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Abstract

On Equivalency Reasoning For Conflict Driven

Clause Learning Satisfiability Solvers

Azam Heydari, Ph.D.

Concordia University, 2012

Satisfiability problem or SAT is the problem of deciding whether a Boolean function eval-

uates to true for at least one of the assignments in its domain. The satisfiability problem

is the first problem to be proved NP-complete. Therefore, the problems in NP can be en-

coded into SAT instances. Many hard real world problems can be solved when encoded

efficiently into SAT instances. These facts give SAT an important place in both theoretical

and practical computer science.

In this thesis we address the problem of integrating a special class of equivalency rea-

soning techniques, the strongly connected components or SCC based reasoning, into the

class of conflict driven clause learning or CDCL SAT solvers. Because of the complications

that arise from integrating the equivalency reasoning in CDCL SAT solvers, to our knowl-

edge, there has been no CDCL solver which has applied SCC based equivalency reasoning

dynamically during the search. We propose a method to overcome these complications.

The method is integrated into a prominent satisfiability solver: MiniSat. The equivalency

enhanced MiniSat, Eq-MiniSat, is used to explore the advantages and disadvantages of the

equivalency reasoning in conflict clause learning satisfiability solvers. Different implemen-

tation approaches for Eq-MiniSat are discussed. The experimental results on 16 families

of instances shows that equivalency reasoning does not have noticeable effects for the in-

stances in one family. The equivalency reasoning enables Eq-MiniSat to outperform MiniSat

on eight classes of instances. For the remaining seven families, MiniSat outperforms Eq-

MiniSat. The experimental results for random instances demonstrate that almost in all

cases the number of branchings for Eq-Minisat is smaller than Minisat.
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Chapter 1

Introduction

Satisfiability problem, or SAT, is one of the most important problems in both practical and

theoretical computer science. As a result, it is one the problems that have been extensively

researched. In this thesis, we investigate the integration of new techniques into one of the

most prominent SAT algorithms.

This chapter gives an overview of the structure of the thesis and its contributions.

Section 1.1 gives a short introduction to the the thesis topic. Section 1.2 reviews the thesis

contributions. Section 1.3 provides the thesis organization.

1.1 The Boolean Satisfiability Problem

Satisfiability problem is the problem of deciding whether a Boolean function evaluates to

true for at least one of the assignments in its domain. The satisfiability problem is the first

problem to be proved NP-complete [23, 71]. Moreover, the concept of NP-completeness was

introduced by this proof. These facts give SAT an important place in theoretical computer

science.

As a result of SAT being NP-complete, the problems in NP can be encoded into SAT

instances. It has been shown that many hard real world problems can be solved when

encoded efficiently into SAT instances. Some examples include problems like planning

[62], software verification [54], hardware verification [15], bounded model checking [21],

Quasigroup completion problem [44], automatic test pattern generation [70], and Van Der

1



Warden numbers [3].

Generally, the algorithms to solve SAT can be categorized in two groups: complete

and incomplete. The complete algorithms, given sufficient time, guarantee to find a satis-

fiable assignment if there exists one or to prove unsatisfiability otherwise. The incomplete

algorithms do not guarantee finding the solution, therefore they are not able to prove un-

satisfiability. In the meanwhile, the incomplete algorithms, usually, perform better than

complete algorithms on satisfiable instances.

Among incomplete SAT algorithms are local search [47, 89], tabu search [57, 78], and

genetic algorithms [58].

Some of the complete satisfiability algorithms are Davis-Putnam-Logemann-Loveland

or DPLL [28], Davis-Putnam or DP [29], Stalmarck’s method [91], and binary decision

diagrams (BDDs) [18].

DP algorithm, introduced about half a century ago, is believed to be one of the first SAT

algorithms. Surprisingly, it is still the most widely used algorithm to solve SAT. In Chapter

2, we give a short overview of this algorithm. Many modern SAT solvers are based on this

algorithm. Their differences are in the implementation details, and in the new techniques

integrated into the original algorithm.

There are two main categories for the DPLL based SAT solvers: look-ahead and look-

back. The former gathers information based on the current state of the SAT instance, the

latter is based on learning from the assignment failures. The work in this thesis investigates

the integration of a new technique in the class of look-back SAT solvers. The following

section reviews the thesis contributions.

1.2 Thesis Contribution

DPLL is a branch and bound algorithm. One of the techniques to improve DPLL is to

minimize the search space by maximizing the logical reasoning to reduce the size of the

SAT instance. One of the reasoning methods is equivalency reasoning which finds equivalent

variables in the SAT instance. The equivalency reasoning and its effects have been widely

studied for different DPLL-based SAT solvers [8, 17, 39, 48, 72, 99].

2



Equivalency reasoning can be done statically only in the beginning of the search, or

dynamically during the search. For look-ahead SAT solvers both dynamic and static in-

tegration have been studied [72, 99]. Integrating the dynamic equivalency reasoning into

look-ahead SAT solvers resulted in solving a hard class of SAT instances that DPLL-based

solvers are unable to solve in reasonable time [72].

In look-back SAT solvers, because of its complications, the equivalency reasoning has

been only studied statically at the beginning of the search[8, 17]. Because of these compli-

cations, to our knowledge, there has been no look-back SAT solver with integrated dynamic

equivalency reasoning during the search. The work in this thesis studies the complications

that arise from the dynamic integration of the equivalency reasoning into look-back SAT

solvers. It also presents a method to overcome these complications. The result is integrated

into a minimal look-back SAT solver MiniSat [32].

The equivalency reasoning techniques in this thesis use strongly connected components

of a directed graph called SCC implication graph to identify the equivalencies. In this thesis,

we present a customized algorithm based on Tarjan’s algorithm [96] to generate the strongly

connected components of the SCC implication graph.

The SCC implication graph, not only helps in identifying the equivalent literals, but also

has other valuable information that can be used to guide the search. This thesis describes

some possible use of this information in subsumption and self-subsumption rules, and in

identifying the conflict variables without BCP. The former simplifies the formula, the latter

helps the solver by avoiding unnecessary propagations.

The experimental results are based on our equivalency reasoning enhanced SAT solver

Eq-MiniSat. These results are used to investigate the benefits and disadvantages of dynamic

equivalency reasoning in look-back SAT solvers. The results indicate that although the

integration of equivalency reasoning is not always beneficial, but it helps Eq-MiniSat to

consistently outperform MiniSat on some classes of instances. The experiments on random

instances indicates that for a majority of instances Eq-Minisat has less number of branchings

than Eq-MiniSat.

Another topic that we investigated in this thesis is the use of orthogonal lists or dancing

links [52, 63] to represent a SAT instance. Our experiments, which are not reported in

3



the thesis, show that although the orthogonal lists data structure outperforms the counter-

based data structures for SAT [59, 81, 92], it is slower than the watched literals scheme

[81].

1.3 Thesis Organization

Chapter 2 gives an introduction to DPLL algorithm and its ancestor DP algorithm. The

DPLL algorithm in its original recursive and its more recent iterative form is described.

A minimal solver based on DPLL, MiniSat [32], is the foundation for the work in this

thesis. This solver belongs to a category of solvers that are called Conflict Driven Clause

Learning, or CDCL. Therefore, in Chapter 2, we review the structure of CDCL solvers in

general.

Chapter 3 provides an overview of the previous research on equivalency reasoning for

look-back SAT solvers. In this chapter, we discuss the complications that arises in inte-

grating the equivalency reasoning into CDCL SAT solvers. A method to overcome these

complications is provided. We have implemented this method into the minimal CDCL SAT

solver MiniSat [32]. The equivalency enabled MiniSat is called Eq-MiniSat.

Chapter 4 gives an overview of the implementation details of Eq-MiniSat. This chapter

reviews the basics that are used in implementing Eq-MiniSat including the set union-deunion

data structure [77] and Tarjan’s strongly connected components algorithm [96] and the

customized modifications that are applied on them. This chapter also provides an overview

of the data structure used in the equivalency reasoning engine.

In Chapter 5, we present the experimental results for Eq-MiniSat. The results in this

chapter are used to compare different methods to implement Eq-MiniSat. Also, the chapter

provides a comparison of MiniSat and Eq-MiniSat on a selected set of instances.

Finally, in Chapter 6 the thesis conclusions and future possible work is provided.

4



Chapter 2

DPLL Algorithm: Past to Present

This chapter reviews the Davis Putnam Logemann Loveland (DPLL) algorithm [28, 29],

which is the foundation for the research in this thesis. DPLL algorithm is the most widely

used approach to solve SAT instances. Due to the extensivity of the research in the field

of DPLL based SAT solvers, we only review the concepts that are directly related to our

research. A comprehensive and relatively recent survey on the SAT solvers can be found in

[16].

In Section 2.1, the basic definitions and terminologies for the SAT problem are presented.

We review the DPLL algorithm in Section 2.2. Section 2.3 reviews the preprocessing tech-

niques. Preprocessing techniques aim to simplify the formula at the beginning of the search.

In Section 2.4, we discuss some of the most commonly used data structures for SAT. Sec-

tion 2.5 provides a short review of one of the major improvements for DPLL based SAT

solvers: Conflict Driven Clause Learning, or CDCL method. CDCL enables DPLL based

solvers to solve problems that, previously, were widely considered out of the reach of DPLL

algorithm. Section 2.6 briefly reviews some of the mostly used branching rules in DPLL

solvers. Section 2.7 summarizes the material discussed in this chapter.

2.1 Basic Definitions and General Overview of Algorithms

A variable v is a symbol used to represent a Boolean statement in logic that can take the

value either true or false (1 or 0, respectively). The Negation of v is denoted by v̄ such that
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v̄ = 1− v. A literal is defined as a variable or its negation.

A clause is a set of zero or more literals. The length of a clause is the number of its

literals. An empty clause has length zero.

A clause is satisfied if at least one of its literals is true. A truth assignment or assignment

for a formula F is a set of assigned variables.

A formula or SAT instance is a set of clauses. A formula is satisfiable if there exists an

assignment that satisfies all of its clauses1. A complete assignment for a formula F , is an

assignment in which all the variables in the formula F are assigned a value. Otherwise, it

is a partial assignment. An assignment of length zero, the empty assignment is a partial

assignment. An empty assignment for a SAT instance on n variables, can be extended to

2n complete assignments.

A clause is redundant in a formula F , if it can be inferred from other clauses in the

formula.

Example 2.1. In a formula F with clauses C1 = {v1}, C2 = {v1, v2}, and C3 = {v1, v̄2},

the clauses C2 and C3 imply clause C1. Therefore, the clause C1 is a redundant clause.

Let σ1 and σ2 to be two assignments on variables v1, · · · , vn. The assignment σ2 is called

an extension of the assignment σ1 if and only if for every vi with 1 ≤ i ≤ n that have been

assigned by σ1, we have σ1(vi) = σ2(vi).

If all the literals in a clause C in a formula F are assigned to false by an assignment σ,

then the assignment is a conflict assignment for the formula F . If a partial assignment is a

conflict assignment, then all of its extended assignments are also conflict assignments.

If all the clauses in a formula are satisfied by an assignment σ, then σ is a satisfying

assignment. A formula is satisfiable if it has at least one satisfying assignment.

If a literal w is assigned to true in a formula F , then the residual formula, F|w, is

obtained from formula F as follows:

• For every clause C with literal w ∈ C, remove the clause C from the formula.

• For every clause C with literal w̄ ∈ C, remove the literal w̄ from the clause C.

1This is equivalent to a formula in Conjunctive Normal Form (CNF).
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A clause C is called a unit clause, if all of its literals except for one unassigned literal

w are false. If a formula F has a unit clause C with unit literal w for a partial assignment

σ, then σ can be extended to a satisfying assignment if and only if the literal w is assigned

to true. Therefore, formula F is satisfiable if F|w is satisfiable. In this case, the clause

C implies the literal w and literal w is an implication of clause C based on the partial

assignment σ. The literal w is called an implied literal. The clause C is called the reason

for the implied literal w.

Whenever a unit clause is found in a formula F , then the formula F can be simplified

by setting the unit literal w to true. The residual formula F|w might have new unit clauses

because of the assignment of w to true. Therefore, assigning a unit literal might propagate

into new unit assignments. This kind of reasoning to simplify a SAT formula is called Unit

Propagation (UP) or Boolean Constraint Propagation (BCP).

A variable v is called monotone in a formula F if there is no v̄ in F . If a formula F has

a monotone literal w, then F is satisfiable if F|w is satisfiable. The monotone rule is the

process of satisfying all the monotone literals in a formula.

The Satisfiability Problem (SAT) is the problem of finding a truth assignment for a

formula or showing that no such assignment exists. SAT is one of the most important

problems in computer science. It was the first problem shown to be NP-complete [23, 71].

Moreover, the concept of NP-completeness was originated by the proof of SAT being NP-

complete.

Experimental results have established the fact that different SAT algorithms have differ-

ent memory and run-time behavior on the same input instances. There has been extensive

research to understand the complexity of SAT [24, 88] by investigating the instances that

are hard for all the current SAT algorithms.

There are classes of SAT instances that are known to be solvable in polynomial time, for

example 2-satisfiability [65] and horn-satisfiability [30]. Also, many practical problems that

have been reduced to SAT can be solved in polynomial time. Some of the areas where SAT

have been applied include planning [62], software verification [54], hardware verification [15],

bounded model checking [21], Quasigroup completion problem [44], automatic test pattern

generation [70], and Van Der Warden numbers [3]. Therefore, an efficient SAT solver can
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be of practical use.

Because of its theoretical and practical importance, SAT has been widely studied in

computer science. As a result, there have been extensive research to design efficient algo-

rithms. The most widely used algorithm to solve SAT is the DPLL algorithm that was

introduced in 1962. The DPLL algorithm [28] is based on Davis Putnam (DP) algorithm

[29]. In Section 2.2, we review the DPLL algorithm and its ancestor DP algorithm.

2.2 DP and DPLL Algorithms: an Overview

Two formulae are called equisatisfiable if they both are satisfiable or both are unsatisfiable.

The satisfying assignments for equisatisfiable formulae might be different.

Let C1 and C2 be clauses such that for exactly one literal w, we have w ∈ C1 and w̄ ∈ C2.

As in [20], we call such clauses clashing. The resolvent clause C = C1OC2 is defined as

C = (C1 − w) ∪ (C2 − w̄).

The operator O is the resolution operator, and the operation is called the resolution opera-

tion.

For a formula F define the sets Sw and Sw̄ to be the set of clauses in F having literals

w and w̄ respectively. Their resolvent set, S = SwOSw̄, is defined as

S = {C|∃C1 ∈ Sw, ∃C2 ∈ Sw̄ : C = C1OC2}.

The maximum size for the resolvent set S is |Sw| × |Sw̄|.

The resolution operation is the basis for Davis Putnam or DP algorithm [29] introduced

in 1960. At each iteration, the DP algorithm generates a formula which is equisatisfiable to

the first formula but with fewer variables. The algorithm terminates by either generating

an empty clause or an empty formula. The former proves the unsatisfiability (because of

that an empty clause is also called a conflict clause), the latter proves that the formula is

satisfiable. A more detailed description follows.

At every iteration, the DP algorithm simplifies the formula by the monotone rule and
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by unit propagation. When the simplification is done, the algorithm chooses a variable v

in the formula F . If no such variable exists, the formula is satisfiable. Otherwise, for the

chosen variable v, the algorithm does the following:

• It adds the resolvent set SvOSv̄ to F .

• It removes the clauses in Sv and Sv̄ from F .

The transformed formula is equisatisfiable to the original formula. The DP algorithm

is shown in Algorithm 2.1.

Algorithm 2.1 DP Algorithm

Input: formula F
Output: determines the formula F is satisfiable or not.

1: while (there exists a unit or monotone literal w in F) do
2: F = F|w
3: end while
4: if (F has an empty clause) then
5: return unsatisfiable
6: end if
7: if (F is empty) then
8: return satisfiable
9: end if

10: choose a variable v in F
11: add S = SvOSv̄ to F
12: remove clauses in Sv and Sv̄ from F

In the worst case, the resolution step in the DP algorithm results in an exponential

growth in the number of clauses. Therefore, the memory requirement for DP algorithm is

exponential in the worst case. To solve this problem, in 1962, Davis, Putnam, Loveland, and

Logemann introduced a refinement of the DP algorithm resulting in the DPLL algorithm

[28].

DPLL algorithm is a branch and bound algorithm. It is based on the fact that for every

variable v, the formula F is satisfiable if and only if at least one of the formulae F|v or F|v̄

is satisfiable.

In order to find a satisfying assignment for a formula F , the algorithm recursively

finds the satisfying assignments for the formulae F|v and F|v̄. The algorithm is shown in

Algorithm 2.2.
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Algorithm 2.2 DPLL Algorithm

Input: formula F
Output: determines the formula F is satisfiable or not. If the formula is satisfiable, it

returns a satisfiable assignment.
1: while (there exists a unit or monotone literal w) do
2: F = F|w
3: end while
4: if (F contains an empty clause) then
5: return unsatisfiable
6: end if
7: if (all the literals are assigned) then
8: return satisfiable
9: end if

10: choose an unassigned variable v
11: if (DPLL(F|v) = satisfiable) then
12: return satisfiable
13: end if
14: if (DPLL(F|v̄) = satisfiable) then
15: return satisfiable
16: end if
17: return unsatisfiable

The recursion tree for the DPLL algorithm is a binary tree. Every edge represents a

choice of literal that is assigned to true. Every internal node is a residual formula for a

partial assignment. The leaves are the complete assignments.

At every step, the algorithm divides the search space based on a chosen variable v.

The variable v is called the decision or branching variable. The variables that are assigned

because of the unit propagation are called implied variables.

A variable has level ` if it has been assigned at the level ` of the tree. We use the

notation v = 0@` if the variable v is assigned to false at level `. Similarly, we use the

notation v = 1@` if the variable v is assigned to true at level `.

There are two main categories for DPLL SAT solvers: look-ahead and look-back. The

look-back techniques learn from the conflict assignments in the search space in order to

avoid encountering them again. The look-ahead techniques spend time to choose the best

variable to branch on. Empirically, it has been shown that while look-back SAT solvers

perform better on large structured instances, the look-ahead solvers outperform on small

hard random instances [5].
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Among the SAT solvers that use look-back techniques are GRASP [92], Chaff [81],

MiniSat [32] and PicoSat [14]. The solvers Satz [74] and March-dl [51] are among look-

ahead solvers.

In this chapter, we discuss the main components of a modern look-back DPLL SAT

solver. In Section 2.3 we review the preprocessing techniques for SAT solvers. Section 2.4

reviews some of the main data structures for DPLL SAT solvers.

The DPLL algorithm, in its original form, backtracks to the maximum level with a

decision variable that has not been tested for both values. This is called chronological

backtracking. Look-back SAT solvers discover the reason for the conflict, and then backtrack

to the smallest level that is the reason for the conflict. Therefore, they backtrack non-

chronologically. Non-chronological backtracking along with clause learning is one of the

prominent improvements to the DPLL algorithms over the last decades. In Section 2.5 we

review these methods.

The method to choose the decision variable is called the branching rule. It is well-known

that for a formula F , different branching rules might result in trees that differ exponentially

in size for the same algorithm [53, 69, 82]. Therefore, there has been a lot of research on

designing efficient branching rules. We review some of the branching rules in Section 2.6.

2.3 Preprocessing Methods

Preprocessing techniques are used to reduce the size of a formula, meaning the number of

variables and clauses in the beginning of the search. The simplest preprocessing techniques

are the unit literal and monotone literal rules. The preprocessing step is a place to apply the

simplifications that are time-consuming if applied dynamically during the search. Different

preprocessing techniques have been shown to have different performances on different classes

of instances. Therefore, a key point in efficient SAT solving is to find a balance between

the time that is spent in the preprocessing and the reduction in the size of the formula. In

this section, we briefly review some of the most used techniques.

If for clauses C1 and C2, we have C1 ⊂ C2, then clause C2 is subsumed by clause C1. It

is easy to see that a subsumed clause is redundant, therefore it can be removed from the
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formula. The Subsumption rule is the process of removing subsumed clauses from a formula

[75].

Example 2.2. Clause C1 = {v1, v2, v̄3} is subsumed by clause C2 = {v1, v̄3}. Therefore, if

both of these clauses are in a formula F , the clause C1 is redundant in the formula F .

Let C1 and C2 be clashing clauses on variable v. If C1 − {v} is subsumed by C2 − {v̄},

then we have (C1OC2) ⊂ C1. Therefore, clause C1 can be subsumed by C1OC2. The clause

C1 is replaced by C1OC2 in the formula which is equivalent to eliminating one literal from

the original clause. The clause C1 is self-subsumed using the clause C2. The process of

removing self-subsumed clauses is called the self-subsumption rule [31].

Example 2.3. Let C1 = {v1, v2, v̄3} and C2 = {v̄1, v2} be two clauses in a formula F . The

clause C1 − {v1} is subsumed by clause C2 − {v̄1}. Therefore, by self-subsumption rule, the

clause C1 can be replaced by the resolvent clause {v2, v̄3} in the formula F .

Hyper resolution [11] method generates new clauses based on resolving a set of input

clauses so that the result is either a binary or unit clause.

Example 2.4. The set of clauses {v1,v2,v3,v4}, {v̄2,v5}, {v̄3, v5}, and {v̄4, v5} results in

the binary clause {v1,v5}.

Hyper resolution method has been shown to be effective specially if combined with

equivalency reasoning [11].

Equivalency reasoning discovers equivalent literals in a formula. Literals w1 and w2 are

equivalent if one being true implies the other one being true, and one being false implies

the other one being false.

Example 2.5. The clauses {v1, v̄2} and {v̄1, v2} imply that literals v1 and v2 are equivalent.

If two literals w1 and w2 are equivalent in a formula F , then the literal w1 can be

replaced by w2, and the literal w̄1 can be replaced by the literal w̄2 in the formula F

resulting in a simplified formula with fewer number of variables, and fewer number of clauses

and/or shorter clauses. The process of substituting the equivalent literals is called equality
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reduction. In [17] experimental results suggest that equality reduction on the instances with

lots of binary clauses is beneficial to the SAT solvers.

Failed literal probing [34] assigns a value to literal w. If the unit propagation results in

a conflict, then the clause {w̄} can be added to the formula.

Variable elimination [29, 31] is a method based on resolution. A variable v is removed

from the formula F by adding the resolvent of the clauses in Sv and Sv̄ to F and removing

clauses in Sv and Sv̄ from F . The choice of the variable to be eliminated is based on the

number and the length of the clauses with that variable.

2.4 Data Structures from Counter Based to Watched Lists

Assigning a literal w to true in a formula F requires the DPLL SAT solver to create

the residual formula F|w. Therefore, the data structure for a SAT solver should be able

to efficiently access the unsatisfied clauses with literals w and w̄. The efficiency of this

mechanism is important because SAT instances, in particular industrial instances, usually

have lots of clauses.

After the residual formula is generated, the solver should be able to discover possible

conflicts and unit clauses. The first indicates unsatisfiability, the second triggers unit prop-

agation. Therefore, an efficient data structure should provide mechanisms to discover these

kind of clauses.

