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Abstract

Towards Metric-Driven, Application-Specific Visualization of Attack

Graphs

Mickael Emirkanian-Bouchard

As a model of vulnerability information, attack graphs have seen successes in many auto-
mated analyses for defending computer networks against potential intrusions. On the other
hand, attack graphs have long been criticized for their poor scalability when serving as a
visualization model for human analysts to comprehend, since even a small network may
yield an overly complex and incomprehensible attack graph. In this thesis, we propose
two novel approaches to improving attack graph visualization. First, we employ recent ad-
vances in network security metrics to design metric-driven visualization techniques, which
render the most critical information (with the highest metric scores) the most highlighted
or magnified. Second, we observe that existing techniques usually aim at a one-size-fits-
all solution, which actually renders them less effective for specific applications, and hence
we propose to design application-specific visualization solutions. In this thesis, we focus
on two such solutions, for network overview and situational awareness, respectively. We
present the model and algorithms, describe our implementation, and present our simulation

results with regards to scalability and performance.
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Chapter 1

Introduction

Computer networks have long become the nerve system of enterprise information sys-
tems and critical infrastructures, and as such, are vulnerable to outside attacks. The scale
and severity of security threats to computer networks have continued to grow at an ever-
increasing pace, with high-profile attacks reportedly targeting industrial control systems
and military satellites.

To defend computer networks against potential attacks, an important starting point is
to understand their flaws and weaknesses, through the assessment, analysis and mainte-
nance of their security. To that end, a network security administrator or analyst should be
capable of assessing the security posture of a network quickly and efficiently at all times,
should be aware of the network’s weaknesses, and the actions which need to be performed
in order to harden the network. Comparing the security ramifications of different poten-
tial configurations is also of significant importance. However, the amount of vulnerability
information in a network increases very rapidly depending on the network’s size, mostly
because vulnerabilities are seldom independent and attackers may combine them in sophis-
ticated ways for attack propagation or privilege escalation. Therefore, conveying a large
amount of vulnerability information to human analysts through an intuitive and scalable

system is a challenging issue in most networks.

Attack graph is an established model of vulnerability information in networks [AWKO02,



SHJ102], through the aggregation of host and vulnerability data in a semantically-rich fash-
ion. By encoding potential exploits of vulnerabilities and linking them through their com-
mon pre- and post-conditions, an attack graph provides a clear picture about how attackers
may potentially break into a network and consequently follow certain attack paths to com-
promise network assets. Attack graphs have seen successes in many automated analyses
for assessing, monitoring, and hardening computer networks. The increasing tend towards
cloud computing intoduces new challenges, where the reliance on large scale server farms
naturally leads to complex relationships, even within a single machine, making it difficult
to segregate different virtualized systems within a host system. In such a scenario, attack
graphs generated would be quite large, and separating them would compromise the value
of this analysis.

For a human analyst, correctly and efficiently extracting the significance of large amounts
of data is crucial. A human’s vision is his sensory system that provides the most bandwidth
[Warl2], making information visualization the ideal solution to convey this data. By re-
lying on a user’s perception and cognition, information visualization is a tool used by a
human to offload some of his memory to the visuals and providing him with a working set
of information. These visuals are created through the abstraction and the encoding of data
using different principles such as: proximity, similarity, continuity, symmetry, closure, size
and color.

However, as attack graphs are direct representations of an in-memory model, they have
long been criticized for their poor scalability when serving as a visualization model for
human analysts to comprehend. Attack graph nodes and edges allow for their algorithmic
traversal, with no regard for human perception or cognition. For larger networks, their
unmanageable size, poor scalability and unintuitive layout make them difficult to read and
understand, with human analysts being limited by their perception, comprehension as well
as errors. Better visualization schemes would drastically improve an analyst’s compre-
hension of attack graphs, thus better understanding the network’s security posture and its
potential weaknesses. It is only by ensuring the synergy between a computer’s automatic

analysis and a human’s intervention that we can fully leverage the power of the attack graph



model and guarantee effective, efficient and long lasting network security solutions.

The visualization of attack graphs has received limited attention (a more detailed re-
view of related work will be given in Chapter 2.2). The focus of attack graph visual-
ization research has mostly been for the purpose of reachability analysis. Most efforts
to improve scalability are often a trade-off with detail - abstracting nodes and using in-
teractive processes to obtain details - a general loss of information and context for the
user. The hierarchical aggregation framework [NJ04] abstracts and hides lower-level de-
tails through interactive processes, creating a loss of information for the user. This however
only partially improves the scalability since it still relies on the node-link representation
of basic attack graphs, and the expression of vulnerability metrics remains difficult. The
so-called clustered adjacency matrices [NJO5] address the scalability issues for displaying
host reachability, but the highly abstract model renders it unsuitable for human analysts to
comprehend, and a display of vulnerability metrics is difficult. GARNET[WLIO8a] and
NAVIGATOR[CIL*10] employ tree-based structures to represent host configuration, but
the display of connectivity and exploit relationships is limited.

Most visualization efforts have been trying to improve the state of attack graph visual-
ization through a single solution. As attack graphs possess a very wide range of potential
applications, it is difficult to find a visualization model that fulfills every single requirement
for all possible applications. The key is designing visualizations optimized for specific ap-

plications.

In this thesis, we propose two novel approaches to improving attack graph visualization,
mainly through the management of attack graph complexity through the use of visualiza-
tion paradigms. First, we employ recent advances in network security metrics to design
metric-driven visualization techniques. Such techniques prioritize the visualization based
on relative metric scores. We will first present metrics to quantify network security through
the hierarchical aggregation of exploits and hosts for structured, scalable visualizations.

This will allow the most critical information to be most highlighted or magnified in order



to guide human analysts to explore the most pertinent threats. Second, we observe that most
existing attack graph visualization techniques aim for a one-size-fits-all solution, which ac-
tually renders them less effective for specific applications. In this thesis, we propose to
design application-specific visualization solutions, by initially focusing on two specific use

cases or applications:

e The first application is network overview, where the use of vulnerability metrics al-
low the quantification of a network’s security, as you can’t improve what you cannot
measure [Jaq07]. In this scenario, we believe a metric-driven solution is appropriate,
where the entire network can be seen at a glance, and each host and vulnerability

displayed in a radial attack treemap.

e The second application is real-time intrusion detection and cyber-situational aware-
ness, where we believe that the ability able to track and model the attacker’s be-
haviour will facilitate incident response and attack mitigation, while further improv-
ing detection of future attacks. For this particular application, we propose an inter-

active, metric and event-driven solution: fopographic hyperbolic trees.

We will present both these models and their algorithms, describe our implementations, and
present our preliminary simulation results with regards to the performance and scalability

of these proposed methods.

The remainder of the thesis is organized as follows. First, Chapter 2.2 will review
relevant literature and related work. For the purpose of making this thesis self-contained,
Chapter 2.1 will present background information on attack graph and security metrics.
Chapter 3.1 will introduce a hierarchical metric framework to further improve vulnerability
metric visualization in attack graphs. Building on the strengths and weaknesses of existing
techniques reviewed in Chapter 3.2, we will introduce two novel attack graph visualization
models for network overview and situational awareness in Chapters 4 and 5, respectively.

Finally, Chapter 6 will conclude the thesis.



Chapter 2

Background and Related Work

2.1 Background

For this thesis to be self-contained, we briefly review some background knowledge regard-
ing attack graphs and security metrics, which will be necessary for further discussions.
Though some concepts have been introduced in Chapter 2.2, we will go into further detail

in this chapter.

2.1.1 Attack Graphs and Visualization Scalability Issues
The Attack Graph Model

An attack graph models vulnerabilities and their inter-dependencies inside a network [AWKO02,
SHJ*02]. It can be represented as a directed acyclic graph (DAG) composed of two types
of nodes, exploits and conditions, and two types of vertices. The first type of vertex rep-
resents the require condition: from a condition to an exploit, expressing a pre-condition
required by an attacker to execute the exploit. The second type of vertex represents the
imply condition: from an exploit to a condition - expressing that a post-conditions becomes
valid for the attacker once he has successfully executed the exploit.

What differentiates attack graphs from typical directed acyclic graphs is the nature of

the require relation R, and the imply relation R;. The former is conjunctive while the latter



Host 0 (Attacker)

Host 3
FTP
RSH
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SSH
RPC

Figure 1: An Example Network Configuration

is disjunctive. In other words, for an exploit to be executed, all pre-conditions must be sat-
isfied. However, for any post-condition, only one of the exploits leading to this condition
must be executed for this condition to be satisfied. Definition 1 formally defines an attack
graph. While attack graphs can enumerate all possible attack paths, the monotonicity as-
sumption stipulates that an attacker never relinquishes an obtained capability [WNJ06] -
every condition gained by an attacker cannot be removed, and therefore does not need to
be obtained again.

Figure 1 shows the network configuration of our running example, which will be used
throughout the thesis to illustrate different attack visualization methods. The correspond-
ing attack graph shown in Figure 2, in which each predicate vulnerability (source host,
destination host) inside an oval node indicates a self-explanatory exploit, and each plain-
text node condition(host) represents a security-related condition. Edges point either from
an exploit’s pre-conditions (that is, conditions required for executing the exploit) to the ex-
ploit, or from the exploit to its post-conditions (that is, conditions implied by executing the

exploit). More formally,

Definition 1 (Attack Graph). An attack graph G is a directed graph G(E UC,R,UR;)



user(0)

ftp_rhosts(0,1)

trust(0,1)
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local_bof(3)

root(3)

Figure 2: Attack Graph Corresponding to the Example in Figure 1



where E is a set of exploits, C a set of conditions, R, C C X E the require relation and

R; C E X C the imply relation.

