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Hierarhial Formal Veri�ation Using a Hybrid ToolSkander Kort1, So��ene Tahar1 and Paul Curzon21Conordia University, Canada. (ftahar,kortg�ee.onordia.a)2Middlesex University, UK. (p.urzon�mdx.a.uk)Reeived: date / Revised version: dateKey words: HOL (Higher-Order Logi), MDG (Multi-way Deision Graphs), Hybrid tools, Hierarhial Veri�-ationAbstrat. We desribe a hybrid formal hardware veri-�ation tool that links the HOL interative proof systemand the MDG automated hardware veri�ation tool. Itsupports a hierarhial veri�ation approah that mir-rors the hierarhial struture of designs. We obtain ad-vantages of both veri�ation paradigms. We illustrateits use by onsidering a omponent of a ommuniationship. Veri�ation with the hybrid tool is signi�antlyfaster and more tratable than using either tool alone.
1 IntrodutionAutomated deision diagram based formal hardware ver-i�ation is fast and onvenient, but does not sale well,espeially where datapaths and ontrol iruitry are om-bined. Details of the version of the design veri�ed need

to be simpli�ed, e.g., onsidering 1-bit instead of 32-bit datapaths. Finding a model redution and appropri-ate abstrations so that veri�ation is tratable with thetool an be time-onsuming. Moreover, signi�ant detailan be lost. An alternative is interative theorem prov-ing. The veri�ation an be done hierarhially allow-ing large designs to be veri�ed without simpli�ation.Furthermore, it is possible to reason about high levelabstrations of datatypes. It an however be very time-onsuming, requiring signi�ant user interation and skill.The ontribution of our work is to implement a hy-brid tool ombining HOL [12℄ and MDG [5℄ whih pro-vides expliit support for hierarhial hardware veri�-ation. In partiular, we have provided an embedding ofthe MDG input language in HOL, implemented a linkagebetween HOL and MDG using the PROSPER toolkit [9℄and implemented a series of HOL tatis that automatehierarhial veri�ation. This means that a hierarhialproof an be performed as it might be done using a pure



2 Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid ToolHOL system. However, the MDG tools an be alled toperform veri�ation of omponents that are within itsapabilities. We have veri�ed a omponent of a ommu-niation swith using the tool. Veri�ation is shown to besigni�antly faster and more tratable using the hybridtool than with either tool individually.The remainder of this paper is organized as follows.In Setion 2 we overview briey the two tools beinglinked. We present our hybrid tool and the methodologyit embodies in Setion 3. A ase study using the tool toverify a omponent of an ATM (Asynhronous TransferMode) swith is desribed in Setion 4. Finally, we dis-uss related work in Setion 5 and draw onlusions inSetion 6.2 The Linked ToolsOur hybrid tool links the HOL interative theorem proverand the MDG hardware veri�ation system. HOL [12℄ isbased on higher-order logi. The user works interativelywith the system alling ML funtions [19℄ that imple-ment inferene rules to apply proof steps. New theoremsare reated in HOL by applying inferene rules|derivedrules all a suession of primitive rules, thus the useran have great on�dene in the derived theorems. How-ever, HOL also provides funtions to reate theoremsdiretly without proof. This feature an be used to im-port results produed by external tools into HOL. Ourhybrid tool uses the PROSPER/Harness Plug-in Inter-

fae of HOL [9℄. This gives a uniform way of linkingHOL with external proof tools. It provides the low levellient-server ommuniation interfae from HOL to var-ious languages within whih other tools are integrated.A range of di�erent external proof tools (suh as MDG)an at as servers to a HOL lient. The interfae re-moves the burden of writing low-level ommuniationtools, leaving the hybrid tool designer to onentrate onhigher-level issues. It also tags theorems produed byplug-ins with a label indiating their soure. These la-bels are propagated to any theorem generated from theimported result allowing the pedigree of any result to belater determined.The MDG system, whih is primarily designed forhardware veri�ation, provides veri�ation proeduresfor equivalene and property heking. The former pro-vides the veri�ation of two ombinational iruits orthe veri�ation of two state mahines. The latter allowsveri�ation through invariant heking or model hek-ing. The strength of the MDG system is its automationand ease of use. It has been used in the veri�ation ofsigni�ant hardware examples [23,4,25℄. The MDG sys-tem is a deision diagram based veri�ation tool basedon Multiway Deision Graphs (MDGs) [5℄ rather thanon binary deision diagrams. MDGs overome the datawidth problem of Redued-Order Binary Deision Dia-gram (ROBDD) based veri�ation tools. An MDG is a�nite, direted ayli graph (DAG). MDGs essentiallyrepresent relations rather than funtions. They are muh



Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid Tool 3more ompat than ROBDDs for designs ontaining adatapath. Furthermore, sequential iruits an be ver-i�ed independently of the width of the datapath. TheMDG tools ombine some of the advantages of repre-senting a iruit at more abstrat levels with the au-tomation o�ered by deision-diagram based tools. Theinput language for MDG is MDG-HDL, a simple hard-ware desription language (HDL) supporting struturaldesriptions, behavioral desriptions as Abstrat StateMahine (ASM) or a mixture of both. A strutural de-sription is usually a netlist of omponents onnetedby signals, and a behavioral desription is given by atabular representation of the transition/output relationof the ASM. This is done using the Table onstrut ofMDG-HDL: essentially a ase statement that allows thevalue of a variable to be spei�ed in terms of the valuesof inputs and other expressions
3 The Hybrid Tool and Veri�ationMethodologyIn a pure MDG veri�ation, strutural and behavioraldesriptions are given for the top level design. An au-tomated veri�ation proedure is then applied. If theproblem is suÆiently tratable, the veri�ation is om-pleted automatially. If not, ideally the problem wouldbe attaked in a hierarhial fashion by verifying the sub-bloks independently. However, the management of this

proess annot be done within the tool, though ould bedone informally outside it.In a pure HOL hardware veri�ation, the proof isstrutured aording to the design hierarhy of sub-blokswithin the implementation. For eah blok, inluding thetop level blok of the design, a strutural spei�ationand behavioral spei�ation are given. Eah blok's im-plementation (apart from those at the bottom of the hi-erarhy) is veri�ed against its spei�ation in three steps.Firstly, an intermediate veri�ation result is obtainedabout the blok based on the behavioral desriptions ofits sub-bloks. Essentially, the sub-bloks are treated asprimitive omponents in this veri�ation. Seondly, theproess is repeated reursively on the sub-bloks to ob-tain orretness theorems for them. Finally, the orret-ness theorems of the sub-bloks are ombined with theintermediate orretness theorem of the blok itself togive the atual orretness theorem of the blok. Thisis based on the full strutural desription of the blokdown to primitive omponents. The veri�ation followsthe natural design hierarhy. If this proess is applied tothe top level design blok, a orretness theorem for thewhole design is obtained. The integration of the veri�-ation results of the separate omponents that would bedone informally (if at all) in an MDG veri�ation is thusformalized and mahine-heked in the HOL approah.Our hybrid tool supports hierarhial veri�ation,automating the proess disussed above, and �ts the useof MDG veri�ation naturally within the HOL frame-



