
Performance of MIMO Cognitive Ad-hoc Networks

Amiotosh Ghosh

A Thesis

in

The Department

of

Eletrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at

Concordia University
Montreal, Quebec, Canada

April 2013

c©Amiotosh Ghosh, 2013



CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By:                                                                                                                         

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

                                                                                     Chair

 External Examiner

 External to Program

 Examiner

Examiner

Thesis Supervisor

Approved by

                                                                                    
Chair of Department or Graduate Program Director

                                                                                     
Dean of Faculty

Amiotosh Ghosh

Performance of MIMO Cognitive Ad-hoc Networks

DOCTOR OF PHILOSOPHY (Electrical & Computer Engineering )

Dr. C. Assi

Dr. H. S. Hassanein

Dr. I. Hassan

Dr. D. Qiu

Dr. Y. R. Shayan

Dr. W. Hamouda



Abstract

Performance of MIMO Cognitive Ad-hoc Networks

Amiotosh Ghosh, PhD

Concordia University, 2013

Cognitive ad-hoc networks are able to share primary user frequency bands following

certain interference preconditions. For considered cognitive network, cognitive communi-

cation is limited by the interference imposed on the primary user. Probability of channel

availability for cognitive nodes for such opportunistic access is determined. Furthermore,

this probability of channel availability is used for the performance analysis purpose. A

Carrier Sense Multiple Access (CSMA) Media Access Control (MAC) protocol for the

cognitive network is considered and for that the embedded Markov model of cognitive

nodes is determined. This Markov model is used to determine the average channel access

delay, throughput and service rate of cognitive nodes.

This network is further extended to consider multiple frequency bands for cogni-

tive access. For this propose algorithms are proposed to address the channel allocation

and fairness issues of multi-band multiuser cognitive ad-hoc networks. Nodes in the net-

work have unequal channel access probability and have no prior information about the

offered bandwidth or number of users in the multiple access system. In that, nodes use

reinforcement learning algorithm to predict future channel selection probability from the

past experience and reach an equilibrium state. Proof of convergence of this multi party

stochastic game is established. Nevertheless, cognitive nodes can reduce the convergence
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time by exchanging channel selection information and thus further improve the network

performance.

To further improve the spectrum utilization, this study is extended to include

Multiple-input Multiple-output (MIMO) techniques. To improve the transmission effi-

ciency of the MIMO system, a cross-layer antenna selection algorithm is proposed. The

proposed cross-layer antenna selection and beamforming algorithm works as the data link

layer efficiency information is used for antenna selection purpose to achieve high efficiency

at the data link layer.

Having analyzed the cognitive network, to consider more realistic scenario primary

users identification method is proposed. An artificial intelligent method has been adopted

for this purpose. Numerical results are presented for the algorithm and compare these

results with the theoretical ones.
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Chapter 1

Introduction

1.1 Cognitive Radio

Traditionally, regulatory authorities applied fixed spectrum allocation policy to re-

duce chaos and to promote the development of inter operable wireless devices. But recent

growth of wireless devices creates two challenges for the fixed spectrum allocation policy,

namely: spectrum crisis and low spectrum utilization. Spectrum crisis situation arose as

fixed allocation policy licensed out most of the available bands [1]. On the other hand,

most of the licensed users either use the assigned spectrum for a small amount of time,

or do not use the spectrum at all. As a result, new licensed applicants are denied, though

some of the frequency bands are not utilized at all (Fig. 1.1 [2]). For example, armature

radio band is utilized for a very small amount of time. Conversely, ISM (Industrial, Sci-

entific and Medical), C, and L frequency bands are heavily utilized. This crisis situation

prevailed so far, as the traditional wireless devices are designed for a particular frequency

band which cannot operate in other bands. Fortunately, recent development of Software

Defined Radios (SDR) eliminate the interoperability issues. Unlike the traditional hard-

ware radios, SDRs are able to operate in a wide range of frequencies by switching the

carrier frequency [3]. Motivated by these facts, the Federal Communication Commis-
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Spectrum Occupancy

Figure 1.1: Average spectrum occupancy over six locations: Riverbend Park (Great Falls,
VA), Tysons Corner (VA), NSF Roof (Arlington, VA), NRAO (Greenbank, WV), New
York City, NRAO (Greenbank, WV), SSC Roof (Vienna, VA) and Chicago (IL) [2].

sion (FCC) in United States [1,4], Ofcom in United Kingdom [5], European Commissions

(ECs) [6], and Korea Communications Commission (KCC) [7] have been considering more

flexible and comprehensive usage of the available spectrum through the use of cognitive

radio technology. Beyond policy establishments, we also find practical implementation of

cognitive networks first in Claudvilla, Virginia in 2009, and later on a large-scale in Wilm-

ington, North Carolina, in 2010 [8], which proved that cognitive networks are realizable

and have real promise.

1.1.1 Classification

Cognitive radios apply two distinct approaches [9] for concurrent spectrum access,

viz., spectrum overlay and spectrum underlay, described as follows:
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• Underlay scheme, in which secondary users occupy the whole bandwidth and trans-

mit at power lower than the noise floor of the primary user. As power is very low

in these schemes, secondary users communication appears as white noise at the

primary user.

• Overlay scheme, in which secondary users use opportunistic or adaptive techniques

to determine when and where to transmit. In this study, we will only focus on

overlay communications of cognitive users.

1.1.2 Challenges for cognitive communication

Cognitive devices impose unique challenges due to the high fluctuation in the avail-

able spectrum, as well as the diverse Quality of Service (QoS) requirements of various

applications. In order to address these challenges, each cognitive user in the cognitive

network must perform [9]:

• Spectrum sensing, to determine which portions of the spectrum are available.

• Spectrum decision, to select the best available channel.

• Spectrum sharing, to coordinate access to this channel with other users.

• Spectrum mobility, to vacate the channel when a licensed user is detected.

1.2 Motivation

In this work, we will mainly focus on the above mentioned functionalities of cogni-

tive networks. Spectrum decision of a cognitive network has two primary goals: fairness

and utilization [3]. One of the prominent techniques to improve the spectrum utilization

is through Multiple-Input and Multiple-output (MIMO) techniques. As cognitive radios

are able to access very small amount of wireless resources, this high spectrum efficiency
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makes MIMO systems extremely valuable for cognitive devices. Moreover, MIMO system

efficiency can also be improved using techniques [10, 11], such as, space-time coding, an-

tenna selection, etc. This motivates us to investigate the application of MIMO technology

in cognitive networks.

Fairness among the cognitive nodes is another important issue for spectrum shar-

ing. But, most of the existing works in the area of channel selection for cognitive networks

assume that cognitive radios get access to channels having equal bandwidth [12–16]. In-

cidentally, bandwidth is not equally divided among the primary users. As a result, this

equal bandwidth assumption is not realistic. For the unequal bandwidth scenario, nodes in

a cognitive network may experience unequal data rate i.e., performance. Cognitive radios

have to vacate the occupied spectrum on the presence of the primary user. In such case,

cognitive nodes may switch to another spectrum or interrupt service, if no opportunity is

present.

Recently, the concept of cooperative communications has been introduced to gain

benefits of MIMO through cooperation between wireless nodes [17]. It is envisioned to

improve reliability and throughput in wireless networks. Similar to traditional coopera-

tive networks in cognitive settings, nodes can cooperate by relaying to each other useful

information about the network, while at the destination node, MIMO like diversity can

be achieved by combining the original and relayed packets [18, 19]. Moreover, nodes can

cooperative with each other in decision making and learning process of cognitive commu-

nication.

As indicated above, in cognitive settings, nodes may receive simultaneously signals

from primary users and from other cognitive users. Early detection of primary users’

presence is one of the most important tasks in cognitive communications. In the literature,

available algorithms use a separate sensing time slot for this detection purpose [20, 21] .

If cognitive users detect primary user signal while communicating, cognitive nodes can

either reduce transmit power or stop transmitting to reduce unwanted interference on the
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primary user.

1.3 Thesis Contributions

In light of motivation and challenges mentioned above, the objective of this work is

to investigate the issues related to spectrum decision, sharing, and mobility functionalities

of cognitive ad-hoc networks. We consider a cognitive ad-hoc network as shown in Fig. 1.2.

Cognitive nodes use side by side frequency bands of the primary user. As a result, primary

users experience interference due to spill over energy [22]. Depending on the amount of

interference on primary users, cognitive nodes may need to turn off communication at

some instance. We assume cognitive nodes measure this interference using pilot signaling

of the primary user or blind channel estimation method. In this study, we consider physical

layer, data link layer, and cross layer issues to improve network performance for this type

of communication environment. At this end, we investigate the following topics as:

• We analyze the performance of interference-limited cognitive ad-hoc networks. In

the cognitive network, cognitive nodes use a multiple access MAC protocol for chan-
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Figure 1.2: Cognitive network scenario.
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nel access purpose while communication is limited by the interference imposed on

primary users by the cognitive nodes. Cognitive users are able to access the channel

if the interference imposed on primary users is below the specified threshold. For

this opportunistic network, we determine the probability of accessing the channel

under Rayleigh fading condition. We establish the embedded Markov model in the

cognitive nodes for the modified MAC protocol. We present analysis for the Markov

model to determine the average channel access delay, throughput and service rate

of cognitive nodes.

• We extend our study for multi-band scenario. To address the channel allocation and

fairness issues of multi-band multiuser cognitive ad-hoc networks (MBMMCAN), we

propose machine learning based algorithm. Nodes in the network have unequal chan-

nel access probability and have no prior information about the offered bandwidth

or number of users in the multiple access system. In that, nodes use reinforcement

learning algorithm to predict future channel selection probability from the past ex-

perience and reach an equilibrium state. Proof of convergence of this multi party

stochastic game is provided, and the throughput performance is analyzed and com-

pared for Q learning, No-regret learning and learning automata algorithms. We

further extend this study for cooperative communication context. Cognitive nodes

use modified MAC protocol to achieve cooperative communication. In the process,

nodes achieve diversity gain and exchange channel selection information to further

improve the network performance.

• Efficient use of the spectrum is one of the key issues for cognitive communications.

To address this issue, we consider a MIMO cross-layer transmit-antenna selection

algorithm to improve the spectrum utilization between cognitive node pairs. We also

consider the effect of antenna selection approaches on beamforming and pre-coding

techniques. Antenna selection, beamforming and pre-coding at the physical layer
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determine the performance of a particular channel. This allows us to apply these

techniques combined with the channel selection algorithm to determine the network

performance. For implementation point of view, we also determine the complexity

of the proposed learning based channel selection and antenna selection algorithm.

• We propose primary user signal detection using modulation class identification

method. We consider multiple transmit and multiple receive antennas for cognitive

nodes. We employ machine learning approaches for the modulation identification

purpose. The proposed algorithm works as higher order moments and cumulants

are calculated from the received signal samples at each of the receiving branches

of cognitive nodes. After this step, these features are fed to an Artificial Neural

Network (ANN) to determine the presence of primary users. Final identification

decision is mad using the decisions from all receiving branches. We also present

numerical results of our algorithm and compare these results with the theoretical

results of the energy detection algorithm [23].

Contributions of this thesis have been published in [24–31]. Throughout the thesis, bold-

face letters are used to represent vectors and matrices.

1.3.1 Outline of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we present literature

review of cognitive ad-hoc networks, machine learning, game theory and MIMO.

In Chapter 3, we determine the average access delay, throughput and service time

for interference-limited cognitive networks. For this purpose, we provide theoretical results

for the probability of channel availability of cognitive networks in interference-limited

communication. We present an embedded Markov model of the cognitive nodes. We

use previously determined channel availability results in the embedded Markov model to

determine the network performance metrics. Both simulation and analytical results are
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presented to examine the performance under different network settings.

In Chapter 4, we present performance results for learning-based channel selection

approaches in cognitive ad-hoc networks. First, we establish proof of convergence for

the algorithms in multi-band cognitive ad-hod networks with heterogeneous nodes. We

show that learning-based channel selection algorithms converge to a Nash equilibrium

point for nodes having unequal packet arrival rate in multi-party multi-agent stochastic

game. We also establish that learning-based algorithms can improve the average data

rate of the network, and can reduce user satisfaction variance i.e., improve fairness among

cognitive nodes. We further show that the convergence time and data rate improve for

the cooperative learning case.

In Chapter 5, we investigate the performance of cross-layer antenna selection and

channel selection approaches for cognitive ad-hoc networks. We present the average data

rate objective function for multi-band cognitive ad-hod network that accounts for the

interference constraint set by the primary user. It is shown that the proposed cross-

layer antenna selection algorithm can improve the link layer transmission efficiency. Our

results also indicate that when the cross-layer antenna selection algorithm is deployed

with learning based channel selection algorithm, the average data rate of the network

improves significantly. We further combine antenna selection with beamforming to gain

high throughput in cognitive networks. Using beamforming, the combined algorithm al-

lows cognitive users to access the channel with no interference effect on primary users. The

developed cross-layer algorithm offers high throughput using low number of RF chains.

Our results also show that the effect of imperfect channel-state information (CSI) and

delayed estimates is not significant as the system still able to outperform other existing

schemes.

In Chapter 6, we present an algorithm for primary user identification using mod-

ulation class detection. We also evaluate the effect of multiple receive antennas on iden-

tification probability. We present simulation results for both intra-class and inter-class
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identifications. Our results indicate that neural networks can be adopted to identify pri-

mary users’ presence with very high accuracy while cognitive users are communicating.

Finally, in Chapter 7 we present a brief summery of our investigation and some

important conclusions. We also include recommendations for possible future areas of

interest related to this thesis.
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Chapter 2

Background

In this chapter, we first present a brief review on cognitive networks, machine

learning, ANN, followed by an introduction to game theory, and finally on MIMO tech-

niques. Our intention is to make the reader prepared for next chapters, where we use

these techniques in our development.

2.1 Cognitive Ad-hoc Networks

An ad-hoc network is a collection of wireless mobile nodes that self-configure to

form a network without any established infrastructure. A wireless link exists between

each pair of nodes as there is no master node or base station. That is, communication

is peer to peer. As every node may not be in the direct communication range of every

other node, nodes can cooperate in routing each other’s data. In addition, the nodes in

an ad-hoc network may be mobile.

According to the features mentioned above, ad-hoc networks can be rapidly de-

ployed and reconfigured, can be easily tailored to specific applications, and are robust due

to the distributed nature and redundancy of nodes.
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2.1.1 Classical ad-hoc networks vs. cognitive ad-hoc networks

The uncertain spectrum environment and the importance of protecting the trans-

mission of the licensed users of the spectrum mainly differentiate classical ad-hoc networks

from cognitive ad-hoc networks. We describe these unique features of cognitive ad-hoc

networks [9, 32] compared to classical ad-hoc networks as follows:

• Choice of transmission spectrum: In cognitive radio networks, the available

spectrum bands are distributed over a wide frequency range, which vary over time

and space. Thus, each user sees different spectrum availability according to the

primary user activity. This is different in classical ad-hoc networks where they gen-

erally operate on a pre-decided channel that remains unchanged with time. For

the ad-hoc network with multi-channel support, all the channels are continuously

available for transmission, though nodes may select few of the latter from this set

based on self-interference constraints. A key distinguishing factor is the main con-

sideration of protecting the primary user transmission, which is entirely missing in

classical ad-hoc networks.

• Topology control: Ad-hoc networks lack centralized support, and hence must rely

on local coordination to gather topology information. In classical ad-hoc networks,

this is easily accomplished by periodic beacon messages on the channel. However,

in cognitive ad-hoc networks, as the licensed spectrum opportunity exists over large

range of frequencies, sending beacons over all the possible channels is not feasible.

Thus, cognitive ad-hoc networks are highly probable to have incomplete topology

information, which leads to an increase in collisions among cognitive users as well

as interference to the primary users.

• Multi-hop/multi-spectrum transmission: The end-to-end route in the cogni-

tive ad-hoc network consists of multiple hops having different channels according

to the spectrum availability. Thus, cognitive ad-hoc networks require collaboration
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between routing and spectrum allocation in establishing these routes. Moreover,

the spectrum switching on the links are frequent based on primary users’ arrivals.

However, in classical ad hoc networks, maintaining end-to-end QoS involves not only

the traffic load, but also how many different channels and possibly spectrum bands

are used in the path, the number of primary users induced spectrum change events,

and consideration of periodic spectrum sensing functions.

• Distinguishing mobility from primary user activity: In classical ad hoc net-

works, routes formed over multiple hops may periodically experience disconnection

caused by node mobility. These cases may be detected when the next hop node in

the path does not reply to messages and retry limit is exceeded at the link layer.

However, in cognitive ad-hoc networks, a node may not be able to transmit imme-

diately if it detects the presence of a primary user on the spectrum, even in the

absence of mobility. Thus, correctly inferring mobility conditions and initiating the

appropriate recovery mechanism in cognitive ad-hoc networks necessitate a different

approach from the classical one.

