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t. We des
ribe a hybrid formal hardware veri-�
ation tool that links the HOL intera
tive proof systemand the MDG automated hardware veri�
ation tool. Itsupports a hierar
hi
al veri�
ation approa
h that mir-rors the hierar
hi
al stru
ture of designs. We obtain ad-vantages of both veri�
ation paradigms. We illustrateits use by 
onsidering a 
omponent of a 
ommuni
ations
hip. Veri�
ation with the hybrid tool is signi�
antlyfaster and more tra
table than using either tool alone.
1 Introdu
tionAutomated de
ision diagram based formal hardware ver-i�
ation is fast and 
onvenient, but does not s
ale well,espe
ially where datapaths and 
ontrol 
ir
uitry are 
om-bined. Details of the version of the design veri�ed need

to be simpli�ed, e.g., 
onsidering 1-bit instead of 32-bit datapaths. Finding a model redu
tion and appropri-ate abstra
tions so that veri�
ation is tra
table with thetool 
an be time-
onsuming. Moreover, signi�
ant detail
an be lost. An alternative is intera
tive theorem prov-ing. The veri�
ation 
an be done hierar
hi
ally allow-ing large designs to be veri�ed without simpli�
ation.Furthermore, it is possible to reason about high levelabstra
tions of datatypes. It 
an however be very time-
onsuming, requiring signi�
ant user intera
tion and skill.The 
ontribution of our work is to implement a hy-brid tool 
ombining HOL [12℄ and MDG [5℄ whi
h pro-vides expli
it support for hierar
hi
al hardware veri�-
ation. In parti
ular, we have provided an embedding ofthe MDG input language in HOL, implemented a linkagebetween HOL and MDG using the PROSPER toolkit [9℄and implemented a series of HOL ta
ti
s that automatehierar
hi
al veri�
ation. This means that a hierar
hi
alproof 
an be performed as it might be done using a pure
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hi
al Formal Veri�
ation Using a Hybrid ToolHOL system. However, the MDG tools 
an be 
alled toperform veri�
ation of 
omponents that are within its
apabilities. We have veri�ed a 
omponent of a 
ommu-ni
ation swit
h using the tool. Veri�
ation is shown to besigni�
antly faster and more tra
table using the hybridtool than with either tool individually.The remainder of this paper is organized as follows.In Se
tion 2 we overview brie
y the two tools beinglinked. We present our hybrid tool and the methodologyit embodies in Se
tion 3. A 
ase study using the tool toverify a 
omponent of an ATM (Asyn
hronous TransferMode) swit
h is des
ribed in Se
tion 4. Finally, we dis-
uss related work in Se
tion 5 and draw 
on
lusions inSe
tion 6.2 The Linked ToolsOur hybrid tool links the HOL intera
tive theorem proverand the MDG hardware veri�
ation system. HOL [12℄ isbased on higher-order logi
. The user works intera
tivelywith the system 
alling ML fun
tions [19℄ that imple-ment inferen
e rules to apply proof steps. New theoremsare 
reated in HOL by applying inferen
e rules|derivedrules 
all a su

ession of primitive rules, thus the user
an have great 
on�den
e in the derived theorems. How-ever, HOL also provides fun
tions to 
reate theoremsdire
tly without proof. This feature 
an be used to im-port results produ
ed by external tools into HOL. Ourhybrid tool uses the PROSPER/Harness Plug-in Inter-

