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Abstract

Degradation Prognostics in Gas Turbine Engines Using Neural

Networks

Ameneh Vatani

In complex systems such as aircraft engines, system reliability and adequate mon-

itoring is of high priority. The performance of all physical systems degrades over

time due to aging, the working and environmental conditions. Considering both time

and safety, it is important to predict the system health condition in future in order

to be able to assign a suitable maintenance policy. Towards this end, two artificial

intelligence based methodologies are proposed and investigated in this thesis. The

main objective is to predict degradation trends by studying their effects on the engine

measurable parameters such as the temperature and pressure at critical points of a

gas turbine engine.

The first proposed prognostic scheme for the gas turbine engine is based on a

recurrent neural networks (RNN) architecture. This closed-loop architecture enables

the network to learn the increasing degradation dynamics using the collected data

set. Training the neural networks and determining the suitable number of network

parameters are challenging tasks. The other challenge associated with the prognostic

problem is the uncertainty management. This is inherent in such schemes due to

measurement noise and the fact that one is trying to project forward in time. To

overcome this problem, upper and lower prediction bounds are defined and obtained

in this thesis. The two bounds constitute a prediction band which helps one not

to merely depend on the single point prediction. The prediction bands along with

the prediction error statistical measures, allow one to decide on the goodness of the

prediction results.

The second prognostic scheme is based on a nonlinear autoregressive with exoge-

nous input (NARX) neural networks architecture. This recurrent dynamical structure

takes advantage of both features which makes it easy to manage the main objective.
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The network is trained with fewer examples and the prediction errors are lower as

compared to the first architecture. The statistical error measures and the prediction

bands are obtained for this architecture as well.

In order to evaluate and compare the prediction results from the two proposed neu-

ral networks a metric known as the normalized Akaike information criterion (NAIC)

is applied in this thesis. This metric takes into account the prediction error, the

number of parameters used in the neural networks architecture and the number of

samples in the test data set. A smaller NAIC value shows a better, more accurate

and more effective prediction result. The NAIC values are found for each case and

the networks are compared at the end of the thesis.

Neural networks performance is based on the suitability of the data they are

provided with. Two main causes of engine degradation are modelled in this thesis and

a SIMULINK model is developed. Various scenarios and case studies are presented

to illustrate and demonstrate the effectiveness of our proposed neural networks based

prognostic approaches. The prognostic results can be employed for the engine health

management purposes. This is a growing and an active area of research for the aircraft

engines where only a few references exist in the literature.
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Chapter 1

Introduction

In complex systems such as aircraft engines reliability is a necessity, therefore one is

expected to predict the future behaviour of the system to assign a suitable mainte-

nance policy. The important goal of the prediction of the system operation can be

achieved through two methodologies. The first is the physics-based approach and the

second is the data-driven approach. In the former approach an extensive knowledge

about the entire system, various variables, exact functions of the components and

their interactions together under different operating conditions are essential for a de-

tailed calculation of the temperature, stresses, degradation modes, etc. There may

still remain many unknown and neglected factors in the representation and modelling

of the jet engine nonlinear system. This fact can result in unexpected catastrophic

damages or costly unnecessary maintenance (system shut-down or component replace-

ment). On the other hand one may rely on the data obtained from the engine sensors

that are installed in the system.

In this research data-driven methods are preferred since the data collected from

a real engine are representative of all the existing characteristics and factors. Among

various data-based methods, predicting the trends in this thesis will be done by

using neural networks (NN) as they are able to capture the nonlinear behaviour of a
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complex system with a limited number of data points. Aircraft engines are subjected

to aging process and different degradations which will increase through time. Hence,

our objective is to predict degradation trends by studying their effects on the engine

measurable parameters such as the temperature and the pressure at the critical points

of a gas turbine engine. The results can be employed for condition-based maintenance

purposes. In this chapter we will define and discuss all the above mentioned terms

and shed light on the importance of prognostics and condition-based maintenance for

gas turbine engines. We will also review some research conducted in these areas in

the literature.

1.1 Literature review

It is a general fact that every physical component degrades over time as it may

work under different levels of stress, load, temperature and varying environmental

conditions. Even the products with the best design are prone to deteriorations along

the time they are in service. System reliability is an important factor in all industry

sectors thus it is very important to monitor components’ condition and perform the

necessary maintenance actions.

Maintenance actions can be divided into two groups namely conventional mainte-

nance techniques and condition-based maintenance techniques. The traditional main-

tenance action is itself divided into two methods. The first one is called breakdown

maintenance [1]. It is also called unplanned maintenance or run-to-failure mainte-

nance. In this type of traditional maintenance the component is replaced only at the

time that it is failed. This is not a wise method as in many cases we are dealing

with people’s lives such as nuclear or aerial industries and the maintenance cannot

be postponed until the components’ breakdown.

The second method is known as planned maintenance. This method is based on
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a proactive strategy. They are also known as proactive or scheduled maintenance

[18, 19]. In this method, maintenance actions are being done periodically and on

a regular basis based on some previous knowledge on the component performance

deterioration and there is no feedback from the current health status of the system.

In other words, they are time-based, regardless of the machine health. This method

can be wasteful and costly as in most of the cases the maintenance action is not

necessary. There exists a trade-off between being reliable and cost-effective. Recently

machinery users are adopting to a method called condition-based monitoring (CBM).

In CBM the goal is to limit the number of maintenance actions and to avoid the

unnecessary ones. The first step to CBM is condition monitoring. The data collected

from health monitoring will be used and analyzed later for condition-based mainte-

nance purposes. The CBM is based on the fact that the machine does not breakdown

suddenly and it often goes through a continuous degradation process. When there

is enough evidence of the abnormal performance in the system, maintenance is sug-

gested. As a result there can be a great reduction in the maintenance and repair cost

by avoiding unnecessary maintenance actions and systems’ downtimes and still users

do not have to be concerned with the major breakdowns.

Three major steps constitute the CBM process [20] as shown in Figure 1.1:

1. Data acquisition: In this step the information is collected using the sensors that

are installed throughout the system. Our goal is to collect the data that are most

related to the system health. For a mechanical system these data can be vibration

signals, acoustic signals, temperature data, etc.

2. Data processing: The data that is collected in step one is now analyzed. This

step is the most critical among the three. The reason is that a large amount of data

is available from sensors but it is not clear how the data should be handled and

how exactly they are related to the system’s health. It should be noted that there
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exist three main categories of data processing in the literature namely, time-domain

analysis, frequency-domain analysis and time-frequency analysis [1].

3. Maintenance decision making: After the data is collected and analysed, the

decision will be made whether the maintenance is suggested for the current condition

or not.

Figure 1.1: Three steps constituting the CBM system [1].

In a CBM scheme two important aspects are diagnostics and prognostics and

all together they are called a diagnosis, prognosis and health management system

(DPHM).

The functionality of the DPHM system mostly depends on the efficiency of the

diagnostics and prognostics scheme. The diagnostics mechanism itself consists of three

modules i.e. fault detection, isolation and identification (FDI scheme) [9]. These three

modules are defined as follows [1, 4]. The task of fault detection is to distinguish if

something abnormal is happening in the behaviour of the system under study. In the

fault isolation one tries to locate the fault and declare in which part or component

of the system the malfunction is occurring. Identification is the act of evaluating the

nature and intensity of the fault. Figure 1.2 briefly depicts the FDI concept. The

building blocks will be defined in the following sections.

On the other hand prognostics deals with prediction and prior event analysis. The

incorporation of the prognostics module can enhance the diagnostics task. Prognostics

can be regarded from two different perspectives [21]. It may either estimate the future
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Figure 1.2: Conceptual structure of FDI [2].

health status of the system at a desired time or estimate the remaining useful life of a

component or the system using the current and previous life usage data reported from

the system under gradual degradations. Prognosis is a more challenging task because

we are trying to predict the future based on some present-time evidence and hence

our judgement is prone to errors and uncertainties and as a result, relative to the

FDI, much less reference exists in the literature that have focused on the prognostics.

Many studies can be found in the literature on the subject of DPHM and CBM for

the mechanical systems that have applied a variety of techniques and applications.

In this literature review some recent diagnosis and prognosis schemes for physical

systems will be briefly discussed.

Diagnostic methods can be divided into two categories, namely model-based and

data-driven approaches [22, 23]. In order to use model-based or physics-based ap-

proaches, an explicit mathematical model of the system should be available. This

needs a thorough understanding of the system, equations and relations between dif-

ferent variables which is not always possible. Different methods exist in the literature

for fault detection, to name for example [24, 25]: fault detection with limit checking;
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fault detection with process estimation methods; fault detection with parity equa-

tions; fault detection with state observers and state estimations; fault detection with

principal component analysis (PCA) and finally a variety of combined methods.

To detect the fault using any of the above mentioned methods, the first step is

the residual generation. Residual is often a fundamental component in a diagnosis

system. Residuals are typically generated by using a mathematical model of the

system and measurements from sensors and actuators. This process is referred to as

residual generation. The residuals are generated by comparing system current state

and the system healthy state. If the residual signal is higher than a pre-specified

threshold, this is an indication of the fault presence in the system. The procedure is

illustrated in Figure 1.3.

Figure 1.3: General flowchart of a model-based approach [1].

If the exact mathematical model of the system is available, the model-based ap-

proaches will give more precise results as compared to the non model-based methods,

but the fact is that we usually are dealing with complex systems where having an

explicit mathematical model of the system is very hard or almost impossible. In [26]

the authors used the inherent analytical redundancy of multiple observers for sensor

fault detection. In [27], model-based fault diagnosis of rolling element bearings is

investigated using on-line vibration signals. Loparo et al. have developed a fault

detection and isolation scheme based on a filtering approach for the same application

by combining fault detection filters and sliding-mode detectors [28]. More informa-

tion on different model-based techniques, residual generation and different application

domains can be found in [4].

6



Data-driven approaches are categorized into statistical methods and artificial in-

telligence (AI) methods. In statistical approaches which are quantitative data-based

methods [29] the data obtained from sensors and health monitoring approaches are

used for hypothesis testing purposes [30]. Another statistical approach is known as

cluster analysis which is a multivariate classification approach used for fault diagnosis

and identification. More information on this method can be found in [31].

AI methods mostly depend on the experimental data obtained from the system

under study. One can use vibration data, acoustic estimations, temperature or stress

data, oil analysis, etc. and this fact makes the data-driven methods popular and able

to be applied to a wide range of systems. The type of the data to be used is chosen

according to the type of the system under study, available sensors and availability of

the data. According to [29] the data-based or history-based methods can be also di-

vided into qualitative and quantitative methods. One example of qualitative method

is employing rule-based or fuzzy logic methods. In [32] the authors have given more

insight on the use of expert systems for fault diagnosis. Li et al. [33] have applied the

fuzzy Petri-net based methods for fault diagnosis of mechanical-electric equipment.

In [34], fault diagnosis of the engine starting system is achieved by using fuzzy logic

algorithm. Fuzzy observers are used in [35] for fault diagnosis of nonlinear dynamic

systems.

Another popular data-driven method is the neural network (NN) method. Neural

networks are powerful tools for classification and function approximation [36]. Neural

networks are used in chemical engineering for process fault diagnosis [37, 38, 39].

Neural network is a quite popular method for diagnostics in the field of electrical

engineering too. Reference [40] is a survey on fault diagnosis methods for electrical

motors. Furthermore, Filippetti et al. [41] have developed an on-line scheme using

neural networks for diagnostics of an induction motor rotor. In mechanical engineering
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bearing diagnostics is achieved using feed-forward neural networks (FFNN) that are

regarded as the most popular neural network architecture [1], for more information one

can refer to [42, 43, 44]. Some other types of neural networks used for fault detection

and diagnosis are cascade correlation neural networks [45], dynamical neural networks

[46], recurrent neural networks [47] and wavelet neural network [48].

In some references neural networks and fuzzy logic are combined to build-up a

neuro-fuzzy (NF) FDI scheme. In [49] this method is applied for the fault detection

of an industrial gas turbine engine. Besides Loparo et al. in [28] utilized neuro-fuzzy

models for fault detection of nonlinear dynamical systems. A drawback of data-driven

methods is the limitations on the volume of the information that can be saved.