2.1.2 Cognitive radio functions

To realize the above mentioned differences, cognitive radio devices use greater sense

of self-awareness, learning and planning capabilities. The operation of cognitive radios

can be best described by the cognition cycle. The cognition cycle is a state machine that

shows the stages in the cognitive process as shown in Fig. 2.1 [33]. In simple terms,

radio receives information about its operation environment - the outside world. This

corresponds to the Observe state. This information is then evaluated to determine its

importance during the Orient state. Based on this evaluation, the radio can either

react immediately and enter the Act state, or it can determine its various options in a

more considered manner during the Decide state, or it can Plan for the longer term

before deciding and acting. Throughout the process, the radio uses these observations
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Figure 2.1: The cognition cycle proposed in [33].

and decisions to improve the operation and to Learn. The cognition cycle, though only

approximating the process, has proved to be a very useful framework within which to

analyze the concept of the cognitive radio. However, this model is further extended in [3]

to include the physical layer perspectives as shown in Fig. 2.2 [3]. As indicated in the

figure, physical layer parameters such as transmit power control, interference temperature

measurement, channel state information estimation and spectrum hole detection tasks are

included in the cognition cycle. This enable the cognition cycle to become the basis of

large amount of works in this area. In the following subsections we will introduce machine

learning, MIMO, game theory related to cognition cycle while we propose physical layer,

data-link layer, and cross layer techniques to improve network performance in the following

chapters.

2.2 Machine Learning

Machine learning is a branch of artificial intelligence, contains construction and

study of systems that can learn from input data. For instance, a system could be trained
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Figure 2.2: The cognition cycle proposed in [3].

to recognize characters by optical scanning. After the learning phase, it can be used

to recognize printed characters automatically based on previous learning experience. Ma-

chine learning algorithms can be classified based on the desired outcome of the algorithms,

learning process or types of input available during the training period.

2.2.1 Supervised learning

In this learning process, the system generates a function to map inputs to desired

outputs. Human experts often provide outputs or labels for the systems. In order to solve

a given problem of supervised learning, the following steps [34] are followed:

1. Determine data needed for the training set. For example, for the case of handwriting

analysis, the training data can be an entire line of handwriting, a single handwritten

character, or an entire handwritten word.
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2. Gather necessary data for the training set. A good training set contains inputs and

corresponding outputs and represents the real-world. These data can be collected

either from human experts or from measurements.

3. Determine input features for the learned function. The learned function accuracy

depends on how the input data is represented. In practice, a set of features are

detected that properly represent the input data. The number of features are kept

small to limit the dimensionality of the system. But, enough features are considered

to accurately predict the output.

4. Determine the structure of the learning system i.e., learned function and correspond-

ing learning algorithm. For instance, the designer may choose to use decision trees

or support vector machines.

5. Complete the design and train the system using the gathered training set.

6. Evaluate the performance of the learned function. After learning and parameter

adjustment, the performance of the resulting function is tested with a test input set

that is separate from the training set.

There are many supervised learning algorithms available [35] viz., Analytical learn-

ing, Artificial neural network, Backpropagation, Decision tree learning, Inductive logic

programming, Gaussian process regression, Learning Automata, Naive Bayes classifier,

Nearest Neighbor Algorithm, etc. These algorithms are used in: Bioinformatics, Database

marketing, Handwriting recognition, Information retrieval, Object recognition in com-

puter vision, Optical character recognition, Spam detection, Pattern recognition, Speech

recognition, etc.
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2.2.2 Unsupervised learning

In this learning process, the goal of the system is to model a set of inputs. Unlike

supervised learning, here outputs or labels are not known for learning systems. The

learning systems have only input data and without the presence of supervisor, their goal

is to identify the structure of the input space such as certain patterns of the input data

i.e., clustering [35].

2.2.3 Semi-supervised learning

These algorithms combine both labeled and unlabeled examples to generate an

appropriate function or classifier.

2.2.4 Reinforcement learning

In these algorithms the learner is a decision-making agent that takes actions in a

environment and receives reward or penalty for its actions in trying to solve a problem.

After a set of trial-and-error runs, it should learn the best policy, which is the sequence of

actions that maximize the total reward (Fig. 2.3) [35]. Reinforcement learning differs from

supervised learning in that correct input and output pairs are not presented. Moreover,

the system is not trained prior to deployment. Here the main goal of the system is finding

a balance between exploitation (of current knowledge) and exploration (of uncharted

territory).

The basic reinforcement learning model consists of:

• a set of states S;

• a set of actions A;

• rules of transitioning between states;

• rules that determine the scalar immediate reward or penalty of a transition; and
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Figure 2.3: At any state of the environment, the agent takes an action that changes the
state and returns a reward [35].

• rules that describe what the agent observes.

In a reinforcement learning process, an agent interacts with the environment in

discrete time steps. At given time t, the agent receives an observation ot, which includes

the reward or penalty rt. Based on the reward or penalty, the agent then chooses an

action at from the set of available actions, which is subsequently sent to the environment.

As a result, the environment moves to a new state st+1 and the reward or penalty rt+1

associated with the transition (st, at, st+1) is determined. The goal of a learning agent is

to explore as much states as possible to collect reward or penalty. The agent can choose

any action as a function of the history, or it can even randomize its action selection for

exploration purpose. When the agent’s performance is compared to that of an agent

with optimal action set, the difference in performance gives rise to the notion of regret.

Note that in order to act near optimality, the agent must reason about the long term

consequences of its actions. Thus, reinforcement learning is particularly well suited to

problems which include a long-term versus short-term reward trade-off.

In the literature some of the well known reinforcement learning algorithms are:

Temporal difference learning, Q-learning, State-Action-Reward-State-Action (SARSA)

[35], Fictitious play [36], Learning automata [37], etc. These algorithms have been applied
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successfully to problems such as, robot control, elevator scheduling, telecommunications.

2.3 ANN

Artificial Neural Networks are mathematical models based on organizational struc-

ture of the human brain. A neural network is an adaptive system that contains inter-

connected group artificial neurons or processing elements [38]. ANN can be trained with

sample data using a teaching method to solve problems. Similarly, ANNs with identi-

cal features can be applied to perform different tasks depending on the received train-

ing [38, 39]. ANN can be applied to find patterns in data or model relationship between

input and output data [40].

A neural network contains neurons to perform certain nonlinear mathematical op-

erations. Each neuron produces an output signal based on the received signals from its

inputs, and transmits that signal to all connected neurons or outputs. These neurons are

arranged in layers (Fig. 2.4). Each layer performs non-linear functions and connected

with a non-linear combination of the previous layer. The first layer, known as Input

layer, receives input signal and interacts with the environment. The final layer known

as Output layer, presents the processed data. Hidden layers do not have any interaction

with the environment as they connects the input and the output layers. Computational

capacity and complexity of an ANN depends on the number of hidden layers and neurons

per layer [38].

Learning is the fundamental component for ANN systems [38]. Through learning,

ANNs teach themselves to produce required outputs form inputs. In this step, ANNs are

first provided with a set of input-output samples for learning. During the learning process,

ANNs update inter neuron connection or synaptic weights to produce desired outputs from

inputs. After this step, ANN goes to the production stage. Learning can also happen in

the production stage. Learning can be supervised, unsupervised or hybrid [38].
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Figure 2.4: ANN model

In the ANN design process, several parameters are considered [38] such as, the

number of inputs and outputs, the number of layers, the number of neurons per layer,

minimum acceptable error, learning rate, and Epoch.

2.4 Game Theory

In applied mathematics, game theory is used to model multi person decision making

situations. During the decision making process, player in the game pursue some rational

strategies that take into account their expectations or knowledge of the other players’

behavior. Besides many applications in economics, game theory has been applied to

numerous fields such as law enforcement, voting decisions, telecommunications, etc.

Games can be classified into non cooperative or cooperative [41]. In non cooperative

games, the actions of the single player is considered. On the contrary, in cooperative games

the joint actions of groups are analyzed, i.e. what is the outcome if a group of players
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cooperate. In telecommunications, most game theoretic research has been conducted using

non cooperative games, but there are also approaches using coalition games.

A famous example of game theory is the prisoners dilemma [42]. In this game,

two arrested criminals are charged with a crime. But, the police does not have enough

evidence to convict the suspects, unless one of them confesses. The criminals are kept in

separate cells and they are not able to communicate with each other during the process.

In the process of conviction they are given the following choices:

1. If neither confesses, they will be convicted with minor crime and sentenced for one

month.

2. If one confesses and the other does not, the confessing one will be released and the

other will be sentenced for 9 months.

3. If both confess, both will be sentenced for six months.

The possible actions and corresponding sentences of the criminals are given in Fig.

2.5. Solution of the game is an outcome from which no player wants to deviate unilaterally.

The best possible outcome of a game is the Pareto efficient point. At this point all players

have better pay off. In the above mentioned prisoners dilemma, all the outcomes except

(Confess; Confess) are Pareto efficient. However, as there is no communication between

the prisoners, they are not able to reach this point. The prisoners are rational players

and choose the strategy that provides better payoff for a particular strategy of another

prisoner. This selfish behavior makes both prisoners to choose (Confess; Confess) strategy.

This point is the well known Nash equilibrium point. In this example, the way prisoners

or players choose a strategy is known as pure strategy game. However, in other forms of

the game, players choose strategy with some probability, which is known as mixed strategy

game.

We can also notice similar dilemma in the wireless environment. For instance, the

Multiple Access Game addresses the problem of medium access of wireless networks.
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Figure 2.5: Example of Prisoner’s dilemma game. The numbers represent the amount of
jail terms in months.

We choose this example as it corresponds to the channel allocation problem that we will

present in the next chapter. Consider a scenario of two players p1 and p2, who want to

access a shared communication channel for their intended receivers r1 and r2. We assume

that in each time slot each player has one packet to send and he/she can decide to access

the channel to transmit it or to wait. Furthermore, let us assume that p1, p2, r1, and r2

are in the same power range i.e., collision domain. If player p1 transmits his/her packet

and p2 does not transmit or wait, packet transmission of p1 becomes successful, otherwise

there is a collision and both players lose wireless resources. The dilemma in this game is

the following: Each player is tempted to transmit and involved in collision. But, if they

wait for each other they can save resources. This Multiple Access Game serves as the

basis of our proposed channel selection game in Chapter 3, a player switches channel to

get the benefit of the dilemma. Reader can find a very good tutorial on game theory and

its application in wireless environment in [41].
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2.5 MIMO

In radio communications, MIMO refers to the technology where multiple antennas

are employed at both the transmitter and receiver sides to improve performance. MIMO

technology offers significant increases in data throughput and link range without addi-

tional bandwidth or transmit power [10,11]. That is MIMO systems are known to provide

higher spectral efficiency and better link quality. Because of these properties, MIMO is

an important part of modern wireless communication standards [43, 44] such as IEEE

802.11n (Wifi), 4G, 3GPP Long Term Evolution, WiMAX and HSPA+.

MIMO techniques can be sub-divided into three main categories, pre-coding, spatial

multiplexing, and diversity.

• Pre-coding: In (single-layer) beamforming (Fig. 2.6), the same signal is emitted

from each of the transmit antennas with appropriate phase (and sometimes gain)

weighting such that the signal power is maximized at the receiver input. The benefits

of beamforming are to increase the received signal gain, by making signals emitted

from different antennas add up constructively, and to reduce the multi path fading

effect. In the absence of scattering, beamforming results in a well defined directional

pattern, but in typical cellular conventional beams are not a good analogy. When

the receiver has multiple antennas, the transmit beamforming cannot simultaneously

maximize the signal level at all of the receive antennas, and pre-coding is used (Fig.

2.7) [11]. This spatial processing occurs at the transmitter, and requires knowledge

of channel state information (CSI) at the transmitter.

• Spatial multiplexing In spatial multiplexing, a high rate signal is split into mul-

tiple lower rate streams and each stream is transmitted from a different transmit

antenna in the same frequency channel. If these signals arrive at the receiver an-

tenna array with sufficiently different spatial signatures, the receiver can separate

these streams into parallel channels (Fig. 2.8 [11]). Spatial multiplexing is used to
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Figure 2.6: Beamforming to improve the signal-to-noise ratio and to reduce interference
[11].

Figure 2.7: Beamforming using multiple antennas [11]. In the figure, αîe
jθ

î denote the
scaling factor for î ∈ Nt, and y(t)ejφĵ represents phase shifted version of the received
symbol vector for ĵ ∈ Nr.

support higher data rate applications. The maximum number of spatial streams is

limited by the lesser in the number of antennas at the transmitter or receiver [11].
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Figure 2.8: Space-time coding in MIMO system [11]. xî(t), and hî,ĵ in the figure represnt
the transmit symbol vector and the channel gain between transmit and receive antennas
for î ∈ Nt and ĵ ∈ Nr, respectively.

Spatial multiplexing can be used with or without transmit channel knowledge [45].

Spatial multiplexing can also be used for simultaneous transmission to multiple

receivers, known as space-division multiple access. By scheduling receivers with

different spatial signatures, good separability can be assured [11].

• Space-time Coding In space-time coding, a single stream (unlike multiple streams

in spatial multiplexing) is transmitted, but the signal is coded using space-time

coding as shown in Fig. 2.8. The signal is emitted from each of the transmit antennas

with full or near orthogonal coding. Space-time coding exploits the independent

fading in the multiple antenna system to enhance signal diversity [11].

Although MIMO systems result in drastic increase in spectral efficiency, it comes

with the price of complexity, and large number of RF chains. Recent works on MIMO

systems indicate that deploying a subset of available antennas i.e., selecting antennas can

provide high throughput performance [46]. In Chapter 5, we will employ an antenna

selection algorithm in cognitive settings to improve throughput performance of cognitive

networks.
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2.6 Conclusions

In this chapter, we have briefly discussed challenges for cognitive ad-hoc networks,

the cognition cycle, machine learning, ANN, game theory, and MIMO techniques. For the

remaining chapters, we will be using these protocols and mathematical tools to address

the cognitive radio design issues of heterogeneous cognitive networks.
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Chapter 3

Performance Analysis of Interference

Aware Cognitive Ad-hoc Networks

In this chapter, we analyze the performance of cognitive ad-hoc networks using

CSMA/CA MAC protocol for media access purpose. For the designed cognitive network,

cognitive communication is limited by the interference imposed on primary users. We

determine the probability of accessing the channel under Rayleigh fading condition for

this opportunistic network. We then use this probability to determine the embedded

Markov model in the cognitive nodes. Finally, we use this Markov model to determine

the average channel access delay, throughput and service rate of cognitive nodes.

3.1 Introduction

MAC layer plays an important role for cognitive ad-hoc networks [32]. In [47], the

authors survey the advantages, design consideration, and challenges of proposed MAC

protocols for cognitive networks. In the literature, IEEE 802.11-like MAC protocols have

been proposed in [47,48] and references therein. In coexistence with the primary user, the

performance of the cognitive network becomes very important. For instance in [48], the

authors proposed distributed multi channel MAC protocol for cognitive networks. In [49],
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channel access delay for nodes is optimized over sensing time for cognitive networks.

Stationary state probability is an important performance metric for coexistence condition.

It can be used to determine the blocking probability, service probability, queue size, for

performance evaluation. For heterogeneous networks, to determine the stationary state

probability vector, Continuous Time Markov Chain (CTMC) is used in [50]. CTMC is also

used in [51] to derive the blocking and forced termination probability of cognitive users

for concurrent communication with the primary user. Conversely in [52], two-dimensional

Markov chain model is used to determine the blocking probability, forced termination

probability and service completion probability of multi radio cognitive users subject to

primary users interference constraint. Using the state transition information, an analytical

formulation of the saturation throughput of CSMA/CA networks with multiple access for

multiple secondary users is presented in [53]. In [54], periodic memoryless access to the

primary user channels is considered as partially observable Markov decision process and

shown that close to optimal performance can be achieved for tight collision constraint.

Nevertheless, in [55], the optimum number of cognitive users is determined when cognitive

nodes contend with primary users for channel access. For this purpose, the authors in [55]

determine the throughput of the channel and optimize it over the number of cognitive

users.

Apart from the above mentioned studies, the authors in [56] and [57] used Markov

model to determine performance metrics such as access delay, throughput, offered load for

IEEE 802.11 MAC for both saturated and unsaturated traffic cases. For primary users’

interference limited cognitive communication, the channel access delay, throughput and

service rate is affected by the spectrum sensing time, contention delay, RTS (Request to

send) and CTS (Clear to send) exchange period, and channel unavailability period due to

primary users’ interference limitations. The effect of primary users’ interference constraint

for performance evaluation is not determined in the literature. From this point of view,

in this chapter our main contributions are
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• We determine the channel access probability of MIMO cognitive ad-hoc networks.

