (Vt. flagt =T)) A
(V ip. 3 op’. SemProgram SPEC ip op’) D
(V ip op. SemProgram IMP ip op D
SemProgram SPEC ip op) (10)

This result, a combination of the translator correctness theorem and linkage
theorem allows MDG verification results to be imported into HOL in terms of
the semantics of MDG-HDL. In the antecedent about the result proved by MDG,
it refers to the semantics of the low-level code, SemProgram_Core. Its conclusion,
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however, which is the part corresponding to the result imported into HOL is in
terms of the high level code semantics, SemProgram.

An example of importing an MDG verification result into HOL is outlined
in Section 6.

5.4 Proving the Existential Theorem
Above we proved the linkage theorem for sequential verification. It has the form:

Finm formalized-MDG_result A
Y ip. 3 op. SPECIFICATION ip op D
(V ip op. ( IMPLEMENTION ip op O SPECIFICATION ip op))

where SPECIFICATION represents the behavioral specification and IMPLE-
MENTATION represents the structural specification of a design. The first as-
sumption is discharged by the MDG verification. However, for importing the
sequential verification results into HOL, a user of the hybrid system strictly
needs to prove the additional assumption (an existential theorem) to ensure the
correct HOL theorem can be made. This theorem states that for all possible
input traces, the behavioral specification SPECIFICATION can be satisfied for
some output values:

Finm V ip. 3 op. SPECIFICATION ip op (11)

Note that similar existential theorems are also needed about implementa-
tions: the more normal situation when such a theorem must be proved. When
we convert MDG results into HOL to form HOL theorems, the theorems actu-
ally state that the implementation of the design implements its specification as
shown in (12).

Fonm V ip op. IMPLEMENTATION ip op > SPECIFICATION ip op  (12)

This representation might meet an inconsistent model that trivially satisfies any
specification. This is sometimes called “The false implies anything problem”
[12]. If the implementation of a design (IMPL ip op) is false for all the inputs
and outputs, then this implication is a theorem, no matter what constraint is
imposed on the variables by its specification (SPEC ip op). This is wrong because
a theorem like this provides no meaning to ensure the correctness of the circuit.
One solution to this problem is to verify a stronger consistency theorem against
the implementation, as suggested in [35], which has the form:

Fivm ¥ ip. 3 op. IMPLEMENTATION ip op (13)

This means that for any set of input values ip there is a set of output values
op which is consistent with it. This shows that the model does not satisfy a
specification merely because it is inconsistent. When importing an MDG result
we need also to prove a theorem of this same form for the specification, because
it is an explicit assumption included in the linkage theorems to allow them
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to be proved. The stronger consistency theorem (13) is an ewxistential theorem
for the structural specification, whereas the additional assumption (11) for the
linkage theorem is an existential theorem for the behavioral specification. We
have developed a way of proving both based on the syntax and semantics of the
MDG input language [47].

If M represents any specification or implementation of a circuit, and #p and
op to represent the external inputs and outputs, an existential theorem will have
the form:

Finm ¥V ip. 3 op. M ip op (14)

For example, the existential theorem for a circuit consisting of two NOT gates
in series is:

Finm V ip. 3 op. (3 opl. SEM.NOT ip opl A SEM_NOT opl op)

We need to strip away the existentially quantified variables of the existen-
tial theorem then devise and substitute an appropriate existential term for each
occurrence of an existential variable in the body. As these theorems arise from
the syntax of MDG-HDL, the ezistential term of any given variable is deter-
mined by one of several output representations of the corresponding MDG-HDL
components. An output representation is just a function giving the component’s
value as a function in terms of the input and output values at the current or
previous time instances. For example, the output representation for a NOT gate
is defined as:

Fdey existnot (ip:Mdg_Basic) =
(Booli Mdg ( ~ (if ip = BOOL T then T else F)) )

where Bool1l_Mdg is an auxiliary function, which lifts a boolean value to a Mdg_Basic
value. Given an input value at some time instant, the boolean value is extracted,
negated and converted back to the lifted version. existnot supplied with an
appropriate value for the input can then be combined with other output rep-
resentations for the circuit to create the term used to eliminate an existential
quantification over a NOT gate.