Despite the maturity of the research conducted in the field of fault detection,

isolation and identification, failure prognostics is still in its early stages and it has

drawn attention only recently, compared to the problem of fault diagnosis [50]. The

definition of prognostics is given earlier in this chapter but it is apparent that yet,

there is not a consistency in the literature for the definition of this term.

According to the ISO standards [51], prognostic is defined as ”prediction of a

system’s lifetime”. In other word, we are interested in finding the machine remaining

useful life (RUL) using the current condition of that system or subsystem. On the

other hand, in many applications we cannot wait until the failure happens in the

system. The reason is that for example in nuclear power plants and air plane engines

the failure can result in a catastrophic event which deals with peoples’ lives. In these

cases it would be more advantageous to study the fault propagation trend and find

the probability or the time until the failure magnitude reaches a threshold beyond

which the system must be taken off-line for maintenance. In this case, the definition

of the failure will be important too.

Similar to the FDI, failure prognostic methods can be divided into two categories
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namely model-based and data-driven based. Most of the research conducted on prog-

nostics are application specific [18]. Data-driven methods can only account for the

faults and conditions to which the system or component has been subjected to but the

reason that non model-based approaches are more popular in this domain is that un-

derstanding of the exact failure mechanism can be infeasible or even impossible [21].

In the following, some research in the domain of prognostics will be reviewed. Figure

1.4 illustrates different prognostic approaches according to their cost, reliability and

the range of applicability to different physical systems.

Figure 1.4: Different prognostic approaches [3].

In [52], the authors have developed an interacting multiple model-based approach

and tested it on an automotive suspension system. They have achieved predicting the

remaining useful life of the system through 5 steps namely, identify system model,

simulation under random noise, prognostic modelling, feature estimation and finally

tracking the degradation measure. Byington et al. [53] have applied a model-

based approach to prognosis and health management of an electromechanical actuator
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unit of flight control. In mechanical engineering, the initiation and propagation of

fatigue as a structural damages is widely studied. In [54] the authors have applied

Kalman filtering to corrosion-fatigue models. To model fatigue crack high mechanistic

understanding is required. Ray et al. [55] have developed a stochastic damage model

for the fatigue crack dynamics. They have also constructed a Kalman filtering which is

able to estimate the current damage state and predict the remaining useful life of the

structure. Time-dependent damage rate and damage propagation can be calculated

using this stochastic model and the result is suitable to be used for an on-line decision

making and real-time failure prognosis [55]. For more information on different research

projects on modelling the damages in a mechanical system one can refer to [52, 56,

57, 58, 59, 60].

Similar to the FDI, data-driven approaches are divided into two general parts.

The methods that rely on the expert systems and their knowledge and the methods

that are data-driven. Hybrid prognostic schemes have also been developed which are

combination of two methods and the goal is to use the advantages of each scheme

toward a better and more accurate result. It must be noted again that prognostic

is uncertain in nature and is a probabilistic method as we try to project the present

information into the future [3]. In [61] fuzzy logic is used for avionic maintenance

schedule planning and repair prognosis.

One domain that uses the available data is statistical based methods. In these

methods the goal is to find the probability of failure using some statistic-based meth-

ods or by fitting some probabilistic model to the data from the real system working

under varying conditions. Machine condition prognosis is performed in [62] which

uses sequential Monte Carlo method for prognostics. This is also close to the work

being done in reliability analysis. Groer has conducted time-to-failure analysis us-

ing the Weibull models [63]. Moreover, authors in [64] have presented an approach
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to be served as an alternative to stochastic modelling approaches for estimating the

time to failure of a machine. They fit a Weibull distribution to their data and have

developed an algorithm that automatically gives the Weibull parameters suitable for

each data set. Once the model is fitted, the probability density function (PDF) of the

failure can be derived and utilized to find the probability of failure or equivalently

the time to failure of the component under study. The component is recommended

to be replaced or taken for repair when the PDF reaches a high value. This con-

cept is summarized in the figure below (Figure 1.5). A description on application of

probabilistic approaches in prognosis can be found in [60].

Figure 1.5: Probability density function (PDF) for prognosis [3].

One challenging fact that can improve the prediction is that the PDF is a con-

ditional PDF, meaning that as more data becomes available a posteriori PDF will

be computed. By taking advantage of this fact, the accuracy of the prediction can

improve as time evolves, and more diagnosis data becomes available from the sensors

that are installed in the system [3]. As time goes on and the component becomes

closer to its failure the PDF becomes narrower with a smaller variance. The concept

is depicted in Figure 1.6.

Phelps et al. [65] achieved promising results by finding sensor-level test-failure
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Figure 1.6: Updated PDF function for prognosis [3].

probability vectors . These probability vectors are being tracked using Kalman filters

and bank of interacting multiple models associated with different fault types.

Data-driven methods depend mostly on process measurements. The challenging

part in these methods is to decide which measurement to use. Furthermore, because

the available data is from a real system, they contain noisy signals and first the data

preprocessing has to be conducted before going through the analysis part. Besides,

because of the uncertain nature of the prognostics, uncertainty management has to

be considered as well, and finally based on the existing data the failure or damage

propagation trends, have to be analyzed and the decision about the future condition

of the system has to be made. The two popular methods in this domain are time-

series analysis and neural networks (NN) analysis which is an artificial intelligence

(AI) based method.

Basic theory on time-series modelling and prediction can be found in [66, 67, 68,

69, 70]. The accuracy of forecasting using this method is investigated in [71]. One

popular approach is the autoregressive integrated moving average (ARIMA) method
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which is applied to non-stationary observation data. In [72], an improved ARIMA-

based approach is proposed for machine health status prediction via an automatic

prediction algorithm. The authors have tested the effectiveness of the method by

applying it to a rotor test rig which is composed of a rotor, stator, driving motor,

bearings and couplings. The results are improved as compared to the basic ARIMA

method and are very close to real data. Gang et al. [73] have proposed a novel time-

series prediction methodology based on Dempster-Shafer regression and the iterative

multi-step-ahead time series prediction method. A methane compressor is chosen

as a test-bed to evaluate the performance of the method. The results satisfy the

performance evaluation criteria [73]. Another application of time-series modelling in

a chemical processes can be found in [74] where the faults are considered to be slow

time-varying. The methodology is based on statistical methods and multivariate time

series prediction. Denoising of the data is based on wavelet denoising technology and

is applied to a continuous stirred tank reactor (CSTR).

Another very important data-driven approach to prognostics and degradation

trend analysis is neural networks (NN). Here a review of the work done in this do-

main will be presented to give an insight into the state-of-art in research. As this

method is used in this thesis, the background information will be presented in the

next chapter with more details. Neural networks are nonlinear approximators [36].

Neural networks are self-adaptive and require little information about the physical

model because they learn from examples. The NN methods have been developed for

prediction purposes and they have become practical tools for prediction problems.

The key point in this method is to be able to distinguish how the measured data

is related to the engine degradation process and damage accumulation. Authors in

[75] have developed a generic on-board prognostication scheme for helicopter gearbox

system. Vibration data is used to train ta polynomial neural network.
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Different neural network architectures and training algorithms have been pro-

posed. In [76] Zhang et al. have performed multivariate trend analysis using vibration

measurements and self-organizing neural networks. The method is applied to esti-

mate the residual life of a bearing system. In [77] the rate of machine deterioration is

predicted by utilizing a recurrent neural network (RNN). The method is tested in a

power plant and the results are shown to be satisfactory to be used in pre-scheduling

maintenance practices. Also in the field of electrical engineering backpropagation

(BP) neural network prediction model is applied for condition prediction of power

plant equipments [78]. Moreover, RNNs are applied for prediction of machine deteri-

oration in [79]. Remaining bearing life is predicted in [80] using a feed forward neural

network for one-step and multi-step ahead predictions.

In [80], Shao et al. have preformed progression-based prediction of the remaining

life (PPRL). A feedforward NN with the backpropagation training algorithm is devel-

oped for bearing remaining life prediction. Neural networks are parallel computing

devices that learn from examples and are fast. The results from this network were

compared to those obtained from the ARIMA method and it shows that NNs out-

perform the traditional forecasting methods such as time-series prediction methods.

Zemouri et al. [81] have developed a recurrent radial basis function neural network

(RRBFNN) for the problem of dynamic monitoring and prognosis. Application of

the network in two benchmarks gives good results.

In [82] degradation data from fatigue crack growth signals have been analyzed

using a feed-forward NN (FFNN) structure and the estimate for the mean and the

variance of the prediction have been derived. The authors have defined two prediction

bounds to overcome the prediction uncertainty. Moreover, FFNNs have been used

in [83] for diesel engine emission prediction, using the pressure data of an experi-

mental setup. Neural networks are also capable of predicting nonlinear systems with
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time-delay. The pressure trend of a continuous stirred tank reactor (STR) has been

predicted in [84] by using NN and nonlinear Smith predictor.

It is worth mentioning that some researchers have concentrated on hybrid methods

for prediction. They have either combined model-based and data-driven approaches

or two non model-based approaches. Hansen et al. [85] have proposed a method for

machinery prognostics which combines model-based methods with data-driven meth-

ods. The method is tested for operational life of a gear predictions and the authors

have given some suggestions on how the method can be extended and applied to

other rotary machinery such as bearings. In [86] a neuro-fuzzy prediction scheme is

developed which can accurately and quickly learn the system dynamics. The method

is applied to gear pitting damage and shaft misalignment data and is proven to be ro-

bust and reliable. Another neuro-fuzzy based approach is introduced in [87]. Domain

expert with high experimental knowledge of the system is essential in this method and

it is most useful when there is not enough information about the degradation signals

or failure modes of the system. This method has been used for online health monitor-

ing of a cutting tool. Another hybrid method for fault prognostics with application

to chemical process can be found in [88].

Above, a brief review on the work conducted in the domain of diagnosis, progno-

sis and health monitoring (DPHM) for mechanical, electrical and chemical systems

(physical systems) is given. As the focus of this thesis is on the aircraft gas turbine

engines, in the following some of the work done in FDI and prognostics of gas turbine

engines will be presented.

1.1.1 Gas Turbine Engine Diagnostics

Having a reliable fault detection and failure prognosis scheme is more critical and

important when it comes to aircraft gas turbine engines. The reason is that this
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system can be very costly if unnecessary maintenance actions are done as the jet

engine components are expensive. On the other hand if the maintenance actions

are not based on condition monitoring and are not done in time, there is a chance

of catastrophic events such as plane crashes. For these reasons the condition-based

maintenance is a highly active research subject in the academia and industry. The

classification of methods is the same as the other mechanical systems which were

mentioned earlier.

First we will investigate some research in the field of fault detection, isolation and

identification related to gas turbine engines. There are many information sources in

a gas turbine engine [89]:

Engine gas path measurements

Oil-Fuel system measurements

Vibration measurements

On-board engine models

Companion engine data

Engines gas path measurements are the data obtained from the engine’s gas path

such as inner-stage temperatures, pressures, fuel, spool speed, etc. The changes in

these data can be studied and used as a measure to judge if the engine is working

away from its desired and healthy state. The method which relies on this type of

data is called gas path analysis (GPA) method. More information on GPA analysis

can be found in [90, 91]. The concept is illustrated in Figure 1.7. The key point

in FDI methods is defining the proper residual signals and when the signals am-

plitude are greater than a predefined threshold, the malfunction is detected in the

system. Different methods exist in the literature for threshold determination such as

adaptive thresholding [92], [93]. The type of residual signal depends on the type of

measurement available.
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Figure 1.7: Schematic of an FDI approach [4].