4 Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid Toolwork of ompositional hierarhial veri�ation. The HOLsystem is used to manage the proof, with the MDG sys-tem alled to verify those design bloks that are tratable.This removes the need to provide behavioral spei�a-tions for sub-bloks and the need to verify them sep-arately. In partiular, if the design of any sub-blok issuÆiently simple, then the hierarhial approah an beabandoned for that blok and the whole blok veri�edin one go in MDG. Furthermore, verifying a blok underthe assumption that its sub-bloks are all primitive om-ponents may also be done using MDG if tratable. If not,a normal HOL proof an still be performed. No informa-tion is lost in using MDG via the hybrid tool. We useMDG-style behavioral spei�ations within HOL. Thismeans the spei�ations must be in the form of a �-nite state mahine or table desription. If a higher levelabstration, unavailable in MDG, is required then a sep-arate HOL proof is performed that an MDG style spe-i�ation meets this abstration.3.1 The Hybrid ToolOur Hybrid tool was written in SML (Standard ML).It onsists of �ve modules: a parsing module, an extra-tion module, a hierarhial veri�ation support module,a ode generation module and an MDG interation mod-ule (f. Figure 1). Subgoal management is done usingthe HOL subgoal manager. This is an advantage of thehybrid approah { the existing HOL infrastruture aug-
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ments MDG providing a muh more powerful interfaeto MDG.The hybrid tool supports the hierarhial veri�ationproess by providing a HOL embedding of the onretesubset of the MDG input language to allow MDG-stylespei�ations to be written in HOL. Several high-levelproof tatis that manage and automate the proof pro-ess are also provided. A hierarhy tati, HIER VERIF TAC,automates the reation of subgoals from the orretnessgoal of a blok by analyzing its struture as outlined inthe previous setion. It later ombines the proven sub-goals to give the desired orretness theorem. Where anon-primitive omponent ours several times within ablok, the tati avoids dupliation, generating a singlesubgoal that one proved is automatially instantiatedfor eah ourene of that omponent to prove the or-retness of the blok. Another tati, MDG TAC, auto-mates the link to the MDG tools by verifying a given
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Fig. 2. Using the Hybrid Tool
orretness theorem for a blok using MDG ombina-tional or sequential equivalene veri�ation. This is doneafter analysis of the implementation or spei�ation de-sription. A HOL tati, BLOCK VERIF TAC, has alsobeen developed as part of the hybrid tool that an alsoverify simple low level bloks automatially, performingBoolean ase analysis aording to a user-supplied order.Veri�ation using the hybrid tool proeeds as shownin Figure 2. An initial goal is set that the top level de-sign's implementation meets its behavioral spei�ation.If the design an be veri�ed using MDG, the appropri-ate MDG tati, determined by whether the iruit issequential, is alled. Otherwise, the hierarhy tati isalled to break the design into smaller parts, and theproess is repeated. At any point, a HOL proof an beperformed diretly to prove a goal. In generalm MDGan fail to terminate due to state-spae explosion leadingto the system running out of memory or due to ertainabstrat variables or funtions being uninterpreted. This

is handled manually within the MDG tool using one ofthe heuristis desribed in [3℄.3.2 Spei�ationsThe hybrid tool must be supplied with a behavioral spe-i�ation for eah blok in the design that is veri�ed.This is not neessary for sub-bloks within bloks veri�edby alls to MDG. The spei�ations are intended to beomplete spei�ations overing all aspets of the bloksrather than just partial properties orresponding to somehigh level property of the whole iruit being veri�ed.The spei�ations are provided as a normal �le of HOLde�nitions. However, as these de�nitions must be ana-lyzed by the tool and ultimately onverted into MDG,they must follow a presribed form: they must onsist ofa onjuntion of tables, funtional bloks (blak-box op-erations using uninterpreted funtions), and input andoutput arguments must both be expliitly typed and bein a given order. The tables are an embedding of MDGtables in HOL originally de�ned by Curzon et. al. [6℄ toverify the MDG omponents in HOL. The veri�ationof these omponents inreases on�dene that the MDGtools an be trusted when used in the HOL system.Strutural spei�ations are written in a subset of theHOL logi similar to that for behavioral spei�ations.However, the desriptions are not limited to tables butan inlude any omponent of the MDG omponent li-brary. The strutural spei�ation of a blok thus di�ersfrom a behavioral spei�ation in that its body onsists