In general, it is a known fact that Boolean Constraint Propagation, or BCP (Section 2.1),

is an expensive operation in terms of runtime. Experimental results show that on average,

up to 90 percent of the DPLL SAT solvers runtime is spent in BCP [81]. Therefore, there

have been lots of efforts to design data structures to optimize the BCP. In this section,

we provide a brief review of some of the main data structures for SAT solvers. A more

thorough review can be found in [76, 104].

One of the traditional methods to represent a SAT formula is the sparse matrix repre-

sentation [59, 81, 92]. Each row in the matrix represents a clause. Each column represents a

variable. Every literal w has a list of clauses having literal w. In the sparse matrix represen-

tation data structure, one approach to keep track of clause lengths is associating counters
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to every clause. A clause counter for a clause C indicates the number of unassigned literals

in C. Using the clause counters, the identification of conflict or unit clauses takes O(1).

But when a clause is declared unit, finding the unit literal is O(n) where n is the number of

variables in the formula. Moreover, the counter values should be adjusted when a variable

is being assigned a value going down the tree or is unassigned during backtracking.

One performance issue with the above method comes from the fact that whenever a

literal w is assigned to true, all the clauses having w̄, satisfied and unsatisfied, are being

examined. Although only examining the unsatisfied clauses is necessary. Since the examin-

ing of the satisfied clauses is unnecessary, a refinement of this approach hides the satisfied

clauses from the list of clauses of literal w̄ [26]. This approach prevents the examination of

the satisfied clauses, but it requires unhiding the clauses during backtracking. So far, these

variations of the sparse matrix representation lacks the efficiency for handling large SAT

instances.

A major improvement in the data structures is based on the following observation:

Assigning a variable v implies unit or empty clause C only if the clause C is unsatisfied

and has length one or two before assigning the variable v. In other words, the clause C has

at most two unassigned literals, and all the other literals in C are assigned to false. As a

result, in BCP, only clauses that meet this criteria need to be searched. In [76], the data

structures that are designed based on this observation are called lazy data structures.

There are different methods to keep track of clauses that are of length one or two during

the search. In the following we review some of these methods. An important aspect of these

methods is their non-counter based approaches.

The first lazy data structure for SAT is Head/Tail(H/T) data structure, originally used

in SATO [102]. This data structure associates two literals with every clause of length greater

than one. The literals are called the head and the tail. Initially the head points to the first

literal and the tail points to the last literal. Every literal w has the list of the clauses with

w being the head or tail literal. Whenever a literal w is assigned to true, the list of clauses

of w̄ is traversed. For every clause C in this list, the literal w is either a head or a tail. The

solver searches the clause to find a new unassigned literal other than original head and tail

to be the new head or tail. If there is no such literal, and the clause is not satisfied, then
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the clause is either unit or conflict based on the value of the head and tail. In this method

the head literal should always be positioned before the tail literal. To ensure this property,

the necessary changes might be done while backtracking or when assigning a new head or

tail.

An improvement to this method is the use of Watched Literals, first introduced in

Chaff [81]. Like the head/tail method, this method identifies two literals in each clause

as watched. The difference with the head/tail method is that there is no ordering defined

between the two literals. Because there is no order defined on the watched literals, there

are no adjustments in the backtracking.

In the two watched literal scheme, for every clause with length greater than one, two

non-zero elements are flagged as watched. Every literal has a list of clauses in which the

literal is flagged as watched. When a literal w1 is assigned to true, the list of watched

clauses of w̄1 is traversed. For every clause C in the list, the other watched literal of C, w2,

is examined. There are two cases:

case 1: If w2 is true, then the clause C is satisfied. Therefore, there is no need to process

it.

case 2: Otherwise, the clause is processed to find a non-zero literal to make it watched

instead of w̄1. If such a literal w′ is found, then the clause C is removed from the list

of watched clauses of w̄1 and is added to the list of watched clauses for w′. If it is not

found, the clause is flagged as a conflict clause or unit clause based on the value of

w2.

Example 2.6. Table 2.1 shows these cases. After assigning the variable v2 to false, in the

first clause the unassigned variable v3 is chosen to be the new watched literal. In the second

and fourth clauses, no other non-zero literal other than the other watched literal v7 is found.

In second clause, the fact that variable v7 is unassigned implies that the clause is a unit

clause. In the fourth clause, the variable v7 having value false implies the current clause is

a conflict clause. The third clause is satisfied because the other watched literal v7 is already

evaluated to true, therefore there is no need to update the watched literals.
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v̄1 v2
∗ v3 v6 v7

∗ v8

0 0 U U U U
The literal v3 is the new watched literal.

v̄1 v2
∗ v3 v6 v7

∗ v8

0 0 0 0 U 0
A unit clause is being identified.

v̄1 v2
∗ v3 x6 v7

∗ v8

0 0 0 1 1 1
No change in the already satisfied clause.

v̄1 v2
∗ v3 v6 v7

∗ v8

0 0 0 0 0 0
A conflict clause is found.

Table 2.1: The watched literal scheme after assigning the variable v2 = 0. The second row
shows the literal values. The character ‘U’ indicates that the literal is unassigned.

The watched literals scheme is the most widely used data structure in the current state-

of-the-art SAT solvers. Some of the state-of-the-art SAT solvers using this scheme are

[14, 32, 41, 81].

Dancing links [52, 63] is a data structure that have been successfully used in solving the

exact cover problem [63]. Dancing links data structure also can be used to represent SAT

instances. As in a sparse matrix representation, every row represents a clause, and every

column represents a literal. All the clauses having the same literal are linked together. In

the same way, all the literals in a clause are linked together. Whenever a literal w becomes

true, the following operations are performed:

• The clauses having the literal w are delinked from the formula.

• For every clause C that is accessible in the column w̄, the literal w̄ is being delinked

from the clause C.

In order to compare dancing links to watched literal scheme, we have implemented two

DPLL SAT solvers that are identical unless for their data structures. Our experimental

results suggest that watched literals scheme is more efficient than dancing links for DPLL

SAT solving. The main reason is the amount of maintenance that the dancing links require

in backtracking.
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2.5 Conflict Driven Clause Learning SAT

Chronological backtracking is one of the main drawbacks of the DPLL algorithm because

it usually results in unnecessary computations [42]. In order to overcome this weakness,

non-chronological backtracking methods have been widely studied for DPLL algorithm.

Non-chronological backtracking methods for DPLL method are closely related to the clause

learning methods. Clause learning attempts to improve the DPLL search algorithm by

adding new clauses, which are called learnt clauses. These learnt clauses are derived from

the conflict assignments to prevent the solver to repeat the same conflict over and over

again.

Non-chronological backtracking methods have been studied for SAT and other areas

of combinatorial optimization research [34, 42, 79], but it was the work in GRASP [92]

that made the non-chronological backtracking and clause learning a crucial part in modern

SAT solvers. GRASP inspired a new class of solvers that are called Conflict Driven Clause

Learning, or CDCL. In this section, we review the structure of CDCL SAT solvers.

Algorithm 2.3 represents a generalized algorithm for CDCL SAT solvers [81]. As it can

be seen in Algorithm 2.3, there are some new additions to the original DPLL algorithm

which includes the restart (line 9) and analyze conflict (line 15) functions.

The original DPLL algorithm is a committed search: The choices of the variables make

the search process committed to a part of search space. Therefore, a poor choice of variable

to branch on in the early stages of the search affects the size of the tree dramatically.

Modern algorithms use restart strategies [13, 45, 60] to overcome this weakness. For this

reason, a cutoff value c is chosen that determines the restart point. Whenever the number

of backtracks exceeds c (line 8), the current search backtracks to level zero (line 9), deleting

the current assignment. The cutoff value is chosen by trial and error. Because the conflicts

are added to the formula in terms of learnt clauses, the new search after the restart still has

an implicit knowledge of the search history.

The decide next branch method (line 11) selects an unassigned variable to branch on

based on the chosen branching rule. One of the main advances in CDCL SAT solvers was

achieved by introducing Variable State Independent Decaying Sum, or VSIDS, branching
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Algorithm 2.3 A generalized algorithm for CDCL SAT solvers

1: status = preprocess()
2: if (status ! = UNKNOWN) then
3: return status
4: counter = 0
5: end if
6: while (true) do
7: counter = counter + 1
8: if (counter > MAX) then
9: restart()

10: end if
11: decide next branch()
12: while (true) do
13: status = deduce()
14: if (status == CONFLICT) then
15: blevel = analyze conflict()
16: if (blevel < 0) then
17: return UNSATISFIABLE
18: else
19: backtrack(blevel)
20: end if
21: else if (status == SATISFIABLE) then
22: return SATISFIABLE
23: else
24: break {continue the search}
25: end if
26: end while
27: end while
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rule by SAT solver ZChaff [81]. We review VSIDS and some other branching rules in Section

2.6.

After the variable to branch on is selected, the formula is simplified as a result of

this decision. The function deduce (line 13) performs some reasoning, including BCP, to

determine variable assignments which are consequences of the current assignment.

During the simplification, if a conflict clause is discovered, then the current assignment

can not lead to a satisfiable assignment. Therefore, the solver needs to backtrack. The

method analyze conflict (line 15) determines the decision level blevel to backtrack on. If

the decision level blevel is less than zero (line 16), then the instance is unsatisfiable. Oth-

erwise, the search backtracks to level blevel (line 19). The function analyze conflict not

only determines the backtrack level, but also adds a new learnt clause to the formula to

prevent this conflict assignment in the future. As the search goes on, the number of learnt

clauses increases exponentially which, as a result, slows down the search process. There-

fore, periodically learnt clauses are removed from the formula. Usually the restart method

is responsible to prune the learnt clauses. In Section 2.5.1, we briefly review the analyze

conflict method.

2.5.1 Analyzing the Conflict

When a conflict is found, the solver needs to backtrack. In CDCL SAT solvers the back-

tracking level is determined by the conflict-driven learning methods. These methods usually

use an implication graph to express the variable implications.

The vertices of the implication graph are the variable assignments. A vertex with label

v = 1@` shows a true assignment for the variable v at level `. In the same way, a vertex

with label v = 0@` shows a false assignment for the variable v at level `. Suppose a variable

v is an implied variable because of a clause C with value i ∈ {0, 1}. This implication adds

|C|−1 edges from the variables of C other than v to the vertex labeled with v = i@`. Every

edge is labeled by the clause C.

A conflict clause is a clause that all of its literals are assigned to false. An implication

graph is in conflict state if it has both vertices v = 0 and v = 1 for a variable v. The variable

v is called the conflict variable. The conflict variable is the last variable that is assigned to
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zero in a conflict clause. Example 2.7 shows an implication graph in the conflict state.

The vertices for the conflict variables are called conflict vertices. The information in the

connected component containing the conflict vertices is used to generate the learnt clause

for the current component. The part of the implication graph that affects the learnt clause

is the connected component containing the conflict vertices (Therefore, from this point by

implication graph we refer to the part of graph that has the conflict vertices).

Example 2.7. Figure 2.1 shows an implication graph in the conflict state. The clauses

that correspond to this graph are:

C1 = {v2, v̄1, v̄4}

C2 = {v̄10, v4, v8}

C3 = {v4, v̄13}

C4 = {v4, v13, v̄8, v6}

C5 = {v̄6, v̄11, v̄3}

C6 = {v̄6, v15}

C7 = {v̄15, v3, v5}

C8 = {v̄6, v̄15, v17}

C9 = {v̄17, v̄7, v̄5}

Assigning variable v1 = 1 implies the variable v4 = 0 because of the clause C1. Therefore, two

edges from vertices v1 = 1@6 and v2 = 0@1 to the vertex v4 = 0@6 are added to the graph. Assigning

this variable implies new variables, therefore, other edges are added to the graph. The graph is a

conflict graph because it has both literals on variable v5.

A learnt clause is generated by bipartitioning the implication graph in two sides: the

reason side and the conflict side. The reason side has all the decision variables. The conflict

side has the conflict vertices. Such a bipartition is called a cut. A cut edge is an edge with

endpoints in both sides. The vertices in the reason side that are the endpoints of the cut

edges are the reasons for the conflict.

Let the set S = {v1, v2, · · · , vi} to be the set of reasons for the current conflict for a

chosen cut. Based on the set S, a learnt clause C is generated as follows. For every variable

v ∈ S, if v has value true , then v̄ is added to the C. If v has value false, then v is added to

the C. Different cuts define different set of reasons for a conflict. Therefore, the choice of
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Figure 2.1: An implication graph in conflict state with conflict variable v5.

the learnt clause to be added to the formula is dependent on the chosen cut. The following

example demonstrates three different cuts for implication graph in Figure 2.1, and their

corresponding learnt clauses.

Example 2.8. Figure 2.2 shows three cuts for the implication graph in Figure 2.1. The

learnt clause for cut 1 is {v3,v̄15,v̄17,v̄7}. The learnt clause {v̄11, v13, v4, v̄8, v̄7} corresponds

to the cut 2. Finally, clause {v̄11, v2, v̄1, v̄10, v̄7} is the learnt clause identified by the cut 3.

The effect of adding different learnt clauses have shown to result in different runtime

for the same instance [105]. The most common approach to add learnt clauses is based on

Unit Implication Points or UIPs. Let `v denotes the decision level of a variable v. Vertex

v1 dominates vertex v2 in an implication graph if, and only if, any path from the decision

variable at level `v2 to the vertex v2 passes through v1. A Unit Implication Point (UIP)

[92] is a vertex at current level that dominates the conflicting vertices. Obviously, the

decision variable at current level is always a UIP. In Figure 2.1, vertices v4 and v6 are also

UIPs. Empirically, it has been shown that the UIP that is nearest to the conflict clause,

the first-UIP, usually results in better performance [105].

Example 2.9. In Figure 2.2, the vertex v6 is the first UIP. Therefore, the learnt clause by

first UIP approach is {v̄11, v13, v4, v̄8, v̄7}.
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Figure 2.2: Different cuts for the implication graph in Figure 2.1

Learnt clauses are also used to determine the backtrack level. The backtracking level β

is set to the second highest level of the variables in S (the first highest level is the current

level). If β = ` − 1 in which ` is the current level, then the method is equivalent to

chronological backtracking. Otherwise, the search jumps over several levels in the tree and

backtracks non-chronologically.

Example 2.10. In Figure 2.2, for the first UIP learnt clause, we have β = 5. Therefore, the

search backtracks chronologically. For the learnt clause defined by cut 3, {v̄11, v2, v̄1, v̄10, v̄7},

we have β = 4. Therefore, if this learnt clause is added to the formula, the search backtracks

non-chronologically from level 6 to level 4.

2.6 Branching Rules

It is well-known that applying different branching rules may affect the size of a search

space significantly [53, 69, 82]. Different branching rules have different performances on

different benchmarks. Therefore, several different branching rules have been studied. A

review of some of the branching rules and their experimental evaluations can be found in

[53, 69, 73, 82, 92]. Generally, there is no known branching rule that outperforms the others

on all the instances. In most cases, the choice of branching rules is application dependant.

In [53, 69] a class of branching rules is described which chooses the next variable based
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on the number of literal occurrences in the formula. For example, the branching rule MAXO

selects the branching variable based on the number of occurrences in the formula. It selects

the variable with maximum number of occurrences in the formula. The branching rule

MOMS counts the number of literal occurrences in the minimum size clauses, and chooses

the variable with the maximum count. The Jeroslaw-Wang rule uses a weighting method

to choose variables that are in many short clauses. These classes of branching rules are

dependent on the current state of the formula.

The most widely used branching rule in modern CDCL SAT solvers is the Variable

State Independent Decaying Sum (VSIDS) introduced in Chaff [81]. VSIDS selects literals

to satisfy the most recently added clauses. In VSIDS every literal has a weight assigned to

it. At the beginning, this weight is set to either zero for all the literals or to the number of

literal occurrences in the formula for every literal. Whenever a learnt clause is added to the

formula, the weight of the literals in the clause increases. In order to give more weight to

recently added learnt clauses, periodically, the weights are divided by a constant. At every

iteration, a literal with maximum weight is chosen to branch on. Ties are broken randomly.

The method is called state independent because the selection of the literals is not related

to the current state of the formula. Most of the modern CDCL SAT solvers use variations

of VSIDS as their branching rule including [14, 32, 41, 81].

2.7 Chapter Summary

This chapter gives an overview of the DP and DPLL algorithms. It presents the basic

terminology that is used throughout the thesis. It reviews the basics for a class of DPLL

SAT solvers: Conflict-Driven Clause Learning (or CDCL) solvers.

This thesis investigates the dynamic integration of equivalency reasoning techniques

in CDCL solvers. Chapter 3 discusses the complications of equivalency reasoning in a

CDCL solver, and it presents a method to overcome these issues. The proposed solution is

integrated into an existing CDCL SAT solver.
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Chapter 3

Eq-MiniSat: Integrating Equivalency

Reasoning in CDCL SAT solvers

One of the widely studied reasoning techniques in DPLL SAT solvers is binary reasoning.

Binary reasoning, as its name suggests, uses binary clauses to simplify the formula by

reducing the number of variables and clauses.

Example 3.1. Binary clauses {vi, vj} and {v̄i, vj} imply variable assignment vj = 1.

Example 3.2. Binary clauses {v̄i, vj} and {vi, v̄j} imply that literals vi and vj are equiv-

alent. Therefore, the formula might be simplified by replacing vi with vj (v̄i with v̄j, re-

spectively). The result of the simplification is a formula with fewer variables and possibly

shorter clauses.

So far, the binary reasoning has been mostly applied in the preprocessing steps of CDCL

SAT solvers [11, 17, 31, 39, 50]. In Section 3.1, we briefly review the previous work for

integrating equivalency reasoning into CDCL SAT solvers.

For look-back SAT solvers, the equivalency reasoning has been only applied in prepro-

cessing steps [14, 17]. The equivalency reasoning in these solvers is based on binary clauses.

Because of the complications that arise from integrating the equivalency reasoning in CDCL

solvers, to our knowledge, there has been no CDCL solver which has implemented the binary

clause based equivalency reasoning during the search.
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In this chapter, we discuss the complications that arise from incorporating an equiva-

lency reasoning engine into the CDCL based DPLL procedure. These complications include:

Identifying binary clauses during the search The solver needs to be able to identify these

clauses efficiently.

Equivalence literal assignment In a CDCL solver, every implied literal has a reason clause.

Therefore, for every literal that is assigned based on literal equivalency a reason clause

needs to be identified.

Literal assignment order The learnt clause mechanism in CDCL solvers is dependent on the

order of literal assignments. Therefore, to comply with CDCL solver requirements, the

literals that are assigned due to equivalency reasoning are required to have an ordering.

This chapter is organized as follows. Section 3.1 reviews the prior work on binary

reasoning in general, and equivalency reasoning in particular.

In Section 3.2, we present some definitions which are needed throughout the chapter.

Section 3.3 provides a data structure to identify and use the equivalent literals efficiently

without explicitly replacing the equivalent literals. Replacing the equivalent literals results

in fewer variables, and shorter clauses but its runtime overhead overweighs these benefits.

Every time a conflict is found, the search needs to backtrack. In backtracking, the pro-

cedure needs to undo the replacements. Practically, the runtime overhead caused by the

replacements outweighs the beneficial effects gained by having fewer variables. Therefore,

we decided to avoid substituting the equivalent literals.

One of the important features of CDCL SAT solvers is their conflict engine that discovers

the reason for every conflict and adds it to the formula as a learnt clause. As was discussed

in Section 2.5, in order to construct the learnt clauses, the solver maintains a graph called

the implication graph. In order to successfully integrate equivalency reasoning into a CDCL

solver, the implication graph should be maintained correctly. We discuss the complications

and solutions to this problem in Section 3.4.
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3.1 Related Work

Logical reasoning is used to simplify SAT instances and minimize the search space. The

logical rules include, but are not limited to, unit propagation [29], the subsumption rule [75],

the unit literal rule [29], blocked clause elimination [66], and binary reasoning [39, 72]. Many

current DPLL SAT solvers apply at least one kind of logical reasoning: the unit propagation.

The effects of the other rules are application dependant. For example, Ouyang [83] showed

that unit literal rule and the subsumption rule are not effective for random formulae. In

[56], Biere et al. showed that blocked clause elimination is effective on CNFs resulting from

a standard CNF encoding for circuits.

More reasoning usually means fewer number of branchings. Nonetheless, fewer number

of branchings does not necessarily imply better performance. The negative runtime per-

formance impact of logical reasonings makes the solvers more cautious in using them. To

our knowledge, there have not been any theoretical results on the computational trade-off

between reasoning and searching. Empirical methods have been used to determine the

effectiveness of reasoning techniques [9, 83].

It is a well-known fact that the problem of evaluating a set of binary clauses, 2-

satisfiability, is in P [7, 33, 65]. Using this fact, many algorithms first solve the 2-SAT

clauses in a formula with a polynomial algorithm. The solution to the 2-SAT problem is

used to simplify the formula. Then, a general algorithm is called to solve the simplified

problem [19, 37, 70].

Let C1 = {v, v1} and C2 = {v̄, v2} to be clashing binary clauses. Then, their resolvent

C (Section 2.2) is either a unit or a binary clause based on the variables v1 and v2. There

are two cases:

case 1: If v1 = v2, then the clause C is a unit clause. Therefore, the formula can be

simplified through BCP.

case 2: Otherwise, the clause C is a binary clause which can be added to the formula.

The DPLL solver in [8] applies the resolution operation extensively at every node of the

search tree on all the unsatisfied binary clauses. The result has been shown to be effective
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for some classes of instances, while ineffective for others.

The Krom subsumption resolution [40] uses binary clauses to reduce the length of longer

clauses. If clauses {v̄, v1} and {v, v1, · · · , vk} are in the formula, then by using resolution

and subsumption rules (Section 2.3), the second clause is subsumed to {v1, · · · , vk}.

Hyper binary resolution [9] applies the resolution rule on a set of clauses {v1, v̄2},

{v1, v̄3}, · · · , {v1, v̄k} and {v2, · · · , vk, vk+1}, adding the binary clause {v1, vk+1} to the for-

mula [9, 41].

So far, all the mentioned binary reasonings have been based on resolution. Another kind

of inference that can be derived from binary clauses is detecting equivalent literals using

implication graphs introduced by Apsvall, Plass, and Tarjan [7]. The implication graph

represents the binary clauses in a CNF formula. The implication graph has the property

that all the literals in a strongly connected component, or SCC, are equivalent.

Many SAT solvers use the implication graph introduced by Tarjan et al. to identify

the equivalent literals in the preprocessing steps. After identifying the equivalent literals,

the formula is simplified by replacing the equivalent literals. Due to run-time overhead in

backtracking, in most SAT solvers, this kind of equivalency reasoning is done only during

the preprocessing steps [11, 17, 31, 39, 50].

In this chapter, we examine a heuristic to identify the SCCs of the implication graph

during the search for look-back SAT solvers. We proceed to give some basic definitions in

the next section.

3.2 Definitions

Identifying the equivalent literals in the formula is one of the main tasks of equivalency

reasoning in SAT solvers. One of the main approaches to identify equivalent literals is

Tarjan’s strongly connected components method [96]. We review this method in Section

3.2.1. Section 3.2.2 presents definitions that are needed throughout the chapter. Section

3.2.3 gives the definition of reason sets for strongly connected compnents.

27



3.2.1 SCC Implication Graphs

Apsvall, Plass, and Tarjan [7] represent binary clauses in a SAT instance by a graph called

the implication graph. The vertices of the graph are the literals of the formula. For every

binary clause {vi, vj}, two edges {v̄i, vj} and {v̄j , vi} are added to the graph. The strongly

connected components of the implication graph partition the literals into equivalency classes.