Model-based approaches are one of the popular diagnosis methods for gas turbine

engines. In model-based approaches one tries to mathematically model the compo-

nents and then investigate how the measurements change when an anomaly exists in

the jet engine. In [94] a Kalman filtering methodology is introduced for gas turbine

engine fault detection and isolation. Kalman filter is a linear model-based estimator

and the method has proven to be very accurate.The gas path data taken along the

engine gas path are utilized here. Dewallef et al. have combined Kalman filters with

classification techniques for engine diagnostic purposes [95]. The goal is to recursively

estimate a set of health parameters associated with an engine component. Bayesian

belief network (BBN) is used as the classification method and then it is combined with

Kalman filters. The method is tested on a ”twin-spool mixed-flow turbofan” which

is a civilian aircraft. Different fault classes are then defined for different components

such as high pressure compressor (HPC) or low pressure turbine (LPT). Finally the

identification results for different faults are presented which shows the avoidance of

false alarms and less number of undetected faults.

A bank of Kalman filters is integrated with fault isolation logic for the FDI of
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sensor and actuator faults which demonstrates the popularity of Kalman filters in fault

detection and isolation [96]. The method appears to be robust as the measurement

noise has also been considered. The detectable faults are physical faults that can

occur in the system due to different reasons such as worn seals, foreign object damage,

blade erosion or corrosion and as a result they may change different engine gas path

variables. This discussion is summerized in Figure 1.8.

Figure 1.8: GPA principle [5].

In spite of the previous research where Kalman filters were used as linear estima-

tor, in [9, 97] the authors have applied the extended Kalman filter concept (EKF) for

nonlinear fault diagnosis of the jet engine. The developed multiple model-based ap-

proach enables single as well as concurrent fault detection and isolation in the engine.

Using the maximum probability criteria the engines operating mode is determined.

Also, authors in [98] have applied the method for the case of in-flight sensor fault

detection.

In an aircraft engine it is vital to detect the system deviations from its nominal

behaviour as early as possible [99]. Anomalous operation of the engine can affect

undesirably both the engine function and the aircraft mission management. Generally

speaking, if the mathematical model of the system in addition to different fault models

and their progression are available, model-based approaches are more accurate and

effective. It is also possible to implement them on board. But often, it is very hard
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or complicated to find the explicit mathematical model as the system complexity

and uncertainties increase. As a result the accuracy of the results will decrease.

This problem is especially highlighted for the case of gas turbine engines, where the

complexity of the system makes it challenging to have an accurate mathematical

model. In this case data-based techniques have proven to be useful as the measured

data have captured system’s relation as well as the uncertainties [100], random error,

and unbiased sensor error that are present in the system. The results from these

methods can only account for the modes through which the system is operating, but

they are very practical methods for complex systems. Yet, there does not exist a

method that can outperform others in every aspect and there is a trade-off between

generality and accuracy of the method. In the following, some data-driven work for

the FDI of gas turbine engines will be presented.

The existing data-driven methods for the engine FDI are categorized into statis-

tical approaches and artificial intelligence (AI) approaches [101]. In [102] an off-line

fault diagnosis method is proposed for gas turbine engines working in the steady-

state mode. The authors have realized a multiple Bayesian model in one hierarchical

model for detection and identification of different fault scenarios. Single and concur-

rent faults are successfully detected in their scheme. Sensor bias and its magnitude

can be estimated as well. The case study is a single shaft gas turbine engine with

a faulty compressor and an unbiased fuel flow sensor. Four health parameters are

estimated from six measurements. More information on Bayesian network approach

in fault diagnosis can be found in [103, 104, 105].

In AI methods, fuzzy-logic methods and NN methods are the most popular ones

[106]. In [107] a fuzzy logic system is developed for gas turbine engine fault isolation.

The model is 95% accurate but it is still valid if the uncertainty level increases with

the help of some additional data. Fault isolation in gas turbine engines is achieved
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in [108] using fuzzy classification methods. More information on this subject can be

found in [109, 110, 111, 112].

Neural networks have been frequently used in the FDI domain for a complex sys-

tem such as gas turbine engine for the reasons pointed out earlier. In [113] radial

basis function neural networks (RBFNN) as a class of feed-forward neural networks

have been proposed as a generic method for fault detection. From the output of the

network it can be determined if the system is operating under nominal condition or

anomalous condition. The method is applied to advanced military aircraft subsys-

tems. In [114] the authors have diagnosed a fault in gas turbine engines in a fleet

of aircraft using neural networks. Campa et al. [115] have designed a sensor fault

detection, isolation and accommodation (SFDIA) scheme for diesel engines. They

have employed neural networks and thus the physical redundancy in the sensors in

not needed.

In [116] neural networks are applied for fault diagnosis of a turbo fan engine

working in the steady state condition. According to the authors there are many

advantages in applying this method, namely only small number of measurements

are required and the scheme is capable of detecting multiple faults. In addition to

component faults, sensor faults are also detectable and it also works in the presence of

measurement noise. Authors in [117] have applied a different type of neural network

namely probabilistic neural network and they have investigated the effectiveness of

this method for gas turbine engine fault diagnosis. Component faults are considered in

a turbofan engine, shaft speed, pressures and temperatures are considered as deciding

factors. Operating conditions are also provided about the ambient conditions, flight

speed and fuel flow rate. Using these data, type, location and severity of faults

are determined. Fault patterns contain five different noise levels which are single and

concurrent fault scenarios. In [118] NN was applied for fault diagnosis in a gas turbine
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engine and fuel related faults.

Neural networks are not only practical tools for fault detection in civilian aircraft

engines but also powerful tools in military engine applications. In [119] three neural

network architectures are applied to F16 flight line data for diagnostics purposes.

More information on the data acquisition, pre-processing, types of neural networks

and post-processing can be found in [119]. In [120] the concept of resource allocating

network (RAN) is combined with an RBF neural network for fault detection in a

gas turbine engine. Measurements from six engine sensors are utilized and all fault

scenarios happen when the engine is working in the cruise mode. The scheme has

been tested for several fault scenarios. Support vector machine (SVM) is another

method which has been applied for gas turbine engine fault detection and isolation

[121].

Another type of neural network which has proven to be useful in diagnostics,

especially for nonlinear dynamical systems, is the dynamic neural network (DNN)

[122, 123]. They are applied to aerospace systems such as satellite diagnostics [124,

125, 126, 127]. They have also shown promising results for gas turbine engine related

applications . Fault diagnosis is accomplished in [128] for a turbo-charger applying

dynamical neural network structure. In [129], Mohammadi et al. have proposed a

dynamic neural network-based methodology for anomaly detection in the gas turbine

engine. This novel architecture belongs to a class of locally recurrent feed-forward

neural networks with the processing units equipped with dynamic characteristics.

Different fault scenarios verify the efficacy of this novel method.

Researchers have found interest in integrating different diagnostic methods and

developing a hybrid approach for this purpose. Volponi et al. in [94] have used

Kalman filters and neural networks methodologies to find the malfunction and de-

viations from the normal engine behaviour. The individual methodologies have also
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been compared in this study. Another possible combination is the integration of neu-

ral networks with genetic algorithm (GA) method. In [130], the neural network part

of the scheme is used for engine components fault diagnostic and the GA is applied for

sensor bias detection and estimation. By integration the two methods one can take

benefit from each method’s advantage. Neural networks enable nonlinear estimation

and GA methods bring more robustness. The results are promising in terms of fewer

missed detection and false alarms. Authors in [131] have developed a two stage inte-

grated model which integrates GA and nested neural networks. The scheme is tested

on an engine and has proven to increase the accuracy, reliability and consistency of

the results as well as reducing the number of runs and computational loops which are

important factors in data-based methods.

Neuro-fuzzy methods are also popular methods in the field of engine diagnostics.

The reference s[111] and [132] are examples of integration of expert systems with neu-

ral networks. In [49] Palade et al. have applied neuro-fuzzy methods for both residual

generation and residual evaluation. The method is mainly applied for actuator fault

detection in a gas turbine.

1.1.2 Gas Turbine Engine Prognostics

After a fault is detected and isolated in the gas turbine engine, the prognostic scheme

must be activated to find the failure progression trend and give an estimation about

either the system’s remaining useful life (RUL) or the health state of the system at a

given future time. Prognostic is nowadays recognized as a key feature in maintenance

strategies [133]. Once the RUL becomes predictable, maintenance actions can be

planned and disastrous events can be prevented. The number of literature in this

field is few as compared to the work done in the field of FDI. In a gas turbine engine

- as mentioned earlier- the gas path measurements are available and the goal is to
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relate these measurements to the engine health parameters, namely efficiency and

mass flow rate, and to finally find how deviation from the normal performance in the

system can change these parameters. Some model-based and data-driven methods

for engine prognostics will be presented in the following.

In [134] a probabilistic life prediction approach is suggested for prognosis of air-

craft jet engine components. This method derives a physics-based mathematical

model which uses information from finite element analysis and damage accumulation

algorithms. The probability of fracture of titanium compressor disk is calculated using

real usage data for an actual F-16/F100. Mahulkar et al. [135] developed a model for

degradation modelling in an engine actuator. The degradation mathematical model

is used for predicting the degradation. It should be noted that the model is only valid

for the specific type of fault introduced in the paper. In [136] a robust prognostic

technique is introduced. It consists of two stages. In the first stage a wavelet filter

based method is used for fault diagnosis and once the fault is detected in the second

stage self organizing maps (SOM) are used for performance degradation assessment.

Orchard et al. [137] have proposed a novel prognostic scheme which is based on

Bayesian estimation techniques. They have developed a particle filtering framework

which has a variety of applications in the field of science and engineering. A posterior

probability density function of the state is predicted using the state dynamic model.

The method is tested for crack fault prognosis and has proven to be robust for long-

term prediction. More information on model-based or physics-based prognostic can be

found in the references [57, 138, 52, 56, 139]. Model-based methods are accurate and

they give physical understanding of the system under study. This is s great advantage

but the drawback of these methods is that in most of the complicated systems a

mathematical model is not available or is inaccurate because of many simplifications

resulting from ignorance in modelling or lack of information and formulation.
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Data driven approaches as pointed out earlier use real data that may come either

from sensor measurements or the operator measures. Available methods in the liter-

ature which are relatively rare, can be divided into AI based methods and statistical

based methods. Using NNs for prediction is a suitable choice as they are adaptable,

robust tools, general and open tools [133]. In [140] Wang has proposed a dynamic

wavelet neural network architecture (DWNN) for fault prognostics. This architecture

has storage capacity and is capable of predicting into the future. This prognosticator

can be used as a link between diagnostic and maintenance scheduler part of a DPHM

scheme. DWNNs are flexible in terms of nonlinear mapping and hardware implemen-

tation and parallel processing as compared to other time series prediction methods

such as ARIMA. The output of the network is the fault growth and the results can

always be updated as more data becomes available. More discussions are presented

in this paper about stability analysis, uncertainty management and performance as-

sessment. More information on the uncertainty associated with prognostic especially

in gas turbine engines can be found in [141, 142].

A dynamic neural network model is used in [143] for engine remaining life com-

putation. The inputs to the network are some real data from sensors installed in

the engine gas path such as spool speed and gas temperature and then the stress

and temperature of the future time of some critical engine components are predicted.

The predicted measurements reflect the engine’s health in the future and facilitate an

estimation about the remaining useful life of the system or its sub-systems. Xu et al.

[144] have investigated the predictive performance of neural networks for failure prog-

nosis in engine systems. RBF NNs are used and the effect of hidden layer nodes are

investigated. They have concluded that NNs outperform ARIMA modelling meth-

ods. [145] is another example of data-driven method for engine prognostics where

fault prediction is achieved by using temporal Kohonen maps.
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Some statistical and time series prediction methods have been applied for the

problem of gas turbine engine trend analysis and prediction. Neural networks can

also be regarded as the problem of time-series prediction as they are trying to capture

the relation between the measured data and map them into the future [81]. In [146]

performance deterioration of a turbofan engine is predicted using ARIMA time-series

prediction methods. The authors consider one variable that reflects the effect of

degradation and use its history to predict its future trend. The variance of the

forecasting method serves for performance assessment. ARIMA method is more useful

for short-term prediction. Some hybrid methods also exist in the literature. In

addition to the above mentioned work [147, 148, 86] have combined different AI

methods or AI method with model-based method or AI methods with statistical

based methods .

1.2 Motivation of the Work

In this thesis the problem of gas turbine engines prognostics based on an artificial-

intelligence degradation trend analysis method is studied. Prognostics is part of a

diagnosis, prognosis and health Monitoring (DPHM) scheme. Condition-based main-

tenance systems, as opposed to time-based maintenance systems which are mostly

corrective and preventive maintenance, focus on the timeliness of the maintenance

action.