6 Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid ToolHA i (x, y) (z, out) =(MDG XOR (x,y) z) ^ (MDG AND (x,y) out)FA i (x, y, in) (z, out) =9 z0 out0 out1.(HA i (x,y) (z0,out0))(HA i (z0,in) (z,out1))(MDG OR (out0,out1) out)Fig. 3. A Strutural Spei�ation of an Adderz TAB (x, y) z =TABLE [x;y℄ z [[F; F℄; [T; T℄℄ [F;F℄ Tout TAB (x, y) out =TABLE [x;y℄ out [[F; DONT CARE℄;[T; F℄℄ [F;F℄ THA (x, y) (z, out) =(z TAB (x,y) z) ^ (out TAB (x,y) out)Fig. 4. A Behavioural Spei�ation of a Half-Adderof a network of omponents. A omponent may be anMDG built-in omponent, a funtional blok, a table ora omponent previously de�ned by the user. The MDGbuilt-in omponents are an embedding in HOL of theatual MDG omponents.3.3 The Veri�ation ProessThe hybrid tool is intended to provide automated sup-port for hierarhial veri�ation and to enable the userto verify some bloks using MDG. We will illustrate thisby refering to the veri�ation of a simple adder iruit.A typial session with the hybrid tool goes through the

following steps. First, the user supplies the tool with aspei�ation �le and an implementation �le as part of aninitialization proedure. These are SML �les ontainingnormal SML de�nitions. The spei�ation �le inludesthe behavioral spei�ations of the design bloks. Theimplementation �le inludes the design strutural spei-�ation and follows the design hierarhy. Both �les mayinlude user de�ned HOL datatypes. An example of astrutural spei�ation for an adder is given in Figure 3.The behavioral spei�ation of a half-adder in terms oftables is given in Figure 4. The spei�ation of the fulladder is similar. In a table spei�ation, the �rst listgives the inputs of the table, the next argument is theoutput. Next is a list of lists giving possible ombinationsof input values and then a list giving the output valuesresulting from those ombinations. The �nal argumentgives the default value for any ombination of inputs notlisted. MDG tables are more general than shown in thisexample in that general expressions an be used as tableinputs and variables an appear in the rows. We haveommitted type information from this �gure (that eahvariable is a funtion from time to a Boolean). Stritly,due to the urrent version of the implementation of thefront end of the hybrid tool this information must beprovided expliitly, though it would be straightforwardto derive it as is done in pure HOL. The initializationproedure also involves loading the embeddings of theMDG tables and the MDG omponents in HOL as wellas starting a server to the MDG system.
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One the tool is initialized, the user sets the or-retness goal for the whole design using HOL's subgoalpakage. This goal states that the design's implementa-tion implies its spei�ation. For example, for our adder,we set the goal:8 x y in z out.FA i (x,y,in) (z,out) =) FA (x,y,in) (z,out)This orretness goal ould then be resolved diretlythrough MDG using MDG TAC. Applying this tatito omplex designs may lead to state explosion. To over-ome this, HIER VERIF TAC is used. The ation of thistati is summarized in Figure 5. It automatially gener-ates a orretness subgoal for every immediate sub-blokin the design. Where one sub-blok is used in severalplaes, only one goal is generated: the hybrid tool gener-ates a general subgoal that justi�es its use in eah situa-tion. A further subgoal states that the lower level spe-

i�ations, onneted aording to the strutural spei�-ation, imply the urrent spei�ation.For example, HIER VERIF TAC generates two sub-goals for our adder.8 x y z out.HA i (x,y) (z,out) =) HA (x,y) (z,out)8 x y in z out.FA i hl (x,y,in) (z,out) =) FA (x,y,in) (z,out)The �rst is a orretness statement for the half-adderomponent. Only one suh general theorem is generated.This is used to justify the two slightly di�erent on-rete subgoals for the two instanes of this omponent inthe design. The seond subgoal is a orretness goal forthe adder where the half-adder is treated as a primitiveomponent. It ontains an automatially generated newstrutural spei�ation FA i hl, whih is in terms of thebehavioral spei�ations of the half-adder submodulesrather than their strutural spei�ations:` FA i hl (x, y, in) (z, out) =9 z0 out0 out1(HA (x,y) (z0,out0))(HA (z0,in) (z,out1))(MDG OR (out0,out1) out)HIER VERIF TAC reates a justi�ation funtionthat given theorems orresponding to the subgoals re-ates the theorem orresponding to the original goal. Thesubgoals it produes ould be resolved using a onven-tional HOL proof, by invoking MDG as above or by ap-