Attack Graph Visualization and Scalability

The above basic attack graph representation is the straightforward and direct visual inter-
pretation of a software data structure whose purpose is to conduct automated analysis and
recursive traversal. It is not particularly well suited for human analysis, as human cognitive
processes are very different and significantly more complex than software algorithms.

Since the number of exploits depends on both the amount of vulnerabilities and the
pairs of hosts with connectivity, the size of an attack graph will increase very quickly in the
size of the network [OBMO06]. Enumerating all the exploits, their pre- and post-conditions,
and edges between them in a single directed graph will inevitably lead to very high node
and edge density, a significant amount of crossings between edges, highly complex edge
paths, and a high average edge length. These characteristics render the attack graph messy
and difficult to comprehend, and prevent human analysts from interpreting the attack graph
and cross validating with results of automated analysis.

Figure 3 shows a messy and illegible attack graph. It has a significant amount of cross-
ings, complex edge paths and a high average edge length. This negatively impacts the
readability of these graphs as they appear messy and are difficult to follow and difficult to
understand, rendering the analysis of the network difficult and time consuming. It may be
surprising to note that this attack graph actually represents a small network composed of
only 14 machines, each of which has less than 10 vulnerabilities.

Clearly, the basic representation of attack graphs is not a viable visualization solution.
Transferring semantically-rich information from a in-memory computer model to a human
analyst through visualization is currently a limiting factor to the utility of the attack graph

model.



Figure 3: Attack Graph Scalability Issues

2.1.2 Security Metrics

Scoring and ranking vulnerabilities and networks based on their relative severity and secu-
rity has drawn significant attention lately. Metrics can be applied to attack graphs in order
to quantify the relative risk of different network configurations based on known[WIL*08]

or unknown|[WJSN10] attacks.

The Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System (CVSS) is a widely recognized standard for
security vendors and analysts to assign numerical scores to vulnerabilities to reflect their
relative severity [Sch05]. The CVSS score is composed of a Base Score, which measures
some inherent characteristics of vulnerabilities, such as the exploitability and the impact,
a Temporal Score, which measures characteristics that may change over time, such as the
availability of patches or exploit codes, and an Environmental Score, which measures a
vulnerability’s potential interaction with the surrounding environment. The CVSS scores
of vulnerabilities are readily available in public databases, such as the NVD [0oST].

The Base Score (BS) of a vulnerability assesses factors which are constant over time

and environments. It can range from 0 to 10 and is calculated using the following metrics:



e Access Vector (AV) : This metric measures what kind access is required to exploit

the vulnerability. The possible values can be Local, Adjacent Network or Network.

e Access Complexity (AC) : This metric measures the complexity to exploit the vul-

nerability, which can be either High, Medium or Low

e Authentication (Au) : This metric measures the number of times the attacker must
authenticate himself to exploit the vulnerability. Possible values are Multiple, Single

and No.

e Confidentiality (C) : This metric measure a successful exploit’s impact on Confi-

dentiality . Possible values are None, Partial, Complete.

o Integrity (I) : This metric measures a successful exploit’s impact on Integrity . Pos-

sible values are None, Partial, Complete.

e Authentication (A) : A successful exploit’s impact on Availability . Possible values

are None, Partial, Complete.

While CVSS is good at measuring metrics for a single exploit, it has certain weak-
nesses when used in a context where multiple exploits are executed in sequence and share

relationships.

Bayesian Network-Based Attack Graphs

A Bayesian network[BG] (or Bayes network or belief network), is a probabilistic statistical
graphical model that represents a set of random variables and their conditional dependen-
cies via a directed acyclic graph in order to represent knowledge about an uncertain domain.
For example, a Bayesian network could represent the probabilistic relationships between
exploits and conditions. When given conditions, the network can be used to compute the
probabilities of the exploitation of various vulnerabilities.

Bayesian networks are represented by graph G and parameters Q, where G is a Di-

rected Acyclic Graph and Q is the set of parameters for each node of the network, usually

10



represented by a set Conditional Probability Table (CPT), one for each node. The CPT
lists the probability of the different values a child may take depending on its parents. A

Bayesian network defines a unique joint distribution represented by:

P(X)= f!P(xﬂ parents(x;))

In other words, X is a Bayesian network if its joint probability density function can be
expressed as a product of individual probabilities, conditional on their parents values. Dy-
namic Bayesian networks are Bayesian networks that represent sequences of variable ac-
cording to time.

There also exist efforts on combining the CVSS scores of individual vulnerabilities inside
a network for an overall measure of the network’s security. In particular, the approach
in [FWO08, FWSJ08] first assigns a normalized CVSS score as the conditional probability
of successfully executing each exploit of that vulnerability when their pre-conditions are
already satisfied, which reflects the intrinsic difficulty in exploiting a vulnerability. The
assigned probabilities are then used to build a Bayesian network based on the causal rela-
tionships captured inside the attack graph (e.g., an exploit can only be executed if all of its
pre-conditions are satisfied). Finally, the Bayesian network can be used to find the prob-
ability that conditions are satisfied and exploits executed inside the attack graph, which
provides a security metrics for the whole network.

We apply CVSS-based Bayesian network metrics to the attack graph presented in Fig-
ure 2. In the result presented in Figure 4, each number inside an oval represents the con-
ditional probability that the corresponding exploit can be successfully executed when its
pre-conditions are already satisfied, whereas each number under a condition indicates the
probability of satisfying that condition.

The probability of an attacker executing ftp,hosts(0,1) is 0.8. Being the only path
to the condition trust(0,1), the probability of this condition being satisfied is also 0.8.
The probability of the exploit rsh(0,1) is 0.5 and requires the condition ¢rust(0,1) to be
satisfied. The probability of user(1), the post-condition of rsh(0, 1) is

p(trust(0,1)) x p(rsh(0,1)) = 0.8x0.5=0.4

11



In the case of multiple possible paths towards a given condition, we must calculate the
joint probability of reaching this condition through all paths. In the case of the condition
user(2) there are three possible ways to satisfy this condition: through the execution of
rpc(1,2) with a probability of 0.4 x0.6 = 0.24, ssh_bof(0,2) with a probability of 0.3 or
through rsh(0,2) with a probability of 0.4.

rpc(1,2) - A ssh_bof(0,2) -B rsh(0,2) - C
T F T F T F
024 | 0.76 0.3 0.7 04| 06

Table 1: The Conditional Probability Tables for Figure 4

We calculate the probability of an attacker reaching the condition user(2) by calculating

the probability that one or more exploits leading the condition are executed:

p(user(2)) = p(A)[p(B)p(C) + p(B)p(C) + p(B)p(C) + p(B)p(C)]
+p(A)[p(B)p(C) + p(B)p(C) + p(B)p(C)]
= 0.68

Bayesian-network based attack graphs are CVSS-based, and as such, assume that all
hosts are equally important ; an attacker taking control of one host is as important as an
attacker taking control of any other. As hosts in a network run different services - some
which can be more mission-critical than others - and store data with different confidentiality
requirements, the same vulnerability exploited on different hosts should lead to different

metric values, depending on the host’s contents and use.

12
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0.8 0.8

trust(0,1) ssh_bof(0,2) trust(0,2)
0.8 0.3 0.8
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user(3)
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root(3)
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Figure 4: Bayesian-Network based Metrics for Attack Graphs
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2.2 Related Work

This chapter is a review of related work in the different fields of study of this paper. The
first domain of research is security metrics and attack graphs, the second domain is broadly

information visualization and the final deals with attack graph visualization specifically.

2.2.1 Security Metrics and Attack Graphs

Information and systems security is a field in which many complex systems interact, mak-
ing it difficult to create or identify meaningful metrics.

The National Institute of Standards and Technology (NIST) offers a solid foundation
for the understanding and the development of security metrics[Nis03], notably the roles and
responsibilities of parties involved in the process, as well as proper procedures to develop
and validate new metrics. While this document provides general, high-level information, it
provides thorough and valuable background information on the many different aspects of
security metrics and metric development.

Jaquith [Jaq07] describes the need for meaningful metrics, and acknowledges the diffi-
culty of estimating asset value and overall risk. Identifying a problem is easy, but assigning

a value to the risk is much harder, as there are many different forces at play.

In order to automate security evaluation, researchers use graph structures to model dif-
ferent components pertinent to network security. Schneier[Sch99] introduces attack trees,
which model adversary threat behavior for the analysis of more general security systems.
The first work on attack graphs in the context of network vulnerability analysis were con-
ducted by Phillips [PS98], where the first work on graph-based methods for risk analysis
in computer networks are presented. Since then, the Defense Technical Information Cen-
ter (DTIC) of the American Department of Defense has sponsored significant amounts of
work on attack graphs. Ritchey [RA00] and Ammann [AWKO?2] first introduce algorithms
based on model-checkers by modeling attack scenarios to prove or disprove the security of

a given network. By first postulating that the network is secure, the system can verify if the

14



network is indeed secure, or return all counter-examples if the network has been proven to
be insecure. Model-checking techniques suffer from scalability issues due to the explosion
of possible states, resulting in O(2"), n the number of nodes (exploits and conditions). The
monotonicity assumption which states that an attacker never relinquishes any privilege he
has gained, has been introduced in [AWKO02], reducing the computational complexity to
O(h?).