In general the following theorem can be used to eliminate existentially quan-
tified variables in a goal if an output representation (t) is explicitly represented
in the goal.

Fihm (3 x. (x=1) A (Ax) = At (15)

In other words, if the existentially quantified variable (x) is explicitly represented
by its value as in (15) with (x = t) in the goal, the hidden wire represented by
x can be removed automatically. In HOL, general purpose simplification tactics
can be used to eliminate existentially quantified variables in this way. However,
for dealing with those existentially quantified variables which are not represented
in the form (x = t), we need to explicitly find their output representations.
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We have developed a standard method to prove the existential theorems
based on the syntax and semantics of MDG-HDL [47] [21]. A similar method
can be used to solve other existentially quantified goals. We provide the output
representation for each component (mainly logic gates and flip-flops). The exis-
tential term of a particular design, which reduces the goal 3 x. t to t[u/x], is
then constructed from the corresponding output representations. We have devel-
oped HOL tactics both for expanding the semantics of the circuit and proving
the existential theorem. Further details can be found in [45] and [48].

6 Example: Integrated Hardware and Usability
Verification

We have discussed how to prove translator correctness theorems and linkage
theorems. Their combination allows MDG verification results to be formalized
and reasoned about in HOL in terms of the semantics of MDG-HDL. We now
consider a simple example, integrating MDG hardware verification and HOL
usability verification for a simple vending machine (Figure 8), to illustrate their
use. We show how an actual MDG verification result can be imported into HOL
to form a traditional HOL theorem that can be used in HOL. Our aim here is
not to demonstrate that using the theorems directly in this way is a practical
approach — in practice an implementation of the linkage would be used to do
that, rather than our theorems which are about the specification of a linked MDG
system. The vending machine takes pound coins only, returning change. Lights
next to the coin slot and buttons indicate the order things should be done: first a
coin is inserted, then the change button is pressed and the change removed, and
finally the chocolate button is pressed and the chocolate removed. If the user
does not press the appropriate button the machine does nothing until the correct
button is pressed. The vending machine, thus, has three inputs corresponding to
the buttons being pressed and a coin inserted. It has five outputs: three lights
and a signal each to release change and chocolate.

The vending machine is implemented in hardware as shown in Figure 9. We
can use the predefined components in the MDG-HDL library to represent the
corresponding circuit as described in [17]. In the circuit, two registers are needed
to store the 4 internal states of the vending machine (reset, coin, choc, change).
Their inputs are connected to wire xin and yin and their outputs to wires x
and y, respectively. In MDG-HDL, we use command component to specify their
specifications.

This example was originally used to verify the absence of a common class of
user errors known as post-completion errors within the framework of traditional
hardware verification by Curzon and Blandford [18]. A post-completion error is
a systematic form of operator error that arises due to human working memory
limitations. Users enter interactions with specific goals, such as getting chocolate
from a vending machine or a photocopy from a copier. Tasks can be structured
in a way that means there are additional tasks that the user must do after
achieving the goal, such as taking change or taking back the original being copied.
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Cognitive psychology studies have shown that such tasks are systematically if
unpredictably forgotten [11]. To make this mistake is to make a post-completion
error. In the original work of Curzon and Blandford [18], it was proved that
the implementation of the vending machine meets its specification. A usability
theorem about the absence of post-completion errors based on its specification
was then proved. By combining the two theorems, the usability theorem based
on its implementation was proved. In the original work all the verification was
done in HOL.