fa
e of HOL [9℄. This gives a uniform way of linkingHOL with external proof tools. It provides the low level
lient-server 
ommuni
ation interfa
e from HOL to var-ious languages within whi
h other tools are integrated.A range of di�erent external proof tools (su
h as MDG)
an a
t as servers to a HOL 
lient. The interfa
e re-moves the burden of writing low-level 
ommuni
ationtools, leaving the hybrid tool designer to 
on
entrate onhigher-level issues. It also tags theorems produ
ed byplug-ins with a label indi
ating their sour
e. These la-bels are propagated to any theorem generated from theimported result allowing the pedigree of any result to belater determined.The MDG system, whi
h is primarily designed forhardware veri�
ation, provides veri�
ation pro
eduresfor equivalen
e and property 
he
king. The former pro-vides the veri�
ation of two 
ombinational 
ir
uits orthe veri�
ation of two state ma
hines. The latter allowsveri�
ation through invariant 
he
king or model 
he
k-ing. The strength of the MDG system is its automationand ease of use. It has been used in the veri�
ation ofsigni�
ant hardware examples [23,4,25℄. The MDG sys-tem is a de
ision diagram based veri�
ation tool basedon Multiway De
ision Graphs (MDGs) [5℄ rather thanon binary de
ision diagrams. MDGs over
ome the datawidth problem of Redu
ed-Order Binary De
ision Dia-gram (ROBDD) based veri�
ation tools. An MDG is a�nite, dire
ted a
y
li
 graph (DAG). MDGs essentiallyrepresent relations rather than fun
tions. They are mu
h
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ompa
t than ROBDDs for designs 
ontaining adatapath. Furthermore, sequential 
ir
uits 
an be ver-i�ed independently of the width of the datapath. TheMDG tools 
ombine some of the advantages of repre-senting a 
ir
uit at more abstra
t levels with the au-tomation o�ered by de
ision-diagram based tools. Theinput language for MDG is MDG-HDL, a simple hard-ware des
ription language (HDL) supporting stru
turaldes
riptions, behavioral des
riptions as Abstra
t StateMa
hine (ASM) or a mixture of both. A stru
tural de-s
ription is usually a netlist of 
omponents 
onne
tedby signals, and a behavioral des
ription is given by atabular representation of the transition/output relationof the ASM. This is done using the Table 
onstru
t ofMDG-HDL: essentially a 
ase statement that allows thevalue of a variable to be spe
i�ed in terms of the valuesof inputs and other expressions
3 The Hybrid Tool and Veri�
ationMethodologyIn a pure MDG veri�
ation, stru
tural and behavioraldes
riptions are given for the top level design. An au-tomated veri�
ation pro
edure is then applied. If theproblem is suÆ
iently tra
table, the veri�
ation is 
om-pleted automati
ally. If not, ideally the problem wouldbe atta
ked in a hierar
hi
al fashion by verifying the sub-blo
ks independently. However, the management of this

pro
ess 
annot be done within the tool, though 
ould bedone informally outside it.In a pure HOL hardware veri�
ation, the proof isstru
tured a

ording to the design hierar
hy of sub-blo
kswithin the implementation. For ea
h blo
k, in
luding thetop level blo
k of the design, a stru
tural spe
i�
ationand behavioral spe
i�
ation are given. Ea
h blo
k's im-plementation (apart from those at the bottom of the hi-erar
hy) is veri�ed against its spe
i�
ation in three steps.Firstly, an intermediate veri�
ation result is obtainedabout the blo
k based on the behavioral des
riptions ofits sub-blo
ks. Essentially, the sub-blo
ks are treated asprimitive 
omponents in this veri�
ation. Se
ondly, thepro
ess is repeated re
ursively on the sub-blo
ks to ob-tain 
orre
tness theorems for them. Finally, the 
orre
t-ness theorems of the sub-blo
ks are 
ombined with theintermediate 
orre
tness theorem of the blo
k itself togive the a
tual 
orre
tness theorem of the blo
k. Thisis based on the full stru
tural des
ription of the blo
kdown to primitive 
omponents. The veri�
ation followsthe natural design hierar
hy. If this pro
ess is applied tothe top level design blo
k, a 
orre
tness theorem for thewhole design is obtained. The integration of the veri�-
ation results of the separate 
omponents that would bedone informally (if at all) in an MDG veri�
ation is thusformalized and ma
hine-
he
ked in the HOL approa
h.Our hybrid tool supports hierar
hi
al veri�
ation,automating the pro
ess dis
ussed above, and �ts the useof MDG veri�
ation naturally within the HOL frame-
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ompositional hierar
hi
al veri�
ation. The HOLsystem is used to manage the proof, with the MDG sys-tem 
alled to verify those design blo
ks that are tra
table.This removes the need to provide behavioral spe
i�
a-tions for sub-blo
ks and the need to verify them sep-arately. In parti
ular, if the design of any sub-blo
k issuÆ
iently simple, then the hierar
hi
al approa
h 
an beabandoned for that blo
k and the whole blo
k veri�edin one go in MDG. Furthermore, verifying a blo
k underthe assumption that its sub-blo
ks are all primitive 
om-ponents may also be done using MDG if tra
table. If not,a normal HOL proof 
an still be performed. No informa-tion is lost in using MDG via the hybrid tool. We useMDG-style behavioral spe
i�
ations within HOL. Thismeans the spe
i�
ations must be in the form of a �-nite state ma
hine or table des
ription. If a higher levelabstra
tion, unavailable in MDG, is required then a sep-arate HOL proof is performed that an MDG style spe
-i�
ation meets this abstra
tion.3.1 The Hybrid ToolOur Hybrid tool was written in SML (Standard ML).It 
onsists of �ve modules: a parsing module, an extra
-tion module, a hierar
hi
al veri�
ation support module,a 
ode generation module and an MDG intera
tion mod-ule (
f. Figure 1). Subgoal management is done usingthe HOL subgoal manager. This is an advantage of thehybrid approa
h { the existing HOL infrastru
ture aug-
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AlgFileFig. 1. The Hybrid Tool's Stru
ture.
ments MDG providing a mu
h more powerful interfa
eto MDG.The hybrid tool supports the hierar
hi
al veri�
ationpro
ess by providing a HOL embedding of the 
on
retesubset of the MDG input language to allow MDG-stylespe
i�
ations to be written in HOL. Several high-levelproof ta
ti
s that manage and automate the proof pro-
ess are also provided. A hierar
hy ta
ti
, HIER VERIF TAC,automates the 
reation of subgoals from the 
orre
tnessgoal of a blo
k by analyzing its stru
ture as outlined inthe previous se
tion. It later 
ombines the proven sub-goals to give the desired 
orre
tness theorem. Where anon-primitive 
omponent o