Prognostic is currently a key feature and game-changing technology which helps

the users to avoid unnecessary maintenance costs. Prognostics has drawn the at-

tention of the users only recently. An efficient prognostic scheme can result in the

significant enhancements in the readiness and reliability of complex and dynamical

systems. Prognostic can be even more important in complex systems such as aircraft

engines where it allows minimization of system breakdowns and downtimes. The goal
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of prognostic is to find the time to failure (TTF) of the system based on some current

measurements and evidence from the system. Another approach to prognostic when

it is not practical to find the TTF is instead to find the future state of the system for

some steps ahead and then decide if the system will work efficiently at that time or

some maintenance is required.

For the case of a gas turbine engine, performing maintenance before the system

health is close to its critical point can be very inefficient economic-wise. On the

other hand the operators cannot wait until the components reach their failure point

as aircraft engines are safety critical machines. Thus an early prediction on the

degradation levels can save lives and also can be cost-efficient. Gas turbine engine

components like all other mechanical components degrade over time as they work

under varying conditions such as different level of stress and temperature. These

changes are even more significant when the engine is in the take-off mode compared

to other modes of its mission profile. The consequence of high stress and temperature

lead to changes in the components efficiency and mass flow rate which are called

engines’ health parameters. As the health parameters are not directly measurable,

we study their effect on the gas path measurements.

Degradations can be divided into soft and hard degradations. Foreign object

damage (FOD) is an example of hard degradation. In this thesis the increasing trends

of the engine soft degradation i.e. fouling, erosion and corrosion are studied and

predicted using the gas path measurements such as inlet temperature and pressure.

Toward this end different neural networks are used such as recurrent neural networks

(RNN)and nonlinear autoregressive neural networks (NARNN) and their effectiveness

and accuracies in prediction are compared with the number of input parameters and

computations. The goal is to predict the single spool jet engine degradation level for a

number of flights ahead based on the current and past engine’s gas path measurements
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and decide if the next flights would be safe or maintenance actions are required.

Finally, it is worth to mention that prognostics in general is in its novice stage,

especially in the area of gas turbines and to the author’s best knowledge few works

exist on the prediction of soft degradations using AI methods.

1.3 Thesis Contribution

In this thesis, novel solutions for the problem of the jet engine prognostics are proposed

based on artificial intelligence approaches. Towards this end, the problem of the jet

engine degradation trend prediction is addressed by using two different neural network

architectures. Each of the proposed neural network architectures are proposed with

features which enable an acceptable prediction. The obtained prediction results may

be used later in an CBM scheme. Towards solving this problem, some contributions

are made in this thesis which are detailed below:

After conducting an extensive literature review, it was concluded that although

there has been extensive related works in the field of FDI, not much exists in the

field of failure prognostics. Hence, there is an immediate need for developing related

methodologies. Neural networks are applied to a large number of real-world problems

with considerable complexity, but they have not been applied to the problem of the

jet engine prognostics and degradation trend prediction.

Neural networks performance and reliability depend mostly on the data they are

provided with. Using a set of high quality and validated data can enhance the re-

sults. This is especially important when one is projecting the results into the future.

Towards this end, one should provide the neural networks with proper examples of

the jet engine affected by different types and levels of degradations. In Chapter 3 of

this thesis we have modelled the two main causes of the engine degradation namely

fouling and erosion. These models are added to a high quality engine simulator. We
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have demonstrated the validity of the data obtained from our SIMULINK model by

comparing the results of different scenarios with the similar ones obtained from a gas

turbine simulation program called GSP [175].

Once a suitable data set is available, the prediction problem is addressed in Chap-

ter 4 by using a recurrent neural network (RNN) scheme. Recurrent neural networks

due to their global feedback paths from the network outputs to the network inputs,

can capture the dynamics of the model and temporal behaviour. Unlike some refer-

ences in the literature that have used static neural networks for prediction, we have

used RNN and obtained satisfactory results. This has been demonstrated through

various simulation scenarios and case studies for the two degradation types with dif-

ferent levels, both quantitatively and qualitatively. Moreover, we have considered and

overcome the uncertainty problem associated with prediction problems by defining a

lower and upper prediction bounds. The bounds along with the real and predicted

data points are shown for all the scenarios.

In Chapter 4, a nonlinear autoregressive with exogenous inputs (NARX) neural

network architecture is proposed for an enhanced trend prediction. The proposed

network is equipped with unique features which makes it capable of prediction. NARX

architecture is a type of dynamical recurrent neural network that enables reliable long-

term prediction by learning the long-term dependencies from the provided data set.

They are used for the first time in this thesis for engine degradation prognostics.

This network makes use of the benefits of both the recurrent and the dynamic neural

networks. The prediction bounds are considered again for uncertainty management

and handling noisy measurements.

The prediction performance of the two proposed neural networks need to be com-

pared quantitatively. Towards this end, evaluation methods are introduced and ap-

plied to the obtained results from different scenarios of each network. The criterion
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selected is called NAIC, which considers prediction error, volume of the data used for

training, number of network parameters and network complexity. A smaller NAIC

implies a better network performance.

The capabilities of our proposed neural networks in, make them ideal tools for

prediction purposes which can later be used for condition based maintenance instead

of conventional time based maintenances.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, some background

information which will be used in this thesis will be briefly reviewed. We will start by

introducing three types of neural networks namely recurrent neural networks, time-

delay neural networks and nonlinear autoregressive neural networks which will be

used in the following chapters for engine prognostics. Afterwards we will present

single-spool jet engine nonlinear mathematical equations to be used for developing

a simulation model of the aircraft engine. We will finish the chapter by introduc-

ing the GSP software and shedding more light on the importance of performance

monitoring and trend analysis. In Chapter 3, we will introduce different sources of

engine deterioration and then we will focus on modelling two of the most important

ones, namely fouling and erosion. The degradation models will be integrated with

the model introduced in Chapter 2 and the data derived from this model will be

validated by GSP software to be used later for prognostics. These data will be used

and analyzed in Chapter 4 to predict the engine condition for certain flights ahead

by using recurrent neural network for engine that is affected by fouling or erosion.

Various simulation results sill show the prediction performance of our method and

we will describe our methodology in more detail. In Chapter 5 we will continue our

investigation on the capability of dynamical neural networks for engine degradation
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level prediction (prognosis). More simulations will be performed to demonstrate the

effectiveness of our proposed methods. At the end of this chapter the two methods

will be compared with each other. Finally, the conclusion will be drawn in Chapter

6 and some future work will be discussed.
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Chapter 2

Background

In this chapter we present some background information on the material which are

to be used in this thesis. In this work, the problem of prognosis in a single spool

jet engine using the neural network methodology is addressed. This goal is achieved

by applying two different neural networks on a single spool jet engine data derived

from a MATLAB/SIMULINK model. Firstly, we introduce recurrent neural networks

(RNN) and then in Chapter 4 we will see how this network is used for single spool

engine degradation prognostics. Moreover, we will introduce and describe a type of

dynamical neural networks (DNN), namely nonlinear autoregressive neural networks

(NARNN) which will be used for prognostic purposes in Chapter 5 of this thesis.

Finally, we will briefly describe the single spool engine SIMULINK model to which

the prognostic scheme will be applied to, as well as some of the nonlinear equations

that are used for developing this model.

2.1 Artificial Neural Networks

Enabling machines to find a right solution for complex problems in a more human-

like fashion is known as artificial intelligence (AI). This generally applies to computer
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machine via an algorithm, which has approximated human brain characteristics. Ar-

tificial intelligence has four main branches that include case based reasoning, genetic

algorithms, expert systems and neural networks [36], which can be chosen based on

the specific application.

An artificial neural network (NN) is an information-processing paradigm that is

inspired by the circuit of biological neurons with the aid of learning to recognize

patterns from a certain data. The key point of this paradigm is the novel data

analysis technique by using a solution with reasonable accuracy when the underlying

data relationship is unknown [149]. Once the NN is trained on collection of data, it

can predict the outcome by detecting similar patterns of the input. Thus using NN for

analyzing the data stream can make the problem of detecting and predicting possible

faults even if the data are imprecise and noisy. Different neural network architectures

exist but in this chapter we will focus on the ones that are used in this thesis.

2.1.1 Recurrent Neural Networks (RNN)

One special form of neural networks is called recurrent neural network (RNN). The

network can have single or multiple hidden layers of neurons. The fundamental differ-

ence between RNNs and feedforward neural networks is that they have one or more

feedback loops. The feedback loop can appear in many forms between any two neu-

rons or layers. Recurrent neural networks exhibit complex dynamics as they consist of

a large number of feedforward and feedback connections [150]. These connections give

them extra advantage over feedforward NNs for handling time-series and dynamical

related problems. A recurrent network with a smaller network size may be equivalent

to a large or complicated type of feedforward NN architecture.

There has been a wide application of recurrent networks in the field of intelligent
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control, system identification and dynamical systems applications. In these applica-

tions, theoretical study of stability, convergence of the network and their functional

approximation capabilities are regarded as important. In [151] an adaptive observer

is proposed by using a generalized recurrent neural network where the learning is

occurring on-line with no off-line learning. The overall adaptive observer scheme is

shown to be uniformly ultimately bounded. In [152] the authors have presented a

real-time learning control scheme for unknown nonlinear dynamical systems using re-

current neural networks (RNNs). A generalized real-time iterative learning algorithm

is developed and used to train the RNN. The paper shows that an RNN using the

real-time iterative learning algorithm can approximate any trajectory tracking to a

very high degree of accuracy.

The use of recurrent neural networks as predictors and identifiers in nonlinear

dynamical systems has received significant attention [6]. They can exhibit wide range

of dynamics, because of feedback, and are also tractable nonlinear maps. In this thesis

recurrent neural network models are considered as massively interconnected nonlinear

filters with feedbacks that enables a more potential structural richness. The RNN

architecture is used for prediction purposes, hence we present the material which are

related to this aspect regarding the recurrent neural networks.

The basic building blocks of a discrete time predictor are adders, delays, multiplies

and for the nonlinear case zero-memory nonlinearities. In order to use neural networks

as nonlinear predictors, zero-memory nonlinearities such as threshold, piecewise-linear

and logistic are required. These basic building blocks, form the neurons in the NN

architecture.

The inputs are assumed to be the delayed version of the neuron output (y(k)).

In the problem of prediction, the nature of inputs to the network must capture some

information about the time evolution of the discrete time signal or measurement.
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Figure 2.1: Structer of a neuron for prediction [6].

The simplest situation is for the inputs to be the time-delayed version of the output

signal, i.e. y(k − i), i = 1, 2, ..., p, which is known as a tapped delay line. This type

of network provides a short-term memory of the signal. The overall predictor can be

represented as:

ŷ(k) = φ(y(k − 1), y(k − 2), ..., y(k − p)) (2.1.1)

where φ represents the nonlinear mapping of the neural network.

A typical recurrent neural network is depicted in Figure 2.2. If we consider con-

necting the delayed versions of the output ŷ(k) of the network to its input, all together

with the delays, one can introduce memory to the network and this structure becomes

suitable for prediction. Information on the stability of such network can be found in

[6].

As can be seen in the figure, the feedback within the network can be local or

global. The global feedback is achieved by connecting the network output to the

network input while the local feedback is produced by introduction of feedback within
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Figure 2.2: Canonical form of a recurrent neural network for prediction [6].

the hidden layer. The output of an RNN when used as a predictor, employing a global

feedback can be represented by,

ŷ(k) = φ(y(k − 1), y(k − 2), ..., y(k − p), ê(k − 1), ..., ê(k − q)) (2.1.2)

where ê(k − j) = y(k − j) − ŷ(k − j). In other words, by adding the feedback and

tapped-delay line to a static network architecture, we are adding memory to the

network and then it becomes capable of prediction. This concept is shown in Figure

2.3.
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Figure 2.3: Canonical form of a recurrent neural network for prediction [6].