The usability theorems that follow do not include a specific definition of post-
completion errors but are more general. What is specified is that the task as a
whole (including completion tasks) is eventually completed if users behave in a
way as specified by a simple model of user behaviour. If this can be proved then
post-completion errors cannot occur (though operator errors for other underlying
cognitive reasons may still be possible). The potential of post-completion error
is one possible reason for failure.
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We closely followed Curzon and Blandford’s steps here. However, we have
used the MDG system to verify the correctness of the vending machine and
imported it into HOL using theorem (10). We then prove the specification based
usability theorem in the HOL system. By combining those two theorems (the
correctness theorem of the vending machine which is verified in MDG and the
specification based usability theorem which is proved in HOL) we obtain the
implementation based usability theorem. This demonstrates how an imported
theorem (the correctness theorem) can be more than just imported into HOL
but can also be used in HOL.

6.1 Verifying the Hardware using MDG

We first did a hardware verification of the vending machine in MDG. The theo-
rem about the formalization of the MDG verification result can be tagged into
HOL in terms of the semantics of core MDG-HDL.

Fihm V ip flag op op’.
PSEQ ip flag op op’
(SemProgram_Core (TransProgMC Vend_Imp_Syn))
(SemProgram_Core (TransProgMC Vend_Spe_Syn))
D (Vt. (flagt = T)) (16)

where Vend_Imp_Syn and Vend_Spe_Syn stand for the syntax of the implementa-
tion and specification of the vending machine in terms of MDG-HDL. As stated
in Section 5.3, the linkage theorem for the vending machine can be obtained by
instantiating the high level language linkage theorem (10) with the syntax of its
implementation and specification ( Vend_Spe_Syn and Vend_Imp_Syn). We obtain
theorem Import_Vend_Thm:

Finm (¥ ip op op’ flag.
PSEQ ip op op’ flag
(SemProgram_Core (TransProgMC Vend_Imp_Syn))
(SemProgram_Core (TransProgMC Vend_Spe_Syn))
D (Vt. flagt =T)) A
V ip. 3 op’. SemProgram Vend_Spe_Syn ip op’ D
(V ip op. SemProgram Vend_Imp_Syn ip op D
SemProgram Vend_Spe_Syn ip op) (17)

Note that the first part of this theorem concerns the low level code produced
by the translator, but that the existential assumption and conclusion are about
high level code.

We then prove the existential theorem for the behavioral specification in terms
of the semantics of MDG-HDL.
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Finm V ip. 3 op’. SemProgram Vend_Spe_Syn ip op’ (18)

Finally, the conversion theorem can be obtained by discharging the formal-
ization theorem (16) and the existential theorem (18) from the linkage theorem
(17). This theorem states that the implementation of the vending machine im-
plies its specification.

Fihm V ip op. SemProgram Vend_Imp_Syn ip op D
SemProgram Vend_Spe_Syn ip op (19)

6.2 Usability Verification in HOL

We next prove a specification based usability theorem about the vending machine
in the HOL system. We will then use (19) to convert it into an implementation
based usability theorem. The general user model for a vending machine is defined
as CHOC_MACHINE USER ustate op ip. This specifies a simple form of cognitively
plausible user behavior [10] based on their goals and knowledge and the physical
limitations of human cognition. That is, they specify possible traces of user ac-
tions that can be justified in terms of specific results from the cognitive sciences.
Of course users might also act outside this behaviour, about which situations
the user model says nothing. Its predictive power is bounded by the situations
where people act according to the principles specified. All theorems proved using
it are thus bounded by that assumption. That does not preclude useful results
from being obtained, provided their scope is remembered. The architecture al-
lows us to investigate what happens if a person does act in such plausible ways. If
user errors are possible even when such a simple model of behaviour is followed
it suggests there is a design problem to be addressed. The behaviour defined
by the model is neither “correct” nor “incorrect”. It could be either depending
on the environment and task in question. It is, rather, “likely” behaviour. We
do not model erroneous behaviour explicitly. It emerges from the description of
cognitively plausible behaviour.