8 Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid Toolplying HIER VERIF TAC one again. If the subgoalsare proved, then the justi�ation rule of HIER VERIF TACwill automatially derive the original orretness goalfrom them.When the MDG-based tatis are applied, the hi-erarhy in the strutural spei�ation is automatiallyattened to the non-hierarhial form of primitive om-ponents required by MDG (just the next layer down inthe ase of the seond subgoal above). The tool urrentlygenerates a stati variable ordering for use by MDGthough more sophistiated ordering heuristis ould beinluded. Alternatively the tool user an provide the or-dering. Eah blok veri�ed an use a di�erent variableordering.The tool analyzes the feedbak of MDG in order to�nd out whether the veri�ation sueeded or failed. Ifthe veri�ation fails a ounter-example is generated. If itsueeds, the tati reates the appropriate HOL theo-rem. For example, for our adder we obtain the theorems:[MDG℄ ` 8 x y z out.HA i (x,y) (z,out) =) HA (x,y) (z,out)[MDG℄ ` 8 x y in z out.FA i hl (x,y,in) (z,out) =)FA (x,y,in) (z,out)The theorem is tagged with a label indiating itspedigree|that it is proved by an external tool. Thistag will be passed to any theorem proved using thesetheorems.

The theorem proved an be instantiated for any in-stane. We e�etively an prove a single orretness the-orem for a blok and reuse it for any instane of theblok. In our example, there are two instanes of thehalf-adder, but this single theorem is used for both. Thisproess is managed formally and mahine-heked withinHOL. This ontrasts with pure automated tools, whereeah instane would need a spei� theorem to be veri-�ed separately or non-mahine-heked reasoning to berelied upon. For the half-adder, the subgoals are formallyombined using automati proof by HIER VERIF TACto give the desired theorem about the adder:[MDG℄ ` 8 x y in z out.FA i (x,y,in) (z,out) =)FA (x,y,in) (z,out)4 Case Study: The 4� 4 ATM Swith FabriWe have applied the hybrid tool to a realisti example:the veri�ation of a blok of the Fairisle ATM (Asyn-hronous Transfer Mode) swith fabri [17℄. The Fairisleswith fabri is a real swith fabri designed and usedat the University of Cambridge for multimedia applia-tions. It swithes ells of data from 4 input ports to 4output ports as requested by information in header bytesin eah ell.Curzon [8℄ formally veri�ed this ATM swithing el-ement hierarhially using the pure HOL system. How-ever, this veri�ation was very time-onsuming. The ver-



Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid Tool 9i�ation of the full fabri took approximately two person-months not inluding the time to develop the formalspei�ations. Verifying the fabri an be done hierar-hially following exatly the same struture as the orig-inal design using our hybrid tool. However, with thetool, many of the sub-bloks an be veri�ed automat-ially using the MDG tool, thus saving a great deal oftime and e�ort. Furthermore, HIER VERIF TAC auto-mates muh of the management of the proof that waspreviously done manually. Attempting the veri�ation inMDG alone would, on the other hand, be barely tratabletaking days of CPU time. This is disussed in more detailbelow.Full details of the spei�ations for the Fabri aregiven in [8℄. As a result various groups have reveri�edaspets of the iruit using a variety of approahes. Forexample, Shneider et al [21℄ veri�ed individual bloksof the swith fabri using MEPHISTO. It has also beenused as a ase study for the Coq system [14℄. Garez [10℄veri�ed some properties of the fabri using HSIS andLu et al [18℄ performed property heking on variousabstrated models of the fabri using VIS.The fabri is split into three sub-bloks, namely A-knowledgement, Arbitration and Data Swith. Furtherdividing the Arbitration sub-module, we have essentiallytwo bloks: the arbiters that make arbitration deisionsand a preproessing blok that generates the timing sig-nal and proesses the headers of the ells into a form us-able by the arbiters (see Figure 6). We onsider the veri�-