The choice of the structure depends on the dynamics of the signal, learning al-

gorithm, the prediction performance and the application. It is important to note

that, there is no fast rule by which the best structure can be found for a particular

problem [153]. In the following we will introduce some of the activation functions

used for prediction and the activation function used for our model in this work will

be presented in Chapter 4.

To introduce nonlinearity to the network, we use nonlinear activation functions.

Any nonlinear function help us achieve this goal, however for gradient-descent learning

algorithm, this function σ(.) should be differentiable and belong to the class of sigmoid

function. Surveys of neural transfer functions can be found in [154]. Examples of

sigmoidal functions are:
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σ1(x) =
1

1 + e−βx
(2.1.3)

σ2(x) = tanh(βx) =
eβx − e−βx

eβx + e−βx
(2.1.4)

σ3(x) =
2

π
arctan(

1

2
πβx) (2.1.5)

σ4(x) =
x2

1 + x2
sgn(x) (2.1.6)

where β belongs to the set of all real numbers. According to Cybenco [155] a neural

network with a single hidden layer of neurons with sigmoidal functions and enough

neurons can approximate an arbitrary continuous function.

Recurrent Neural Network Architectures

Two common ways of producing recurrent connections in a neural network are acti-

vation feedback and output feedback which are shown in Figure 2.4.

The output of a neuron shown in Figure 2.4 on the top is obtained as

v(k) =
M∑
i=0

wu,i(k)u(k − i) +
N∑
j=1

wv,j(k)v(k − j)

y(k) = Φ(v(k))

⎫⎪⎪⎬
⎪⎪⎭ (2.1.7)

where wu,i and wv,j represent the weights associated with u and v, respectively. The

output of a neuron shown in Figure 2.4 on the bottom is obtained as

v(k) =
M∑
i=0

wu,i(k)u(k − i) +
N∑
j=1

wy,j(k)y(k − j)

y(k) = Φ(v(k))

⎫⎪⎪⎬
⎪⎪⎭ (2.1.8)

where wy,j represent the weights associated with the delayed outputs.

Each of these types when employed in a general feedforward structure, build up
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Figure 2.4: Recurrent neural network architectures. The plot on the top is the ac-
tivation feedback scheme and the plot on the bottom is the output feedback scheme
[6].

a type of neural network known as locally recurrent-globally feedforward (LRGF) ar-

chitecture which is shown in Figure 2.5. This architectures allows one the use of

dynamic neurons both within the input and the output feedback as represented by

Hi and HFB, respectively.

Another type of recurrent neural network is known as Elman network with one

hidden layer. A simple example is depicted in Figure 2.6. This architecture consists

of a multi layer perceptron (MLP) network with an additional delayed input.

Another architecture is the Jordan recurrent neural network which is shown in

Figure 2.7. The network consists of an MLP with one hidden layer plus a feedback

loop from the output layer to an additional input which is called context layer. This
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Figure 2.5: General LRGF architecture [6].

context layer contains self-recurrent loops. The structure of both Elman and Jordan

networks is locally recurrent and thus they have limitations in including past informa-

tion. Because of the limitations mentioned above associated with Elman and Jordan

networks in this thesis we have used a fully connected recurrent neural network which

has a rich representation of past outputs and is shown in Figure 2.8

The network consists of three layers, namely input layer, processing layer and the

output layer. For each neuron i, i = 1, 2, ..., N , the elements uj, j = 1, 2, ..., P +N +1

of the input vector to a neuronu are weighted, then are summed to produce an

internal activation function of a neuron v, which is ultimately fed through a nonlinear

activation function φ which yields the output of the ith neuron yi. The function φ is

a sigmoidal function that is monotonically increasing with slope β.

The weight of the ith neuron at the time instant k form a (P+N+1)× 1 dimen-

sional weight vector wT
i (k) = [wi,1(k), ...., wi,P+N+1(k)] where P is the number of

external inputs, N is the number of feedback connections and (.)T denotes the vector

transpose operation. The additional element of the weight vector w is the bias input

weight and the feedback consists of the delayed version of the output signals of the

RNN. The above concept is presented by the following equations:
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Figure 2.6: An example of Elman recurrent neural network [6].

yi(k) = Φ(vi(k)), i = 1, 2, ....N (2.1.9)

vi(k) =
P+N+1∑

l=1

wi,l(k)ul(k) (2.1.10)

uT
i (k) = [S(k − 1), ..., S(k − P ), 1, y1(k − 1), y2(k − 1), ..., yN(k − 1)] (2.1.11)

where the (P+N+1)× 1 dimensional vector u includes both the unity valued constant

bias input as well as the external and feedback inputs to each neuron.
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Figure 2.7: An example of Jordan recurrent neural network [6].

Learning Algorithm for the RNN

Generally in any neural network, the goal is to determine an adaptive algorithm that

can adjust the parameters of the network based on the set of input-output data set.

Different learning methods exist which can be categorised as supervised and unsu-

pervised learning. In this part we present the learning algorithm for recurrent neural

network shown in Figure 2.8. The neurons are depicted by circles and incorporate

the operation Φ(.). For the nth neuron, the weights are (P +N +1)× 1 dimensional

weight vector wT
n = [wn,1, ..., wn,P+N+1], where P is the number of external inputs,

N is the number of feedback connections, and the remaining term is the bias in-

put weight. The feedback connections as mentioned previously represent the delayed

output signals of the RNN. Equations (2.1.9) to (2.1.11) describe our RNN.

For the nonlinear prediction paradigm, there is only one output neuron for the

RNN. The error is defined as the difference between the output value of the network

and the target (desired output) value. The instantaneous error e(k) can be positive,

negative or zero. Training of the RNN is based on minimizing the instantaneous
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Figure 2.8: A fully connected recurrent neural network [6].

squared error at the output of the first neuron of the RNN [156]. The error to be

minimized is expressed as:

min(
1

2
e2(k)) = min(

1

2
[s(k)− y1(k)]

2) (2.1.12)

where e(k) represents the error at the output y1 of the RNN and s(k) is the teaching

signal. The above objective function has to be minimized during the training. The

correction for the lth weight of the neuron n at the time instant k can be obtained
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as follows:

Δwn,l(k) = −η

2

∂

∂wn,l(k)
e2(k)

= −ηe(k)
∂e(k)

∂wn,l(k)

(2.1.13)

The external signal vector S(k) does not depend on the elements of wn,l, hence the

gradient becomes

∂e(k)

∂wn,l(k)
= − ∂y1(k)

∂wn,l(k)
(2.1.14)

Using the chain rule this can be rewritten as [157]

∂y1(k)

∂wn,l(k)
= Φ

′
(v1(k))

∂v1(k)

∂wn,l(k)

= Φ
′
(v1(k))

( n∑
α=1

∂yα(k − 1)

∂wn,l(k)
w1,α+p+1(k) + δn1ul(k)

) (2.1.15)

where Φ
′
=

∂Φ

∂v1(k)
and Φ is a nonlinear sigmoid function as the network activation

function and

δnl

⎧⎪⎪⎨
⎪⎪⎩
1, n = l

0, n �= l

(2.1.16)

By assumption when the learning rate η is sufficiently small, we will have

∂yα(k − 1)

∂wn,l(k)
≈ ∂yα(k − 1)

∂wn,l(k − 1)
(2.1.17)

An indexed set of variables {πj
n,l(k)} can be introduced to characterize this algorithm

for the RNN. These coefficients are called sensitivities. They are defined as
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πj
n,l =

∂yj(k)

∂wn,l

1 � j, n � N, 1 � l � p+ 1 +N (2.1.18)

The above equation is used to recursively compute the values of πj
n,l for every time

step k and all appropriate j, n and l are as follows

πj
n,l(k + 1) = Φ

′
(vj)

[ N∑
m=1

wj,m+p+1(k)π
m
n,l(k) + δnjul(k)

]
(2.1.19)

We assume the following initial conditions

πj
n,l(0) = 0. (2.1.20)

For simplification, we introduce three new matrices namely Πj(k), Uj(k) and the

diagonal matrix F (k) which are N × (N + p + 1), N × (N + p + 1) and N × N

respectively:

Πj(k) =
∂y(k)

∂wj(k)
, y = [y1(k), ..., yN(k)], j = 1, 2, ..., N (2.1.21)

Uj(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

u(k)

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j = 1, 2, ..., N, (2.1.22)

F (k) = diag[Φ
′
(u(k)Tw1(k)), ...,Φ

′
(u(k)TwN(k))] (2.1.23)

Thus the gradient updating equation for the recurrent neuron can be described as

follows [156]
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Πj(k + 1) = F (k)[Uj(k) +Wa(K)Πj(k)], j = 1, 2, ..., N. (2.1.24)

where Wa denotes the set of those entries in W which correspond to the feedback

connections. The learning procedure described above is a supervised learning algo-

rithm. Selecting an optimal ANN architecture is an open problem and needs to be

designed as warranted by the application domain. In the following we will introduce

the nonlinear autoregressive neural network (NARNN), which is used in this thesis

for prognostics.

Remark

Two different learning types are generally used, namely batch learning and online

learning. Batch learning is also known as epoch wise or off-line learning. In this

method the weights are adapted once the entire training set has been presented to the

system. The counter part is called incremental learning or pattern learning in which

the weights are updated upon the instantaneous error and are updated immediately

after each pattern is fed in. In this thesis batch learning is used.

Before we start reviewing the background information about the gas tubine engine

and the mathematical model for a single-spool engine, we will introduce the other

type of dynamical networks that is used in this thesis for engine prognostics namely

nonlinear autoregressive neural network (NARNN).

2.1.2 Nonlinear Autoregressive Neural Network (NARNN)

Nonlinear autoregressive neural network (NARNN) is the other type of neural net-

works that we have considered in this work. This model is a combination of recurrent

and dynamic network as it has both feedback path and dynamical neurons or the

tapped-delay line. NARNN can be classified as a dynamic recurrent neural network
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that is capable of modelling efficiently time series with long-term dependences. Feed-

back connections may enclose different layers of the network. The general architecture

is shown in Figure 2.9. If we consider the external input, the network is called non-

linear autoregressive neural network with exogenous input (NARX). The output of

Figure 2.9: Nonlinear autoregressive neural network architecture (NARNN) [7].

this network when having an external input is derived as follows:

y(k + 1) = f [y(k), ..., y(k − dy + 1); u(k), u(k − 1), ..., u(k − du + 1)]

= f [y(k);u(k)]

(2.1.25)

where the next value of the dependent output signal y(k) is regressed on previous

values of the output signal and previous values of an independent (exogenous) input

signal u(k) at time k. The parameters du and dy are memory delays. The NARX

model is based on the linear ARX model, which is commonly used in time-series

modelling. Two different architectures are defined for this type of neural network
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namely parallel and series-parallel architecture.

If we consider the output of the NARNN network to be an estimate of the output

of some nonlinear dynamical system that we trying to model, the output should be fed

back to the input of the feedforward neural network as part of the standard NARNN

architecture, as shown Figure 2.10.

Figure 2.10: The parallel nonlinear autoregressive neural network architecture [7].

For the parallel configuration the output regressor y(n) is obtained as follows:

yp(k) = [x̂(k), ..., x̂(k − dy + 1)] (2.1.26)

where the P-mode contains dy past values of the estimated time series. The second

configuration is called series-parallel architecture in which the true output is used

instead of feeding back the estimated output, as shown in Figure 2.11.

Similar to the P-mode, in the SP-mode the output regressor y(n) is obtained as
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Figure 2.11: The series-parallel nonlinear autoregressive neural network architecture
[7].

follows:

yp(k) = [x(k), ..., x(k − dy + 1)] (2.1.27)

where the SP-mode contains dy past values of the actual time series. This architecture

has two advantages. Firstly, the input to the feedforward network is more accurate as

it uses the past values of the actual time series not the estimated ones. Secondly the

resulting network has a purely feedforward architecture, and static backpropagation

can be used for training it.