The user model we use here for demonstration purposes is relatively simple.
More complex versions of the model that incorporate a wider range of behaviours
have been developed in our more recent work [20]. Here to demonstrate the idea
we use the same version used in the original work [18]. In essence the user
model consists of a series of non-deterministic guarded rules that give possible
next actions of the user. Behavior modeled includes reacting to device prompts,
terminating on completing the goal or task, or due to having no other action to
take.

This general behaviour is specified as a relation USER. Arguments supplied to
it give specific available actions, and information about the goals and possessions
of the user. In particular, instantiating the model involves specifying concrete
types for the machine and user state, a list of pairs of light prompts and the
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actions associated with them, history functions that represent the possessions of
the user, functions that extract the part of the user state that indicates when the
user has finished and has achieved their main goal, and an invariant that indicates
the part of the state that the user intends to be preserved after the interaction.
The details of the user model are not important for our main argument here
about integrating the results: the interested reader should refer to [18] [19].

Fdef CHOC_MACHINE_USER ustate op ip =

USER
[(CoinLight,InsertCoin); (ChocLight,PushChoc);
(ChangeLight ,PushChange)]

(CHOC_POSSESSIONS UserHasChoc GiveChoc CountChoc UserHasChange
GiveChange CountChange UserHasCoin InsertCoin CountCoin)

UserFinished

UserHasChoc

(VALUE_INVARIANT (CHOC_POSSESSIONS UserHasChoc GiveChoc CountChoc
UserHasChange GiveChange CountChange
UserHasCoin InsertCoin CountCoin))

ustate op ip

The usability of a vending machine is defined as a user-centric property
CHOC_MACHINE USABLE ustate op ip. It states that if at any time, t, a user
approaches the machine when its coin light is on, then they will complete the
task as a whole at some time, t1, having both chocolate and change: they will
thus not make post-completion errors.

Fdef CHOC_MACHINE_USABLE ustate op ip =
V t. ~ (UserHasChoc ustate t) A
~ (UserHasChange ustate t) A
(UserHasCoin ustate t) A
(VALUE_INVARIANT (CHOC_POSSESSIONS UserHasChoc GiveChoc
CountChoc UserHasChange GiveChange CountChange
UserHasCoin InsertCoin CountCoin) ustate t) A
((CoinLight op t)= BOOL T) D
d t1. (UserHasChoc ustate t1) A
(UserHasChange ustate t1)

Our specification based usability theorem states that if all the external inputs
and outputs are Boolean, a user acts in the cognitively plausible way specified
by the user model and the machine behaves according to its specification, then
the usability property will hold: the task will be achieved.

Fihm V ustate op ip.
Boolean ip op A
CHOC_MACHINE_USER ustate op ip A
CHOC_MACHINE_SPEC ip op D
CHOC_MACHINE_USABLE ustate op ip (20)
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Here predicate Boolean checks if all the external wires are Boolean values. This
is required because the inputs of a TABLE could be either a concrete type variable
or a Boolean variable. This predicate ensures the external wires have proper
values.

6.3 Combining the Correctness Results

The implementation based usability theorem can be proved in HOL by combining
the correctness theorem (19) based on the MDG result with the specification
based usability theorem (20) proved in HOL. It (21) states that if the inputs
and outputs are Boolean, a user acts rationally according to the user model and
the machine behaves according to its implementation, then the usability property
will hold.

Fihm V ustate op ip.
Boolean ip op A
CHOC_MACHINE_USER ustate op ip A
CHOC_MACHINE_IMPL ip op D
CHOC_MACHINE_USABLE ustate op ip (21)

From this example, we have shown that a system can be verified in two parts
by the two different systems and the linkage theorems will justify the way they
are combined in the theorem prover. In particular we obtain a theorem of the
form obtained if the theorem prover were used alone. We do not simply assume
that the results proved by MDG are directly equivalent to the result that would
have been proved in HOL. The linkage is based on the linkage theorems giving
a greater degree of trust.