This work has been extended and formalized further by Sheyner [SHIT02, SW04,
She(4] where graph-generating tools have been implemented, and again extended in [JSW02]
where the concept of probabilistic attack graphs - interpreting attack graphs as Markov de-
cision processes - has been introduced. Ou et al [OGAO05, OBMO06] address the previously
discussed scalability problems by creating a logical attack graph depicting logical depen-
dencies between network conditions and the attacker’s goal. MulVAL[OGAOS5] (Multi-
host, Multi-stage Vulnerability Analysis Language) uses Datalog, a subset of Prolog, to
model a computer network in order to perform automatic and efficient (O(h?)) network

vulnerability analysis.

Further work has been done to improve attack graphs and further quantify the risk
of compromise through different exploits and complex attacker behaviour, as well as the
relationship between different exploits in an attack graph. By using a directed acyclic graph
of nodes and conditions, Wang et al. [WLJ06, WNJ06] devise a way to leverage attack
graphs to employ meaningful metrics, such as CVSS or attacker distance. Attacker distance
as a metric was extended for unknown threats in [WJSN10], measuring the resilience of a
network to zero-day attacks by counting the number distinct zero-day attacks required to
compromise a network asset, further validating the principle of defense-in-depth.

This solution, however, assumes that probabilities along multiple paths leading to a
same node are independent, which leads to inaccurate results. Frigault et al. [FWOS,
FWSJO08] convert acyclic attack graphs into cynamic Bayesian networks but does not per-
mit the handling of cycles. The method presented by Homer et al. [HOS09] handles shared

dependencies as well as cycles. Noel et al.[NRJ04] present a method for correlating and

15



mapping IDS data to attack graphs conditions by using attack graph distance to quantify
the knowledge and set a threshold for errors.

Idika et al. [IB12] observe that different existing security metrics simply provide a
partial view of security, and introduce a suite of combineable attack graph based security
metrics which are based on statistics of attack path length. However, a recent study of
CVSS-based vulnerability metrics shows the correlation between these metrics and the

time to compromise of a system through statistical analysis [HEA].

2.2.2 Information Visualization

Information visualization is the study of the representation of data, and making this repre-
sentation more suitable for a human’s vision and cognition. There is a very a wide range
of applications of information visualization across many different scientific fields. Ben
Schneiderman’s paper [Shn96] is among the most cited works in information visualization,
where he presents the visual information-seeking mantra, which are guidelines for design-
ing information visualizations: “Overview first, zoom and filter, then details-on-demand.”.
Battista et al. [BETT94] present an annotated bibliography for conventional graph-drawing
algorithms. Hermann et al. [HMMO00] wrote a survey for Information and Graph Visualiza-
tion which review the basic visualization paradigms on which most current visualizations

today are based upon, most of which will be reviewed in further literature in this chapter.

Visualizing Large Hierarchies

Two main visualizations have been developed to visualize large hierarchies: treemaps and
hyperbolic trees.

Treemaps, introduced by Johnson et al.[JS91], are a graphical representation of a weighted
tree by recursively partitioning rectangles depending on the weight assigned to the node.
The size of a partition represents the weight of the node, and the color can express an-

other distinct metric. The shape of the partitions is dictated by the tiling algorithm, some
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of which have been reviewed by Shneiderman et al. [SWO01]. An example is provided in
Chapter 2.1 in Figure 16.

Hyperbolic trees (or hypertrees) are introduced by Lamping et al. [LRP95], a focus+context
technique - the visualization is centered or focused on a given point, but the context is still
visible to the user - which consist in applying a fisheye technique to view and manipulate
large hierarchies. This is done by projecting a tree on a hyperbolic plane, using the confor-

mal disk model. An example is provided in Chapter 2.1 in Figure 17.

Radial Visualization

There has recently been a lot of research and interest on radial visualization models in
many different scientific fields. Livnat et al. introduced VisAware [LAMFO0S5] is radial
visualization system with intent of representing and displaying Situational Awareness in a
generalized way. It could be applied. In VisAware, Livnat et al. propose the w*> premise for
generalized situational awareness: “What? When? Where”. Three examples are presented,
the first is 911 emergency center data, the second is intrusion detection data and the third
is alerts regarding biological agents, BioWatch. On the outer ring is displayed the nature
of the alert, whether it’s a robbery or an speeding violation in the case of emergency center
data, an IDS alert in the case of intrusion detection or a type of biological agent in the case
of BioWatch - this is the what. The position of this alert on the outer ring represents the
time at which the alert has been received - this is the when. The center of the ring presents
a map - either a network map or a geographical map - which and an edge is drawn between
the alert and this point to indicate the where. This visualization paradigm is further adapted
for intrusion detection systems in VisAlert [LAM™05].

VisAlert [LAM™05] (Figure 5) is a visual intrusion dection correlation system, which
seeks to represent the three w’s of an IDS alert. The outer ring represents the type of alert -
the what, the position of this alert on the ring represents the when and the inside of the ring
is the network’s topology, and an edge going from the type of the alert to a point on this

topology represents the where. The authors claim it is scalable and enhances situational
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Figure 5: Example of Visalert [LAM105]

awareness.

Circos [KSB*09](Figure 6) is a radial visualization scheme applied to genomics to
facilitate the comparison of genomes as well as displaying similarities. While the data is
far from what ag care, we can extract certain similarities: large amounts of data, need to
spot outliers and similar elements, scalability is extremely important.

Galloway et al. [GS06] (Figure 7) use a radial visualization in a data mining context.
While their dataset was not particularly complex, there was a large amount of edges to
visualize, demonstrating the scalability of radial graphs for displaying a very large amount
of edges.

As edge scalability is a very strong asset to these radial graphs, further research has
been done to improve edges management at the center of these visualizations. Holten et
al. [Hol06] introduce a method to hierarchically bundle edges and applies these principles
to radial graphs. This is done by creating a tree structure representing the hierarchy in
the center and routing edges by these points using Bézier splines. Research by Hong et
al. [HNO9, HN10] illustrate efforts to find efficient ways to minimize edge crossings in

radial graphs.
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Figure 7: Example of Netmap [GS06]

Figure 8: Example of Hierarchical Edge Bundling [Hol06]
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Figure 9: Example of Hierarchical Aggregation [NJ04]

2.2.3 Attack Graph Visualization

Attack graph visualization presents additional challenges due to their specific requirements.
Special considerations must be taken to express the logical and physical connections as well
as the consequences of the imply and require condition of conditions and exploits. Here we

review literature of visualizationa which are specific to attack graphs.

Most efforts have been made to abstract information from a graph by aggregating nodes
or removing and abstracting some attack graph edges in an attempt to “collapse” certain
nodes, minimizing density and giving the user the opportunity to obtain more details on
demand. Noel et al. [NJO4] present a framework for hierarchically aggregating nodes in an
attack graph by using sets of exploits, conditions, machines or protection domains. Sim-
ilarly, Homer [HVOMOS] et al. developed a method to reduce attack graph complexity
by removing “useless” attack steps and collapsing host groups into subnets, via inter and
intra-subset trimming of edges.

Noel et al.[NJO5] make use of clustered adjacency matrices to compute the reachability
and distance of certain hosts similar to heatmaps[ WF09] 10

Some efforts have been made to apply treemaps to attack graphs. GARNET [WLI08a,
WLIO8b] (Figure 11) is an attack graph visualization tool using the NetSPA (NETwork
Security Planning Architecture) [Art02] which displays tremaps [JS91] with semantic sub-

strates [SA06] to visualize a network and it’s subnets, as well as reachability of different
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Figure 11: Example of GARNET [WLI(08a]

attacks on different subnets or computer groups.

GARNET evolved into NAVIGATOR(Network Asset VIsualization: Graphs, ATtacks,
Operational Recommendations) [CIL*T10] (Figure 12) , once again using treemaps and
semantic substrates. Significant improvements were made, allowing the possibility of
zooming-in to the host level and displaying port numbers and vulnerabilities or possible

exploits on these ports.

21



Figure 12: Example of NAVIGATOR[CIL*10]

2.24 Cyber-Situational Awareness

Cyber-situational awareness is becoming a strategic area of research in the information se-
curity domain, as network attacks share very similar strategies to military operations. How-
ever, cyber attacks have unique semantics and their evolution is quicker than in cases of
physical attacks[Jaj10]. Jajodia et al.[Jaj10] presents the state of the art in cyber-situational
awareness by presenting different technical areas in information security which can con-
tribute to situational awareness, for example machine learning, honeynets, automated vul-
nerability analysis or topological vulnerability analysis, attack graphs etc

Barford et al.[BDD*10] present the seven main aspects to cyber-situational awareness:
situation perception (composed of situation recognition and identification), impact assess-
ment, situation tracking, adversary behavior, causality analysis, data quality (truthfulness,
completeness and freshness) and finally plausible futures.