The NARNN model converges easier and needs less training cycles than a fully

recurrent network [158]. NARNN model provides a description of the system in terms

of a nonlinear function of delayed input, output, and prediction error, and hence is

general enough to approximate any nonlinear dynamical system [159, 160]. For this

reason, they have been vastly applied in different applications such as prediction,

time-series modelling, chaotic time-series prediction, nonlinear filtering, Control and
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modelling, etc. In [160], NARNN based predictive control is proposed and tested on a

continuous stirred tank reactor process (CSTR). A comparison with other approaches

shows that this method can reduce network training time, improve solution accuracy

and results in good control performance under different operating conditions . Gang

et al. [161] have developed a hybrid nonlinear autoregressive neural network for

permanent magnet Linear synchronous motor identification.

The main capability of NARNN is in its prediction. In [162], it has been demon-

strated that this architecture is capable of representing nonlinear dynamics as well

as long-term dependencies in time-series data. They have been applied in [163] for

communication network traffic characterization . In [164] residual analysis using a

hybrid Elman-NARNN along with embedding theorem is used to analyze and predict

chaotic time series. The NARX network is used to capture the relationship among

the predicted value of original time series and residuals and original time series. Filik

et al. in [164] have investigated on short-term load forecasting using the NARNN by

using the consumption value of the electricity energy.

As was defined above, a NARNN network consists of a multilayer perceptron

which takes input window of past input and output values and computes the current

output,

y(k) = Ψ{u(k), u(k − 1)..., u(k − du), y(k − 1), ..., y(k − dy)} (2.1.28)

where Ψ is the mapping performed by the multi-layer preceptron in the network.

Figure 2.12 shows an example of such network with two input delays, two output

delays and three neurons in the hidden layer, i.e. du = 2 and dy = 2.
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Figure 2.12: Nonlinear autoregressive neural network architecture [7].

The states are updated as follows:

xi(k + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(k) i = du

y(k) i = du + dy

xi+1(k) i < i < duand du < i < du + dy

(2.1.29)

so that at time k the taps correspond to the values

x(k) = [u(k − 1), ..., u(k − du), y(k − 1), ..., y(k − dy)] (2.1.30)

The MLP consists of two nodes organized into two layers. There are H nodes in the

first layer and this performs the following function

zi(k) = σ

( N∑
j=1

ai,jxj(k) + biu(k) + c(i)

)
, i = 1, 2, ..., H (2.1.31)
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where σ is the nonlinear transfer function, ai,j, bi and ci are the network fixed weights.

Furthermore, the output layer consists of one linear node,

zi(k) =
H∑
j=1

wi,jzj(k) + θi, i = 1, 2, ..., H (2.1.32)

where wi,j and θi are the network weights with fixed value.

Generally speaking, backpropagation [165] is a commonly used technique for train-

ing feedforward neural networks whose input contains no self-feedback of its previous

outputs, such as the multilayer perceptron (MLP). More information on this method

can be found in the following tutorial paper [166]. This general method can be

adapted and extended to become applicable to recurrent and dynamical neural net-

works. Real-time recurrent learning (RTRL) [167] and back-propagation through

time (BPTT) [168, 169] are well-known training algorithms. Below we will briefly

describe each method.

When BPTT is applied for training a NARNN, the recurrent connections are

unfolded in time and the resulting network is treated as an MLP with injected errors.

In the unfolded network, the recurrent connections appear as jump-ahead connections,

that provide a shorter path for backpropagating the error through the network, hence

diminishing the problem of the vanishing gradient [162]. After presenting the data

to the network, the error is backpropagated through the unfolded network. In the

output units of the recurrent network, the local error is computed and added to the

backpropagated value from the subsequent input unit. As the error in the present time

step is reduced while taking into account the errors made in the future, the NARX

neural network is able to learn long-term dependencies in the data. The BPTT, in

its basic format is very computationally intensive [170]. In the modified version one

tries to reduce the number of time steps h over which the recurrent connections are

unfolded (or the number of network states that is saved). This modified method is
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called Truncated BPTT [169]. Besides, the algorithm can compute weight updates for

each step, but the updates can also be delayed for an additional number of steps D.

The application of both changes to the BPTT algorithm will reduce computational

time, while still following the true gradient closely [169]. This new efficient algorithm

is called BPTT (h;D) which is the same as batch-wise BPTT when h is equal to D.

If the batch size is too small, any temporal dependencies that span a longer period

than the selected batch size cannot be learned, and if it is too large the algorithm

converges slowly.

RTRL is a method which is of more theoretical interest as it easily generalizes

[171]. To adapt the network using sum of squared error cost function, we need to be

able to calculate

d
1

2
||ek||2
dW

= −eTk
dyk
dW

(2.1.33)

where

dyk
dW

=
∂yk
∂W

+
n∑

i=0

∂yk
∂xk−i

dxk−i
dW

+
m∑
i=0

∂yk
∂yk−i

dyk−i
dW

(2.1.34)

whereW is the network weight vector, ek is the network error. The first term ∂yk/∂W

is the direct effect of a change in the weights on yk, and is one of the Jacobians

calculated by the dual-subroutine of the backpropagation algorithm. The second

term is zero, since dxk/dW is zero for all k. The final term can be broken up into

two parts. The first part (∂yk/∂yk−i) is a component of the matrix ∂yk/∂X, since

delayed versions of yk are part of the networks input vector X. The dual-subroutine

algorithm can be used to compute this term. The second part (dyk−i/dW ) is a

previously calculated and stored value of dyk/dW . Initially, dyi/dW are set to zero

for i = 0,−1,−2, ... and then the rest of the terms are calculated recursively from

that point on.
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The dual-subroutine procedure naturally calculates the Jacobians in such a way

that the weight update is done with simple matrix multiplication;

(dwy)k �
[(dyk−1

dW

)T (dyk−2
dW

)T · · · (dyk−m
dW

)T]T
(2.1.35)

(dxy)k �
[( ∂yk

∂yk−1

)( ∂yk
∂yk−2

) · · · ( ∂yk
∂yk−m

)]T
(2.1.36)

The second equation obtained above is simply the columns of
∂yk
∂X

corresponding to

the feedback inputs to the network, and is directly calculated by the dual subroutine.

Then, the weight update is calculated as

ΔWk =

(
ηeTk

[
∂yk
∂W

+ (dxy)k(dwy)k

])T

(2.1.37)

It should be noted that if the learning rate (η) is small enough, the weights of the

adaptive filter converge in a stable way.

2.1.3 Data Normalization

To obtain a better result from the neural network, data preprocessing is an important

step that has to be taken before we proceed with training the network. We transform

the data by normalizing them to overcome the large differences between the mini-

mum and the maximum of the input data. Different methods exist such as Z-score

normalization and min-max normalization. We also would like to modify the input

data to fall within the range of an activation function, therefore we can normalize,

standardize, or rescale the input data, using mean (μ), standard deviation (std) and

the minimum and maximum range Rmin and Rmax.

To normalize the input data to μ = 0 and std = 1, we calculate
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μ =

∑N
i=1 xi

N
(2.1.38)

std =

√∑N
i=1(xi − μ)2

N
(2.1.39)

and perform the standardization of the input data as x̃i = (xi−μ)/std. This gives us

a standard set of data with the mean close to zero and a standard deviation close to

one. This statistical normalization method reduces the effect of outliers on the data.

To translate the data into midrange 0 and standardize to range R, we perform

Z =
maxi{xi}+mini{xi}

R
(2.1.40)

Sx = maxi{xi}+mini{xi} (2.1.41)

xn
i =

xi − Z

Sx/R
(2.1.42)

Data normalisation is the first step before training process as it has effects on training,

but it is also important to de-normalize the network output in the analysis process.

2.2 Gas Turbine Jet Engine Mathematical Model

In this section the mathematical model of a jet engine will be descried. It is true

that this research is based on data driven models but as the data from real flight

missions were not available, the data generated by a single spool gas turbine engine

model developed in MATLAB/SIMULINK is used and analyzed. In the following a

description on gas turbine engines and the mathematical model used to develop the

SIMULINK model will be presented.

A gas turbine engine is a kind of internal combustion engine which is mainly

consisting of an upstream rotating compressor, which is coupled to a downstream
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turbine through a combustion chamber. They are called gas turbine engines because

air is mixed with fuel and is ignited in the combustor. This product is then transferred

to the turbine. The gas which enters the turbine has high volume and high velocity

and hence the turbine blades start spinning and this as a result powers the compressor.

This produced energy can be used in form of thrust, compressed air, shaft power or

a combination of all and can be used for aircraft, ships, trains or generators.

The type of the gas turbine engine that we study is used for jet engines which

produce thrust form the exhaust gas. Aircraft gas turbines are categorized into tur-

bojets and turbofans [172]. Turbojets use the direct impulse of the exhaust gasses

where on the other hand turbo fans generate thrust with the addition of a ducted

fan. The schematic of a gas turbine jet engine is depicted in Figure 2.13:

Figure 2.13: Schematic of a gas turbine jet engine [8].

Single shaft engines are considered in this thesis. They have a simple configuration

which consists of a single shaft, and a high pressure compressor driven by a single

turbine unit. As pointed out earlier a SIMULINK model is developed. Based on

the available literature on modelling a nonlinear dynamics of a jet engine [9, 97]

thermodynamics, aerodynamic and mechanical relationships of the components are

used to develop the model as described below.
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The thermodynamic nonlinear model describes the behaviour of the engine. It

has two major steps. In the first step steady-state equations are considered and then

in the second step dynamic equations are studied. Steady-state equations represent

the components when working in the equilibrium point where dynamic equations

consider the jet engine to be working in the transient mode. Here we are studying an

engine which is working in the take-off mode. Other modes are namely, climb, cruise,

descent and landing. For the transient response three dynamics are recognized i.e.

rotor dynamics, volume dynamics and heat transfer dynamics.

The acceleration or deceleration of the rotor shaft (rotor dynamics) that con-

nects the high pressure compressor and the turbine is caused by the power imbalance

between the turbine and the compressor. Dynamical changes in pressure of the vol-

umes (volume dynamics) is caused by the mass flow imbalance among different engine

components.

When the engine is working in the transient mode, thermal energy is exchanged

among different engine components which causes heat transfer dynamics. The effect

of heat transfer dynamics on the behaviour of the engine is negligible when compared

to the two other existing dynamics and thus they are not considered in this work since

in this work we are concerned with a commercial single spool jet engine at normal

operating conditions and we will present rotor dynamics and volume dynamics briefly

where more detail can be found in [173].

2.2.1 Rotor Dynamics

The following differential equation can be derived using the concept of energy balance

between the shaft and the compressor:

dE

dt
= ηmechWT −WC (2.2.1)
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where E =
J(

N.2π

60
)2

2
, ηmech denotes the mechanical efficiency, WT denotes the power

generated by the turbine, WC denotes the power consumed by the compressor and J

is the rotor moment of inertia. N stands for the number of turns which is a function

of time (RPM).

2.2.2 Volume Dynamics

In order to take into account the volume dynamics, the engine components are as-

sumed to be volume-less and a volume among the components is considered to model

an imbalance mass flow rate [174]. This assumption results in a considerable elimi-

nation of algebraic loops and makes it possible to develop a generic model based on

the jet engine dynamics. Besides, we assume that the gas has zero speed and has

homogeneous properties over volume. The following equation describes the volume

dynamics:

Ṗ =
RT

V
(Σṁin − Σ ˙mout) (2.2.2)

where P denotes the pressure, R denotes the gas constant, T denotes the temperature,

V stands for the volume, ṁin denotes the input mass flow and ṁout denotes the output

mass flow.

Now we will specify the gas turbine components’ model that we use which are

schematically depicted in Figure 2.13 .
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2.2.3 Modelling of Engine Components

Intake duct

The position of the intake duct is before the compressor. It supplies the engine

with the required airflow at the highest pressure possible. When the air reaches

the compressor, its velocity decreases and on the other hand the air pressure and

temperature increases. Assuming an adiabatic process, the engine inlet pressure ratio

can be written as

pd
pamb

=

[
1 + ηd

γ − 1

2
M2

] γ

γ − 1 (2.2.3)

where M denotes the Mach number and amb denotes the ambient condition for pres-

sure and the temperature, ηd denotes the isentropic efficiency and γ stands for specific

heat capacity ratio.

