
PRIVACY-PRESERVING QUERY PROCESSING ON

OUTSOURCED DATABASES IN CLOUD COMPUTING

Samira Barouti

A thesis

in

The Department

of

Concordia Institute for Information System Engineering (CIISE)

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science (Information System

Security)at

Concordia University

Montréal, Québec, Canada

October 2013

c© Samira Barouti, 2013

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Samira Barouti

Entitled: Privacy-Preserving Query Processing on Outsourced

Databases in Cloud Computing

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information System Security)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. Chun Wang

Examiner

Dr. Lingyu Wang

Examiner

Dr. Otmane Ait Mohamed

Supervisor

Dr. Mourad Debbabi

Co-supervisor

Dr. Amr M. Youssef

Approved
Chair of Department or Graduate Program Director

20

Robin Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Privacy-Preserving Query Processing on Outsourced Databases in

Cloud Computing

Samira Barouti

Database-as-a-Service (DBaaS) is a category of cloud computing services that

enables IT providers to deliver database functionality as a service. In this model, a

third party service provider known as a cloud server hosts a database and provides

the associated software and hardware supports. Database outsourcing reduces the

workload of the data owner in answering queries by delegating the tasks to pow-

erful third-party servers with large computational and network resources. Despite

the economic and technical benefits, privacy is the primary challenge posed by this

category of services. By using these services, the data owners will lose the control

of their databases. Moreover, the privacy of clients may be compromised since a

curious cloud operator can follow the queries of a client and infer what the client is

after. The challenge is to fulfill the main privacy goals of both the data owner and

the clients without undermining the ability of the cloud server to return the correct

query results.

This thesis considers the design of protocols that protect the privacy of the

clients and the data owners in the DBaaS model. Such protocols must protect the

privacy of the clients so that the data owner and the cloud server cannot infer the

constants contained in the query predicate as well as the query result. Moreover, the

data owner privacy should be preserved by ensuring that the sensitive information in

the database is not leaked to the cloud server and nothing beyond the query result is

revealed to the clients. The results of the complexity and performance analysis indi-

cates that the proposed protocols incur reasonable communication and computation

overhead on the client and the data owner, considering the added advantage of being

able to perform the symmetrically-private database search.

iii

Acknowledgments

This thesis is a product of three years of work under the supervision of Professor

Mourad Debbabi and Professor Amr M. Youssef. They graciously accepted me as

Master student even when I knew nothing about security and privacy. They exposed

me to relevant literatures in the area of security, privacy and applied cryptography.

I consider it as a rare opportunity to work with these brilliant, highly motivated,

kind and skillful supervisors. They provided research assistantship support and gave

many opportunities for professional development. For all these and many more, I am

grateful.

I have also enjoyed collaborations from some of the brightest people within of

Concordia University. In particular, I am grateful to Dima Alhadidi, Feras Aljumah

and Noman Mohammed for fruitful collaborations. I have enjoyed their encourage-

ment and great feedbacks on original works and draft papers that has made this thesis

much better.

I am blessed to have an outstanding husband, Farid, who has supported me

through my entire life and my years of graduate studies. Thank you for your support,

care, patience and faith in me.

I thank my dad and my mom, Ali Barouti and Masoumeh Azim, for always

encouraging me to move forward in my academic pursuits. I am grateful for their

prayers and support. Words cannot express my appreciation to my sisters, Sara and

Maryam, for their supports and goodwill.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Preamble . 1

1.2 Applications . 5

1.3 Objectives and Contributions . 7

1.4 Thesis Organization . 9

2 Preliminaries 10

2.1 Secure Multiparty Computation . 10

2.2 Cryptographic Primitives . 12

2.2.1 Private Information Retrieval 12

2.2.2 Homomorphic Encryption . 12

2.2.3 Threshold Cryptosystems . 16

2.2.4 Private Comparison . 18

2.3 Left-Balancing Binary Search Trees 19

2.4 Multidimensional Indexing . 23

3 Related Work 25

3.1 Private Information Retrieval . 25

3.1.1 TransPIR . 27

3.1.2 BHE/HHE . 27

3.1.3 SQL-PIR . 28

3.2 Privacy-Preserving Set Operations . 29

v

3.3 Oblivious Keyword Search . 30

3.4 Private Database Outsourcing . 30

3.5 Privacy-Preserving Data Mining . 31

3.6 Privacy-Preserving Data Publishing 33

4 Symmetrically-Private Database Search in Cloud Computing 35

4.1 Introduction . 35

4.2 Threat Model and Adversary Capabilities 37

4.3 Symmetrically-Private Keyword Search 38

4.3.1 Tree Construction and Database Encryption 39

4.3.2 Oblivious Tree Search and Payload Retrieval 41

4.3.3 Query Result Decryption . 45

4.4 Symmetrically-Private SQL Search 45

4.4.1 Tree Construction . 46

4.4.2 Query Sanitization . 47

4.4.3 Oblivious Tree Traversal . 48

4.4.4 Query Result Decryption . 50

4.4.5 Improved Protocol . 52

4.5 Security and Complexity Analysis . 53

4.5.1 Possible Attacks and Mitigations 53

4.5.2 Complexity Analysis . 54

4.6 Performance Analysis . 58

4.7 Discussion and Conclusions . 61

5 Secure Healthcare Query Processing in Cloud Computing 64

5.1 Introduction . 64

5.2 Threat Model . 66

5.2.1 Entities Involved in The Protocol 66

5.2.2 Assumptions and Threat Model 68

5.3 Secure Distributed Techniques . 69

5.3.1 Secure Distributed Sum . 69

5.3.2 Secure Distributed Maximum/Minimum 70

5.4 Secure Healthcare Query Processing in Cloud Computing 73

5.4.1 Setup and Tree Construction 74

vi

5.4.2 Query Sanitization . 77

5.4.3 Tree Traversal and Query Execution 78

5.4.4 Query Result Decryption . 80

5.5 Security and Complexity Analysis . 81

5.5.1 Possible Attacks and Mitigations 82

5.5.2 Complexity Analysis . 82

5.5.3 Implementation and Performance 84

5.6 Conclusions and Discussion . 87

6 Conclusions and Future Work 89

6.1 Future Work . 90

Bibliography 91

vii

List of Figures

1 Paillier Cryptosystem . 14

2 Goldwasser-Micali (GM) Cryptosystem 15

3 GM to AND-GM ciphertext conversion 16

4 Fischlin Private Comparison Protocol 20

5 Point Search on Binary Search Trees 22

6 Range Search on Binary Search Trees 22

7 Range Search on kD-Trees . 24

8 System Model in DBaaS . 37

9 Generated Bins . 41

(a) Bin 1 . 41

(b) Bin 2 . 41

(c) Bin 3 . 41

10 Left-Balancing Binary Search Trees 42

(a) Bin 1 . 42

(b) Bin 2 . 42

(c) Bin 3 . 42

11 Left-Balancing kD-tree . 48

12 The Effect of The Query Predicate Types 59

13 Query Response Time . 60

14 The Effect of The Database Size . 60

15 Basic vs. Improved SP-SQL Approaches 61

16 Architecture . 68

17 Outsourced Health Records in Groups 76

(a) G1 Database . 76

(b) G2 Database . 76

(c) G3 Database . 76

viii

18 Generated kD-Trees . 77

(a) G1 kD tree . 77

(b) G2 kD tree . 77

(c) G3 kD tree . 77

19 Query Time . 85

20 Effect of λ for various values of k . 86

21 Effect of k for various values of λ . 86

22 Query time of a SQL query that contains exact matching (blue) and

interval matching (red) predicates . 87

ix

List of Tables

1 Related Work - Summary . 32

2 Table D . 40

3 Index-Based database . 40

4 Outsourced database . 40

5 Index Array I . 40

6 Table T for SP-KS . 43

7 Original Database . 47

8 Index-based Database . 48

9 Table T for SP-SQL . 49

10 Comparison of SP-KS Protocol with Existing Works 58

11 Comparison of SP-SQL With The Naive Approach 58

12 Health Records . 76

13 Assisting server latency for different types of SQL queries 85

x

Chapter 1

Introduction

1.1 Preamble

The new paradigm of cloud computing has matured from a buzzword to a concrete

concept adopted by many leading providers, such as Amazon and Google. By mov-

ing both data and computing away from personal computers into large data centers,

cloud computing will allow computation to be provided as a public utility. Cloud com-

puting has gained interests in the commercial arena due to its desirable features of

scalability, elasticity, fault-tolerance, self-management and pay-per-use. The oppor-

tunity to offer a database management system (DBMS) as an outsourced service has

recently received considerable attention [1,2]. Database-as-a-Service (DBaaS) [3–5] is

a category of cloud computing services that enables IT providers to deliver database

functionality as a service. In this model, the information that belongs to the data

owner, are organized as relational databases and then outsourced to a third-party

service provider, namely cloud server. The cloud server would be given the ability to

store the relational databases, and the capability to answer certain types of queries.

Database outsourcing reduces the workload of the data owner in answering queries

by delegating the tasks to powerful third-party servers with large computational and

1

network resources.

Outsourced databases present invaluable resources for retrieving up-to-date in-

formation and can be used for various purposes, ranging from scientific research as

in the case of medical data, to demographic trend analysis and marketing purposes.

Since outsourced databases are not any longer under the control of the data owner,

database outsourcing poses additional privacy risks to the sensitive information of

individuals. The cloud servers may not be fully trusted by the data owners or may

be susceptible to attacks, launched by malicious parties (both internal and external).

Thus, the privacy of individuals whose records exist in the database may be compro-

mised by the cloud server. Protecting the database records from the cloud server is

known as the database confidentiality.

DBaaS also poses a significant risk while the client is searching the cloud-hosted

database. The privacy of the client may be compromised since a curious cloud oper-

ator can follow the client’s queries and infer what the client is after. Clients’ queries

have been leaked intentionally in some of Google and Facebook applications [6] and

unintentionally in Twitter [7] in real-life incidents. Leaked queries may contain sensi-

tive information such as personal addresses, medical conditions, incomes, credit card

numbers and social security numbers [8, 9]. Therefore, clients are increasingly aware

of the need to protect privacy in their online activities. Privacy-conscious clients will

likely be willing to trade off the query performance for the query privacy and possi-

bly even pay to subscribe to such a service. The main challenge is how to keep the

sensitive information contained in the queries confidential without undermining the

ability of the cloud server to return correct results. In other words, we are interested

in preserving the client’s access privacy [10] – keeping both the queries and the results

confidential from the cloud server and the data owner. In addition, the protocols for

the database search should protect the data owner privacy ensure in the sense that

2

the client learns only the result of her query. The restriction is crucial in situations

where the database privacy is equally of concern such as financial and healthcare

industries.

The following scenario further illustrates the need for having privacy-preserving

query processing (PPQP) on outsourced databases in cloud computing. Consider a

hospital that outsources the medical diagnoses records of its patients using the DBaaS

model. Suppose that a client issues the following queries:

− How many patients are recovered from cancer?

− How many patients are diagnosed with cancer at age 35?

− How many patients are diagnosed with ovarian cancer or womb cancer?

From the constants contained in the queries, the cloud server can infer the

following information about the client, respectively:

− The client suffers from cancer.

− The client is 35 years old and suffers from cancer.

− The client is a female who suffers from the cancer.

Therefore, there is a need to develop protocols for query processing on out-

sourced databases that protect the privacy of both the data owners and the clients

such that protects (1) the database confidentiality against the untrusted cloud server,

(2) the access privacy of the clients such that the cloud server and the data own-

ers cannot infer the constants in the query predicates as well as the query result

and (3) the database privacy such that the cloud server does not provide any other

information beyond the query result to the clients.

3

Previous research in the context of secure data outsourcing has focused on these

areas independently. In the case of ensuring database confidentiality of outsourced

data, most of the existing works only focus on ensuring that the database records

should not be disclosed to the cloud server [11–19]. In the case of protecting the access

privacy, also called private information retrieval, the problem has been studied as the

theoretical formulation where the client must be able to retrieve the i-th element from

N data elements without disclosing to the cloud server discovering what the client is

after [20, 21]. Recently, some research works have been done to enable a transition

from index-based PIR to SQL-enabled PIR, however they ignore the privacy of the

database owner [10,22]. The existing solutions that target both the privacy of clients

and data owners are limited to retrieving a single bit or a block of bits [20, 21] in a

specific physical address. In this thesis, we propose protocols that enables to perform

search on the encrypted databases while protecting the mutual privacy of the clients

and the data owners, assuming that all parties are semi-honest adversaries [23] and

the cloud server is untrusted.

Intuitively, the proposed protocols in this thesis organize the records of datasets

as binary search trees, encrypt the records using semantically-secure encryption

schemes and outsource the encrypted datasets that represent the binary search trees to

the cloud server. To execute queries, the search is performed on encrypted datasets by

traversing the tree. To achieve this, the protocols depend on homomorphic properties

of two semantically-secure encryption schemes. Using homomorphic schemes, specific

operations can be performed on the encrypted records directly without the need for

decryption. More specifically, query predicates are evaluated using the Goldwasser-

Micali (GM) cryptosystem [24] and the Fischlin’s protocol [25] for private compar-

ison whereas query aggregate functions are computed using the Paillier cryptosys-

tem [26]. Using semantically-secure encryption schemes, it must be infeasible for a

4

computationally-bounded adversary to derive significant information about a message

when given only the ciphertext and the corresponding public key. The engagement of

the data owner in the protocol execution should be minimal. We achieve this by using

threshold cryptosystems such that the decryption process is performed by a specific

number of clients, namely the threshold k. Furthermore, threshold cryptosystems

provide increased security in such a way that any collaboration between fewer than

k clients does not result in a complete decryption. To search datasets efficiently in

logarithmic time, we use left-balancing binary search trees. Left-balancing binary

search trees enable a transition from index-based SPIR to SQL-enabled SPIR in such

a way that the nodes of a tree can be stored in an array and the indices of children

are computed arithmetically.

This thesis consists of two parts. The first part considers a system model for

DBaaS where the individuals trust an organization (namely, the data owner) to store

their record while preserving their privacy. In this case, the data owner collects the

information in the unencrypted form and organizes them as databases. The data

owner then encrypts the records with her public key and outsources it to the cloud

server and the clients sends the queries to the cloud server for execution. We in-

vestigate two types of queries over outsourced databases: SQL queries and keyword

search (KS) queries. SQL queries allow the clients to retrieve data from one or more

tables in a database that satisfies the comparison predicates in the WHERE clause.

We assume that the shape of the query is not private but the constants contained in

the query predicate are private and must be protected. This is a reasonable assump-

tion that has been made by similar research proposals in this domain [10]. Keyword

search involves two parties, a server holding a set of payloads (records) and their

associated keywords, and a client who may send queries consisting of keywords and

receive the payloads associated with these keywords [27]. In this case, we aim to hide

5

the search word of the client from the database owner and the cloud server. We focus

on Symmetric Private Information Retrieval (SPIR) [28] techniques to achieve the

mentioned privacy goals. SPIR provides means for retrieving data from a database in

a manner that preserves the mutual privacy of the client and the server; the server has

assurance that the client does not learn any information beyond what she is entitled

to, and the client has assurance that the server is oblivious of her choice. We can

refer to SPIR as generalizations of PIR, but it requires extra computational costs.

In the second part, we consider the scenario where the individuals are not willing

to trust an organizations to collect and manage their record. Instead, they prefer

to manage their own record. This model is in particular suitable for the Personal

Health Records (PHRs) system in which the patients are responsible for managing

and sharing their medical records. In this case, the individuals encrypt their records

with a public key and outsource them to the cloud server. Similar to the first part,

our goal is to protect the privacy of individuals against the curious cloud server and

the clients. Moreover, the query privacy of the clients must be protected such that

the cloud server and the individuals do not learn anything about the constants in the

SQL query. To secure the decryption key of the individuals, we employ the threshold

cryptosystems such that an adversary must compromise at least a specific number of

individuals to obtain the decryption keys or recover the encrypted records. We will

also propose some secure distributed tools that enable the cloud server to operate

on the ciphertexts and calculate the maximum, the minimum and the sum. It is

noteworthy that in this model, KS queries can also be answered since a KS query can

be converted to a SQL query [29].

6

1.2 Applications

Privacy-preserving query processing has applications in several problem domains in-

cluding:

Healthcare System. Cloud computing is considered as an appropriate model

for future healthcare systems [30–32] that enables the healthcare providers to shift

their electronic medical record (EMR) systems to clouds. Medical database out-

sourcing reduces time-consuming efforts and costly operations to obtain a patient’s

complete medical record and uniformly integrates this heterogeneous collection of

medical data to deliver it to the healthcare professionals. Public healthcare and epi-

demiological studies rely on summary tables of incident counts, collected directly from

hospitals or indirectly via registries. Summary tables provide important statistical

information for public health. In addition, the data inside these tables could be used

by various parties for research purposes.

In this model, the healthcare providers outsource both the querying services

and medical databases to cloud servers whereas clients such as research institutes

and insurance companies issue queries to the cloud servers. Typically, the outsourced

medical databases contain a number of patients with a particular set of discrete

attributes. While, this data often covers a large number of patients, it can still

be disclosive for rare permutations. For example, a rare cancer combined with the

patient’s residential address could be used to discover the patient’s name.

Query privacy is also another concern for clients while querying healthcare sys-

tems since the healthcare queries reveal information about the disease or the medical

treatment history. For instance, if a client issues a query on HIV, the cloud server

can infer that she may suffer from HIV.

Financial Systems. Financial institutions require to cooperate with other

7

parties such as governmental offices, credit card companies, and other financial orga-

nizations to extract useful information from financial databases. Unlike other indus-

tries in which intellectual properties are protected by patents, the financial industry

that consists of business processes that has been deemed unpatentable by US Patent

Office, at least until recently [33]. Hence, trade secrecy has become the preferred

method by which financial institutions protect their intellectual properties and limit

the disclosure of their business process, methods and data. The financial databases

usually contain sensitive information about customers such as credit card number,

payment methods, and history of transactions. Releasing these information into the

public domain would clearly disadvantage certain companies and their costumers and

benefit their competitors. On the other hand without this information, regulators

and investors cannot react to financial stability threats in a timely manner. There-

fore, such cooperation requires that the privacy of all involving parties (financial

organizations, investors and customers) to be protected.

Census Bureau. Census is an official process through which governments sys-

tematically collect information about their population. Many governmental statistical

agencies distribute data through a third party to the public to be used for example

in demographic research. The published data is classified into two classes [34]:

− Aggregate count data (contigency tables) which contain frequency count infor-

mation stored in tables with one or more attributes. For example, a contingency

table may contain a population count based on zip codes, age range, and smok-

ing status; i.e., in each zip code and each age range, how many people smoke?

− Microdata which are non-aggregate data and each row refers to a person in the

population.

DNA Databases. Consider a pharmaceutical organization interested in pur-

chasing information about particular genome sequences from a public DNA database.

8

They may need the information to complete the manufacture of a new medication that

is a secret. Moreover, DNA databases owners have to keep the individual identities

and genome sequences confidential.

In all of the above application scenarios, the concern is that the clients are not

willing to disclose the sensitive information in the queries they send to the servers;

they demand confidentiality for their queries, both from the data owners and the

cloud server holding the data of interest. Additionally, the sensitive information of

individuals including income, customer’s credit card number, treatment history and

DNA sequence are stored by the cloud server and used for responding to the queries

issued by the clients. Protecting these information from adversaries is an important

concern which needs to be addressed.

1.3 Objectives and Contributions

This thesis deals with the problem of designing protocols for privacy-preserving query

processing (PPQP) on outsourced databases in cloud computing. The proposed pro-

tocols aim to protect:

− the access privacy of the clients against the data owner and the cloud server,

i.e., protecting the sensitive constants contained in client’s queries as well as

the query result,

− the privacy of the data owner such that the only piece of information disclosed

to the clients is the query result.

Moreover, the communication overhead must be less than the naive approach

in the average case and be sublinear to the number of records in the database. The

main contributions of this thesis can be summarized as follows:

9

− We propose a protocol that enables a client to perform oblivious walk on a left-

balancing binary search tree held by a server and find all possible occurrences

of her query in the tree while providing mutual privacy for both parties. This

protocol protects the client data from being leaked to the server and at the

same time, tree nodes are not revealed to the client.

− We extend the symmetrically-private tree search to the database outsourcing

scenario in cloud computing in order to support symmetrically-private database

search on the database records. We assume that the database owner is fully

trusted in the sense that the individuals provide their database records as clear-

text to her. The data owner represent the database records as a binary search

tree and the clients execute the queries by walking on this tree in an oblivi-

ous manner. The proposed protocols enable to retrieve data from a relational

database while keeping the sensitive information in SQL/keyword search queries

and the query result from being leaked to the cloud server and the data owner.

Moreover, the data privacy of the data owner is protected such that the sen-

sitive information of the individuals are not revealed to the cloud server and

the clients. Our complexity analysis shows that the proposed protocols impose

sublinear communication and computation cost on the client.

− We then present a SQL query processing protocol in cloud computing in the

case that the individuals are not willing to trust the data owner for collecting

and managing their record. Instead, they prefer to manage their own record.

This model is in particular suitable for the Personal Health Records (PHRs)

systems. Cloud-based PHR is a recent trend for patients to store their elec-

tronic health records on the cloud and manage them. We propose a solution

that allows the patients to protect their sensitive records from the cloud server

10

using public-key encryption schemes. In addition, our solution allows health or-

ganizations to produce statistical information about encrypted personal health

records stored on the cloud while preventing the patients to infer about what

health organizations are concerned about; not to create panic about epidemics

in the community. To do so, we develop some techniques that enable the cloud

server to securely execute the aggregate SQL queries of the health organization

over encrypted databases while satisfying the privacy goals of all parties.

1.4 Thesis Organization

Chapter 2 overviews the security model adopted in this thesis as well as the cryp-

tographic primitives, utilized in the proposed approaches. Chapter 3 covers some

previous research works related to the research described in this thesis and discuss

our contributions. In Chapter 4, we proposed two protocols for Keyword Search (KS)

and SQL queries assuming that the data owner is fully trusted. The proposed pro-

tocol in Chapter 5 describes our approach if the data owner is not trusted. Finally,

concluding remarks as well as a discussion of the future works are represented in

Chapter 6.

11

Chapter 2

Preliminaries

In this chapter, we present an overview of the security model along with some cryp-

tographic primitives that are required for the proposed protocols.

2.1 Secure Multiparty Computation

Consider the scenario where n connected parties hold input xi, 1 ≤ i ≤ n. The

parties wish to compute a function f on inputs x1, x2, . . . , xn. The aim of a Secure

Multiparty Computation (SMC) protocol [35] is to enable parties to carry out such

distributed computation task in a secure manner. Secure multi party computation is

concerned with the possibility of deliberately malicious behavior by some adversarial

entities. The aim of these adversaries may be to learn private information or cause

the result of the computation to be incorrect. Two important requirements on any se-

cure computation protocol are privacy and correctness [23]. The privacy requirement

states that parties should learn their output and nothing additional. The correctness

requirement states that each party should receive its correct output. Therefore, the

adversary must not be able to cause the result of the computation to deviate from

the function that the parties intend to compute.