• We model the transition of state in a tagged node using an embedded Markov model.

• This Markov model is used to determine the average channel access delay, through-

put and service rate of nodes for interference limited communications.

The rest of the chapter is organized is as follows. The system model is presented

in Section 3.2. Probability of channel availability, average of channel access delay, service

rate and normalized throughput analysis and simulation results are presented in Sections

3.3, 3.4, 3.5, 3.6, respectively. Finally, conclusions are drawn in Section 3.7.

3.2 System Model

As indicated in Chapter 1, we consider T̂ pairs of cognitive ad-hoc nodes coexist

with licensed primary users in the same geographical area. Cognitive and primary users

access the adjacent channels but due to spill over energy [22], cognitive communication

may cause interference on primary users. We assume all cognitive nodes are within the

radio range of each other. Cognitive source-destination pairs use Nt transmit and Nr

receive antennas and achieve multiplexing gain. On the other hand, in the MAC sub-layer

of the data link layer, nodes use CSMA/CA protocol with RTS/CTS mechanism. During

the Distributed coordination function Inter Frame Space (DIFS) period, of the MAC

protocol nodes perform channel sensing to determine the transmission opportunity [48].

Following this, nodes move to the back-off stage of the MAC protocol, if interference

imposed on the primary users is below the specified threshold of primary users. Otherwise,

cognitive nodes wait Tf amount of time before sensing the channel again. To model

the transitions of these states for a packet in a node, a discrete-time Markov renewal

process is established as illustrated in Fig. 3.1. The states in the figure can be divided

into three categories: 1) channel access state (Fi, i = 0, 1, 2, 3....., K) 2) back-off state
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Figure 3.1: Embedded Markov model for the state transition process in each node.

(Bi, i = 0, 1, 2, ....., K) 3) collision state (Ci, i = 0, 1, 2, ....., K) and 4) transmission state

(T ).

As illustrated in the figure, if the channel is accessible, nodes start back off process

after the state Fi. From the back-off state, the packet moves to the transmission state, if

the request is successful, else moves to the collision state for unsuccessful requests. After

each collision state, the packet is moved to higher level of back-off states. This process

continues until the packet is dropped after K retransmission or collision events.
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3.3 Probability of Channel Availability

To develop the mathematical model for the probability of channel availability, we

define the interference signal yi
pl at any primary user l due to spill over energy [22] by the

cognitive communication using adjacent channels i ∈ Ĉ as,

yi
pl = Gix (3.1)

where Gi stands for an 1 × Nt channel vector representing the corresponding channels

between a primary user and cognitive node i ∈ T̂ , x denotes Nt×1 cognitive user transmit

symbol vector.

From (3.1), the instantaneous interference power at the lth primary user can be

written as

I li = E((yi
pl)

Hyi
pl) = σGi.(Gi)

H , (3.2)

where σ = E[xHx]/Nt. We also consider all cognitive users have uniform interference

effect on primary users.

If Maximum Ratio Combining (MRC) is employed at primary nodes, from (3.1),

we notice that the effective interference signal power at the primary user i is σ
∑Nt

j=1G
2
ij .

If we consider Rayleigh fading channel between cognitive and primary users, the effective

interference power after combining is chi-square distributed with 2Nt degrees of freedom.

That is, probability density function (pdf), of the interference power can be written as [11],

pσeff
(u) =

uNt−1 exp−u/σ

σNt(Nt − 1)!
u > 0. (3.3)

For cognitive power σ and primary users interference threshold Ith, the probability
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of channel availability can be written as,

Pa = Probability(σ < Ith),

=

∫ Ith

o

uNt−1 exp−u/σ

σNt(Nt − 1)!
du,

= 1− exp−
Ith
σ

(
Nt∑
i=1

(Ith/σ)
i−1

(i− 1)!

)
. (3.4)

3.3.1 Model validation

To validate the probability of channel availability model in (3.4), we compare the

theoretical and simulation results in Fig. 3.2. For simulation, we consider a channel is

available if the interference is below the specified threshold. We record the number of

instants when the channel is available over 10000 channel realizations, and determine the

probability of channel availability results as indicated in the figure. The results indicate

that channel availability improves with the increase in number of cognitive transmit an-

tennas. This happens as the total power is kept constant and channel diversity appears. It

is worthwhile to mention that for low SNRs [0 dB - 10 dB], 1, 2 and 3 antenna cases have

higher channel availability, as the channel effect is the dominant force. Fig. 3.3 shows the

effect of primary users interference on channel availability. The results demonstrate that

the channel availability improves as primary users interference threshold increases. It is

also clear from the results that the simulation and analytical results are very close which

validates the model in (3.4).

3.4 Average Channel Access Delay

According to the system model described above, the conditional collision probabil-

ity ρ̂, and probability of successful transmission P for a tagged node can be expressed in
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Figure 3.2: Probability of channel availability for cognitive transmit power per antenna
at -20 dBm primary users’ interference constraint.
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Figure 3.3: Probability of channel availability as a function of interference constraint.

terms of the transmission probability τ as,

ρ̂ = 1− (1− τ)T̂−1, (3.5)
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P = (1− τ)T̂−1. (3.6)

Also, τ can be written in terms of the collision probability for short retransmission limit

[58] as,

τ =
2(1− 2ρ̂)(1− ρ̂m+1)

w(1− (2ρ̂)m+1)(1− ρ̂) + (1− 2ρ̂)(1− ρ̂m+1) + w2mρ̂m+1(1− 2ρ̂)(1− ρ̂K−m)
, (3.7)

where m and K represent the maximum number of back-off states and maximum number

of retransmission events, respectively. w denotes the minimum value of contention window

size. One can notice that the value of ρ̂ and τ can be determined from (3.5) and (3.7)

using numerical techniques.

Holding time in Fig. 3.1 in state T and in state C are fixed for MAC protocol and

can be determined as,

Ts = tDIFS + tRTS + tSIFS + tCTS + tSIFS + tPacket + tSIFS + tACK ,

Tc = tDIFS + tRTS + tSIFS + tEIFS. (3.8)

where tPacket denotes the packet transmission time and the nominal values of other pa-

rameters in (3.8) for IEEE 802.11 protocol are given in Table 3.1. On the other hand,

holding times in state F and B are dependent on the channel behavior.

Holding time in the back-off state depends on the time wasted due to packet col-

lision, successful packet transmission by other nodes and waiting time of the back-off

process for channel acquisition. The probability of successful transmission in the channel

Ps, the collision probability in the channel Pc, and the probability of the channel being

idle Pi can be expressed as,

Ps = T̂ τ(1− τ)T̂−1, (3.9)

Pc = 1− (1− τ)T̂ − T̂ τ(1− τ)T̂−1, (3.10)
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Pi = (1− τ)T̂ . (3.11)

Using these probabilities, the average time required for two successive back-off timer

decrementing instants d is given by,

d = TsPs + TcPc + Pitslot, (3.12)

where tslot represents the duration of a time slot. For short retry limit, the contention

window size wi can be written as,

wi =

⎧⎪⎨⎪⎩ 2iw, if 0 ≤ i < m

2mw. if m ≤ i ≤ K
(3.13)

where w denotes the minimum value of contention window size and i represents the number

of retransmission events.

At each back-off state, the value of back-off timer is set uniformly between 0 and

wi − 1. Also, the average value of back-off counter is given by,

E{wi} =

⎧⎪⎨⎪⎩
2iw−1

2
if 0 ≤ i < m,

2mw−1
2

if m ≤ i ≤ K.
(3.14)

Now, from (3.12) and (3.14), one can find the holding time Yi in back-off state bi for

interference constraint as,

Yi = wid+ (1− Pa)wid+ (1− Pa)
2wid+ ....

=
wid

Pa

. (3.15)

As wi is not dependent on Pa and d, average holding time E{Yi} in back-off state bi, can
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be written as,

E{Yi} =
E{wi}d

Pa

. (3.16)

Average holding time Gf in the channel access state Fi for interference constraint

is given by,

Gf = Tf + (1− Pa)Tf + (1− Pa)
2Tf + (1− Pa)

3Tf ....

=
Tf

Pa

. (3.17)

The total channel access delay, D starts from state F0 until the service completion

in state T . It can happen through single stage as, F0 → B0 → T or multiple stages as,

F0 → B0 → C0 → F1 → B1 → C1 → F2 → B2 → T (Fig. 3.1). Access delay D0 for stage

i = 0 starts at F0 to B0 and ends at T with probability P as,

D0 = Pa(E{Y0}+ Ts) + (1− Pa)(E{Y0}+ Ts +Gf )

= E{Y0}+ Ts +
1− Pa

Pa

Tf . (3.18)

In sequel, access delay at any stage Di starts from state F0 for i = 0 and after packet

collision event Ci−1 for i = 1, .., K until the service completion in state T , given by

Di =

⎧⎪⎨⎪⎩
1−Pa

Pa
Tf + E{Yi}+ Ts, with prob. P

1−Pa

Pa
Tf + E{Yi}+ Tc +Di+1. with prob. 1− P

(3.19)

It is worthwhile to note that the packet is dropped from the queue after the collision event

at state i = K and the node starts from state i = 0 with a new packet. Using (3.19) the

average channel access delay for primary users’ interference constraint can be determined
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as,

E(D) =
1− Pa

Pa

Tf + E{Y0}+ PTs + (1− P ) (Tc +D1)

= (1− (1− P )K+1)Ts︸ ︷︷ ︸
Packet transmission time

+
(1− (1− P )K)(1− P )

P
Tc︸ ︷︷ ︸

Collision time

+
K−1∑
i=0

E{Yi}(1− P )i + (1− P )KPE{YK}︸ ︷︷ ︸
Back-off time

+

Tf
1− Pa

Pa

K−1∑
i=0

(1− P )i + Tf
1− Pa

Pa

(1− P )KP︸ ︷︷ ︸
Channel access time

(3.20)

where E(.) is the expectation operator.

3.4.1 Performance evaluation

Here, we carry out numerical analysis to evaluate the performance of the above

mentioned system. We build an IEEE 802.11 [59] compatible ad-hoc network using the

simulation parameters listed in Table 3.1. We use these parameters to build an event

driven simulation program for the cognitive network introduced in section 3.2. It is to

be noted that in the following performance results, each data point represents an average

over 10,000 events.

First we present results for the average channel access delay for cognitive nodes. In

Fig. 3.4 we plot the average channel access delay results as a function of the number of

cognitive nodes for different cognitive transmit power. The results show that the access

delay increases with the increase in cognitive transmit power and number of cognitive

nodes. This happens as the channel becomes unavailable with higher probability due to

the increase in transmit power as observed in Fig. 3.2. On the other hand, the access

delay increases with the number of cognitive nodes for two reasons: 1) waiting time for

transmission opportunity and 2) the number of packet collision incident increases with
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Table 3.1: Simulation setting

Parameter Value
No. of channels 1
Data type Best effort
Packet Payload 8184 bits
MAC header 272 bits
MAC protocol CSMA/CA
PHY header 127 bits
ACK 112 bits+PHY header
RTS 160 bits+PHY header
CTS 112 bits+PHY header
Slot time 50 μs
DIFS 128 μs
SIFS 28 μs
Bit rate 2 Mb/s
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Figure 3.4: Average channel access delay for Nt = Nr = 1 at -20dBm interference con-
strain.

the number of nodes in the network.

We investigate the effect of the interference constraint in Fig. 3.5. Reported results

indicate that the access delay performance improves with the increase in interference

threshold. We confirm this gain using the channel availability probability in Fig. 3.3. As
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Figure 3.5: Average channel access delay for Nt = Nr = 1 and at 8 dB cognitive power.

seen from these results, the channel availability improves with the increase in interference

threshold. That is, the waiting time for transmission opportunity (i.e., channel access

delay) reduces with the increase in interference threshold.

In Fig. 3.6 we show the advantages of the multiple antenna system for cognitive

nodes. We notice that the average access delay decreases as more antennas are employed.

This performance gain is contributed by higher data rate and probability of channel

availability (Fig. 3.3) due to the usage of multiple antennas.

We plot the average access delay results for different Tf (channel unavailability

time due to fading) time duration in Fig. 3.7. From (3.19), it is evident that the channel

access delay varies with the slot time duration. This phenomena is also observed in both

simulation and analytical results.
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Figure 3.6: Average channel access delay at 8 dB cognitive power and -20 dBm interference
constrain.
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Figure 3.7: Effect of fading on access delay for Nt = Nr = 1, -20 dBm interference limit
and at 8 dB cognitive power.
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3.5 Average Service Rate

According to Fig. 3.1, steady state probabilities of the states are given by,

πCi
= (1− P )πBi

, for i = 0, 1, ...., K (3.21)

πFi
=

⎧⎪⎨⎪⎩
1−Pa

Pa
(πT + πCK

) for i = 0

1−Pa

Pa
πCi−1

, for i = 1, ...., K
(3.22)

and

πBi
=

⎧⎪⎨⎪⎩ Pa(πT + πCK
+ πFi

) for i = 0

Pa(πFi
+ πCi−1

), for i = 1, ...., K.
(3.23)

Using (3.22), for i = 1, ...., K, (3.23) can be written as,

πBi
= (1− Pa)πCi−1

+ PaπCi−1

= πCi−1

= (1− P )πBi−1
. (3.24)

Accordingly, from (3.24), πBK
and πCK

can be written as,

πBK
= (1− P )KπB0

πCK
= (1− P )K+1πB0

, (3.25)

and

πBi
= (1− P )iπB0

for i = 1, ...., K (3.26)
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Now for i = 0, πB0
can be determined using (3.22), (3.23) and (3.25) as,

πB0
=

Pa

1− Pa

πF0
(3.27)

= πCK
+ πT

= (1− P )K+1πB0
+ πT

=
1

1− (1− P )K+1
πT . (3.28)

Using (3.25) to (3.28), and the analysis of limiting state probabilities of the Markov

renewal process in [60], the service probability or service rate can be determined as,

π̄T = 1/

[
1 +

τ̂f
τ̂T

{
1− Pa

Pa

1

P

}
+

τ̂c
τ̂T

1

1− (1− P )K+1

{
1− (1− P )K+2

P
− 1

}

+
d̂

Pa(1− (1− P )K+1)

{
m∑
i=0

(1− P )i
1 + wi

2
+

K∑
i=m+1

(1− P )i
1 + wm

2

}]
, (3.29)

where τ̂f , τ̂c, τ̂T and d̂ denote holding time in states F , C, T and B expressed in terms of

slot times, respectively. d̂ is given by [57],

d̂ =
1

τ̂T
+ (1− P )

τ̂c
τ̂T

−
(
1− τ̂C

τ̂T

)
P logP. (3.30)

3.5.1 Performance evaluation

In this subsection we use network parameters in Table 3.1 to examine the service

probability analysis presented in (3.29). Fig. 3.8 reveals that the service probability de-

creases with the increase in number of cognitive nodes and cognitive transmit power. The

service probability performance degrades for two reasons: 1) packet collision increases with

the number of nodes in the network, and 2) nodes get less opportunity for transmission

at high transmit power due to channel unavailability.
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Figure 3.8: Service probability of cognitive nodes for Nt = Nr = 1 at -20dBm interference
constrain.

We show the effect of primary users’ interference threshold on the service probability

in Fig. 3.9. As noticed in Fig. 3.3, channel availability probability increases with the

increase in the primary users’ interference threshold. As a result, the service probability

performance improves with the increase in the primary users’ interference threshold.

In Fig. 3.10, we plot the service probability curves when cognitive transmit and

receive node pairs use multiple antennas. Unlike the access delay case, the service prob-

ability is not affected by the usage of multiple antennas, as nodes periodically access the

channel and channel access period is constant for all nodes.

Now we present the effect of Tf time slot duration on service probability in Fig.

3.11. As evident, indicate that the performance improves with the decrease in the duration

of Tf time. In this case, we provide argument similar to the access delay case. That is,

the performance improves as nodes receive more time for data transmission purpose.
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Figure 3.9: Service probability of cognitive nodes for Nt = Nr = 1 and at 8 dB cognitive
power.
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Figure 3.10: Service probability of cognitive nodes for 8 dB cognitive power and -20 dBm
interference constrain.
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Figure 3.11: Service probability of cognitive nodes for Nt = Nr = 1, -20 dBm interference
limit and at 8 dB cognitive power.

3.6 Normalized Throughput

At this point, we determine the normalized throughput for the network. Similar to

the analysis in [56] and [59], we define the normalized throughput as,

η =
Payload information transmitted in a slot time

Length of a slot time
. (3.31)

Using (3.16), (3.12) and with the help of [59], the normalized throughput can be written

as,

η =
PaPstpacket

d
. (3.32)
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3.6.1 Performance evaluation

Now we present some performance results for the normalized throughput analysis.