Compressor

The compressor in a gas turbine engine provides high-pressure air to the combus-

tion chamber. The compressor is a quasi-steady component and for this model, its

behaviour is determined by the compressor performance map. An engine simulation

software known as GSP [175] ( gas turbine simulation program) is used for obtain-

ing the related maps. For a given pressure ratio (πC) and the corrected rotational

speed (N/
√
θ), the corrected mass flow rate can be mapped by using a proper inter-

polation technique, where θ =
Ti

To

and δ =
Pi

Po

i.e. ṁC

√
θ

δ
= fṁC

(N/
√
θ, πC) and

ηC = fηC (N/
√
θ, πC). When these parameters are obtained, the compressor temper-

ature rises and can be found from the following formula:

To = Ti

[
1 +

1

ηC
(π

γ − 1

γ
C − 1)

]
(2.2.4)
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where To denotes the output temperature, Ti denotes the input temperature and ηC

is the isentropic efficiency of the compressor. The power consumed by the compressor

can be calculated from:

WC = ṁccp(To − Ti) (2.2.5)

where ṁc denotes the compressor mass flow rate and cp denotes the specific heat at

a constant pressure.

In single spool engines there is only one shaft in the system that connects the

compressor and the turbine trough the combustion chamber. The speed of the engine

is determined by the shaft (rotor) speed. The speed is a function of the power

generated by the turbine and the total moment of inertia of the rotary system. The

relation between the power consumed by the compressor and the speed of the shaft

is given as follows:

Wc =
J(2πN)2

2
(2.2.6)

where J denotes the moment of inertia of the shaft and N is the rotor speed expressed

in RPS (revolution per second).

Combustion Chamber

In the combustion chamber the fuel is mixed with the high pressure air coming from

the compressor. The mixture is ignited and as a result of the burning fuel, the

temperature is raised. It is desirable to keep the pressure of the gas unchanged

in the combustion chamber. The combustion chamber represents both the energy

accumulation and the volume dynamics between the compressor and the turbine at

the same time. Combustion chamber inside pressure and temperature are derived as

follows
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ṖCC =
PCC

TCC

ṪCC +
γRTCC

VCC

(ṁC + ṁf + ṁT ) (2.2.7)

ṪCC =
1

cvmCC

[
(cpTCṁC + ηCCHuṁf − cpTCCṁT )− cvTCC(ṁC + ṁf + ṁT )

]
(2.2.8)

where TCC and PCC denote the combustion chamber temperature and pressure, ṁC

and ṁT denote the compressor mass flow rate and the turbine mass flow rate respec-

tively, ṁf denotes the fuel flow rate, γ denotes the heat capacity ratio, R stands for

the gas constant, cp and cv stand for specific heat at constant pressure and volume

respectively and Hu is the fuel specific heat.

Turbine

Turbine’s function in a jet engine is to extract a portion of the kinetic energy from

the high-temperature combustion gasses for deriving the compressor and accessories.

In a typical jet engine three quarter of the internally produced power is consumed for

deriving the compressor and the remaining power will be used to generate the thrust.

Turbine is a rotatory component through which gas with high temperature passes.

Similar to the compressor, the behaviour of a turbine is also represented by using the

turbine performance map. The maps used in this work are derived from the GSP

software [175].

For a given pressure ratio (πT ) and the corrected rotational speed (N/
√
θ), the

corrected mass flow rate ṁT

√
θ/δ and the efficiency (ηT ) are obtained from the per-

formance map i.e. ṁT

√
θ

δ
= fṁT

(N/
√
θ, πT ) and ηT = fηT (N/

√
θ, πT ). The tempera-

ture drop and the turbine mechanical power which is proportional to the temperature
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decrease in the turbine can be found from the following formulae:

To = Ti

[
1− ηT (1− π

γ − 1

γ
T )

]
(2.2.9)

WT = ṁT cp(Ti − To) (2.2.10)

where ṁT denotes the compressor mass flow rate and cp denotes the specific heat at a

constant pressure. In a jet engine the power generated by the turbine is proportional

to the power consumed by the compressor.

Nozzle

Nozzle is the last component of a jet engine. The working fluid is expanded in the

nozzle to produce a high-velocity jet. The high pressure exhaust gas is accelerated

in a jet pipe which is located between the turbine outlet and the nozzle throat to

become close to the ambient pressure and as a result produces thrust. The nozzle

exit temperature is given by:

Tni
− Tno = ηnTno

[
1− (

1

Pni
/Pamb

)

γ − 1

γ
]

(2.2.11)

where ηn is the isentropic efficiency of the nozzle.

The mass flow rate of the nozzle is computed as follows: if condition (2.2.12)

holds, the mass flow rate is derived from equation (2.2.13), otherwise it is obtained

from equation (2.2.14). In other words, if

Pamb

Pni

〈[
1 +

1− γ

ηn(1 + γ)

] γ

γ − 1 (2.2.12)
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then,

ṁn

√
Tni

Pni

=
u√
Tni

An

R

Pamb

Pni

Tni

Tno

(2.2.13)

where
u√
Tni

=

√√√√
2cpηn

(
1− (

Pamb

Pni

)

γ − 1

γ
)

, and
Tno

Tni

= 1− ηn

(
1− (

Pamb

Pni

)

γ − 1

γ
)

otherwise

ṁn

√
Tni

Pni

=
u√
Tni

An

R

Pcrit

Pni

Tni

Tcrit

(2.2.14)

where
u√
Tni

=
2γR

γ + 1
,
Pcrit

Pni

=
(
1− 1

ηn
(
γ − 1

γ + 1
)
) γ

γ − 1 and
Tcrit

Tni

=
2

γ + 1
. It is assumed

that Pni=PLT
and Tni

= TM , which is obtained from the energy balance relation in

the mixer as follows:

TM =
ṁTTT + βṁCTC

ṁT + βṁC

(2.2.15)

where β is the bypass ratio.

Set of Nonlinear Equations

In this part a set of nonlinear equations related to a single spool jet engine will be

presented. In the engine intakes, the temperature and the pressure can be obtained

as follows if we assume adiabatic process;

Td

Tamb
= 1 +

γ − 1

2
M2 (2.2.16)

and

Pd

Pamb

=

[
1 + ηd

γ − 1

2
M2

] γ

γ − 1 (2.2.17)

62



Again it must be noted that the commercial software GSP ([176]) is used for the

purposes of conducting model validation studies. To summarize, the set of nonlinear

equations corresponding to a single spool jet engine is given by

ṪCC =
1

cvmCC

[
(cpTCṁC+ηCCHuṁf −cpTCCṁT )−cvTCC(ṁC+ṁf +ṁT )

]
(2.2.18)

Ṅ =
ηmechṁT cP (TCC − TT )− ṁCcP (TC − TD)

JN(
π

30
)2

(2.2.19)

where J denotes the inertia of the shaft connecting the compressor to the turbine,

ηmech denotes the mechanical efficiency and is a rating that shows how much of the

power developed by the expansion of the gasses is actually delivered as useful power.

ṖT =
RTM

VM

(
ṁT +

β

1 + β
ṁC − ṁn

)
(2.2.20)

ṖCC =
PCC

TCC

ṪCC +
γRTCC

VCC

(ṁC + ṁf + ṁT ) (2.2.21)

Control Input

One of the mechanisms used for controlling the parameters of the engine is the mass

flow rate of the main fuel ṁf . The fuel mass flow rate itself is a function of the power

level angle (PLA) which is set by the pilot. The following dynamics for the fuel mass

flow rate is considered

τ
ṁf

dt
+ ṁf = Gufd (2.2.22)

where τ is the time constant, G is the gain associated with the fuel valve, and ufd

denotes the fuel demand, which is computed by using a feedback from the rotational
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speed as described in [174]. As stated earlier the performance maps of the compressor

and the turbine are adopted from the commercial software package GSP [175].

Simulating the above-mentioned jet engine nonlinear dynamics, a SIMULINK

model is developed in [9] and is used in this research as well. The initial model was

designed to simulate the aircraft cruise mode and for the purpose of this research

work it has been transformed to work in the take-off mode and the necessary changes

have been made. Figure 2.14 shows the information flow process in the developed

SIMULINK model of the engine [9]. In equation (2.15) the series of steady states

Figure 2.14: Information flow diagram in a modular modeling of the jet engine dy-
namics [9].

that are obtained from the developed nonlinear model for a single spool jet engine

and the GSP at PLAs ranging from 0.4 to 1 are depicted. At each point, the initial

condition of the PLA is set equal to 0.3 followed by a transient to reach to the steady

state corresponding to the desired PLA.

As can be seen from Figure 2.15, the responses corresponding to the SIMULINK

model and the GSP match each other within an acceptable error range (below 5%).

Considering this model, seven different measurements can be obtained from the single
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Figure 2.15: Compressor performance maps [9].

spool engine three major components. These measurements are denoted by PC , TC ,

PCC , TCC , PT , TT and N , which represent the compressor pressure, the compressor

temperature, the combustion chamber pressure, the combustion chamber tempera-

ture, the turbine pressure, the turbine temperature and the spool speed.

A flight cycle (profile) can be categorized into different phases or stages namely,

taxi, take-off, climb, cruise, descent and consequently according to each of these

phases the engine will go through different operating conditions such as starting,

idle thrust, acceleration, deceleration, cruise thrust, shut-down, etc. A sample flight

envelope is depicted in Figure 2.16. In this thesis we are addressing the problem of

degradation growth trend analysis and prediction when the engine is experiencing

the take-off mode and this is the time when the maximum fuel is applied and the

temperature is in its highest value and as we will see later, because the severity of the

degradation is a function of the temperature and the variations in the temperature,

the take-off mode is the most suitable mode for the prognostics study.

As explained in Chapter 1, when the engine goes trough aging or degradation
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Figure 2.16: A typical duty cycle [10].

process, the engine health parameters are affected. The engine health parameters

are considered to be the efficiency (η) and the mass flow rate (ṁ) of the components

such as the compressor and the turbine. These changes as a result of the influence

of the above measurements will help us to detect, track and predict the degradations

occurring in the jet engine.

2.3 Gas Turbine Simulation Program (GSP)

The Gas turbine Simulation Program GSP [175] by National Aerospace Laboratory

(NLR) was developed with flexibility as a primary objective and has successfully

demonstrated the capability to model virtually any gas turbine configuration. GSP

has a GUI with separate data entry windows for individual component models and

a drag& drop interface. Different measurements according to the users’ need can be

displayed.

GSP is an off-line component-based modelling environment for both aircraft and
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industrial gas turbines. Both transient and steady state simulation of any kind of gas

turbine configuration can be achieved by establishing a specific arrangement of en-

gine component models. GSP is a powerful tool for performance prediction, emission

calculation, control system design, diagnostics and off-design analysis. It is espe-

cially suitable for sensitivity analysis of some variables such as ambient conditions,

component deterioration and exhaust gas emissions. The type of the engine and the

components used can also be customized by the user. A sample customized single-

shaft jet engine in the GSP environment is depicted in Figure 2.17. More information

on this software can be found in the GSP11 user manual.

Figure 2.17: Single shaft jet engine in the GSP environment [11].

During this study two versions of the GSP were available namely GSP10 and

GSP11. We have used the latest version for validating our model and the data derived

from the developed model will be demonstrated in the following chapter, however in

some cases in this chapter we have referred to GSP10 when citing some previous work
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about the engine SIMULINK model which has been done previously. In the GSP11

version usability, productivity, data integrity, and security as well as some GUI have

been improved. Other than these there are no significant changes in the two models

and a model in the old version can be imported to the new version, and the version

change may not affect the results.

2.4 Engine Performance Monitoring and the Prob-

lem of Trend Analysis

Engine performance monitoring involves monitoring engine operating parameters

closely to determine when an engine is operating off nominal and expected condi-

tion. Some operating parameters such as the inter-turbine temperature (ITT) are

monitored for deviations from the manufacturer’s specified baseline [177]. The devia-

tions from these baselines are then plotted as a function of time to form ”trend plots”.