The example here is small, and demonstrates using the linkage theorems
directly. In a practical situation, the specification of MDG would not be used as
that is inefficient. Instead an actual implementation of MDG and the importation
process would be used. Confidence in such an implementation would result from
it being based on, or verified against, the specification.

7 Conclusions

We have described an approach to formally verifying a linkage between a sym-
bolic state enumeration system and a theorem proving system. Following that
of compiler verification work from which this work partially derives, we are con-
cerned with the verification of a specification of the linkage rather than a specific
implementation here. The approach involves three steps.

The first step is to verify correctness of the symbolic state enumeration sys-
tem in an interactive theorem proving system. Some symbolic state enumeration
based systems such as MDG consist of a series of translators and a set of algo-
rithms. We need to prove the translators and algorithms to ensure the correctness
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of the complete system. We have not verified the algorithms in this work, but
concentrated on the translators. For verifying the translators, we need to define
the deep embedding semantics and translation functions. We have to prove that
the semantics of a program is preserved in those of its translated form. This work
increases our trust in the results of the symbolic state enumeration system.

The second step of the approach is to prove general linkage theorems in the
proof system about the results from the symbolic state enumeration system.
We need to formalize the correctness results produced by different hardware
verification applications using the theorem proving system. We need to prove
a theorem in each case that translates them into a form usable in the theorem
proving system. In other words, we need to provide the theoretical justification
for linking the two systems.

The third step is to combine the translator correctness theorems with con-
crete versions of the linkage theorems. This combination specifies how verification
results from the state enumeration system are formalized in terms of the seman-
tics of a low level language that the algorithms manipulate, and the result is
strictly about, but imported in terms of the semantics of a high level language.
Therefore, we are able to justify importing the result into the theorem proving
system based on the semantics of the input language of a verified symbolic state
enumeration system.

We also summarize a general method to prove existential theorems of given
designs, which is needed for importing sequential verification results into a the-
orem proving system. Note that, to import verification results, we have to prove
the existential theorem for the behavioral specification of a design being verified
not just of its implementation as this is a required assumption of the linkage
theorems. The behavioral specifications must be in the form of a finite state
machine or table description. This work makes the linking process easier and
removes the burden from the user of the hybrid system.

We have implemented our methodology for a specification of a subset of the
MDG system and the HOL system, and provided a formal linkage by using the
above mentioned steps. We have verified aspects of correctness of the simplified
version of the MDG system. We have provided a formal linkage between the
MDG system and the HOL system based on importing theorems [46]. Most im-
portantly, we have combined the translator correctness theorem with the linkage
theorems. This justifies not only that MDG verification results can be imported
into HOL to form the HOL theorem, but are in a form that can also be used as
part of a compositional verification in HOL.

We have described an example verification. We have shown that two differ-
ent applications (hardware verification and usability verification) suited to two
different tools can be combined together. This is not intended to demonstrate
the way hardware would actually be verified: that would be done using an im-
plementation of MDG based on the specification. Rather it illustrates the way
the linkage theorems work in converting MDG results into HOL ones.
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8 Further Work

Due to the limited resources for our project, we have only demonstrated the
approach to verifying hybrid verification systems. There are clear ways the work
could be taken forward. For example, a linkage based on the full MDG-HDL
language used in the Concordia MDG-HOL implementation could be verified. We
only verified here the top level translation step. Further translation steps down to
MDGs need to be verified for the full system to be verified. In a separate strand
of work we verified the translator from core MDG-HDL to MDGs. This has been
integrated with the linkage theorems, for a smaller subset of the language (only
using boolean sorts), showing that this is not problematic in principle [45]. We
have also not verified the low level algorithms used in the MDG system. If that
were done then a verified system stack could be created fully verifying the whole
process from verification of result to importation into the theorem prover.

The core MDG algorithms can be used in different ways to implement a
variety of different verification applications. We have verified linkage theorems
for a selection such as sequential equivalence checking, to illustrate our approach.
This could be done for other MDG applications in a similar way.