As before, we use the parameters listed in Table 3.1 to simulate an IEEE 802.11 compatible

network. We plot the normalized throughput results in Fig. 3.12. One can notice that

similar to the access delay (Fig. 3.2) case, the normalized throughput improves with the

decrease in cognitive transmit power.

In Fig. 3.13, we examine the effect of interference threshold on cognitive users’

normalized throughput. Both simulation and analytical results show that the throughput

improves with the increase in interference limit. Also the channel availability improves

for cognitive nodes with the increase in interference limit. As a result, nodes suffer from

less outage time which helps to improve the average throughput.

We investigate the variation in throughput due to usage of multiple antennas for

cognitive nodes in Fig. 3.14. Our simulation and analytical results show that throughput

being normalized, is not affected by the usage of multiple antennas. Now, we show the
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Figure 3.12: Normalized throughput of cognitive nodes for Nt = Nr = 1 at -20dBm
interference constrain.
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Figure 3.13: Normalized throughput of cognitive nodes for Nt = Nr = 1 and at 8 dB
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Figure 3.15: Normalized throughput of cognitive nodes for Nt = Nr = 1, -20 dBm
interference limit and at 8 dB cognitive power.

effect of Tf slot time duration on throughput results in Fig. 3.15. One can notice that

throughput improves as channel unavailability duration due fading duration decrease.

Similar effect of fading duration is also noticed for access delay case in Fig. 3.7.

3.7 Conclusions

We determined the average access delay, service probability, and throughput for

interference limited cognitive networks. We also presented analytical results for chan-

nel availability of cognitive networks with respect to transmit power. In this study, we

have considered short retransmission limit. As a result, packets are dropped after a fixed

amount of retransmission events. Conversely, access delay results without retransmission

limit case reported in [57], indicate an exponential increase in delay. However, exponential

decrease in service time indicates less loss in performance for higher number of nodes in

the network, which is beneficial for large networks. Nevertheless, our analysis indicates

that network performance depends on transmit power, packet length and number of an-
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tennas used. For this reason, optimization techniques can be applied to achieve a desired

performance gain for certain operating environment. Similarly, a designed network can

be analyzed to determine its operating parameters. However, in this chapter we have

considered all cognitive nodes operate in a single channel. In Chapter 4, we consider a

multi-channel environment for cognitive nodes.
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Chapter 4

Channel Selection for Heterogeneous

Nodes in Cognitive Networks

In the previous chapter, we have considered all cognitive nodes operating in a

channel and determine performance matrices of interference aware ad-hoc networks. In

practice, cognitive radios are envisioned to operate over multiple channels. In this chapter,

we extend our study to design an cognitive ad-hoc network over multiple channels.

We propose algorithms to address the channel allocation and fairness issues of

multi-band multi-user cognitive ad-hoc networks. Nodes in the network have unequal

channel access probability and thus heterogeneous. Also, nodes have no prior information

about the offered bandwidth or number of users in the multiple access system. In that,

nodes use reinforcement learning algorithm to predict future channel selection probability

from the past experience and reach an equilibrium state. Proof of convergence of this

multi party stochastic game is provided. Finally, numerical results are presented for per-

formance evaluation of the proposed channel allocation algorithms. We further extend

this study as we consider cooperative communication context. Cognitive nodes use mod-

ified MAC protocol to achieve cooperative communication. In the process, nodes achieve

diversity gain and exchange channel selection information to further improve the network
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performance.

4.1 Introduction

Cognitive radios are envisioned to dynamically adapt operating parameters accord-

ing to the surrounding environment. For adaptation purpose in ad-hoc networks, cognitive

nodes encounter challenges such as, lack of cooperation between nodes, resource manage-

ment, unstable user statistics, etc. In that sense, game theory is a mathematical tool to

model these challenges in the ad-hoc network [41]. Also, in the repeated game, players

can learn from past experiences to determine future actions [61]. In some recent works,

learning algorithms are used in repeated game for channel selection in cognitive networks.

In [12], co-operative Q learning is used to assign channels for cognitive nodes. Q learning

is also used in [13] to assign channels for two cognitive nodes from a set of two channels.

On the other hand, in [14] the authors used stochastic learning automata based algorithm

for channel selection for cognitive nodes. No-external-regret learning is used in [15], to

address the channel selection problem for cognitive ad-hoc networks. In [16], the authors

considered ‘user satisfaction’ as selection criteria to address the joint channel and power

allocation problem for cognitive ad-hoc networks. Machine learning is also used in [62] to

address the channel allocation problem for heterogeneous (unequal bandwidth or inter-

ference limit on primary users) cognitive networks. It is worth noting that, the channel

allocation problem for heterogeneous cognitive networks was first studied in [63] and in

our previous study [24], we were the first to consider fairness issues in channel selection.

To our best knowledge, channel selection for heterogeneous cognitive nodes i.e., with un-

equal packet arrival rate is not considered to date. From this point of view, in this chapter

our main contributions are

• We evaluate the performance of user satisfaction based Q learning channel selection

algorithm for ad-hoc cognitive networks in heterogeneous environment.
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• The proposed algorithm considers application layer packet arrival rate for channel

selection in data link layer of OSI model.

• We prove the convergence of the algorithm.

• We propose cooperative Q learning to reduce the convergence time of the algorithm.

The rest of the chapter is organized is as follows. The system model is presented

in Section 4.2. Cooperative Q learning algorithm is presented in Section 4.3. Simulation

settings and results of the proposed algorithm are presented in Section 4.4. Finally,

conclusions are drawn in Section 4.5.

4.2 System Model

We consider T̂ pairs of cognitive nodes coexist with licensed primary users in the

same geographical area. We assume cognitive nodes belong to an ad-hoc network, where

nodes can listen to all the nodes of the network. For wireless resource allocation purposes,

we consider cognitive nodes use Ĉ unused frequency bands of the primary user and can

access single channel at a particular time. We also assume that, no central controller

exists for cognitive nodes and IEEE 802.11 algorithm [59] is used for channel sharing pur-

poses. In this multiple access designed network, there are more than one free frequency

slot available, as a result at any given time, more than one node pairs may communicate.

We investigate the effect of the channel transmission rate (Rtr) on the performance of the

network. This happens as channels differ in bandwidths. It is noted that random channel

assignment will cause large difference in user satisfaction among cognitive nodes. To over-

come the channel transmission rate effect, we propose Q learning based channel selection

algorithm for the cognitive nodes. In that, cognitive nodes apply the learning based chan-

nel selection strategy in the non-cooperative repeated game model of the ad-hoc network.

We mathematically define the non-cooperative game as {T̂ , {Si}i∈T̂ , {Ui}i∈T̂}, where T̂ is
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the set of cognitive nodes (decision makers), Si is the set of strategies {sa, sb...sĈ}, for
node i, for Ĉ available channels. Player i uses the utility function Ui : Si → R to select

the strategy sa from the set Si for the current strategy profile of its opponents: S−i. At

some point of the game, nodes may select a strategy profile S = [s1, s2....sT̂ ] such that no

players would deviate anymore. This point is known as the Nash equilibrium point and

this only happens iff (4.1) exists.

Ui(S) ≥ Ui(śa, s−a), ∀i ∈ T̂ , śa ∈ Si. (4.1)

We employ the function in [64] to calculate the utility of strategies that accounts

for the channel data rate Ra
tr of channel a and packet arrival rate λ of node i ∈ T̂ of the

selfish cognitive nodes in the non-cooperative game,

Ui(sa, s−a) = β + γ log(
Ra

tr

λ
− δ), (4.2)

where log(.) stands for natural logarithm function. Numerical constants β, γ, and δ in

the utility function are user defined. If cognitive nodes use only the utility to select

channels, it will cause large number of channel switching events i.e., operation overhead.

To minimize the number of channel switching, we apply learning algorithm. We consider

three learning algorithms for channel allocation purposes namely, Q-learning, learning

automata and No-external-regret learning. Learning automata based channel selection is

analyzed in [14], and in the following paragraphs we will describe the No-external-regret

and the Q learning algorithms.

4.2.1 No-external-regret learning

First we consider the No-external-regret learning algorithm [65], and use the ex-

ponential updating scheme. In this algorithm, cognitive nodes preserve channel utilities

for a certain amount of time and compute the future channel selection probability using

52



Algorithm 1 Channel selection using No-external-regret learning

1: Begin with random channel allocation.
2: while channel < Ĉ do
3: Calculate channel utility from the received packet date rate.
4: Compute U t

i (sa) =
∑t

t=1 Ui(sa).
5: channel=channel+1
6: end while
7: Compute probability using (4.3).
8: Choose the channel max(sa)(p

t+1
i ), ∀a ∈ Ĉ and set the channel to transmit packet.

9: Repeat step (2) to (9) for every packet.
10: End of session

these past utility information as,

pt+1
i (sa) =

(1 + α)U
t
i (sa)∑

śa∈Si
(1 + α)U

t
i (śa)

, (4.3)

where U t
i (sa) =

∑t
j=1 U

j
i (sa) and U t

i (śa) =
∑t

j=1 U
j
i (śa) denote the cumulative utilities

over time t, pt+1
i (sa) represents the probability assigned to strategy sa at time t + 1, for

α > 0, where α denote the learning rate. Algorithm 1 summarizes this channel selection

algorithm.

4.2.2 Q learning

In the Q learning, cognitive nodes maintain a Q table [66]. Entries of the table are

updated based on quality of actions i.e., rewards it achieves in a state as,

Qt+1(s, a) = Qt(s, a) + α [E (U(sa, s−a)−Qt(s, a)] , (4.4)

where Qt+1(s, a) and Qt(s, a) represent Q entries at time (t + 1) and t, respectively for

selecting action a from state s. E [U(sa, s−a)] denote the average reward and α is the

learning rate.

In our study, the Q learning algorithm selects a channel that has maximum Q

value based on ε greedy exploration. ε greedy exploration works as nodes select a random
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Algorithm 2 Channel selection using Q learning

1: Initialize Q(s, a) = 0
2: Begin with random channel allocation.
3: Transmit packet using multiple access scheme in channel a ∈ Ĉ.
4: while channel < Ĉ do
5: Calculate channel utility from the received packet date rate.
6: Calculate average reward E (U(sa, s−a)) = (Ut(sa, s−a) + Ut−1(sa, s−a)) /2
7: Update Q(s, a) values using (4.4)
8: channel=channel+1
9: end while

10: Assign channel using ε greedy exploration
11: Update ε value
12: Repeat step (4) to (11) for every packet.
13: End of session

channel with probability ε and select a channel based on Q table with probability (1− ε).

Nodes start the exploration with a very high ε value and update ε after each successful

packet transmission as,

ε = ε− ε

Update parameter
. (4.5)

From (4.5), we can write the probability of selecting a channel as in (4.6). Algorithm 2

summarizes this channel selection algorithm.

pt+1 (sa) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− ε+

(
ε

Update parameter

)
if Qt(s, a) is

the highest,

ε
Update parameter

Otherwise.

(4.6)

4.2.3 Learning automata

Now we consider learning automata algorithm. In this algorithm nodes select a

channel, a ∈ Ĉ based on the action probability table. After this step nodes update entries

of the action probability table based on rewards achieved by executing the action. The
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Algorithm 3 Channel selection using Learning automata

1: Initialize q(s, a) = 0
2: Begin with random channel allocation.
3: Transmit packet using multiple access scheme in channel a ∈ Ĉ.
4: while channel < Ĉ do
5: Calculate channel utility from the received packet date rate.
6: Calculate average reward E (U(sa, s−a)) = (Ut(sa, s−a) + Ut−1(sa, s−a)) /2
7: Update q(s, a) values using (4.7)
8: channel=channel+1
9: end while

10: Repeat step (3) to (9) for every packet.
11: End of session

action probability table is updated [67] as,

qt+1(s, a) = qt(s, a) + αŨ(sb, s−a)[1− qt(s, a)], for a = b

qt+1(s, a) = qt(s, a)− αŨ(sb, s−a)qt(s, a), for a �= b
(4.7)

where qt+1(s, a) and qt(s, a) represent action probabilities at time (t+1) and t, respectively

for selecting action a from state s, Ũ(sa, s−a) denotes the normalized utility determined

as,

Ũ(sa, s−a) =
U(sa, s−a)

maxa∈Ĉ E (U(sa, s−a))
(4.8)

Algorithm 3 summarizes this channel selection algorithm [67].

4.2.4 Proof of convergence

In this subsection, we prove that these multi party learning algorithms converge to

a Nash equilibrium point. Let us define potential function as,

P̂ =
Ĉ∑
i=1

θ{Ĉi}∑
j=1

Uj

(
θ{Ĉi}

)
, (4.9)

where θ{Ĉi} denote the cardinality of channel Ĉi i.e., indicates the number of nodes in

channel i ∈ Ĉ. As the nodes use CSMA/CA scheme to access the channel, at given time
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only a single node can win the transmission opportunity in a channel. Also, nodes switch

channels after the end of a packet transmission i.e., at a given time only a single node

makes a channel switch. From the above mentioned algorithms we also notice that a

cognitive node makes a channel switch iff,

ΔUi

[
θ{Ĉi}

]
= Ui

[
θ{Ĉj+1}

]
− U

[
θ{Ĉk}

]
, if Ui

[
θ{Ĉj+1}

]
> U

[
θ{Ĉk}

]
(4.10)

This unilateral move also increases the value of the potential function as,

ΔP̂ =

θ{Ĉj+1}∑
i=1

Ui

[
θ{Ĉj+1}

]
+

θ{Ĉk−1}∑
i=1

Ui

[
θ{Ĉk−1}

]

−
⎧⎨⎩

θ{Ĉj}∑
i=1

Ui

[
θ{Ĉj}

]
+

θ{Ĉk}∑
i=1

Ui

[
θ{Ĉk}

]⎫⎬⎭
= Ui

[
θ{Ĉj+1}

]
− Ui

[
θ{Ĉk}

]
= ΔUi

[
θ{Ĉi}

]
. (4.11)

From (4.11) one can notice that P̂ is an exact potential game and therefore, has at least

a pure strategy Nash equilibrium [68]. Hence, if the nodes are homogeneous i.e., all

nodes have same bandwidth requirement, the potential game may have multiple Nash

equilibrium. All the Nash equilibrium points in such scenario will result in same system

throughput [14]. Conversely, for heterogeneous environment this multi party game will

converge to a unique Nash equilibrium point.

At this point, we will determine the effect of this Nash equilibrium on the learning

algorithms. For No-external-regret learning, as ΔU = 0 happens at the Nash equilibrium,

we can write,

U t
i (sa) = U t+1

i (sa),

U t
i (śa) = U t+1

i (śa). (4.12)
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From (4.3) and (4.12), it is easy to conclude that after Nash equilibrium, nodes converge

to an equilibrium condition and no further channel switching events occur for No-external-

regret learning as,

pt+1
i (sa) = pt+2

i (sa). (4.13)

Also, for learning automata (4.7) and (4.12) indicate that after the Nash equilibrium no

further channel switching happens as,

qt+1(s, a) = qt(s, a). (4.14)

Now, for Q learning from (4.4), we can form differential equation [69] for Q entries

of the Q table as,

Qt+1(s, a)−Qt(s, a)

Δt
= α [E (U(sa, s−a))−Qt(s, a)] ,

dQ

dt
= α [E [U(sa, s−a)]−Qt(s, a)] . (4.15)

Integration of this differential equation represents Q values [69] at time t as,

Qt = Ke−αt + E [U(sa, s−a)] , (4.16)

where K is a constant of integration. From (4.16), Q values at time t → ∞ can be written

as,

lim
t→∞

Qt = E [U(sa, s−a)] . (4.17)

From (4.13), (4.14) and (4.17), one can notice that Q learning, learning automata, and

No-external-regret learning algorithms converge.

Utility at time t for any node i ∈ N can be written using (4.2), (4.3) and (4.6) as,

U t
i = U t

i (sa, s−a)pt(sa) +
Ĉ∑

b=1,b �=a

U t
i (sb, s−b)pt(s−a). (4.18)

57



Also, from (4.3) and (4.6), one can notice that limt→∞ pt = 1. Therefore, nodes converge

to a pure strategy Nash equilibrium after the convergence of this stochastic learning event.

4.2.5 Complexity analysis

The above mentioned algorithms have very low time and memory complexity. Each

iteration of the No-external-regret channel selection algorithm at any node i ∈ T̂ has a

time complexity O(max{|Ui||Ĉ|2, |Ĉ|3}) [24]. Conversely, each iteration of the Q learning

and learning automata has time complexity of O
(
|S|2|Ĉ|

)
[35]. Also, examining the

algorithms, one can notice that memory space complexity of No-external-regret learning

is O(|Ui||Ĉ|2) [24] and Q-learning and learning automata is O(2|Ĉ|) [35].