12

In general, there are two main types of adversaries:

(a) Semi-honest adversaries: Adversaries correctly follow the protocol specification.

However, the adversary obtains the internal state of all the corrupted parties

and attempts to use this to learn private information. This is a rather weak

adversarial model. However, there are some settings where it can realistically

model the threats to the system. A semi-honest adversary is also called honest-

but-curious or passive.

(b) Malicious adversaries: Adversaries can deviate from the protocol specification,

according to the adversary’s instructions. In general, providing security in the

presence of malicious adversaries is preferred, as it ensures that no adversarial

attack can succeed. Malicious adversaries are also called active adversaries.

It is of course easier to design a solution that is secure against semi-honest adver-

saries, than it is to design a solution for malicious adversaries. A common approach is

to first design a secure protocol for the semi-honest case, and then transform it into a

protocol that is secure against malicious adversaries [36]. This transformation can be

done by requiring each party to use zero-knowledge proofs [37] to prove that each step

it is taking, follows the specification of the protocol. More efficient transformations

are often required, since this generic approach might be rather inefficient and add

considerable overhead to each step of the protocol.

In this thesis, we assume that the adversary model is semi-honest. Therefore,

the clients, the database owner and the cloud server follow the protocol steps, but

they try to infer additional information beyond their prescribed output. In order to

formally claim and prove that a protocol is secure, a precise definition of security for

multiparty computation is required. According to Goldreich [38], a protocol is private

if no party learns anything more than its prescribed output. In particular, the only

13

information that should be learned about other parties’ inputs is what can be derived

from the output itself.

An important theorem in SMC is the composition theorem [38]. The basic idea

behind the composition theorem is that it is possible to design a protocol that uses an

ideal functionality as a subprotocol, then analyze the security of the protocol when

a trusted party computes this functionality. If, we prove the security of the larger

protocol that uses the functionality as a subprotocol in a model where the parties

have access to a trusted party computing the functionality. The composition theorem

then states that when the ideal calls to the trusted party for the functionality are

replaced by real executions of a secure subprotocol computing this functionality, the

protocol remains secure.

Many of the protocols based on SMC, as it is the case with the proposed pro-

tocols in this thesis, involve the composition of privacy-preserving sub-protocols in

which all intermediate outputs from one sub-protocol are inputs to the next sub-

protocol. These intermediate outputs are either simulated by the final output and

the local input for each party or as random shares. Using the Composition Theo-

rem [38], it can be proven that if each sub-protocol is privacy-preserving, then the

resulting composition is also privacy-preserving.

2.2 Cryptographic Primitives

2.2.1 Private Information Retrieval

Given a server which holds x; an n-bit string. The client’s objective is to retrieve the

i-th bit without revealing to the server which item has been queried. We stress that

in this model the database is public. Private Information Retrieval (PIR) protocols

allow the client to retrieve data from a public database with communication strictly

14

smaller than n. PIR is a weaker version of 1-out-of-n oblivious transfer in which

it is also required that the client should not get information about other database

items. Chor et al. [20] have introduced PIR in the setting of multiple servers where

identical copies of the string x are stored by k ≥ 2 servers. Chor et al. have also

shown that single-database PIR does not exist in the information-theoretic sense.

Nevertheless, Kushilevitz and Ostrovsky [21] have proposed a method for constructing

single-database PIR assuming a certain secure public-key encryption. Most of PIR

protocols are limited to retrieving a single bit, a block of bits [20, 21], or a textual

keyword [39].

Symmetric private information retrieval [40] is an extension to PIR which ad-

dresses database privacy by preventing the client from learning information about any

record except the retrieved records. Oblivious Transfer (OT) schemes generally have

no requirement for sublinear communication complexity, which renders them useless.

It is noteworthy that all existing communication-efficient 1-out-of-n OT schemes are

essentially SPIR.

2.2.2 Homomorphic Encryption

Homomorphic encryption is a form of encryption where a specific algebraic opera-

tion performed on the plaintext is equivalent to another (possibly different) algebraic

operation performed on the ciphertext. The idea of performing simple computations

on encrypted messages was first suggested by Rivest et al. [41], who referred to such

computations as privacy homomorphisms. The original motivation for privacy homo-

morphisms was to allow simple computations on encrypted data without decrypting

them. The ability to perform simple deterministic computations on encrypted data

makes homomorphic cryptosystems ideal for creating privacy-preserving protocols.

15

Recently, these cryptosystems received attention in cloud computing commu-

nity. To understand the importance of homomorphic encryption, consider the follow-

ing scenario: a user stores her data on some third party’s servers. If she does not

trust the third party, she may wish to store her data encrypted under a public key

encryption scheme and keep her private key local. However, in order to use this data,

in a traditional public key encryption scheme, the user would need to download the

encrypted data to her local machine, decrypt it, perform her desired computations,

and if she wishes to store the result, the user has to encrypt it and send it back to

the server. With homomorphic encryption, a user could instead operate directly on

the encrypted data.

In this thesis, we utilize Paillier cryptosystem [26] which is an additive homo-

morphic public key encryption. Using Paillier’s scheme, given two ciphertexts E(x)

and E(y) of two plaintexts x and y respectively, an encryption of their sum E(x + y)

can be efficiently computed by multiplying the ciphertexts modulo a public key n2,

i.e., E(x + y) = E(x).E(y) mod n2. The core steps of Paillier encryption/decryption

are represented in Fig. 1. If using p and q of equivalent length, a simpler variant of

the above key generation steps would be to set g = n + 1, λ = φ(n), and μ = φ(n)−1

mod n where φ(n) = (p − 1)(q − 1).

In addition to the Paillier cryptosystem, we utilize the Goldwasser-Micali (GM)

cryptosystem [42] as well. GM cryptosystem is a semantically-secure scheme based on

the quadratic residuosity assumption. GM-scheme allows computing the exclusive-or

of two encrypted bits, i.e., E(b0) . E(b1) = E(b0 ⊕ b1). The GM scheme is as follows:

the public key is a composite N = pq, where p and q are primes and p = q = 3 mod

4. The private key consists of the factorization of N . To encrypt bit mi ∈ {0, 1},

choose a random element y ∈ ZN and send C = xmi . y2 mod N . Decryption of

ciphertext C proceeds by determining whether C is a quadratic residue or not. First,

16

Figure 1: Paillier Cryptosystem [26]

Key Generation.

1. Alice generates two distinct large prime numbers, namely p
and q such that GCD

(

pq, (p − 1)(q − 1)
)

= 1 and computes

the modulus n = p.q and λ = lcm(p − 1, q − 1).

2. Alice selects an integer g such that g ∈ Z∗

n2 .

3. She computes μ = (L(gλ mod n2)) mod n, where L(u) = u−1
n

The public key consists of (n, g). The secret key is (λ, μ).

Message Encryption. Suppose that Bob wishes to send message m
to Alice:

1. Bob selects a random number r and computes c = gm. rn mod
n2.

2. Bob sends the ciphertext c.

Message Decryption. Alice computes the message m = L(cλ mod
n2) . μ mod n.

calculate the Jacobi symbol J =
(

C
N

)

. If J �= 1, then the ciphertext is ill-formed (i.e.,

the encryption algorithm was not run honestly, or else the message was corrupted

in the transmission); therefore, simply output ⊥. If J = 1, we may decide whether

C is a quadratic residue by computing b′ = C(N−p−q+1)/4 mod N . Note that C is

a quadratic residue iff b′ = 1. At this point, the original plaintext can be recovered

by computing b = (1 − b′)/2. GM cryptosystem is semantically secure under the

quadratic residuosity assumption.

Sander, Young, and Yung [43] described an AND-homomorphic extension of

the GM-encryption scheme henceforth referred to as AND-GM encryption. In this

scheme, each bit of the message is encrypted using a vector of basic GM encryptions

with size λ. λ is chosen to be a sufficiently large number such that 2−λ is small

enough. In AND-GM cryptosystem, we encrypt b = 1 as a sequence of λ random

17

Figure 2: Goldwasser-Micali (GM) Cryptosystem [42]

Key Generation. The modulus used in GM encryption is generated
randomly in the same manner as in the RSA cryptosystem.

1. Alice generates two distinct large prime numbers, namely p
and q and computes the modulus N = pq.

2. Alice finds a random non-residue number x such that the Leg-

endre symbols satisfy
(

x
p

)

=
(

x
q

)

= −1 and hence the Jacobi

symbol
(

x
n

)

is +1.

The public key consists of (x, N). The secret key is the factor-
ization (p, q).

Message Encryption. Suppose that Bob wishes to send message m
to Alice:

1. Bob encodes m as a sequence of bits (m1, ..., mn).

2. For each bit mi, Bob generates a random value y such that
GCD(y, N) = 1 and outputs ci = y2xmi mod N

3. Bob sends the ciphertext (c1, ..., cn).

Message Decryption. Alice receives ciphertext (c1, ..., cn) from Bob.

1. For each i, using the prime factorization (p, q), Alice deter-
mines whether the value ci is a quadratic residue: if so, mi = 0,
otherwise mi = 1.

2. Alice outputs the message m = (m1, ..., mn).

18

Figure 3: GM to AND-GM ciphertext conversion [43]

convert(c)
//converts GM to GM-AND ciphertext
given c = EGM(m, y) = xm y2

for i = 0 to λ − 1

choose random ri such that GCD(ri, N) = 1

choose random si ∈ {0, 1}

if si = 0 then Ci ← c . x . EGM(0, ri) mod N

else Ci ← EGM(0, ri) mod N

output C0, . . . , Cλ−1

quadratic residues (i.e., as λ GM-encryptions of 0), and b = 0 as a sequence of λ

random elements (i.e., as λ GM-encryptions Enc(ai) for random bits a1, . . . , aλ). The

decryption scheme takes a sequence of λ elements of GM ciphertext and returns 1

if all elements are quadratic residues, and 0 otherwise (i.e., if there is a quadratic

non-residue among the elements). There is a small probability of 2−λ that a 0-bit is

encrypted as a sequence of λ quadratic residues. In this case, the decryption does

not give the desired result. If λ is chosen sufficiently large (in practice 86), it never

happens. Figure 3 represents the algorithm for converting a basic GM ciphertext into

an AND-GM ciphertext without knowing either the secret key or the plaintext. It

can be easily shown that given two ciphertexts b and b′ encrypted using AND-GM

scheme, the component-wise product of b and b′ is an AND-GM encryption of b ∧ b′.

2.2.3 Threshold Cryptosystems

The traditional cryptosystems consider the case where there is one sender and one

receiver in which the sender encrypts a message with the public key of the receiver

and sends the resulted ciphertext to the receiver. The receiver then decrypts the

19

ciphertext to obtain the plaintext. However, in some cases, the receiver is not an

individual but instead an organization, e.g. a company or a governmental agency [44].

Therefore, there is a need to a distributed scheme that has one public key but many

secret keys so that the decryption power is distributed between multiple receivers.

From the security viewpoint, the threshold cryptography aims to protect the secret

key by sharing it amongst n parties in such a way that a predetermined number of

parties, namely the threshold k, should collaborate to fully decrypt a message. Any

collaboration between fewer than k parties does not result in a complete decryption.

The benefit of a threshold scheme is increased security, because an adversary who

corrupts at most k − 1 parties gains no advantage in determining the secret key of

the system or in breaking the underlying cryptographic protocol. Some threshold

cryptosystem employs a trusted dealer to set up the public key and the secret key

and distribute the shares of the secret key between the parties (e.g. [45, 46]). The

dealer must be minimally trusted not to reveal the secret key and therefore represents

a single point of attack. Thus, it is often desirable to distribute the key-generation

phase among the parties which removes the trusted dealer and ensures no entity ever

knows the secret information [24,47–50].

The idea of utilizing threshold cryptosystems in the cloud computing was first

noticed by Gentry [51]. The problem is to design a computation- and communication-

efficient multi-party protocol that allows n parties contribute inputs x1, . . . , xn respec-

tively and jointly evaluate f(x1, . . . , xn) securely. Gentry suggested using a Fully-

Homomorphic Encryption (FHE) scheme and a powerful cloud that carry out the

computational-intensive operations. The parties first run a multiparty protocol to

generate a joint public key for (an arbitrary) FHE scheme, together with a secret

sharing of the corresponding secret key (the i-th party gets the i-th share of the

common secret key). Once this is done, the parties encrypt their inputs using the

20

common public key and have the cloud compute an encryption of the result. They

then run yet another MPC protocol to perform threshold decryption and recover the

result. Later, Asharov et. al [52] and López-Alt et. al [53] used a similar idea to

develop efficient FHE schemes for multi-party computations.

In this thesis, we employ two threshold cryptosystems without depending on

the trusted dealer: threshold Paillier [47] and threshold GM [24] cryptosystems. Nor-

mally, the threshold cryptosystems have two core algorithms: a distributed key gen-

eration, and a distributed decryption algorithm.

For the threshold GM cryptosystem [24], the distributed key generation al-

gorithm can be performed by executing the distributed RSA key-generation pro-

tocols of [49, 50]. Following execution of the key-generation protocol, each party

i ∈ {1, 2, . . . , n} obtains the GM modulus N = pq and the additive shares (pi, qi).

The public key will be calculated as N = (Σn
i=1pi) . (Σn

i=1qi) while none of the parties

know the factorization of N (i.e., p and q). Decryption of a ciphertext C proceeds

as follows: the party i outputs bi = C(−pi−qi)/4 mod N . Parties publicly compute

b0 = C(N−5)/4 mod N . Deciding whether C is a quadratic residue or not may be done

by computing b′ =
∏k

i=0 bi mod N . The decrypted bit is b = (1 − b′)/2.

For the threshold Paillier cryptosystem [47], the distributed RSA key generation

protocol is executed so that each party obtains N = pq and the additive share (pi, qi).

All parties then generate the share of φ(N) = (p − 1)(q − 1) by setting

xi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

N − (p1 + q1) + 1 i = 1

−(pi + qi) i > 1

such that
∑n

i=1 xi = φ(N). The parties then commit to the value xi by publish-

ing hi = gxi mod N2 where g = N + 1. They then set publicly

21

h =
n

∏

i=1

hi − 1 mod N2 = gφ(n) − 1 mod N2

To decrypt the ciphertext c, each party Pi computes mi = cxi mod N2. The

plaintext can be recovered by computing

m =
1

h

(

n
∏

i=1

mi − 1 mod N2

)

mod N

2.2.4 Private Comparison

Yao’s classical millionaires’ problem [35] (or private integer comparison) involves two

parties who want to compare their wealth: they wish to know who is richer but do

not want to disclose any other information about their wealth to each other. More

formally, given two input values x and y, which are held as private inputs by two

parties, respectively. The problem is to securely evaluate the condition x > y without

exposing inputs.

Yao [35] first proposed such a protocol for the private comparison problem,

which is an instantiation of secure multiparty computation. Nevertheless, the cost of

the protocol is exponential in both time and space. Later, Yao [54] and Goldreich [55]

used the technique of scrambled circuits to solve the general multiparty computation

problem. By applying this technique to the greater than (GT) problem, the cost of the

resulting protocol in computation and communication is linear. On the other hand,

protocols for solving the GT problem directly are more efficient (e.g. [25, 56–59]).

These protocols usually require a constant number of rounds.

In this thesis, we utilize Fischlin protocol [25] for private comparison. In Fischlin

protocol one of the parties acts as a server. In this setting, say, Alice knows the private

keys to open encryptions and Bob works over his input bits and Alice’s encrypted

input bits to produce some information that allows Alice to know the output of the

22

comparison being evaluated. Fischlin protocol uses the homomorphic properties of

GM-encryptions scheme to compute an expression logically equivalent to

x > y ⇐⇒ ∨n
i=1

(

xi ∧ ¬yi ∧ ∧n
j=i+1(xj = yj)

)

⇐⇒ ⊕n
i=1

(

xi ∧ ¬yi ∧ ∧n
j=i+1 ¬(xi ⊕ yi)

)

and

x = y ⇐⇒ (
∧n

i=1(xi = yi))
⇐⇒ (

∧n
i=1 ¬(xi ⊕ yi))

where |x| = |y| = n. The protocol steps are depicted in Fig. 4.

2.3 Left-Balancing Binary Search Trees

A binary search tree is a binary tree where each node has two pointers to other nodes

(namely, left child and right child) and a key and satisfies the restriction that the key

in any node is larger than the keys in all nodes in its left subtree and smaller than

the keys in all nodes in its right subtree. A left-balancing binary search tree (i.e.

Complete binary trees) [60,61] is a binary search tree with two key properties: (i) all

levels except the bottommost are filled, and (ii) in the bottommost level, the nodes

are inserted from left to right. These trees provide an easy way to store a tree in an

array. The idea is that instead of explicitly storing pointers which point from a given

node to its child nodes, we use arithmetic to compute the index of child nodes. In

this scheme, the root node is stored in the position 1 in the array, and when a node

is stored in the position i in the array, the child nodes are stored in the positions

2i and 2i + 1. This method has the advantage that all nodes on a given level lie in

a consecutive block. In addition, left and right children are adjacent which should

make the scheme more cache friendly. The benefit of left-balancing binary search tree

23

Figure 4: Fischlin Private Comparison Protocol [25]

Protocol GTE-F(x,y) λ: error parameter

Alice:

− generates public key pk = (N, z) for security parameter k.

− encrypts y bit-wise: Yi ← Epk(yi) for i = 1, ..., n.

− sends N , z, Y1, . . . , Yn to Bob.

Bob:

− encrypts input x bit-wise: Xi ← EP K(xi) for i = 1, ..., n

− computes clauses [xi = yi] = ¬(xi ⊕ yi):
for i = 1 to n compute ci = Xi . Yi . z mod N

− embeds ci into extended encryptions cAND
i of λ elements:

for all i = 1, . . . , n sets cAND
i := (cAND

i,1 , . . . , cAND
i,λ)

− embeds encryptions Xi and Ȳi of xi and ¬yi into encryptions XAND
i and Ȳ AND

i

of λ elements:
for all i = 1, . . . , n sets XAND

i := (XAND
i,1 , . . . , XAND

i,λ)

for all i = 1, . . . , n sets Ȳ AND
i := (Ȳ AND

i,1 , . . . , Ȳ AND
i,λ)

− computes terms [xi ∧ ¬yi
∧n

j=i+1 xj = yj]:

for i = 1 to n computes Δi ← XAND
i .Ȳ AND

i .
∏n

j=i+1 cAND
j mod N

− computes terms [
∧n

i=1 xi = yi]:
c :=

∏n
i=1 cAND

i mod N

− sends Δ1 . . . Δn in randomly permuted order to Alice.

− randomly permutes the λ ciphertexts of c and sends to Alice.

Alice:

− receives n sequences Δ1 . . . Δn of λ GM-ciphertext and c from Bob.

− if there exists a sequence of λ quadratic residues in Δ then output x > y
else if c is a sequence of λ quadratic residues then output x = y
else output x < y

24

is that the average cost of looking up an item is O(log N) where N in the number of

nodes in the tree.

In [61] constructing left-balancing binary search search trees is explained for

single dimensional as well as multidimensional data. To construct such a tree, we

calculate the largest number M in the form of M = 2n such that M ≤ N where N is

the number of nodes we wish to insert. The tree will hold M −1 elements on all levels

excluding the bottommost. The bottommost level holds M elements divided between

M/2 in the left subtree and M/2 in the right subtree. We compute the remainder

R = N − (M − 1) and the data set is partitioned into two subsets based on the value

of R. If R ≤ M/2

LT = (M − 2)/2 + R (1)

RT = (M − 2)/2 (2)

Otherwise, if R > M/2

LT = (M − 2)/2 + M/2 (3)

RT = (M − 2)/2 + R − M/2 (4)

where LT and RT denote the number of nodes on the left and the right subtrees,

respectively. This procedure is recursively executed on the resulted subsets to output

the tree.

Search on 1-Dimensional Binary Search Trees. Binary search trees are able to

support point search as well as range search. The point search aims to search for

all nodes with a given key k and return pointers to them if they exist and NULL,

otherwise. The algorithm of point search is represented in Figure 5 that takes the

25

current root r and the key k as arguments. It uses a subroutine report(v), which

traverses the subtree rooted at node v and reports all the stored nodes. Note that

r.key denotes the key attribute of node r. The time complexity of Point-Search

is O(log N) on average and O(N) in the worst case [60], where N is the number of

nodes.

Figure 5: Point Search on Binary Search Trees [62]

Algorithm Point-Search (r, k)

if r == NULL

then return NULL

If k == r.key

then return Point-Search (r.left, k)

report (r)

return Point-Search (r.right, k)

If k < r.key

then return Point-Search (r.left, k)

else return Point-Search (r.right, k)

Similarly, the goal of a range search query is to find pointers to all nodes with

the key in the range [k1, k2]. The range search algorithm is shown in Figure 6 that

takes as arguments the current root r, the upper bound k1 and higher bound k2. The

time complexity of Range-Search is O(m + log n) where m is the number of nodes

in range [k1, k2] and 0 ≤ m ≤ n [62].

2.4 Multidimensional Indexing

A database index is a supplementary data structure used to access data from the

database efficiently. Data is indexed either directly by the values of one or more

26

Figure 6: Range Search on Binary Search Trees [62]

Algorithm Range-Search (r, k1, k2)

if r == NULL

then return NULL

If r.key < k1

then return Range-Search (r.right, k1, k2)

If r.key > k2

then return Range-Search (r.left, k1, k2)

else

Range-Search(r.left, k1, k2)

report r

Range-Search(r.right, k1, k2)

attributes or by hashes (generally not cryptographic hashes) of those values. The at-

tributes used to define an index constitute the key. Indices are typically organized into

tree structures, such as k-Dimensional trees (kD-trees) where the database records

are stored in internal nodes as well as leaf nodes. kD-trees are multidimensional bi-

nary search trees where the key used differs between levels. At each root, the keys

on the left subtrees are less than or equal to the key of the root. Similarly, nodes

on the right subtree have the key that is greater than or equal to the root. kD-trees

are used extensively as indices for multidimensional data (geographical, multimedia

and database). In databases, three basic types of multi-dimensional queries are con-

sidered [63]: exact matching queries (a.k.a. point search), partial matching queries

and range queries. An exact matching query searches a database to find objects

with specific attribute values. A partial matching query specifies only values for a

subset of the the attributes and searches for all records with the specified attribute

27

values. Let N and d be the number of records and the number of attributes in the

database, respectively. The time complexity of the exact matching queries and the

partial matching queries is respectively O(d log N) and O(N1−s/d + k) where s is the

number of attributes, specified in the query (s < d) and k is the number of reported

records [62].