To avoid confusion with conflict implication graph, we call this graph the SCC implication

graph. Example 3.3 presents a SAT instance with its SCC implication graph. For the

examples in this chapter, we use the formula presented in this example.

Example 3.3. Figure 3.1 shows a SAT instance on 12 variables and 17 clauses. This SAT

instance has 5 binary clauses C2, C3, C4, C5, and C12.

C1 = {v̄1, v2, v̄5} C2 = {v1, v3}
C3 = {v̄1, v̄2} C4 = {v̄6, v8}
C5 = {v7, v̄8} C6 = {v1, v2, v9}
C7 = {v6, v̄7, v9} C8 = {v2, v̄3, v10}
C9 = {v̄1, v2, v̄10} C10 = {v̄2, v6, v10}
C11 = {v̄5, v3, v6} C12 = {v̄3, v̄13}
C13 = {v̄1, v̄2, v̄9} C14 = {v1, v̄2, v̄10}
C15 = {v10, v̄1, v2, v6} C16 = {v̄1, v2, v11}
C17 = {v3, v̄7, v10}

Figure 3.1: A SAT instance

The SCC implication graph for this instance is shown in Figure 3.2. The binary clauses

in this instance add ten edges to the SCC implication graph, two for every binary clause.

For example the binary clause C2={v1, v3} adds edges {v̄1, v3} and {v̄3, v1} to the SCC

implication graph.

v̄13

v̄1 v2

v3

v6 v8

v7

v13

v1 v̄2

v̄3

v̄6 v̄8

v̄7

C3

C2

C4

C5

C12

C3

C2

C4

C5

C12

Figure 3.2: SCC implication graph for SAT instance in Figure 3.1

The transpose graph of a directed graph is formed by reversing all the edges in the graph.
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A graph is skew-symmetric if it is isomorphic to its transpose graph. An SCC graph G is

a skew-symmetric graph where an edge {vi, vj} ∈ G if and only if {v̄j , v̄i} ∈ G.

Example 3.4. The SCC implication graph for the formula in Example 3.3, as can be seen

in Figure 3.2, is a skew-symmetric graph with the following pairs of edges:

• {v̄1, v3}, and {v̄3, v1}

• {v2, v̄1}, and {v1, v̄2}

• {v6, v8}, and {v̄8, v̄6}

• {v8, v7}, and {v̄7, v̄8}

• {v3, v̄13}, and {v13, v̄3}

We use the skew-symmetric property of the SCC implication graphs to simplify the SCC

graph drawings. If the literals of a variable are in two different connected components of the

SCC implication graph, then we draw only one of the components. The other component,

can be easily derived from this component by replacing every literal with its negation and

reversing all the edges.

Example 3.5. The simplified graph for the SCC implication graph in Figure 3.2 is shown

in Figure 3.3.

v̄13

v̄1 v2

v3

v6 v8

v7

C3

C2

C4

C5

C12

Figure 3.3: Simplified SCC graph for Example 3.3 at level zero

Example 3.6 depicts the evolution of the SCC implication graph is Figure 3.3 as some

of the variables are assigned values.

Example 3.6. This example represents the changes in the SCC implication graph for the

instance in Example 3.3 as some of the variables are assigned values.
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v̄13

v̄1 v2

v3

v6 v8

v7

C6

C7

C3

C2

C4

C5

C12

Figure 3.4: SCC graph for the Example 3.3 with v9 = 0@1

v̄13

v̄1 v2

v3

v6 v8

v7

C8

C17

C8

C6

C7

C3

C2

C10 C4

C5

C12

Figure 3.5: SCC graph for the Example 3.3 with v9 = 0@1, v10 = 0@2

level zero: The Figure 3.3 represents the SCC implication graph at the end of level

zero with all the variables being unknown. As can be seen in the Figure 3.3, all the strongly

connected components are of length one. Therefore, all the equivalency classes have length

one.

level one (v9 = 0@1): Suppose the decision variable at level one is v9 = 0. As a

result of assigning v9 = 0, ternary clauses C6 and C7 become binary clauses. Therefore,

they can be added to the SCC implication graph. The result graph is shown in Figure 3.4.

At the end of level one, the non-trivial equivalency classes are {v1, v̄2}, {v̄1, v2}, {v6, v7, v8},

{v̄6, v̄7, v̄8}.

level two (v10 = 0@2): Suppose v10 = 0 is the decision variable at level two. Assigning

v10 = 0 turns ternary clauses C8, C10, and C17 into binary clauses. The updated graph is

shown in Figure 3.5. As can be seen in Figure 3.5, The non-trivial connected components

at level two are {v̄1, v2, v3, v6, v7, v8} and {v1, v̄2, v̄3, v̄6, v̄7, v̄8}.

A conflict assignment is an assignment for which at least one of the clauses in the for-

mula evaluates to false. If a partial assignment is a conflict assignment, then no satisfying

assignment can be found by extending it. If both literals of a variable appear in the same

strongly connected component, then the strongly connected component is a conflict compo-
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nent. An SCC implication graph with a conflict component is in a conflict state. A graph

in a conflict state might have more than one conflict component. If an SCC implication

graph is in a conflict state, then the partial assignment associated with the SCC implication

graph is a conflict assignment.

In Example 3.6, we depicted the SCC implication graphs for the instance in Example

3.3 with values v9 = 0@1 and v10 = 0@2. In the following example, we choose different

values for the variables v9 and v10.

Example 3.7. For the formula in Figure 3.1, Let v9 = 1@1 and v10 = 1@2. The strongly

connected component having the literals on v1 and v2 at the end of level two is shown in

Figure 3.6. As it can be seen in Figure 3.6, both literals of variables v1 and v2 are in the

same strongly connected component. Therefore, the partial assignment v9 = 1 and v10 = 1

is a conflict assignment.

v̄1 v2

v1v̄2

C9C9

C3

C3

C14

C14

C13

C13

Figure 3.6: SCC implication graph in conflict state

3.2.2 Eq-Unit and Eq-Binary Clauses

Let C be an unsatisfied clause such that some of its unassigned literals are equivalent.

Substituting the equivalent literals results in a shorter clause. We define a clause to be

eq-unit if substituting the equivalent literals results in a unit clause. A clause is called

eq-binary if substituting the equivalent literals results in a binary clause. In the following,

the formal definitions for eq-unit and eq-binary clauses are given.

Let E be an equivalency class of literals. Let C be an unsatisfied clause with all literals

evaluated to false except for a subset S ⊆ E for which the values for its literals are unknown.

The equivalency of literals in S implies every literal in S has the value true. The clause C

is an eq-unit clause. Every unit clause is an eq-unit clause with |S| = 1.
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In DPLL, every unit clause only results in one implied literal. In order to be consistent

with the terminology of DPLL, the literals in S are divided in two categories: implied and

eq-implied. One of the literals in S is chosen to be the implied literal. The other elements

of S are called eq-implied literals which are implied by extended implication.

Example 3.8. The SCC implication graph of the instance in Figure 3.1 shown in Figure

3.4, shows that the literals v̄1 and v2 are equivalent. If we assign value true to v10, then the

clause C9 = {v̄1, v2, v̄10} becomes an eq-unit clause implying v1 = 0 and v2 = 1. The solver

chooses one of them to be the implied variable. The other variable is assigned by extended

implication.

For an equivalency class of literals E, the ground set is defined to be the set of variables

v such that one of the literals on v is in E. Two disjoint equivalency classes are called

complementary if their ground sets are equal.

Example 3.9. In Figure 3.5, the ground set for equivalency class E1 = {v̄1, v2} is the set

of variables {v1, v2}. The ground set for equivalency class E2 = {v1, v̄2} is also the set

{v1, v2}. Therefore, the sets E1 and E2 are complementary.

Let E1 and E2 be two disjoint equivalency classes that are not complementary. Let

unsatisfied clause C be a clause with all literals evaluated to false except for the literals in

sets S1 ⊆ E1 and S2 ⊆ E2. The clause C is called an eq-binary clause with respect to E1

and E2. Every binary clause is an eq-binary clause with |S1| = 1 and |S2| = 1.

Example 3.10. In Figure 3.4, the two equivalency clauses are {v1, v̄2} and {v6,v7, v8} for

v9 = 0@1. The clause C = {v1, v6, v7, v9} is an eq-binary clause for this assignment.

Whenever an eq-binary clause C with respect to sets E1 and E2 is discovered, the two

edges {v̄i, vj} and {v̄j , vi} are added to the SCC implication graph in which vi and vj are

randomly chosen from E1 and E2, respectively. The edges {v̄i, vj} and {v̄j , vi} are labeled

by C. Different choices of literals vi and vj result in different SCC implication graphs. From

the fact that the vertices in E1 and E2 are subsets of strongly connected components, all

these graphs have the same strongly connected components.
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Example 3.11. For the clause C = {v1, v6, v7, v9} from example 3.10, we add edges {v̄1, v6}

and {v6, v̄1} to the SCC implication graph.

Let G be the SCC implication graph for a formula F . The label for every edge e =

{vi, vj} ∈ G, label(e), has the following properties:

• label(e) = C for a C ∈ F

• Literals v̄i, vj are in label(e).

• For every w ∈ label(e), either the value of w is false, or the literal w is equivalent to

one of the two literals {v̄i, vj}.

The edge labels are used to determine the reason for the equivalency of the literals

in a strongly connected component. Section 3.2.3 provides the formal definition for the

component reasons.

3.2.3 Reason Clauses

Let clause C be an eq-binary clause with respect to sets E1 and E2. We define the reason set

of C, R(C), to be the set of literals whose assignment to true makes the clause eq-binary.

Therefore, we have

R(C) = {w̄|w ∈ C − (E1 ∪ E2)}.

Example 3.12. For the clause C = {v1, v6, v7, v9} from example 3.10, the reason clause is

R(C) = {v̄9}.

Let H be a strongly connected component of an SCC implication graph G. Define c(H)

be the set of labels of graph H. Therefore, we have

c(H) = {C|∃ an edge e ∈ H such that C = label(e)}.

The reason for graph H, R(H) is defined as

R(H) =
⋃

C∈c(H)

R(C).
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The reason for a strongly connected component represents the set of literals such that their

assignment to true generates the edges of the component.

Example 3.13. In Figure 3.4, let H1 and H2 to be the strongly connected components rep-

resenting equivalency classes {v̄1, v2} and {v6, v7, v8}, respectively. Then we have R(H1) =

{v̄9}, and R(H2) = {v̄9}.

If for a strongly connected component H of an SCC implication graph, we have |R(H)| =

0, then the literals in the component are equivalent regardless of the assignment. This

information can be used to simplify the formula at preprocessing or restarts.

The following example shows a simple SCC implication graph with a reason set of length

zero.

Example 3.14. Let C1 = {v1, v̄2} be a clause in a formula F with SCC implication graph

G. Suppose H is the connected component having literal v1. Suppose at level `−1, for ` > 0,

the connected component H has only one edge {v2, v1}. If a learnt clause C2 = {v̄1, v2}

is added to the formula at level `, then the connected component H will become a strongly

connected component. The strongly connected component H is shown in Figure 3.7. The

strongly connected component H states that literals v1, v2 are equivalent with |R(H)| = 0.

Therefore, these two literals are equivalent regardless of the chosen assignment.

v1 v2

C2

C1

Figure 3.7: SCC component H with |R(H)| = 0

Suppose SCC implication graph G is in a conflict state. Let H to be a conflict component

with reason R(H). This means that the assignment of literals in R(H) leads to a conflict.

Therefore, in order to avoid the conflict, at least one of the variables in R(H) should be

flipped. In other words, the clause

CH = {w|w̄ ∈ R(H)},
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should be satisfied. The clause CH is a conflict clause under the current assignment and is

called the SCC conflict clause. Whenever an SCC conflict clause is found, it is added to

the formula. The analyze conflict method is called to determine the backtrack level and the

learnt clause for this conflict.

The SCC conflict clauses act in the same way as conflict clauses in the CDCL solvers.

The difference is, unlike conflict clauses that are either original clauses or learnt clauses,

these clauses are added to the formula because of the SCC implication graph.

If for the SCC implication H in a conflict state we have |R(H)| = 0, then the conflict

component implies that the instance is unsatisfiable, therefore the search terminates.

Example 3.15. For the conflict component H in Figure 3.6, we have

c(H) = {C3, C9, C13, C14}.

For the clauses in c(H) we have: R(C3)=∅, R(C9)={v10}, R(C13)= {v10}, R(C14)={v9}.

Therefore, we have R(H)= {v9, v10}. As a result the conflict clause CH is CH = {v̄9, v̄10}.

Generally, if a clause C has literals that have been assigned at level zero, it can be

simplified by removing those literals. We use this fact to simplify the SCC conflict clause

C before adding it to the formula. If a literal in CH has level zero, then we do not add it

to the formula. Therefore, we define

CH = R(H)− {w̄|w ∈ R(H) and level(w) 6= 0}.

In the following sections, we discuss the complications that occur after integrating equiv-

alency reasoning into a CDCL solver. In Section 3.3, a slight change in the two watched

literal scheme [81] is proposed that enables the solver to identify the eq-unit and eq-binary

clauses during BCP. The BCP with eq-unit and eq-binary clauses is called equivalency prop-

agation. Section 3.4 discusses the complications that arise in identifying the reasons for the

assigned variables.
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3.3 Equivalency Propagation

In a CDCL SAT solver, the Boolean unit propagation is implemented by keeping a queue

of literals, the implication queue. When a unit clause is discovered, the unit literal is

added to the queue to process its list of clauses. Discovering the unit clauses is one of

the most expensive operations in a SAT solver. There are several methods to identify

unit clauses including counter based methods [27], head/tail method [101] and two-watched

literal scheme [81]. In most modern CDCL solvers, the list of clauses for each literal is

maintained by using the two watched literal scheme. An explanation of this method was

given in Section 2.4

In an equivalency reasoning enhanced conflict clause DPLL SAT solver, we want to add

the ability to identify eq-unit and eq-binary clauses. In order to achieve this goal, we add a

constraint to the watched literals. The watched literals in a clause should belong to different

equivalency classes. We call this scheme the eq-watched literal scheme.

As in CDCL SAT solvers, every literal w has a list of watched clauses. When a literal

w is assigned to true, the solver searches every clause C in the watched list of w̄ to find a

new literal w′ such that

1. the literal w′ is either true or unknown,

2. it is not equivalent to either of the current watched literals in the clause C.

The identification of the new watched literal determines whether the clause is a conflict,

eq-unit or eq-binary clause. For a clause C, there are four possible cases:

case 1: If such literal w′ exists, the literal w′ is marked as the new watched literal instead

of w. The clause C is removed from the list of watched clauses of w̄, and is added to

the list of watched clauses of w′.

case 2: Otherwise, if the value of the other watched literal is true, then the clause is

satisfied. Therefore there is nothing to do.

case 3: Otherwise, if the value of the other watched literal for clause C is false, then the

clause is a conflicting clause.
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v̄1 v2
∗ v3 v6 v7

∗ v8

0 0 U U U U
The literal v3 is the new watched literal.

v̄1 v2
∗ v3 v6 v7

∗ v8

0 0 0 U U U
An eq-unit clause is being identified.

v̄1 v2
∗ v3 v6 v7

∗ v8

0 0 0 1 1 1
No change in a satisfied clause.

v̄1 v2
∗ v3 v6 v7

∗ v8

0 0 0 0 0 0
A conflict clause is found.

Table 3.1: The eq-watched literal scheme after assigning v2 = 0. The equivalency classes
are {v̄1, v2} and {v6, v7, v8}. The second row shows the literal values. The character ‘U’
indicates that the literal is unassigned.

case 4: Otherwise, the clause is an eq-unit clause.

Example 3.16. Table 3.1 shows an example for these cases for clause C = {v̄1, v2, v3,

v6, v7, v8} with watched literals v2 and v7 after assigning v2 to false in different scenarios.

The equivalency classes are {v̄1, v2} and {v6, v7, v8}. For example, in the first case in Table

3.1, the literal v3 is the new watched literal. In the second case, all the unassigned literals

are equivalent to the other watched literal v7. The variable v7 is unassigned, therefore the

clause is identified as eq-unit clause.

These four cases identify conflict and eq-unit clauses. For eq-binary clauses the solver

only needs to search among the clauses in the first case. After discovering the new watched

literal, the search continues to find a literal wi such that it is not equivalent to either of the

current watched literals. If no such literal exists, the clause is being flagged as an eq-binary

clause.

Example 3.17. For example, in the first case in Table 3.1, the literal v3 is the new watched

literal. The search to find another literal that is not equivalent to v3 and v7 is unsuccessful.

Therefore, the clause is identified as an eq-binary clause.

It can be noted that not all the eq-binary clauses can be discovered with this method.

For example, suppose we have a clause C = {v1, v2, v3} with v1 and v2 as watched literals.

If the literal v3 is set to false, then the clause C becomes an eq-binary clause. But because
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v3 is not watched in this clause, the clause is not being processed by the solver during unit

propagation. Therefore, this type of eq-binary clauses are not identified during BCP. Due

to efficiency concerns, we have limited the search for eq-binary clauses to those that are

found during BCP.

3.4 Identifying the Reasons

The unit propagation in a DPLL algorithm divides the variable assignments into two cat-

egories: decision and implied. In CDCL SAT solvers, each implied variable has a corre-

sponding antecedent or reason clause. The antecedent of a variable v is a unit clause that

causes v to have its implied value.

Example 3.18. Let v1 = 0, v3 = 1 and v5 = 0. Then, clause C = {v1, v̄3, v4, v5} is a reason

for variable v4 have value true. The variable v4 is an implied variable with antecedent clause

C.

The variables are ordered based on the time they have been added to the implication

queue. Let pos(vi) to be the time stamp of vi in the implication queue. If the value for

variable vi is unknown, i.e. it is not in the implication queue, then pos(vi) is set to infinity.

If the assignment of the variable vi implies the assignment of the variable vj , then we have

pos(vi) < pos(vj).

In a CDCL SAT solver, the reason clause for a variable vi, r(vi), has the following

properties:

1. The value for all the literals in r(vi), except for the literal on vi, is false.

2. For all vj ∈ C such that vj 6= vi, we have pos(vj) < pos(vi).

We call these properties the reason clause properties. The first condition in reason

clause properties implies the variable vi to have its value. The second condition makes

the implication graph acyclic. The correctness of the clause learning in CDCL solvers is

dependant on the implication graph being acyclic.

The following example shows that in an equivalency reasoning enhanced SAT solver,

the eq-unit clauses might not satisfy the reason clause properties.
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Example 3.19. For the SAT instance shown in Figure 3.1, let v9 = 0@1 and v10 = 0@2.

The corresponding SCC implication graphs are shown in Figure 3.4 and 3.5. At level two,

the clause C16 = {v̄1, v2, v10} implies v1 = 0 because v10 = 0 and v̄1 is equivalent to v2. The

clause C16 does not satisfy the conditions for a reason clause for variable v1 because:

• variable v2 is unknown,

• and for variable v2 we have: pos(v2) > pos(v1).

In order to comply with reason clause properties, our goal is to replace the eq-unit

clause C with a clause C ′ such that the clause C ′ implies v̄1 and satisfies the reason clause

conditions.

In an equivalency enhanced CDCL SAT solver, we have two kinds of implied literals. The

ones that are implied in BCP by eq-unit clauses and the eq-implied literals that are implied

by equivalency reasoning. In Section 3.4.1, we propose a method to identify valid reason

clauses for implied literals by eq-unit clauses. Section 3.4.2 discusses the complications in

identifying the reason clauses for eq-implied literals.

3.4.1 Reason Clause Adjustments for Implied Literals

For an implied variable vi, let clause C be its reason, i.e. C = r(vi). Let wi to be the literal

on vi in the clause C. We partition the literals in the reason clause C in two sets. The

set EC,wi has the literals equivalent to the literal wi in C. The set NC,wi has the negation

of literals that are not equivalent to wi in the clause C. The assignment of the literals in

NC,wi to true makes the clause C an eq-unit clause. Therefore,

EC,wi = {wj |wj ∈ C : wj is equivalent to wi or wj = wi},

NC,wi = {w̄j |wj ∈ (C − EC,wi)}.

If the equivalent literals wi and wj are in a clause C, then for this clause C we have

EC,wi = EC,wj and NC,wi = NC,wj .
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Example 3.20. In Example 3.6, at level two, instead of assigning v10 = 0, we set v10 = 1.

This assignment makes the clause C9={v̄1, v2, v̄10} an eq-unit clause. We choose v1 to be

the implied variable, making v2 the eq-implied variable. Therefore, we have EC9,v̄1 = {v̄1,

v2}, and NC9,v̄1 = {v10}.

If |EC,wi | = 1 for a clause C, then the clause C satisfies both properties for a reason

clause for the literal wi. Otherwise, as it was shown in Example 3.19 none of the conditions

are satisfied.

Suppose for a clause C we have |EC,wi | 6= 1 for a variable vi. Suppose the literal wi is the

literal associated with variable vi in clause C, and H is the strongly connected component

containing the literal wi in the SCC implication graph. The set R(H), as defined in Section

3.2, is the reason for the literals in H to be equivalent. As a result, it is the reason for the

literals in EC,wi to be equivalent. Therefore,

R(H)⇒ the literals in EC,wi are equivalent.

We can rewrite the above as

(R(H) AND NC,wi)⇒ ( the literals in EC,wi are equivalent AND NC,wi).

From the fact that the clause C is an eq-unit clause implying the literal wi we have

( the literals in EC,wi are equivalent AND NC,wi)⇒ wi.

As a result

(R(H) AND NC,wi)⇒ wi,

which is equivalent to a disjunctive clause

C ′ = wi ∪ {w̄j |wj ∈ (R(H) OR NC,vi)}.
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Lemma 3.1. The clause C ′ satisfies the reason clause properties for an unassigned literal

wi.

Proof. From the definition of R(H) and NC,wi , the value for all the literals in the clause C ′,

except for vi, is equal to false. The literal wi is unassigned therefore the second condition

is true. As a result this clause satisfies the reason clause properties.

The clause C ′ satisfies the conditions for a reason clause. Therefore, for every eq-unit

clause C which is a reason for literal wi with |EC,wi | > 1, we set the reason clause for literal

wi to the clause constructed as discussed. The clause C ′ is called adjusted reason clause.

The process of generating an adjusted reason clause for a variable vi is shown in Algorithm

3.1. The input to the algorithm is a clause C and a literal w ∈ C such that C is an eq-unit

clause for the literal w.