4.3 Cooperative Q Learning

In this section, we consider that cognitive nodes exchange channel information

to facilitate Q learning. As seen in the previous section, nodes rely on its own packet

exchange information for Q learning. Also, in our previous chapter we noticed that nodes

periodically access the channel. As a result, the learning rate for any node in the network

is long. Here, we consider that nodes embed the average channel reward information with

the ACK message. This follows with, all other nodes in the channel updating the Q table

using this average channel reward information. This small change in the MAC protocol

will cost very small amount of extra time to transmit the ACK packet. Also, for the sake

of simplicity we consider received ACK packets are error free. This modified Q learning

algorithm is presented in Algorithm 4.
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Algorithm 4 Channel selection using cooperative Q learning

1: Initialize Q(s, a) = 0
2: Begin with random channel allocation.
3: Transmit packet using multiple access scheme in channel a ∈ Ĉ.
4: while channel < Ĉ do
5: if packet received == yes then
6: Calculate channel utility from the received packet date rate
7: else
8: Get channel utility from ACK packets
9: end if

10: Calculate average reward E (U(sa, s−a)) = (Ut(sa, s−a) + Ut−1(sa, s−a)) /2
11: Update Q(s, a) values using (4.4)
12: channel=channel+1
13: end while
14: Assign channel using ε greedy exploration
15: Update ε value
16: Repeat step (4) to (11) for every packet
17: End of session

4.4 Results

Here, we carry out numerical analysis to evaluate the performance of the above

mentioned algorithms. We build an IEEE 802.11 [59] compatible ad-hoc network using

the simulation parameters listed in Table 4.1. We use these parameters to build an event

driven simulation program for the cognitive network introduced in section 4.2.

First we present average data rate results for the channel selection algorithms.

In addition to the Q learning, No-external-regret learning and learning automata based

algorithms mentioned in section 4.2, we consider as a benchmark random channel selection

for performance comparison. In random selection, cognitive nodes select a channel from

the pool of available channels with equal probability and use the selected channel for the

entire period of communication. Fig. 4.1 indicates that the Q learning channel selection

algorithm offers the best performance. In the multi party non-cooperative game multiple

Nash equilibrium points may exist. In Q learning, nodes use an exploration phase in

addition to the exploitation phase to reach the best equilibrium condition. Conversely, in

No-external-regret and learning automata algorithms due to the absence of the exploration
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Table 4.1: Simulation setting

Parameter Value
No. of cognitive nodes 50
No. of channels 3
Bandwidth, Channel 1, 2 & 3 2 MHz, 4 MHz & 6 MHz
Data type Best effort
Packet Payload 8184 bits
Packet arrival rate, λ Uniform (1,5)
MAC header 272 bits
MAC protocol CSMA/CA
β, γ,&δ of utility function 0.16, 0.8 & 400
α 0.02
Update parameter 100
PHY header 127 bits
ACK 112 bits+PHY header
RTS 160 bits+PHY header
CTS 112 bits+PHY header
Slot time 50 μs
DIFS 128 μs
SIFS 28 μs
Bit rate, channel 1, 2 & 3 2 Mb/s, 4 Mb/s, 6 Mb/s
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Figure 4.1: Average data rate of the cognitive nodes for different learning algorithms.
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phase, channel selection performance is affected by the instantaneous performance of the

channel instead of the long run performance. In Fig. 4.2 we plot the variance in user

utility for cognitive nodes. Similar to the average data rate performance, we also notice

the best performance for the Q learning based channel selection. We plot the number

of channel selection events in Fig. 4.3. As shown, the Q learning has higher number of

switching events compared to the No-external-regret and the learning automata based

algorithms. This happens as the Q learning has an exploration phase. Nevertheless, over

the time, all algorithms converge to a stable state. In the stable state, nodes have very

few switching events.

Now, we present average data rate results for cooperative Q learning algorithm.

In Fig. 4.4 one can notice that cooperative Q learning has better performance at the

beginning. However, both cooperative and non-cooperative cases have equal data as

time elapses. We confirm this behavior with the help of number of channel switching

results in Fig. 4.5. As seen, cooperative Q learning algorithm has very fast convergence

time compared to the non-cooperative case. However, as time elapses non-cooperative Q
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Figure 4.2: Variance in user satisfaction level for learning algorithms.

61



0 50 100 150
0

20

40

60

80

100

120

140

time(seconds)

N
um

be
r 

of
 C

ha
nn

el
 s

w
itc

hi
ng

 

 
Q learning
learning autometa
No−regret learning

Figure 4.3: Number of channel switching events for different learning algorithms.
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Figure 4.4: Average data rate of the cognitive nodes for cooperative Q learning algorithm.

learning converges, as a result data rate for non-cooperative learning also increases and

become equal to the cooperative Q learning case. In Fig. 4.6, we plot the variance in user

utility for cooperative Q learning and Q learning algorithms. As noticed, both algorithms
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Figure 4.5: Number of channel switching events for cooperative Q learning algorithm.
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Figure 4.6: Variance in user satisfaction level for cooperative Q learning algorithm.

have equal performance i.e., fairness is achieved for both algorithms.
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4.5 Conclusions

We investigated the performance of learning based channel selection approaches for

cognitive ad-hoc networks. We presented proof of convergence for the algorithms for multi-

band cognitive ad-hod networks with heterogeneous nodes. It was shown that learning

based channel selection algorithms converge to a Nash equilibrium point for nodes having

unequal arrival packet rate in multi-party multi-agent stochastic game. We also showed

that Q learning based algorithm can improve the average data rate of the network, and

can reduce the user satisfaction variance i.e., improve fairness among cognitive nodes. We

further show that convergence time and data rate improves for cooperative learning. How-

ever, in the following chapter we considered MIMO systems for cognitive communication

and hence apply channel allocation algorithm for performance improvement.
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Chapter 5

Cross-Layer Antenna Selection and

Beamforming for MIMO Cognitive

Radios

It is noticed that channel selection algorithms are able to improve the performance

of cognitive networks. To further improve the performance, we extend our study to include

MIMO techniques and explore the possibilities to improve spectrum utilization.

We propose spectrum efficiency improvement algorithms of multi-band multiuser

MIMO cognitive ad-hoc networks. To improve the transmission efficiency of the MIMO

system, a cross-layer antenna selection algorithm is proposed. Cross-layer antenna se-

lection algorithm works as the data link layer efficiency information is used for antenna

selection purpose to achieve very high efficiency at the data link layer. Conversely in

cognitive communication, power at which cognitive nodes can transmit is limited by the

primary users’ interference limit. As a result, achievable efficiency at cognitive nodes de-

pend on the interference limit set by the primary user. For that, beamforming techniques

can be employed to suppress co-channel interference in radio devices. In a cognitive set-

ting, beamforming can be beneficial as it can be applied to cancel interference among
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co-located primary users and cognitive users. Here, we propose an antenna selection al-

gorithm combined with zero-forcing beamforming to improve the throughput of cognitive

MIMO radios. In that, we maximize an objective function for the system throughput

where precoding is applied on the transmitted spatial multiplexed signals. Numerical

results show the advantages offered by the proposed algorithm under different scenarios.

Using the transmission efficiency results, user data rate of the cognitive ad-hoc

network is determined. Objective function for the average data rate of the multi-band

multiuser cognitive MIMO ad-hoc network is also defined. For the average data rate

objective function, primary users interference is considered as performance constraint.

Furthermore, using the user data rate results, a learning-based channel allocation algo-

rithm is proposed.

5.1 Introduction

During the past decade, extensive research has been conducted to improve the spec-

trum utilization in wireless applications. Among these activities, MIMO technology has

shown to improve the spectrum efficiency and the reliability of the channel. Despite these

efforts, spectrum crisis situations still exist due to the fixed spectrum allocation policy

where users are assigned portions of the spectrum permanently. Due to the unprece-

dented growth of wireless users, some portions of the assigned spectrum become heavily

congested, while leaving other parts unutilized. To solve this problem, and to efficiently

utilize the available spectrum, cognitive radios have been proposed. It is envisioned that

cognitive radios will share the spectrum along with existing primary users in a dynamic

and an opportunistic manner [9].

By sensing the environment, cognitive radios may determine opportunity in time,

frequency or space domain. For instance, inside a time-division multiple-access (TDMA)

based primary network, cognitive nodes can use the unused time slots as an opportunity
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[70,71]. Also, cognitive radios can use the unused frequency spaces of the primary network

[4]. However, in addition to time, frequency and space domain, MIMO systems add

another degree of freedom to cognitive radios. For instance, cognitive users equipped with

MIMO can use beamforming to reduce interference on primary users and thus, operate

concurrently. In some recent works [72–74] this type of interference reduction technique

is formulated as non-convex optimization problem. Although, theoretically achievable

information rate is determined in [72, 73], and [74], it is very difficult to determine the

wight vector as the problem is non-convex. Another approach is presented in [75], to

completely cancel interference between primary and cognitive nodes using pre-coding and

post-coding techniques. In addition, a closed form expression for achievable capacity limit

is also presented by the authors.

Apart from the opportunity detection phase, utilizing the detected spectrum is one

of the key challenges for cognitive networks. One of the prominent techniques to improve

spectrum utilization is through MIMO techniques. As cognitive radios are able to access

very small amount of wireless resources, this high spectrum efficiency renders MIMO

systems extremely valuable for cognitive devices. However, spectrum efficiency of MIMO

systems can be further improved by using antenna selection schemes [10]. Moreover, it is

also shown that a cross-layer antenna selection scheme can reap a very high transmission

efficiency in a ‘point-to-point’ MIMO system [46]. On the other hand, in [76] the authors

exploit the spatial and temporal domains of MIMO cooperative cognitive networks to

achieve high transmission efficiency.

Motivated by the works in [22, 75], and [46], we propose a cross-layer MIMO

transmit-antenna selection algorithm and beamforming to reach high transmission effi-

ciency as well as concurrent operation with the primary user for cognitive MIMO systems.

Cross-layer antenna selection is beneficial as packet error rate (PER) is considered at the

link-layer which identifies usable channels. Thus, with low number of RF chains, high effi-

ciency is achievable with low decoding complexity. On the other hand when beamforming
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is employed with cross-layer antenna selection, interference imposed on the primary user

can be mitigated. As a result, cognitive users are able to communicate below the primary

user interference level. Different from [76], we employ a cross-layer design where efficiency

is considered for selecting less number of antennas per user.

From the above mentioned context this chapter is organized as follows. Section

5.2 introduces the analysis and performance evaluation results of the cross-layer antenna

selection algorithm for primary users’ interference limited cognitive communication. This

is followed by the theoretical analysis and performance evaluation results for the cross-

layer antenna selection and beamforming algorithm in Section 5.3. Further, antenna

selection algorithm is combined with the channel selection algorithm described in Chapter

4 to propose cross-layer antenna selection and channel allocation algorithm in Section 5.4

Finally, conclusions are presented in Section 5.5.

5.2 Cross-Layer Antenna Selection

In Chapter 3, we have presented access probability analysis for cognitive ad hoc net-

works. In this part of the work, we propose MIMO cross-layer transmit-antenna selection

algorithms to improve the spectrum utilization in a cognitive setting.

5.2.1 System model

For the system model presented in Chapter 1, we make the following assumptions.

The ad-hoc network contains T̂ pairs of cognitive users and any node can listen to all other

nodes in the network. For wireless resource allocation purposes, we consider cognitive

nodes that can make use of Ĉ unused frequency bands of the primary users. Also, the

number of available channels for cognitive radios is less than the number of cognitive

users, i.e., Ĉ < T̂ . As a result, a channel may be shared by more than one cognitive

user using multiple access techniques. If a channel is selected by many users, the overall
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data rate per node will reduce due to collisions and users will then be forced to search

for a different channel. To reduce the number of channel switchings, nodes employ a

learning-based channel selection algorithm. On the other hand, to improve the wireless

resource utilization, cognitive source-destination pairs use Nt transmit and Nr receive

antennas. Nodes also use Decision Feedback Detection (DFD) to cancel interference and

improve detection. In the Logical Link Control (LLC) sub-layer, nodes use Go-Back-N

(GBN) protocol, and CSMA/CA protocol in the MAC sub-layer of the data link layer

as shown in Fig. 5.1. Nodes exchange information between physical layer and data link

layer for cross-layer antenna selection and channel allocation purposes. In the following

subsections, we address these algorithms in detail.

The primary users’ interference limited cross-layer antenna selection algorithm

works as follows. At first, a cognitive source node determines the combination of maximum

possible usable antennas for a given transmit power and primary users’ interference con-

straint. Then, source nodes consult with respective receivers on the optimum combination

of K ≤ Nt transmit antennas. During this phase, a cognitive receiver searches for the sub-

set p, from all possible combination set P = {{1}, {2}..{Nt}, {1, 2}, {1, Nt}, ..., {1, 2...Nt}},

Figure 5.1: Communication system model for cognitive nodes.

69



that achieves the maximum transmission efficiency at the LLC sub layer. This information

of the optimum subset p of transmit antennas is relayed back to the cognitive transmitter

through a feedback channel. At the transmitter side, cognitive nodes use this subset p to

divide the incoming data into K parallel streams for spatial multiplexing and subsequent

transmission from the K-selected antennas.

5.2.2 Performance analysis for perfect channel estimation

To develop the mathematical model for the transmission efficiency, we express the

received signal yc ∈ CNr×1 at cognitive receivers as

yc = HpΠx+ n (5.1)

where Hp is an Nr × K channel sub-matrix, Π ∈ R
K×K represents channel dependent

permutation matrix for greedy QR detection ordering [77], x denotes Nt × 1 cognitive

user transmit symbol vector, and n ∈ CN(0, NoINr
) is the complex Gaussian noise vector

with zero mean and variance No, where INr
is an identity matrix of size Nr.

We consider all cognitive users have uniform interference effect on primary users.

For this reason we drop the subscript l in (3.2) for our further analysis. If the transmission

probability of cognitive node is τi, then the total interference level at the primary user for

T̂ cognitive users can be written as,

Itotal =
T̂∑
i=1

τiIi. (5.2)

We assume CSI between cognitive source and destination pairs is available at the

cognitive receiver. Also, cognitive receivers use Zero-Forcing (ZF) algorithm to suppress

the interference between the K spatially-multiplexed layers [10]. If no error propagation

occurs among the detected layers at the DFD, the MIMO channel between cognitive nodes
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decouple into K parallel Single-Input and Single-Output (SISO) virtual sub-channels [78].

Given this, the output signal-to-noise ratio (SNR) for the jth sub-channel can be written

as,

ρj = r2jjρo, (5.3)

where ρo = E[xHx]/KNo is the average received SNR per receive antenna, and r2jj is the

diagonal elements of the matrix Rp calculated using HpΠ = QpRp.

Considering Binary-Phase-Shift-Keying (BPSK) transmission, the bit-error rate

(BER) of the jth layer provided that all previous layers are correctly detected, can be

written as

BERj = Q(
√
2r2jjρo), for j = 1, 2, ...., K, (5.4)

where Q(.) is the Gaussian Q-function. Since each L-symbol data packet is divided into

K-parallel streams before transmission, the packet error rate is given by

PER(Hp, ρ) = 1−
[

K∏
j=1

(1−BERj)

]L/K

. (5.5)

Having obtained the PER in (5.5), one can evaluate the transmission efficiency

(i.e., normalized throughput), defined as the ratio of effective information transfer rate to

the information or bit rate of the channel. For GBN protocol with window size W , the

instantaneous transmission efficiency [79] at the receiver side of node i can be expressed

as,

ηi(Hp, ρ) =
K

Nt

1− PER(Hp)

1 + (W − 1)PER(Hp)
. (5.6)

5.2.3 Performance analysis for imperfect channel estimation

Here we investigate the effect of imperfect CSI. For this purpose, we assume a time

frame consisting of Lt training or pilot symbols and Ld data symbols. Radio devices can

estimate the channel Hp using a priori knowledge of these training symbols in maximum-
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likelihood estimation method to yield,

Ĥp = Hp +ΔHp, (5.7)

where ΔHp represents the error matrix for channel estimation. Hence, one can rewrite

the received signal vector at the cognitive user as,

yc = HpΠ̂x+ n. (5.8)

Using (5.7) in (5.8) we obtain,

ỹc = Q̂HHpΠ̂x+ n

= R̂x−QHΔHpΠ̂x + ñ, (5.9)

where ĤpΠ̂ = Q̂R̂ and ñ = QHn.

Given the channel estimation technique, one can evaluate the received SNR for the

jth sub channel [46] as,

ρ̂j =
r̂2iiλ

λ
∑K

j=1 |Ωij|2 +No

, (5.10)

where Ω = QHΔHpΠ̂, λ = E[xHx]/K, and E[ñH
ñ] = E[nHQQHn] = E[nHn] = No.