Range queries are the most general type of queries that specify a region with

which the records to be retrieved must intersect. Figure 7 shows the range search

algorithm on kD-trees [62]. It takes as input the root of kD-tree v and the query range

R. It uses a subroutine ReportSubtree(v), which traverses the subtree rooted at

node v and reports all the stored nodes. A query in a d dimensional tree storing N

records, can be performed in O(N1−1/d + k) time, where k is the number of reported

records [62].

Figure 7: Range Search on kD-Trees [62]

Algorithm kD-Tree Search(v, R)

if v is a leaf

then report v if it lies in R

else if v.left is fully contained in R

then ReportSubtree(v.left, R)

else if v.left intersects R

then kD-Tree Search(v.left, R)

else if v.right is fully contained in R

then ReportSubtree(v.right)

else if v.right intersects R

then kD-Tree Search(v.right, R)

28

Chapter 3

Related Work

This chapter covers previous works related to this thesis. We begin by briefly re-

viewing the notion of Private Information Retrieval (PIR). Afterwards, we give an

overview of prior works aimed to make data access more expressive while protecting

privacy. We briefly highlight Basic Homomorphic Encryption (BHE) and Hybrid Ho-

momorphic Encryption (HHE), Transparent PIR (TransPIR) and SQL-enabled PIR

(SQL-PIR) and we will use these works as the basis of comparison with our proposed

protocols.

3.1 Private Information Retrieval

The notion of private information retrieval (PIR) was introduced by Chor, Goldreich,

Kushilevitz and Sudan [20] and has already received a lot of attention. The study of

PIR is motivated by the growing concerns about the user’s privacy when querying a

large commercial database.

The PIR problem consists of devising a communication protocol involving just

two parties, the server and the user, each having a secret input. The server’s secret

input is called the data string, an n-bit string B = b1b2 . . . bn. The user’s secret

29

input is an integer i, 1 ≤ i ≤ n. The protocol should enable the user to learn bi

in a communication-efficient way and at the same time hide i from the database. A

natural extension of PIR is private block retrieval in which the n-bit data string is

considered to be composed of n
b

blocks, each of size b bits. The user’s objective is to

retrieve the i-th block from the database. A trivial solution to the PIR problem is

simply to ask the server for the whole database and look up the desired bit or block

on the user side. However this approach incurs excessive communication cost to the

server which is linear with respect to the number of bits to represent the database

records.

There are two main types of PIR: information-theoretic and computational. In

information-theoretic PIR [20], the server is unable to determine any information

about the client’s query even with unbounded computing power. In computational

PIR (cPIR) [21], the privacy of the query only needs to be guaranteed against servers

restricted to polynomial-time computations. A number of applications have been

proposed for PIR, including patent and pharmaceutical databases [64], online census

information [65], and real-time stock quotes [65].

A common assumption for PIR schemes is that the user knows the index or

address of the item to be retrieved. However, Chor et al. [39] proposed a way to access

data with PIR using keyword searches over three data structures: binary search tree,

Trie [66] and perfect hashing. They showed how the client can privately traverse

certain server-held data structures. Their solutions for binary search trees, upon

which we build our framework in Chapter 4, protect only the user privacy. They also

provide a solution for tries that is also server-private. The trie is a data structure

that stores the data of each node in a path from the root to the node, rather than the

node itself. A trie has a number of advantages over binary search trees such as faster

lookup and easy updating [67]. However, the trie data structure is not well suited

30

in the database context because of the difficulty in handling range queries. Song et.

al. [68] also proposed a solution for the secure outsourcing of the single-dimensional

data (such as documents and emails) that protects the access privacy of the client and

the database confidentiality; however their approach ignores the data owner privacy.

The above mentioned techniques provide basic data access models, limited to

either retrieving a single bit or a block of bits using indices or textual keywords. This

property limits the deployment of PIR in complex systems storing structured data

sources such as relational databases. Therefore there is a need for a more expressive

data access model. Reardon et al. [69], Olumofin and Goldberg [10] and Wong et

al. [22] have considered this issue by proposing techniques for privacy-preserving SQL-

query processing but their approaches leak extra information about the database

beyond the query result.

3.1.1 TransPIR

Transparent PIR (TransPIR) [69] is among the first attempt to extend PIR to SQL.

TransPIR evaluates private relational queries with the goal of minimizing the com-

munication complexity. It uses PIR for data block retrieval from the database server,

whose function has been reduced to private block retrieval from the server.

In this system, relational algebra queries are translated into query plan by a

query processor. The query plan comprises of function calls executable by a virtual

database which is a component that maps relation information into PIR blocks. The

virtual database responds to this call by fetching the appropriate block from the server

based on the layout of the database. To reduce communication complexity, the indices

are constructed over the tables of database. The client then performs traditional

database functions (such as parsing and optimization) locally on her machine.

31

The benefit of TransPIR is that the database server does not learn any infor-

mation even about the textual content of the user’s query. The drawbacks are poor

query performance because the database is unable to perform any optimization, and

the lack of interoperability with any existing relational database system.

3.1.2 BHE/HHE

Wang et al. [22] propose an algorithm which protects the privacy of client’s query

considering range and join queries. The query privacy is achieved through query

obfuscation. Homomorphic encryption and bucketization are the primitives utilized

in these approaches. To help a client to construct a private query, the server buck-

etizes the public database and sends the bucket summary to the client. The client

subsequently determines which bucket(s) contains the data of interest. To retrieve

the matching database records, Basic Homomorphic Encryption (BHE) and Hybrid

Homomorphic Encryption (HHE) algorithms have been proposed. BHE reveals noth-

ing about the private data and queries and requires a single round of communication

between the client and the server. However, it requires sending the entire database

records to the client for filtration that is linear in the number of records. To further

reduce the costs of BHE, HHE has been introduced. HHE trades off privacy by effi-

ciency; the client selects a subset of buckets that include the buckets of interest and

computation is performed only on these subsets.

Note that BHE and HHE require frequent public-key homomorphic encryp-

tion/decryption which incurs computation cost to the both sides. This is specially a

major problem on the client side because it is typically a machine with limited com-

putation and communication capabilities. BHE provides perfect privacy, however the

communication overhead is roughly linear in the number of records. On the other

32

hand, HHE achieves better efficiency (in terms of both communication and compu-

tation) by revealing a superset of buckets of interest. But it is also vulnerable to

certain type of attacks against curious database server; since the client discloses the

matching buckets, the server is able to tighten the extent of buckets. In this case,

the server can see the matching buckets and guess the client’s query even though the

buckets are hidden among others.

3.1.3 SQL-PIR

SQL-PIR [10] integrates PIR with SQL to protect the query privacy and enable data

retrieval from databases. The protection mechanism is based on the observation that

the shape of an SQL query is not private, but the constants supplied by the user is

private and must be protected. SQL-PIR considers some attributes to be sensitive

and it aims to hide the constants associated with these attributes.

The user sends a desensitized version of the original SQL query by removing

private constants. The database executes this public SQL query and generates ap-

propriate B+ indices [70] for each sensitive attribute to support further rounds of

interaction with the client. The B+ tree is a generalization of a binary search tree in

that a node can have more than two children.

The user subsequently performs a number of keyword-based PIR operations [39]

using the value of the sensitive attributes against the indices to obtain the result for

the query. Capabilities for dealing with complex queries is built on the user side.

In the case of existence of two or more sensitive attributes in the query predicate,

the user requests separate indices. The user will subsequently perform PIR keyword

search on each of indices and combine the partial result by set operations (union,

intersection) to obtain the final query result.

In this thesis, a similar notion of query privacy protection is utilized: the goal is

33

to protect private constants incorporated in query predicate. SQL-PIR considers the

query privacy of client however it fails to protect data owner privacy. In particular

SQL-PIR reveals to the client, database records which are not relevant to the query.

Moreover, SQL-PIR reveals the entire textual shape of the query to the server in

particular the operands that combine the logical condition on attributes.

3.2 Privacy-Preserving Set Operations

Freedman et al. [71] provide a solution to solve the problem of data set intersection

for both the semi-honest and the malicious environments. The proposed protocol

enables two parties each holding a set of input to jointly compute the intersection of

their input sets without leaking any additional information. This protocol is based

on the representation of data sets as the roots of a polynomial. In this approach,

the client constructs a polynomial whose roots are her inputs and sends the homo-

morphic encryptions of the polynomial’s coefficients to the server. The server uses

the homomorphic properties of the encryption system to evaluate the polynomial at

each of the database tuple and outputs the evaluation results to the client. The client

decrypts the results and checks for possible matches.

Kissner and Song [72] extended this framework to design a protocol for privacy-

preserving multiset operations. A privacy-preserving multiset operation considers

the problem of computing the union, intersection, and element reduction on n private

multisets from n users, such that each user only learns the resulted set. Similar

to [71], the multiset of each user is represented by a polynomial and operations on

polynomials lead to privacy-preserving multisets operations.

Private query processing on outsourced databases can be achieved by obtaining

the intersection of two private datasets where query constants are the client’s input

and the database records are the server’s input. Our proposed protocol is significantly

34

different from private intersection schemes because SQL queries are richer and more

complex compared to a simple set intersection. The private matching protocol is able

to answer exact matching queries on a single attribute whereas the proposed proto-

col in this thesis answers exact-matching and interval-matching queries on multiple

attributes.

3.3 Oblivious Keyword Search

Keyword search (KS) is a fundamental database operation. It assumes that each

database tuple is tagged with an appropriate keyword. It involves two parties: a

server, holding a database comprised of a set of records and their associated keywords,

and a client, who sends queries including keywords and receives the records associated

with these keywords. Oblivious keyword search protocols provide privacy for both

parties. It enable the client to search for the records associated with queried keyword

while hiding the queries from the database. Moreover, it provides server privacy by

preventing the clients from learning anything but the results of the queries.

In [73], Ogata and Kurosawa introduced the idea of oblivious keyword search

and proposed two protocols satisfying their definition. However, the communication

complexity of these protocols is linear in the database size. Freedman et al. [27]

provide more communication-efficient single-round oblivious keyword protocols secure

against malicious users and semi-honest servers.

In [39] Chor et al. showed how the user can privately traverse data structures

held by a server. Their solutions for binary search trees provide only user privacy.

They also give a solution for tries that is server-private, as well. These techniques

yield useful PIR by keyword solutions for situations where the user wants to retrieve

a record stored under a known keyword. However, trie is not appropriate to handle

range queries.

35

Keyword search protocols can be used to answer range queries by running a key-

word search on every value in the query range. However, these schemes are extremely

inefficient in particular when the data is fairly sparse in the queried range.

3.4 Private Database Outsourcing

Private database outsourcing model was first introduced by Hacigumus et al. [11].

They considered protecting the database records of a client from an untrusted

database service providers. Most existing approaches in this category resort to data

encryption to protect the database confidentiality [74]. Although various techniques

have been proposed to protect the database hosted on the cloud server [12,16], they

cannot be adopted in this problem for several reasons. First, to evaluate the query on

the encrypted data, the client must encrypt the query by the same scheme and the

same key that are used by the data owner and send it to the cloud server. The cloud

server may then forward the encrypted query to the data owner, where the query can

be decrypted by her encryption key.

Second, a common approach in the existing research proposals is to send a

set of encrypted records to the client for filteration and further processing [11–19].

Therefore, the cloud server may reveal extra information beyond the query result to

the client. Thus, the proposed techniques for secure database outsourcing will not

protect the query privacy and the database privacy.

Recently, CryptDB [75] has been proposed that is built on the top of the exist-

ing relational database management systems (RDBMS) and protects the privacy of

database records in the cloud computing. The proposal employs various encryption

schemes to support all types of SQL queries over encrypted databases. It depends

on a fully trusted component, namely CryptDB, that maintains all the secret and

public keys and transforms the users’ SQL queries to a query that can be executed

36

Table 1: Related Work - Summary

Algorithm Client
Privacy

Data Owner
Privacy

SQL/KS
Queries

Database Con-
fidentiality

Symmetric Pri-
vate Information
Retrieval

� �

Privacy-Preserving
Set Intersec-
tion [71,72]

� �

Private Database
Outsourcing [11,18]

� �

Reardon et al. [69] � �

Olumofin and Gold-
berg [10]

� �

Wang et al. [22] � �

Our proposal � � � �

over encrypted records. CryptDB has low overhead on query execution time, how-

ever it requires a fully trusted component which is the single point of attack; if the

attacker can compromise CryptDB, she can decrypt the database records as well as

retrieving the query. The proposed protocol in this thesis makes no assumption about

existence of a trusted party; we consider all parties to be semi-honest adversary and

our objective is to protect the query privacy and database privacy in the presence of

non-trusted parties.

Instead of using encryption, Aggarwal et al. [76] proposed secret sharing to hide

database records from the adversaries. This approach requires multiple non-colluding

servers to keep the share of each database record. However, the assumption of having

servers, unaware from each other is strong in the real world. In addition, this approach

has significant communication and computation overhead since for executing each

query, the the shares of the database must be retrieved to reconstruct the database.

37

3.5 Privacy-Preserving Data Mining

Data mining and knowledge discovery in databases are new research areas that inves-

tigate the extraction of previously unknown patterns from large amounts of data. Pri-

vacy preserving data mining (PPDM) [23,77–79] is a novel research direction in data

mining and cryptography, where two or more parties owning confidential databases

wish to run a data mining algorithm on the union of their databases without revealing

sensitive information of individuals. In particular, although the parties realize that

combining their data has some mutual benefit, none of them is willing to reveal its

database to any other party. In this case, we need to consider a distributed computing

scenario, rather than a scenario where all data is gathered in a central server, which

then runs the algorithm on all data.

The term privacy-preserving data mining was first introduced by Agrawal and

Srikant [77] and Lindell and Pinkas [23]. These papers considered two fundamental

problems of PPDM: privacy-preserving data collection and mining a data set parti-

tioned across several private enterprises. Agrawal and Srikant devised an algorithm

that allows multiple parties to contribute their private records for efficient centralized

data mining while limiting the disclosure of their values. On the other hand, Lindell

and Pinkas invented a cryptographic protocol based on secure multiparty computa-

tion for decision tree construction over a data set horizontally partitioned between

two parties. The main disadvantage of cryptographic PPDM is that these approaches

are difficult to scale when more than a few parties are involved. Moreover, it does

not address the question of whether the disclosure of the final data mining result may

breach the privacy of individual records.

Other research works in the literature that influence the development of PPDM

include privacy preserving classification [80–82], privacy-preserving association rule

38

mining [83–85], privacy-preserving clustering [86–88], privacy-preserving Bayes clas-

sifier/Bayesian network [89, 90], and privacy-preserving multivariate statistical anal-

ysis [91, 92].

Private database search is considered as an integral part of PPDM. In particu-

lar, the result of private aggregate queries, executed by symmetric-private database

search protocols, are used as the input to data mining algorithm to extract informa-

tion and/or patterns. In other words, the protocols proposed in this thesis can be

used as subprotocols in PPDM to preserve the data miner’s query privacy as well as

database records privacy. Therefore, combination of PPDM and symmetric-private

database search enables the data miner (i.e., client) to mine the published sanitized

data by posing private SQL aggregate queries that provides privacy for data miner

and database owner (by symmetric-private database search) as well as individual

privacy (by PPDM). In other words, PPDM is a complement to symmetric-private

database search that provides individuals privacy.

3.6 Privacy-Preserving Data Publishing

Privacy-preserving data publishing (PPDP) provides methods and tools for publishing

useful information while preserving data privacy. In particular identity of individu-

als, whose records exist in database, must not be identified from published data.

Recently, PPDP has received considerable attention in research communities, and

many approaches have been proposed for different data publishing scenarios.

A typical scenario for PPDP consists of three phases: in the data collection

phase, the data publisher collects data from record owners (e.g., patients). In the

data sanitization the collected data are sanitized by the data publisher. In the data

publishing phase, the data publisher releases the sanitized data to data miners or to

the public, who will then mine the published data to extract useful information. In

39

order to limit the possibility that an individual could be identified from the released

data, a combination of sanitization techniques are used including generalization [93–

95], suppression [95,96], swapping [97,98], and randomization [77].

PPDP differs from our work in several major ways: PPDP focuses on techniques

for publishing the data while protecting the privacy of the record owners. In contrast,

symmetric-private database search aims to execute queries on the database while

protecting the privacy of the client’s query and the database records. In fact, it is

expected that symmetric-private SQL/keyword search queries are executed on the

published data, produced by the PPDP techniques so that the privacy of all parties

(the database owner, the record owner and the client) is protected.

It should be noted that there is a significant body of works on distributed pri-

vacy preserving data integration, aggregation, and mining (e.g. constructing decision

trees [23], computing association rules, classification and clustering [13, 85, 99], and

differential privacy [100–102]). These works provide a rich and useful set of privacy

preserving tools for the purpose of protecting the privacy of records in databases.

More precisely, these works aim to protect the record owner from being identified

through query result [103]. They allow a trusted server to release obfuscated an-

swers to aggregate queries to avoid leaking information about any specific record in

the database. Such works can be considered to have a different goal and model and

can be added as a front end in the proposed protocol to provide privacy-preserving

answers to the client’s queries.

40

Chapter 4

Symmetrically-Private Database

Search in Cloud Computing

In this chapter, we present SQL query processing protocols that preserve both the data

privacy and the query privacy among the data owner, the clients, and the cloud server.

These protocols help the clients to keep their sensitive information, contained in the

SQL query, from being leaked. Moreover, the sensitive information of individuals in

database and database records are protected against the clients that can be modeled

as semi-honest adversaries.

4.1 Introduction

Most software systems request sensitive information from clients and construct a

query from the filled form, but privacy concerns can make the client unwilling to

provide such information. Thus, development of practical schemes, that protect

the query privacy of the clients, is crucial in important application domains like

patent databases, pharmaceutical databases, online censuses, real-time stock quotes,

location-based services, and Internet domain registration. For instance, the current

41

process for Internet domain name registration requires a client to first disclose the

name for the new domain to an Internet domain registrar. Subsequently, the registrar

could then register the new domain and thereby resell the domain at the higher price

to the client. Therefore, many clients find it unacceptable to disclose the sensitive

information contained in their queries to the server [10].

Basic techniques in privacy-preserving SQL-query processing place no restric-

tion on the information leaked about other items in the database, which are not of

interest to the client [10,22,69]. However, an extension of these techniques adds that

restriction by insisting that a client learns only the result of her query. The restriction

is crucial in situations where the database privacy is equally of concern.

The problem addressed by Symmetric Private Information Retrieval (SPIR)

[28] is to provide a client with the means to retrieve data from a database without

the database (or the database administrator) learning any information about the

particular item that was retrieved. The rudimentary data access model of SPIR is

one of the hindering factors in deploying SPIR-based query processing model. These

models are limited to retrieving a single bit or a block of bits in a specific index.

There is therefore a need for an extension of SPIR to a more expressive model that is

suitable for retrieval from relational databases. In this chapter, we explore the query

processing model on relational database that provides data privacy and query privacy

among the clients, the data owner and the cloud server.

We consider a cloud computing environment that stores an outsourced database.

The main entities in Database-as-a-Service (DBaaS) are individuals, a database

owner, clients and a cloud server. In this thesis, individuals refer to someone who

owns the information e.g., a patient who has medical records and wants the data

owner to store her data while preserving her privacy. The database owner refers to

someone who collects the information from individuals and outsources her database

42

to a third-party service provider namely a cloud server, e.g., a hospital manager who

collects information about the patients. The cloud server would be given the ability

to store the database and the capability to answer certain types of queries issued

by the clients. The client is generally someone who can perform search over the

databases stored on the cloud server. An illustrative example for the system model

is represented in Figure 8.

Age Salary Job

34 40 Writer

23 60 Engineer

32 70 Professor

56 60 Teacher

45 80 Engineer

28 150 Lawyer

64 250 Lawyer

18 20 Worker

Organizational person

Figure 8: System Model in DBaaS

This chapter deals with constructing protocols for privately answering aggregate

queries in such a way that the privacy of the clients and the database owner is

preserved. Roughly speaking, a protocol is client-private if the cloud server and the

database owner learn nothing about the constants in the client’s query and query

results. Similar to [10], we presume that the shape or textual content of SQL queries

is not private, but the constants the client supplies in the WHERE clause are private,

and must be protected. Our approach to preserve query privacy over a relational

database is based on hiding all the constants included in queries.

43

Similarly, a protocol is server-private if the client learns no additional informa-

tion about the server’s database beyond the correct answer to her query. A protocol

which is both client-private and server-private is called symmetrically-private. The

symmetrically-private protocols are important in the applications where the privacy

of database records is an important concern such as in the healthcare systems.

4.2 Threat Model and Adversary Capabilities

We consider the clients, the cloud server, the database owner and any other attackers

who can view the data retrieved from the server and monitor activities on the client

and the server as adversaries. We assume that the adversaries are semi-honest: they

follow the protocol’s steps correctly (i.e. they are not malicious), but they are free

to infer clients’ queries and database owners’ private data. The proposed protocol is

secure at the presence of semi-honest adversaries.

4.3 Symmetrically-Private Keyword Search

Consider a database owner D who owns a raw data set D. To reduce the workload of

the data owner in answering queries, the data owner delegates the tasks of database

storage and query processing to a cloud server S. The cloud server may not be

fully trusted by the data owner or may be susceptible to attacks by malicious parties

(both internal and external). Therefore, the data owner needs to encrypt the database

records before outsourcing them to the cloud server. The client C wants to execute

aggregate queries on the encrypted database stored on the server without disclosing

the constant in her queries as well as the query result. The server S wants to answer

the client’s query without disclosing any records that are not part of the result.

In a naive approach, the client performs a linear search on the server’s database

44

by following the millionaire protocol [35, 104] to evaluate the SQL query at each

database entry. However, this approach incurs excessive communication overhead

which is linear in the number of records in the database due to the linear search. To

reduce the communication overhead, the data owner organizes the database as a bi-

nary search tree, creates an encrypted database from this tree using the Goldwasser-

Micali (GM) encryption [42] and outsources the encrypted database to the cloud

server. The client’s objective is to traverse the resulted tree represented by the en-

crypted database to obtain the query result. This can be achieved by exploiting the

homomorphic properties of the GM encryption using Fischlin’s protocol for private

comparison and by utilizing SPIR for private information retrieval. Tree search can

considerably reduce communication and computation overhead.

In this section, we propose a protocol that executes keyword search queries on a

database on the cloud server side. It consists of three steps: (i) tree construction and

database encryption, (ii) oblivious tree search and payload retrieval (iii) query result

decryption. The Symmetrically-Private Keyword Search (SP-KS) protocol takes as

inputs the following:

− The database which consists of N pairs {(ki, pi)}i∈[N] where ki denotes the

keyword and pi represents the payload (database record) owned by S. We

assume without loss of generality, that all ki’s are distinct.