urs several times within ablo
k, the ta
ti
 avoids dupli
ation, generating a singlesubgoal that on
e proved is automati
ally instantiatedfor ea
h o

uren
e of that 
omponent to prove the 
or-re
tness of the blo
k. Another ta
ti
, MDG TAC, auto-mates the link to the MDG tools by verifying a given
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orre
tness theorem for a blo
k using MDG 
ombina-tional or sequential equivalen
e veri�
ation. This is doneafter analysis of the implementation or spe
i�
ation de-s
ription. A HOL ta
ti
, BLOCK VERIF TAC, has alsobeen developed as part of the hybrid tool that 
an alsoverify simple low level blo
ks automati
ally, performingBoolean 
ase analysis a

ording to a user-supplied order.Veri�
ation using the hybrid tool pro
eeds as shownin Figure 2. An initial goal is set that the top level de-sign's implementation meets its behavioral spe
i�
ation.If the design 
an be veri�ed using MDG, the appropri-ate MDG ta
ti
, determined by whether the 
ir
uit issequential, is 
alled. Otherwise, the hierar
hy ta
ti
 is
alled to break the design into smaller parts, and thepro
ess is repeated. At any point, a HOL proof 
an beperformed dire
tly to prove a goal. In generalm MDG
an fail to terminate due to state-spa
e explosion leadingto the system running out of memory or due to 
ertainabstra
t variables or fun
tions being uninterpreted. This

is handled manually within the MDG tool using one ofthe heuristi
s des
ribed in [3℄.3.2 Spe
i�
ationsThe hybrid tool must be supplied with a behavioral spe
-i�
ation for ea
h blo
k in the design that is veri�ed.This is not ne
essary for sub-blo
ks within blo
ks veri�edby 
alls to MDG. The spe
i�
ations are intended to be
omplete spe
i�
ations 
overing all aspe
ts of the blo
ksrather than just partial properties 
orresponding to somehigh level property of the whole 
ir
uit being veri�ed.The spe
i�
ations are provided as a normal �le of HOLde�nitions. However, as these de�nitions must be ana-lyzed by the tool and ultimately 
onverted into MDG,they must follow a pres
ribed form: they must 
onsist ofa 
onjun
tion of tables, fun
tional blo
ks (bla
k-box op-erations using uninterpreted fun
tions), and input andoutput arguments must both be expli
itly typed and bein a given order. The tables are an embedding of MDGtables in HOL originally de�ned by Curzon et. al. [6℄ toverify the MDG 
omponents in HOL. The veri�
ationof these 
omponents in
reases 
on�den
e that the MDGtools 
an be trusted when used in the HOL system.Stru
tural spe
i�
ations are written in a subset of theHOL logi
 similar to that for behavioral spe
i�
ations.However, the des
riptions are not limited to tables but
an in
lude any 
omponent of the MDG 
omponent li-brary. The stru
tural spe
i�
ation of a blo
k thus di�ersfrom a behavioral spe
i�
ation in that its body 
onsists
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ation Using a Hybrid ToolHA i (x, y) (z, 
out) =(MDG XOR (x,y) z) ^ (MDG AND (x,y) 
out)FA i (x, y, 
in) (z, 
out) =9 z0 
out0 
out1.(HA i (x,y) (z0,
out0))(HA i (z0,
in) (z,
out1))(MDG OR (
out0,
out1) 
out)Fig. 3. A Stru
tural Spe
i�
ation of an Adderz TAB (x, y) z =TABLE [x;y℄ z [[F; F℄; [T; T℄℄ [F;F℄ T
out TAB (x, y) 
out =TABLE [x;y℄ 
out [[F; DONT CARE℄;[T; F℄℄ [F;F℄ THA (x, y) (z, 
out) =(z TAB (x,y) z) ^ (
out TAB (x,y) 
out)Fig. 4. A Behavioural Spe
i�
ation of a Half-Adderof a network of 
omponents. A 
omponent may be anMDG built-in 
omponent, a fun
tional blo
k, a table ora 
omponent previously de�ned by the user. The MDGbuilt-in 
omponents are an embedding in HOL of thea
tual MDG 
omponents.3.3 The Veri�
ation Pro
essThe hybrid tool is intended to provide automated sup-port for hierar
hi
al veri�
ation and to enable the userto verify some blo
ks using MDG. We will illustrate thisby refering to the veri�
ation of a simple adder 
ir
uit.A typi
al session with the hybrid tool goes through the