Lakkaraju, Yin et al. present NVisionIP[LYL04] and VisFlowConnect[Y YT 04], tools
to visualize network traffic in the context of intrusion detection and situational awareness.
It does not, however, use the attack graph model and as such, is meant for the user to extract

patterns from the traffic, potentially leading to a significant amount false-negatives.
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Chapter 3

Developing Metrics and Applying

Existing Visualization Models

3.1 The Asset Value Security Metric

Metrics are extremely desirable to network security analysts to measure the severity of

potential attacks. William Thomson, also known as Lord Kelvin once said :

[...]when you can measure what you are speaking about and express it in num-
bers you know something about it; but when you cannot measure it, when you
cannot express it in numbers, your knowledge is of a meager and unsatisfactory

kind|...] [TK91]

There are vulnerability metrics such as CVSS [Sch05] which evaluate the impact of single
vulnerabilities on a given system. Using Bayesian-network based attack graphs allows an
analyst to quantify and analyze exploit relationships within a network, but environmental
information is not taken into account. Networked systems possess a large number of hosts,
and may different services pose a very large array of security requirements. Metrics based
purely on CVSS, with no environmental considerations could provide the user with po-
tentially misleading information, as one typically should prioritize network hardening and

intrusion defense to critical assets.

23



Let us suppose that a host is running a mission-critical service, an authentication server
for example. The compromise of this host will lead to a substantial loss of availability for
services on the network. Another example would be a database server storing sensitive
information. The compromise of this asset would lead to a loss of confidentiality through
the unauthorized access and possible disclosure of information, but also a potential loss of
integrity, if the attacker tampered with the database. Intuitively, a user’s workstation would
be a much lesser loss, as it is not running mission-critical applications and should not
containing highly sensitive data. For this reason, we wish to introduce the notion of asset
value to attack graphs, by assigning a value between 1 and 10 to each host in the network,
depending on it’s importance with regards to confidentiality, integrity and availability.

These scenarios demonstrate the need to assign values to hosts, depending on how
critical to the network their services are, or on how critical their stored information is to the
organization. They also demonstrate the need to quantify the risk one asset may bring to

another asset. A host’s asset value is user-specified and is based on the following criteria:

1. Confidentiality Risk: How serious are the consequences of an attacker obtaining in-

formation stored on this host ?

2. Integrity Risk: How serious are the consequences of a data loss or data tampering on

this host ?

3. Availability Risk: How will the loss of this host affect the functioning of the organi-

zation’s network ?

3.1.1 Hierarchical Metrics for Visualization through Aggregation

In this thesis, we extend the Bayesian network-based security metrics presented by Frigault
et al. [FW08, FWSJ08] by introducing the notion of asset value to attack graphs, which is
a numerical value between 0 and 10 (the domain of CVSS scores) assigned by adminis-
trators to each condition in the attack graph based on the condition’s relative significance
with regards to confidentiality, integrity, and availability. From this assigned asset value,

we calculate the risk at multiple hierarchical levels for conditions, hosts, group of hosts
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(subnets), and networks. Here we adopt the common approach of defining risk as the mul-
tiplication of the asset value and attack likelihood (that is, the probability obtained using

the aforementioned Bayesian network approach). More specifically,

Definition 1. Given the probability of executing each exploit p(e) and that of satisfying
a condition p(c) inside an attack graph G(EUC,R, UR;), and an asset value assignment

function av(.) : C — [0, 10|, we define Condition Risk, Host Risk and Group Risk as follows

Condition Risk

The probability of an exploit being executed p(e) and the probability of a condition being
satisfied p(c) are defined in Chapter 2.1.2. The risk of a condition is the probability of this
condition being exploited multiplied by the asset value of the host on which this condition

applies to.
p(c) xAssetValue(h)

10

Riskcondition (C) = @)

Host Risk

Host Risk The host risk is the condition risk of the root user-access condition being

obtained on this host.

Riskpost (M) = Riskcongition(< root,h >) 2)

Risk to Another Host The risk of the host £, to another host #; is the conditional prob-

ability of obtaining access to /; given that the attacker has compromised h,.

Risk_To_Hosty(a) = P(riskpys (b)) | riskness(a)) 3)

Group or Network Risk

For every network or host group, which can either be hosts in close network proximity (eg.

subnets) or hosts which share a very similar configuration, host risk is defined as the sum
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of the host risk of all hosts in this group.

RiskGroup(G) = Y, Riskrost () 4)
heG

3.1.2 Example Application of the Metric

Using the attack graph in Chapter 2.1, Figure 4, we will illustrate the application of the asset
value security metric introduced in this chapter, by representing the user-access conditions
with their asset values in a directed acyclic graph. We assign the asset values for the host

as described in Table 2.

Host ‘ Value
Hosty 3
Hosty 6
Hosty 9

Table 2: Asset Values for the Example Network

For every host condition, we obtain all directly reachable host conditions and calculate
the conditional probability of this condition being satisfied. We generate the sub-graphs
illustrated in Figure 13 to calculate the conditional probabilities by assigning the probability
value of 1 to the host whose risk to others we wish to calculate. The sub-graph from Host
1 to Host 2 is shown in Figure 13a and the one from Host 2 to Host 3 is shown in Figure
13b as examples.

Once the conditional probabilities are calculated, we build the adjacency matrix in
which we multiply every column by the asset value of the target host corresponding to
this column (Table 2), as illustrated by Table 3.

Host1(3.0) Host(6.0) Host3(9.0)
Hosty 0.12 0.41
Hosty 0.36 0.54
Host 0.65
Hosts

Table 3: Bayesian Network Conditional Probability Adjacency Matrix
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Figure 13: Host Sub-Graphs to Compute Conditional Probabilities

From this table, we generate a new graph indicating to total risk value of all hosts in the
network: the new graph presented in Figure 14 provides us with additional and valuable
insight when compared to the initial attack graph. As it is of smaller size, it is easier to
rapidly understand the repercussions of network configuration on the security of this net-
work. We can also see the different possible attack paths an attacker can take and with
which probability. When compared to the attack graph presented in Chapter 2.1 Figure 4,
the score of Host 1 has increased to reflect the potential risk to hosts 2 and 3. Hosts 2 and

3 maintain approximately the same relative score to each other.

To display edge color, we use a color ramping algorithm which returns a color depend-
ing on all the scores in the graph. It has already been used in Chapter 3.2 of this thesis
for the generation of treemaps. Intuitively, it should start with green, pass by yellow and
orange, and finish by red. This algorithm is based on works by Bourke[Bou] and is de-
scribed in Algorithm 1. #Yellow and tOrange are the threshold values for which the color
will become yellow or orange respectively. This algorithm will be re-used in Chapters 4
and 5 to further improve attack graph visualization.

The metrics proposed in this chapter serve two purposes :
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Figure 14: Graph Illustrating the Asset Value Security Metric

Algorithm 1: Color Ramping Algorithm for Normalized Scores Based on [Bou]

10

11

Input: A score v and a maximal score vMax
Output: Returns an 8-bit RGB color ¢
c.r,c.g,c.b < 0;
normV < (v/vMax) * 10;
if normV < tYellow then

| c.g +255;
else if normV < tOrange then
c.g + 255;

c.r < 255/(tOrange —tYellow) * (normV —tYellow);

else
c.g < 255 — (normV —tOrange) 255 /(10 —tOrange);
c.r < 255;

return c;
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e To define a metric framework necessary to drive attack graph visualizations. By
creating a hierarchical metric framework, it now makes it possible to use hierarchical
visualizations and allows for the aggregation of conditions or exploits to hosts, and

the aggregation of these hosts to groups of hosts.

e Quantify the risk of an asset being compromised, measuring the probability through
a Bayesian network, but also attacker incentive through the use of asset value, but

also the risk incurred by this host to others

This allows the attack graph to be built to environmental specifications by a network se-
curity administrator, based on which assets are deemed more valuable. These metrics will
improve attack graph analysis through effective visualization, and should thus improve net-

work security analyst.
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3.2 Applying Existing Visualization Models

In this chapter, we apply and analyze certain existing visualization models to attack graphs
using metrics, and analyze their effectiveness, readability and scalability as well as demon-
strate their limitations to motivate further discussions. We will continue to use the running
example from Chapter 2.1, with the network configuration detailed in Figure 1 and its cor-

responding attack graph illustrated in Figure 2.

3.2.1 Clustering Attack Graphs

Due to the hierarchical nature of most networks, an obvious approach to improve the scal-
ability of attack graphs is a grouping or clustering certain nodes inside an attack graph that
share similar characteristics, such as the same or adjacent hosts [NJ04]. However, such an
approach will meet difficulty to maintain readability without losing valuable information
due to the relatively high edge density and crossings in a usually highly connected attack

graph.

Ballon-Clustered Attack Graphs

The classic top-down graph drawing approach does not facilitate clustering of related infor-
mation which is not explicitly linked in the data structure. In some situations, the hierarchy
of can negatively affect the layout. Melancon et al. [MH98] describe a layout which allows
corresponding items in a tree to be grouped together, despite the hierarchical structure re-
quirements. We will now define the balloon layout [MH98, LY06] and how to apply it with
Attack Graphs.

Definition 1 (Balloon Drawings). A balloon drawing is a graph or a tree where the layout

of the node and the edges respects the following additional properties[LY00] :

e Property 1 : All children of a given parent are placed on a circle with the parent as

the center.

e Property 2 : There are no edge crossings.
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Figure 15: Example of a Balloon Attack Graph Using JUNG[OFWBO03]

o Property 3 : The deeper an edge is, the shorter its length.