− A search word w owned by C. C obtains pi if there is i such that ki = w or a

special symbol ⊥, otherwise.

In the following, we elaborate the basic steps of SP-KS protocol that preserves

the privacy of both the client and the data owner. The proposed protocol improves

over previous research proposals in this domain with less communication and compu-

tation on the client but incurs more computation cost on the server.

45

4.3.1 Tree Construction and Database Encryption

The data owner defines L =
√

N bins, where N denotes the number of records in

the database. She maps N pairs into the L bins using a random, publicly-known

hash function H with a range of size L. Therefore, the record (ki, pi) is mapped to

the bin H(ki). For each bin j, the data owner sorts the assigned pairs according to

the keyword. Afterwards, the data owner employs the algorithm explained in Section

2.3 to construct a left-balancing binary search tree Tj for each bin j depending on

keyword. The resulted Tj’s are traversed to generate the database Aj. Later, Aj’s

are concatenated to form a single database A that contains the entire records. To

store the roots of the trees, an index array I with length L is created such that I[j]

contains the root index of the tree Tj in the database A.

Note that index-based database A contains database records in cleartext. To

outsource A to the cloud server, the data owner must encrypt the database pairs.

For this purpose, the data owner generates two public keys PKP L and PKGM for the

Paillier cryptosystem [26] and the threshold Goldwasser-Micali (GM) [42] cryptosys-

tem, respectively. The database owner makes use of Paillier encryption to encrypt

the payloads while threshold GM encryption is used to encrypt keywords bit by bit.

The database owner computes the secret key SKGM of GM cryptosystem. The secret

key SKGM (factors of the public key PKGM) are then distributed among the existing

clients as detailed by Katz and Yung [24]. At the end of this step, the database owner

outsources the encrypted index-based dataset A to the cloud server and publishes the

public keys to all clients.

Example 1. The data owner wants to outsource the dataset shown in Table 2. Sup-

pose that the first column is the keyword and the second column indicates the associated

payload. The original table has N = 8 records and consequently the number of bins

is
√

N ≈ 3. We define the public hash function as H(x) = x mod 3 + 1. The

46

assigned records to each bin, sorted according to the Age attribute is represented in

Figure 9. For each bin, the left-balancing binary search tree is generated as explained

in Section 2.3. The resulted left-balancing binary search trees are shown in Figure

10. afterwards, each tree is traversed to generate a database. The resulted datasets

are concatenated to construct the index-based database shown in Table 3. To out-

source the index-based database to the cloud server, the payloads (values of the Job

attribute) is encrypted by Paillier cryptosystem whereas the keywords are encrypted

by the threshold GM cryptosystem. The outsourced database is presented in Table 4.

In addition, the data owner constructs an array I that contains the root indexes of

the generated left-balancing binary search trees as demonstrated in Table 5.

Age Job

50 Writer
57 Engineer
22 Dancer
55 Lawyer
60 Writer
29 Engineer
28 Dancer
49 Lawyer

Table 2: Table D

Table 3: Index-Based database

Age Job

60 Writer
57 Engineer
49 Lawyer
28 Dancer
55 Lawyer
22 Dancer
50 Writer
29 Engineer

Table 4: Outsourced database

Age Job

EGM(60) EP L(Writer)
EGM(57) EP L(Engineer)
EGM(49) EP L(Lawyer)
EGM(28) EP L(Dancer)
EGM(55) EP L(Lawyer)
EGM(22) EP L(Dancer)
EGM(50) EP L(Writer)
EGM(29) EP L(Engineer)

47

Age Job

57 Engineer
60 Writer

(a) Bin 1

Age Job

22 Dancer
28 Dancer
49 Lawyer
55 Lawyer

(b) Bin 2

Age Job

29 Engineer
50 Writer

(c) Bin 3

Figure 9: Generated Bins

0 2 6

Table 5: Index Array I

48

60 Writer

57 Engineer

(a) Bin 1

49 Lawyer

28 Dancer

22 Dancer

55 Lawyer

(b) Bin 2

50 Writer

29 Engineer

(c) Bin 3

Figure 10: Left-Balancing Binary Search Trees

49

4.3.2 Oblivious Tree Search and Payload Retrieval

In order to execute keyword search (KS) queries, the client needs to traverse the

tree stored on the cloud server side. Traversing a tree is performed by retrieving

the root’s keyword-payload pair, comparing the search word with the root’s keyword,

and terminating the search or determining a new root. Since, the database on the

cloud server is encrypted by the GM cryptosystem, the comparison must be done on

ciphertexts instead of plaintexts. To compare the ciphertexts, we rely on the Fischlin

protocol. The Fischlin protocol takes as the inputs the bit representation of two

integers, encrypted by the GM cryptosystem, and outputs an encrypted ciphertext

sequence. The decryption of the output ciphertext sequence determines which input

is greater.

To utilize the Fischlin protocol, the client encrypts her search word w by the

data owner’s public key using the GM cryptosystem and sends it to the server. For

each pair {(EGM(ki), EP L(pi))}i∈[A] in the database, the cloud server executes one

instantiation of Fischlin protocol GTE-F detailed in Chapter 2.2.4 using the encrypted

search word EGM(w) and the encrypted keyword EGM(ki) as the inputs. The output

of this protocol is the ciphertext sequences Δi and ci that will be stored in a new

database T together with the encrypted payloads EP L(pi) using the Paillier scheme.

More precisely, the content of the i-th tuple of the database T (T [i]) is the result

of comparing the client’s search word w with the i-th keyword of the index-based

database A in the encrypted form together with the encrypted payloads EP L(pi)

using the Paillier scheme. Afterwards, the database T is made public to the client for

the query execution.

Example 2. (Continued from Example 1) Suppose that the client’s search word w

equals 28. The client encrypts w bit-by-bit using the data owner’s public key and sends

the ciphertext sequence to the server. The server executes Fischlin’s protocol GTE-F to

50

calculate ciphertext sequences Δ and c for each encrypted keyword in the outsourced

database (Table 4) stored in the cloud server. The resulted ciphertext sequences along

with the corresponding Paillier encrypted payloads are stored in the table T (Figure

6). Note that the first two columns are the output of the Fischlin protocol.

Δ60 c60 EP L(Writer)
Δ57 c57 EP L(Engineer)
Δ49 c49 EP L(Lawyer)
Δ28 c28 EP L(Dancer)
Δ55 c55 EP L(Lawyer)
Δ22 c22 EP L(Dancer)
Δ50 c50 EP L(Writer)
Δ29 c29 EP L(Engineer)

Table 6: Table T for SP-KS

To execute keyword search queries efficiently, the client needs to traverse the

generated binary search trees. Note that the client needs only to traverse the tree of

the bin in which w could exist. To obtain the tree root of this bin, the client calculates

H(w) which determines the bin as well as the index of the tree root in the array I.

Both parties run SPIR such that the server’s input is the array I and the clients’s

input is H(w). SPIR guarantees that the client learns I[H(w)] and the server learns

nothing. After yielding the tree root for the bin that the client is interested in, the

client initiates the search by retrieving the content of tree root in array T . The client

extracts Δ and c from the retrieved item. As explained before, Δ and c indicate

the result of comparing the search word w with the tree root’s keyword in encrypted

form. Therefore, by decrypting these ciphertext sequences, the client can evaluate the

comparison result. Based on the comparison result, the search is continued on the left

or on the right subtree by updating the root index. Additionally, the client retrieves

the index of the tree root of the next bin to obtain the current bin’s boundaries. To

fully understand the scheme, we need to detail the following points.

51

− Retrieving the root data by SPIR. The database T contains the result of com-

paring the client’s keyword with each record in the database. To traverse the

tree of the bin that the client is interested in, the client needs to know the result

of comparing the search word w with the root’s keyword. To protect mutual

privacy of the client and the server, both parties run SPIR to provide the client

with Δ and c generated for the bin root.

− Ciphertext decryption. The ciphertext sequences Δ and c are generated by

Fischlin’s protocol for private comparison. These ciphertext sequences are en-

crypted by the data owner’s public key under the threshold GM cryptosystem.

Therefore, decryption of Δ and c is performed by the participation of a specific

number of active clients. Each active client, that has been contacted by the

querier client, partially decrypts the ciphertexts Δ and/or c by her share of se-

cret key and sends the share of plaintext to the querier client. The querier client

then aggregates the partial decryption results to obtain the actual plaintext.

− Updating the root index. Initially, the relative index of current root in the tree is

i = 1 and the offset of all records in the bin H(w) (with respect to the first array

element in the database T) is (I[H(w)] − 1). Therefore, the sum of the index i

and the offset (I[H(w)]−1) determines the actual (global) index (i′) of the tree

root in the array T (i′ = i+I[H(w)]−1). To search the tree, the client retrieves

the data stored in the index (i′ = i + I[H(w)] − 1) in the array T . If the search

word is less than the root’s keyword, the search must be performed on the left

subtree. The left subtree will be rooted at position (2i+I[H(w)]−1). Similarly,

if the search word is greater than root’s keyword, the search is continued on the

right subtree by updating index i′ to (2i + 1 + I[H(w)] − 1). If the search word

is equal to the root’s keyword, the encrypted payload is stored on the client side

as the query result for decryption and the tree search is terminated. Otherwise

52

if i′ > I[(H(w)+1) mod L] or i′ > N , the client concludes that the search word

does not exist in the database.

Example 3. (Continued from Example 2) Client’s search word is 28 (w=28). The

client calculates H(28) = 28 mod 3 + 1 = 2. Therefore, the client needs to search bin

2. To traverse the tree associated with bin 2, the client and the server engage in SPIR

to retrieve the numbers at index 2 and at index 3 of the array I (i.e., I(2) and I(3)).

SPIR outputs I[2] = 3 and I[3] = 7 to the client which are the indexes of trees’ roots

in T . Therefore, the offset is I[2] = 2 and the global index i′ can take the values 3, 4,

5 and 6. Initially, i = 1 and i′ = 1 + 2 = 3. At each step if i′ > 6 or i′ > 8 the search

is terminated. Otherwise, The client retrieves T [i′] = T [3] = {Δ49, c49, EP L(Writer)}.

The client then forwards {Δ49, c49} to a specific number of online participants (i.e.,

clients) for decryption. The participants calculate their share of plaintext and send it

to the client. The client then computes the plaintexts D(c) and D(Δ) and concludes

that the root’s keyword is greater than w. Therefore, the client continues searching on

the left subtree. Afterwards, the client updates i = 2 ∗ 1 = 2 and i′ = i + I[2] − 1 = 4.

Similarly, the client retrieves T [4] = {Δ28, c28, EP L(Dancer)} from the cloud server

and forwards it to the participants for decryption. The resulted plaintexts D(c) and

D(Δ) indicate that the root’s keyword is equal to the search word and accordingly the

search is terminated.

4.3.3 Query Result Decryption

After the client obtains the query result (payload), she communicates with the data

owner to decrypt it. To prevent the data owner from learning the query result, the

client obfuscates the query result. Payload obfuscation is performed by generating a

random number R, encrypting it by the data owner’s public key and multiplying it by

the encrypted payload to obtain E(pi +R). The obfuscated encrypted payload is sent

53

to the data owner for decryption. The data owner returns the obfuscated decrypted

payload to the client and the client subtracts R to obtain the actual payload.

4.4 Symmetrically-Private SQL Search

In Section 4.3, we presented a protocol that allows a client to securely execute her

keyword search queries over a database, stored on the cloud server side. In this

section, we extend the idea to the SQL queries so that the client will be able to

securely evaluate her SQL query and obtain the query result. The client’s input

is an aggregate SQL query that consists of exact-matching and interval-matching

predicates on multiple attributes combined with logical operators (AND/OR/NOT).

The server’s input is a relational encrypted database. In the following, the basic

steps of the Symmetrically-Private SQL Search (SP-SQL) protocol are described.

Our approach to preserve the query privacy is based on hiding constants contained in

the query predicates. The basic assumption is that the shape of SQL queries is not

private, but the constants provided by clients must be protected from other parties.

Moreover, the only piece of information that is revealed to the client is the query

result. Handling SQL queries are generally more complex than KS queries in the

sense that they usually contain more than one attribute. In addition, answering SQL

queries requires supporting interval matching and exact matching in the predicate.

4.4.1 Tree Construction

The data owner organizes the database D as a left-balancing k-Dimensional tree (kD-

tree), encrypts and stores it on the server. The client sends the sanitized version of

SQL queries by replacing constants in the predicate by their corresponding encryption.

The server generates the required data for executing the client’s query and the client

54

executes the query by traversing the kD-tree in an oblivious manner. To construct

left-balancing kD-tree, we use a similar approach that is described in Section 2.3.

Assume that the database has n attributes and the corresponding attributes are

sorted according to a pre-specified order. At each tree level d, the attribute Aa

(a = d mod n + 1) is chosen and the data owner sorts the records based on Aa. Note

that if there exist multiple records with the same value for attribute Aa, the data

owner sorts them with respect to the other attributes in the sorted sequence, namely

Aa+1, . . . , An. Let LT and RT denote the number of records in the left subtree and

the right subtree, respectively. Then, LT and RT are computed and the records are

partitioned into two subsets through the (LT + 1)-th record. All records on the left

of the (LT + 1)-th record constitute the left subtree and the remaining records will

construct the right subtree. The procedure is executed recursively until there exists

only one record. The resulted tree is then traversed and stored in an index-based

database named A. In order to employ Fischlin protocol, the outsourced database

is encrypted by the GM encryption, using the data owner’s public key. In addition,

the client wants to execute aggregate queries (sum, avg, count) on the outsourced

database. To support these types of queries, all columns are also encrypted by the

Paillier cryptosystem using the public key of the data owner.

Example 4. Suppose that the data owner wants to outsource Table 7 to the server.

The attributes are sorted as Job, Age and Salary. At each level, LT and RT are com-

puted and the records is partitioned according to the chosen attribute. For instance,

in the first level, attribute Job will be chosen; N = 10 and M = 8 which resulted in

R = 3, LT = 6 and RT = 3. To discover the record of the root, the records are sorted

with respect to the selected attribute (i.e., Job). Therefore, the record (Lawyer,49,44)

will be chosen as the root in the first level. The resulted left-balancing kD-tree is

represented in Figure 11. The index-based database named A is also shown in Table

55

Table 7: Original Database

Job Age Salary

Writer 50 30
Dancer 40 60
Writer 60 35
Dancer 30 37

Engineer 29 60
Engineer 31 35
Engineer 50 70
Dancer 28 44
Lawyer 49 44
Lawyer 55 80

Lawyer 49 44

Engineer 31 35

Dancer 28 44

Dancer 30 37 Engineer 29 60

Engineer 50 70

Dancer 40 60

Lawyer 55 80

Writer 50 30 Writer 60 35

Job

Age

Salary

Figure 11: Left-Balancing kD-tree

8. The outsourced database, stored by the cloud server, has 6 attributes which are

EGM(Job), EGM(Age), EGM(Salary), EP L(Job), EP L(Age), and EP L(Salary).

4.4.2 Query Sanitization

To execute a SQL query on the outsourced database, the client sanitizes the SQL

query by replacing the constants contained in the predicate by their GM encryption

using the public key of the data owner. For example, if the client’s SQL query is

SELECT SUM(Salary) FROM D WHERE Age < 50 AND Job = ′Dancer′

The sanitized query will be

SELECT SUM(Salary) FROM D WHERE Age < EGM(50) AND Job = EGM(“Dancer”)

56

Table 8: Index-based Database

Job Age Salary

Lawyer 49 44
Engineer 31 35
Lawyer 55 80
Dancer 28 44
Engineer 50 70
Writer 50 30
Writer 60 35
Dancer 30 37
Engineer 29 60
Dancer 40 60

4.4.3 Oblivious Tree Traversal

Sanitized queries are sent to the server to generate the ciphertext sequences Δ and

c, that are the output of the Fischlin protocol and are required to compare two

ciphertexts. Similar to SP-KS protocol, we need to generate the columns of the

database T that are required to evaluate the query predicate. The generated columns

depend on the type of the query, as follow:

− Interval matching or exact matching. If an attribute appears in either an interval

matching or an exact matching predicate, a column is added to the database

T that contains the ciphertext sequence Δ generated by Fischlin’s protocol for

private comparison. In the case of exact matching, another column that contains

the ciphertext sequence c is added. These two columns are generated from the

encrypted constants in the predicate and from the corresponding encrypted

column in the relational database.

− sum and avg queries. The Paillier encryption of the attribute, targeted by the

aggregate function, is added to the database T .

− max and min queries. The GM encryption of the attribute, targeted by the

57

aggregate function, is added to the database T .

− count queries. No additional column is required.

Example 5. (Continued from Example 4) Consider the following sanitized SQL query

SELECT SUM(Salary) FROM D WHERE Age < EGM(50) AND Job = EGM(“Dancer′′)

The generated database T is represented in Table 9.

Table 9: Table T for SP-SQL

Salary Age Job-CMP Job-EQU

EHOM(49) Δ44 ΔLawyer cLawyer

EHOM(35) Δ31 ΔEngineer cEngineer

EHOM(80) Δ55 ΔLawyer cLawyer

EHOM(44) Δ28 ΔDancer cDancer

EHOM(70) Δ50 ΔEngineer cEngineer

EHOM(30) Δ50 ΔWriter cWriter

EHOM(35) Δ60 ΔWriter cWriter

EHOM(37) Δ30 ΔDancer cDancer

EHOM(60) Δ29 ΔEngineer cEngineer

EHOM(60) Δ40 ΔDancer cDancer

Initially, the search begins with the tree root at index i = 1 of the database

T . At each iteration, the client retrieves the corresponding record of the current

root by SPIR. The retrieved record contains the ciphertext sequences Δ and c (to

support comparison) and the Paillier-encrypted column (to prepare the query result).

If the current root is a leaf node (i.e., its left child does not exist (2i > N)) and it

satisfies the conditions, it is reported as part of the query result and stored by the

client for further processing. Exact matching predicates are evaluated by testing the

ciphertext sequence c; if all ciphertexts in the sequence c are quadratic residue, the

root is reported as the answer and the search is continued on both the left and the

right subtrees. Otherwise, the ciphertext sequence Δ is examined to determine the

58

search path: if there exist at least one λ sequence of quadratic residue in Δ, the

search will be continued on the right subtree since the queried records have greater

value than the root. Otherwise, the left subtree is searched and the index i is updated

accordingly in both cases.

Range search over kD-tree is performed in a similar way; if the boundaries of

the left (resp. right) subtree is fully contained in the query region, the entire records

in the left (resp. right) subtree are reported as the query result. Otherwise, if the

boundaries of the left (resp. right) subtree intersects with the query space, search is

continued on the left (resp. right) subtree by updating index to 2i (resp. 2i + 1). All

the comparisons are performed using Fischlin protocol and examining the output.

Example 6. (Continued from Example 5) The query region is Age × Job : [0 −

50] × “Dancer′′. The client starts from the root by setting i = 1. The output of

SPIR is the tuple (EHOM(49) , Δ44 , cLawyer). The client decrypts Δ44 and cLawyer and

finds out that the tuple does not satisfy query predicates and the root value for the

Job attribute is greater than Dancer. Since at the first level, the records are sorted

according to Job attribute, the client concludes that the right subtree does not have

any intersection with the query region, but the left subtree does. Therefore, index i is

updated to 2 and the tuple (EHOM(35), Δ31 , cEngineer) is retrieved. The retrieved tuple

does not satisfy the condition, but its Age’s attribute value is less than 50. Therefore,

the client needs to perform search on both subtrees, recursively. At next iteration,

i = 4. The retrieved tuple indicates matching. Since the records are sorted according

to Salary and there is no condition in the WHERE clause associated with it, the client

needs to perform search on both subtrees recursively. By performing range search over

the kD-tree, the client obtains {
(

EHOM(60), Δ40, cDancer

)

,
(

EHOM(37), Δ30 , cDancer

)

,
(

EHOM(44), Δ28, cDancer

)

}

59

4.4.4 Query Result Decryption

The last step is to decrypt the query result while hiding it from the cloud server,

the data owner and the other clients. Note that, the query result is encrypted by

the data owner public key. Therefore, the client has to communicate with the data

owner to decrypt the result. Sending the query result in cleartext jeopardizes the

client privacy. Therefore the client must obfuscate the result to make it invisible to

data owner. The obfuscation depends on the type of the aggregate function as follow:

− count: the cardinality of query result reflects the exact value the client expects.

− sum: the client projects the records (that satisfy the query conditions) over

the attribute targeted by the sum function. She then multiplies the resulted

attribute values to capture the encrypted sum. She then generates a random

number R and encrypts it by the data owner’s public key (EHOM(R)). Then the

client multiplies the encrypted random number by the encrypted sum to obtain

the obfuscated sum, i.e., EHOM(Sum) × EHOM(R) = EHOM(Sum + R). The client

sends obfuscated sum to the data owner. The data owner decrypts the noisy

sum to obtain R + Sum and sends it back to client. The client, in its turn,

subtracts the noise R that leads to the query result.

− max,min: the client projects the records (that satisfy the query conditions)

over the attribute targeted by the max/min function. She then executes the

maximum algorithm on the ciphertexts using Fischlin protocol: the client picks

up the first value as the current maximum (resp. minimum). She then compares

the current encrypted maximum (resp. minimum) with the other values; if the

output of Fischlin indicates that the current maximum (resp. minimum) is

less than (resp. greater than) the examined value, the current maximum (resp.

minimum) is updated. Afterwards, the client generates a random number R

60

and encrypt it bit by bit using GM-cryptosystem and the data owner’s public

key (EGM(Max)). She then find the component-wise modular multiplication of

the current encrypted maximum/minimum with the encrypted random number

to obtain the obfuscated maximum (resp. minimum) (i.e., EGM(Max).EGM(R) =

EHOM(Max ⊕ R)). The clients sends the obfuscated maximum (resp. minimum)

to k other clients for decryption and receives Max ⊕ R (resp. Min ⊕ R). To

retrieve the query result, the client XORes the obfuscated query result with R

to derive the actual maximum (resp. minimum).

Note that avg queries can be answered by executing count and sum queries and

dividing the result of the sum by the count.

Example 7. (Continued from Example 6) The client projects the records (tuples)

{
(

EHOM(60), Δ40, cDancer

)

,
(

EHOM(37), Δ30 , cDancer

)

,
(

EHOM(44), Δ28, cDancer

)

} over

the Salary attribute and multiplies them to obtain EHOM(60 + 37 + 44) = EHOM(151).

The client then generates a random number R and encrypts it by the data owner

public key PKP L to produces E(R). She then multiplies the encrypted sum by E(R)

and sends the result to the data owner for decryption. The data owner decrypts the

ciphertext and returns 151 + R to the client. The client simply subtracts R to obtain

the query result.