We have been concerned with verifying the specification. Major work would
involve verifying an actual implementation against the specification of the hybrid
system. One way this could be done as a simpler alternative to verifying existing
implementations would be to develop a new implementation directly from the
specification that followed its structure.

We have only considered one linkage — between MDG and HOL — following
our methodology for verifying hybrid systems. Important follow up work would
be to similarly apply the the approach to other combinations. In preliminary
work we verified aspects of a BDD-equivalent subset of MDG so there are no
specific issues in that sense of applying the work to BDD based hybrid systems.
A specific BDD system could be developed that uses the same approach to
product machines such as PSEQ. This could be used to illustrate how linkage
theorems could be directly applicable to systems based on different low-level
enumeration systems. It would also be useful to look at applications based on
more complex language translations into MDG: specifications based on industrial
languages such as Verilog, for example, rather than the relatively simple MDG-
HDL language.

As suggested by an anonymous referee of this paper our approach to proving
usability results for the specification and then deducing them for the implemen-
tation could also be phrased as a bisimulation problem. An MDG result could
be stated as a bisimulation between the implementation and the specification.
Once a bisimulation is obtained then any Computational Tree Logic* (CTL*)
property that is verified for one model will also hold for the other model. Us-
ability theorems could be stated in CTL*. The state enumeration system could
then, for example be used to verify both the usability of the specification and the
bisimilarity of the specification and implementation then use HOL to combine
the results together to conclude the usability of the implementation. Recasting
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the work in this way would be very interesting though is beyond the scope of
our current project.
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Appendix: The Syntax of the MDG-HDL Language

Out_Type ::= NOWV of string |
NEXTV of string

Default_Type ::= DENORMAL of Mdg Basic |
DEOUT of out_type |

Table_Val ::= TABLE_VAL of o | DON’T_CARE
Mdg Basic ::= UNBOUND | BOOL of bool | CONCRETE of string
Mdg Hdl ::= NOT of string=>string |

AND of string=>string=>string |

OR of string=>string=>string |

NAND of string=>string=>string |

XOR of string=>strin=>string |

NOR of string=>string=>string |

AND3 of string=>string=>string=>string |

OR3 of string=>string=>string=>string |

NAND3 of string=>string=>string=>string |

NOR3 of string=>string=>string=>string |

AND4 of string=>string=>string=>string=>string |

OR4 of string=>string=>string=>string=>string |

NAND4 of string=>string=>string=>string=>string |

NOR4 of string=>string=>string=>string=>string |

AND5 of string=>string=>string=>string=>string=>string |

OR5 of string=>string=>string=>string=>string=>string |

NAND5 of string=>string=>string=>string=>string=>string |

NOR5 of string=>string=>string=>string=>string=>string |

AND6 of string=>string=>string=>string=>string=>string=>string |
OR6 of string=>string=>string=>string=>string=>string=>string |
NAND6 of string=>string=>string=>string=>string=>string=>string |
NOR6 of string=>string=>string=>string=>string=>string=>string |
JKFF of string=>string=>string |
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RSFF of string=>string=>string |

JKFFE of string=>string=>string=>string |

AD of string=>string=>string=>string=>string |

REGCON of string=>string=>string |

REG of string=>string |

FORK of string=>string |

INIT of (string#Mdg Basic) |

SNXT of string=>string |

TABLESYN of (string list)=>0ut_Type=>((Mdg_Basic Table_Val list) list)
=>(Mdg-Basic list)=> Default_Type |

JOIN of Mdg Hdl=>Mdg_Hdl |

INTERNAL of string => Mdg-Hdl

Exoutput ::= EXOUT of string list

Exinput ::= EXIN of string list

Invariable ::= INV of string list

Mdg_Program ::= PROG of Exoutput =>Exinput => Invariable => Mdg_Hdl
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