Discussion and Example

In Figure 15, we apply to our running example a clustering method with multiple cluster
centers, one for each host or host group in the network, in order to form clusters of nodes
without a pre-defined top-down path or a particular directional layout, based on the clus-
tering methods proposed by Melancon et al. [MH98] and Lin et al. [LY06] which aim to

achieve a balanced layout, namely, a balloon attack graph.

From the example, it is clear that this visualization model can improve the density of
nodes as well as the readability to some extent, through clustering exploits associated to the
same host. Howeyver, it is equally clear that the edges cannot be fully displayed (without
breaking the balloons), leading to a significant loss of information; the improvement of

scalability is also limited.
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3.2.2 Attack Treemaps

An issue with conventional node-edge attack graph is the difficulty of expressing the hier-
archical relationships between exploits, hosts, subnets, and networks. The above balloon
attack graph addresses this through clustering nodes into balloons, but in doing so it also
wastes much visualization space (to explicitly depict the hierarchical relationships).

To that end, treemaps allow for implicit representation of hierarchical information in-

side a rectangular display, where the entirety of the visualization space is put to use [JS91].

Attack Treemaps

Definition 1 (Network Attack Treemaps). An Attack Treemap is a rectangle composed
of a label (thin bar section on top) and a content pane (the remainder of the rectangle), in
which the content pane is recursively divided into smaller Treemaps. It creates a compact
two-dimensional representation of a tree-like structure, composed of vertical or horizontal
recursive partitions of rectangles representing hierarchical relationships between different
elements - exploits, assets or asset groups. The area of each partition is based on the weight

assigned to each element, recursively defined as the sum of the weights of its children.

At each level, every partition can be compared using both size and color, expressing
two dimensions of data, two metric values for the element : one is partition size, the other
is partition color. Treemaps appear as non-congruent tilings the plane, covering the plane
without gaps or overlap, using similarly shaped tiles that vary with rotations, translations,

reflections and scale.

Tiling Algorithms

The tiling algorithm defines how the sub-rectangles are partitioned inside their parent rect-
angle. Several tiling algorithms can be used for Treemaps, each satisfying different prop-
erties. They are generally a tradeoff between low aspect ratio (keeping the height of a
rectangle as close to the width, instead of having a large discrepancy between these two

values) and order. Table 4 compares the different Treemap tiling algorithms.
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Algorithm Order Ratio Stability
Slice-and-Dice | ordered | Very High | stable

Binary ordered High stable
Squarified unordered Low unstable
Strip ordered | Medium | unstable

Table 4: Different Tiling Algorithms for Treemaps

The slice-and-dice tiling algorithm [JS91] is as follows : at every level, the partitioning
direction is changed. The algorithm will simply alternate between horizontal and vertical
partitioning of the rectangle. The binary tiling algorithm [JS91] dictates that whenever
the width of the rectangle to be separated is greater than the height, the rectangle is to be
partitioned vertically. If the height of the rectangle to be separated is greater than the width,
the rectangle is to be partitioned horizontally. If the height of the rectangle is smaller than
the width, this means that the rectangle will be separated vertically.

These two basic strategies may however lead to rectangles with extremely high aspect
ratios, making the Treemap hard to analyze. Efforts have been made to reduce the as-
pect ratio of the subdivisions [BHWO00, SW01]. They however are stable and are used in
situations where order and stability are of great importance.

squarified treemaps [BHWO0O0] propose to modify the tiling algorithm for treemaps to
bring the aspect ratio of every subdivision as close to 1 (a square) as possible. The number
of all possible tessellations is extremely large is considered NP-Hard. The authors however
present an approximate approach based on recursively producing rectangles close to square
shape for a set of siblings, without considering the subdivision for all levels at once. By
sorting the input rectangles by size, the natural order of the rectangles is lost. The strip
treemap [BSWO02] is a simplified version of squarified as it works by laying out the rect-
angles in order in either horizontal or vertical strips, providing better readability than the
default algorithm. While the squarified algorithm separates the rectangles in both direc-
tions, the strip Treemap algorithm only uses one, all the while maintaining order, at the
cost of an increase in average aspect ratio.

Figure 2 describes a recursive function, which draws the Attack Treemap on a plane,
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using the binary tiling algorithm. The binary tiling algorithm [JS91] dictates that whenever
the width of the rectangle to be separated is greater than the height, the rectangle is to be
partitioned vertically. If the height of the rectangle to be separated is greater than the width,

the rectangle is to be partitioned horizontally.

Algorithm 2: THE ATTACK TREEMAP ALGORITHM
Input: An element n with its position p, its height # and its width w
Output: Calls a function which draws rectangular partitions of the appropriate size
to satisfy the requirements of a Treemap
1 if n has children then

m
2 Calculate the total sum of n, totalSum = Z SCOTechildren:
i=0
3 for All children ¢ € children do
4 Calculate the size ratio r=; ;tca%ezfm’
5 if » < w then
6 for All children c do
7 L AttackTreemap(c, p,h,w*r)
8 else
9 for All children c do
10 L AttackTreemap(c,p,h*r,w)

1 Call DrawElement(n, p,h,w) return;

The Treemap algorithm seen in Algorithm 2 does not take into account partition color.

We use a color ramping algorithm described in Algorithm 1 in Chapter 3.1.

Discussion and Example

Figure 16 shows an attack treemap using our running example, built with the JavaScript
InfoVis Toolkit [Bel] using the binary tiling algorithm [SWO01]. In the attack treemap, each
rectangle with a black bar at the top represents a host, inside which each colored rectangle
represents an exploit. The color denotes the CVSS score, and the relative size of rectangles
denotes the risk as defined in Chapter 3.1.

Clearly, treemap is dense and relatively scalable visualization model. In addition,
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Figure 16: Treemap Example Using JIT[Bel]

GARNET[WLI(08a] has shown how to add reachability results to treemaps by interactively
displaying them through semantic substrates. However, most of the connectivity informa-
tion and the edges in attack graphs are still missing in an attack treemap, and adding this
connectivity information though overlying edges will clearly lead to a messy result. We

will address this issue and enhance the treemap model in Chapter 4.

This visualization is suited for a high-level view of network host configuration, making
it more useful for a systems administrator who has to manage system configurations and
deploy patches rather than a security analyst who is seeking exploitation details or possible

attack paths.

3.2.3 Hyperbolic Trees

As attack graphs get larger, screen size is a concern and a user must zoom on an area of

the graph. This leads to a loss of context and awareness of the overall network. Hyperbolic
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geometry offers interesting features for scalability of large graphical structures. For any in-
finite straight line and any point not on it, there are many other infinitely extending straight
lines that pass through and which do not intersect [And07]. This allows large amounts on
non-crossing edges through the curving of lines. By creating a fisheye-lens effect, Hyper-
bolic geometry solves this problem by displaying the entire graph. The center of the graph
- the zone of focus - occupies most of the space. The remainder of the graph is condensed
and pushed back towards the outer edges, maintaining context and awareness of the whole

visualization.

Network Hyperbolic Trees

Here, we apply the concepts of hyperbolic geometry to the attack graph model. We will use

the implicit hierarchy Exploit € Host € Subnet to specify the multiple levels of our tree.

Definition 1 (Hyperbolic Trees). Hyperbolic trees are euclidian trees transposed on a
hyperbolic plane. For an attack graph AG we take all the exploit nodes e € Exploits,
all the host nodes h € Hosts and all the host group nodes g € Groups and display this
hierarchy : If an element at one belongs to a an element at the level above, an edge is
drawn between these two elements. A Tree T(N,E) where N is a set of nodes representing
exploits or user-access conditions and E a set of edges showing the relationship between

nodes.

Discussion and Example

Figure 17 shows an example of a hyperbolic tree based on the attack graph in Figure 2.
Subfigure 17a is centered on the attacker’s initial user condition userQ). Subfigure 17b is

re-centered on the user-access condition on host 2, user?2.
As hyperbolic trees cannot model complex connections - a node can only have a single

parent - they are more suited for physical connectivity graphs of networks rather than at-

tack graphs. Howeyver, the constant contextual awareness makes hyperbolic attack trees an
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Figure 17: A Hyperbolic Tree using JIT [Bel]

appealing choice for applications like situational awareness. We will further enhance this

approach with additional features in Chapter 5.

3.2.4 Limitations of Existing Visualizations

While conventional attack graph visualizations are not scalable, it appears that existing vi-
sualization methods are not well suited to the display of attack graphs. Because of their
implicit hierarchy - an exploit using a vulnerability which is on a host - and their high con-
nectivity - an exploit can be executed from multiple hosts - and because multiple conditions
are required to satisfy an exploits preconditions, it is very difficult to visualize attack graphs
using existing paradigms.

While some efforts have been made to cluster graphs [NJ04], we believe that higher
levels of abstractions are needed, and distancing ourselves from the node-edge paradigm
would be preferable to ensure proper scalability of attack graph visualizations. This exer-
cise has, however, allowed us to extract positive features from some of these visualizations,

and two characteristics overwhelmingly stand out in these experiments :

37



Scalability | Connectivity | Density
Node-Edge Graphs Low Full Very Low
Balloon Graphs Low Partial Medium
Treemaps Very High Low Very High
Hyperbolic Trees High Partial Medium

Table 5: Limitation of Existing Visualizations

e Treemaps offer very high information density and are extremely scalable, at the cost
of connectivity. We will address these shortcomings in Chapter 4, where we will

introduce a treemap-based visualization scheme for network overview.

e Hyperbolic trees offer good scalability and they allow the user to constantly maintain
contextual awareness. We will use these characteristics to drive a visualization model
suited for cyber-situational awareness in Chapter 5, where we will present a tree-

based scheme suited for real-time intrusion detection systems using attack graphs.