Algorithm 3.1 Adjusting Reason Clauses for Implied Literals

Input: clause C and literal w ∈ C such that C is an eq-unit clause for w
Output: clause C ′ which complies with reason clause conditions for literal w

1: clause C ′ = ∅
2: add w to C ′

3: for (literals wi in C) do
4: if (wi is not equivalent to w) then
5: add wi to C ′

6: end if
7: end for
8: H = strongly connected component containing w
9: for (all the edge labels Ci in H) do

10: for (all the literals wj in Ci) do
11: if (wj is not equivalent to w) then
12: add wj to C ′

13: end if
14: end for
15: end for
16: v = variable(w)
17: r(v) = C ′

Example 3.21. In Example 3.20, let H be the SCC containing v̄1. We have R(H)={v̄9},

and NC9,v̄1={v10}. Therefore, adjusted reason clause for v1 is C ′={v9 ,v̄10, v̄1}.
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3.4.2 Reason Clause Adjustments for Eq-Implied Literals

As was discussed in Section 3.2, other than decision and implied variables, we have another

category of variable assignments: eq-implied. Another complication arises in identifying

reason clauses for eq-implied literals. The eq-implied literals are implied because of the

equivalency reasoning. The eq-implied variables are assigned through extended implication

scheme. Whenever a literal wi is assigned a value, all the literals wj that are equivalent

to wi are being assigned as well. For these assignments the solver needs to identify reason

clauses. The reason clauses for the eq-implied assignments are implicitly stated in the edge

labels of the strongly connected components. The solver needs to extract this information

from the SCC implication graph. A depth first search on the SCC implication graph can

be used to identify reason clauses for the eq-implied variables.

In a directed graph G, a vertex vj is called a direct successor of a vertex vi if there is

an edge {vi, vj} ∈ G.

Let H be a strongly connected component in an SCC implication graph. Suppose there

exists a literal w in H with value true. Define

Sw = {w1, · · · , wt},

to be the set of direct successors of w in H. After assigning the literal w to true, we want

to identify reason clauses for literals in Sw.

Let wi be a literal in Sw. For the edge ei = {w,wi}, let clause Ci = label(ei). As

in section 3.4.1, we partition the clause Ci into two sets ECi,wi and NCi,wi based on the

successor vertex wi. From the definition of the edge labels in an SCC implication graph, all

the literals in Ci − ECi,wi are false. Therefore, the clause Ci is an eq-unit clause for literal

wi. There are two cases:

case 1: If |ECi,wi | = 1, then the clause Ci is an antecedent clause for the literal wi.

case 2: Otherwise, we use the method discussed in Section 3.4.1 to generate an adjusted

reason clause for the literal wi.

The same method can be used on the direct successors of wi to identify their reason clauses.
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Therefore, a DFS on the component H starting from vertex w generates antecedents for all

the literals in H except for the literal w.

Let w be a literal with value true. To find reason clauses for the literals that are

equivalent to w, we do a DFS on the strongly connected component containing literal w.

The extended implication procedure is shown in Algorithm 3.2. The input is an SCC

implication graph G on 2n vertices, and a literal w with value true.

Algorithm 3.2 Identifying Reason Clauses for Eq-Implied Literals

Input: SCC implication graph G on 2n vertices
Input: literal w with value true
Output: all the literals equivalent to w are set to true

1: H = strongly connected component containing w
2: stack S
3: array seen[2n]
4: initialize array seen to false
5: if (SCC implication graph G in conflict state) then
6: return
7: end if
8: S.push(w)
9: seen[w] = true

10: while (S is not empty) do
11: current = S.top
12: for (all direct successors wi of current in H) do
13: if (seen[wi]) then
14: continue
15: end if
16: seen[wi] = true
17: S.push(wi)
18: set the value of literal wi to true
19: v = variable(wi)
20: e = label({current,wi})
21: r(v) = adjust(e)
22: end for
23: end while

Example 3.22. In Figure 3.5, the SCC implication graph is shown for formula 3.1 with

v9 = 0@1 and v10 = 0@2. Suppose literal v1 is set to true. A DFS on the strongly connected

component results in the following literals assignments: v2 = 1, v6 = 1, v8 = 1, v7 = 1

and v3 = 1. The reason for these clauses are C6, C10, C4, C5, and C17, respectively. All

the reason clauses comply with the reason clause rules, therefore no further adjustments are

required.

43



3.5 SCC Implication Graph Reasoning

Other than eq-implied literals, there is other information that can be retrieved from the

SCC implication graph. In this section, we review two reasoning methods based on the

SCC implication graph.

3.5.1 Extended Implication Procedure

A vertex vj is reachable from a strongly connected component H, if there exists a path from

vi to vj for a vertex vi ∈ H.

Let w be a literal that is set to true. Suppose H is the strongly connected component

having w. Therefore, the extended implication procedure assigns values to all the literals in

H. Using the same argument as for equivalent literals, it is easy to see that all the reachable

literals vj from H are implied too. Therefore, we can change the extended implication

Algorithm 3.2 to include these implications as well. The procedure is shown in Algorithm

3.3.

In the general extended implication procedure, instead of only exploring the neighbors

in the strongly connected component, all the reachable neighbors of a literal are explored.

In terms of Algorithm 3.2 and Algorithm 3.3 the difference is in the while loop that explores

the direct successors. The first algorithm only looks at the direct successors in H, while

the second algorithm explores all the direct successors including those in G.

Example 3.23. In example 3.22, using the general extended implication procedure also sets

the literal v̄13 to true with reason clause C12.

3.5.2 Discovering the Conflicts

The SCC implication graph can be used to discover that a partial assignment is a conflict

assignment without propagation. A strongly connected component H is called conflict-

aware if both literals of a variable are reachable from H. For example, a conflict component

is a conflict-aware SCC.

A slight change in Algorithm 3.3 enables the solver to determine whether an SCC is

conflict-aware. We add the following change to the while loop in Algorithm 3.3:
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Algorithm 3.3 General Extended Implication Procedure

Input: SCC implication graph G on 2n vertices
Input: literal w with value true
Output: all the literals equivalent to w are set to true

1: stack S
2: array seen[2n]
3: initialize array seen to false
4: if (SCC implication graph G in conflict state) then
5: return
6: end if
7: S.push(w)
8: seen[w] = true
9: while (S is not empty) do

10: current = S.top
11: for (all direct successors wi of current in G) do
12: if (seen[wi]) then
13: continue
14: end if
15: seen[wi] = true
16: S.push(wi)
17: set the value of literal wi to true
18: v = variable(wi)
19: e = label({current,wi})
20: r(v) = adjust(e)
21: end for
22: end while
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if (seen[wi] AND seen[w̄i]) then

let Gwi be the connected component having wi

add R(Gwi) as the conflict clause

mark the current assignment as a conflict assignment

return

end if

After the conflict clause is added to the formula, the analyze conflict method is called

to determine the backtrack level and generate the learnt clause.

In the next section, we summarize the chapter by presenting the equivalency enhanced

CDCL algorithm.

3.6 Equivalency Enhanced CDCL Procedure

Our equivalency enhanced CDCL algorithm is shown in Algorithm 3.4. The differences with

Algorithm 2.3 are explained in this section.

preprocess (line 1) The equivalent literals are identified and replaced. The preprocess

method also sets the restart flag to zero.

restart (line 7) The equivalent literals are identified and replaced, and sets the restart flag

to zero.

deduce (line 11) The function deduce is responsible to update the SCC implication graph.

Whenever an eq-binary clause is discovered during BCP, the corresponding edges are added

to the SCC implication graph. Also, whenever a literal w is set to true, the extended

implication Algorithm 3.2 is called to set all the literals that are equivalent to w to true.

update scc (line 13) The function update scc is shown in Algorithm 3.5. The function up-

date scc in Algorithm 3.5 updates the strongly connected components of the SCC implica-

tion graph. If the level returned by the update scc is equal to zero, then there are literals

that are equivalent regardless of the assignment. Therefore, the restart flag is set to one so
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Algorithm 3.4 Equivalency Enhanced DPLL CDCL Algorithm

1: status = preprocess()
2: if (status ! = UNKNOWN) then
3: return status
4: end if
5: while (true) do
6: if (fulfilling the criteria for the restart strategy or restart flag is 1) then
7: restart()
8: end if
9: decide next branch()

10: while (true) do
11: status = deduce()
12: current level = blevel
13: blevel = update SCC()
14: if (blevel is 0) then
15: restart flag = 1
16: break
17: else if (blevel is equal to the current level) then
18: if (status is CONFLICT) then
19: blevel = analyze conflict()
20: end if
21: end if
22: if (blevel < 0) then
23: return UNSATISFIABLE
24: else
25: backtrack(blevel)
26: else if (status is SATISFIABLE) then
27: return SATISFIABLE
28: else
29: break {continue the search}
30: end if
31: end while
32: end while
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that the solver substitutes these equivalent literals. If the level is equal to the current level,

and the status is set to ‘conflict’, it means the SCC implication graph is in a conflict state.

If the SCC implication graph is found to be in a conflict state, the reason for the conflict

is added to the formula (as described in Section 3.2). Then, the analyze conflict function is

called to find the backtrack level.

Otherwise, if for a strongly connected component H with |R(H)| = 0, then the literals

in H are equivalent regardless of the assignment. Therefore, to take advantage of this

information, the search backtracks to level zero. It calls the preprocess function to replace

the equivalent literals.

Algorithm 3.5 Updating Strongly Connected Components

1: run Tarjan’s algorithm to update SCCs
2: if SCC implication graph is in conflict state then
3: Define H to be the conflict strongly connected component
4: conflict clause = R(H)
5: blevel = analyze conflict
6: return blevel
7: else if (there exists an SCC H with |R(H)| = 0) then
8: backtrack(0)
9: preprocess()

10: return 0
11: else
12: return current level
13: end if

backtrack (line 25) In backtracking to level `, the SCC implication graph is updated by

removing all the edges that have level greater than `. The set union-deunion structure is

used to update the strongly connected components so that they reflect the edge removals.

Figure 3.8 shows a flowchart of the algorithm. The gray parts are added due to equiva-

lency reasoning.

3.7 Chapter Summary

In this chapter, we discussed a method to integrate equivalency reasoning into CDCL SAT

solvers. The complications that arise from the integration were discussed. A method to

overcome these complications was provided.
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Figure 3.8: A flowchart for an equivalency enhanced CDCL SAT solver. The gray parts are
related to the equivalency reasoning logic.
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For experimental results, we have incorporated our equivalency reasoning engine into

an existing state-of-the-art CDCL based SAT solver MiniSat [32]. Because of its easily

modifiable code, the SAT solver MiniSat is traditionally used to analyze innovative ideas

which are to be integrated into CDCL based SAT solvers (for example in SAT competitions

2009 and 2011, there was a special track called MiniSAT hack track).

The equivalency enhanced MiniSat is called Eq-MiniSat. Chapter 4 gives an overview

of implementation details of Eq-MiniSat. Chapter 5 provides performance statistics to

demonstrate the possible effectiveness of the equivalency reasoning for CDCL solvers.
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Chapter 4

Eq-MiniSat: Implementation Details

In order to evaluate the effectiveness of the proposed method in Chapter 3 to integrate

equivalency reasoning into CDCL SAT solvers, we have incorporated this method into an

existing state-of-the-art SAT solver: MiniSat [32]. Because of its easily modifiable code,

the SAT solver MiniSat is traditionally used to analyze innovative ideas which are to be

integrated into CDCL based SAT solvers1. Our equivalency enhanced CDCL solver is called

Eq-MiniSat.

A key point in equivalency reasoning integration in a SAT solver is implementation

efficiency. In this Chapter, we present some implementation details of the solver Eq-MiniSat.

One of the major operations in Eq-MiniSat is calculating strongly connected compo-

nents, or SCCs, at every node of the search tree. In Section 4.1, we provide the details

of the method used in Eq-Minsat to calculate SCCs. The well-known Tarjan’s algorithm

[96] was our first choice to calculate the SCCs. Section 4.1.1 presents this algorithm. Eq-

MiniSat uses the data structure union-deunion [77] to store the SCCs. We review this data

structure at Section 4.1.2. The SCC implication graphs in the search have special char-

acteristics. In Section 4.1.3, we discuss these characteristics. In Section 4.1.4, we propose

a variation of Tarjan’s algorithm, the LIFO Tarjan algorithm, that generates the strongly

connected components using the special structure of SCC implication graphs.

Section 4.2 discusses the strongly connected components maintenance in backtracking.

In Section 4.3, we review some of the implementation details of the LIFO Tarjan algo-

1For example in SAT competitions 2009 and 2011, there was a special track called MiniSAT hack track.
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rithm. Section 4.3.1 reviews the idea of timestamps in the initialization step of Tarjan’s

algorithm. Sections 4.3.2 and 4.3.3 discuss two methods to reduce the number of visited

vertices in every call of the LIFO Tarjan algorithm.

Another runtime impact of the SCC based equivalency reasoning is due to SCC implica-

tion graph maintenance. In Section 4.4, we present a simple data structure that is efficient

in maintaining the SCC implication graph in terms of runtime.

Section 4.5 presents a small modification to the VSIDS branching rule based on the SCC

implication graph information.

In the following section, we introduce a variation of Tarjan’s algorithm to calculate

strongly connected components during the search.

4.1 LIFO Tarjan Algorithm

In this section, we present the LIFO Tarjan algorithm. Section 4.1.1 gives a short overview

of the original Tarjan’s algorithm. Section 4.1.2 presents the data structure that is used to

store the strongly connected components in the LIFO Tarjan algorithm.

The dynamic of the changes in SCC implication graphs during the DPLL search has

the Last-In-First-Out characteristic in edge addition and removal operations. Section 4.1.3

reviews this property of the SCC implication graphs. This characteristic is used in designing

the LIFO Tarjan algorithm specially in the deunion of the strongly connected components.

Section 4.1.4 reviews the LIFO Tarjan algorithm to generate the SCCs during the search.

4.1.1 Original Tarjan’s Strongly Connected Component Algorithm

Tarjan’s algorithm [96] is one of the well-known algorithms used to find strongly connected

components in a digraph. The algorithm is based on a depth first search on the graph. The

vertices are positioned in a stack in the order that they have been visited. The strongly

connected components are the subtrees of the search tree. The algorithm determines a

special vertex root for every subtree. The root of a subtree is the first vertex of the subtree

encountered in the depth first search. The algorithm finds the strongly connected compo-

nents by determining the roots of the strongly connected components. When a vertex v is
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identified as a root, all the vertices in the stack that are on the top of v form a strongly

connected component.

The root is identified by using a special counter for each vertex: index. The index is

incremented for vertices in the order that they are discovered. Also, every vertex has a value

lowlink which is smaller than or equal to its index. Let l(v) denote the minimum index

of the nodes reachable from v. The lowlink for a vertex v is equal to the minimum of the

index of v and l(v). A vertex v is identified as the root of a strongly connected component

if v.lowlink is equal to v.index. The original Tarjan’s algorithm is shown in Algorithm 4.1

and Procedure 1.

Algorithm 4.1 Original Tarjan’s Strongly Connected Components Algorithm

Input: graph G = (V,E)
Output: set of strongly connected components
1: index = 0
2: stack S = empty
3: for all v ∈ V do
4: if (v.index is undefined) then
5: strongconnect(v)
6: end if
7: end for

Procedure 1 Procedure strongconnect(v)

1: v.index = index
2: v.lowlink = index
3: index = index+ 1
4: S.push(v)
5: if (v.index is undefined) then
6: for all ((v, w) ∈ E) do
7: strongconnect(w)
8: v.lowlink = min(v.lowlink,w.lowlink)
9: end for

10: else if (w ∈ S) then
11: v.lowlink = min(v.lowlink,w.index)
12: end if
13: if (v.lowlink == v.index) then
14: start a new strongly component
15: repeat
16: w = S.pop()
17: add w to the current strongly connected component
18: until (v == w)
19: end if
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For a graph G(V,E) the Tarjan’s algorithm runtime is O(|V |+ |E|).

4.1.2 Set Union-Deunion Data Structure

The classical set union data structure [25] maintains a collection of disjoint sets. The

set union data structure is usually used to represent the strongly connected components

of a digraph. In this data structure, every set has a special element which is called the

representative. The union data structure supports the following operations:

MakeSet(x): Creates a singleton set {x} with representative x. The element x should not

be in any other set.

FindSet(x): Returns the set containing element x.

UnionSet(x,y): Replaces the sets containing x and y with the union of the two sets. It

updates the set of representatives to reflect this change.

The classical set union problem does not support the deunion of the sets. In [77], Mannila

and Ukkonen proposed a variant of the set union problem that supports backtracking over

the union operations. They added the following operation to the problem:

Deunion(): Cancels the last union operation that already has not been cancelled. This

function partitions the result of the UnionSet(x,y) to the original sets containing x

and y before the union. It updates the representatives to reflect this change.

In Eq-MiniSat, we use this data structure to represent the strongly connected compo-

nents of the SCC implication graph. This data structure is particularly useful in updating

the SCCs in backtracking which is discussed in Section 4.2.

The set union-deunion data structure in Eq-MiniSat uses adjacency lists to represent

sets and an additional stack to keep track of the unions.

For every element x, a variable rep is used to keep the representative for this variable.

If for an element x we have rep = x, then the element x is a representative.

For every element x, an array Ax lists the elements that are in the set with the repre-

sentative x. We call a set Ax an alive set if the variable x is a representative. The disjoint

sets are formed by the union of the alive sets.
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For an adjacency list Ax, we set the element Ax[0] to be the number of elements that

are in the set of A. For a variable y, we have y ∈ Ax if for some 1 ≤ i ≤ Ax[0], we have

Ax[i] = y.

The function FindSet(x) returns the variable rep for the variable x. Therefore, the

runtime complexity for FindSet(x) is O(1).

The function MakeSet(x) sets the values of Ax[0] and Ax[1] to one and x, respectively.

It also sets the variable rep for the variable x equal to x. Therefore, the runtime complexity

for MakeSet(x) is O(1).

For the UnionSet(x, y), let x.rep and y.rep to be the representatives for x and y,

respectively. We assume Ax.rep[0] > Ay.rep[0]. The union function applies the following

changes:

1. For every element in z ∈ Ay.rep set z.rep = x.

2. Set Ax.rep[0] = Ax.rep[0] +Ay.rep[0].

3. Add the elements in Ay.rep to the adjacency list of the element x.

The runtime complexity for UnionSet(x, y) is O(n) in the worst case in which n is the total

number of elements in the set union-deunion data structure.

The Deunion(x, y), reverses all the above operations:

1. For every element in z ∈ Ay.rep set z.rep = y.

2. Set Ax.rep[0] = Ax.rep[0]−Ay.rep[0].

The runtime complexity for UnionSet(x, y) is O(n) in the worst case.

The runtime complexity for m find operations, and k deunions on a set union-deunion

with n elements in the above data structure is O(m + kn). In [77], using a different data

structure, the complexity is O((m+ k) log log n). In experimental results we have observed

that the set union-deunion operations take less than .5 percent of the total runtime. Due

to its relatively small runtime impact, we have not changed the set union-deunion data

structure from adjacency lists to the ones with better theoretical runtime complexity. In

the future work, the set union-deunion data structure can be replaced by using other data

structure such as path compressions [36] instead of adjacency lists.
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4.1.3 LIFO-Dynamic Graphs

In an SCC implication graph, the edges are added to the graph going down the search tree,

and are removed from the graph in backtracking. The addition and removal of the edges

is always in Last-In-First-Out order. We call such graphs LIFO-dynamic graphs. In this

Section, we review the properties of these graphs.

Let e be an edge in a LIFO-dynamic digraph G. We define the level of the edge e, `(e),

to be the level when the edge e added to G. At every level, more than one edge can be

added to G.

Let µ be the maximum level for the edges in a graph G. If an edge e is added to G,

then its level is at least µ. In other words, the edges are ordered based on the time they

have been added to the graph.

The edges of a LIFO-dynamic graph can be partitioned based on their levels. Let Gi to

be the spanning subgraph of G with edges at level i. Then, we have

G = G0 ∪G1 ∪G2 ∪ · · · ∪Gµ.

We say G is a LIFO-dynamic graph at level µ.

The remove function for a LIFO-dynamic graph has the property that it removes the

edges in the reverse order of the edge additions. Moreover, the remove function deletes all

the edges in Gµ, in which µ is the maximum level.

Example 4.1. An SCC implication graph is a LIFO-dynamic graph. The edge levels are

the DPLL tree levels. For example in Figure 3.5, we have `({v2, v̄1}) = 0, `({v7, v6}) = 1,

`({v7, v3}) = 2. The remove function deletes edges {v2, v6}, {v3, v2}, and {v7, v3} in Figure

3.5.

4.1.4 LIFO Tarjan Algorithm

The strongly connected components of an SCC implication graph represent the equivalency

classes of the literals in the formula. Therefore, to discover the equivalent literals of a for-

mula using SCC implication graphs, we need an efficient algorithm to compute the strongly
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connected components for a given graph.

The algorithms can be divided into two categories based on how they process the input:

offline and online. An offline algorithm requires the complete input to be given to the

algorithm in advance. An online algorithm accepts dynamic inputs in a sequential manner;

at each moment, an online algorithm make decisions based on the current state of the input.

There are several efficient offline algorithms to compute strongly connected compo-

nents of a graph: Tarjan’s algorithm [96], Kosaraju’s algorithm [4] and Cheriyan-Mehlhorn-

Gabow’s algorithm [35].

There are different categories of online algorithms for the SCC problem:

Fully dynamic algorithms They support both adding and deleting edges to the graph.

Incremental algorithms They support edge additions, but not edge removals.

The algorithms by Roditty and Zwick [87], and Pearce and Kelly [85] are examples of

fully dynamic algorithms. Haeupler, Sen and Tarjan [49] presented an incremental algorithm

for the SCC problem.

The LIFO-dynamic graphs, including SCC implication graphs, lie in between these two

categories. The incremental algorithms do not suffice to solve the problem of finding strongly

connected components in LIFO-dynamic graphs because they do not support edge removal.

In the meanwhile, because of the LIFO ordering on the edge removals, these graphs are more

restricted than the input graphs in the fully dynamic algorithms. Although we are able to

use the algorithms in the first category, we might get a better performance by designing an

algorithm based on this restriction.

For every directed graph G, let the set union-deunion SG represent the strongly con-

nected components of G.

Suppose G = (V,EG) and H = (V,EH) are directed graphs on the same vertex set

{v1, v2, · · · , vn}. The union of the graphs G and H, U = G∪H, is the graph U = (V,EG ∪

EH).

Suppose H = (V,EH) is a directed graph. Let E be a set of directed edges defined on

the vertex set V . We define graph G = H + E to be G = (V,EH ∪ E).
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Suppose H is a directed graph. Let G to be a directed graph such that G = H + E in

which E is a set of directed edges not in H. Suppose the strongly connected components

of H, SH , is known. If we run Tarjan’s algorithm on the graph G, it reconstructs the

strongly connected components of H again. We want to modify Tarjan’s algorithm to find

the strongly connected components of G without reconstructing the strongly connected

components of H.

In the graph G = H +E, an edge e ∈ G is called an inter-SCC edge with respect to the

union-deunion set SH , if its endpoints belong to different sets in SH , i.e. different strongly

connected components of H.

Example 4.2. The inter-SCC edges of SCC implication graph for graphs in 3.3, 3.4 and

3.5 are shown in Figure 4.1 by solid lines. The inter-SCC edges of SCC implication graph

in Figure 3.3 with respect to empty set of SCCs are shown in Figure 4.1a. Figure 4.1b and

Figure 4.1c show the inter-SCC edges of the graphs in 3.4 and 3.5 with respect to strongly

connected components {{v̄1, v2}, {v3}, {v6, v7, v8}, {v̄13}} and {{v̄1, v2, v3, v6, v7, v8}, {v̄13}}

respectively.

Let G be a LIFO-dynamic graph at level µ. Define graph H to be

H = G0 ∪G1 ∪ · · ·Gµ−1.