4.4.5 Improved Protocol

The presented protocol is the natural extension of the SPKS protocol to multidi-

mensional data in order to perform search over relational databases. The proposed

SP-SQL protocol provides absolute privacy for all parties in the environment; however

PIR protocols have been widely used which are deemed to be impractical for real-

world applications [105]. In this section, we step back from absolute privacy in favor

of efficiency and propose a protocol which does not make use of SPIR protocols. The

61

improved approach relies on the cloud server to perform the search on the encrypted

datasets, instead of the clients. In this case, the client sanitizes the query and sends

it to the cloud server. The cloud server conducts the search on the encrypted records

by traversing the tree; the server privately evaluates the record in the tree root in

the same manner of the basic SP-SQL. To do so, the cloud server communicates with

the clients to perform decryption. Based on the result of comparison, the search is

continued on the left and/or the right subtree.

The improved SP-SQL does not require to use SPIR. It also shifts the burden

of searching from the querying client to the cloud server. The drawback is that the

cloud server finds out how many records satisfy the conditions in the SQL query,

but the constants in the query and the database records would be kept confidential

from the cloud server. Nonetheless, there are some application settings in which the

cloud server may be at least partially trusted in the sense that leaking the number of

records would not jeopardize the query privacy of the clients.

4.5 Security and Complexity Analysis

In this section, we will provide the security analysis of SP-KS and SP-SQL proto-

cols. The security of the protocols relies on the security of the implementation of the

underlying multiparty computation (MPC) primitives including symmetric private

information retrieval and private integer comparison. Moreover, the output of each

secure MPC primitive is the input to another secure MPC primitive. For instance,

the output of SPIR is the ciphertext sequences Δ and c which will be the input to

the private integer comparison protocol. Therefore, according to the Composition

Theorem [38], the tree traversal protocol is secure; the the cloud server does not learn

anything about the constants in the query because the client encrypts them. More-

over, SPIR guarantees that the cloud server does not know which node is currently

62

visited by the client; the client also does not obtain any information about the other

items in the database and the retrieved item (which is the ciphertext sequences Δ

and c) do not reveal any information about the database records [25].

Query result decryption step is also secure in the sense that the client obfuscates

the query result by a random number. Therefore, when the database owner (in the

case of sum,avg) or the clients (in the case of max,min) decrypt the query result, they

cannot learn any information about the query result from the obfuscated plaintext.

4.5.1 Possible Attacks and Mitigations

The mentioned security analysis is valid while the parties do not collude. In this

section, we will study the possible attacks resulted from the collusion between different

parties.

The threshold decryption will be compromised if the number of colluding clients

under the control of an adversary exceeds the threshold k. The threshold decryption

is required when the querier client wants to decrypt ciphertext sequences Δ and c. In

this case, the adversary does not learn any information about the plaintexts that are

compared. Instead, she can only understand if the database record at the root satisfies

the query condition(s) or not. However, the colluding clients are oblivious about the

root of the subtrees, visited by the client. In addition, the client needs to engage in the

threshold GM decryption to decrypt obfuscated minimum and maximum. Note that

the query result has been obfuscated to prevent the colluding clients from recovering

the query result.

The collusion can also occurs between the cloud server and the client adver-

saries. In this case, the database stored on the cloud server side can be recovered

by combining the secret keys of the client adversaries and decrypting the records.

However in practice, we can lower the risk to an acceptable level by implementing

63

other mechanisms. One possible solution is to store the client keys in smart cards

(or other tamper resistant devices) as proposed in [106]. Another possible solution is

to increase the threshold k such that the attackers are not able to compromise too

many patients. Despite simplicity, this mechanism has two disadvantages: First, it

will decrease the system’s availability: as the number of required online data owners

increases, it is more unlikely that they are online to perform decryption. Second,

it will increase the communication cost on the party who is searching the database

because she needs to communicate with more parties for decryption. Therefore, there

should be a trade-off between availability-security and efficiency by choosing a proper

value for k.

A possible threat to the query privacy of the client, is that the cloud server

may forward the sanitized query to the data owner. As mentioned before, the con-

stants in the sanitized query have been encrypted with the data owner’s public key.

Therefore, if the data owner and the cloud server collude, the data owner can decrypt

the constants and find out what the client is looking for. This attack can be easily

mitigated by enforcing the clients to generate the secret key without depending on

the data owner to act as the trusted dealer. The threshold GM cryptosystem without

the trusted dealer has been proposed by Katz and Yung [24]. In this case, all clients

execute distributed key generation algorithm that has been described before in Sec-

tion 2.2.3 and obtain their share of secret key as well as the public key. The public

key is then sent to the data owner for database encryption.

4.5.2 Complexity Analysis

This section explores the complexity of the proposed SP-KS and SP-SQL protocols in

terms of storage, communication and computation. Moreover, the efficiency of each

protocol is compared with the existing research proposals.

64

Let N be the number of the existing records, n the number of the reported nodes

that satisfy the query predicates in the case of partial matching and range matching

queries and k is the threshold of the GM scheme. Furthermore, let d denotes the

total number of attributes and s indicates the number of attributes in the query

predicates. Notice that the computation complexity of the tree traversal for exact

matching, partial matching and interval matching is O(log N), O(n + N1−s/d) and

O(n + N1−1/d), respectively [62]. Furthermore, the communication complexity of

SPIR is O(K log N) where K is the security parameter whereas the computation cost

on the client and the server is O(log N) and O(N log N), respectively.

Storage Complexity

SP-KS Protocol. For each keyword, the server needs to generate Δ and c to enable

comparison. Therefore, total storage overhead of SP-KS protocol is O(N).

SP-SQL Protocols. The server needs to store a table contains the ciphertext

together with the generated Δ and c for each column whose corresponding attribute

appears in the query predicate. Therefore, the total storage overhead of SP-SQL

protocol is O(Ns) on the server.

Communication Complexity

SP-KS Protocol. In SP-KS protocol, the client-server communication is required to

retrieve the index of tree root associated with the bin –that contains the query result–

and traversing the tree. The length of array I is
√

N . Thus, the communication cost of

retrieving the root index by SPIR is K log
√

N = O(Kλ log N) where K is the security

parameter of SPIR and λ is the error parameter of the Fischlin protocol. Traversing

the tree with
√

N nodes requires at most log
√

N = O(log N) steps. At each step,

the root is retrieved from the set of N nodes by SPIR. The communication cost of

65

SPIR is K log N , Therefore, traversing the tree imposes communication complexity

of O(Kλ log2 N).

In addition, the client needs to communicate with k active clients to decrypt

the ciphertext sequences c and Δ. This step requires totally exchanging O(ksλ log N)

bits. Finally, the client communicates with the data owner to decrypt the payload.

Since the query result contains at most one keyword-payload pair, we can ignore the

communication cost of the query result decryption. Therefore the total communica-

tion complexity of SP-KS protocol is O(K log2 N)

SP-SQL Protocol. The communication cost of SP-SQL is proportional to the

number of visited nodes and depends on the type of the query. Each iteration requires

the execution of one instance of SPIR and the ciphertext decryption. The execution

of an instance of SPIR incurs O(K log N) on both sides for communication. The

communication cost of each ciphertext decryption is O(kd) per visited node.

Therefore, the communication cost of SP-SQL for different type of queries is as

follow:

− Exact matching: the number of visited nodes is O(log N). Therefore, the com-

munication cost is O
(

log N(K log N + kd)
)

which is O(K log2 N).

− Partial matching: the number of visited nodes is O(n + N1−s/d). Therefore, the

communication cost is O
(

n + N1−s/d(K log N + kd)
)

which is O
(

K log N(n +

N1−s/d)
)

.

− Range matching: the number of visited nodes is O(n + N1−1/d). Therefore, the

communication cost is O
(

n + N1−1/d(K log N + kd)
)

which is O
(

K log N(n +

N1−1/d)
)

.

66

Computation Complexity

SP-KS Protocol. Computation complexity on the active participants, the client, the

server and the data owner can be computed as follow:

Active Participants. In every iteration, each active participant requires to com-

pute its own share of plaintext to decrypt Δ and c. Therefore, the total computation

overhead on each participant is O(log N).

Client. In the beginning of the SP-KS protocol, the client needs to encrypt

the search word in O(m) time, obtain the bin number in O(1) and retrieves the tree

root from array I by SPIR in O(K log N). Searching the tree is done by at most

log
√

N = O(log N) iteration and each iteration consists of retrieving root by SPIR,

performing private comparison and updating index. The root is retrieved from the bin

with size
√

N that incurs K log
√

N = O(K log N) computational complexity. The

computation cost of ciphertext decryption (from the received shares of plaintext)

is 2km. Updating the index is performed by simple arithmetic in constant time.

Therefore, the cost of tree traversal on client is O(K log2 N).

Server. In each query session, the server needs to execute private comparison

query on all array elements to generate c and Δ. The computation complexity of this

step is 6Nmλ = O(N) on the server. Moreover, engaging in the SPIR on the array

I imposes
√

N log
√

N = O(
√

N log N). Tree traversal requires log
√

N iteration

of SPIR on database T that imposes total computation cost of O(N log2 N) to the

server. Therefore, the total computation complexity on the server is O(6Nlλ) +

O(N log2 N) = O(N log2 N).

Data Owner. In the preprocessing step, the data owner must construct the

left-balancing binary search tree and encrypt the records. Computation complexity

of tree construction and encryption is O(N log N) and O(N), respectively. Moreover,

the time complexity of the payload decryption is O(1).

67

SP-SQL Protocol. According to a similar complexity analysis for the range

queries, the computation complexity on the active participants and the client is

O(dm(n + N1−1/d)) and O((n + N1−1/d) log N), respectively. The time complexity

of SP-SQL on the server is O((nN + N2−1/d) log N). For the data owner, the pre-

processing step imposes O(N log N) + O(Nd) for tree construction and the database

encryption.

For the exact matching queries, the computation complexity on the active par-

ticipants and the client is O(dm(n + d log N)) and O(K(n + d log N) log N), respec-

tively. The time complexity of SP-SQL on the server is O(K(nN + dN log N) log N).

For the data owner, the preprocessing step imposes O(N log N)+O(Nd) for tree con-

struction and the database encryption. In addition, the data owner must decrypt at

most one ciphertext (encrypted sum). Therefore, SP-SQL incurs O(1) computation

cost on the data owner in each query session.

A Comparison with Previous Works

In this section, we compare the complexity of SP-KS and SP-SQL protocols with the

existing works in the literature. To be consistent with the existing works, we consider

the two-party SP-KS and SP-SQL protocols where the database belongs to the server

and records are stored as cleartext. In this case, the payload is encrypted by Paillier

encryption using the server’s public key while the keywords are encrypted by GM

encryption using client’s public key. Therefore, the cost of database encryption and

threshold decryption is not considered. The modified two-party SP-KS protocol is

secure in the presence of colluding clients. The result of comparing SP-KS with exist-

ing works is represented in Table 10. Our result indicates that SP-KS has sublinear

communication overhead and it is efficient in terms of computation complexity on the

client.

68

The comparison of SP-SQL with the naive approach is presented in Table 11.

To the best of our knowledge, there is no approach for symmetrically-private SQL

search over relational databases that protects the privacy of both client’s query and

database records. Therefore, we compare SP-SQL protocol with the naive approach

explained in Section 4.3. As the comparison results show, SP-SQL achieves better

communication complexity and computation complexity on the client, however the

computation complexity on the server is more than the naive approach. This is rea-

sonable, because the server is a powerful machine and is responsible for the majority

of work.

Algorithm Computation
on The
Client

Computation
on The
Server

Communication

SP-KS O(K log2 N) O(N log2 N) O(K log2 N)

Freedman
et al. [27]

O(
√

N) O(N) O(
√

N)

Ogata
and Kuro-
sawa [73]

O(N) O(N) O(N)

Table 10: Comparison of SP-KS Protocol with Existing Works

Algorithm Query Type Computation on the
client

Computation on the
server

Communication on the
client

Basic SP-SQL
Exact matching O(k log2 N) O(N log2 N) O(kK log2 N)

Partial matching O
(

k log N(n + N1−s/d)
)

O(N log N(n + N1−s/d)
)

O
(

kK log N(n + N1−s/d)
)

Range matching O
(

k log N(n + N1−1/d)
)

O(N log N(n + N1−1/d)
)

O
(

kK log N(n + N1−1/d)
)

Improved SP-SQL
Exact matching O(ks log N) O(k log2 N) O(s)

Partial matching O
(

ks(n + N1−s/d)
)

O
(

k log N(n + N1−s/d)
)

O(s)

Range matching O
(

ks(n + N1−1/d)
)

O
(

k log N(n + N1−1/d)
)

O(s)

Naive approach All types of
queries

O(sN) O(sN) O(sN)

Table 11: Comparison of SP-SQL With The Naive Approach

4.6 Performance Analysis

We concentrate on SP-SQL in the conducted experiments because SP-KS can be

considered as a special case of SP-SQL. To evaluate the performance of SP-SQL, we

69

implemented a prototype in Java 1.6 using the BigInteger class provided by the Java

standard API. The secret shares of the GM cryptosystem are 256-bit long. Moreover,

we employed the publicly available Bank Marketing dataset [107]. This dataset has

45,211 records with 17 attributes. The client’s and the server’s side experiments were

conducted on an Intel dual Core i5 2.3GHz Notebook with 4GB RAM.

In the first experiment, we derive the total execution time of the basic SP-SQL

for different types of queries as shown in Figure 12. We also compare the execution

time of SP-SQL with the naive approach. The experimental result indicates that

SP-SQL reduces the computation overhead on the client by 61% for the range queries

execution and 44% for the execution of the partial matching queries, compared with

the naive approach. We also observe that as the number of attributes in the query

increases, the execution time decreases since the number of comparisons reduces.

1 2 3

0

2,000

4,000

6,000

8,000

Number of attributes

T
im

e
(s
ec
)

Partial matching

Naive partial

Interval matching

Naive interval

Figure 12: The Effect of The Query Predicate Types

For SQL queries, we vary the number of attributes in the query in the second ex-

periment. Figure 13 plots the client CPU and the cloud server CPU. The server CPU

decreases as the number of attributes increases. Similarly, the client CPU initially

decreases as the number of attributes increases, because the number of comparisons

70

and the number of visited nodes decrease. However, as the number of attributes in-

creases, the cost of aggregating the shares of the plaintext increases. Therefore, the

client CPU gradually increases.

1 2 3 4

0

1,000

2,000

3,000

Number of attributes

T
im

e
(s
ec
)

Server CPU Client CPU

Figure 13: Query Response Time

The third experiment measures the effect of the database size on the query

execution time on the client. We use datasets containing 400 records, 4000 records,

and 40,000 records. Our experimental result, as shown in Figure 14, indicates that

the basic SP-SQL would work well with small to medium size datasets (with the total

number of 1,000-20,000 records) and the queries that contain multiple attributes in

the predicates. Notice that financial datasets contain high-dimensional data with

multiple columns. Therefore, we believe that the proposed protocols are appropriate

candidates for this type of applications.

In the final experiment, shown in Figure 15, we compare the total execution

time of the two approaches of SP-SQL for a 45,211-record dataset. The experiment

indicates that for queries with small number of attributes, the improved approach

outperforms the basic one significantly. This can be justified because the cost of

SPIR, that is proportional to the number of the visited nodes, is totally removed in

the second approach. However, as the number of attributes in the query predicates

71

1 2 3

0

500

1,000

1,500

2,000

Number of attributes

T
im

e
(s
ec
)

400 records
4000 records
40000 records

Figure 14: The Effect of The Database Size

increases, the number of the visited nodes decreases and the cost of SPIR would be

relatively small compared to the cost of the private comparison.

1 2 3 4

0

1,000

2,000

3,000

Number of attributes

T
im

e
(s
ec
)

Basic Approach
Improved Approach

Figure 15: Basic vs. Improved SP-SQL Approaches

72

4.7 Discussion and Conclusions

In this chapter, we have provided two protocols for symmetrically-private database

search that leverage symmetric private information retrieval and private integer com-

parison to protect the query privacy of the clients and the data privacy of the database

owner. In this section, we will answer some frequently raised questions.

PIR vs. SPIR. In this chapter, we utilize SPIR protocol to retrieve the data of

the root in order to protect the index of the root as well as the data of other records.

Note that the database that is queried by the client using SPIR, only contains the

ciphertext sequences Δ and c. These ciphertext sequences do not leak any information

about the input of the database (i.e., the database record) to the client. Therefore,

instead of SPIR we can use PIR which is more cache friendly; using PIR, the client

can recover additional items that may be utilized later without the need of PIR for

retrieval.

Semi-Honest Adversary Model. In this thesis, we assume that the ad-

versaries are semi-honest. This is the common security definition used in the SMC

literature [108]. It is realistic to assume that the client and the server are semi-honest

in our problem scenario since the client and the server are collaborating to execute

queries for mutual benefits: the company, providing cloud services, seeks to extend

its business by building reputation and trust for its own services. On the other hand,

the client is searching the database to extract useful information for her own benefit.

Individual Privacy. SP-SQL and SP-KS protocols do not preserve individ-

ual privacy. Therefore, an individual whose record exists in the database, may be

identified from the query result. Note that the information that can be derived from

the query result are considered to be secure. Therefore, secure multiparty compu-

tation techniques cannot solve this problem. To overcome this deficiency, the data

owner can employ Privacy-Preserving Data Publishing (PPDP) [109] techniques that

73

anonymize the raw data. The anonymized data prevent the adversary to re-identify

an individual from the released database and/or the released query result.

Communication-Computation Trade-off. The efficiency of the proposed

protocols highly depend on the utilized SPIR protocol. Some SPIR protocols are

costly in terms of computation but efficient in terms of communication [110]. Others

are costly in terms of communication but efficient in terms of computation [111].

Therefore, the choice of the underlying SPIR protocol depends on the environment.

For example, consider the following two scenarios:

− Scenario 1. Consider a company that provides DBaaS in the cloud envi-

ronment. This company hosts databases of different data owners on a single

cloud server. Consequently, the cloud server may receive thousands of database

queries requesting for information. In this case, if the underlying SPIR is costly

in terms of computation on the server side, the cloud server will become the

single point of bottleneck.

− Scenario 2. Consider a hospital that outsources the medical databases to a

private cloud server and provides the clients with cellphone applications for

querying. In this case, the computation complexity on the client and the com-

munication overhead are the major concerns because mobile devices are limited

in hardware resources and bandwidth.

As the above mentioned scenarios illustrate, an SPIR protocol should be chosen

according to the efficiency requirements of the parties.

74

Chapter 5

Secure Healthcare Query

Processing in Cloud Computing

5.1 Introduction

There have been many fatal and highly contagious diseases throughout history. The

Black Death was one of the most devastating pandemics in human history, peaking in

Europe in the 14th century and killing between 75 million and 200 million people [112].

Centers for Disease Control and prevention (CDC) [113] estimate that between about

8,870 and 18,300 H1N1-related deaths occurred between April 2009 and April 10,

2010. Early detection of such diseases could save millions of lives. With the vast

number of people traveling around the world, an outbreak in a busy city such as New

York or London could end up spreading around the world within few days. There are

many organizations which work on studying epidemiology and preventing them from

spreading around the world; World Health Organization (WHO) [114] is one of them.

To better understand what caused a disease, health organizations and re-

searchers need as much data as possible about the infected patients. Therefore health

organizations and researchers need to have access to the latest updated information

75

about the patients in order to conduct epidemiological studies. Typically, a patient

has many different healthcare providers including primary care physicians, special-

ists, therapists, hospitals and pharmacies. As a result, a patient’s Electronic Health

Records (EHRs) [115] is usually scattered throughout the entire healthcare sectors.

From the clinical perspective, in order to deliver quality patient care, it is critical

to access the integrated information. Therefore, sharing Electronic Health Records

(EHRs) is one of the key requirements in healthcare domain for delivering high qual-

ity healthcare services [116]. However, the sharing process could be very complex and

involved with various entities with different duties and objectives. A shared EHR may

consist of sensitive information of the patients such as demographic details, allergy

information, medical histories, and laboratory test results. Access control solutions

must be in place to guarantee that access to sensitive information is limited only

to those entities that have a legitimate privilege, allowed by the patients. For ex-

ample, a patient may not be willing to share his medical information regarding an

HIV/AIDS diagnosis with a dentist unless a specific treatment is required. Therefore,

it is important to address security challenges such as data confidentiality and access

control [117].

It has become a recent trend for the patients to take these matters into their

own hands by managing their records using a Personal Health Record (PHR) system.

PHR is a patient-centric model of managing health information that allows a patient

to create, manage, and control her personal health data in a centralized place through

the web. The patients have the full control of their medical records and can share

their health and fitness data with a wide range of users of their choice, including

healthcare providers, their family members and insurance companies. In the past few

years, many providers have created platforms to manage PHRs with features including

flexible access control, mobile access, and complex automated diagnoses that analyze

76

the patients records and alert them when a preventive checkup is needed. These

providers include Microsoft HealthVault [118] and Dossia [119].

Recently, architectures of storing PHRs in cloud have been proposed [120]. The

main concern about these services is the privacy and the security of patients’ personal

health data. Since the health records are stored on a third-party provider, the patients

will eventually lose the control of their data and the data will be under the control

of the servers. Therefore, the PHR data could be leaked if an insider in the cloud

provider’s organization misbehaves. As a famous incident, a Department of Veter-

ans Affairs database containing personal health information of 26.5 million military

veterans, including their social security numbers and health conditions was stolen by

an employee who took the data home without authorization [121]. For these reasons,

researchers have begun searching for a way to allow patients to store their medical

records on the cloud using a Database-as-a-Service (DBaaS) model while preserving

their privacy. Li et al. [122] have suggested Attribute-Based Encryption (ABE) as a

solution to secure the stored medical records. ABE is utilized to encrypt and store

the PHR data on semi-trusted servers, so that patients as well as various users from

public domains with different professional roles, can have controlled access to PHRs.

To produce statistical information about health records, patients can give access

to health organizations. According to a report from the consulting firm PwC [123],

health organizations are falling short in protecting the privacy and security of patient

information [124]. Additionally, according to the same report [123], more than half

of health organizations said they had at least one issue with information security

and privacy since 2009 and the most frequently observed issue is the improper use of

protected health information by someone who worked in the organization.

In this chapter, we propose a solution that allows the health organization to pro-

duce statistical information about encrypted PHRs stored in the cloud. In addition,

77

the proposed solution should not enable the patients to infer about what the health

organizations are concerned about in order to not create panic about epidemics in

the community.

5.2 Threat Model

In this section, we first identify the involved entities and the privacy objectives. Then

the threat model and the assumptions underlying the system design will be presented.

5.2.1 Entities Involved in The Protocol

There are three main entities in the system as illustrated in Fig. 16:

− Patients who own medical records and want to store them on the cloud server

and protect their confidentiality. Note that the security of these records depends

on the security of handling the plaintext data before it arrives to the cloud

server and the the security of data-at-rest while storing them on the cloud. For

this reason, when patient data is initially uploaded from patients or doctors, it

will arrive at the cloud server via a secure channel (e.g. SSL). However, this

encryption only protects the data while it is in transit. After the data arrives

on the cloud server, it is delivered as plaintext to the cloud server. A common

way to protect the medical record of the patients from being leaked to the cloud

server is through encryption. For this reason, the necessary keys for encryption

will be resident in the encryption device on the cloud when the data is encrypted.