ation of the preproessor blok here (see Figure 7). Thetiming blok within the preproessor generates a tim-ing signal for the arbiters from an external frame signaland from the data stream. The deoder blok (made of4 independent deoders) takes the four ell headers fromthe data stream and extrats the information about thedestinations they are requesting (whih is in a binaryenoding). For eah destination a unary enoding of theells that are requesting that output is reated. The pri-ority �lter takes this information together with priorityinformation from the ell headers. If any ell has highpriority, then requests from low priority ells are notforwarded to the arbiters.Setting as goal the orretness statement for the pre-proessor, we attak it using HIER VERIF TAC1. Weobtain two subgoals orresponding to the timing blokand the �lter-deoder blok, together with a subgoal thatthe ombined preproessor is orret on the assumptionthat its sub-bloks are. We all MDG TAC to automat-ially prove the timing unit orretness subgoal. Thisproves the equivalene of the implementation and itsspei�ation, and so proves the impliation in our sub-goal.Deoders and Priority Filters are purely ombina-tional iruits. Their spei�ations are the onjuntionsof 32 16-input-tables and 16 32-input-tables, respetively.MDG takes 16 hours to verify Deoders and it would1 The spei�ation �les and the proof sript are available at:http://www.ee.onordia.a/labs/Researh/hvg/Tools/Hybrid/ATM
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Note that this still avoids expanding the hierarhy as faras in the original HOL proof|so lower level behavioralspei�ations do not need to be written.Table 1 shows the hierarhial veri�ation statistis,inluding the size of eah sub-blok and the CPU timein seonds. Using our hybrid tool, the veri�ation of thepreproessor is faster than proving in HOL that the im-plementation implies the high-level spei�ation. Giventhe formal spei�ations, Curzon [8℄ originally took sev-



Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid Tool 11Blok Size (# 2-input gates) CPU Time (se.)Preproessor 186 495:230Timing 18 0:060Filter/Deoder 168 488:900Deoders 88 45:520Deoder IPi 22 10:050Priority 80 437:210Priority OPi 20 107:413Table 1. Hierarhial Veri�ation Statistis.
eral days to do the proofs of these bloks using intera-tive proof whereas the veri�ation is done in minutes us-ing our tool. Veri�ation is also faster than using MDGalone: splitting the deoder blok enabled verifying itwithin less than 1 minute using our hybrid tool insteadof 16 hours if only MDG was used. It took a day (ap-proximately 8 hours) to interatively prove the deoderblok in HOL. Thus veri�ation is faster using the hy-brid tool than with either system on its own as shownin Table 2 whih gives approximate times for verifyingthe deoder blok. These times should be treated withaution, as the pure HOL times are not CPU time butthat for the human to interatively manage the veri�-ation. Times to develop spei�ations, inluding thoseof sub-bloks veri�ed hierarhially rather than diretlyusing MDG, are not inluded in these times. Writingthese spei�ations was straightforward. It therefore isworthwhile additional work, given the overall time im-provement. Some extra human interation time for theveri�ation part is also needed when using the hybridtool over the bare CPU time. This is needed to all the

HOL MDG Hybrid Tool(Human Proof Time) (CPU Time) (CPU Time)Interative Automated Semi-automated8 hours 16 hours 1 minuteTable 2. Comparison of Veri�ations of the Deoder Bloksappropriate tatis. However, this is minimal|a matterof minutes rather than hours, sine it involves follow-ing the existing design hierarhy. The main part thatis time onsuming is if unsuessful automated proofs ofsub-bloks are attempted. This obviously requires judge-ment over the limitations of the tools, in knowing whenit is worth attempting automated proof, and when it isbetter to step down a level in the hierarhy.5 Related WorkWork to ombine the advantages of automated and inter-ative tools falls generally into two areas: hybrid tools inwhih two existing, stand-alone veri�ation systems arelinked; and systems where external proof pakages areembedded as deision proedures for some subset of thelogi by an interative system.Perhaps the most impressive hybrid veri�ation sys-tem to date is the ombined Voss-ThmTa System [2℄. Itombines a simple, speially written LCF style proof sys-tem, ThmTa with the Voss Symboli Trajetory Anal-ysis System. This system evolved out of the HOL-VOSSSystem [15℄. In that system, Voss was interfaed withinHOL as a tati that ould be alled to perform a sym-