following steps. First, the user supplies the tool with aspe
i�
ation �le and an implementation �le as part of aninitialization pro
edure. These are SML �les 
ontainingnormal SML de�nitions. The spe
i�
ation �le in
ludesthe behavioral spe
i�
ations of the design blo
ks. Theimplementation �le in
ludes the design stru
tural spe
i-�
ation and follows the design hierar
hy. Both �les mayin
lude user de�ned HOL datatypes. An example of astru
tural spe
i�
ation for an adder is given in Figure 3.The behavioral spe
i�
ation of a half-adder in terms oftables is given in Figure 4. The spe
i�
ation of the fulladder is similar. In a table spe
i�
ation, the �rst listgives the inputs of the table, the next argument is theoutput. Next is a list of lists giving possible 
ombinationsof input values and then a list giving the output valuesresulting from those 
ombinations. The �nal argumentgives the default value for any 
ombination of inputs notlisted. MDG tables are more general than shown in thisexample in that general expressions 
an be used as tableinputs and variables 
an appear in the rows. We haveommitted type information from this �gure (that ea
hvariable is a fun
tion from time to a Boolean). Stri
tly,due to the 
urrent version of the implementation of thefront end of the hybrid tool this information must beprovided expli
itly, though it would be straightforwardto derive it as is done in pure HOL. The initializationpro
edure also involves loading the embeddings of theMDG tables and the MDG 
omponents in HOL as wellas starting a server to the MDG system.
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On
e the tool is initialized, the user sets the 
or-re
tness goal for the whole design using HOL's subgoalpa
kage. This goal states that the design's implementa-tion implies its spe
i�
ation. For example, for our adder,we set the goal:8 x y 
in z 
out.FA i (x,y,
in) (z,
out) =) FA (x,y,
in) (z,
out)This 
orre
tness goal 
ould then be resolved dire
tlythrough MDG using MDG TAC. Applying this ta
ti
to 
omplex designs may lead to state explosion. To over-
ome this, HIER VERIF TAC is used. The a
tion of thista
ti
 is summarized in Figure 5. It automati
ally gener-ates a 
orre
tness subgoal for every immediate sub-blo
kin the design. Where one sub-blo
k is used in severalpla
es, only one goal is generated: the hybrid tool gener-ates a general subgoal that justi�es its use in ea
h situa-tion. A further subgoal states that the lower level spe
-

i�
ations, 
onne
ted a

ording to the stru
tural spe
i�-
ation, imply the 
urrent spe
i�
ation.For example, HIER VERIF TAC generates two sub-goals for our adder.8 x y z 
out.HA i (x,y) (z,
out) =) HA (x,y) (z,
out)8 x y 
in z 
out.FA i hl (x,y,
in) (z,
out) =) FA (x,y,
in) (z,
out)The �rst is a 
orre
tness statement for the half-adder
omponent. Only one su
h general theorem is generated.This is used to justify the two slightly di�erent 
on-
rete subgoals for the two instan
es of this 
omponent inthe design. The se
ond subgoal is a 
orre
tness goal forthe adder where the half-adder is treated as a primitive
omponent. It 
ontains an automati
ally generated newstru
tural spe
i�
ation FA i hl, whi
h is in terms of thebehavioral spe
i�
ations of the half-adder submodulesrather than their stru
tural spe
i�
ations:` FA i hl (x, y, 
in) (z, 
out) =9 z0 
out0 
out1(HA (x,y) (z0,
out0))(HA (z0,
in) (z,
out1))(MDG OR (
out0,
out1) 
out)HIER VERIF TAC 
reates a justi�
ation fun
tionthat given theorems 
orresponding to the subgoals 
re-ates the theorem 
orresponding to the original goal. Thesubgoals it produ
es 
ould be resolved using a 
onven-tional HOL proof, by invoking MDG as above or by ap-
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e again. If the subgoalsare proved, then the justi�
ation rule of HIER VERIF TACwill automati
ally derive the original 
orre
tness goalfrom them.When the MDG-based ta
ti
s are applied, the hi-erar
hy in the stru
tural spe
i�
ation is automati
ally
attened to the non-hierar
hi
al form of primitive 
om-ponents required by MDG (just the next layer down inthe 
ase of the se
ond subgoal above). The tool 
urrentlygenerates a stati
 variable ordering for use by MDGthough more sophisti
ated ordering heuristi
s 
ould bein
luded. Alternatively the tool user 
an provide the or-dering. Ea
h blo
k veri�ed 
an use a di�erent variableordering.The tool analyzes the feedba
k of MDG in order to�nd out whether the veri�
ation su

eeded or failed. Ifthe veri�
ation fails a 
ounter-example is generated. If itsu

eeds, the ta
ti
 
reates the appropriate HOL theo-rem. For example, for our adder we obtain the theorems:[MDG℄ ` 8 x y z 
out.HA i (x,y) (z,
out) =) HA (x,y) (z,
out)[MDG℄ ` 8 x y 
in z 
out.FA i hl (x,y,
in) (z,
out) =)FA (x,y,
in) (z,
out)The theorem is tagged with a label indi
ating itspedigree|that it is proved by an external tool. Thistag will be passed to any theorem proved using thesetheorems.