These devices are designed in such a way that, after a patient places a key into

the key memory of the device, it cannot be read externally [125]. To generate

the keys, the patients will be organized in smaller groups and jointly generate

one key for the threshold Paillier cryptosystem and one key for the threshold

78

GM cryptosystem together with the share of the secret keys. The public keys

and the share of the secret keys will be stored on the encryption devices. The

devices encrypt the received plaintext using these keys and send the resulted

ciphertexts to the assisting server (see below).

− Cloud server that stores the encrypted health records of the patients and ex-

ecutes the queries of the health organization over the encrypted records. The

cloud server should enable the patients to access and update their records if

required. The cloud server will assign an assisting server to each group. The as-

sisting server will be responsible for storing the encrypted record of the patients

and executing the SQL queries of the health organization.

− Health organization that wants to execute queries over the encrypted database

of the patients and produce statistical information.

The patients are assumed to behave properly, but they may try to derive infor-

mation from the queries issued by the health organization. Similar to [10], we assume

that the shape or textual content of SQL queries is not private, but the constants

provided by the health organization in the WHERE clause are private, and must be

protected. Our approach to preserve query privacy over a relational database is based

on hiding all these constants. The cloud server is trusted in the sense that it will ex-

ecute the received requests correctly and it does not temper the patients’ medical

records (inadvertently or deliberately); however we do not rely on it to maintain the

data confidentiality. In other words, the server is modeled as “honest but curious” in

our trust model.

79

Age Disease Blood Type Sex Hypertension

23 Fever O+ F N

Age Disease Blood Type Sex Hypertension

34 Cancer A+ M Y

Age Disease Blood Type Sex Hypertension

45 Flu AB- M N

Figure 16: Architecture

5.2.2 Assumptions and Threat Model

The threat model that we consider is one where an adversarial entity controls some

subset of the parties and wishes to attack the protocol execution. The parties under

the control of the adversary are called corrupted, and follow the adversary’s instruc-

tions. We assume that there is no trusted entity in the environment and all parties

act as semi-honest adversaries.

We assume that the number of corrupted patients is less than a specific thresh-

old, denoted by k. In our scheme, if the assisting server and at least k patients, who

have the shares of the secret key, collude they can recover the secret key and decrypt

the constants in the query predicate. We also assume that there are mechanisms

which ensure integrity and availability of the remotely stored data. Our scheme fo-

cuses only on confidentiality issues and does not provide protection against attacks

such as data tampering and denial of service. Our scheme is a building block that

80

can be integrated into larger more comprehensive frameworks for securing database

on untrusted cloud servers.

5.3 Secure Distributed Techniques

In this section, we present distributed techniques that can be used to support secure

distributed computation. Assume that there exists n parties and the input of the

i-th party is the value vi. 1 ≤ i ≤ n. The protocols presented in this section aim to

calculate the sum, the maximum and the minimum of vi’s as input. At the end of the

protocol execution, the parties do not learn anything except the result. The proposed

protocols assume that the parties are not malicious and they correctly carry out the

prescribed functions.

5.3.1 Secure Distributed Sum

Distributed algorithms frequently require the sum of inputs from individual parties.

Our approach to securely find the sum of the parties’ input is based on the traditional

ring-based approach [126] where the parties form a ring and messages are forwarded

in a pre-defined direction. A master party P1 is elected and starts the computation

by sending v = v1 + r (for a random r) to its neighbor, which adds its own input

to v and forwards the result along. Once arrived back at the master, the final sum

is obtained as s = −r + v and is broadcast to other parties. Traditional ring-based

approach is susceptible to the attack from the colluding parties [127], since if the

party i − 1 and the party i + 1 collude, they can recover the input of the i-th party.

Numerous improvements have been proposed to defeat against the collusion attack

such as permuting the path after each execution [127], sharing vi’s between the parties

(the same source [127]) and distributing the shares of the random number r between

81

the parties [128].

Our approach utilizes randomization as well as threshold encryption to prevent

collusion attack. In this case, our proposed approach is secure against the colluding

parties as long as the master (see below) does not collude. Assuming n parties (n ≥ 3)

and a non-colluding master, the following method securely computes sum.

One party is chosen as master, named P1. The remaining parties are numbered

P2, . . . , Pn. The master is responsible for initiating the secure distributed sum proto-

col. The parties execute distributed key generation algorithm [48] to obtain the public

key and the shares of secret key for the threshold Paillier cryptosystem. The master

then generates a random number R, adds its input to this number and encrypts the

resulted sum by the group public key using Paillier encryption. Then, the master

forwards the ciphertext to P2. The i-th party Pi (2 ≤ i ≤ n) receives E(R + Σi−1
j=1vj).

Since this ciphertext is encrypted with the group public key, it cannot decrypt it indi-

vidually and learn anything. Party Pi then encrypts its input vi by the group public

key and multiplies E(vi) by the encrypted sum to obtain E(R + Σi
j=1vj). Then, it

passes the encrypted sum to the i + 1-th party. The n-th party performs the above

step and passes the result to the master. The master must decrypt the result to

obtain the actual sum. To decrypt the query result that is encrypted with the group

public key, the master contacts the parties and sends them the ciphertext for the

decryption. These parties partially decrypt the encrypted sum using their share of

secret key and sends their share of plaintext to the master. The master then recovers

the noisy sum by combining the shares of plaintext and extract the noise R to find

the actual sum. Then it broadcasts the actual query result to the other parties. The

steps of Secure Distributed Sum is presented in Algorithm 1.

The proposed approach is secure while the master is not colluding with the

other colluding parties. In this case, even if all the parties that are asked to perform

82

decryption, are corrupted and collude with each other they can only find out the

noisy sum. But, if the contacted parties and parties i − 1 and i + 1 collude, they can

find out the input of the i-th party.

Algorithm 1 Secure Distributed Sum

Require: n parties P1, P2, . . . , Pn, each party Pi has a local input vi. Output:
Σn

i=1vi.

1: P1 is acting as a master.
2: P1, . . . , Pn executes distributed key generation algorithm. Each party Pi obtains

the group public key pk and the secret key ski.
3: P1 generates random number R, add it to v1 and encrypts v1 + R by Paillier

cryptosystem using pk to obtain c1 = EP L(v1 + R, pk).
4: P1 forwards c1.
5: for Each party i (2 ≤ i ≤ n) do
6: Pi receives the message ci−1 from Pi−1;
7: Pi encrypts vi by pk;
8: Pi computes ci = ci−1.EP L(vi, pk);
9: Pi forwards ci to P(i+1) mod n.

10: end for
11: P1 receives the message cn = E(R + Σn

i=1vi, pk) from Pn.
12: P1 sends cn to k′ parties for decryption.
13: P1 aggregates the ciphertexts from the k′ parties and obtains R + Σn

i=1vi.
14: P1 calculates −R + R + Σn

i=1vi = Σn
i=1vi to obtain actual sum.

15: P1 broadcast the actual sum to the parties P2, . . . , Pn.

5.3.2 Secure Distributed Maximum/Minimum

Consider several parties having their own input. The problem is to securely com-

pute the maximum and the minimum of these local inputs. Formally, given n

parties P1, . . . , Pn, having local inputs v1, . . . , vn. We wish to securely compute

max{v1, v2, . . . , vn} and min{v1, v2, . . . , vn}. To calculate the maximum and the mini-

mum, the private comparison protocol and the threshold GM cryptosystem are used.

We explain the technique for calculating the maximum; distributed minimum function

can be securely computed in a similar way.

Parties jointly generate a group public key PK for the k-out-of-n threshold GM

83

cryptosystem such that all parties obtain the shares of the secret key [24]. One party

is chosen as the master, numbered 1. The master encrypts her local input, bit by bit,

using the group public key and forwards it to the party P2 as the current maximum.

Each party Pi, upon receiving the message from Pi−1, encrypts her local input vi

by the group public key and executes Fischlin protocol, given the current encrypted

maximum in the message and her encrypted local value as the inputs. The output of

Fischlin protocol is an encrypted ciphertext sequence Δ that indicates if the current

maximum is greater than the vi or not. To decrypt the sequence Δ, Pi contacts with

k parties and sends the generated Δ for decryption. Each party calculates the share

of the plaintext and sends it back to Pi. Afterwards, Pi constructs the plaintext from

the received shares: if the decrypted Δ contains a sequence of λ 1s, it means that

the current maximum is greater than vi; therefore Pi does not modify the received

message and forwards it to Pi+1, as it is. Otherwise, vi is the current maximum and

Pi must encrypt it, bit by bit, using the group public key and forwards it to Pi+1. At

the end of query result forwarding, the master obtains the encrypted maximum and

decrypts it bit by bit, by communicating with k randomly-chosen parties. Finally,

the master broadcasts the maximum to the other parties. The algorithm for secure

maximum is represented in Algorithm 2. Distributed maximum/minimum protocol

is secure if the number of semi-honest parties controlled by the adversary is at most

equal to k − 1.

The proposed distributed protocols require that all parties to be online for

executing the protocol. However, each party can decide if she is willing to participate

in the query execution or not.

Remark 1. The proposed secure maximum/minimum protocol illustrates how a

party can perform comparison on two ciphertexts without knowing the secret key.

This idea can be extended to enable a party to sort a sequence of ciphertexts without

84

Algorithm 2 Secure Distributed Maximum

Require: n parties P1, P2, . . . , Pn, each party Pi has a local input vi with the bit
length l. Output: max{vi}.

1: P1, P2, . . . , Pn executes the distributed key generation to produce the group
public key PK and shares of secret key SK1, SK2, . . . , SKn.

2: SKi will be assigned to Pi.
3: P1 is acting as a master.
4: P1 encrypts v1 = (v1,l, . . . , v1,1)2 by GM encryption using PK to obtain c1 =

{EGM(v1,l), . . . , EGM(v1,1)}.
5: P1 forwards c1 to P2.
6: for Each party Pi (2 ≤ i ≤ n) do
7: receives the message ci−1 from Pi−1;
8: encrypts vi, bit by bit by PK to obtain the set {EGM(vi,l), . . . , EGM(vi,1)};
9: executes Fischlin protocol where inputs are ci−1 and {EGM(vi,l), . . . , EGM(vi,1)}

to obtain an encrypted ciphertext sequence Δ;
10: Pi forwards Δ to k randomly-selected parties P ′

1, . . . , P ′

k.
11: for Each party j (1 ≤ j ≤ k) do
12: decrypts Δ with her share of secret key SKj.
13: sends decrypted ciphertext sequence to Pi.
14: end for
15: receives decrypted Δ from P ′

1, . . . , P ′

k

16: extracts the actual ciphertext sequence from the received plaintexts.
17: if there is a sequence of λ 1s in the random position of the decrypted ciphertext

sequence then
18: // the current maximum is greater than vi

19: ci = ci−1

20: else
21: // the current maximum is not greater than vi

22: ci = EGM(vi)
23: end if
24: sends ci to party P(i+1) mod n

25: end for
26: P1 receives the message cn from Pn.
27: P1 communicates with k randomly-selected parties and send them cn.
28: The parties P ′

1, . . . , P ′

k decrypts cn to obtain m1, . . . , mk.
29: P ′

j sends mj to P1 where 1 ≤ j ≤ k′.
30: P1 combines m1, . . . , mk to obtain max{vi} where 1 ≤ i ≤ n.
31: P1 broadcasts max{vi} (1 ≤ i ≤ n) to P2, . . . , Pn.

85

knowing the secret key. In this case, any comparison-based sorting algorithm can be

utilized and the comparison is performed on the encrypted values, using any private

integer comparison protocols.

5.4 Secure Healthcare Query Processing in Cloud

Computing

In this section, we present a protocol that allows the patients to store their medical

record on the cloud server. Patients’ information is stored in a database and mined

for statistical information by the health organization. The proposed solution should

protect the data privacy of the patients in such a way that the cloud server and

the health organization do not learn anything about the sensitive information of the

patients. Moreover, the patients and the cloud server should not be able to infer

anything about the constants in the queries of the health organization.

The inputs to the protocol is as follow: the health organization provides an

aggregate SQL query that consists of exact-matching and interval-matching predicates

combined with logical operators (AND/OR/NOT). The cloud server’s input is the

encrypted health records of the patients. The cloud server is responsible for executing

the SQL queries such that the privacy goals of the patients and the health organization

are reached.

The naive approach to achieve the mentioned privacy objectives is that the

health organization communicates with each patient and securely evaluates its queries

on the patients’ record. This can be achieved by exploiting the Fischlin’s protocol

for private comparison. However, this approach incurs excessive communication and

computation overhead on the health organization side which is linear in the number

of patients. To reduce the overhead, the patients are organized into smaller groups.

86

The patients in each group jointly generate two public keys for Goldwasser-Micali [42]

and Paillier [26] encryption schemes. Then they encrypt their records and outsource

them to the cloud server for storage. The cloud server assigns an assisting server to

each group which is responsible for receiving SQL query of the health organization

and securely executing it on the records of the patients to obtain the partial results.

The assisting servers then collaborate to obtain the final query result from the partial

results and report it to the health organization.

In the following, we elaborate the basic steps of our protocol that protects the

data privacy of the patients and the query privacy of the health organization.

5.4.1 Setup and Tree Construction

The cloud server defines L = �
√

N� groups where N is the total number of patients.

It then randomly maps each patient into exactly one group. Let n = �N
L

� denotes

the number of patients in each group. The cloud server assigns an assisting server to

each group which is responsible for executing the health organization’s queries over

the medical database of the patients. The assisting servers also collaborate with each

other to obtain the query result from the partial results and send it to the health

organization.

Note that if each patient encrypts her record with her own unique public key,

the health organization needs to generate one query per patient. In this case, the

computation and communication overhead on the health organization will be similar

to the naive approach. To encrypt the patients’ records with a single key and also

protect the records from the other patients in the same group, we utilize the threshold

GM [24] and threshold Paillier [48] cryptosystem without the trusted dealer.

In the i-th group, the patients execute the distributed key generation algorithm

87

for the threshold Paillier and the threshold GM cryptosystems to obtain jointly-

generated public keys pk′

i and pki for Paillier and GM cryptosystems, respectively

together with their share of secret keys. Each patient then stores the group public

keys and her private keys on a Field-Programmable Logic Array (FPGA) as de-

tailed in [125]. The FPGAs are programmed to form an independent semi-trusted

third party platform within the cloud infrastructure. Since these devices run as au-

tonomous compute elements, the cloud administrator does not have low-level access

to computations running within them. These FPGAs are designed in such a way that,

after a patient places a key into the key memory on the device, the key cannot be read

externally. The FPGAs is then delivered to the cloud operator for installation. Note

that decrypting a ciphertext by the cloud server is performed by sending a ciphertext

to the FPGA of the patients. Since the FPGAs have the share of secret key, they can

decrypt the ciphertext partially and sends it back to the sender.

The threshold cryptosystems enables the patients to encrypt their record with a

single public key while at least a minimal number of patients are required to decrypt a

ciphertext. All the patients in each group uploads their medical records through their

FPGA on the cloud server. Note that the medical records are multidimensional data

and the FPGA encrypts them using Paillier and GM cryptosystems by the associated

group public key. Therefore, the encrypted record of each patient, produced by the

FPGA, has two columns for each attribute in the database: one column that contains

the encryption of the attribute value using the group public key for threshold Paillier

cryptosystem, and another column that stores the GM encryption of the attribute

value using the group public key for threshold GM cryptosystem.

Example 8. Consider the health records with the attributes Age and Surgery, where

the value of the attribute Surgery specifies the type of the surgery that the patient

undergoes (e.g. 1: Transgender, 2: Plastic, 3:Vascular, 4: Urology). Assume that

88

the patients, whose records are represented in Table 12, are willing to outsource their

health records to the cloud server. The total number of patients is N = 10; therefore,

these patients must be organized in L =
√

10 ≈ 3 groups, namely, G1, G2 and G3.

Assume that the patients 1,9 and 10 are assigned to G1; patients 2, 4, 5 and 8 are

assigned to G2 and patients 3, 6 and 7 are assigned to G3. The assignments are

performed randomly. The patients in the group Gi jointly generate the public key pki

for the threshold GM cryptosystem. Moreover, the patients in the group Gi jointly

generate the public key pk′

i for for the threshold Paillier cryptosystem and publish

pk′

i to the health organization. The members of the group Gi encrypt each attribute

value of their records with the threshold GM cryptosystem using pki and the threshold

Paillier cryptosystem using pk′

i as shown in Fig. 17. After that, the patients outsource

their encrypted records to the cloud server.

Age Surgery
Patient 1 34 1
Patient 2 39 2
Patient 3 20 1
Patient 4 59 3
Patient 5 63 4
Patient 6 27 2
Patient 7 78 4
Patient 8 11 2
Patient 9 83 3
Patient 10 42 3

Table 12: Health Records

The assisting server collects the encrypted records and organizes them as a kD-

tree using the algorithm explained in Section 2.3. Constructing the tree requires

sorting the records at each level and dividing the database into two subsets by calcu-

lating the number of nodes in the left subtree (LT) and the right subtree (RT). Since

the records are encrypted, the sorting algorithm must be executed on the ciphertexts.

89

AgeGM SurgeryGM AgeP SurgeryP

Patient 1 Epk1
(34) Epk1

(1) Epk′

1
(34) Epk′

1
(1)

Patient 9 Epk1
(83) Epk1

(3) Epk′

1
(83) Epk′

1
(3)

Patient 10 Epk1
(42) Epk1

(3) Epk′

1
(42) Epk′

1
(3)

(a) G1 Database

AgeGM SurgeryGM AgeP SurgeryP

Patient 2 Epk2
(39) Epk2

(2) Epk′

2
(39) Epk′

2
(2)

Patient 4 Epk2
(59) Epk2

(3) Epk′

2
(59) Epk′

2
(3)

Patient 5 Epk2
(63) Epk2

(4) Epk′

2
(63) Epk′

2
(4)

Patient 8 Epk2
(11) Epk2

(2) Epk′

2
(11) Epk′

2
(2)

(b) G2 Database

AgeGM SurgeryGM AgeP SurgeryP

Patient 3 Epk3
(20) Epk3

(1) Epk′

3
(20) Epk′

3
(1)

Patient 6 Epk3
(27) Epk3

(2) Epk′

3
(27) Epk′

3
(2)

Patient 7 Epk3
(78) Epk3

(4) Epk′

3
(78) Epk′

3
(4)

(c) G3 Database

Figure 17: Outsourced Health Records in Groups

The sorting algorithm on the ciphertexts has been described before in Remark 1 (Sec-

tion 5.3) as an extension of secure maximum/minimum. Therefore, constructing the

left-balancing kD-tree from the ciphertexts can be performed by the assisting server

even though it does not have the decryption key. The kD-tree has the advantage of

reducing the number of comparisons, required for the query execution.

Example 9. (Continued from Example 8) The generated kD-trees for each group are

shown in Fig. 18. The partitioning attributes in each group may be different. At the

first level, Age is used to partition the records of G1 and G2 whereas Surgery is used

to partition the records of G3.

5.4.2 Query Sanitization

The health organization needs to execute a query such that the constants in the

query predicate are not revealed to the patients and the cloud server. Accordingly,

the health organization sanitizes its SQL query by replacing the constants contained

90

Epk1
�42� Epk1

�3�

Epk1
�34� Epk1

�1� Epk1
�83� Epk1

�3�

Age

(a) G1 kD tree

Epk2
�59� Epk2

�3�

Epk2
�39� Epk2

�2�

Epk2
�11� Epk2

�2�

Epk2
�63� Epk2

�4�

Age

Surgery

(b) G2 kD tree

Epk3
�27� Epk3

�2�

Epk3
�20� Epk3

�1� Epk3
�78� Epk3

�4�

Surgery

(c) G3 kD tree

Figure 18: Generated kD-Trees

in the predicates by their GM encryption using the public key of each group. For

instance, if the query of the health organization is

SELECT MAX(Age) FROM D WHERE Surgery = 1

The sanitized query that is forwarded to the i-th group (1 ≤ i ≤ n) will be

SELECT MAX(Age) FROM D WHERE Surgery = Epki
(1)

In addition to the sanitized query, the health organization generates a token for

each group that is encrypted by the group public key using the Paillier cryptosystem.

The encrypted token is a random number which is manipulated by the assisting

servers to produce the noisy query result. Generating the token depends on the

type of the aggregate function in the query; for count and sum functions, the health

organization generates a random number R and produces L additive shares of R,

namely R1, R2, . . . , RL such that R = R1 + R2 + . . . + RL. The random share Ri

91

will be the token that is sent to the assisting server of the group i. For the max and

min functions, the health organization populates the same random numbers R, as the

token, for all groups. The health organization then encrypts the token of each group

using Paillier cryptosystem by the group public key.

The health organization forwards the sanitized query together with the en-

crypted token to assisting servers. Therefore, in this step the health organization

should create L sanitized queries and L encrypted tokens.

5.4.3 Tree Traversal and Query Execution

The health organization forwards the sanitized SQL query and the encrypted token

to the assisting servers for execution. To execute the query of the health organization,

the assisting server must traverse the kD-tree, constructed from the encrypted records

of the patients. To do so, the assisting servers follow the tree traversal algorithm

explained in Chapter 4 without the need of the symmetrically-private information

retrieval (SPIR) for retrieving root’s record. The search starts from the root; the as-

sisting server uses Fischlin protocol and the threshold GM decryption to evaluate the

query predicate. Based on the result of the query evaluation, the search is continued

on the left tree or the right subtree or both. Therefore, at the end of this step, the

assisting servers will end up with the records that satisfy the query predicate. The

assisting servers then compute the encrypted query result depending on the type of

the aggregate function as follows:

− count: The assisting server of the group Gi counts the number of records that

are reported as the query result and encrypts this value using the Paillier cryp-

tosystem with the group public key.

− sum: In the beginning, the assisting servers encrypt 0 (as the current sum) by

the Paillier encryption using the group public key. In the tree traversal step, if at

92

each level the conditions in the query predicate are satisfied, the assisting server

projects the record over the Paillier-encrypted column targeted by the aggregate

function and multiplies it by the the current sum to update the query result.

At the end, the assisting server will end up with the sum that is encrypted with

the group public key using the threshold Paillier cryptosystem.

− max (resp. min): Initially, the assisting servers pick up a small negative (resp.

large positive) number that denotes the current maximum (minimum) and en-

crypts it by the GM and the Paillier cryptosystems using the group public key.