If µ = 0, then the graph H is empty. Let E be the set of edges in Gµ. Therefore, we

have G = H + E. In order to avoid rediscovering the already known strongly connected

components of G in the LIFO Tarjan algorithm, we modify Tarjan’s original algorithm such

that it only explores the inter-SCC edges in G with respect to SH .

The input to the LIFO Tarjan algorithm is a graph G and a union-deunion set SH

which represents the strongly connected components for a subgraph H of G. The algorithm

returns the set union-deunion SG representing the strongly connected components for graph

G.

For a vertex w in a LIFO-dynamic graph G = H∪Gµ, let eq(w) represent all the vertices

in the strongly connected component in H containing the literal w. Therefore, the literals

in eq(w) are equivalent to w.
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(a) Inter-scc edges at level zero with respect to S
= {{v̄1} ,{v2}, {v3}, {v6}, {v7}, {v8}, {v̄13}}

v̄13

v̄1 v2

v3

v6 v8

v7

C3

C2

C4

C5

C13

(b) Inter-SCC edges at level one with v9 = 0 with
respect to S = {{v̄1, v2}, {v3}, {v6, v7, v8}, {v̄13}}

v̄13

v̄1 v2

v3

v6 v8

v7

C6

C7

C3

C2

C4

C5

C13

(c) Inter-SCC edges at level two S = {{v̄1, v2, v3,
v6, v7, v8}, {v̄13}}

v̄13

v̄1 v2

v3

v6 v8

v7

C8

C17

C8

C6

C7

C3

C2

C10 C4

C5

C13

Figure 4.1: Inter-SCC edges for different levels are shown by solid lines.
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The extended neighbors of w, en(w), is the set of vertices w′ that are not in eq(w) but for

which there exist at least one edge between one of the vertices of eq(w) and w′. Therefore,

for every literal w′ ∈ en(w) we have

• the literal w′ is not equivalent to the literal w,

• the literal w′ is a neighbor to a vertex in eq(w).

Therefore,

en(w) = {wj | ∃wi ∈ eq(w), {wi, wj} ∈ G AND wj /∈ eq(w)}.

It can be noted that all the edges in the graph G that are from a literal in eq(w) to a

literal in en(w) are inter-SCC edges.

Example 4.3. The extended neighbors of the vertices for Figure 3.4 are: en(v̄1) ={v3},

en(v2) = {v3}, en(v3) = {v̄13}, en(v6) = ∅, en(v7) = ∅, en(v8) = ∅.

Whenever Tarjan’s algorithm explores a vertex w, then DFS explores all of its neighbors.

The Tarjan’s algorithm starts from a union set having singleton elements. Therefore, it

always rediscovers the previous information about the strongly connected components.

LIFO Tarjan algorithm starts generating the strongly connected components on the top

of the already known ones. To do this instead of exploring the neighbors of the vertex

w, its extended neighbors, en(w) are explored. Also, whenever a literal w is explored,

all the vertices in eq(w) are marked as explored without DFS exploring them. Therefore,

the vertices that are know to be equivalent from earlier levels, are treated as one super

vertex2. This prevents the Tarjan’s algorithm from discovering the same strongly connected

component over and over again. A general overview of the algorithm follows.

The LIFO Tarjan algorithm chooses an unexplored vertex w and marks w and all the

vertices in eq(w) as explored. Then, the algorithm does a DFS on the set en(w). As in

Tarjan’s algorithm, the vertices are placed on a stack. A vertex is identified as being the

root of a strongly connected component exactly in the same way as in Tarjan’s algorithm.

2This is equivalent to the definition of a vertex in a condensation graph.
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The difference is in identifying the strongly connected component elements. In the Tarjan’s

algorithm, if a vertex w is identified as a root of the strongly connected component, then

the vertex w and all the vertices that are on the top of the w on the stack are in the same

connected component. In the LIFO Tarjan algorithm, the strongly connected component

consists of the union of the literals in eq(w) and eq(w′) for all the vertices w′ that are on

the top of w on the stack. The LIFO Tarjan algorithm is shown in Algorithm 4.2. The

‘strongconnect’ method in the line 7 is defined in Algorithm 4.3.

Algorithm 4.2 LIFO Tarjan’s Strongly Connected Components Algorithm

Input: graph G = (V,E)
Input: union-deunion set SH representing the strongly connected components for a sub-

graph H of G
Output: union-deunion set SG representing the strongly connected components set of G

1: index = 0
2: stack S = empty
3: for all v ∈ V do
4: v.index = undefined
5: end for
6: for all v ∈ V do
7: if (v.index is undefined) then
8: strongconnect(v)
9: end if

10: end for
11: SG = SH

Observation 4.1. Let G be a directed graph, and H a subgraph of G with strongly connected

components SH . The LIFO Tarjan’s algorithm computes SG based on the input (G,SH).

The LIFO Tarjan algorithm runtime in the worst case is the same as the original Tarjan’s

algorithm. Theoretically the LIFO Tarjan algorithm complexity in the worst case is not

better than Tarjan’s algorithm. But our experiments show, in practice, it outperforms the

Tarjan’s algorithm specially when the strongly connected components are discovered during

early levels of the search.

The LIFO Tarjan algorithm presents an online maintenance method to generate the

strongly connected components while edges are added to the graph. The following Section

presents a method to maintain the strongly connected components while edges are removed

from the graph.
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Algorithm 4.3 Procedure strongconnect(v)

1: v.index = index
2: v.lowlink = index
3: index = index+ 1
4: S.push(v)
5: for all (element s ∈ SH .find(v)) do
6: s.index = index
7: for all (w ∈ en(s)) do
8: if (w.index is undefined) then
9: strongconnect(w)

10: v.lowlink = min(v.lowlink,w.lowlink)
11: else if (w ∈ S) then
12: v.lowlink = min(v.lowlink,w.index)
13: end if
14: end for
15: end for
16: if (v.lowlink == v.index) then
17: start a new strongly component
18: repeat
19: w = S.pop()
20: SH .union(v, w)
21: until (v == w)
22: end if

4.2 SCC Maintenance in Backtracking

If a conflict is found, the search needs to backtrack. Therefore, the SCC implication graph

G and its strongly connected components, SG, should be updated.

If the search backtracks to level `, all the edges with level greater than ` should be

removed from G. In order to keep track of the edge levels, every level ` keeps a list of

edges e with level(e) = `. In backtracking to level `, the edges that are in the lists with

levels greater than ` are removed from the graph. A more detailed explanation of the graph

maintenance operations is given in Section 4.4.

In order to maintain the strongly connected components, in backtracking to the level

`, all the unions that have been done after level ` should be deunioned. A slight change

in the set union-deunion data structure (Section 4.1.2) provides a mechanism to determine

the level for every union.

In the set union-deunion method, for every union, we keep track of the level of the

union. Let z = UnionSet(x, y) to be a union done at level t. In the set union-deunion data
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structure, this union adds the 3-tuple (z, x, y) to an stack which can be used in retrieving x

and y in deunion. Because we need to have the union level information, we add the 4-tuple

(z, x, y, t) to also keep track of the levels. The deunion function is called on all the unions

with level greater than `. Algorithm 4.4 shows the procedure. The algorithm runtime for

the deunion operation is constant.

Algorithm 4.4 Deunion function to level `

Input: a union-deunion data structure with stack S containing the union information
Input: backtrack level `

1: current = S.top
2: while (current.level > `) do
3: z = current.z
4: x = current.x
5: y = current.y
6: replace the set z with sets x and y
7: update the representatives
8: S.pop
9: current = S.top

10: end while

4.3 LIFO Tarjan Algorithm Implementation

This Section briefly reviews some of the implementation details of the LIFO Tarjan al-

gorithm. Section 4.3.1 reviews the known idea of timestamps to avoid initializing all the

vertices whenever the LIFO Tarjan algorithm is called. Sections 4.3.3 and 4.3.2 introduce

methods to limit the number of visited vertices during every call of the LIFO Tarjan algo-

rithm.

4.3.1 Initialization with Timestamps

Tarjan’s algorithm, and in the same way LIFO Tarjan algorithm, are DFS-based. They

use indices to keep track of the visited vertices during the DFS. Therefore, in Tarjan’s

algorithm, whenever the method is called, all the vertices should be marked as unseen. In

the LIFO Tarjan algorithm, the vertices that are representatives in the set union-deunion

data structure should be marked as unseen. In the traditional version of Tarjan’s algorithm,

this is achieved by initializing the indices to zero every time the method is called. According
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to our experiments, this initialization might have an impact up to ten percent of the runtime.

In order to reduce this impact, we use the well-known idea of timestamps.

In the timestamp method, there is a variable the value of which states the current

timestamp. Any variable with a timestamp less than this value is unseen. Any variable

with a timestamp greater than this value has been already visited.

Let variable t to be the current timestamp. A vertex is unexplored if its index is smaller

than t. The timestamp t has the following properties:

1. At the beginning of the Tarjan’s algorithm its value is greater than all the vertex

indices in the graph.

2. During one call of the LIFO Tarjan algorithm its value is constant.

At the beginning all the vertex indices are initialized to zero. The timestamp t is

initialized to one. The timestamp t and variable indices might be needed to reinitialize if

the timestamp t becomes greater than a predefined threshold value.

The LIFO Tarjan algorithm using this method is shown in Algorithm 4.5. The ‘strong-

connect’ method in Algorithm 4.5 is shown in Algorithm 4.6.

4.3.2 Touched Vertices

Let G be a digraph. Let E be the set of edges added to G, and V (E) denote the end vertices

of the edges in E. The SCCs that might be affected by adding the edges in E are those

that are reachable (defined in Section 3.5.1) by vertices in V (E).

Lemma 4.1. If a vertex v is not reachable by V (E), then adding E to G does not change

its strongly connected components. Therefore, the LIFO Tarjan Algorithm does not need to

explore that vertex.

Proof. Let C(v) be the SCC containing v in G. Let C ′(v) be the SCC containing v in G∪E.

We know C(v) ⊂ C ′(v). if C ′(v) 6= C(v), then there exists an edge e = {v1, v2} ∈ E such

that e ∈ C ′(v) and e /∈ C(v). If e /∈ C(v), then at least one of its end points is not in C(v).

Suppose v1 /∈ C(v). Because C ′(v) is a strongly connected component, it has a Hamiltonian
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Algorithm 4.5 LIFO Tarjan’s Strongly Connected Components Algorithm with Times-
tamps

Input: graph G = (V,E)
Input: union-deunion set SH representing the strongly connected components for a sub-

graph H of G
Output: union-deunion set SG representing the strongly connected components set of G

1: stack S = empty
2: if (t > MAX − |V | or t is not initialized) then
3: t = 1
4: for all v ∈ V do
5: v.index = 0
6: end for
7: end if
8: maxIndex = t
9: for all v ∈ V do

10: if (v.index < t) then
11: strongconnect(v)
12: end if
13: end for
14: t = maxIndex+ 1
15: SG = SH

Algorithm 4.6 Procedure strongconnect(v) with Timestamps

1: v.index = maxIndex
2: v.lowlink = maxIndex
3: maxIndex = maxIndex+ 1
4: S.push(v)
5: for all (element s ∈ SH .find(v)) do
6: s.index = index
7: for all ((s, w) ∈ en(s)) do
8: if (w.index < t ) then
9: strongconnect(w)

10: v.lowlink = min(v.lowlink,w.lowlink)
11: else if (w ∈ S) then
12: v.lowlink = min(v.lowlink,w.index)
13: end if
14: end for
15: end for
16: if (v.lowlink == v.index) then
17: start a new strongly component
18: repeat
19: w = S.pop()
20: SH .union(v, w)
21: until (v == w)
22: end if
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cycle T . Therefore, there is a path from vertex v to v1, i.e. vertex v is reachable by V (E)

which is a contradiction.

As a result, in the depth-first search of LIFO Tarjan algorithm, it is enough to explore

the vertices that are in V (E) or are reachable by V (E) for the set of added edges E. We

call the vertices in V (E), the touched vertices. Whenever an edge is added to the graph,

its endpoints are added to the touched list. In the DFS, we only explore the vertices in

the touched list. After the strongly connected components are calculated the touched list

is cleared.

The LIFO Tarjan algorithm using touched lists is shown in Algorithm 4.7. The difference

with the Algorithm 4.5 is in line 7. Instead of all the vertices, the algorithm only explores

the touched vertices. The ‘strongconnect’ is the same as in Algorithm 4.6.

Algorithm 4.7 LIFO Tarjan’s Strongly Connected Components Algorithm with Touched
Vertices

Input: graph G = (V,E)
Input: union-deunion set SH representing the strongly connected components for a sub-

graph H of G, a set SV of the touched vertices
Output: union-deunion set SG representing the strongly connected components set of G

1: stack S = empty
2: if (t > MAX − |V | or t is not initialized) then
3: t = 1
4: for all v ∈ V do
5: v.index = 0
6: end for
7: end if
8: maxIndex = t
9: for all v ∈ SV do

10: if (v.index < t) then
11: strongconnect(v)
12: end if
13: end for
14: t = maxIndex+ 1
15: SG = SH

4.3.3 Alive Vertices

The set of vertices in a strongly connected component C and the vertices that are reachable

from C are called reach(C).
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If a literal w in a strongly connected component C is assigned a value, then by unit

propagation all the literals in reach(C) are assigned values. A strongly connected component

is assigned, if the value of its literals are assigned.

An edge e = {v1, v2} is added to SCC implication graph, if both v1 and v2 are unassigned.

Therefore, if a strongly connected component C is assigned, then no new edges are added

to or from the vertices in reach(C). As a result, the LIFO Tarjan algorithm does not need

to process the vertices in reach(C). We call these vertices dead. Therefore, a vertex is dead

if it is assigned.

At the beginning of the search, all the vertices are flagged alive. Whenever a literal w is

assigned a value, the vertices in reach(C), in which C is the strongly connected component

containing the literal w, are flagged dead. In backtracking, when the value of a variable is

unset, the variable flag is set to alive. The LIFO Tarjan algorithm explores only the alive

vertices in the graph.

The LIFO Tarjan algorithm using alive vertices is shown in Algorithm 4.8. The ‘strong-

connect’ is shown in Algorithm 4.9.

Algorithm 4.8 Tarjan’s Strongly Connected Components Algorithm with Alive Vertices

Input: graph G = (V,E)
Input: union-deunion set SH representing the strongly connected components for a sub-

graph H of G, a set SV of the touched vertices
Output: union-deunion set SG representing the strongly connected components set of G

1: stack S = empty
2: if (t > MAX − |V | or t is not initialized) then
3: t = 1
4: for all v ∈ V do
5: v.index = 0
6: end for
7: end if
8: maxIndex = t
9: for all v ∈ SV do

10: if (v.index < t AND v is alive) then
11: strongconnect(v)
12: end if
13: end for
14: t = maxIndex+ 1
15: SG = SH
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Algorithm 4.9 Procedure strongconnect(v) with Alive Vertices

1: v.index = maxIndex
2: v.lowlink = maxIndex
3: maxIndex = maxIndex+ 1
4: S.push(v)
5: for all (element s ∈ SH .find(v)) do
6: s.index = index
7: for all ((s, w) ∈ en(s)) do
8: if (w.index < t AND (w is alive) then
9: strongconnect(w)

10: v.lowlink = min(v.lowlink,w.lowlink)
11: else if (w ∈ S) then
12: v.lowlink = min(v.lowlink,w.index)
13: end if
14: end for
15: end for
16: if (v.lowlink == v.index) then
17: start a new strongly component
18: repeat
19: w = S.pop()
20: SH .union(v, w)
21: until (v == w)
22: end if

4.4 SCC Implication Graph Data Structure

In this section, we present a simple data structure for SCC implication graphs. This data

structure is efficient in maintaining the SCC implication graph during the search. The

downside to this approach is its memory requirement. Due to memory requirements, we

have limited the maximum number of variable instances in our experiments to 10,000. For

the purpose of the experiments in this thesis, this data structure suffices. Because our

goal is to provide an insight into the possible effectiveness of the equivalency reasoning in

CDCL solvers. The wide range of available SAT benchmarks provides lots of relatively

small instances to achieve this goal. A further possible research project is to use the sparse

matrix representation to manage the large instances.

The efficiency of the data structure representing an SCC implication graph in our solver

is dependent on the following operations:

add(e): Whenever an eq-binary clause C on equivalency sets Ei and Ej is found, for a

literal wi ∈ Ei and a literal wj ∈ Ej new edges {w̄i, wj} and {w̄j , wi} are added to
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the graph. These edges are labeled by the pair {C, `} in which ` is the level that

eq-binary clause C is discovered. It is possible to discover several eq-binary clauses

on equivalency sets Ei and Ej during the search. If for the chosen literals wi ∈ Ei

and wj ∈ Ej an edge already exists in the graph, then it is not overridden. The edge

label always represents the eq-binary clause having smallest level.

isEdge(wi, wj): It returns true if there is an edge between wi and wj , Otherwise, it

returns false. This function is always called before adding an edge {wi, wj} to the

graph.

remove(e): In backtracking to level `, all the edges with labels greater than ` are removed

from the graph.

neighbors(w): Lists all the neighbors for the vertex w. This function is used in LIFO

Tarjan algorithm to discover the strongly connected components.

An efficient data structure for adding and removing edges, and neighbor testing for two

vertices is the adjacency matrix representation. All these operations for adjacency matrix

is O(1). Though, listing the neighbors of a vertex is O(n) in which n is the number of

vertices. Let δ represent the degree of a vertex v. The adjacency list data structure has a

O(δ) runtime for listing the neighbors of a vertex v. Edge removal and addition can also be

implemented in O(1). Though, the neighbor testing for two vertices is O(n) in the worst

case.

In order to benefit from both data structures, we have used a combination of the two data

structures. Every SCC implication graph on n vertices is represented by an n×n adjacency

matrix M and an adjacency list L of size n simultaneously. In the beginning all the elements

of the adjacency matrix are 0. For every adjacency list i, the first element L[i][0] represents

the degree of vertex i. The value of M [i][j] represents the position of literal j in L[i]. The

value stored in M [i][j] is useful while removing the edge {i, j}. Algorithms 4.10, 4.11, 4.12

and 4.13 represents the main operations for this data structures. The runtime for all these

operations is constant.

The main issue with this approach is memory constraint, specially for the instances with
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Algorithm 4.10 Adding Edge

Input: Edge {i, j}
1: L[i][0] = L[i][0] + 1
2: sz = L[i][0]
3: L[i][sz] = j
4: M [i][j] = sz

Algorithm 4.11 Removing Edge

Input: Edge {i, j}
1: sz = L[i][0]
2: cr = M [i][j]
3: Swap L[i][sz] and L[i][cr]
4: M [i][j] = 0
5: L[i][0] = L[i][0]− 1

Algorithm 4.12 Neighbor Test

Input: Vertices i and j
1: if (M [i][j] == 0) then
2: return false
3: else
4: return true
5: end if

Algorithm 4.13 Listing Neighbors

Input: Vertex i
1: sz = L[i][0]
2: for i = 1→ sz do
3: print neighbor L[i][j]
4: end for
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lots of variables. Therefore, in our experiments, we have limited the maximum number of

variables in our test cases to be less than 10, 000. The maintenance of the SCC implica-

tion graph for large instances eliminates the possible benefits of the equivalency reasoning.

A possible future research project is to use a sparse matrix representation for the SCC

implication graphs to manage large instances efficiently.

4.5 Decision Heuristic

In the VSIDS branching rule, whenever a variable is selected to branch on, its value is

decided randomly. Instead, we use the information in the SCC implication graph to choose

the value.

If a literal w is assigned to true, the number of unit implications implied by this assign-

ment is at least equal to the degree of the vertex for w̄. We use this fact to determine the

value for a decision variable. Whenever a variable v is chosen by VSIDS, its value is set to

0, if degree(v) > degree(v̄). If degree(v) < degree(v̄), then the value of v is set to 1. In this

way, we try to maximize the number of implications for the selected branching variable.

4.6 Chapter Summary

In this Chapter, we provided some of the implementation details of the equivalency based

CDCL SAT solver Eq-MiniSat. The next Chapter presents some experimental results for

this solver.
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Chapter 5

Comparisons and Measurements

This chapter presents the experimental results for our equivalency reasoning enabled CDCL

solver: Eq-MiniSat. The first part of the chapter discusses the effects of different implemen-

tations for Eq-MiniSat. The second part compares the performances for the solvers MiniSat

[32] and Eq-MiniSat.

Section 5.1 gives a short overview of the benchmarks for which Eq-MiniSat outperforms

MiniSat. Section 5.2 discusses the kind of statistical data that are presented in this chapter.

Section 5.3 provides some comparisons of different approaches implementing Eq-MiniSat.

Finally, Section 5.4 compares the results from the standard CDCL SAT solver MiniSat [32]

and our equivalency reasoning enabled MiniSat based solver Eq-MiniSat.

5.1 Benchmark Description

The SAT problem is NP-complete [23, 71]. Therefore, unless P = NP , there is no SAT

algorithm that solves all the instances of SAT in polynomial time. In practice, the hardness

of a particular instance is determined by solving it with the state-of-the-art SAT solvers.

Different SAT solvers have different performances on different SAT benchmarks.

For experimental results in this thesis, we have chosen benchmarks from different areas

of research. Because of the memory constraints of Eq-MiniSat (Section 4.4), the selected

benchmarks have at most 10,000 variables. This section provides a description of the bench-

marks for which Eq-MiniSat outperforms MiniSat. This set of instances is used in the first
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part of this chapter to provide comparisons of different implementation approaches for Eq-

MiniSat. A complete list of benchmarks can be found in Section 5.4.

SGI The Subgraph Isomorphism problem or SGI is the problem of deciding whether a

graph G is isomorphic to a subgraph of graph H. The practical importance of the SGI

problem comes from the fact that it has lots of applications in different areas of research

including data mining [68], bioinformatics [86] and social network analysis [95]. Random

Subgraph Isomorphism instances that are converted to SAT are shown to be hard for the

current state-of-the-art SAT solvers [6]. Therefore, they are often used to compare SAT

solver performances.

QG SAT encoded Quasigroup or Latin square instances that satisfy some constraints [103].

This set of instances has both satisfiable and unsatisfiable instances.

FRB A set of forced satisfiable instances encoded from constraint satisfaction problems

proposed by Xu and Li [100]. The instances in the benchmark are relatively small, with

variable range between 450 and 1534. Nonetheless, many of these instances are hard for

most of the current prominent CDCL SAT solvers.

QWH The Quasigroup Completion Problem or QCP [22] is the problem of determining

whether it is possible to complete a partially filled Latin square to obtain a complete Latin

Square. The Quasigroup With Holes (QWH) [2] is a variation of the Quasigroup Completion

Problem. Every instance in QWH is generated starting from a complete Latin square and

removing some of its entries. Therefore, for every instance in QWH there exists at least one

solution. As a result, after encoding into SAT, all the QWH SAT instances are satisfiable.

EZFACT Dan Pehoushek submitted the SAT encoding of factorization circuits in SAT com-

petition 2002 [93].

RBSAT Random CSP problems encoded to SAT by Mohamedou in SAT 2009 [67].
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Table 5.1: Number of instances, average number of variables, and average percentage of
binary clauses in every benchmark

Family Name #instances Avr. #Vars Bin. Cl. Prc.