The theorem proved 
an be instantiated for any in-stan
e. We e�e
tively 
an prove a single 
orre
tness the-orem for a blo
k and reuse it for any instan
e of theblo
k. In our example, there are two instan
es of thehalf-adder, but this single theorem is used for both. Thispro
ess is managed formally and ma
hine-
he
ked withinHOL. This 
ontrasts with pure automated tools, whereea
h instan
e would need a spe
i�
 theorem to be veri-�ed separately or non-ma
hine-
he
ked reasoning to berelied upon. For the half-adder, the subgoals are formally
ombined using automati
 proof by HIER VERIF TACto give the desired theorem about the adder:[MDG℄ ` 8 x y 
in z 
out.FA i (x,y,
in) (z,
out) =)FA (x,y,
in) (z,
out)4 Case Study: The 4� 4 ATM Swit
h Fabri
We have applied the hybrid tool to a realisti
 example:the veri�
ation of a blo
k of the Fairisle ATM (Asyn-
hronous Transfer Mode) swit
h fabri
 [17℄. The Fairisleswit
h fabri
 is a real swit
h fabri
 designed and usedat the University of Cambridge for multimedia appli
a-tions. It swit
hes 
ells of data from 4 input ports to 4output ports as requested by information in header bytesin ea
h 
ell.Curzon [8℄ formally veri�ed this ATM swit
hing el-ement hierar
hi
ally using the pure HOL system. How-ever, this veri�
ation was very time-
onsuming. The ver-
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ation of the full fabri
 took approximately two person-months not in
luding the time to develop the formalspe
i�
ations. Verifying the fabri
 
an be done hierar-
hi
ally following exa
tly the same stru
ture as the orig-inal design using our hybrid tool. However, with thetool, many of the sub-blo
ks 
an be veri�ed automat-i
ally using the MDG tool, thus saving a great deal oftime and e�ort. Furthermore, HIER VERIF TAC auto-mates mu
h of the management of the proof that waspreviously done manually. Attempting the veri�
ation inMDG alone would, on the other hand, be barely tra
tabletaking days of CPU time. This is dis
ussed in more detailbelow.Full details of the spe
i�
ations for the Fabri
 aregiven in [8℄. As a result various groups have reveri�edaspe
ts of the 
ir
uit using a variety of approa
hes. Forexample, S
hneider et al [21℄ veri�ed individual blo
ksof the swit
h fabri
 using MEPHISTO. It has also beenused as a 
ase study for the Coq system [14℄. Gar
ez [10℄veri�ed some properties of the fabri
 using HSIS andLu et al [18℄ performed property 
he
king on variousabstra
ted models of the fabri
 using VIS.The fabri
 is split into three sub-blo
ks, namely A
-knowledgement, Arbitration and Data Swit
h. Furtherdividing the Arbitration sub-module, we have essentiallytwo blo
ks: the arbiters that make arbitration de
isionsand a prepro
essing blo
k that generates the timing sig-nal and pro
esses the headers of the 
ells into a form us-able by the arbiters (see Figure 6). We 
onsider the veri�-


ation of the prepro
essor blo
k here (see Figure 7). Thetiming blo
k within the prepro
essor generates a tim-ing signal for the arbiters from an external frame signaland from the data stream. The de
oder blo
k (made of4 independent de
oders) takes the four 
ell headers fromthe data stream and extra
ts the information about thedestinations they are requesting (whi
h is in a binaryen
oding). For ea
h destination a unary en
oding of the
ells that are requesting that output is 
reated. The pri-ority �lter takes this information together with priorityinformation from the 
ell headers. If any 
ell has highpriority, then requests from low priority 
ells are notforwarded to the arbiters.Setting as goal the 
orre
tness statement for the pre-pro
essor, we atta
k it using HIER VERIF TAC1. Weobtain two subgoals 
orresponding to the timing blo
kand the �lter-de
oder blo
k, together with a subgoal thatthe 
ombined prepro
essor is 
orre
t on the assumptionthat its sub-blo
ks are. We 
all MDG TAC to automat-i
ally prove the timing unit 
orre
tness subgoal. Thisproves the equivalen
e of the implementation and itsspe
i�
ation, and so proves the impli
ation in our sub-goal.De
oders and Priority Filters are purely 
ombina-tional 
ir
uits. Their spe
i�
ations are the 
onjun
tionsof 32 16-input-tables and 16 32-input-tables, respe
tively.MDG takes 16 hours to verify De
oders and it would1 The spe
i�
ation �les and the proof s
ript are available at:http://www.e
e.
on
ordia.
a/labs/Resear
h/hvg/Tools/Hybrid/ATM
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ackOut1
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ackOut3