Table 5 shows an overview of the limitations of the existing visualizations reviewed in

this chapter.
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Chapter 4

Radial Attack Treemaps

This chapter introduces a scalable, metric-driven visualization model, the radial attack
treemap, for the purpose of obtaining a quick overview of a network’s vulnerability infor-
mation. We first give an overview, followed by the description of models and algorithms,

and finally we present simulation results.

4.1 Overview

Enabling a security analyst to acquire a detailed overview of the entire network is a key
tactical advantage in assessing a network’s security. The goal here is to encode as many
legible details as possible, in a single view, inside a given canvas size. Chapter 3.2.2 men-
tionned treemaps as a visualization model providing relatively high information density
and scalability by occupying the entirety of the canvas. On the other hand, the main short-
comings of treemaps lie in the difficulty of displaying the edges and relationships between
different exploits in the network.

Intuitively speaking, our main idea is to bend the treemap into a ring, and display
the edges in the center of this ring. As for the actual display of the edges, we turn to
radial graphs, which allow a fixed-size layout with high information density, element prox-
imity and edge management [KSB*09, LAM*05]. Unlike conventional graphs in which
edges may be obstructed by a node, a distinguishing property of radial graphs is that a
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line between two points on can be a straight, unobstructed line. Moreover, the edges in
a radial graph can be hierarchically bundled [Hol06] with crossing between edges mini-
mized [HN10].

By combining key concepts of treemaps and radial graphs, we propose a metric-driven
and treemap-based radial visualization, namely, the radial attack treemap. We summarize
the key features and advantages of this novel visualization model in the following, while

leaving details of the model and implementation to later sub-sections:

e The model provides a quick overview of exploits, chains of exploits (that is, paths in

an attack graph), hosts, and causal relationships between exploits in a network.

e The color and size of each slice of the outside ring represents the CVSS score and

risk of the corresponding exploit, respectively.

e The stacking of slices and sub-slices in the outside ring implicitly represent hierar-
chical relationships between exploits, exploit chains, and hosts, reducing the number

of edges that need to be explicitly displayed (in contrast to the original attack graph).

e The center of the ring displays edges in a bundled way to minimize the number of

crossings between edges, leading to a cleaner visualization result.

e Layout of the bent treemaps is optimized such that the lower level details are dis-

played more towards the outer side of the ring in order to occupy more space.

Figure 18 is a mockup illustrating the ideas behind the radial attack treemap, and how

the different elements and their relationships are transcribed to the canvas.

4.2 Models and Algorithms

Definition 4.2 more precisely describes the radial attack treemap (additional details are still

left to later sections).
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Figure 18: A Mockup of the Radial Attack Treemap

Definition 1 (Radial Attack Treemap). Given an attack graph G(E UC,R, UR;) with
hosts H, the asset value assignment function AV, and the risk function R., Ry, and Ry, a

radial attack treemap is composed of a ring R and a collection of links L, where

e R is divided into a collection of slices S, with each slice s € S corresponding to a host

heH.

e each slice s is divided into a collection of subslices SS, with each subslice ss € SS
corresponding to an exploit chain (a sequence of exploits involving the destination

host h, the same source host, and leading to < root,h >.

® ceach subslice ss is further divided into a collection of subsubslices SSS, in which

each subsubslice sss € SSS corresponds to an exploit e in the exploit chain.

e the relative size of each slice, subslice, and subsubslice is proportional to the risk
score (Definition 3.1.1) of corresponding host, exploit chain, and exploit, respectively

(details will be provided later).

e the color of each subsubslice represents the CVSS score of the corresponding exploit

(details will be provided later).
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e each link in L points from a slice corresponding to host h, to a subslice corresponding

to an exploit chain involving the source host h.

o all the links in L are bundled and routed through the center of the ring R.

Figure 19 illustrates an example of radial attack treemap, which is based on our running

example shown in Figure 2.

Figure 19: Radial Attack Treemap representing Figure 19

4.2.1 Data Structures

We now describe the data structures required for implementing the proposed visualization
model. Specifically, to implement the model, we need to compute the aforementioned risk
metrics and convert a given attack graph into a suitable data structure. We then derive
geometric information necessary to the final rendering of the model. Therefore, for each
element in the model, there will be a corresponding view element containing additional

information necessary to the visualization, as detailed below.
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e Exploit & Subsubslice: Each exploit is a list of five attributes: an identifier, a set of
pre-conditions and post-conditions, a CVSS score, and a risk value. Correspondingly,
a subsubslice, as the view representation of the exploit, is a list of attributes including
a label, a color derived from a normalized CVSS score, as well as a size proportional

to the risk value of exploit chain.

e Exploit Chain & Subslice: Each exploit chain is a list of attributes including an iden-
tifier, a risk value, as well as the source host involved. Correspondingly, a subslice
is a list of attributes including references to the composing subsubslices, a label, a
size derived from the risk value, an anchor point which is a set of coordinates used
as destination points for incoming links, and a color derived from the CVSS scores

of the corresponding exploits.

e Host & Slice: A host is a list of attributes including the references to the composing
exploit chains, an identifier, and a risk value. Correspondingly, a slice is a list of
attributes including the host name, references to the composing subslices, a label, a
color derived from the CVSS scores, a size derived from the risk value of the host,
and two anchor points, with the first being a set of coordinates used as intermediate
destination points for incoming links and the second being a set of coordinates used

as the source points for outgoing links from this host.

e Link: A link is a pair < h,ec > indicating the source host % invovled by exploits in
the exploit chain ec. Correspondingly, the link is visulized using the Bézier spline
composed of two curves, a cubic Bézier curve and a quadratic Bézier curve [PBP02].
The former contains three sets of coordinates, namely, a start point, an end point and
a control point, while the latter has four, namely, a start point, an end point and two

control points.

4.2.2 Algorithms

This subsection discusses two series of algorithms. The first converts a given attack graph

to the data structures mentioned in the previous sub-section. The second is for computing
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geometric information used in creating the view structures.

First, in the following, Algorithm 3 uses a recursive depth-first search in the input attack
graph to obtain all paths from user-access conditions to the root condition of the target host
(Algorithm 4). For each path obtained, we verify that all exploit sequences leading to
this condition have all their pre-conditions satisfied and that the path generated is valid
(Algorithm 5).

Algorithm 3: GETALLEXPLOITCHAINS
Input: An attack graph, a set of host-access conditions Host
Output: A set of Hosts possessing exploit chains and exploits
1 foreach Host to € Hosts do
2 foreach Host from € Hosts do
3 Paths from—>tol |[ | < getAllPaths(from,to);
4 foreach path p € paths trom—>10 do
5 \‘ if isValid(true, path, from,initialconditions) then
6

L to.addExploitChain(path);

Algorithm 4: GETALLPATHS
Input: A Linked List of visited nodes visited, the end condition end

1 Node n = visited.last();

2 Node[| nodes = n.getNexts();

3 foreach Node n € Nodes do

if visited.contains(node) then
L continue,

visited.add(n);

Nodel| path + visited;

allPaths.add(path);

visited.removeLast();

A

A - - B

10 foreach Node n € Nodes do
11 if visited.contains(n) || n = end then
12 L continue,

13 visited.addLast(n);
14 | getPath(visited,end);
15 visited.removeLast();
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Algorithm 5: ISVALID
Input: A boolean condition indicating the validity of the path isValid, a list of nodes
path path, a starting node start and a list of satisfied conditions
satisfiedConditions
Output: Recursively checks if all exploits have their preconditions satisfied
1 satisfiedConditions.add(from);
2 satisfiedConditions.add( from.getPreconditions());
3 foreach Node next : from.getNexts() do
4 | if next.getPreconditions() € satisfiedConditions then
5 L return isValid(true, path,next, satis fiedConditions);

6 else
L return false;

~1

Second, we discuss how the view data structures may be generated. The ring is gener-
ated by converting exploits, exploit chains and hosts into subsubslices, subslices and slices,
respectively. Host and exploit chain risk scores are expressed by the angle of ring segments
they occupy. Host, representing the initial attacker-controlled host, possesses a fixed an-
gle, 0. The slices representing a given host x will have an angle o, of value :

scorey

o = ((360 — ag) * (5)

Y7 1 score;
Similarly, the angle o, of an exploit chain ec € Ay, relative to risk of the other exploit
chains of the host - will have a value of :

scoreg;

ZecEx SCOréec

Oy = Oy * (6)

For an exploit e € ec, the angle of ring segment it occupies is the same as that by its
exploit chain parent, and occupied area thus depends on the length of the radius segment
between the current exploit and the next exploit (or the ring’s two edges), depending on the
risk scores of these exploits’ post-conditions.

The color of subsubslice is derived from the normalized CVSS scores of the vulnera-
bilities using a color ramping algorithm similar to the one described by Bourke in [Bou],
described in Chapter 3.1, Algorithm 1.