Now, using this SNR in (5.4) - (5.6), one can evaluate the instantaneous transmission

efficiency for the imperfect CSI case.

Algorithm 5 summarizes this antenna selection algorithm. For the cross-layer an-

tenna selection algorithm, cognitive source nodes select the antenna combination that

provides maximum transmission efficiency at the LLC sub-layer for a given interference

threshold at the primary user, that is

Hp = argmax
Hp

ηi(Hp, ρ), s.t. Itotal ≤ Ith. (5.11)
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Algorithm 5 Cross-layer Antenna Selection Algorithm

1: Packet Transmission Initiation.
2: Measure Itotal using primary users’ pilot signals.
3: Use step 1 measurement results to calculate the maximum number of usable antennas

during DIFS period of the IEEE 802.11 standard.
4: Send RTS signal using antennas identified in step 2.
5: Calculate Hp at the receiver side using (5.11).
6: Add the sub-matrix p with the CTS signal of the receiver.
7: Transmit CTS.
8: Use the sub-matrix p to divide and transmit data.
9: End of packet transmission.

Note that for the optimization criteria we consider the transmission efficiency over

throughput, as it clearly indicates the sources of inefficiency while it can also be used to

evaluate the achievable throughput of the network.

5.2.4 Analysis

The transmission efficiency for interference limited cognitive communication can

be determined, using the probability of channel availability Pa ((3.4), Chapter 3) as,

ηi(Hp, ρ) = Pa
1− PER(Hp)

1 + (W − 1)PER(Hp)
. (5.12)

It is worth noting that (5.12) represents the transmission efficiency without antenna

selection. To determine the transmission efficiency for the cross-layer antenna selection

case, we develop a 2 dimensional matrix z containing probability of channel availability

in the first column and corresponding transmission efficiency in the second column for

a certain ‘cognitive-to-cognitive’ channel. After this step, we sort the efficiency matrix

z according to descending order of efficiency. If the length of the sorted matrix is L,
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theoretical transmission efficiency is given by,

ηmax(ρ) = Pa(j)ηi(Hj, ρ) + (1− Pa(j))Pa(j + 1)ηi(Hj+1, ρ)

+ (1− Pa(j))(1− Pa(j + 1))Pa(j + 2)ηi(Hj+2, ρ).......... (5.13)

where Pa(j) represents the probability of channel availability for antenna combinations

corresponding to index j = 1, 2, ...., L.

5.2.5 Complexity analysis

Each iteration of the antenna selection algorithm through exhaustive search method

has complexity O(2Nt). This time complexity is a result of the exhaustive search of

the antenna selection algorithm where it runs over all combination of {(Nt

K

)
, for K =

1, 2...Nt} that results in time complexity O(2Nt). On the other hand, the antenna selection

algorithm has to store O(2Nt) elements, resulting in memory space complexity O(2Nt).

5.2.6 Performance evaluation

In this section, we evaluate the performance of the above mentioned algorithm.

For this purpose, we build an IEEE 802.11 [59] compliable ad-hoc network. All nodes are

equipped with four antennas (4 × 4 MIMO). The ad-hoc network contains 40 cognitive

source-destination pairs. We consider cognitive nodes with perfect CSI. We also assume

nodes use primary users pilot symbols [10] or blind channel estimation methods [80] to

estimate the CSI of ‘primary-to-cognitive’ channels. At this point, we consider nodes

experience flat fading in all frequency channels and choose the elements of ‘Cognitive-

to-Cognitive’ channel matrix Hp to be zero mean and unit variance independent and

identically distributed (i.i.d.) circularly symmetric Gaussian random variables. In the

system model, cognitive and primary users use side by side bands, resulting in spill over

energy among adjacent frequency bands. To model this spill over energy, we consider the
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Table 5.1: Simulation setting

Parameter Value
ARQ protocol GBN
ARQ window size 4 Packets
No. of transmit antennas 4
No. of receive antennas 4

elements of ‘Cognitive-to-Primary’ channel matrix G, as zero mean and 10−3 variance

complex Gaussian variables [22]. The remaining simulation parameters are listed in Table

5.1. We use these parameters to build a simulation program for the cognitive network

introduced in subsection 5.2.1.

First we present the performance results for the antenna selection algorithm. For

performance comparison purposes, we consider three cases, viz., Without Antenna Se-

lection (WAS), Maximum Antenna Selection (MAS) and Cross-Layer Antenna Selection

(CLAS). In the WAS strategy, cognitive nodes transmit using all the available antennas,

provided that the interference imposed by primary users is below the prespecified thresh-

old. If the interference constraint is not satisfied, cognitive users turn off all their antennas.

On the contrary, cognitive users in the MAS algorithm use physical layer measurements

to determine the maximum possible usable antennas given the interference threshold on

the primary user is satisfied. In our CLAS algorithm, nodes select the antennas that

maximize the LLC transmission efficiency defined by (5.11).

We plot the transmission efficiency results and percentage of antenna usage in Figs.

5.2 and 5.3, respectively. Fig. 5.2 also contains theoretical transmission efficiency results

for WAS and CLAS algorithms obtained using (5.12) and (5.13), respectively. At relatively

low SNRs ([0-12] dB), the CLAS algorithm offers the largest transmission efficiency where

both MAS and WAS have lower but similar transmission efficiency. This is due to the fact

that, at low SNRs, the channel between cognitive users has more dominant effect on the

BER performance than the imposed interference threshold at the primary user. In the

CLAS algorithm, since the performance of the wireless links differ widely at low SNRs,
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Figure 5.2: Transmission efficiency for cognitive nodes with different antenna selection
algorithms, primary user interference constraint ≤ -10 dBm.
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Figure 5.3: Percentage of antenna usage for primary user interference constraint ≤ -10
dBm.
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the antenna selection algorithm shows significant transmission efficiency gains. On the

other hand, as MAS and WAS algorithms do not consider channel reliability for antenna

selection, data packets need to be retransmitted until it is successfully received. This

argument ties well with the percentage of antenna usage results in Fig. 5.3. As seen,

one antenna usage is dominant at very low SNRs ([0-3] dB) while multiple antennas (2

and 3 antennas) combination usage becomes dominant at moderate SNRs ([3-12] dB)

for the CLAS. On the contrary, at low SNRs, both WAS and MAS select four antenna

combination most of the time.

At high SNRs ([12-30] dB), the results in Fig. 5.2 indicate that the transmission

efficiency of the MAS algorithm improves and converges with the CLAS. Also, all three

algorithms reach a maximum value after which, the performance is controlled by the more

dominant interference threshold where any increase in SNR results in lower transmission

efficiency. This agrees with the results in Fig. 5.3 where one can notice that when the SNR

increases, nodes increasingly become unable to use more antennas due to the interference

constraint. It is also noticed that both CLAS and MAS perform equally, as the channel

has less effect at high SNRs.

We plot the achievable transmission efficiency curves in Fig. 5.4 as a function of

the primary users’ interference threshold, where the transmit power is set to 12 dB. At

low values of interference thresholds ([-40 to -20] dBm), the number of usable/selected

antennas is very small to limit the effect of interference on primary users. As a result, the

CLAS algorithm has fewer choices for antenna selection and hence similar transmission

efficiency for both CLAS and MAS algorithms. For the same reasons, the performance of

the WAS is very poor in this case. At high interference thresholds, the CLAS has higher

degrees of freedom to leverage large transmission efficiency gains.

At this point, we evaluate the effect of CSI and error propagation among sub-

streams of the zero forcing algorithm on the system throughput. First, we present results

for imperfect CSI. To generate the error matrix for channel estimation, we select an
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Figure 5.4: Achievable cognitive user transmission efficiency for different interference
constraints and 12 dB cognitive user transmit power.

orthogonal pilot sequence from a constant energy constellation across all the transmit

antennas [11]. For instance, training sequence xp for BPSK modulation of training length

Np = 4, and for 4 transmit antennas can be written as,

xp =
1√
4

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

−1 1 −1 1

−1 1 1 −1

−1 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.14)

For Maximum Likelihood (ML) channel estimation, error matrix ΔHp is given [11] by,

ΔHp =
Nt

Np
√
ρ
xH
p No (5.15)

The throughput curves in Fig. 5.5, reveal that some performance degradation occurs due
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Figure 5.5: Transmission efficiency for cognitive nodes with different antenna selection
algorithms, primary user interference constraint ≤ -10 dBm at imperfect CSI .

to imperfect CSI. With the increase of number of training symbols, the performance of

the proposed algorithm shows results close to the perfect CSI case. Another important

remark is that, in all cases, the proposed cross-layer design is shown to outperform other

conventional schemes.

To evaluate the effect of error propagation of the spatially-layered system on the

throughput performance, we consider the error propagation model and analytical results

presented in [81] and [82]. The corresponding throughput results are shown in Fig. 5.6.

Similar to the imperfect CSI case, one can notice that all systems are equally affected by

the error propagation in the detected layers. In all systems, we have noticed throughput

degradation relative to the ideal case of no error propagation. However, as can be seen,

the proposed CLAS still outperforms both the MAS and the case of no antenna selection.
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Figure 5.6: Transmission efficiency for cognitive nodes with different antenna selection
algorithms, primary user interference constraint ≤ -10 dBm for error propagation between
sub-streams.

5.3 Cross-Layer Antenna Selection and Beamforming

In this section, we apply the antenna selection approach presented above to propose

a cross-layer based MIMO transmit antenna selection and beamforming algorithm to

achieve large throughput gains by allowing concurrent communications of primary and

cognitive users.

We consider a scenario similar to [75], where cognitive users opportunistically use

the wireless resources of a licensed primary user. In addition, we assume cognitive nodes

use GBN protocol for the LLC sub-layers. At the physical layer, cognitive nodes use data

demultiplexer to divide the incoming data into M parallel streams (Fig. 5.7). These data

streams (layers) are fed to M RF chains. Assuming that CSI is available at the transmit-

ter through a feedback channel, cognitive nodes perform antenna selection and precoding.

For the antenna selection, cognitive nodes search for M antennas from Nt available trans-
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Figure 5.7: Communication system model for cross-layer antenna selection and beam-
forming algorithm.

mit antennas for maximum LLC layer throughput. That is given an antenna set P , the

optimal subset p ∈ P of size M ≤ Nt is selected for maximum throughput. Having

selected the optimal antennas, in the precoding stage, cognitive nodes use the CSI of

‘cognitive-to-primary’ link to determine the beamforming vector. That is, the proposed

cross-layer antenna selection and beamforming (CLBF) algorithm works as precoded sym-

bols are transmitted using the selected antennas. On the other hand, cognitive receivers

are equipped with Nr(Nt ≤ Nr) receive antennas, and DFD to extract the transmitted

data streams.

5.3.1 Performance analysis for perfect channel estimation

In this subsection, we consider perfect CSI is available at the cognitive receiver.

Thus for the above mentioned system, cognitive nodes determine a zero forcing beamform-

ing precoding matrixA ∈ CM×M , such that the primary user experiences zero interference
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due to ‘Cognitive-to-Cognitive’ communication, i.e.,

GiA = 0 s.t.‖A‖2 = 1. (5.16)

Using (5.16) and introducing xc = Ax, from (3.2) and (5.1) we obtain,

yc = Hpxc + n = HpAx+ n, (5.17)

yipl = Gixc = GiAx = 0,

I = yipl
H
yipl = 0.

(5.18)

By introducing HpA = H̃ , (5.17) can be transformed as,

yc = H̃x+ n. (5.19)

The received SNR, ρ, for the selected antenna combinations can be written as [75],

ρ =
ψ

λ
, (5.20)

where ψ = d11σ, λ denotes the first element of the covariance of the noise n, σ is the

cognitive transmit power, and d11 is the non-trivial diagonal element of the matrix D

with D being calculated using singular value decomposition as, H̃ = UDV H (where U

and V are unitary matrices).

If BPSK modulation is considered, the BER of the jth data stream for selected

antenna combinations can be written as,

BERj = Q(
√
2ρ). (5.21)

Since each L-bit data packet is divided intoM parallel streams before transmission, packet
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Algorithm 6 Cross-Layer Antenna Selection and Beamforming

1: Session Initiation
2: Determine Gi using primary users’ pilot signals.
3: Measure Itotal using Gi.
4: Determine Hp using (5.23).
5: Use step 2 measurement to determine the matrix A.
6: Determine the beamforming symbol vector xc = Ax
7: Transmit xc.
8: End of session

error rate is given by

PER(Hp, ρ) = 1−
[

M∏
j=1

(1− SERj)

]L/M

. (5.22)

Using the obtained PER, the transmission efficiency (i.e., normalized throughput)

for GBN protocol with window size W can be written as (5.6).

Finally, the cross-layer based antenna selection and beamforming algorithm works

as cognitive source node first selects the antenna combination to achieve maximum through-

put at the LLC sub-layer, then precoding is applied to the transmitted symbols for zero

forcing the interference at the primary user, as presented in (5.23). Algorithm 6 summa-

rizes this procedure.

Hp = argmax
Hp

η(Hp, ρ) (5.23)

5.3.2 Performance analysis for delayed and imperfect CSI

Here we derive an expression for the instantaneous transmission efficiency for im-

perfect CSI. In the following analysis, we have considered two cases, (a) delayed CSI and

(b) erroneous or imperfect CSI. First, we present the case of delayed CSI. Given the chan-

nel Hp, we denote the delayed channel estimate at the receiver by Ĥp. For this purpose,

we use the channel estimation analysis presented in [45] to relate the delayed CSI and the
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actual CSI at the cognitive receiver by,

Ĥp = βHp +
√
1− β2Z. (5.24)

where β = Jo(2πfdTΔ), Jo(.) represents zero-order Bessel function, fd is the Doppler

frequency, T is frame duration, Δ is the feedback delay in frames, and the elements of

Z ∈ CNr×M represent zero-mean unit-variance Gaussian random variables. Hence, one

can rewrite the received signal vector at the cognitive user in (5.17) as,

yc = Hpxc + n =

[
1

β
Ĥ −

√
1− β2

β
Z

]
xc + n. (5.25)

Using the singular-value-decomposition of Ĥ = UD̂V H , (5.25) can be written as,

ỹc = 1
β
D̂V Hxc −

√
1−β2

β
UHZxc +UHn

= 1
β
D̂x̂c −

√
1−β2

β
Ωxc + ñ, (5.26)

where Ω = UHZ. Since E[x̂c
Hx̂c] = E[xc

HV V Hxc] = E[xc
Hxc] = E[xHAHAx] = σ

and E[ñH
ñ] = E[nHUUHn] = E[nHn] = No, the received SNR can defined as,

ρ =

1
β2d

2
11σ

σ 1−β2

β2

∑2
j=1 |Ω1j|2 +No

. (5.27)

Similar to the perfect CSI case and considering BPSK modulation, using (5.6), (5.21),

(5.22), and (5.27), the instantaneous transmission efficiency is given by,

η(Hp, ρ) =

[
1−Q(

√
2ρ)

]L/M
1 + (W − 1)

(
1− [

1−Q(
√
2ρ)

]L/M) . (5.28)

Now, we investigate the effect of imperfect CSI. For this purpose, we assume a time

frame consisting of Lt training or pilot symbols and Ld data symbols. Radio devices can
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estimate the channel Hp using a priori knowledge of these training symbols in maximum-

likelihood estimation method to yield,

Ĥ = Hp +ΔHp, (5.29)

where ΔHp represents the error matrix for channel estimation. Given the channel esti-

mation technique, one can evaluate the received SNR as,

ρ =
d211σ

σ
∑2

j=1 |Ω1j|2 +No

, (5.30)

where Ω = UHΔHp, and d11 is the non-trivial diagonal element of the matrix D with D

being calculated using singular-value-decomposition, Ĥp = UDV H . Using the SNR, one

can evaluate the instantaneous transmission efficiency for imperfect channel estimation.

Recall that, the cross-layer based antenna-selection and beamforming algorithm

first selects the antenna combination to achieve maximum throughput at the LLC sub-

layer. Then precoding is applied to the transmitted symbols for zero-forcing the interfer-

ence at the primary user, as presented in (5.31)

Hp = argmax
Hp

η(Hp, ρ). (5.31)

It is important to mention that in the cross-layer antenna selection algorithm, an-

tenna combination is selected from the available antennas that achieve maximum trans-

mission efficiency at the LLC sub-layer. For this purpose, a search process considers

all possible antenna combinations. Conversely, in the cross-layer antenna selection and

beamforming, the search process considers only the combinations that can be applied

to beamform the transmitted symbols. That is beamforming is employed here to cancel

interference between cognitive and primary users.