frameStart

dataIn0
dataIn1
dataIn2
dataIn3 dataOut3

dataOut2
dataOut1
dataOut0

ackIn3
ackIn2
ackIn1
ackIn0

DATASWITCH

PREPROCESSOR

DECODER
FILTER

PRIORITY ARBITERS

FILTER/DECODER

ARBITRATION

RegistersRegisters Fig. 6. The Fairisle ATM Swit
h Fabri
.take days to verify Priority Filters. The problem is in�nding an eÆ
ient variable ordering given that the waythe sub-blo
ks are 
onne
ted means that the best order-ing for one table is bad for another. In order to over-
ome this problem, we move down one level in the de-sign hierar
hy. More spe
i�
ally, the 32 tables in De-
oders' spe
i�
ation were partitioned into four 8-table-sub-blo
ks:De
oder IP0 : : : De
oder IP3. De
oder IPi isa de
oder for input port i; i = 0::3. A more eÆ
ientvariable ordering is then supplied for ea
h of these sub-blo
ks. Similarly, the 16 tables in Priority Filters' spe
-i�
ation were partitioned into four 4-table-sub-blo
ks:Priority OP0 : : : Priority OP3. Priority OPi is a prior-ity �lter for output port i; i = 0::3. The prepro
essorhierar
hy as veri�ed is shown in Figure 7.We apply HIER VERIF TAC to verify De
oders andPriority Filters based on this hierar
hy. The sub-goalsasso
iated to De
oder IPi and Priority OPi, i = 0::3, arethen proved automati
ally, in this 
ase using BLOCK VERIF TAC.

Timing

Priority Filters

Preprocessor

Filter/Decoder

Decoders

Decoder_IP3 Decoder_IP2 Decoder_IP1 Decoder_IP0

Priority_OP3 Priority_OP2 Priority_OP1 Priority_OP0Fig. 7. The Prepro
essor Hierar
hy.
Note that this still avoids expanding the hierar
hy as faras in the original HOL proof|so lower level behavioralspe
i�
ations do not need to be written.Table 1 shows the hierar
hi
al veri�
ation statisti
s,in
luding the size of ea
h sub-blo
k and the CPU timein se
onds. Using our hybrid tool, the veri�
ation of theprepro
essor is faster than proving in HOL that the im-plementation implies the high-level spe
i�
ation. Giventhe formal spe
i�
ations, Curzon [8℄ originally took sev-
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k Size (# 2-input gates) CPU Time (se
.)Prepro
essor 186 495:230Timing 18 0:060Filter/De
oder 168 488:900De
oders 88 45:520De
oder IPi 22 10:050Priority 80 437:210Priority OPi 20 107:413Table 1. Hierar
hi
al Veri�
ation Statisti
s.
eral days to do the proofs of these blo
ks using intera
-tive proof whereas the veri�
ation is done in minutes us-ing our tool. Veri�
ation is also faster than using MDGalone: splitting the de
oder blo
k enabled verifying itwithin less than 1 minute using our hybrid tool insteadof 16 hours if only MDG was used. It took a day (ap-proximately 8 hours) to intera
tively prove the de
oderblo
k in HOL. Thus veri�
ation is faster using the hy-brid tool than with either system on its own as shownin Table 2 whi
h gives approximate times for verifyingthe de
oder blo
k. These times should be treated with
aution, as the pure HOL times are not CPU time butthat for the human to intera
tively manage the veri�-
ation. Times to develop spe
i�
ations, in
luding thoseof sub-blo
ks veri�ed hierar
hi
ally rather than dire
tlyusing MDG, are not in
luded in these times. Writingthese spe
i�
ations was straightforward. It therefore isworthwhile additional work, given the overall time im-provement. Some extra human intera
tion time for theveri�
ation part is also needed when using the hybridtool over the bare CPU time. This is needed to 
all the