12 Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid Toolboli trajetory analysis to verify assertions about se-quenes of states. The Voss-ThmTa System is thus basedon many years of experiene ombining systems. It hasbeen used to verify a series of real hardware designs in-luding an IA-32 instrution length deoder laimed tobe one of the most omplex hardware veri�ations om-pleted. Muh of its power omes from the very tight inte-gration of the two provers allowing the user to interatdiretly with either tool. This is failitated by the useof a single language, , as both the theorem prover'smeta-language and its objet language.Shneider and Ho�mann [22℄ linked SMV (a CTLmodel heker) to HOL using PROSPER. In this hybridtool, HOL onversions were used to transform LTL spe-i�ations into !-Automata, a form that an be reasonedabout within SMV. These HOL terms are exported toSMV through the PROSPER plug-in interfae. On su-essful model heking, the results are returned to HOLand turned into tagged theorems. This allows SMV tobe used as a HOL deision proedure. The SMV spei�-ation language has also been deeply embedded in HOL,allowing CTL spei�ations to be manipulated in HOLand the model heker user to return a result about itsvalidity.The use of tightly integrated deision proedures isa major fous of the PVS proof system. Rajan et al [20℄integrated a BDD-based model heker for the propo-sitional �-alulus within PVS. An extension of the �-alulus is de�ned within higher-order logi and tem-

poral operators then de�ned as �-alulus �xpoint def-initions. These expressions are onverted into the formrequired by the model heker whih an then be usedto prove appropriate subgoals generated within PVS.Suh results are treated no di�erently to those reatedby proof.An issue with aepting imported results as theoremsis whether the external system an be trusted to produe\theorems" that really are host system theorems. Thisis more of an issue with fully-expansive proof systemssuh as HOL where the integrity of the system dependson a small ore of primitive inferene rules. Aeptingresults from an external pakage essentially treats thatpakage as one of the trusted primitives. The approahtaken by Gordon [11℄ to minimize this problem in theBuDDy pakage when integrating BDD based tools isto provide a small set of BDD primitives in terms ofwhih full tools are implemented. In this way only theprimitives need to be trusted not the whole pakage.Hurd [13℄ used PROSPER to ombine the Gandalfprover with HOL. Unlike other approahes, the systemreproves the Gandalf theorems within HOL rather thanjust aepting the results. The Gandalf proof sript isimported into the HOL system and used to develop afast proof within HOL. The tool is thus used to disoverproofs, rather than diretly to prove theorems.The MEPHISTO system [16℄ was developed to man-age the higher levels of a veri�ation, produing �rst-order sub-goals to be proved by the FAUST �rst order



Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid Tool 13prover. The goals of MEPHISTO are similar to ours:managing the subgoaling of a veri�ation to produegoals that an be proved by another system. The dif-ferene is the fous of the way the systems do this andthe target system. Our approah is to use the exist-ing design hierarhy, sending to the automated prover(here a hardware veri�ation system itself) subgoals thatare orretness theorems about design modules. ThusHIER VERIF TAC produes subgoals (and results fromfailed veri�ation) easily understood by the designer.This approah avoids the problem of the veri�er havingto inspet goals that bear little relation to the input tothe system. MEPHISTO does give some support for hier-arhial proof providing a library of preproved modules.However, in our approah suh hierarhial veri�ationis expliitly supported by the tatis.Aagaard et al [1℄ proposed a similar hardware veri�-ation management system. They aimed to omplete thewhole proof within the theorem prover (HOL or Nuprl).As with MEPHISTO, the fous is on produing lem-mas to be proved by deision proedures. They devel-oped a series of prototype tatis that ould be used tobreak down subgoals. However, they do not diretly sup-port hierarhial veri�ation: the �rst step proposed isto rewrite with the module spei�ations.As in [2℄ and [22℄, we integrate a theorem prover(HOL) to an existing hardware veri�ation tool (MDG)rather than embedding a pakage within the system. Wework within the proof system but using the spei�ation