GM-encrypted ciphertext is utilized for the comparison while Paillier-encrypted

ciphertext is used for generating noisy query result. During the tree traversal if

a record satisfies the query condition(s), the assisting server projects the record

over the columns that contain the GM- and the Paillier-encryption of the record.

It then executes Fischlin protocol using the encrypted current maximum (resp.

minimum) and the GM-encryption of the record, to find out if this record has

greater (resp. smaller) value or not. If so, the assisting server initializes the cur-

rent maximum (resp. minimum) to the GM- and the Paillier-encrypted cipher-

texts. Otherwise, the current maximum (resp. minimum) remains unchanged.

At the end, the assisting servers end up with the query result encrypted with

the Paillier and GM encryption. For the remaining step of the protocol, the

assisting servers only need the Paillier-encrypted ciphertext.

At the end of this step, the assisting servers obtain the partial query result (that

has been encrypted using Paillier scheme by the public key of the group), derived from

the database of the group.

Example 10. (Continued from Example 8) Consider the kD-trees presented in Fig.

18 and the sanitized query

93

SELECT MAX(Age) FROM D WHERE Surgery = Epki
(1) where 1 ≤ i ≤ L

All assisting servers receive an encrypted token Epk′

i
(R) from the health organization.

The assisting server of the group Gi extracts Epki
(1) from the query and performs the

point search on the kD-tree constructed by the patients in the group Gi. The assisting

servers report the records that satisfy the predicate Surgery = Epki
(1) by executing the

Fischlin protocol and the threshold GM cryptosystem to decrypt the output ciphertext

sequence. The record of the Patient 1 in G1 and the record of the Patient 3 in G3

satisfy the predicate. Therefore, the output of the tree traversal for assisting server

of groups G1, G2 and G3 will be {Epk1
(34), Epk′

1
(34)}, {Epk2

(−1000), Epk′

2
(−1000)}

and {Epk3
(20), Epk′

3
(20)}, respectively. The resulted outputs will be projected over the

column AgeP to obtain {Epk′

1
(34)}, {Epk′

2
(−1000)} and {Epk′

3
(20)} as the encrypted

query result.

5.4.4 Query Result Decryption

So far, the assisting servers were able to obtain the encrypted partial query result.

Therefore, the assisting servers must collaborate with each other to compute the final

query result and submit it to the health organization.

The partial query results of the groups are encrypted with different keys. There-

fore, in order to compute the final query result, the partial query result must be in the

cleartext. Since, the assisting servers are not willing to reveal the query result to each

other, the assisting servers first obfuscate the partial query result. The obfuscation

is performed by the mean of multiplying the encrypted query result by the encrypted

token, sent by the health organization (both of them are ciphertexts generated by

the same key under the Paillier cryptosystem). The obfuscation allows the assisting

servers to collaborate with each other to calculate the noisy query result while hiding

the actual query result of their group. In addition, since the noise is generated by

94

the health organization, it allows the health organization to recover the actual query

result from the noisy query result. To produce the noisy query result, all assisting

servers multiply their encrypted token (received from the health organization) by the

Paillier-encrypted query result to generate encrypted noisy query result.

Afterwards, all assisting servers decrypt the resulted noisy query result – that

is encrypted by the Paillier cryptosystem – by contacting patients in their group.

The assisting servers then need to obtain the final noisy query result by aggregating

their partial noisy result. To do so, the assisting servers send the noisy query result in

plaintext to the cloud server. The cloud server then aggregates the partial noisy query

result to obtain the noisy query result; in the case of count and sum, the cloud server

adds up all the partial results and submits it to the health organization. In the case

of max and min aggregate functions, the cloud server executes maximum/minimum

algorithm on the plaintext and sends the resulted value to the health organization.

Note that the noise generated for obfuscating the maximum/minimum of all groups

is the same, therefore it will not affect the algorithm correctness (i.e., if a < b then

a + R < b + R). Finally, the health organization in its turn subtracts the noise and

obtains the query result.

Example 11. (Continued from Example 10) We have seen that the result of executing

the SQL query

SELECT MAX(Age) FROM D WHERE Surgery = 1

on the groups G1, G2 and G3 was {Epk′

1
(34)}, {Epk′

2
(−1000)} and {Epk′

3
(20)}

respectively. Moreover, the token sent by the health organization to the i-th group is

Epk′

i
(R). The assisting servers multiply the received token ER

pk′

i

by all records in the

encrypted query result to obtain the encrypted noisy query result, i.e., {Epk′

1
(34+R)},

{Epk′

2
(−1000 + R)} and {Epk′

3
(20 + R)}. The assisting servers then decrypt these

95

ciphertexts to obtain 34 + R, −1000 +R and 20 + R. They send their noisy plaintexts

to the cloud server. The cloud server executes the maximum algorithm on the 34+R,

−1000+R and 20+R and eventually ends up with 34+R as the maximum. The cloud

server forwards 34 + R to the health organization. The health organization subtracts

the noise R to obtain 34 as the result of executing the SQL query on the medical

database.

5.5 Security and Complexity Analysis

In this section, we discuss the security analysis of the proposed protocol for executing

healthcare queries. We will also provide the complexity analysis and a discussion on

the limitation of this work.

5.5.1 Possible Attacks and Mitigations

The proposed protocol is secure while the parties, namely the health organization,

the cloud server and the patients, do not collude. The main concern with threshold

cryptosystems comes from the collusion attack. Any collusion that contains less than

k patients in each group cannot learn any information about the ciphertext sequences

Δ and c generated for comparison as well as constants in the query of the health

organization. The most serious collusion attacks are when (i) the cloud server colludes

with more than k patients in each group to recover the encrypted database records,

(ii) the cloud server and at least k patients in a group collude to infer constants in

the query submitted by the health organization.

However in practice, we can lower the risk to an acceptable level by increasing

the threshold k such that the attackers are not able to compromise too many patients.

Despite simplicity, this mechanism has two disadvantages: First, it will decrease the

96

system’s availability: as the number of required online data owners increases, it is

more unlikely that they are online to perform decryption. Second, it will increase the

communication cost on the party who is searching the database because she needs to

communicate with more parties for decryption. Therefore, there should be a trade-off

between availability-security and efficiency by choosing a proper value for k.

5.5.2 Complexity Analysis

Let N denotes the number of patients in the PHR system. These patients are orga-

nized in L ≈
√

N groups and each group contains n = N/L patients. We assume that

k denotes the threshold of GM decryption where 1 ≤ k ≤ n. Moreover, we assume

that the number of bits required to store a value in the attribute domain, is l. For the

range query and the point query, the total number of comparisons on a kD-tree with
√

N records, will be O(N0.5−1/2d) and O(log N), respectively where d is the number of

attributes in the table [62]. Recall that for the Fischlin protocol, the communication

overhead is O(λ.l) and the computation cost on the client and the server is O(λ) and

O(λl), respectively.

For the sake of brevity, we only consider the cost of the steps that have major

effect on the performance of the protocol.

Storage Overhead. For each column in the medical database with d columns,

the cloud server must stores two columns: one column that contains the Paillier

encryption and one that stores the GM encryption of the attribute value of the record.

Thus, the table on the cloud server has 2d columns.

Communication Overhead. The communication complexity of the protocol

on the health organization and the assisting servers is as follow:

Health organization. The health organization needs to communicate with the

assisting servers to send the sanitized query and receive the final result from the cloud

97

server. Therefore, the total communication cost is O(L) = O(
√

N).

Assisting servers. The assisting servers should traverse the tree to execute the

SQL query. The communication complexity of the protocol depends on the number

of comparisons and consequently on the type of predicates in the query:

− Range queries. For each comparison performed in tree traversal, the assist-

ing server must communicate with the patients’ HSMs to decrypt ciphertext

sequences Δ and c, each has λ.l ciphertexts. Therefore, the communication

overhead for a range query will be O(kλl N0.5−1/2d) on each assisting server.

Since
√

N assisting servers reside on the cloud server, the total communication

cost of protocol execution will be O(kλl N1−1/2d).

− Point queries. According to a similar discussion, the communication over-

head of executing an exact-matching query will be O(klλ log N) on each as-

sisting server. Consequently, the communication overhead on the cloud server

is O(klλ
√

N log N).

Computation Overhead. We calculate the computation overhead on the involved

parties as follow:

Health organization. The health organization needs to sanitizes the query by

encrypting the constants with the public key of each group. Therefore, the total

number of sanitized queries will be L =
√

N , leading to O(
√

N) time complexity on

the health organization.

Assisting server. The computation overhead on the assisting servers side is due

to traversing the tree. The computation overhead therefore depends on the type of

predicates as well as the type of aggregate function as explained in the follow.

− Range queries. The computational cost of range query over kD-tree is

O(N1−1/d + m) where m is the number of records in the range. For each

98

comparison, the assisting server must execute Fischlin protocol (tF is), ag-

gregate the share of plaintexts – resulted from decryption of ciphertext se-

quences Δ and c – (tAggr), and test if the ciphertext sequences are quadratic

residue or not (tQR). Therefore, the computation overhead of tree traver-

sal is (N0.5−1/2d + m).(tF is + tAggr + tQR); the computational cost of Fis-

chlin protocol, the result aggregation and quadratic residue test is O(λl),

O(k) and O(λ). Therefore, the computational cost of traversing the tree is

O(N0.5−1/2d + m)(k + λl).

− Point queries. Similarly, the computation overhead of executing an exact-

matching query will be O((k + λl) log N) on each assisting server.

In addition in the case of max/min aggregate functions, if a record satisfies

the query condition(s), the assisting server must execute the Fischlin protocol to

find the maximum/minimum of the encrypted records. This step imposes additional

computational cost of m.tF is = O(mlλ) to the assisting server.

5.5.3 Implementation and Performance

To evaluate the performance of the proposed protocol, we implemented a prototype of

system relying on some existing works [129] in Java 1.6. The secret keys p and q of the

GM cryptosystem are 256-bit long. Moreover, we used the publicly available Breast

Cancer data set [130]. This data set has 286 records with 9 categorical attributes.

The patient’s and the server’s side experiments were conducted on an Intel dual Core

i5 2.3GHz Notebook with 4GB RAM. The number of patients in each group is fixed at

L = 286 leading to approximately 81800 patients in the PHR system. To understand

the source of the overhead, we conduct different experiments. In the first one, we

measure the query execution time for different types of aggregate SQL queries, but

99

running with only one core enabled. The result is presented in Table 13 and Fig. 19

where the error parameter λ of Fischlin protocol is 45.

Query Query time(ms)
Select by = 41.93
Select range 216.14
Select sum 33.01
Select max/min 217.32

Table 13: Assisting server latency for different types of SQL queries

10 20 30

Select min/max

Select sum

Select range

Select by =

Queries/sec

Figure 19: Query Time

In the second experiment, we study the effect of the error parameter λ on the

execution time given different values for the threshold k. The tested values of the

error parameter λ give a comparable level of correctness. As presented in Fig. 20,

the time complexity of the threshold decryption is linear with the error parameter

λ. When k is small, the query time is dominated by Fischlin’s protocol which is

independent from the threshold k. Therefore, there is a small difference in the query

time when k = 36 and k = 71. However, as k increases the effect of the threshold

decryption becomes more visible and the execution time starts to grow. Fig. 21

presents the effect of the threshold k on the execution time, given different values for

the error parameter λ. According to a similar analysis, for small value of k there is a

small change in the execution time but as k increases the query time becomes linear

with k.

100

20 40 60 80 100

0

500

1,000

1,500

Error Parameter λ

Q
u
er
y
T
im

e
(×

1
0−

3
se
c)

k = n
8

k = n
4

k = 3n
8

k = n
2

k = 3n
4

Figure 20: Effect of λ for various values of k

50 100 150 200

0

500

1,000

1,500

Threshold k

Q
u
er
y
T
im

e
(×

10
−
3
se
c)

λ = 20
λ = 35
λ = 45
λ = 50
λ = 86
λ = 100

Figure 21: Effect of k for various values of λ

101

Finally, we calculate the execution time of an arbitrary SQL query assuming

λ = 45 and k = n
4

= 71. In addition to λ and k, the execution time of a query

heavily depends on the number of comparisons that are performed to traverse the

kD-tree. Therefore, we consider three different scenarios: (1) the worst case scenario

is when evaluating predicates targeting a single attribute for interval matching such

that all the tree nodes are traversed, (2) the best case scenario is when evaluating

predicates targeting all attributes for exact matching, and (3) the real-world sce-

nario is when evaluating predicates targeting multiple attributes for range and exact

matching predicates. In the worst case, the time required to evaluate the predicate

is 110 seconds (approximately 2 minutes) for each group, whereas in the best case

it is 0.3 seconds. In the real-world scenario, we derive the execution time of a SQL

query that contains interval matching and exact matching predicates. For each type

of predicate, we execute four SQL queries with different number of attributes. The

results are presented in Fig. 22. The results indicate that as the number of attributes

in the query increases, the execution time decreases due to the limited search space

and the reduction of the number of comparisons.

1 2 3 4

0

10

20

30

Number of attributes

Q
u
er
y
T
im

e
(s
ec
)

Exact matching
Interval matching

Figure 22: Query time of a SQL query that contains exact matching (blue) and
interval matching (red) predicates

102

Our experimental results indicate that the proposed protocol would work well

with medium size databases (with a total number of 100,000-400,000 patients) and

the queries that contain multiple attributes. These results are from a first implemen-

tation of the proposed protocol. Further optimizations may likely lead to a better

performance.

5.6 Conclusions and Discussion

In this chapter, we presented a protocol for executing secure queries over the cloud-

based personal health records that employs private integer comparison and threshold

cryptosystems to protect the query privacy of the health organization and the data

privacy of the patients. In this section, we will answer some frequently raised ques-

tions.

Probabilistic Encryption vs. Deterministic Encryption. A deter-

ministic encryption scheme always produces the same ciphertext for a given plaintext.

Deterministic public-key encryption is not secure in particular when the domain of

the message is small since the adversary can simply encrypt each of the possible value

in the domain under the recipient’s public key, and compare the resulted ciphertext to

the target ciphertext. To avoid this, probabilistic encryption utilizes randomness such

that when encrypting the same message several times, it will yield different cipher-

texts. Probabilistic public-key encryption schemes are slower than the symmetric-key

encryption. In this thesis, we utilized two probabilistic encryption schemes (including

Paillier [26] and Goldwasser-Micali [42]). Despite being slower, these schemes provide

security for the records in the database. It is worth to mention that health orga-

nizations do not frequently conduct statistical analysis and studies on the medical

databases (every month or when there is a pandemic).

Encryption Devices. The proposed protocol requires that the patients store

103

the secret keys on the cloud machines. More precisely, the patients store their share

of secret key on a FPGA and deliver it to the cloud server for the operation. The

security concerns regarding key storage on cloud machines may cause patients to

continue hosting the encryption/decryption operations using traditional privately-

held servers. In this case, even though clients can leverage the computational and

storage power of the cloud for the database and analytics, they must still maintain

one or more local servers to perform encryption and execute decryption requests from

assisting server. Unfortunately, in this case many of the advantages of the cloud are

nullified, since patients still need local infrastructure. Furthermore, the cloud service

can suffer severe performance issues because inter-site communication is much slower

than intra-site communication.

104

Chapter 6

Conclusions and Future Work

The main goal of this thesis is to present protocols for privacy-preserving query pro-

cessing over databases that are outsourced to cloud servers. We assume that the

textual shape of SQL queries is not private but the constants contain sensitive infor-

mation and must be protected against curious cloud servers. Therefore, the proposed

protocols reveal the attribute names and the type of the aggregate function to the

cloud server. The proposed protocols leverage symmetric private information retrieval

(SPIR) and private integer comparison to protect the access privacy of clients as well

as the database privacy of data owners in the cloud environment. Chapter 4 con-

siders the case where the database owner is trusted for collecting and storing the

records that belong to the individuals. We provide a solution for secure storage of

the database records on the cloud server. Furthermore, our solution addressed two

types of queries: keyword search queries and SQL queries. We proposed to organize

the database records as a left-balancing binary search tree. Execution of the query

can be performed by traversing the tree in the oblivious manner.

In chapter 5, we consider the scenario where the individuals are not willing that

the data owner collects and manages their record. In particular, we propose a query

processing model in the context of the cloud-based Personal Health Records (PHRs)

105

where the patients are responsible for managing their medical record, controlling the

access and protecting them against the curious cloud server. We propose to organize

the patients in smaller group where the members of each group encrypt their records

with jointly generated keys. For query execution, we utilized an approach similar to

the one we provided in Chapter 4. Note that the proposed model can be utilized in

situations where a database has been horizontally partitioned between different par-

ties and the client would like to execute a private query over the distributed database.

The results of the complexity analysis indicates that the proposed protocols incur rea-

sonable communication and computation overhead on the client side, considering the

added advantage of being able to perform symmetrically-private database search. We

tested our implementation in Java 1.6 by employing a real data set. We observed that

the running time for executing range queries is more than partial-matching queries.

This observation agree well with the result of the complexity analysis. Furthermore,

we observed as the number of attributes in the predicate of a query increase, the exe-

cution time decreases. Finally, we concluded that our proposed protocol would work

well with the small to medium size databases and the queries that contain multiple

attributes.

In the remaining of this chapter, we will highlight some of the future works

related to this work.

6.1 Future Work

The work presented in this thesis, can be extended in several directions. In what

follows, we briefly summarize some possible future research works.

Other SQL Queries. In this thesis, we have considered only static data. Al-

though some applications have relatively stable data contents, many scenarios for

database outsourcing require the system to support data dynamics. For example, in

106

the cloud-based PHR case discussed in Chapter 5, patients may conduct new medical

examinations and need to add new information to the outsourced database. In addi-

tion, they may find that some data have been miscalculated and need to be updated.

An extension to this work can explore preserving the privacy of sensitive information

within SQL INSERT, UPDATE and DELETE data manipulation statements.

Protecting The Shape of The Query. In this thesis, we assume that the

shape of the SQL query is not private and our goal to protect query privacy was based

on hiding the constants in the query predicate. Simultaneous protection of both the

shape and the constants of a query can be considered as an interesting extension to

our work.

Database Partitioning. Recently, the need of the distributed database system

increases in order to reduce communication cost and improve reliability. In this

case, the original database records are partitioned horizontally [131] or vertically

[132] and each partition is outsourced to a database node. Horizontal partitioning

allows access methods such as tables, indices and views to be partitioned into disjoint

sets of rows that are physically stored and accessed separately. On the other hand,

vertical partitioning allows a table to be partitioned into disjoint sets of columns.

An interesting extension for our work is to study symmetrically-private search on

vertical/horizontal partitioned databases.

Malicious Adversaries. The assumed adversary model in this thesis was

semi-honest. This is a common adversary model used in the SMC literature [108].

A common approach to secure a protocol against malicious adversaries is done by

requiring each party to use zero-knowledge proofs [37] to prove that it is following

the protocol specifications. Since this generic approach adds considerable overhead to

each step of the protocol, it is inefficient and more practical techniques are required

to be developed.

107

Bibliography

[1] Amazon Relational Database Service (Amazon RDS), 2012.

http://aws.amazon.com/rds/.

[2] SQL Azure: Highly Available and Scalable Cloud Database Service, 2012.

http://www.windowsazure.com/en-us/home/features/sql-azure/.

[3] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing Database as a Service.

In Proceedings. 18th International Conference on Data Engineering, ICDE’02,

pages 29–38, 2002.

[4] Mei Hui, Dawei Jiang, Guoliang Li, and Yuan Zhou. Supporting Database

Applications as a Service. In Proceedings of the 2009 IEEE International Con-

ference on Data Engineering, ICDE ’09, pages 832–843, 2009.

[5] Carlo Curino, Evan Jones, Raluca Ada Popa, Nirmesh Malviya, Eugene Wu,

Samuel Madden, Hari Balakrishnan, and Nickolai Zeldovich. Relational Cloud:

A Database Service for the Cloud. In 5th Biennial Conference on Innovative

Data Systems Research, January 2011.

[6] D. McCullagh. Privacy leaks hit Facebook, Google, AT&T, December 2010.

http://news.cnet.com/2702-1009 3-986.html.

[7] M. J. Schwartz. Twitter Finalizes FTC Security Settlement, March 2011.

http://www.informationweek.com/news/security/attacks/229301037.

108

[8] J. M. Arrington . AOL Proudly Releases Massive Amounts of Private Data, Au-

gust 2006. http://techcrunch.com/2006/08/06/aol-proudly-releases-massive-

amounts-of-user-search-data/.

[9] R. Jones, R. Kumar, B. Pang, and A. Tomkins. I Know What You Did Last

Summer: Query Logs and User Privacy. In Proceedings of the ACM Conference

on Conference on Information and Knowledge Management, CIKM ’07, pages

909–914. ACM, 2007.

[10] F. Olumofin and I. Goldberg. Privacy-Preserving Queries Over Relational

Databases. In Proceedings of the International Conference on Privacy Enhanc-

ing Technologies, PETS’10, pages 75–92, 2010.

[11] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Exe-

cuting SQL Over Encrypted Data in The Database-Service-Provider Model. In

SIGMOD Conference, pages 216–227, 2002.

[12] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order

Preserving Encryption for Numeric Data, pages 563–574. ACM Press, 2004.

[13] Murat Kantarcıoǧlu and Chris Clifton. Security Issues in Querying Encrypted

Data. In Proceedings of the 19th annual IFIP WG 11.3 Working Conference on

Data and Applications Security, DBSec’05, pages 325–337, 2005.

[14] Jun Li and Edward R. Omiecinski. Efficiency and Security Trade-off in Sup-

porting Range Queries on Encrypted Databases. In Proceedings of the 19th

Annual IFIP WG 11.3 Working Conference on Data and Applications Security,

DBSec’05, pages 69–83. Springer-Verlag, 2005.

[15] Erez Shmueli, Ronen Waisenberg, Yuval Elovici, and Ehud Gudes. Designing

Secure Indexes for Encrypted Databases. In Proceedings of the 19th Annual IFIP

109

WG 11.3 Working Conference on Data and Applications Security, DBSec’05,

pages 54–68, 2005.

[16] Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. Privacy-Preserving

Queries on Encrypted Data. In Proceedings of the 11th European Conference

on Research in Computer Security, ESORICS’06, pages 479–495, 2006.

[17] Ernesto Damiani, S. De Capitani Vimercati, Sushil Jajodia, Stefano Paraboschi,

and Pierangela Samarati. Balancing Confidentiality and Efficiency in Untrusted

Relational DBMSs. In Proceedings of the 10th ACM Conference on Computer

and Communications Security, CCS ’03, pages 93–102. ACM, 2003.

[18] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A Privacy-Preserving Index for

Range Queries. In Proceedings of the 13th International Conference on Very

Large Databases - Volume 30, VLDB ’04, pages 720–731. VLDB Endowment,

2004.

[19] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajo-

dia, Stefano Paraboschi, and Pierangela Samarati. Keep A Few: Outsourcing

Data While Maintaining Confidentiality. In Proceedings of the 14th European

Conference on Research in Computer Security, ESORICS’09, pages 440–455.