The links displayed at the center are Bézier splines [PBP02] computed using the method

by Holten in [Hol06]. The spline is composed of two Bézier curves, the origin curve and
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the destination curve, as detailed below and illustrated in Figure 20 (where the numbers in-
dicate the starting, end, and control points, and the red tree shows the hierarchical structure
for edge bundling). Finally, the link color is derived from the score of the first exploit in

the exploit chain of the destination, using a color ramping algorithm.

e The origin curve, a cubic Bézier curve (with two control points), starts at the origin
host’s anchor point denoted by point 0 and ends on the destination host’s projection
on the host circle, point 3. The control points for this curve are the host origin and
destination points, respectively projected on the inner host circle, denoted by points

1 and 2, respectively.

e The destination curve is a quadratic Bézier curve starting at the end of the origin
curve, point 3, and ends at the exploit chain anchor point, point 5. The control point
is the projection of the host destination point on the host label ring, point 4, allowing
us to properly separate the different links leading to different exploit chains on the

same host.

4.3 Implementation and Simulation

In this section, we share techinical details retagarding implementation as well as the setup,

result, and analysis of our simulations.

4.3.1 Implementation Details

A prototype was built using Java and the Graphics2D and Curve2D libraries, included in
the JavaSE package. It is built using the Model-View Controller [KP*88] (MVC) pattern.
A GraphViz[EGKT01] .dot file parser reads an input attack graph and loads it into memory.
The graph is then traversed to generate exploits, exploit chains, and hosts, using Algorithms
3,4 and 5. This model is then converted into slices, subslices, subsubslices, and links, in
order to generate the ring and links.

Figure 21 illustrates a larger attack graph and corresponding radial attack treemap.
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Radial Asset Treemap

(a) Overall of the Center of the Visualization

(b) Zoomed-in on the Splines

Figure 20: Link Generation
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(b) The Corresponding Radial Attack Treemap

Figure 21: A Larger Example of a Radial Attack Treemaps
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Figure 22: Simulation Software Setup

4.3.2 Simulation Setup

We now study the density and scalability of the visualization model through simulation
using randomly generated attack graphs (we note that although an experiment using real
world data is certainly more desirable, to the best of our knowledge, a publicly available
dataset containing a significant number of attack graphs is not currently available). We
generate 1200 attack graphs using a Python application from small seed graphs based on
real world attack graphs. The simulation environment is a dual-core Intel Core i5 processor
with 8GB of RAM running Debian 7. The entire application was written in Java and runs
on OpenJDK 6. Figure 22 shows an overview of the overall architecture of the system.

Information on the average number of node and edges of these graphs is illustrated in
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Figure 23: Average of Edges and Nodes per Host

Figure 23.

We compare the scalability of radial attack treemaps with that of the input attack graphs.
As aradial attack treemap is designed as a fixed-size visualization, we set a threshold value
for the smallest allowable subsubslice, at 1000px? (leaving approximately 10 characters at
8pt. font size), and we ensure all subsubslices in a radial attack treemap to be legible by

scaling them according to this threshold. Figure 24 shows the average canvas size of both

models in relation to the number of hosts.

4.3.3 Simulation Results

The simulation clearly confirms that radial attack treemaps offer a higher information den-
sity than conventional attack graphs. Figure 24 shows that, on average, 10 hosts can be
represented on a canvas of merely 900x900 pixels, while the corresponding attack graphs
would require a canvas of over 2800x2800 pixels.

Next, we study the degree of reduction in the number of edges/links by implicitly rep-
resenting edges in the radial attack treemaps (through stacking subsubslices). We note that,

in addition to this reduction in the number of edges/links, the radial attack tree maps have
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Figure 24: Average Size of Attack Graphs and Radial Attack Treemaps

other advantages in terms of displaying links, as mentioned already in the previous subsec-
tion. Figure 25 compares the number of edges/links in relation to the number of hosts in
the graph.

This simulation indicates that the amount of edges/links has been reduced to approxi-
mately a third those of conventional attack graphs. The implicit relationships between host,
exploit chains and exploits allow for such a significant edge reduction.

We note that, Figure 24 seems to indicate that the rate of growth of radial attack treemap
is greater than that of conventional attack graphs. This is a consequence of the ring’s
tiling algorithm: regardless of the size of the canvas, an exploit chain’s partition angle will
remain the same. When compared to a two-dimensional graph canvas, both size increases
are quadratic but with the partition size depending on the angle of it’s parent exploit chain,

leading to a lower rate of growth of partition surface compared to the available surface of a

rectangular canvas.

51



—<— Attack Graph Edges
—*— Radial Attack Treemap Links

80

Number of Edges/Links

1 LT T 0 T

0 L | | L L L i
7 8
Number of Hosts

Figure 25: Average Number of Edges and Links

4.4 Discussions and Limitations

The proposed metric-driven radial attack treemap provides a viable visualization solution
for human analysts, allowing to observe the entire network at a glance in a single view with
vulnerability information, host configuration information, vulnerability metrics as well as
connectivity information. The representation of two metrics through both size and color,
allow the analyst to easily spot outlying exploits. We have shown through automated sim-
ulations based on randomly-generated attack graphs that this model offers superior infor-
mation density when compared to conventional attack graphs.

Nonetheless, the model in its current form still has a few limitations. First, due to the
limited level of hierarchy in the treemaps, it will be difficult to visualize a large network
in a single view, without resorting to zooming and scrolling. Developing a new tiling
algorithm to support more levels of hierarchy is one potential solution. Another solution
would be the use of interactivity, by varying the hierarchy levels of a slice based on user
focus, or by filtering out certain hosts, exploit chains, and exploits. Second, the trade-off
between the areas occupied by the ring and by links requires further study. Algorithms
that can optimize this trade-off in order to ensure the best clarify for both sides needs to be

developed. Finally, algorithms are also needed for the efficient incremental updates of the
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model when networks or vulnerabilities change.
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Chapter 5

Topographic Hyperbolic Trees

This section introduces the novel topographic hyperbolic tree model for monitoring and
predicting real time progress of attacks. We first give an overview, followed by the descrip-

tion of models and algorithms, and finally we present simulation results.

5.1 Overview

One important aspect of visualization in the application of cyber-situational awareness is
to allow administrators to see both the current focus of an ongoing attack and the most
likely next steps. Another important aspect is to provide a sense of distance between po-
tential attack steps based on the number of intermediate steps or relative difficulty of such
steps [WLIO8a, WLIO8b]. In Section 3.2.3, we have shown that the hyperbolic tree model
is a suitable model for the first purpose.

As to express the attack distance, we are inspired by geographical topographic maps,
in which contour lines are used to indicate fixed increases in altitude. Therefore, the main
idea here is to enhance the hyperbolic attack tree model with contour lines representing
attack steps at similar distance.

Again, we summarize the key features and advantages of this novel visualization model

in the following, while leaving details of the model and implementation to later sections:
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Topographic Hyperbolic Tree -

Figure 26: Topographic Hyperbolic Tree

e The model provides an interactive visualization of the ongoing attack and its plausi-

ble next steps.

e The hyperbolic tree creates a fisheye-lens effect that allows administrators to focus on
the current attack and its closest future steps, while not losing context or awareness
of other steps that may be further away but are still possible, such as the ultimate goal
of the attack.

e The contour lines provide a rough idea about future attack steps that are at similar

distance from the current step.

e In addition, the relative length of different edges represent (after taking into account

the fisheye-lens effect) the relative difficulty of the corresponding exploit.

Figure 26 illustrates an example of topographic hyperbolic tree based on our running

example.
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5.2 Model and Algorithms

Definition 5.2 formally describes the topographic hyperbolic tree representing an attack

graph.

Definition 1. Given an attack graph G(EUC, R, UR;) with hosts H and the risk function R,
Ry, and R, a topographic hyperbolic tree is composed of a hyperbolic attack tree T (E,C),
which has the exploits E as nodes and conditions C as edges, and a collection of contour
lines L linking all the exploits sharing the same depth in the tree. The relative length of an

edge is based on the risk metric score of the corresponding condition as well as the depth

of the node.

5.2.1 Data Structures

We now describe the data structures required for implementing the proposed visualization
model. Specifically, to implement the model, we need to compute all possible attacker
paths and form a tree of the different sequence of exploits the attacker may perform. We
then derive geometric information necessary to the display of the visualization.

To elaborate the tree, we need the following structures:

e Exploit: An exploit e € E contains a name, a CVSS score as well as two sets of

conditions: the pre-conditions and the post-conditions.

e Condition: A condition ¢ € C contains a name as well as the condition risk, as

defined in 3.1.

o Attacker Knowledge: The attacker knowledge AK is the set of conditions ¢ € C
which have been obtained by the attacker. If the pre-conditions of an exploit e € E
are a subset of the attacker knowledge (pre(C) C AK) the exploit e may be executed.
Once e is executed, the post-conditions of e will be added the attacker knowledge:

AK = AK N post(e)

e Attack Tree: An attack tree is a set of all possible exploit paths an attacker can take

in order to achieve his goal - the end condition of the attack graph. It is represented
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by a tree T(E,C) with exploits E as nodes and a set of post-conditions C as edges.

Section 5.2.2 will explain how to obtain this structure from an attack graph.
Once the tree is constructed, it is displayed on screen using the following structures:

e Node: A set of nodes n € N will form a tree T(N), each node n possessing a size

and an angle, as well as a list of it’s children nodes.

o Edge: An setof edge e € E will link a pair of nodes < n,n > and will have as unique

attribute its length.

e Ring: The ring is used to draw the topographic lines. A ring r € R is a set of points

p(x,y) representing all possible exploits at a given step.