HOL MDG Hybrid Tool(Human Proof Time) (CPU Time) (CPU Time)Intera
tive Automated Semi-automated8 hours 16 hours 1 minuteTable 2. Comparison of Veri�
ations of the De
oder Blo
ksappropriate ta
ti
s. However, this is minimal|a matterof minutes rather than hours, sin
e it involves follow-ing the existing design hierar
hy. The main part thatis time 
onsuming is if unsu

essful automated proofs ofsub-blo
ks are attempted. This obviously requires judge-ment over the limitations of the tools, in knowing whenit is worth attempting automated proof, and when it isbetter to step down a level in the hierar
hy.5 Related WorkWork to 
ombine the advantages of automated and inter-a
tive tools falls generally into two areas: hybrid tools inwhi
h two existing, stand-alone veri�
ation systems arelinked; and systems where external proof pa
kages areembedded as de
ision pro
edures for some subset of thelogi
 by an intera
tive system.Perhaps the most impressive hybrid veri�
ation sys-tem to date is the 
ombined Voss-ThmTa
 System [2℄. It
ombines a simple, spe
ially written LCF style proof sys-tem, ThmTa
 with the Voss Symboli
 Traje
tory Anal-ysis System. This system evolved out of the HOL-VOSSSystem [15℄. In that system, Voss was interfa
ed withinHOL as a ta
ti
 that 
ould be 
alled to perform a sym-
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 traje
tory analysis to verify assertions about se-quen
es of states. The Voss-ThmTa
 System is thus basedon many years of experien
e 
ombining systems. It hasbeen used to verify a series of real hardware designs in-
luding an IA-32 instru
tion length de
oder 
laimed tobe one of the most 
omplex hardware veri�
ations 
om-pleted. Mu
h of its power 
omes from the very tight inte-gration of the two provers allowing the user to intera
tdire
tly with either tool. This is fa
ilitated by the useof a single language, 
, as both the theorem prover'smeta-language and its obje
t language.S
hneider and Ho�mann [22℄ linked SMV (a CTLmodel 
he
ker) to HOL using PROSPER. In this hybridtool, HOL 
onversions were used to transform LTL spe
-i�
ations into !-Automata, a form that 
an be reasonedabout within SMV. These HOL terms are exported toSMV through the PROSPER plug-in interfa
e. On su
-
essful model 
he
king, the results are returned to HOLand turned into tagged theorems. This allows SMV tobe used as a HOL de
ision pro
edure. The SMV spe
i�-
ation language has also been deeply embedded in HOL,allowing CTL spe
i�
ations to be manipulated in HOLand the model 
he
ker user to return a result about itsvalidity.The use of tightly integrated de
ision pro
edures isa major fo
us of the PVS proof system. Rajan et al [20℄integrated a BDD-based model 
he
ker for the propo-sitional �-
al
ulus within PVS. An extension of the �-
al
ulus is de�ned within higher-order logi
 and tem-

poral operators then de�ned as �-
al
ulus �xpoint def-initions. These expressions are 
onverted into the formrequired by the model 
he
ker whi
h 
an then be usedto prove appropriate subgoals generated within PVS.Su
h results are treated no di�erently to those 
reatedby proof.An issue with a

epting imported results as theoremsis whether the external system 
an be trusted to produ
e\theorems" that really are host system theorems. Thisis more of an issue with fully-expansive proof systemssu
h as HOL where the integrity of the system dependson a small 
ore of primitive inferen
e rules. A

eptingresults from an external pa
kage essentially treats thatpa
kage as one of the trusted primitives. The approa
htaken by Gordon [11℄ to minimize this problem in theBuDDy pa
kage when integrating BDD based tools isto provide a small set of BDD primitives in terms ofwhi
h full tools are implemented. In this way only theprimitives need to be trusted not the whole pa
kage.Hurd [13℄ used PROSPER to 
ombine the Gandalfprover with HOL. Unlike other approa
hes, the systemreproves the Gandalf theorems within HOL rather thanjust a

epting the results. The Gandalf proof s
ript isimported into the HOL system and used to develop afast proof within HOL. The tool is thus used to dis
overproofs, rather than dire
tly to prove theorems.The MEPHISTO system [16℄ was developed to man-age the higher levels of a veri�
ation, produ
ing �rst-order sub-goals to be proved by the FAUST �rst order
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ation Using a Hybrid Tool 13prover. The goals of MEPHISTO are similar to ours:managing the subgoaling of a veri�
ation to produ
egoals that 
an be proved by another system. The dif-feren
e is the fo
us of the way the systems do this andthe target system. Our approa
h is to use the exist-ing design hierar
hy, sending to the automated prover(here a hardware veri�
ation system itself) subgoals thatare 
orre
tness theorems about design modules. ThusHIER VERIF TAC produ
es subgoals (and results fromfailed veri�
ation) easily understood by the designer.This approa
h avoids the problem of the veri�er havingto inspe
t goals that bear little relation to the input tothe system. MEPHISTO does give some support for hier-ar
hi
al proof providing a library of preproved modules.However, in our approa
h su
h hierar
hi
al veri�
ationis expli
itly supported by the ta
ti
s.Aagaard et al [1℄ proposed a similar hardware veri�-
ation management system. They aimed to 
omplete thewhole proof within the theorem prover (HOL or Nuprl).As with MEPHISTO, the fo
us is on produ
ing lem-mas to be proved by de
ision pro
edures. They devel-oped a series of prototype ta
ti
s that 
ould be used tobreak down subgoals. However, they do not dire
tly sup-port hierar
hi
al veri�
ation: the �rst step proposed isto rewrite with the module spe
i�
ations.As in [2℄ and [22℄, we integrate a theorem prover(HOL) to an existing hardware veri�
ation tool (MDG)rather than embedding a pa
kage within the system. Wework within the proof system but using the spe
i�
ation