Springer-Verlag, 2009.

[20] O. Goldreich B. Chor, E. Kushilevitz and M. Sudan. Private Information Re-

trieval. Journal of the ACM, 45(6):965–981, November 1998.

[21] E. Kushilevitz and R. Ostrovsky. Replication Is Not Needed: Single Database,

Computationally-Private Information Retrieval. In Proceedings of the 38th An-

nual Symposium on Foundations of Computer Science, FOCS ’97, pages 364–

373, 1997.

110

[22] Sh. Wang, D. Agrawal, and A. El Abbadi. Towards Practical Private Processing

of Database Queries over Public Data with Homomorphic Encryption. Technical

Report 2011-06, Department of Computer Science, University of California at

Santa Barbara, Nov 2011.

[23] Yehuda Lindell and Benny Pinkas. Privacy Preserving Data Mining. In Pro-

ceedings of the 20th Annual International Cryptology Conference on Advances

in Cryptology, CRYPTO ’00, pages 36–54. Springer-Verlag, 2000.

[24] J. Katz and M. Yung. Threshold Cryptosystems Based on Factoring. In Pro-

ceedings of the Conference on the Theory and Application of Cryptology and

Information Security: Advances in Cryptology, ASIACRYPT ’02, pages 192–

205. Springer-Verlag, 2002.

[25] Marc Fischlin. A Cost-Effective Pay-Per-Multiplication Comparison Method for

Millionaires. In Proceedings of the 2001 Conference on Topics in Cryptology:

The Cryptographer’s Track at RSA, CT-RSA 2001, pages 457–472, 2001.

[26] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. In Proceedings of the 17th International Conference on Theory and

Application of Cryptographic Techniques, pages 223–238. Springer-Verlag, 1999.

[27] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword

Search and Oblivious Pseudorandom Functions. In TCC, pages 303–324, 2005.

[28] Sanjeev Kumar Mishra and Palash Sarkar. Symmetrically Private Information

Retrieval. In Proceedings of the First International Conference on Progress in

Cryptology, INDOCRYPT ’00, pages 225–236, 2000.

[29] Sonia Bergamaschi, Francesco Guerra, Silvia Rota, and Yannis Velegrakis.

KEYRY: A Keyword-Based Search Engine over Relational Databases Based on

111

a Hidden Markov Model. In Advances in Conceptual Modeling. Recent Develop-

ments and New Directions - ER 2011 Workshops, volume 6999, pages 328–331.

Lecture Notes in Computer Science, 2011.

[30] Ruoyu Wu, Gail-Joon Ahn, and Hongxin Hu. Towards HIPAA-Compliant

Healthcare Systems. In Proceedings of the 2nd ACM SIGHIT International

Health Informatics Symposium, IHI’12, pages 593–602. ACM, 2012.

[31] Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing Personal Health

Records in Cloud Computing: Patient-Centric and Fine-Grained Data Access

Control in Multi-owner Settings. In Security and Privacy in Communication

Networks, volume 50, pages 89–106. Springer Berlin Heidelberg, 2010.

[32] Ming Li, Shucheng Yu, Yao Zheng, Kui Ren, and Wenjing Lou. Scalable and

secure sharing of personal health records in cloud computing using attribute-

based encryption. IEEE Trans. Parallel Distrib. Syst., 24(1):131–143, January

2013.

[33] Emmanuel Abbe, Amir E. Khandani, and Andrew W. Lo. Privacy-Preserving

Methods for Sharing Financial Risk Exposures. CoRR, abs/1111.5228, 2011.

[34] Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, and Ashwin Machanavajjhala.

Privacy-Preserving Data Publishing. Foundations and Trends in Databases,

2(1-2):1–167, 2009.

[35] Andrew C. Yao. Protocols for Secure Computations. In Proceedings of the

23rd Annual Symposium on Foundations of Computer Science, SFCS ’82, pages

160–164. IEEE Computer Society, 1982.

[36] Benny Pinkas. Cryptographic Techniques for Privacy-Preserving Data Mining.

SIGKDD Explor. Newsletter, 4(2):12–19, December 2002.

112

[37] Jean-Jacques Quisquater, Louis Guillou, Marie Annick, and Tom Berson. How

To Explain Zero-Knowledge Protocols To Your Children. In Proceedings on

Advances in Cryptology, CRYPTO ’89, pages 628–631. Springer-Verlag New

York, Inc., 1989.

[38] O. Goldreich. Foundations of Cryptography, volume 2. Cambridge University

Press, 2001.

[39] B. Chor, N. Gilboa, and M. Naor. Private Information Retrieval by Keywords.

Report TR CS0917l, 1997.

[40] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting Data

Privacy in Private Information Retrieval Schemes. In Proceedings of the 13th

Annual ACM Symposium on Theory of Computing, STOC ’98, pages 151–160,

1998.

[41] R. Rivest, L. Adleman, and M. Dertouzos. On Data Banks and Privacy Homo-

morphisms. In Foundations of Secure Computation, pages 169–177, 1978.

[42] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption & How To Play

Mental Poker Keeping Secret All Partial Information. In Proceedings of The

14th Annual ACM Symposium on Theory of Computing, STOC ’82, pages 365–

377, 1982.

[43] Tomas Sander, Adam Young, and Moti Yung. Non-Interactive Crypto-

Computing For NC1. In Proceedings of the 40th Annual Symposium on Foun-

dations of Computer Science, FOCS ’99, pages 554–567, 1999.

[44] Yvo Desmedt. Some Recent Research Aspects of Threshold Cryptography. In

Information Security, volume 1396 of Lecture Notes in Computer Science, pages

158–173. Springer Berlin Heidelberg, 1998.

113

[45] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing Decryp-

tion in The Context of Voting or Lotteries. In Proceedings of the 4th Interna-

tional Conference on Financial Cryptography, FC ’00, pages 90–104. Springer-

Verlag, 2001.

[46] Ivan Damg̊ard and Mats Jurik. A Generalisation, a Simplification and Some

Applications of Paillier’s Probabilistic Public-Key System. In Proceedings of

the 4th International Workshop on Practice and Theory in Public Key Cryp-

tography: Public Key Cryptography, PKC ’01, pages 119–136. Springer-Verlag,

2001.

[47] Adam Barnett and Nigel P. Smart. Mental Poker Revisited. In Cryptography

and Coding, volume 2898 of Lecture Notes in Computer Science, pages 370–383.

Springer Berlin Heidelberg, 2003.

[48] Takashi Nishide and Kouichi Sakurai. Distributed Paillier Cryptosystem With-

out Trusted Dealer. In Proceedings of the 11th International Conference on In-

formation Security Applications, WISA’10, pages 44–60. Springer-Verlag, 2011.

[49] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust Efficient Dis-

tributed RSA-Key Generation. In Proceedings of the 13th Annual ACM Sym-

posium on Theory of Computing, STOC ’98, pages 663–672. ACM, 1998.

[50] Dan Boneh and Matthew Franklin. Efficient Generation of Shared RSA Keys.

J. ACM, 48(4):702–722, July 2001.

[51] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Pro-

ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC

’09, pages 169–178. ACM, 2009.

114

[52] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. Multiparty Computation with Low Communica-

tion, Computation and Interaction via Threshold FHE. In Proceedings of the

31st Annual International Conference on Theory and Applications of Crypto-

graphic Techniques, EUROCRYPT’12, pages 483–501. Springer-Verlag, 2012.

[53] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. Cloud-Assisted

Multiparty Computation from Fully Homomorphic Encryption. IACR Cryptol-

ogy ePrint Archive, 2011:663, 2011.

[54] Andrew C. Yao. How to Generate and Exchange Secrets. In Proceedings of the

27th Annual Symposium on Foundations of Computer Science, SFCS ’86, pages

162–167, 1986.

[55] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental Game.

In Proceedings of The 19th Annual ACM Symposium on Theory of Computing,

STOC ’87, pages 218–229, 1987.

[56] Felix Brandt. Efficient cryptographic protocol design based on distributed el

gamal encryption. In ICISC’05, pages 32–47. Springer-Verlag, 2005.

[57] Hsiao-Ying Lin and Wen-Guey Tzeng. An Efficient Solution to the Millionaires’

Problem Based on Homomorphic Encryption. In The 3rd International Confer-

ence on Applied Cryptography and Network Security, ACNS’05, pages 456–466,

2005.

[58] Giovanni Di Crescenzo. Private Selective Payment Protocols. In Proceedings

of the 4th International Conference on Financial Cryptography, FC ’00, pages

72–89. Springer-Verlag, 2001.

115

[59] Ian F. Blake and Vladimir Kolesnikov. Conditional Encrypted Mapping and

Comparing Encrypted Numbers. In Proceedings of the 10th International Con-

ference on Financial Cryptography and Data Security, FC’06, pages 206–220,

2006.

[60] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[61] J. Andreas Bærentzen. On left-balancing binary trees, August 2003.

http://www2.imm.dtu.dk/pubdb/p.php?2535.

[62] Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. Com-

putational Geometry: Algorithms and Applications. Springer-Verlag TELOS,

3rd ed. edition, 2008.

[63] J. L. Bentley. Multidimensional Binary Search Trees Used for Associative

Searching. Commumications of the ACM, 18(9):509–517, September 1975.

[64] Dmitri Asonov. Private Information Retrieval - An Overview And Current

Trends. In ECDPvA Workshop,Informatik, 2001.

[65] Erica Y. Yang, Jie Xu, and Keith H. Bennett. Private Information Retrieval

in The Presence of Malicious Failures. In 26th Annual International Com-

puter Software and Applications Conference, 2002, pages 805–810. IEEE, Au-

gust 2002.

[66] Donald E. Knuth. The Art of Computer Programming, volume 3: (2nd ed.)

sorting and searching. Addison Wesley Longman Publishing Co., Inc., Redwood

City, CA, USA, 1998.

[67] Edward Fredkin. Trie Memory. Commun. ACM, 3(9):490–499, September 1960.

116

[68] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical Techniques

for Searches on Encrypted Data. In Proceedings of the 2000 IEEE Symposium

on Security and Privacy, SP ’00, pages 44–56, 2000.

[69] J. Reardon, J. Pound, and I. Goldberg. Relational-Complete Private Infor-

mation Retrieval. Technical Report CACR 2007- 34, University of Waterloo,

2007.

[70] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill, Inc., New York, NY, USA, 3 edition, 2003.

[71] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient Private

Matching and Set Intersection. In EUROCRYPT, pages 1–19. Springer, 2004.

[72] Lea Kissner and Dawn Song. Private and Threshold Set-Intersection. In Pro-

ceedings of CRYPTO ’05, August 2005.

[73] Wakaha Ogata and Kaoru Kurosawa. Oblivious Keyword Search. J. Complex.,

20(2-3):356–371, April 2004.

[74] R. Sion. Secure Data Outsourcing. In Proceedings of the conference on Very

large data bases, VLDB ’07, pages 1431–1432, 2007.

[75] Raluca Ada Popa, Catherine M S Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. CryptDB : Protecting Confidentiality with Encrypted Query Pro-

cessing. In Proceedings of the 23rd ACM Symposium on Operating Systems

Principles, pages 85–100, 2011.

[76] Divyakant Agrawal, Amr El Abbadi, Fatih Emekçi, and Ahmed Metwally.

Database Management as a Service: Challenges and Opportunities. In ICDE,

pages 1709–1716, 2009.

117

[77] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-Preserving Data Mining.

In Proceedings of the 2000 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’00, pages 439–450. ACM, 2000.

[78] Dakshi Agrawal and Charu C. Aggarwal. On The Design and Quantification of

Privacy Preserving Data Mining Algorithms. In Proceedings of the 20th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

PODS ’01, pages 247–255. ACM, 2001.

[79] Charu C. Aggarwal and Philip S. Yu. A Condensation Approach to Privacy

Preserving Data Mining. In Advances in Database Technology - EDBT 2004,

volume 2992 of Lecture Notes in Computer Science, pages 183–199. Springer

Berlin Heidelberg, 2004.

[80] Wenliang Du and Zhijun Zhan. Building Decision Tree Classifier on Private

Data. In Proceedings of the IEEE International Conference on Privacy, Security

and Data Mining - Volume 14, CRPIT ’14, pages 1–8. Australian Computer

Society, Inc., 2002.

[81] Keke Chen and Ling Liu. Privacy Preserving Data Classification with Rotation

Perturbation. In Proceedings of the 5th IEEE International Conference on Data

Mining, ICDM ’05, pages 589–592. IEEE Computer Society, 2005.

[82] Olvi L. Mangasarian, Edward W. Wild, and Glenn M. Fung. Privacy-Preserving

Classification of Vertically Partitioned Data via Random Kernels. ACM Trans.

Knowl. Discov. Data, 2(3):12:1–12:16, October 2008.

[83] Shariq J. Rizvi and Jayant R. Haritsa. Maintaining Data Privacy in Association

Rule Mining. In Proceedings of the 28th International Conference on Very Large

Databases, VLDB ’02, pages 682–693. VLDB Endowment, 2002.

118

[84] Murat Kantarcioglu and Chris Clifton. Privacy-Preserving Distributed Mining

of Association Rules on Horizontally Partitioned Data. IEEE Trans. on Knowl.

and Data Eng., 16(9):1026–1037, September 2004.

[85] Jaideep Vaidya and Chris Clifton. Privacy Preserving Association Rule Min-

ing in Vertically Partitioned Data. In Proceedings of the 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’02,

pages 639–644. ACM, 2002.

[86] Jaideep Vaidya and Chris Clifton. Privacy-Preserving k-means Clustering over

Vertically Partitioned Data. In Proceedings of the 9th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’03, pages

206–215. ACM, 2003.

[87] Geetha Jagannathan and Rebecca N. Wright. Privacy-Preserving Distributed

k-means Clustering Over Arbitrarily Partitioned Data. In Proceedings of the

11th ACM SIGKDD International Conference on Knowledge Discovery in Data

Mining, KDD ’05, pages 593–599. ACM, 2005.

[88] Srujana Merugu and Joydeep Ghosh. Privacy-Preserving Distributed Clustering

Using Generative Models. In Proceedings of the Third IEEE International Con-

ference on Data Mining, ICDM ’03, pages 211–218. IEEE Computer Society,

2003.

[89] Jaideep Vaidya, Murat Kantarcıoğlu, and Chris Clifton. Privacy-Preserving

Bayes Classification. The VLDB Journal, 17(4):879–898, July 2008.

[90] Zhiqiang Yang and Rebecca N. Wright. Improved Privacy-Preserving Bayesian

Network Parameter Learning on Vertically Partitioned Data. In Proceedings

119

of the 21st International Conference on Data Engineering Workshops, ICDEW

’05, pages 1196–1206. IEEE Computer Society, 2005.

[91] W. Du, Y. S. Han, and S. Chen. Privacy-Preserving Multivariate Statistical

Analysis: Linear Regression and Classification. In Proceedings of 2004 SIAM

International Conference on Data Mining (SDM04), April 2004.

[92] W. Du and M. Atallah. Privacy-Preserving Cooperative Statistical Analysis.

In Proceedings of the 17th Annual Computer Security Applications Conference,

ACSAC ’01, pages 102–. IEEE Computer Society, 2001.

[93] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Incognito: Ef-

ficient Full-Domain k-Anonymity. In Proceedings of the 2005 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’05, pages 49–60,

2005.

[94] L. Sweeney. k-Anonymity: A Model for Protecting Privacy. In International

Journal on Uncertainty, Fuzziness and Knowledge-Based Systems, volume 10,

pages 557–570, 2002.

[95] Roberto J. Bayardo and Rakesh Agrawal. Data Privacy through Optimal k-

Anonymization. In Proceedings of the 21st International Conference on Data

Engineering, ICDE ’05, pages 217–228, 2005.

[96] Adam Meyerson and Ryan Williams. On The Complexity of Optimal k-

Anonymity. In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principles of Database Systems, PODS ’04, pages 223–228, 2004.

[97] Steven P. Reiss, Mark J. Post, and Tore Dalenius. Non-Reversible Privacy

Transformations. In Proceedings of the 1st ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, PODS ’82, pages 139–146, 1982.

120

[98] Steven P. Reiss. Practical Data-Swapping: The First Steps. ACM Trans.

Database Syst., 9(1):20–37, March 1984.

[99] Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. Privacy-Preserving Clas-

sification of Customer Data without Loss of Accuracy. In Proceedings of the 5th

SIAM International Conference on Data Mining, 2005.

[100] Cynthia Dwork. Differential Privacy: A Survey of Results. In Proceedings

of the 5th International Conference on Theory and Applications of Models of

Computation, TAMC’08, pages 1–19. Springer-Verlag, 2008.

[101] Frank D. McSherry. Privacy Integrated Queries: An Extensible Platform for

Privacy-Preserving Data Analysis. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data, SIGMOD ’09, pages 19–30.

ACM, 2009.

[102] Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett

Witchel. Airavat: Security and Privacy for MapReduce. In Proceedings of the

7th USENIX Conference on Networked Systems Design and Implementation,

NSDI’10, pages 297–312. USENIX Association, 2010.

[103] Hyun-A Park, Justin Zhan, and Dong Hoon Lee. Privacy Preserving SQL

Queries. In Proceedings of the 2008 International Conference on Information

Security and Assurance (ISA 2008), ISA ’08, pages 549–554. IEEE Computer

Society, 2008.

[104] Markus Jakobsson and Moti Yung. Proving Without Knowing: On Oblivious,

Agnostic and Blindolded Provers. In Proceedings of the 16th Annual Interna-

tional Cryptology Conference on Advances in Cryptology, CRYPTO ’96, pages

186–200. Springer-Verlag, 1996.

121

[105] Radu Sion. On the Computational Practicality of Private Information Retrieval.

In In Proceedings of the Network and Distributed Systems Security Symposium,

2007. Stony Brook Network Security and Applied Cryptography Lab Tech Report,

2007.

[106] Changyu Dong, Giovanni Russello, and Naranker Dulay. Shared and Searchable

Encrypted Data for Untrusted Servers. In Proceeedings of the 22nd Annual IFIP

WG 11.3 Working Conference on Data and Applications Security, pages 127–

143, 2008.

[107] S. Moro, R. Laureano, and P. Cortez. Using Data Mining for Bank Direct

Marketing: An Application of the CRISP-DM Methodology. In Proceedings of

the European Simulation and Modelling Conference - ESM’2011, pages 117–121,

Guimaraes, Portugal, October 2011. EUROSIS.

[108] Wei Jiang and Chris Clifton. A Secure Distributed Framework for Achieving

k-Anonymity. The VLDB Journal, 15(4):316–333, November 2006.

[109] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. Privacy-

Preserving Data Publishing: A Survey of Recent Developments. ACM Comput.

Surv., 42(4), June 2010.

[110] C. Gentry and Z. Ramzan. Single-Database Private Information Retrieval with

Constant Communication Rate. In Automata, Languages and Programming,

volume 3580 of Lecture Notes in Computer Science, pages 103–103. Springer

Berlin Heidelberg, 2005.

[111] J. Trostle and A. Parrish. Efficient Computationally Private Information Re-

trieval from Anonymity or Trapdoor Groups. In Information Security, volume

6531, pages 114–128. Springer Berlin Heidelberg, 2011.

122

[112] K. Philipkoski. Black Death’s Gene Code Cracked, 2001.

http://www.wired.com/medtech/health/news/2001/10/47288.

[113] Centers for Disease Control and Prevention (CDC). Updated

CDC Estimates of 2009 H1N1 Influenza Cases, Hospitalizations and

Deaths in the United States, April 2009 - April 10,2010, 2010.

http://www.cdc.gov/h1n1flu/estimates 2009 h1n1.htm.

[114] WHO — World Health Organisation, Accessed in 2012.

http://www.who.int/en/.

[115] Marco Eichelberg, Thomas Aden, Jörg Riesmeier, Asuman Dogac, and Gokce B.

Laleci. A Survey and Analysis of Electronic Healthcare Record Standards. ACM

Comput. Surv., 37(4):277–315, December 2005.

[116] Jane Grimson, Gaye Stephens, Benjamin Jung, William Grimson, Damon

Berry, and Sebastien Pardon. Sharing Health-Care Records over the Internet.

IEEE Internet Computing, 5(3):49–58, May 2001.

[117] Hassan Takabi, James B. D. Joshi, and Gail-Joon Ahn. Security and Privacy

Challenges in Cloud Computing Environments. IEEE Security and Privacy,

8(6):24–31, November 2010.

[118] Microsoft health vault, 2012. http://www.healthvault.com/Personal/index.html.

[119] Dossia personal health platform, 2012. http://www.dossia.org/.

[120] H. Löhr, A. Sadeghi, and M. Winandy. Securing The E-Health Cloud. In

Proceedings of the International Health Informatics Symposium, IHI’10, pages

220–229. ACM, 2010.

123

[121] Judy Foreman. At risk of exposure, 2006.

http://articles.latimes.com/2006/jun/26/health/he-privacy26.

[122] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption

for Fine-Grained Access Control of Encrypted Data. In Proceedings of The

Conference on Computer and Communications Security, CCS ’06, pages 89–98.

ACM, 2006.

[123] Consulting:PwC, Accessed in 2012. http://www.pwc.com/gx/en/consulting-

services/index.jhtml.

[124] Privacy & data protection update. Respecting Patient Privacy, Building Patient

Trust. NewsLetter of the office of HIPAA Provacy & Security. Miller School of

Medicine. University of Miami, (21), 2012.

[125] Ken Eguro and Ramarathnam Venkatesan. FPGAs for Trusted Cloud Com-

puting. In 22nd International Conference on Field Programmable Logic and

Applications (FPL), Oslo, Norway, August 29-31, 2012, pages 63–70, 2012.

[126] Bruce Schneier. Applied Cryptography (2nd Ed.): Protocols, Algorithms, and

Source Code in C . John Wiley & Sons, Inc., New York, NY, USA, 1995.

[127] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and

Michael Y. Zhu. Tools for Privacy Preserving Distributed Data Mining.

SIGKDD Explor. Newsl., 4(2):28–34, December 2002.

[128] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn

Song. Privacy-Preserving Aggregation of Time-Series Data. In Proceedings

of the Network and Distributed System Security Symposium, NDSS 2011, San

Diego, California, USA, 6th February - 9th February 2011, 2011.

124

[129] Martin Geisler. Cryptographic Protocols: Theory and Implementation. In PhD

Thesis.

[130] UCI Machine Learning Repository: Breast Cancer Data Set, April 2012.

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer.

[131] S. Ceri, M. Negri, and G. Pelagatti. Horizontal Data Partitioning in Database

Design. In Proceedings of the 1982 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’82, pages 128–136, 1982.

[132] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical

Partitioning Algorithms for Database Design. ACM Trans. Database Syst.,

9(4):680–710, December 1984.

125

	p1
	p2