85



5.3.3 Complexity analysis

In is worth noting that the complexity of the proposed algorithm grows with the

number of transmit antennas. We calculate the complexity of the algorithm by the re-

quired number of floating point addition and multiplication operations. One can notice

that, determining the beamforming matrix [75] requires only six addition and multiplica-

tion operations, and the antenna search algorithm requires
(
Nt

M

)
operations for the com-

bined algorithm. Thus, the total complexity of the cross-layer antenna selection and

beamforming algorithm is equivalent to O(
(
Nt

M

)
6).

5.3.4 Performance evaluation

We carry out numerical analysis for performance evaluation of the above men-

tioned algorithm. For this purpose, we consider cognitive users operate in the adjacent

frequency band of the primary user. We assume cognitive nodes have perfect channel

state information (CSI) of ‘Cognitive-to-Cognitive’ and ‘primary-to-cognitive’ links. We

also assume, channel remains static for the entire period of a packet transmission and

change independently form one packet to another. This let us choose the elements of

‘Cognitive-to-Cognitive’ channel matrix H as Rayleigh variable with zero mean and unit

variance. However, to model the elements of the ‘Cognitive-to-Primary’ channel matrix

we choose Rayleigh variable with zero mean and 10−3 variance. Although, we do not

consider the ‘Primary-to-Cognitive’ channel for the sake of simplicity, our study can be

easily extended to this case. Other simulation parameters are listed in Table 5.2.

We plot the normalized throughput curves in Fig. 5.8 where we consider five

scenarios, (a) no antenna selection, (b) Beamforming in a 2× 2 MIMO system (BF), (c)

cross-layer antenna selection (CLAS), (d) proposed CLBF in 2×2 system (M=2 antennas

selected from Nt = 4 antennas), and (e) proposed CLBF in 2× 2 system (M=2 antennas

selected from Nt = 6). The performance of these algorithms are evaluated under the con-

dition that cognitive communication limited by the primary user interference constraint
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Table 5.2: Simulation settings

Parameter Value
Packet Payload 1024 bytes
Frame duration 2 ms
ARQ protocol GBN
ARQ window size 4 Packets
PER threshold 10−6

No. of RF chain, M 2
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Figure 5.8: Throughput performance of cognitive users with a primary user interference
constraint ≤ -20 dBm and ARQ window size = 4.

≤ -20 dBm. For the no antenna selection case, cognitive nodes are able to communicate,

if the resultant primary user interference is lower than the specified interference threshold.

In CLBF, cognitive nodes first select the antenna combinations for maximum LLC layer

normalized throughput, then apply beamforming over the selected antennas.

Fig. 5.8 indicates that the CLBF algorithm outperforms CLAS, BF and no antenna

selection algorithms. As one can see , the use of antenna selection combined with beam-

forming offers larger throughput gains as the number of available antennas increases. The
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extra throughput gain achieved is due to the ability of the proposed algorithm to rem-

edy the interference effects at the primary users while maximizing the throughput of the

cognitive network. Different from the CLBF and BF algorithms, the performance with

CLAS and no antenna selection is shown to deteriorate as the SNR goes high due to the

interference constraint set at the primary user.

In Fig. 5.9, we examine the effect of delayed CSI on the throughput performance.

Our simulation results reveals that performance degradation occurs due to delayed CSI

where degradation is more evident in the BF case than the CLBF case. Also as seen, in all

cases, the proposed cross-layer design is shown to outperform the beamforming scheme.

In Fig. 5.10 we examine the effect of imperfect channel-state information on the

transmission efficiency. Similar to the delayed CSI case, imperfect CSI causes small degra-

dation in the transmission efficiency using small number of training symbols. Furthermore,
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Figure 5.9: Effect of channel estimation delay on the throughput performance of cognitive
users with primary user interference constraint ≤ -20 dBm and ARQ window size = 4.
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Figure 5.10: Effect of imperfect channel estimation errors on the throughput performance
of cognitive users with primary user interference constraint ≤ -20 dBm and ARQ window
size = 4.

in all cases, the proposed cross-layer design is shown to outperform the beamforming

scheme.

To further explore the effect of number of antenna combination, we examine the

throughput performance as a function of available antennas Nt. The results are shown in

Fig 5.11 where we compare the performance of the cross-layer antenna selection (CLAS)

without beamforming with the proposed CLBF. Note that the CLAS, similar to the no

antenna selection case, is limited by the interference threshold at the primary user. As

shown, one can leverage large throughput gains by increasing the number of available

antennas in the CLBF algorithm. On the contrary, the CLAS achievable throughput is

limited by the primary user interference constraint.

In Fig. 5.12, we plot the achievable efficiency curves of cognitive users as a function

of the interference constraint at the primary user for a cognitive SNR = 8 dB. The results

reveal the differences between three scenarios; no antenna selection, BF, and proposed
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Figure 5.11: Throughput as a function of number of antenna combinations for a 2×2
MIMO system at SNR=8 dB and ARQ window size = 4.
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Figure 5.12: Effect of primary user interference threshold for cognitive user SNR=8 dB
and ARQ window size = 4.
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CLBF where the CLBF and BF are shown to be interference resistant with the former

offering larger throughput gain.

We have simulated the system to investigate the effect of window size. The results

are shown in Fig. 5.13. We simulate the system for three window sizes, w = 4, w = 16

and w = 64. From (5.6), one can notice that the transmission efficiency is inversely

proportional to the window size. This phenomenon is also revealed in the simulation

results. In the figure, simulation results indicate that, for low SNRs the efficiency decreases

with the increase in window size. Conversely at high SNRs as the packet-error rate

becomes zero, the widow size has no effect on the efficiency.

5.4 Combined Antenna/Channel Selection

We use the transmission efficiency results of the previous subsections to determine

the achievable data rate for cognitive nodes. To determine the achievable data rate, we
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Figure 5.13: Effect of the window size on the throughput performance of cognitive users
at a primary user interference constraint ≤ -20 dBm.
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first determine the LLC layer transmission efficiency ηi(Hp, ρ). Then, we multiply the

transmission efficiency by the bit rate KRtr. Note that Rtr is the bit rate per transmit

antenna and K is the number of applied transmit antennas. We express the achievable

data rate, χi, at the LLC sub layer of any cognitive node i ∈ M as

χi = KRtrηi(Hp, ρ). (5.32)

From (5.3)-(5.5), we notice that, in order to maximize the transmission efficiency,

the SNR needs to be increased. However, the interference at the primary users also

increases with the increase in SNR. For this reason, we express the average data rate of

cognitive nodes (limited by the interference threshold Ith of primary users) as

f(ρ) =

M∑
i=1

χi

M
s.t. Itotal ≤ Ith.

(5.33)

Nodes in a MBMMCAN may deploy antenna selection along with channel selection

scheme for throughput improvement. For the combined cross layer antenna/channel se-

lection scheme, nodes apply the algorithms in steps. During the session initiation period,

nodes transmit using antenna selection algorithm in a randomly selected channel and

record channel performance parameters. Over the course of time, nodes switch the oper-

ating channel to learn about all available channels. In particular, nodes apply the learning

algorithm to calculate the channel switching probability in (4.3), (4.7) or (4.6). Given

this, nodes apply the antenna selection algorithm for the chosen frequency slot (channel).

When a session ends, nodes erase all learned data and repeat the whole process for the

next session.
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5.4.1 Results

From the previous results, it becomes clear that combining the cross-layer antenna

selection with the learning-based channel selection can further improve the transmission

efficiency of the cognitive network. To demonstrate this, we employ the combined chan-

nel and antenna selection algorithm in the multi-band multiuser MIMO cognitive ad-hoc

network. We apply four different combinations of strategies for performance evaluation,

namely, (1) learning-based channel allocation and CLAS, (2) random channel allocation

and CLAS, (3) learning-based channel allocation and WAS, and (4) random channel allo-

cation and WAS. The reported average data rate results in Fig. 5.14 show that the CLAS

algorithm along with learning-based channel selection policy achieves the highest average

network data rate. This is simply due to the fact that in learning-based algorithm, nodes

have less channel switching events (i.e., less overhead) and hence better throughput.
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Figure 5.14: Average data rate of the cognitive nodes for different antenna selection
algorithms at 12 dB transmit power and interference threshold ≤ -10dBm with unequal
frequency slots.
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Apart from the equal interference case presented before, we also study the effect of

random interference on the network performance. To generate these results we consider

σ in (3.2) to be uniformly distributed over the range 0 to 12 dB. Given this, we apply

the combined channel and antenna selection algorithm in the multi-band multiuser MIMO

cognitive ad-hoc network. For performance comparison, we consider the four combinations

of antenna selection and channel selection algorithms introduced in Fig. 5.14. As seen

from Fig. 5.15, the reported average data rate results for the random interference case

show that the CLAS algorithm along with learning-based channel selection policy achieves

the highest average network data rate. This is simply due to the fact that in learning-

based algorithm, nodes have less channel switching events (i.e., less overhead) and hence

better throughput. However, it is worthwhile to notice that the performance comparison

of the antenna selection and the channel selection algorithms show similar trend for both

equal (Fig. 5.14) and random interference (Fig. 5.15) cases.
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Figure 5.15: Average data rate of the cognitive nodes for different antenna selection and
channel selection algorithms for interference threshold ≤ -20dBm with unequal frequency
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5.5 Conclusions

We investigated the performance of a cross-layer antenna selection and channel se-

lection algorithms for cognitive networks. Our simulation results indicate that cross-layer

antenna selection algorithm improves the transmission efficiency significantly compared

to the conventional systems. Furthermore, we proposed an antenna selection algorithm

applied with beamforming to gain high throughput in cognitive radio networks. The pro-

posed algorithm allows cognitive users to access the channel with no interference effect on

primary users using beamforming. Our proposed cross-layer algorithm is shown to offer

high throughput using low number of RF chains. The simulation results also show that

the effect of imperfect channel-state information and delayed estimates is not significant

where the system still able to outperform other schemes.Our results also indicate that

when the cross layer antenna selection algorithm is combined with the learning-based

channel selection, the average data rate of the cognitive network improves significantly.
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Chapter 6

Blind Primary User Identification in

MIMO Cognitive Networks

In our previous chapters, we assume that cognitive nodes have perfect knowledge

of primary users information. In this chapter, we investigate ANN techniques for primary

users’ signal detection purpose.

As indicated in Chapter 2, early detection of primary users presence is one of the

most important tasks for cognitive communication. Also, in cognitive settings nodes may

receive signals from primary users and from other cognitive users simultaneously. For such

scenario, we propose primary user signal detection using modulation class identification

method. We consider multiple transmit and multiple receive antennas for cognitive nodes.

We employ ANN for the modulation identification purpose. The proposed algorithm works

as higher order moments and cumulants are calculated from the received signal samples

at each of the receiving branches of cognitive nodes. After this step, these features are fed

to the ANN to determine the presence of primary users. Final identification decision is

drawn using the decision from all receiving branches. We present numerical results of our

algorithm and compare these results with the theoretical results of the energy detection

algorithm [23].
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6.1 Introduction

Spectrum sensing is one of the key elements for cognitive radio operation [1]. Cog-

nitive radio devices should be aware of spatial and temporal contents of the operating

environment. That is cognitive radio devices use sensing techniques to learn and map the

spectrum parameters such as interference limit, spectrum opportunity in time, frequency

and space domain. Spectrum sensing methods studied in the literature are mainly focused

on primary users’ transmitter detection. In these methods, sensing process involves digital

signal processing operations on the received primary users’ data. Some of the methods

used require a priori information of the primary users’ data [83, 84] while other methods

can detect blindly [84]. In the following paragraphs we will briefly describe the pros and

cones of these methods.

In the matched filter detection method, a known signal is correlated with an un-

known signal, to detect the presence of the known signal signature in the unknown sig-

nal [83]. Matched filter detection method requires less time to achieve high processing

gain. For CR devices, this detection method has limited usage for two reasons [83]. First,

this method requires prior knowledge of the primary users data. Another limitation of

this method indicates the need of multiple receivers for all signal types it detects. For

these reasons, matched filter detection method has limited usage in cognitive settings.

Cyclostationary feature detection is another coherent detection method. In telecom-

munications, modulation, sampling, multiplexing, and coding operations, or other meth-

ods applied to aid channel estimation create periodicity i.e., cyclostationary properties

in the radio signal. In the cyclostationary feature-detection method, primary user signal

is identified by exploiting the cyclostationary features of the received signal [84]. It is

possible, as noise is a stationary signal with no correlation, conversely modulated signals

are cyclostationary signals with spectral correlation due to the embedded redundancy of

signal periodicity. This method is robust as it does not need any knowledge of the noise

power. But, similar to matched filter detection methods, cyclostationary detection meth-
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ods also need prior knowledge of primary users signal and it has high implementation

complexity [83, 84].

On the other hand, energy detection is a non-coherent detection method capable of

performing optimally, as no prior knowledge is needed about the primary user signal. In

energy detection method, RF energy of the received signal strength is measured to indicate

whether the channel is idle or not. Wide-band spectrum can be sensed in this method

simply from the power spectral density of the received signal. Besides these advantages,

energy detection methods also have some limitations [84]. First, at low SNRs this method

cannot accurately determine the noise variance which causes noise uncertainty and thus

exhibits poor detection capability. The second drawback of energy detection is that it

cannot distinguish between interference and signal from other cognitive users sharing

the same channel. The third drawback is that it requires high sensing time for a given

probability of detection.

In this study, spectrum sensing using automatic modulation classification (AMC)

algorithm is adopted. AMC is a valuable tool for both civilian and military applications.

Rapid development of software defined radio and cognitive radio devices makes it more

promising, especially their deployment in applications such as spectrum management,

interference identification, and signal surveillance. On the same lines, AMC is advan-

tageous, as it can identify modulation types of the received signal without any a prior

knowledge. As a result, we find significant amount of research and development of AMC

algorithms for SISO systems [85]. In general, the developed AMC algorithms can be cat-

egorized into two classes, decision theoretic approaches [86, 87] and pattern recognition

approaches [88–91]. In the decision theoretic approach, prior knowledge of the probabil-

ity functions are used to classify the modulation type of received signal using hypothesis

testing [86, 87]. Conversely, pattern recognition approaches, as some basic characteris-

tics [88–91] of the received signal are extracted to classify the signal into certain class. In

this study, we will use ANN for the pattern recognition approach. We choose ANN for
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its robustness and easier implementation facilities. An ANN consists of three blocks, fea-

ture extraction, network training and performance evaluation. Features of the signal are

extracted using some signal processing methods such as spectral based features set [88],

higher order statistics (HOS) [89], constellation shape [90], and wavelet transforms [91].

Here, we consider HOS to extract features. ANN exhibits additional benefits for classi-

fication, as it does not need to be preprogrammed with thresholds for classification. For

this reason, ANN is important for signal detection in cognitive settings. For instance,

in [20, 21] the authors used ANN classifier to detect primary user signal.

In cognitive settings ‘cognitive-to-cognitive’ signal can be interfered by the primary

user or by another cognitive user communication. In this scenario, early detection of

interference source has not been studied. For this reason, we propose to employ ANN to

identify the primary users’ presence by identifying the modulation type of the primary

user. Our study is different from the studies in [20] and [21], as our approach detects

primary user signal while cognitive users are communicating. This is very helpful for

cognitive users, as nodes can perform sensing while communicating. This will minimize

unwanted interference on primary users’ communication from cognitive spectrum access.

The rest of the chapter is organized is as follows. The system model is presented

in Section 6.2. The proposed modulation classification algorithm is discussed in Section

6.3. Simulation model and results of the proposed algorithm are presented in Section 6.4

and Section 6.5 respectively. Finally, conclusions are drawn in Section 6.6.

6.2 System Model

Similar to previous chapters, we consider a cognitive ad-hoc network coexists with

licensed primary users in the same geographical area. Cognitive users use Dynamic Spec-

trum Access (DSA) techniques to opportunistically utilize primary users’ frequency bands.

We assume any node of the cognitive ad-hoc network can listen to all other nodes in the
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network. In this network, primary users can resume transmission while cognitive pairs

are communicating. In such event, communicating cognitive node pairs have to vacate

the occupied frequency band as soon as possible. We also assume that cognitive nodes

are equipped with Nt antennas for transmission and Nr antennas for reception while pri-

mary user use SISO systems. The proposed cognitive receiver side of the system adopts

modulation identification structure as shown in Fig. 6.1. In the next section we will

introduce the proposed modulation classification algorithm that will successfully identify

the received signal type for the cognitive node pairs.