SGI 28 1779 99%

FRB 20 687 99%

QG 20 1825 4%

QWH 5 2329 99%

EZFACT 39 1441 0%

RBSAT 46 1636 99%

GT 10 1668 77%

VMPC 6 1027 39%

GT A set of instances based on partial order and counting problems submitted by Sabhar-

wal to SAT 2005 [10].

VMPC SAT encoded instances based on Variably Modified Permutation Composition on

open cryptographic problem by Grieu in SAT 2005 [10].

In this thesis we investigate the integration of equivalency reasoning in CDCL SAT

solvers. Intuitively, it seems that equivalency reasoning should perform better on SAT

instances with lots of binary clauses. In order to examine the effect of the number of the

binary clauses we have chosen benchmarks with a variety of number of binary clauses. Table

5.1 shows the number of instances and the average percentage of binary clauses in every

benchmark.

In order to discuss the experimental results, we have chosen some instances from every

benchmark. Table 5.2 shows the number of variables, clauses and binary clauses for the

chosen instances. The name part that is shown in bold in every instance name is the alias

name for that instance from now on in this chapter. In the result column, the values ‘S’

and ‘U’ stand for ‘Satisfiable’ and ‘Unsatisfiable’, respectively.

In the next section, we discuss the type of statistical data that is presented in this

chapter.
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Table 5.2: The information for a set of selected Instances. In the ‘RSL’ column, the values
‘S’ and ‘U’ stand for ‘Satisfiable’ and ‘Unsatisfiable’, respectively.

Instance Instance Vars Cls Bin RSL
Name Family Cls

srhd-sgi-m27-q225-n25-p15-s58217873 SGI 550 35586 35561 S

QG7-dead-dnd001.sat05-3419.reshuffled-07 QG 1040 13020 1086 U

QG7a-gensys-icl004.sat05-3825.reshuffled-07 QG 2401 15960 427 U

frb40-19-4 FRB 760 43780 43740 S

frb45-21-4 FRB 945 61855 61810 S

qwh.40.528.shuffled-as.sat03-1652 QWH 2511 18906 17509 S

qwh.40.560.shuffled-as.sat03-1654 QWH 3100 26345 24756 S

ezfact64 1.shuffled EZF. 3073 19785 0 S

ezfact64 5.shuffled EZF. 3073 19785 0 S

rbsat-v760c43649gyes6 RBS. 760 43649 43609 S

rbsat-v760c43649g9 RBS. 760 43649 43609 S

gt-ordering-unsat-gt-030.sat05-1307.reshuffled-07 GT 900 24825 435 U

gt-ordering-unsat-gt-035.sat05-1308.reshuffled-07 GT 1225 39900 595 U

vmpc 35.renamed-as.sat05-1921 VMPC 1225 211785 83405 S

The bold part in every instance name is the alias name used for that instance throughout
the chapter.

5.2 Statistic for Comparison

Comparing DPLL based SAT solvers involves many considerations including memory re-

quirements, the search tree size, and the CPU time for every solver. Each of these mea-

surements provides different insights into the SAT solver performance and they are not

necessarily co-related. For example, a SAT solver might spend a lot of time in every node

of the search tree to prune the formula using logical inference rules. This approach usually

results in smaller tree sizes, but it does not necessarily imply less CPU time to solve the

instance. Or as another example, an equivalency based DPLL SAT solver usually generates

smaller search trees, but it requires more memory.

In this section, we review the measurements that are used in this chapter to compare

the experimental results.

5.2.1 Memory

Generally, the hardness of a SAT instance is not related to its size. There are SAT instances

with less than a hundred variables that the current state-of-the-art SAT solvers can not solve

75



in a reasonable amount of time. While SAT instances with thousands of variables are solved

in fractions of a second.

Large instances require data structures that provide means to access the variables and

clauses efficiently. A key point in the success of state-of-the-art SAT solvers in solving large

instances is their innovative data structures [76]. These data structures enable SAT solvers

to efficiently access and maintain the variables and clauses.

A known SCC-based equivalency reasoning weakness is its memory requirements for

representing the SCC graph. This weakness restricts the input for the SCC-based equiva-

lency enhanced SAT solvers to instances with a relatively small number of variables [40].

Eq-MiniSat suffers from the same problem. The memory requirement for Eq-MiniSat for an

instance on n variables and m clauses is O(n2 +mn). Also, it can be noted that in CDCL

solver the memory requirement increases during the search due to the addition of learnt

clauses. Therefore, we have restricted the number of variables to be less than 10,000. In

Section 5.3.6 we provide the statistics for Eq-MiniSat memory requirements for instances

in Table 5.2.

5.2.2 Search Tree Size

The Search tree size, or number of branchings, is dependant on the chosen branching rule

and the inference rules used in every node to simplify the formula. Most of the DPLL SAT

solvers have at least one inference rule: unit propagation. Many other inference rules have

been also studied including pure literal rule [28], equivalency reasoning [72], resolution [28],

and subsumption rule [28]. The effects of these logical reasonings in SAT solving have been

shown to be application dependant. While one kind of reasoning might decrease the tree

size for an instance by orders of magnitude, the same kind of reasoning might increase the

tree size for another instance by orders of magnitude.

The logical reasoning usually decreases the tree size. But, from the fact that it increases

the amount of time spend in every node, smaller tree size does not necessarily mean a better

run-time. Therefore, the number of branchings is not an accurate measure to compare

different solvers. Though, theoretically, if all the solvers spend the same time at every

node, a smaller search tree results in better performance.
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There is another measurement that can be used in order to predict the run-time per-

formance: number of propagations. The number of propagations is the number of variable

assignments both for decision and implied variables at every node. Division of this number

by the number of branchings is an indication of the average effort at every node. In this

chapter we provide statistics for both number of branchings and number of propagations.

5.2.3 Runtime

The practical aspects of SAT solving demands SAT solvers be able to solve real-world

industrial SAT instances efficiently. The SAT solvers are expected to solve instances in

a reasonable time. Therefore, one measurement in comparing SAT solvers’ efficiency is

comparing their CPU runtime on the same computing environment for the same input.

So far, there has been no solver that outperforms all the other solvers on all the instances.

Specially because there are application-based SAT solvers that are configured to solve a

special class of instances efficiently. These solvers usually outperform other solvers in their

special set of instances, but have poor performance on other instances.

We use the CPU runtime statistics to compare MiniSat and Eq-MiniSat. Also, the

CPU runtime is used to compare different approaches that we have used to implement

Eq-MiniSat.

The CPU runtime in this chapter are presented in seconds. All the experiments have

been run on an AMD Opteron (tm) Processor 875, 2200 GHZ, 64GB RAM machine. The

cut-off time is set to 7200 seconds.

The following section discusses the effects of different implementations of Eq-MiniSat.

5.3 Effects of Different Implementations

This section gives statistics on some of the different implementations for Eq-MiniSat. It

also provides statistics about strongly connected components in the SCC implication graph.

The instances in Table 5.2 are used throughout this section.

Tarjan’s algorithm is a linear algorithm, but when it is called at every node, its negative

performance impact is noticeable. The LIFO Tarjan’s method, introduced in Chapter 4.1, is
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one attempt to decrease this negative impact. Section 5.3.1 provides statistics on comparing

LIFO Tarjan algorithm versus the original Tarjan’s algorithm.

The branching rule VSIDS is the incumbent branching rule in CDCL SAT solvers. In

Eq-MiniSat, as in MiniSat, the decision variable v is chosen by VSIDS branching rule.

But instead of randomly choosing a value for the variable v, we use the information from

the SCC graph to choose the value. Section 5.3.2 presents a detailed explanations of the

changes.

Section 5.3.3 provides the statistics for different preprocessing methods.

Section 5.3.4 gives some statistics about the size and level of the strongly connected

components.

Section 5.3.5 gives some statistics on the time that is spent in equivalency reasoning re-

lated methods. The statistics of this kind can be used to investigate the runtime bottlenecks.

This information identifies the possible scopes for future optimization.

Section 5.3.6 presents the memory requirements for Eq-MiniSat.

5.3.1 LIFO Tarjan Algorithm vs. Original Tarjan’s Algorithm

The strongly connected components of the SCC graph are updated in the beginning of every

level and in backtracking. Tarjan’s algorithm is a memoryless algorithm. Therefore, the

algorithm evaluates all the vertices of the graph every time it is called. The LIFO Tarjan

algorithm, uses the existing strongly connected components to generate new ones going

down the search tree. Our experiments show that the LIFO Tarjan algorithm, on average,

improves the runtime performance of Eq-MiniSat from 20 up to 50 percent.

Table 5.3 presents the runtime percentage for Eq-MiniSat using original and LIFO Tarjan

algorithm on an instance from FRB family. The information is obtained using the profiler

gprof [46].

5.3.2 A Variation of VSIDS

The SCC graph provides information that might be useful in the variable selection process.

For example, the degree of the vertex for a literal w shows the minimum number of variable

implications if the literal w is assigned to true. The exact number of variable implications
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Table 5.3: Comparing Original Tarjan’s Algorithm with LIFO Tarjan Algorithm for FRB30-
15-01. The runtime for original and LIFO algorithms are 29.17, 15.97 seconds, respectively.

Original Tarjan LIFO Tarjan

Procedure Percentage Seconds Percentage Seconds

SCC related

Extended Propagation 10.10 2.94 14.4 2.29

Maintaining Edges 1.20 .35 1.00 .15

Tarjan’s Alg. 13.60 3.96 2.70 .43

Non-SCC related operations

Propagate 73.10 21.32 85.60 13.67

Get a Literal Value 24.40 7.11 8.40 1.34

Conflict Analyze 1.60 .26 8.00 1.27

Backtrack 2.00 .58 2.70 .43.00

is the number of vertices that are reached when running a DFS algorithm on the vertex for

the literal w. The latter approach have a runtime impact due to the fact that at every node,

a DFS on all unassigned vertices is performed to find the best possible choice. This runtime

impact usually overweights its benefits. The former approach requires the solver to find the

unassigned vertex with maximum degree. From the fact that the degree of every vertex is

presented by the first element in its adjacency list, finding the vertex with maximum degree

does not impose a significant runtime impact.

One possible approach is to choose the literal with maximum degree. Our experiments

show that the results of this approach is usually less favorable comparing to VSIDS.

Another approach is to use this information with the branching rule VSIDS. In VSIDS,

when a variable v is chosen to be the decision variable, its value is determined randomly.

Instead, we choose the value for variable v to be the value that makes the literal on v with

the maximum degree true.

Table 5.4 shows the results for VSIDS with random value selection versus VSIDS with

SCC based value selection. As it can be seen in this table, the SCC based value selection

results in better runtime performance for this selection of instances.

5.3.3 Preprocessing Effects

In this section, we present statistical results for different preprocessing methods: literal

substitution, failed literal detection, and clause strengthening.
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Table 5.4: Experiments on branching rule VSIDS. Comparing SCC Value Selection (A) vs.
Random Value Selection (B).

Instance A B

srhd .04 207.1

QG7 3367.8 I

QG7a 1061.9 5428.4

frb40-19-4 93.3 1646.4

frb45-21-4 569.1 5744.7

qwh.40.528 472.9 3486.1

qwh.40.560 637.7 5610.8

ezfact64 1 1133.4 I

ezfact64 5 2022.9 I

rbsat-v760c43649gyes6 I I

rbsat-v760c43649g9 I I

gt-ordering-unsat-gt-030 1399.2 I

gt-ordering-unsat-gt-035 6659.5 I

vmpc 35 I I

The sign (I) means solver was unable to solve the instance in two hours.

Literal Substitution The strongly connected components of an SCC implication graph denote

the literal equivalencies in a SAT instance. Substituting equivalent literals leads to fewer

number of variables and shorter clauses. Though, because of expensive maintenance that

is required during the backtracking, applying literal substitution during the search is not

efficient. In the meanwhile, if the equivalent literals are discovered in level zero, there is

no runtime overhead in backtracking if the literal substitution is performed. This approach

have been used in preprocessing steps of different SAT solvers [14, 17].

Failed Literals If the failed literal rule (Section 2.3) implies a literal, the implication might

generate new binary clauses. Therefore, the SCC implication graph might find more equiv-

alencies in preprocessing.

Clause Strengthening The information in the SCC implication graph can be used to facilitate

subsumption [75] and self-subsumption [31] rules. Self-subsuming a clause is the process of

shortening the clause by logical inferences using other clauses in the formula. This process

is also called clause strengthening. In order to strengthen a clause C, we use the edge labels

in SCC implication graph. The edges that are particularly useful are the ones with labels

having clauses of length two. Let literal w be one of the literals in the clause C. For every
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other literal wi ∈ C, we verify the following edges:

Case 1: If there is an edge {w,wi} with the label Ci = {w̄, wi}, then the clause C is

self-subsumed to C − {w}.

Case 2: If there is an edge {w̄, w̄i} with label Ci = {w, w̄i}, then the clause C is self-

subsumed to C − {wi}.

Case 3: If there is an edge {w̄, wi} with clause Ci = {w,wi}, then by subsumption rule,

the clause C can be removed from the formula.

Table 5.5, presents a combination of the discussed methods: equivalent literal substi-

tution, failed literals, and clause strengthening. As it can be seen in Table 5.5 different

preprocessing methods have different runtime impacts in Eq-MiniSat.

In Table 5.5 Column ‘E’ shows the runtime without any preprocessing. Columns ‘L’, ‘F’,

and ‘C’, respectively, represents the runtime when only equivalent literal substitution, failed

literals, or clause strengthening is applied in preprocessing. Column ‘LF’ shows the runtime

for the combination of literal substitution and failed literals in preprocessing. In column

‘LC’, the combination of literal substitution and clause strengthening is presented. Column

‘FC’ provides the runtime for the combination of failed literals and clause strengthening in

preprocessing. Finally, column ‘LFC’ presents the result when all the three methods are

used in preprocessing.

As it can be seen in Table 5.5, the benefits of different combinations is application

dependant. For example, the combination of literal substitution and clause strengthening

enables the solver to solve ‘rbsat-v760c43649gyes6’, while it is harmful for ‘frb45-21-4’.

5.3.4 Strongly Connected Components Information

The strongly connected components in an SCC implication graph reveal the equivalent

literals. The larger the size of a strongly connected component is, the more equivalency

information it provides. Another important factor is the level the strongly connected compo-

nent is found. The lower the level is, the possibility of more impact on the search increases.

Table 5.6 provides this information for the instances in Table 5.2. The information in this

table is generated by running Eq-MiniSat without any preprocessing.
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Table 5.5: Experimental results for Eq-MiniSat with different preprocessing method combi-
nations. In this Table, ‘E’, ‘L’, ‘F’, and ‘C’ stands for no preprocessing, literal substitution,
failed literal detection, and clause strengthening respectively.

Instance E L F C LF LC FC LFC

srhd .4 .4 .5 .07 .08 .05 .03 .06

QG7 3367.8 I 6152.4 6000.6 I 6970.1 I I

QG7a 1061.9 I 2335.4 1861.8 2923.7 1314.1 1995.1 3371.6

frb40-19-4 93.3 688 1779.8 30.4 562.6 705.3 2108.9 399

frb45-21-4 569.1 I 361.5 561.8 7070.2 I 422.1 5028.7

qwh.40.528 472.9 233.6 1464.2 418.6 366.7 240.4 1546.18 265.6

qwh.40.560 637.7 68.7 62.8 668.9 172.6 69.3 56.2 115.5

ezfact64 1 1133.4 2227 3795.1 I 921.7 311.7 760.4 2148.7

ezfact64 5 2022.9 3937.2 I I I 773.3 I 6608.4

v760c43649gyes6 I I I I I 3266.4 I I

v760c43649g9 I 608.8 I I I 616.1 I I

gt-030 1399.2 247.4 I 2828 5326.7 270.5 I 3694.4

gt-035 6659.5 5915.9 I I I 6116.5 I I

vmpc 35 I I I I I I I I

The sign (I) means solver was unable to solve the instance in two hours.

In this section, by strongly connected component we mean a non-trivial strongly con-

nected component, i.e. a strongly connected component with size greater than one. Table

5.6 presents the following information:

First SCC: The level and size of the first strongly connected component that has been

discovered. It can be noted that this value is not necessarily the minimum level with

a strongly connected component, because after the search restarts we might find a

strongly connected component in a lower level.

Maximum SCC: The level and size of the strongly connected component with maximum

size.

Average: The average size of the strongly connected components throughout the search.

The information in Table 5.6 might be used to avoid unnecessary calculations in the

solver. For example for the instances in the GT benchmark, the first levels of search (up

to level 50 before first restart) do not have any strongly connected components. In future

work, dynamic methods will be designed to enable the solver to postpone or disable the
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Table 5.6: Strongly Connected Component Information

Instance First Max. Avr.

Name level size level size size

srhd 6 2 6 2 2

QG7 0 2 7 106 3

QG7a 0 2 12 84 2

frb40-19-4 1 2 6 66 2

frb45-21-4 1 2 6 76 2

qwh.40.528 0 5 31 286 2

qwh.40.560 0 3 45 106 2

ezfact64 1 0 2 10 124 4

ezfact64 5 0 2 12 146 4

rbsat-v760c43649gyes6 5 2 8 70 1

rbsat-v760c43649g9 6 2 7 82 2

gt-ordering-unsat-gt-030 50 7 39 226 6

gt-ordering-unsat-gt-035 90 8 50 126 6

vmpc 35 1 3 5 110 2

Table 5.7: First SCC Level Information for Every Benchmark

Family Avr. Level Avr. Size

SGI 8.5 3.3

FRB 4.3 2.0

QG 0.0 2.0

QWH 0.0 7.0

EZFACT 0.0 2.0

RBSAT 8.2 2.0

GT 29.9 7.9

VMPC 1.0 3.1

SCC calculations based on the history of the discovered strongly connected components

throughout the search.

Table 5.7, for the benchmarks in Table 5.1, shows the average value of the levels that

for the first time a non-trivial SCC is discovered throughout the search.

5.3.5 Runtime Overhead

Our experiments show that the equivalency reasoning has a runtime effect of 20 to 40

percent. This runtime impact mostly depends on the number of variables and number of

binary clauses in the beginning and during the search. The larger these numbers are, the

more expensive equivalency reasoning is.

Table 5.8 shows the runtime statistics for equivalency reasoning for an instance from
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FRB family. The information is obtained using the profiler gprof [46]. Because running the

profiler takes a considerable amount of time, we have chosen a relatively small instance as a

sample. The information in the table shows that for this instance the equivalency reasoning

takes about about 34% of the runtime when the preprocessing in enabled, and 31% of the

runtime without preprocessing.

Table 5.8: Runtime Percentage Statistics for running Eq-MiniSat on frb35-17-1 with 595
variables and 29,707 clauses. The runtime with and without processing are 22.41 and 60.81
seconds, respectively.

Preprocessing Runtime No Preprocessing Runtime

Procedure Percentage Seconds Percentage Seconds

SCC related

Extended Propagation 14.9 3.33 14.2 8.63

Maintaining Edges 11.6 2.59 12.6 7.66

Tarjan’s Alg. 2.6 .58 2.7 1.62

Literal Substitution 2.2 .49 - -

Failed Literal 1.7 .38 - -

Clause Strengthening 0.1 0.02 - -

Non-SCC Related Operations

Propagate 83.7 18.57 85.3 51.87

Get a Literal Value 8.5 1.90 10.1 6.11

Conflict Analyze 9.1 2.03 8.2 4.98

Backtrack 2.4 .53 2.9 1.76

5.3.6 Memory Requirement

One of the main weaknesses of the Eq-MiniSat is its memory requirements. The SCC

implication graph and the set union-deunion require lots of memory. Table 5.9 presents

the memory requirements for Eq-MiniSat for the instances in Table 5.2. As it can be seen

the memory requirement increases considerably when the number of variables increases.

For example an instance with 550 variables requires 39.8 MB, while an instance with 760

variables requires 81.44 MB which is more than twice the first instance.

5.4 MiniSat and Eq-MiniSat: A Comparison

In order to evaluate the effects of equivalency reasoning in CDCL solvers, in this section we

overview the results of running MiniSat and Eq-MiniSat on a selected set of benchmarks.
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Table 5.9: Memory Information in MB

Instance Vars Cls Memory(MB)

srhd 550 35586 39.80

QG7 1040 13020 113.18

QG7a 2401 15960 469.04

frb40-19-4 760 43780 81.44

frb45-21-4 945 61855 148.09

qwh.40.528 2511 18906 518.10

qwh.40.560 3100 26345 785.63

ezfact64 1 3073 19785 759.39

ezfact64 5 3073 19785 762.89

rbsat-v760c43649gyes6 760 43649 144.04

rbsat-v760c43649g9 760 43649 146.13

gt-ordering-unsat-gt-030 900 24825 167.85

gt-ordering-unsat-gt-035 1225 39900 384.91

vmpc 35 1225 211785 341.62

The complete set of results for the selected benchmarks is provided in Appendix A.

The computing environment is an AMD Opteron (tm) Processor 875, 2200 GHZ, 64GB

RAM machine. The cut-off central processing unit (CPU) time for every run is set to 7200

seconds. The MiniSat clause minimization mode is disabled.

For the experiments, different crafted and industrial benchmarks are used. All the SAT

benchmarks used in this thesis are from the SAT competitions and are accessible through

the SAT competition web page [1]. Other than the benchmarks described in Section 5.1, the

other benchmarks are 2 dimensional strip packing or 2SPP, advanced encryption standard

or AES, equivalence checking multiplier designs, MOD circuits, graph pebbling, automata

synchronization, battleship, and Van Der Waerden or VDW numbers. A description of

these benchmarks follows.

2SPP The 2-dimensional strip packing or 2SPP [12] is a special case of the bin packing

problem [97]. The SAT encodings of the 2SPP was submitted to SAT competition 2011 by

Daniel Le Berre.

AES A SAT encoding of advanced encryption systems or AES [84] was submitted by Oliver

Kullmann to the SAT competition 2011.
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Equivalency Checking Multiplier Designs The SAT encodings of equivalency checking hard-

ware designs for integer multiplication was submitted by Matti Jarvisalo to the SAT com-

petition 2007 [55].

MOD Circuits The encodings of circuits for MOD-functions was submitted by Yaroslavtsev

to the SAT competition 2009 [64].

Graph Pebbling The encoding of the graph pebbling game [80] was submitted by Ashish

Sabharwal to the SAT competition 2005.

Automata Synchronization The encoding of the synchronization of random automata [94]

into SAT was submitted to the SAT competition 2011 by Evgeny Skvortsov.

Battleship The encoding of the battleship puzzle (a description can be found here [90]) into

SAT was submitted to the SAT competition 2011 by Evgeny Skvortsov.

VDW The encoding of Van Der Warden [98] problem into SAT was submitted to the SAT

competition 2011 by Oliver Kullmann.

The total number of families is sixteen. Based on the performance comparisons of

MiniSat and Eq-MiniSat on these benchmarks, we have observed three different outcomes

Category 1: For one class out of the sixteen chosen families, the equivalency reasoning does

not have a noticeable effect on improving or worsening the performance. Examples include

MOD circuits family (Table A.24 in Appendix A).

Category 2: In eight classes, the Eq-MiniSat outperforms the original MiniSat. The families

SGI (Table A.8), FRB (Table A.10), QG (Table A.12), QWH (Table A.14), EZFACT (Table

A.16), GT (Table A.18), RBSAT (Table A.20) and VMPC (Table A.22) have this property.