style of the automated tool. This is done by embeddingthe language of the automated veri�ation tool withinthe proof system. As is done in pure HOL veri�ation,the proof follows the natural design hierarhy embodiedin the spei�ations. This proess is expliitly supportedby our hierarhy tati. The subgoals automatially gen-erated also have a diret relation to the spei�ationsprodued by the designer. Thus, the novel aspet of ourwork is the emphasis on implementing hierarhial ver-i�ation expliitly in a hybrid tool. The use of MDG asthe automated tool also opens up interesting possibilities(not yet fully explored) of making use of its features forabstration that allow large datapaths to be dealt withautomatially.6 ConlusionsWe have desribed a tool linking an interative theo-rem prover and an automated deision diagram-basedhardware veri�ation system. This builds on previouswork [24℄, where we showed formally how anMDG equiv-alene proof an be imported to an impliation-basedorretness theorem in HOL. Our system expliitly sup-ports the hierarhial ompositional veri�ation approahnaturally used in interative proof systems, when usingan automated tool. The interative proof system is usedto automatially manage the proof as well as ompleteany proof interatively that is beyond the sope of theautomated system. The veri�ation of whole bloks in



14 Skander Kort1, So��ene Tahar1 and Paul Curzon2: Hierarhial Formal Veri�ation Using a Hybrid Toolthe hierarhy an however be done automatially. Thehybrid tool an be used to verify larger examples thanould be done in MDG alone, and these proofs an bedone faster than in either system alone.We used the PROSPER/Harness toolkit to performthe linkage of the two tools. This made providing suha linkage relatively easy. However, it took the Harnessserver minutes to answer requests sent by the proof en-gine. An alternative implementation that ommuniatedbetween the tools diretly using �les was quiker. We areplanning to implement the tools' interation using sok-ets. This will allow starting multiple instanes of MDGon di�erent mahines. The hybrid tool will then be re-sponsible of dispathing sub-goals to the MDG instanesand olleting veri�ation results bak. Load balaningstrategies as well as veri�ation workload estimators willbe needed to ensure better exeution times.We illustrated the use of the hybrid tool by desribingthe hierarhial veri�ation of the preproessing blok ofthe arbitration unit of an ATM swith. Using the hybridtool, a veri�ation that originally required many hoursof interative proof work, ould be done largely auto-matially using the hybrid tool.We intend to extend the apabilities of the tool toinrease the automation of the proof management pro-ess. For example, we will automate di�erent forms ofparameterization. Parameterized iruits must urrentlybe dealt with interatively. A single instane of the pa-rameterized iruit is veri�ed using the hybrid tatis

and this theorem used in a pure HOL proof of the param-eterized iruit|performing the indutive part of theproof [7℄. This proess ould be automated for a rangeof ommon parameterization patterns (see Aagaard etal [1℄) with a similar tati to HIER VERIF TAC man-aging the indutive part of the proof. Common abstra-tion tehniques to redue a model say from 32-bits to 1bit to make automated veri�ation tratable ould alsobe dealt with in this way. However, MDG provides abetter approah: by making fuller use of the abstra-tion failities in MDG itself we will remove the needfor suh abstration. This removes the need to simplifydatapath widths to make veri�ation tratable and en-ables the handling of data-dependent iruits automati-ally. We are also in the proess of extending the hybridtool to support model heking in MDG. While most ofthe infrastruture may be reused, ways of translating andomposing properties in HOL need to be developed. Forpratial reasons industrial designers often do not workto lean hierarhies. Important further work is there-fore to integrate a transformational design system withthe tool. This would allow non-hierarhial parts of adesign to be transformed to a veri�ed equivalent formmore onduive to veri�ation, or alternatively to opti-mise a veri�ed orret hierarhial design in ways thatbreak the veri�ed hierarhy but preserve orretness. Fi-nally, we will onsider the veri�ation of more omplexexamples inluding a full 16 by 16 swith fabri.
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