Additional details on how these structures are used will be explained in Section 5.2.2.

5.2.2 Algorithms

The construction of a topographic hyperbolic tree from an input attack graph involves a
few steps. We first load the attack graph into memory. Then, for each time the graph is
re-centered, we apply the tree generation algorithms. We then layout the tree on the canvas

and generate the contour lines. More specifically,

1. We start by establishing the context required to initiate the graph traversal using
(Algorithm 6), and then recursively perform the graph traversal and tree construction
using Algorithm 7, while limiting the maximal depth of any tree branch to be a pre-

defined parameter MAX_DEPTH in order to avoid the explosion of possible paths.

2. We then layout nodes on the canvas. We compute the coordinates of every node by
calculating the length of a link as well as the angle at the origin. The length of an
edge is a function of the risk of the pre-conditions of the exploit represented, as well

as the number of steps from the center:

SCOreé child

distancechild = * (MAXDEPTH — Stepchild + 1)
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. The angle of a node’s children will depend on the angle of the parent as well as the

number of children this parent possesses:

o — 180 —cxstep
“ ™ nbChildren

. Finally, we generate and draw the contour lines. Three main steps are required for the

drawing. First, after obtaining all points at a given level i, we ensure that the polygon
formed by these points completely includes the polygon formed by the points at a
previous level i — 1. Otherwise, we add the points of polygon i — 1 lying outside
of polygon i to the polygon i. Second, we ensure that each polygon is convex. If
the polygon is concave, we apply a convex-hull algorithm commonly called the Gift-
Wrapping Algorithm [Jar73]. Finally, we smooth the lines by interpolating the points
using the Catmull-Rom Algorithm [CR74].

Algorithm 6: THE TRAVERSAL INITIATION FUNCTION

Input: A tree tree, an attack graph graph, a list of conditions aftackerKnowledge
Output: A tree free representing all possible attacker paths from given initial

conditions

1 attackerKnowledge.add(initialConditions)

Node| | firstNextSteps < getNextSteps(attackerKnowledge);

2 for Node n € firstNextSteps do

3
4
5

attackerKnowledge.add(n);
attackerKnowledge.add(n.getNexts());
traverse(tree,n,attackerKnowledge, 1);

6 return tree;

5.3 Implementation and Simulation

In this section, we share details of the implementation as well as the setup, result, and

analysis of our simulations.
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Algorithm 7: THE TREE GENERATING ALGORITHM
Input: A tree node previous, an attack graph node graphNode, a list of conditions
attackerKnowledge a depth depth
Output: The fully expanded tree representing all possible attacker paths
1 current < graphNode;
2 previous.addNext(current);

3 current.addPrevious(previous);
4 if previous # FINAL_ CONDITION && depth < MAX _DEPTH then

5 | Node| | nextSteps = getNextSteps(attackerKnowledge);
6 for Node n € nextSteps do
7 if (! attackerKnowledge.contains(n.getNexts()) then
8 attackerKnowledge.add(n.getNext);
9 attackerKnowledge.add(n);
10 return traverse(current,n,attackerKnowledge,depth+ 1)

5.3.1 Implementation Details

Just like in Chapter 4, the prototype was built using Java and the Graphics2D library, using
the MVC[KP*88] pattern, parsing GraphViz .dot files to automatically generate the tree.
We illustrate the network and attack graph depicted in Figure 2 from Chapter 2.1 using our
newly introduced technique. The results are illustrated in Figure 27 where we re-center
the visualization twice. Figure 27a is the visualization centered on the initial conditions,
the entirety of the attacker’s knowledge. Figure 27b is then re-centered on the exploit
v_ftp0,2, the attacker has now gained the condition ¢rust0, 1, and may execute the previ-
ously available exploits and v_rsk0,2 due to newly-acquired knowledge. Once the attacker
has exploited v_rsk0,2, he has acquired user access on host 2, and Figure 27c depicts the
attacker’s potential next steps. The attacker is now one step away from his goal condition,

indicated in red, v_bof2,2.

5.3.2 Simulation Setup

Simulation environment is identical to the one in Chapter 4. In this experiment, we use
3500 randomly generated attack graphs. Figure 28 shows an overview of the application’s

architecture.
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Figure 27: Example of a Topographic Hyperbolic Tree With Varying Centers

60



TopographicHyperbolicTree Catmull-Rom
ottt Convex-Hull
1
:
I
I
E
] Edge Node Ring
: from label points
1 to angle depth
] length score
E depth
i

TopoTester TreeExpander
T
i
i Node<Exploit> Node<Condition>
{ name name
: score score
! sourceHosts
] destinationHosts e
I N #t
: N
: DotParser
e ] e Dot Flle

Figure 28: Simulation Software Setup
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5.3.3 Simulation Results

Figure 29 analyzes the average number of nodes in a tree as a function of maximum tree
depth for different amounts of hosts (logarithmic scale in Figure 29a and a linear scale in
Figure 29b). The latter allows us to more easily grasp the repercussions of tree depth.

Intuitively, the tree expansion algorithm’s computational complexity should increase in
a very similar fashion to the amount of nodes in the tree. Figure 30 confirms this hypoth-
esis by presenting average computational complexity of the tree expansion algorithm as a
function of tree depth for different network sizes.

From the simulation results obtained, it is clear that the implementation of a maximum
tree depth is necessary ; there is a very sharp increase in the amount of nodes - and intu-
itively, time - following the sixth step. Unsurprisingly, there is an exponential increase in
nodes, despite the monotonicity assumption. Our simulation results indicate that limiting

the maximal tree depth to five or six should easily be manageable.

Given the interactive nature of this visualization and the relative low computational and
spacial complexity at smaller depths for all graph sizes, we believe these algorithms should
scale sufficiently and allow for a visualization at depths of at least five steps, sufficient
to provide the user with valuable information that would be much more difficult to view
in the case of a conventional attack graph. Once the visualization is re-centered, the tree
can be recalculated given the position and previous steps. Figure 30 suggests that the tree

generation time is well in order of rendering time for up to six steps.

5.4 Discussion and Limitations

This proposed visualization scheme could significantly improve the cyber-situational aware-
ness capabilities of a network security administrator. Given the interactive nature of this
model, we believe it can useful for many practical applications. It would strongly bene-
fit situational perception (by mapping IDS alerts and displaying them on screen), impact

assessment (by looking at future potential exploits the attacker may perform), situation
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tracking (live updating of the graph depending on an intruder’s progress through the net-
work), as well as plausible futures (by once again looking at the future potential exploits an
attacker can use)- four of the seven of the aspects of situational awareness for cyber defense
as defined by Barford et al.[BDD*10].

Coupled with a real-time intrusion detection correlation system and mapping IDS alerts
using the method described by Wang et al.[WLJ06]would allow the user to observe in real-
time an attacker’s intrusion progress through the network. At any given step, the visu-
alization will display all possible next steps. While the possible explosion of states is a
legitimate concern, capping the visualization at maximum depth ensures reasonable time
and space complexity. As we have shown in our simulations, the visualization result and
the running time are easily manageable with the maximal depth set to about six.

On the other hand, further study is needed to improve the tree expansion algorithms in
order to avoid the exponential explosion, thus improving the practical maximum tree depth.
Finding more efficient ways for incrementally updating the model after each centering

operation, and improving the transition would improve the user experience.
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Chapter 6

Conclusion

In this thesis, we have shown that information visualization is a crucial complement to
the automated analysis of certain computer models, specifically attack graphs. Given the
explosion of cloud services - in particular virtual private servers, where a hypervisor is the
only separation between two different services - managing the complexity of attack graphs
is of great importance.

Because existing visualization models are too broad through the adoption of a one-
size-fits-all approach, and that heir scalability is limited, we believe that the introduction of
application-specific visualization schemes for attack graphs will substantially improve the
scalability as well as the readability and user comprehension of attack graphs. After dis-
cussing existing visualization techniques and presenting a hierarchical metric framework,
we have introduced two new visualization paradigms, which should greatly assist a secu-
rity analyst in obtaining a proper assessment of his network’s security in two different and
complementary use cases.

For the case of network overview, we have introduced a treemap-based connected ring
visualization system: radial attack treemaps. By leveraging the scalability of displaying
host configuration and vulnerabilities of treemaps and superior edge management of radial
graphs, we have presented a novel, metric-driven, attack graph visualization scheme. We
have demonstrated through implementation and large scale simulations that independently

of subjective considerations, it offers superior scalability and information density.
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In the case of situational awareness, we have introduced a topographic map-based tree
visualization scheme: fopographic hyperbolic trees. Hyperbolic trees allow for constant
contextual awareness and high detail for the elements at the center of the visualization.
Exhaustively listing all exploits in a tree can be a complex both in time and space, but our
large scale simulation has shown us that this visualization can scale to up to five or six steps
at a time.

Improving information visualization in all fields leads to an increase in the general
understanding and usefulness of the model they illustrate. Attack graph is such a model,
where exploits and conditions share sometimes complex relationships, and we believe these
newly-introduced paradigms will substantially improve attack graph visualization, compre-
hension and usability for at least two use specific cases, further validating the versatility and
effectiveness of the attack graph model.

While computers are essential to automated analysis, many actions and policies will
very often be undertaken by a human analyst, and as such, his comprehension of a net-
work’s security posture is key to ensuring their networked systems and information’s se-
curity. However powerful the model, it is only as good as what the user can extract from

it.
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