The result tables are in Appendix A.

Category 3: Finally, there are six families of instances that equivalency reasoning slows

down the SAT solver MiniSat. Examples of these families include: 2SPP (Table A.2), AES
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Table 5.10: Summary of the Results for MiniSat Versus Eq-MiniSat

Family Total Solved by Both Only Only

Name #Ins. #Ins M. Runtime Eq-M. Runtime MiniSat Eq-M.

MOD 7 3 2555.1 1505.0 0 0

SGI 28 1 601.7 .1 0 24

FRB 20 14 6339.9 5904.5 0 4

QG 20 11 9365.7 6194.7 0 3

QWH 5 4 3487.4 1788.6 0 1

EZFACT 39 31 525.6 1846.3 0 4

GT 10 7 2590.9 1088.5 0 3

RBSAT 46 1 2620.9 67.0 1 5

VMPC 6 2 5691.3 801.6 0 1

2SPP 11 6 474.5 461.8 4 0

AES 5 2 3.2 14.3 1 0

MULT. 7 3 341.9 753.5 1 0

AUT. 10 7 505.3 5109.8 1 0

BATT. 24 2 336.7 192.8 17 0

PEBB. 9 7 26.7 758.9 3 0

VDW 12 9 14,921.0 16,289.0 3 0

(Table A.4), equivalency checking multiplier designs (Table A.6), automata synchronization

(Table A.26), battleship (Table A.28), graph pebbling (Table A.30), and VDW (Table A.32).

The result tables are in Appendix A.

Table 5.10 summarizes the results for these benchmarks. The information in this table

includes the total number of instances in every family, the number of instances solved by

both solvers and the runtime every solver spent to solve these instances, and finally the

number of instances solved by only one of the solvers.

In order to have an insight into the SCCs generated during the search, Table 5.11

presents the average first level a non-trivial SCC is found for every family, alongside the

average length of strongly connected components for every family at the first level. The

information in this table suggests that the lower the first level, and the higher the average

length of SCCs, the probability of Eq-MiniSat outperforming MiniSat is higher.

Table 5.12 shows a random selection of instances from these families. Figure 5.1 shows

the number of branchings for Minisat and Eq-Minisat for these instances. In this Figure,

it can be seen that the number of branchings for most of the instances is less for Eq-

Minisat. Figure 5.2 shows the CPU runtime in seconds for Minisat and Eq-Minisat for

these instances. As can be seen in these figures, fewer number of branchings for Eq-Minisat
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Table 5.11: Number of instances, average percentage of binary clauses, and average level
for the first nontrivial strongly connected component in the benchmarks that MiniSat out-
performs Eq-MiniSat. The ‘Avr. Size’ column shows the average size for the SCCs found
the first time a non-trivial SCC is found.

Family Name #instances Avr. #Vars Bin. Cl. Prc. Avr. Frst. lvl Avr. Size

MOD 7 602 .01% 25.8 3.8

SGI 28 1779 99% 8.5 3.3

FRB 20 675 99% 4.3 2.0

QG 20 1825 4% 0.0 2.0

QWH 5 2329 99% 0.0 7.0

EZFACT 39 1441 0% 0.0 2.0

GT 10 1668 77% 29.9 8.0

RBSAT 46 1636 99% 8.2 2.0

VMPC 6 1027 39% 1.0 3.1

2SPP 11 6488.9 14% 0 2.0

AES 5 708 4% 0 2.0

MULT. 7 1185 43% 1 2.0

AUT. 10 4097 13% 41.75 20.6

BATT. 24 266 92% 11.5 22.0

PEBB. 9 1772 .1% 1220 5.5

VDW 12 201 .4% 10.8 2.4
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Table 5.12: A random selection of instances from every family. The column ’label’ presents
the label used for every instance in Figure 5.1 and Figure 5.2

Family Instance Graph Label

MOD mod3 4vars 6gates mod3 4

SGI srhd-sgi-m27-q225-n25-p15-s58217873 s58217873

FRB frb40-19-1 frb40-19-1

QG QG-gensys-brn008.sat05-2685.reshuffled-07 QG-brn008

QWH qwh.40.560.shuffled-as.sat03-1654 qwh.40.560

EZFACT ezfact16 1.shuffled ezfact16 1

GT counting-easier-fphp-012-010.sat05-1214.reshuffled-07 sat05-1214

RBSAT rbsat-v760c43649g7 v760c43649g7

VMPC vmpc 29.renamed-as.sat05-1916 vmpc 29

2SPP E03N17 E03N17

AES aes 32 2 keyfind 1 aes 32 2

MULT. eq.atree.braun.8.unsat braun.8

AUT. rnd 100 28 s rnd 100 28 s

BATT. battleship-10-10-unsat 10-10

PEBB. sat-pbl-00400.sat05-1322.reshuffled-07 sat-pbl-00400

VDW VanDerWaerden 2-3-12 135 2-3-12 135

does not necessarily imply less runtime.

In the following section, we summarize the results provided in this section.

5.4.1 Conclusion and Future Work

The experimental results demonstrate that the beneficial aspects of equivalency reasoning in

CDCL solvers is application dependant. The equivalency reasoning enabled CDCL solver

Eq-MiniSat is able to solve families of instances that are generally considered hard for

CDCL solvers. At the same time, for some instances Eq-MiniSat has considerably slower

performance than MiniSat.

In order to fully take advantage of the benefits of the equivalency reasoning in CDCL

SAT solvers, it is desirable to make the equivalency reasoning configurable during the search.

For example, a solver capable of enabling or disabling the equivalency reasoning during the

search acquires the means to prevent equivalency reasoning whenever it is not beneficial

for the SAT solving. In that case the solver requires to have some measurements to decide

based on those measurements to enable or disable the equivalency reasoning.
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Figure 5.1: Number of branchings for instances in Table 5.12 in logarithmic scale.

Figure 5.2: CPU runtime in seconds for instances in Table 5.12 in logarithmic scale.
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The first intuitive measurement is the number of binary clauses. But as the experimental

results shows, the number of binary clauses does not have a direct relation with the runtime

performance of Eq-MiniSat. For example, Eq-MiniSat outperforms MiniSat for the instances

in the EZFACT family though the number of binary clauses at the beginning of the search

is zero. For the automata synchronization family, the average percentage of the binary

clauses is 42 percent, but MiniSat performs better than Eq-MiniSat.

The information in Table 5.11 demonstrates that for the instances for which the first

SCC level is low, and the average SCC length in this level is high, the probability of

equivalency reasoning being beneficial to the solver is higher. This observation provides a

possible measurement to decide whether equivalency reasoning is beneficial to the solver or

not. For example, one possible approach is to provide different checkpoints for the solver.

At every checkpoint, if the equivalency reasoning is not already on, the solver calculates

the SCC components. If there is any non-trivial SCCs, the solver enables the equivalency

reasoning. Otherwise, the solver continues the search without equivalency reasoning.

A future possible work is to investigate the effects of a configurable equivalency reasoning

for CDCL solvers.

5.5 Chapter Summary

In this chapter, some experimental results for Eq-MiniSat was presented. Statistical data

was provided to demonstrate the fact that equivalency reasoning can be useful in solving

some classes of SAT instances for the CDCL SAT solvers. The following chapter presents

the conclusions and possible future research on this topic.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the research in this thesis by providing conclusions and possible

future work. In Section 6.1, we provide the conclusions from the research in this thesis.

Section 6.2 reviews some possible future work.

6.1 Conclusions

In look-back SAT solvers, because of its complications, the equivalency reasoning has been

only studied statically at the beginning of the search[8, 17]. In this thesis, we proposed a

method to integrate an SCC based equivalency reasoning engine in CDCL SAT solvers. This

engine enables the CDCL solvers to simplify the formula based on the identified equivalent

literals during the search. As a result, it helps the solver to have a smaller search space.

The equivalency reasoning engine has been integrated into an state-of-the-art CDCL

SAT solver MiniSat [32]. The equivalency reasoning enabled solver, Eq-MiniSat, has been

used to examine the effects of literal equivalency reasoning in CDCL SAT solvers. The

results of the experiments show that equivalency reasoning is beneficial in solving some

classes of SAT instances. For example, Eq-MiniSat is able to solve a class of instances

[38] that are considered hard for DPLL-based solvers. The experimental results on random

instances demonstrates that equivalency reasoning in the majority of the instances generates

a smaller search tree.

One of the main features of the SAT solvers is their implementation efficiency. There-
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fore, in order to efficiently calculate the strongly connected components in Eq-MiniSat, a

customized Tarjan’s algorithm has been introduced.

The SCC implication graph, not only helps in identifying the equivalent literals, but

it also has other valuable information that can be used to guide the search. This thesis

describes some possible use of this information in subsumption and self-subsumption rules,

and identifying the conflict variables without BCP.

Another topic that was investigated was the representation of the SAT instances by

orthogonal lists or dancing links [52, 63]. Our experiments, which are not reported in this

thesis, show that although the orthogonal lists data structure outperforms the counter-based

data structure for SAT [59, 81, 92], it is slower than the watched literals scheme [81].

6.2 Future Work

The work in this thesis mainly discusses the integration process of the equivalency reasoning

in CDCL SAT solvers. We have done some experiments on a selected set of benchmarks, but

more experiments are required to have a better understanding of the equivalency reasoning

enabled CDCL solver behaviours.

One of the main questions is to find out when equivalency reasoning is beneficial for an

instance. So far, there is no understanding whether the equivalent reasoning is beneficial for

an instance without solving it. Such information can be used dynamically during the search

to decide whether to apply equivalency reasoning or not. From the fact that calculating

SCCs and maintaining the SCC implication graph is an expensive task, this might help to

improve the runtime performance.

The other area is the decision making process considering the equivalent literals. The

solver Eq-MiniSat uses a variation of VSIDS based on the SCC implication graph. But

even this variation does not take into account the equivalency of the literals and the effect

of these equivalencies on the formula.

Other improvements include designing data structures for SCC implication graph to

minimize the restrictions on the number of variables for the instances that can be solved by

the SCC-based equivalency reasoning enabled CDCL solvers.
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Another future work includes using path compressions [36] to represent the set union-

deunion data structure.

Different CDCL SAT solvers have different strengths and weaknesses. In this thesis,

we have integrated the equivalency reasoning engine into MiniSat [32]. One possible future

work is to integrate the equivalency reasoning engine into other prominent CDCL SAT

solvers. The comparison of the results might give a better understanding of the equivalency

reasoning effects on CDCL SAT solvers.
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Appendix A

Experimental Results

In this Appendix we presents the results for different families in the industrial and crafted

categories for MiniSat and Eq-MiniSat. The instances are chosen from the SAT competition

benchmarks [1]. All the experiments have been run on an AMD Opteron (tm) Processor

875, 2200 GHZ, 64GB RAM machine. The cut-off time is set to 7200 seconds. If both solvers

are unable to solve an instance by the cut-off time, then the statistics for that instance is

not shown in the results.

In the result tables throughout the chapter ‘S’, ‘U’ and ‘I’ in the result (RSL) column

stand for ‘Satisfiable’, ‘Unsatisfiable’, and ‘Unsolved’, respectively. For every instance the

following information is provided: number of variables (#Vars), number of original clauses

(#Cls), number of branches (#Bran.), number of propagations (#Prop.), CPU runtime in

seconds (RT), and the result (RSL) in two hours for both solvers MiniSat and Eq-MiniSat.

In Section A.1, the results for application based families are presented. Section A.2

presents the results for crafted instances.

A.1 Application Based Instances

The application based families include 2-dimensional strip packing or 2SPP, advanced en-

cryption standard or AES, and equivalence checking multiplier.
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Table A.1: 2-Dimensional Strip Packing instances.

Instance Name #Vars #Cls

E02F17 6664 69700

E03N17 6664 93544

E04F19 9044 295685

E04N18 7794 120068

E05F18 7794 126826

E05X15 4740 41379

korf-15 4740 45569

korf-17 6664 89966

Table A.2: Results for 2-Dimensional Strip Packing family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

E02F17 1.2E6 1.4E8 172.2 U - - - I

E03N17 6.8E4 6.9E6 3.5 U 3.2E4 4.5E6 18.8 U

E04F19 1.2E6 1.2E8 166.8 S 1.9E5 2.7E7 82 S

E04N18 5.2E3 5.3E5 0.2 U 4.4E3 6.6E5 12.8 U

E05F18 5.9E5 6.2E7 62.2 S 7.7E4 1.0E7 28.1 S

E05X15 1.8E5 1.9E7 15.7 U 1.9E5 2.8E7 90.8 U

korf-15 1.1E6 1.3E8 226.1 U 5.0E5 7.6E7 229.3 U

korf-17 1.5E7 2.3E9 5396.3 U - - - I

Number of solved for MiniSat: 8

Number of solved for Eq-MiniSat: 6

2-Dimensional Strip Packing or 2SPP In this family we have 11 instances. Two instances

‘E07N15’ and ‘E15N15’ are solved in less than a second and are not shown in the table.

The instance ‘korf-18’ was not solved by either of the solvers in two hours. The instances

information and results for the other instances in this family are shown in Table A.1 and

Table A.2. MiniSat outperforms Eq-MiniSat by solving 10 instances versus 6 for Eq-MiniSat.

The runtime for the instances solved by both solvers are 474.5 and 461.8 for MiniSat and

Eq-MiniSat, respectively.

Advanced encryption standard There are five instances in this family. The unsolved instances

in two hours are ‘aes 32 4 keyfind 1’, ‘aes 32 5 keyfind 1’. MiniSat solves one instance more

than Eq-MiniSat. The runtime for the instances solved by both are 3.2 and 14.3 for MiniSat
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Table A.3: Advanced encryption standard or AES instances.

Instance Name #Vars #Cls

aes 32 1 keyfind 1 300 1016

aes 32 2 keyfind 1 504 1840

aes 32 3 keyfind 1 708 2664

Table A.4: Results for advanced encryption standard or AES family.

Instance MiniSat Eq-MiniSat

Name #Branches #Prop. RT RSL #Bran. #Prop. RT RSL

aes 32 1 keyfind 1 9.8E2 4.7E4 0.0 S 3.4E3 1.2E5 0.1 S

aes 32 2 keyfind 1 1.0E5 1.2E7 3.2 S 2.3E5 1.5E7 14.3 S

aes 32 3 keyfind 1 1.2E7 1.5E9 564.8 S - - - I

number of solved for MiniSat: 3

number of solved for Eq-MiniSat: 2

and Eq-MiniSat, respectively. Table A.3 and Table A.4 presents the instance info and results

for this family.

Equivalence checking multiplier design The equivalence checking multiplier design family has

seven instances. MiniSat, and Eq-MiniSat solve 4 and 3 instances respectively. Unsolved

instances are ‘eq.atree.braun.11.unsat’, ‘eq.atree.braun.12.unsat’, ‘eq.atree.braun.13.unsat’.

The runtime for the instances solved by both are 341.9 and 753.5 for MiniSat and Eq-

MiniSat, respectively. The statistical results are shown in Table A.5 and A.6.

Table A.5: Equivalence checking multiplier instances.

Instance Name #Vars #Cls

eq.atree.braun.10.unsat 1111 3756

eq.atree.braun.7.unsat 505 1696

eq.atree.braun.8.unsat 684 2300

eq.atree.braun.9.unsat 892 3006
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Table A.6: Results for equivalence checking multiplier family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

braun.10 2.1E7 3.6E9 2133.2 U - - - I

braun.7 2.4E5 2.3E7 8.7 U 9.4E4 8.8E6 11.7 U

braun.8 1.2E6 1.6E8 61.2 U 5.8E5 6.3E7 96.2 U

braun.9 3.7E6 5.6E8 272.0 U 2.7E6 3.6E8 645.6 U

number of solved for MiniSat: 4

number of solved for Eq-MiniSat: 3

Due to limited space, the instance names are shortened.

A.2 Crafted Instances

The crafted families in this section are SGI, FRB, QG, QWH, EZFACT, GT, RBSAT,

VMPC, AUTOMATA, BATTLESHIP, PEBBLING, VDW, and MOD.

SGI There are 28 instances in the SGI family. While MiniSat is able to solve one of the in-

stances in two hours, Eq-MiniSat solves 25 instances. The unsolved instance in two hours are

‘srhd-sgi-m42-q585-n40-p15-s54275047’, ‘srhd-sgi-m52-q1041.25-n50-p15-s99099953’, and ‘-

srhd-sgi-m52-q918.75-n50-p30-s52376212’. Table A.8 and Table A.7 presents the statistical

data for this family.

Forced RB Model The FRB family has 20 instances. None of the solvers are able to solve

‘frb45-21-1’ and ‘frb45-21-2’. Eq-MiniSat solves the rest of 18 instances, while MiniSat

solves 14 instances. The runtime for instances solved by both solvers are 6,340.1 and 5904.2

for MiniSat and Eq-MiniSat respectively. The instances information and results are shown

in Table A.9 and Table A.10.

Quasigroup The QG family has twenty instances. The unsolved instances for both solvers

are: ‘QG7-gensys-icl100.sat05-3226.reshuffled-07’, ‘QG7-gensys-ukn003.sat05-3346.reshuffl-

ed-07’, ‘QG7-gensys-ukn003.sat05-3346.reshuffled-07’ , ‘QG7a-gensys-icl009.sat05-3830.res-

huffled-07’, ‘QG7a-gensys-ukn002.sat05-3842.reshuffled-07’, ‘QG7a-gensys-ukn009.sat05-3-

849.reshuffled-07’. All of the remaining 14 instances are solved by Eq-MiniSat. MiniSat
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Table A.7: Results for subgraph isomorphism (SGI) family.

Instance #Vars #Cls

srhd-sgi-m27-q225-n25-p15-s58217873 550 35586

srhd-sgi-m27-q225-n25-p30-s70617701 671 50773

srhd-sgi-m27-q255-n25-p15-s2076598 545 29734

srhd-sgi-m27-q255-n25-p30-s39712998 666 45238

srhd-sgi-m32-q326.25-n30-p15-s44266159 792 67279

srhd-sgi-m32-q326.25-n30-p30-s48700942 943 93431

srhd-sgi-m32-q369.75-n30-p15-s59317012 894 82294

srhd-sgi-m32-q369.75-n30-p30-s25693430 952 84809

srhd-sgi-m37-q446.25-n35-p15-s25120921 1106 129272

srhd-sgi-m37-q446.25-n35-p30-s33692332 1285 166723

srhd-sgi-m37-q505.75-n35-p15-s48276711 1244 150604

srhd-sgi-m37-q505.75-n35-p30-s59841049 1295 148400

srhd-sgi-m42-q585-n40-p30-s19690873 1638 253275

srhd-sgi-m42-q663-n40-p15-s72490337 1649 256038

srhd-sgi-m42-q663-n40-p30-s67876261 1634 212885

srhd-sgi-m47-q742.5-n45-p15-s28972035 1985 409171

srhd-sgi-m47-q742.5-n45-p30-s17570390 2088 405748

srhd-sgi-m47-q841.5-n45-p15-s16393788 1981 333838

srhd-sgi-m47-q841.5-n45-p30-s84954709 2115 356340

srhd-sgi-m52-q1041.25-n50-p30-s30907550 2561 490309

srhd-sgi-m52-q918.75-n50-p15-s98191766 2377 566749

srhd-sgi-m62-q1327.5-n60-p15-s1351253 3420 1120760

srhd-sgi-m62-q1327.5-n60-p30-s52708253 3672 1163952

srhd-sgi-m62-q1504.5-n60-p15-s80450670 3510 974465

srhd-sgi-m62-q1504.5-n60-p30-s88600538 3651 926696
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Table A.8: Results for subgraph isomorphism (SGI) family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

s58217873 8.0E5 4.4E7 601.7 S 1.3E1 5.5E2 0.1 S

s70617701 - - - I 2.6E5 1.5E7 113.3 S

s2076598 - - - I 2.7E6 1.0E8 1092.2 S

s39712998 - - - I 1.3E1 6.7E2 0.1 S

s44266159 - - - I 9.0E0 7.9E2 0.1 S

s48700942 - - - I 2.2E5 1.5E7 146.3 S

s59317012 - - - I 1.7E1 1.1E3 0.1 S

s25693430 - - - I 1.5E1 9.5E2 0.1 S

s25120921 - - - I 1.3E1 1.1E3 0.2 S

s33692332 - - - I 8.0E0 1.3E3 0.2 S

s48276711 - - - I 1.2E1 1.2E3 0.2 S

s59841049 - - - I 1.1E1 1.3E3 0.2 S

s19690873 - - - I 1.2E1 1.6E3 0.4 S

s72490337 - - - I 1.4E1 1.6E3 0.4 S

s67876261 - - - I 1.7E1 1.6E3 0.4 S

s28972035 - - - I 1.4E1 2.0E3 1.0 S

s17570390 - - - I 1.5E1 2.1E3 0.7 S

s16393788 - - - I 1.9E1 2.0E3 0.8 S

s84954709 - - - I 1.5E1 2.1E3 0.6 S

s30907550 - - - I 1.7E1 2.6E3 0.7 S

s98191766 - - - I 1.4E1 2.4E3 0.7 S

s1351253 - - - I 1.1E1 3.4E3 1.6 S

s52708253 - - - I 2.0E1 3.7E3 1.6 S

s80450670 - - - I 1.9E1 3.5E3 1.5 S

s88600538 - - - I 1.8E1 3.7E3 1.5 S

number of solved for MiniSat: 1

number of solved for Eq-MiniSat: 25
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Table A.9: FRB family instances.

Instance Name #Vars #Cls

frb30-15-1 450 19084

frb30-15-2 450 19084

frb30-15-3 450 19084

frb30-15-4 450 19084

frb30-15-5 450 19084

frb35-17-1 595 29707

frb35-17-2 595 29707

frb35-17-3 595 29707

frb35-17-4 595 29707

frb35-17-5 595 29707

frb40-19-1 760 43780

frb40-19-2 760 43780

frb40-19-3 760 43780

frb40-19-4 760 43780

frb40-19-5 760 43780

frb45-21-3 945 61855

frb45-21-4 945 61855

frb45-21-5 945 61855

solves 11 instances. The runtime for the instances solved by both solvers are 9,365.7 and

6,194.9 for MiniSat and Eq-MiniSat, respectively. Table A.11 and A.12 shows the statistical

results.

Quasigroup With Holes The QWH family has five instances with less than 10,000 variables.

Minisat solves four instances and Eq-MiniSat five instances. The runtime for the common

solved instances are 3487.4 and 1788.6 for MiniSat and Eq-MiniSat, respectively. The

statistical data for this family is presented in Table A.13 and Table A.14.