Unlike the previous chapter here we consider cognitive nodes receive signal from

both cognitive users and and primary users. To develop the mathematical model for

the modulation classification algorithm, we express the received signal yc ∈ CNr×1 at

cognitive receivers as,

yc = hcxc + hpxp + n, (6.1)

where hc is Nr × Nt and hp is Nr × 1 matrices represent ‘cognitive-to-cognitive’ and

‘primary-to-cognitive’ channel gain respectively, xc ∈ CNt×1 and xp are transmit sym-

bol vector of cognitive and transmit symbol of the primary user respectively and n ∈
CN(0, σ2INr

) is the complex Gaussian noise vector with zero mean and variance σ2 ,

where INr
is the identity matrix of size Nr. We also assume source symbols of cogni-

Figure 6.1: Communication system model for cognitive nodes.
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tive and primary users are i.i.d, and mutually independent. The symbols are normalized

to have zero-mean and unit energy and belong to any of the linear modulation schemes,

Amplitude-shift Keying (ASK), Quadrature Amplitude Modulation (QAM) or Phase-shift

keying (PSK).

6.3 Modulation Identification

In this section, we discuss artificial neural network based automatic modulation

classification algorithm. The algorithm consists of three blocks, feature extraction, net-

work training, and performance evaluation. In the following subsections we describe these

features.

6.3.1 Feature extraction

Feature identification is one of the important aspects of modulation classification.

As indicated in section 6.2, previous works [20, 21, 89] have shown that among the best

candidates for signal identification are higher order moments and cumulants of the received

signal. For N samples of any signal x, higher moment of order k is defined by

Mkm (x) = E
[
xk−m (x∗)m

]
. (6.2)

The cumulant of order k of the zero-mean signal x is defined by

Ckm (x) = Cum

⎡⎣ x, ..., x︸ ︷︷ ︸
(k−m)times

x∗, ..., x∗︸ ︷︷ ︸
mtimes

⎤⎦ . (6.3)

Also, the relation between moments and cumulants can be expressed as,

Cum [x1, ....xn] =
∑
φ

(α− 1)! (−1)α−1
∏
v∈φ

E

(∏
i∈v

xi

)
, (6.4)
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where φ runs through the list of all partitions of 1, ..., n, v runs through the list of all blocks

of the partition φ, and α is the number of elements in the partition φ. For instance, the

fourth-order cumulant of zero-mean signals x, y, z and w is given by

Cum [x, y, z, w] = E (xyzw)− E (xy)E (zw)

− E (xz)E (yw)− E (xw)E (yz) . (6.5)

Based on (6.5), moments estimation leads to estimate of the cumulants. That is

for a given zero mean signal y of (6.1) with N samples, one can estimate the moments

and cumulants as,

M̂km (y) = E[yk−m (n) (y∗)m (n)], (6.6)

Ĉ20 (y) = E[y2 (n)], (6.7)

Ĉ21 (y) = E[|y (n)|2], (6.8)

Ĉ40 (y) = E[y4 (n)]− 3E[y2 (n)], (6.9)

Ĉ41 (y) = E[y3 (n) y∗ (n)]− 3E[y2 (n)]E[y (n) y∗ (n)], (6.10)

Ĉ42 (y) = E[|y (n)|4]− ∣∣E[y2 (n)]
∣∣2 − (E[y (n) y∗ (n)])2 , (6.11)

Ĉ60 (y) = E
[
y6 (n)

]− 15E
[
y4 (n)

]
E
[
y2 (n)

]
+ 30E

[
y2 (n)

]
, (6.12)

Ĉ61 (y) = E
[
y5 (n) y∗ (n)

]− 5E
[
y4 (n)

]
E [y (n) y∗ (n)]− 10E

[
y2 (n)

]
E
[
y3 (n) y∗ (n)

]
+ 30E [y (n) y∗ (n)]E

[
y2 (n)

]2
, (6.13)
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Ĉ62 (y) = E
[
y5 (n) (y∗ (n))2

]− E
[
y4 (n)

]
E
[
(y∗ (n))2

]
− 8E [y (n) y∗ (n)]E

[
y3 (n) y∗ (n)

]− 6E
[
y2 (n)

]
E
[
y2 (n) (y∗ (n))2

]
+ 6E

[
(y∗ (n))2

]
E
[
y2 (n)

]2
+ 24E

[
y2 (n)

]
E [y (n) y∗ (n)]2 , (6.14)

Ĉ63 (y) = E
[
y3(n)(y∗(n))3

]− 6E
[
y2(n)

]
E
[
y(n)(y∗(n))3

]
− 9E [y(n)y∗(n)]E

[
y2(n)(y∗(n))2

]
+ 18E

[
y2(n)

]
E
[
(y∗(n))2

]
E [y(n)y∗(n)]

+ 12E [y(n)y∗(n)]3 . (6.15)

To remove the scale problem, we normalize the signal y to have a unit energy, i.e.,

C21 = 1. However, practically higher order moments and cumulants are normalized as,

M̃km (x) = M̂km (x) /M
k/2
21 (x) , (6.16)

˜Ckm (x) = ˆCkm (x) /C
k/2
21 (x) . (6.17)

for k = 2, 4, 6, ...and m = 0, .., k/2.

It is worthwhile to note that for modulation identification in SISO systems the

authors in [92] used the cumulants up to the fourth order and the hierarchical classifi-

cation algorithm. Their study proves that algorithm based on higher order cumulants

and moments is naturally robust to constellation rotation, phase jitter and resistant to

additive colored Gaussian noise. Note that in this thesis, we consider higher cumulants

and moments up to order six as in (6.6)-(6.15).

6.3.2 Network training

Features extracted using the method in the previous subsection follow a certain

pattern for different types of modulated signals. This can lead us to identify modulation

types depending on the moments and cumulants i.e., patterns of the received signal.

Here, we deploy ANN to identify this pattern, as it is one of the best tools for pattern
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recognition problems. We consider a multilayer feed-forward ANN for this classification

problem. Moments and cumulants are the inputs of this ANN and modulation types are

outputs.

The training process of the network begins after selecting the number of hidden

layers, the number of nodes in each layer and features subset selection process. In this

study, we use resilient backpropagation learning algorithm (RPROP) [93] to train the

initiated artificial neural network. After the training phase, a test phase is initiated,

and the ANN classifier is evaluated through the probability of identification. In the next

section, we will present the test phase results of our designed network.

6.3.3 Decision formulation

In our system model, the receiver is equipped with multiple antennas. At this point,

modulation class detection can be done either from the received symbols of Nr branches

or from the estimate of the received symbols Nt. Similar to [94], we call the first type as

Direct Digital Modulation Identification (D-DMI) technique and use this for performance

evaluation of our network.

Let us consider we have Nr decision vectors. The final decision is made in favor of

certain modulation class if that class is identified in M̂ classifiers out of Nr classifiers. We

use
⌈
Nr

2

⌉
as the value of M̂ . Other methods [95] such as logical OR, logical AND (LA),

etc., can also be used for this purpose. For the system, all the ANN classifiers and Nr

processed signals are identical, which results in identical probability of identification pi in

Nr decisions branches. We express the final probability for M̂ out of Nr by

P =
Nr∑

k=M̂

(
Nr

k

)
pk(1− p)Nr−k. (6.18)
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Table 6.1: Theoretical values of higher order statistics for different modulation classes

F
ea
tu
re
s

M
o
d
.

B
P
S
K

Q
P
S
K

8P
S
K

Q
P
S
K

+
B
P
S
K

Q
P
S
K

+
8P

S
K

M41 1 0 0 2 0

M42 1 1 1 5 6

M60 -1 0 0 -13 0

M61 0 0 0 -4 -1

M62 1 0 0 7 -1

M63 0 0 0 22 -2

C60 -16 -1 0 -15 0

C61 -7 2 0 -1 0

C62 9 0 0 7 -2

C63 16 4 4 13 10

6.3.4 Complexity analysis

The complexity of moment and cumulant calculation in (6.2) is of order N . One

can notice that estimating a moment of order k requires only about N complex additions

and k × N complex multiplications. Also, from (6.4), cumulant calculation is of order

N . That is, the features extraction process has a very low complexity O(N). On the

other hand, the complexity of the ANN classifier is low. This is due to the outputs of a

layer in the ANN classifier are linear combinations of the inputs to this layer. Thus the

computational cost of the classifier depends on the number of nodes at each layer. As

the structure is static and predefined, and the number of nodes at each layer is small,

the ANN classifier needs only a small number of operations to obtain the output which is

inexpensive and has low complexity.
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6.4 Simulation Model

In this section we will present test results of the above mentioned detection algo-

rithm. To train the network, 1000 sets of 16 features (6.6)-(6.15) are considered, where

each of these features are calculated using 512 samples of the received signal at cognitive

nodes. We have listed theoretical values of these moments and cumulants in Table 6.1

for unit variance and noise free case. One can notice that, when one type of modulated

symbols impose on another type of modulated symbols, the resultant signal achieves a

distinct set of features. In our algorithm, ANN uses this property to detect the presence

of primary user signal buried in cognitive users’ signals.

Our designed neural network has 16 input nodes, which is equal to the number of

features. However, the optimal number of hidden layers is not easy to determine. We

performed extensive simulations and identified that the optimal ANN structure contains

two hidden layers network (excluding the output and the input layers), where the first

layer consists of 10 nodes and the second of 15 nodes. Also, we have considered the

sigmoid function for the outputs of the layers [94].

After the training phase, the network is tested with 1000 features for performance

evaluation. We consider the probability of identification as our performance metric,

p =
Nc

Ntoal

× 100, (6.19)

where Nc is the number of events for which modulation is correctly detected and Ntotal

denotes the total number of trails. For the MIMO case, we use this probability as iden-

tification probability for a single channel and determine the probability of identification

from (6.18). It is worthwhile to mention that during the process of training, the network

does not need any explicit information about primary users’ signals. The process can be

best described as learning phase, while the network trains itself to generate the predefined

output.
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6.5 Simulation Results

We consider ‘cognitive-to-cognitive’ pairs using QPSK modulation scheme. Cogni-

tive nodes also receive signals from the primary user as indicated in (6.1). Our goal is to

detect primary users’ signals while cognitive node pairs are communicating. We also con-

sider two sets of modulation classes for the primary user as, Set1 = {BPSK, 8PSK} and

Set2 = {BPSK, 8PSK, 16QAM, 64QAM, 4ASK, 8ASK}. We train the ANN to identify

primary users’ presence, as given by the hypotheses,

yc =

⎧⎪⎨⎪⎩ hcxc + hpxp,BPSK + n, xp if from BPSK modulation H̄1

hcxc + hpxp,8PSK + n, xp if from 8PSK modulation H̄2

(6.20)

In Fig. 6.2 we compare detection probability results for the above mentioned classi-

fication sets, Set1 and Set2. We have detected two hypotheses for Set1 and six hypotheses

for Set2. The figure demonstrates that the probability of identification decreases with the

increase in the size of classification set.

To validate our results, we also include ANN results for single source and theoretical

probability of identification results for the energy detection (ED) method [23]. By single

source ANN, we indicate a scenario where two hypotheses in (6.21) are tested to identify

BPSK modulated primary users’ signals fromQPSK cognitive signal and Gaussian noise.

For hypothesis H1, the received signal at cognitive nodes contains primary users’ signals,

the cognitive signal and noise. Conversely for hypothesis H0, the received signal contains

the cognitive signal and noise. We have determined the probability of identification for

these two hypotheses using ANN and ED methods.

yc =

⎧⎪⎨⎪⎩ hcxc + hpxp + n, H1

hcxc + n. H0

(6.21)

We investigate the effect of number of samples on the probability of identification
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Figure 6.2: Comparison of detection probability for ANN and ED sensing at 5% false
alarm rate and -5 dB cognitive power.

in Fig. 6.3. We notice that the identification probability improves with the increase in

SNR and number of samples. An increase in number of samples and SNR enable the

features be easily distinguished, which improves the identification probability. We also

notice that Set1 has better identification probability than the identification probability

of Set2.

At this point, we evaluate the effect of cognitive users’ power and multiple receive

antennas on the probability of identification. First we present the results showing the

effect of cognitive users’ transmit power. The probability of identification results in Fig.

6.4, reveals that some performance degradation occurs with the increase in cognitive

users’ power. This is due to the fact that with the increase in cognitive users’ power,

primary users’ signal becomes corrupted and hence poor identification features. Further,

the probability of identification results in Fig. 6.5 indicate that multiple receive antennas

improve the identification performance significantly. We confirm this gain as multiple
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Figure 6.3: Effect of number of samples on probability of identification at 5% false alarm
rate, -5dB cognitive user power and Nr = 1.
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Figure 6.4: Effect of cognitive users power on identification probability at 5% false alarm
rate.
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Figure 6.5: Effect of multiple antennas at the cognitive receiver on probability of identi-
fication at -5dB cognitive power and 5% false alarm rate.

antennas at the receiver add diversity to the system which improves the identification

capability.

Now we investigate the effect of primary users’ interference threshold on cognitive

communication. For this purpose, we consider that cognitive nodes are able to transmit

if interference caused by cognitive communication is below the interference threshold set

at the primary user. From the probability of identification results of Fig. 6.6, it is shown

that ANN identifies the presence of both cognitive node and primary nodes for cognitive

SNRs below 0 dB. On the other hand, for cognitive SNRs above 0 dB, only the presence of

the primary node is identified. This happens as cognitive nodes are not able to transmit

at higher SNRs due to the interference constraint set by the primary node.
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Figure 6.6: Effect of interference threshold at the primary node on probability of identi-
fication at -20dBm interference threshold, -5dB Primary user power and 5% false alarm
rate for Set1.

6.6 Conclusions

We have presented an algorithm for primary user identification using modulation

class detection. We also evaluated the effect of multiple receive antennas on identification

probability. We presented simulation result for both intra-class and inter-class identifi-

cations. Our simulation results showed that neural networks can be adopted to identify

primary users’ presence with very high accuracy while cognitive users are communicating.
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Chapter 7

Conclusions and Future Studies

7.1 Summery and Conclusions

In this section we briefly summarize major contributions and the accomplished

work in this thesis.

In Chapters 1 and 2, we briefly reviewed cognitive networks, machine learning,

ANN, the Game theory, and MIMO techniques. Challenges for cognitive networks are

mentioned and available mathematical tools to address design challenges are addressed.

In Chapter 3, we presented analysis to determine the probability of channel avail-

ability for interference-limited cognitive networks. Using this probability and Markov

model we determined the average access delay, throughput and service time for interfer-

ence limited cognitive networks. These results and analyses can be applied in network

design or analyze performance of existing networks. Nevertheless, in this chapter we

considered all cognitive nodes operate in a single frequency band. For this purpose, we

extended our study for a multi-band environment for cognitive nodes in Chapter 4.

We investigated the performance of learning based channel selection approaches for

multi-band multi user cognitive ad-hoc networks in Chapter 4. We presented proof of con-

vergence for the algorithms for multi-band cognitive ad-hod networks with heterogeneous
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nodes. It was shown that learning based channel selection algorithms converge to a Nash

equilibrium point for nodes having unequal arrival packet rate in multi-party multi-agent

stochastic game. We also noticed that Q learning based algorithm can improve the aver-

age data rate of the network, and can reduce the user satisfaction variance i.e., improve

fairness among cognitive nodes. We further showed that convergence time and data rate

improve for cooperative learning.

To further improve the channel utilization, we extended our study to include MIMO

techniques in Chapter 5. We investigated the performance of a cross-layer antenna se-

lection algorithms for cognitive networks. Our simulation and analytical results indicate

that cross-layer antenna selection improves the transmission efficiency significantly com-

pared to conventional systems. Furthermore, we proposed an antenna selection algorithm

applied with beamforming to gain high throughput in cognitive radio networks. The pro-

posed algorithm allows cognitive users to access the channel with no interference effect on

primary users using beamforming. Our proposed cross-layer algorithm is shown to offer

high throughput using low number of RF chains. The results also show that the effect

of imperfect channel-state information and delayed estimates is not significant where the

system still able to outperform other schemes.

For the above mentioned studies we assumed cognitive nodes have perfect knowl-

edge of primary users presence information. In Chapter 6, we deviate from this assumption

and investigated ANN methods to detect the presence of primary user presence during

cognitive communication. For this purpose, we presented an algorithm for primary user

identification using modulation class detection. We also evaluated the effect of multiple

receive antennas on identification probability. We presented simulation results for both

intra-class and inter-class identifications. Our results show that neural networks can be

adopted to identify primary users’ presence with very high accuracy while cognitive users

are communicating.
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7.2 Future Studies

In the sequel here we list some of the topics of interest.

• In Chapter 4 and 5, we have considered cognitive radios operate in a particular

frequency channel at a particular time instant. In some recent works [96,97] multiple

radio devices have been developed. For that, nodes can operate in multiple frequency

channels simultaneously instead of adopting a single channel. Channel allocation

problem for such system is an important research direction.

• This also necessitates the investigation of appropriate MAC protocols for multi radio

cognitive settings. Further, network performance parameters can be determined for

multi-radio multi-band cognitive communications.
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