style of the automated tool. This is done by embeddingthe language of the automated veri�
ation tool withinthe proof system. As is done in pure HOL veri�
ation,the proof follows the natural design hierar
hy embodiedin the spe
i�
ations. This pro
ess is expli
itly supportedby our hierar
hy ta
ti
. The subgoals automati
ally gen-erated also have a dire
t relation to the spe
i�
ationsprodu
ed by the designer. Thus, the novel aspe
t of ourwork is the emphasis on implementing hierar
hi
al ver-i�
ation expli
itly in a hybrid tool. The use of MDG asthe automated tool also opens up interesting possibilities(not yet fully explored) of making use of its features forabstra
tion that allow large datapaths to be dealt withautomati
ally.6 Con
lusionsWe have des
ribed a tool linking an intera
tive theo-rem prover and an automated de
ision diagram-basedhardware veri�
ation system. This builds on previouswork [24℄, where we showed formally how anMDG equiv-alen
e proof 
an be imported to an impli
ation-based
orre
tness theorem in HOL. Our system expli
itly sup-ports the hierar
hi
al 
ompositional veri�
ation approa
hnaturally used in intera
tive proof systems, when usingan automated tool. The intera
tive proof system is usedto automati
ally manage the proof as well as 
ompleteany proof intera
tively that is beyond the s
ope of theautomated system. The veri�
ation of whole blo
ks in
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hy 
an however be done automati
ally. Thehybrid tool 
an be used to verify larger examples than
ould be done in MDG alone, and these proofs 
an bedone faster than in either system alone.We used the PROSPER/Harness toolkit to performthe linkage of the two tools. This made providing su
ha linkage relatively easy. However, it took the Harnessserver minutes to answer requests sent by the proof en-gine. An alternative implementation that 
ommuni
atedbetween the tools dire
tly using �les was qui
ker. We areplanning to implement the tools' intera
tion using so
k-ets. This will allow starting multiple instan
es of MDGon di�erent ma
hines. The hybrid tool will then be re-sponsible of dispat
hing sub-goals to the MDG instan
esand 
olle
ting veri�
ation results ba
k. Load balan
ingstrategies as well as veri�
ation workload estimators willbe needed to ensure better exe
ution times.We illustrated the use of the hybrid tool by des
ribingthe hierar
hi
al veri�
ation of the prepro
essing blo
k ofthe arbitration unit of an ATM swit
h. Using the hybridtool, a veri�
ation that originally required many hoursof intera
tive proof work, 
ould be done largely auto-mati
ally using the hybrid tool.We intend to extend the 
apabilities of the tool toin
rease the automation of the proof management pro-
ess. For example, we will automate di�erent forms ofparameterization. Parameterized 
ir
uits must 
urrentlybe dealt with intera
tively. A single instan
e of the pa-rameterized 
ir
uit is veri�ed using the hybrid ta
ti
s

and this theorem used in a pure HOL proof of the param-eterized 
ir
uit|performing the indu
tive part of theproof [7℄. This pro
ess 
ould be automated for a rangeof 
ommon parameterization patterns (see Aagaard etal [1℄) with a similar ta
ti
 to HIER VERIF TAC man-aging the indu
tive part of the proof. Common abstra
-tion te
hniques to redu
e a model say from 32-bits to 1bit to make automated veri�
ation tra
table 
ould alsobe dealt with in this way. However, MDG provides abetter approa
h: by making fuller use of the abstra
-tion fa
ilities in MDG itself we will remove the needfor su
h abstra
tion. This removes the need to simplifydatapath widths to make veri�
ation tra
table and en-ables the handling of data-dependent 
ir
uits automati-
ally. We are also in the pro
ess of extending the hybridtool to support model 
he
king in MDG. While most ofthe infrastruture may be reused, ways of translating and
omposing properties in HOL need to be developed. Forpra
ti
al reasons industrial designers often do not workto 
lean hierar
hies. Important further work is there-fore to integrate a transformational design system withthe tool. This would allow non-hierar
hi
al parts of adesign to be transformed to a veri�ed equivalent formmore 
ondu
ive to veri�
ation, or alternatively to opti-mise a veri�ed 
orre
t hierar
hi
al design in ways thatbreak the veri�ed hierar
hy but preserve 
orre
tness. Fi-nally, we will 
onsider the veri�
ation of more 
omplexexamples in
luding a full 16 by 16 swit
h fabri
.
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