Factorization There are 39 instances in the family. Table A.15 and Table A.16 shows the

statistics for the instances for which at least one of the solvers is able to solve the instance

in less than two hours. Due to space concerns the instances with runtime less than a second

are not shown in the table. Unsolved instance in two hours are ‘ezfact64 3’, ‘ezfact64 4’,

‘ezfact64 7’, ‘ezfact64 8’, ‘ezfact64 9’. Eq-MiniSat solves 34 instances, while MiniSat solves

30 instances. The runtime for the instances solved by both solvers are 525.6 and 1846.3
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Table A.10: Results for FRB family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

frb30-15-1 1.7E4 5.3E5 0.6 S 2.3E4 1.1E6 2.6 S

frb30-15-2 8.5E4 3.4E6 14.4 S 2.5E4 1.3E6 3.1 S

frb30-15-3 1.2E4 4.2E5 0.4 S 2.0E4 1.1E6 2.4 S

frb30-15-4 3.1E3 6.0E4 0.0 S 1.7E4 8.8E5 1.8 S

frb30-15-5 6.7E2 1.5E4 0.0 S 1.1E4 6.3E5 1.2 S

frb35-17-1 2.4E4 8.4E5 1.0 S 7.4E4 4.7E6 16.9 S

frb35-17-2 1.9E5 7.4E6 43.4 S 9.0E4 5.5E6 19.3 S

frb35-17-3 3.9E5 1.9E7 158.5 S 2.0E4 1.2E6 2.5 S

frb35-17-4 3.4E4 1.3E6 3.0 S 4.3E4 2.8E6 8.1 S

frb35-17-5 4.2E5 2.1E7 191.2 S 8.1E1 2.9E3 0.0 S

frb40-19-1 4.0E5 2.1E7 206.9 S 2.4E5 1.9E7 93.3 S

frb40-19-2 5.2E5 2.9E7 326.4 S 1.8E5 1.4E7 58.3 S

frb40-19-3 2.0E6 1.1E8 1938.2 S 5.3E6 4.1E8 5665.7 S

frb40-19-4 2.6E6 1.5E8 3456.1 S 1.1E5 7.8E6 29.3 S

frb40-19-5 - - - I 1.2E6 8.9E7 663.5 S

frb45-21-3 - - - I 2.8E6 2.4E8 2348.5 S

frb45-21-4 - - - I 8.8E5 7.3E7 569.1 S

frb45-21-5 - - - I 3.6E6 3.0E8 3742.8 S

number of solved for MiniSat: 14

Number of cases solved by Eq-MiniSat: 18

Table A.11: Quasigroup family instances.

Instance #Vars #Cls

QG7-dead-dnd001.sat05-3419.reshuffled-07 1040 13020

QG7-dead-dnd002.sat05-3108.reshuffled-07 1602 14784

QG7-dead-dnd005.sat05-3111.reshuffled-07 502 11816

QG7a-gensys-icl004.sat05-3825.reshuffled-07 2401 15960

QG-gensys-brn008.sat05-2685.reshuffled-07 1467 7521

QG-gensys-icl003.sat05-2715.reshuffled-07 1472 7737

QG7-gensys-icl001.sat05-2926.reshuffled-07 432 14889

QG7a-gensys-brn004.sat05-3669.reshuffled-07 2435 16016

QG7a-gensys-brn100.sat05-3765.reshuffled-07 2901 18243

QG7a-gensys-ukn001.sat05-3841.reshuffled-07 2737 18375

QG7a-gensys-ukn005.sat05-3845.reshuffled-07 2765 18046

QG8-gensys-ukn005.sat05-3584.reshuffled-07 1133 56210

gensys-ukn002.sat05-2744.reshuffled-07 2129 8961

pmg-11-U.sat05-3939.reshuffled-07 169 562
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Table A.12: Results for Quasigroup family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

dnd001 - - - I 1.1E7 6.7E8 3367.8 U

dnd002 - - - I 3.3E7 7.1E8 4686.9 U

dnd005 - - - I 5.6E6 3.2E8 1623.5 U

icl004 2.1E7 5.9E8 3338.2 U 4.7E6 1.5E8 1061.9 U

QG-*-brn008 7.4E6 8.8E7 196.1 U 5.4E6 4.4E7 154.3 U

icl003 1.2E7 1.3E8 327.5 U 3.9E6 3.0E7 101.9 U

icl001 5.5E5 3.6E7 60.6 U 6.6E5 3.8E7 153.4 U

brn004 1.9E6 2.4E7 74.4 S 1.0E6 1.2E7 49.6 S

brn100 1.2E6 1.2E7 34.4 S 2.2E6 2.6E7 131.9 S

ukn001 2.3E6 3.6E7 122.9 S 8.9E5 1.2E7 54.6 S

QG7a-*-ukn005 1.3E6 1.4E7 39.4 S 2.1E6 2.9E7 145.4 S

QG8-*-ukn005 3.5E5 2.1E7 133.1 U 3.2E5 1.3E7 121.8 U

ukn002 7.1E6 7.3E7 171.9 U 3.0E6 2.2E7 79.6 U

pmg-11 1.8E8 7.3E9 4867.2 U 8.0E7 3.0E9 4140.5 U

Number of cases solved by MiniSat: 11

Number of cases solved by Eq-MiniSat: 14

Table A.13: Quasigroup With Holes Instances.

Instance #Vars #Cls

qwh.35.405.shuffled-as.sat03-1651 1597 10658

qwh.40.528.shuffled-as.sat03-1652 2511 18906

qwh.40.544.shuffled-as.sat03-1653 2843 22558

qwh.40.560.shuffled-as.sat03-1654 3100 26345

qwh.50.1250.shuffled-as.sat03-1655 16719 331272

Table A.14: Results for Quasigroup With Holes family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

qwh.35.405 5.4E4 1.0E7 5.1 S 3.0E4 6.2E6 19.6 S

qwh.40.528 - - - I 6.2E5 1.2E8 472.9 S

qwh.40.544 1.3E7 2.0E9 3147.1 S 1.3E6 2.5E8 983.0 S

qwh.40.560 1.4E6 1.4E8 136.3 S 8.6E5 1.6E8 637.7 S

qwh.50.1250 3.5E6 9.8E7 198.9 S 2.3E5 2.2E7 148.3 S

Number of cases solved by MiniSat: 4

Number of cases solved by Eq-MiniSat: 5

Due to limited space, the instance names are shortened.
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Table A.15: Factorization family instances.

Instance #Vars #Cls

ezfact48 1.shuffled 1729 11001

ezfact48 10.shuffled 1729 11001

ezfact48 2.shuffled 1729 11001

ezfact48 3.shuffled 1729 11001

ezfact48 4.shuffled 1729 11001

ezfact48 5.shuffled 1729 11001

ezfact48 6.shuffled 1729 11001

ezfact48 7.shuffled 1729 11001

ezfact48 8.shuffled 1729 11001

ezfact48 9.shuffled 1729 11001

ezfact64 1.shuffled 3073 19785

ezfact64 2.shuffled 3073 19785

ezfact64 5.shuffled 3073 19785

ezfact64 6.shuffled 3073 19785

seconds for MiniSat and Eq-MiniSat, respectively.

Ordering All the ten instances in the family are solved by Eq-MiniSat, while MiniSat solves

7 instances. Table A.17 and Table A.18 show the statistical results for this family. The

runtime for MiniSat and Eq-MiniSat are 2591 and 1088.4, respectively.

Model RB There are 46 instances in the family. Eq-MiniSat and MiniSat, respectively, solve

6 and 2 instances in two hours. Table A.19 and Table A.20 present the statistical results

for this family.

VMPC The VMPC family has six instances. The unsolved instances are ‘vmpc 34.re-

named-as.sat05-1926’, ‘vmpc 35.renamed-as.sat05-1921’, ‘vmpc 36.renamed-as.sat05-1922’.

Eq-MiniSat is able to solve the remaining 3 instances while MiniSat solves 2 instances.

Table A.21 and Table A.22 shows the statistical results for this family.

MOD circuits The Mod circuits family has seven instances. There are four unsolved in-

stances for both solvers in two hours: ‘mod3block 2vars 9gates u2 autoenc’, ‘mod3block 2-

vars 10gates u2 autoenc’, ‘mod3block 2vars 11gates u2 autoenc’, ‘mod3block 4vars 11gat-
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Table A.16: Results for Factorization family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

ezfact48 1 2.9E4 1.4E7 3.7 U 3.7E4 1.3E7 14.3 U

ezfact48 10 4.1E5 1.3E8 53.3 U 7.9E5 2.7E8 354.5 U

ezfact48 2 7.3E4 2.1E7 7.1 U 5.2E4 1.8E7 19.2 U

ezfact48 3 9.6E4 4.1E7 12.5 U 1.4E5 4.0E7 53.3 U

ezfact48 4 1.7E5 7.6E7 24.2 U 3.1E5 8.9E7 117.9 U

ezfact48 5 3.9E5 1.4E8 52.3 U 3.7E5 1.2E8 151.1 U

ezfact48 6 2.2E5 7.3E7 26.7 U 8.2E5 2.5E8 361.8 U

ezfact48 7 5.9E5 2.2E8 93.9 U 8.0E5 2.6E8 355.2 U

ezfact48 8 7.2E5 2.6E8 115.5 U 5.5E5 1.7E8 223.9 U

ezfact48 9 8.6E5 3.2E8 136.4 U 4.5E5 1.4E8 195.1 U

ezfact64 1 - - - I 1.4E6 6.7E8 1133.4 S

ezfact64 2 - - - I 1.3E6 5.7E8 1024.3 S

ezfact64 5 - - - I 3.1E6 1E9 2022.9 S

ezfact64 6 - - - I 4.2E6 1.4E9 2022.9 S

Number of cases solved by MiniSat: 31

Number of cases solved by Eq-MiniSat: 35

Table A.17: Ordering family instances.

Instance #Vars #Cls

counting-clqcolor-unsat-set-b-clqcolor-08-06-07.sat05-1257.reshuffled-07 132 1527

counting-easier-fphp-012-010.sat05-1214.reshuffled-07 120 1212

counting-easier-php-012-010.sat05-1172.reshuffled-07 120 672

gt-ordering-sat-gt-030.sat05-1295.reshuffled-07 900 24824

gt-ordering-unsat-gt-025.sat05-1306.reshuffled-07 625 14125

gt-ordering-unsat-gt-030.sat05-1307.reshuffled-07 900 24825

gt-ordering-unsat-gt-035.sat05-1308.reshuffled-07 1225 39900

sat-strips-gripper-10t19.sat05-1143.reshuffled-07 3390 53225

sat-strips-gripper-12t23.sat05-1144.reshuffled-07 4940 93221

unsat-logistics-rotate-09t5.sat05-1139.reshuffled-07 4336 214585
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Table A.18: Results for Ordering family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

sat05-1257 2.1E6 2.3E7 22.0 U 5.9E5 7.7E6 10.5 U

sat05-1214 2.8E7 3.8E8 1370.4 U 1.1E7 1.1E8 384.3 U

sat05-1172 2.9E7 3.5E8 831.3 U 1.4E7 1.7E8 444.4 U

sat05-1295 - - - I 1.3E6 2.1E7 94.3 U

sat05-1306 1.2E7 1.4E8 251.8 U 9.2E5 1.3E7 52.4 U

sat05-1307 - - - I 1.5E7 2.7E8 1399.2 U

sat05-1308 - - - I 5.1E7 1.0E9 6659.5 U

sat05-1143 3.1E3 2.4E5 0.1 S 3.8E4 7.9E6 16.1 S

sat05-1144 1.7E4 1.8E6 0.4 S 1.8E5 4.9E7 143.2 S

sat05-1139 2.6E5 2.9E7 115.0 U 1.0E5 1.3E7 37.5 U

Number of cases solved by MiniSat: 7

Number of cases solved by Eq-MiniSat: 10

Due to limited space, the instance names are shortened.

Table A.19: Model RB family instances.

Instance #Vars #Cls

rbsat-v760c43649gyes8 760 43649

rbsat-v760c43649g7 760 43649

rbsat-v945c61409g3 945 61409

rbsat-v760c43649g5 760 43649

rbsat-v760c43649g7 760 43649

rbsat-v945c61409g3 945 61409

rbsat-v945c61409g4 945 61409
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Table A.20: Results for Model RB family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

v760c43649gyes8 - - - I 4.1E6 2.4E8 2345.6 S

v760c43649g7 - - - I 2.4E5 1.6E7 84.4 S

v945c61409g3 - - - I 6.5E6 4.4E8 4712.1 S

v760c43649g5 2.4E6 1.4E8 2620.9 S 1.9E5 1.3E7 67.0 S

v760c43649g7 8.6E5 4.3E7 509.4 S - - - I

v945c61409g3 - - - I 6.5E6 4.4E8 4712.1 S

v945c61409g4 - - - I 4.9E6 4.0E8 4503.5 S

Number of cases solved by MiniSat: 2

Number of cases solved by Eq-MiniSat: 6

Due to limited space, the instance names are shortened.

Table A.21: VMPC family instances.

Instance #Vars #Cls

vmpc 25.renamed-as.sat05-1913 625 76775

vmpc 29.renamed-as.sat05-1916 841 120147

vmpc 32.renamed-as.sat05-1919 1024 161664

Table A.22: Results for VMPC family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

vmpc 25 5.2E5 2.4E7 134.4 S 5.3E5 4.1E7 187.2 S

vmpc 29 7.8E6 4.5E8 5556.9 S 1.3E6 1.2E8 614.4 S

vmpc 32 - - - I 3.9E6 4.3E8 2917.6 S

Number of cases solved by MiniSat: 2

Number of cases solved by Eq-MiniSat: 3

Due to limited space, the instance names are shortened.
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Table A.23: MOD Circuits family instances.

Instance #Vars #Cls

mod3 4vars 6gates 289 33900

mod3block 3vars 9gates restr 784 209392

owp 4vars 5gates 267 23747

Table A.24: Results for MOD Circuits family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

mod3 4 1.5E7 3.8E8 1456.1 U 2.8E7 7.0E8 1500.6 U

mod3block 5.4E6 2.0E8 1098.9 S 1.4E5 5.1E6 4.4 S

owp 4 2.3E3 3.3E4 0.1 U 1.9E3 2.3E4 0.0 U

Number of cases solved by MiniSat: 3

Number of cases solved by Eq-MiniSat: 3

Due to limited space, the instance names are shortened.

es b2’. The runtime for other instances are 2555.1 and 1505 for MiniSat and Eq-MiniSat,

respectively. Table A.23 and Table A.24 shows the statistical results.

Automata synchronization This family has ten instances with number of variables less than

10,000. Unsolved instances in two hours are ‘crn 20 360 u’, and ‘crn 20 361 s’. MiniSat

solves all of the remaining instances, while Eq-MiniSat is not able to solve ‘rnd 150 29 u’.

The runtime for the instances solved by both solvers are 505.3 and 5109.8. Table A.25 and

Table A.26 show the statistical data for this family.

Battleship This family has 24 instances. MiniSat outperforms Eq-MiniSat by solving 19

versus 2. The unsolved instances are ‘battleship-13-13-unsat’, ‘battleship-14-14-unsat’, ‘

battleship-15-15-unsat’, ‘battleship-16-16-unsat’, ‘battleship-17-33-sat’. Table A.27 and Ta-

ble A.28 shows the statistical data.

Graph Pebbling There are ten instances in the family. MiniSat is able to solve all of them in

two hours, while Eq-MiniSat solves seven instances. Table A.29 and Table A.30 shows the

statistical results for these instances. The runtime for the instances solved by both solvers
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Table A.25: Automata Synchronization family instances.

Instance #Vars #Cls

crn 11 100 s 1300 2355

crn 11 99 u 1287 2332

rnd 100 27 s 2754 10377

rnd 100 28 s 2856 10578

rnd 100 28 u 2856 10578

rnd 100 32 s 3264 11382

rnd 150 29 u 4408 19904

rnd 150 42 s 6384 23817

Table A.26: Results for Automata Synchronization family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

crn 11 100 1.6E6 3.1E7 9.4 S 4.2E6 1.1E8 77.4 S

crn 11 99 1.5E6 3.2E7 9.7 U 6.8E6 1.7E8 128.7 U

rnd 100 27 2.1E5 8.2E7 11.1 S 2.4E5 7.0E7 73.1 S

rnd 100 28 9.0E5 3.0E8 41.3 S 2.5E5 8.0E7 83.2 S

rnd 100 28 6.5E6 2.0E9 322.8 U 7.5E6 2.6E9 3007.9 U

rnd 100 32 1.1E6 3.6E8 52.6 S 2.6E6 9.1E8 1062.6 S

rnd 150 29 1.2E7 6.1E9 1031 U - - - I

rnd 150 42 8.7E5 3.1E8 58.4 S 2.0E6 4.0E8 676.9 S

Number of cases solved by MiniSat: 8

Number of cases solved by Eq-MiniSat: 7

Due to limited space, the instance names are shortened.

are 26.7 and 758.9 seconds for MiniSat and Eq-MiniSat, respectively.

Van Der Waerden numbers The VDW family has twelve instances. While MiniSat solves all

the instances in two hours, Eq-MiniSat is not able to solve three instances. The statistical

data is shown in Table A.31 and Table A.32. The runtime for the instances solved by both

solvers are 14,921.8 and 16,289.4 seconds for MiniSat and Eq-MiniSat, respectively.
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Table A.27: Battleship family instances.

Instance #Vars #Cls

battleship-10-10-unsat 100 550

battleship-10-17-sat 170 865

battleship-10-18-sat 180 910

battleship-10-19-sat 190 955

battleship-11-11-unsat 121 726

battleship-11-21-sat 231 1276

battleship-12-12-unsat 144 936

battleship-12-23-sat 276 1662

battleship-14-26-sat 364 2562

battleship-14-27-sat 378 2653

battleship-15-29-sat 435 3270

battleship-16-31-sat 496 4777

battleship-24-57-sat 1368 16308

battleship-5-8-unsat 40 105

battleship-6-9-unsat 54 171

battleship-7-12-unsat 84 301

battleship-7-13-sat 91 322

battleship-8-15-sat 120 484

battleship-9-17-sat 153 693
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Table A.28: Results for battleship family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

10-10 2.3E5 4.1E6 2.5 U 4.9E5 6.5E6 9.9 U

10-17 3.3E5 3.8E6 4.7 S - - - I

10-18 7.8E2 6.6E3 0.0 S - - - I

10-19 4.9E2 3.7E3 0.0 S - - - I

11-11 1.5E7 2.5E8 334.2 U 6.7E6 8.9E7 182.9 U

11-21 3.0E6 3.1E7 75.0 S - - - I

12-12 3.1E7 5.8E8 726.5 U - - - I

12-23 2.4E3 1.6E4 0.0 S - - - I

14-26 2.0E7 2.3E8 1138.6 S - - - I

14-27 1.2E6 1.1E7 41.0 S - - - I

15-29 3.4E7 3.6E8 1982.4 S - - - I

16-31 1.2E6 9.6E6 43.2 S - - - I

24-57 4.1E3 1.2E4 0.0 S - - - I

5-8 8.7E3 8.7E4 0.0 U - - - I

6-9 5.9E4 6.7E5 0.3 U - - - I

7-12 6.2E7 6.9E8 817.4 U - - - I

7-13 2.1E2 1.5E3 0.0 S - - - I

8-15 7.5E2 6.8E3 0.0 S - - - I

9-17 4.1E3 3.6E4 0.0 S - - - I

Number of cases solved by MiniSat: 19

Number of cases solved by Eq-MiniSat: 2

Due to limited space, the instance names are shortened.

Table A.29: Graph pebbling family instances.

Instance #Vars #Cls

sat-grid-pbl-0070.sat05-1334.reshuffled-07 4970 9731

sat-grid-pbl-0200.sat05-1339.reshuffled-07 40200 79801

sat-pbl-00400.sat05-1322.reshuffled-07 1497 7374

unsat-grid-pbl-0080.sat05-1344.reshuffled-07 6480 12722

unsat-pbl-00070.sat05-1324.reshuffled-07 257 7375

unsat-pbl-00080.sat05-1325.reshuffled-07 288 11604

unsat-pbl-00090.sat05-1326.reshuffled-07 322 9322

unsat-pbl-00150.sat05-1328.reshuffled-07 552 30977

unsat-pbl-00200.sat05-1329.reshuffled-07 725 22684

unsat-pbl-00250.sat05-1330.reshuffled-07 864 32700
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Table A.30: Results for graph pebbling family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

sat-grid-pbl-0070 3.3E5 5.6E5 0.2 S 7.8E5 1.5E6 3.4 S

sat-grid-pbl-0200 1E7 4.1E7 22.0 S 7.5E7 1.1E8 377.0 S

sat-pbl-00400 2.8E5 5.5E5 1.1 S 5.8E6 1.4E7 181.3 S

unsat-grid-pbl 2.3E6 4.5E6 2.7 U 2.9E6 6.5E6 17.2 U

unsat-pbl-00070 5.4E4 1.4E5 0.2 U 5.9E6 2.1E7 65.3 U

unsat-pbl-00080 7.3E4 2.0E5 0.3 U 1.7E6 6.4E6 27.8 U

unsat-pbl-00090 7.7E4 1.8E5 0.2 U 7.3E6 2.5E7 86.9 U

unsat-pbl-00150 1.2E5 2.9E5 0.7 U - - - I

unsat-pbl-00200 1.5E5 3.2E5 0.5 U - - - I

unsat-pbl-00250 2.4E5 5.1E5 0.9 U - - - I

Number of cases solved by MiniSat: 10

Number of cases solved by Eq-MiniSat: 7

Table A.31: Van Der Waerden family instances.

Instance #Vars #Cls

VanDerWaerden 2-3-12 135 135 5251

VanDerWaerden 2-3-13 160 160 7038

VanDerWaerden pd 2-3-19 348 174 16458

VanDerWaerden pd 2-3-20 381 191 19482

VanDerWaerden pd 2-3-20 390 195 20607

VanDerWaerden pd 2-3-21 399 200 21294

VanDerWaerden pd 2-3-21 401 201 21509

VanDerWaerden pd 2-3-21 404 202 22023

VanDerWaerden pd 2-3-22 443 222 26201

VanDerWaerden pd 2-3-22 462 231 28738

VanDerWaerden pd 2-3-23 505 253 34014

VanDerWaerden pd 2-3-23 506 253 34386
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Table A.32: Results for Van Der Waerden family.

Instance MiniSat Eq-MiniSat

Name #Bran. #Prop. RT RSL #Bran. #Prop. RT RSL

2-3-12 135 1.3E7 2.5E8 624.3 U 5.2E6 1.1E8 353.7 U

2-3-13 160 6.3E7 1.3E9 4915.2 U 5.0E7 1.2E9 5847.5 U

pd 2-3-19 348 7.3E6 1.6E8 752.3 U 3.0E6 7.2E7 413.2 U

pd 2-3-20 381 6.0E6 1.4E8 625.6 U 3.0E6 7.9E7 454.0 U

pd 2-3-20 390 1.5E7 3.5E8 2009.7 U 8.4E6 2.2E8 1546.1 U

pd 2-3-21 399 8.2E6 2.0E8 955.3 S 9.3E5 2.5E7 135.1 S

pd 2-3-21 401 2.1E7 5.2E8 2833.5 U 8.2E6 2.3E8 1470.2 U

pd 2-3-21 404 5.0E6 1.2E8 587.8 S 7.8E6 2.0E8 1435.5 S

pd 2-3-22 443 1.1E7 2.9E8 1618.1 S 2.0E7 5.9E8 4635.3 S

pd 2-3-22 462 9.4E6 2.4E8 1474.8 S - - - I

pd 2-3-23 505 1.0E7 2.7E8 1681.0 S - - - I

pd 2-3-23 506 1.5E7 4.0E8 2808.6 S - - - I

Number of cases solved by MiniSat: 12

Number of cases solved by Eq-MiniSat: 9
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