Significant deviations from a reference line on these trend plots are used to trigger the

maintenance action [178]. This sort of trend analysis system must be accurate enough

to indicate trend in engine parameters in short term. In performance scheduling we

are interested in finding to what degree the performance degradation has occurred in

a specific component. Turbine temperature is a good indicator of the overall system

health and hence they have been monitored and studied in this research too.

Finally, it is worth to point out that there are different causes of airplane crashes

such as pilot error, mechanical error, weather and other human errors. Besides, the

crash can happen in any operating mode of the flight such as take-off, climb, cruise,

descent and approach. Among these phases, the probability of the failure is higher

in the take-off mode (30%) as can be seen in Figures 2.18 and 2.19. The statistics

are valid between the years 1995- 2010 [12]. Take-off mode data are analyzed in this
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thesis.

Figure 2.18: Causes of fatal accidents by decades [12].

Figure 2.19: Accidents and fatalities by phase of flight [12].

In the following two figures the plane accidents are categorized if they are happen-

ing because of the engine failure or in the take-off mode. In Figure 2.20 the accidents

are divided into fatal and non-fatal accidents. In Figure 2.21 the accidents because

of the engine failure are categorised for single and dual spool engines. As can be seen

the rate is higher in the single spool engines which is normal as they only depend

on one engine during the entire working period. This can shed more light on the

importance of studying single spool jet engines prognostics. The bigger the engines,

the harder they fail.
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Figure 2.20: Take-off/climb accidents [13].

Figure 2.21: Engine failure accidents [13].
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2.5 Conclusion

In this chapter some background information related to the work being done in this

thesis were presented. First an introduction was given on neural networks methods

and principals by focusing on the three neural network architectures that are used in

this thesis. Firstly, artificial recurrent neural networks (RNN) were presented with

different possible architectures and the learning algorithms. Next, time-delay neural

network principles as a type of dynamical neural network were discussed and some

research work in this area were discussed. Finally, nonlinear autoregressive neural

networks (NARNN) were introduced as a type of recurrent dynamic neural networks

architecture and some training methods were briefly studied.

In the next part, basic definitions for the gas turbine engine, different types and

different components were given. Moreover, nonlinear mathematical equations for a

single spool jet engine were provided which are to be used for our fault prognosis

schemes.

Finally, in the last part of this chapter, we introduced GSP software which will be

used for data validation in the next chapter and we finished the chapter by introducing

the problem of engine performance monitoring and the problem of trend analysis

and shed some light on the importance of these subjects by presenting some related

statistics.
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Chapter 3

Degradation Modelling and

Validation

In the following chapter we will introduce and investigate the main engine degrada-

tions namely fouling, erosion and corrosion. We will define causes of jet engine degra-

dations, show how their model are considered and integrated with the SIMULINK

model described in Chapter 2 for a single spool gas turbine engine. In addition, the

effects of these degradations are studied on the gas path measurements and the en-

gine output for different levels of degradations in the take-off mode of the flight. The

obtained simulation results are compared with the ones from the GSP software for

data validation. These results are also presented in the following reference [179].

3.1 Degradation Model Description

In this section, the main causes of the jet engine degradation will be presented and

modelled. They are integrated to the SIMULINK model developed for the single

spool engine which was described in the previous chapter. We will consider the take-

off mode of the flight in which the effects and growth of the degradations are more
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significant than any other phase that the engine goes through in its mission profile.

The results obtained from this model will be analyzed to predict the engine condition

for multi-flights ahead. In practice, a jet engine like any other physical system goes

through degradations such as wear and tear, where the degradation causes need to

be known and future states need to be predicted as they adversely affect engine’s

overall performance such as specific thrust, fuel consumption, spool speed, turbine

entry temperature, etc . It is desirable to understand the processes leading to each

individual component’s degradation. In the following we will introduce and model

major causes of engine degradation, their root causes and some actions performed to

remove them. If the degradations are not removed from the system they can lead to

serious damages. Greater damages can adversely result in a shorter usage life of an

engine.

Several mechanisms cause the degradation of an engine namely abrasion, corro-

sion, erosion, flaking, fouling, galling, pitting, stalling, thermal distortion, foreign

object damage (FOD), etc. [172]. Quantifying performance degradations is difficult

as they have a slower dynamics when compared to faults. Accumulation of these

degradations can lead to different damages in the engine such as creep, low-cycle fa-

tigue, high-cycle fatigue, oxidation, sulphidation, thermal fatigue etc. [10], and finally

resulting in fatigue failure or other types of failure. In a gas turbine engine many

components are subject to deterioration, however only a few of them have a signif-

icant impact on the engine behaviour. These are the rotating components that are

subject to cyclic and steady-state stresses. Turbine blades are important components

because they are under both highest rotating speed and gas temperature. Causes of

degradation can be studied under the following categories [180]:

• Flight loads

• Thermal distortion

• Engine fouling due to deposits within the engine
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• Erosion of airfoils

• In-service damage and abuse

• The type of engine operation or duty cycle implemented

• The maintenance practices employed for the engine

Performance deterioration can be classified into recoverable and non-recoverable

( permanent) deterioration [181, 182]:

Recoverable deterioration: Is the performance loss that can be recovered by opera-

tional procedures such as keeping the inlet and outlet pressures low, or water washing

of the compressor.

Non-recoverable ( permanent) deterioration: Is the performance loss that can-

not be recovered without repair or replacement of affected gas turbine components.

Examples of non-recoverable degradations include: loss of surface finish on blades,

increase in blade tip clearances, packing leakage of both the compressor, the turbine,

and combustion system component corrosion/erosion leading to flame instabilities or

increased thermal stress on the turbine.

The goal of maintenance is to minimize risk of breakdown and improve reliability.

It can also repair a system and/or upgrade performance. The longer a system runs,

the more performance degradation increases and the probability of breakdown and

interruption of production increase [183]. Preventive maintenance protects the system

from unnecessary degradation, and helps restore system performance and reliability.

For a gas turbine unit the degradation is largely due to the degradation of components

and depends on the unit’s history.

The rate at which a turbine degrades will depend on how it has been operated, es-

pecially during start-up when the engine experiences the most severe hot end thermal

gradients. Oxidation and corrosion is most severe at this time and add significantly
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to the engine aging process. The more often an engine is subject to start up, possibly

due to emergency trips, the more rapidly it will degrade. Also if the turbine is op-

erated for long periods at its peak rating this will degrade performance more rapidly

than an engine operating at or below base load rating. While some of these effects

can be reversed by cleaning or washing the engine, others require the adjustment, re-

pair or replacement of components. Economic considerations play an important role

in determining the optimal frequency at which a gas turbine is, for example, water

washed.

In this thesis we consider the effect of fouling and erosion/corrosion which have

the most significant effects on the engine performance as compared to other causes.

They can initiate and/or accelerate different damages. These problems are difficult

to detect when the engine is in operation. In some cases, the effects of the engine

degradation can be detected when the engine decreases the output power or increases

the fuel consumption

Fouling

Fouling is caused by the adherence of particles to airfoils and annulus surfaces. The

adherence is caused by different substances such as water, oil, carbon, smoke and

salt. Fouling can be formed in different parts of the air path (stators, blades and

guide vanes) and it can affect the aerodynamic behaviour of the system and changes

the shape of the airfoil. The consequences of fouling in the jet engine are loss of

efficiency, reduction in the power, and increase in the fuel consumption. In extreme

cases fouling can also result in surge problem.

Fouling phenomena mostly occurs in the compressor. Fouling degradation in the

compressor causes significant efficiency loss, which incurs operational costs through
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increased fuel usage or reduced power output. This mechanism decreases the compres-

sor isentropic efficiency and have been demonstrated to affect the thermal efficiency

and output power of the engine. The accumulation of dust reduces the tip clearance

and increases the surface roughness [183] which as a result affects the compressor

delivery pressure (CDP) and reduces the mass flow and can result in flow reductions

up to 8%. Figure 3.1 shows typical performance degradations due to fouling.

Figure 3.1: Typical performance degradations due to the fouling [14].

Compressor fouling is known as the source of about 70 - 85% of the performance

degradation of gas turbine engines [184] . Although filtration system removes some of

the particles, unfiltered particles enter into compressor and as a mixture of moisture

and lubricants adhere to the blade surface. Severe fouling problems can be resolved

by installing highly efficient filters at compressor inlet, but their use is restricted due

to heavy cost and large pressure drop. Figure 3.2 depicts an example of a fouled
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compressor blading. Different factors such as day temperature and humidity can

Figure 3.2: Fouled compressor blading with a mixture of oily deposits. [15].

affect the rate of fouling accumulation.

The main maintenance action to remove fouling effect from the compressor is

washing the compressor. This off-line maintenance operation is generally achieved by

three main methods. Figure 3.3 shows how washing can recover the compressor in

terms of efficiency loss. Washes are clearly distinguished in the figure.

Fouling Degradation Modelling

Generally the effects of degradation due to fouling are as follows:

1 - Compressor component deterioration leads to performance and efficiency re-

duction

2 - Reduction in overall thermal efficiency

3 - Power output reduction caused by deterioration of the ingested air mass flow

4 - When constant power is required, degradation leads to increased fuel consump-

tion and reduction in turbine blade creep life due to higher turbine entry temperatures
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Figure 3.3: Example of the variation of a fouled compressor efficiency [11].

5 - Some changes will occur on the gas path measurements such as increase in the

rotational speed and the turbine entry temperature (TET) to maintain the constant

thrust.

6 - Due to all the above, economic losses will be incurred.

7 - With heavy fouling the likelihood of compressor surge and subsequent engine

damage is increased.

8 - Unbalanced components due to corrosion and/or fouling could lead to unstable

and critical engine operation and even vibration breakup.

All of the above factors together will cause a shorter remaining useful life of the

engine [10]. To represent the fouling effects on the engine performance, a fouling

index is used according to the work in [185]. This index is determined based on the

reduction ratio of 1:2 for the compressor mass flow rate to the compressor efficiency

and is denoted by FI. For example, if FI = 1% it implies a 0.5% reduction in the

mass flow rate and a 1% reduction in the compressor efficiency. Fouling index is

applied as a linear degradation process per cycle.

In order to model the fouling phenomena a degradation index is introduced (DI)
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(which is a hypothetical parameter) and its relationship to the mass flow capacity

and efficiency of the compressor for fouling is set according to equations (3.1.1) and

(3.1.2), where Flow Index denotes the flow capacity index and Efficiency Index

denotes the efficiency index, that is

Flow Index = 0.5 ∗DI (3.1.1)

Efficiency Index = DI (3.1.2)

The effects of the degradation are considered to be linear on the health parame-

ters of the system. The resulting change slopes in each degradation phenomena are

summarized in equations (3.1.3) to (3.1.6) for the fouling :

Rate of change in the mass flow capacity of the compressor (mc slope):

mc slope = Flow Index/(100 ∗ Fouling cycles) (3.1.3)

Degradation gain in each cycle for the compressor mass flow (mc deg gain):

mc deg gain = 1−mc slope ∗ i (3.1.4)

Rate of change in efficiency of the compressor (etac slope):

etac slope = Efficiency Index/(100 ∗ Fouling cycles) (3.1.5)

Degradation gain in each cycle for the compressor efficiency (etac deg gain):

etac deg gain = 1− etac slope ∗ i (3.1.6)

where i denotes the cycle number and Fouling cycles denotes the total number of
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cycles after which compressor fouling will be completed with an index DI.

Corrosion

Another major cause of the aero engine degradation is the corrosion. Corrosion is

the loss of material from flow path components and is caused by chemical reactions

between the components and certain contaminants such as mineral acids, salts or re-

active gases [16]. Moreover, temperature oxidation is the chemical reaction between

the components metal material and oxygen from the hot gases surrounding and en-

tering the engine. Corrosion processes are always self propagating and will continue

even if the source is removed.

Corrosion and pitting also cause aerodynamic changes in the blade behaviour,

increasing the pressure losses and as a result, performance degradations or even blade

failure. When corrosion is initiated, it cannot be stopped easily and will continue

until it leads to failure [10]. Figure 3.4 shows an example of a corroded turbine rotor.

Figure 3.4: Corrosion in a turbine rotor [16].
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Erosion

Erosion is another type of possible degradation in the gas turbine engine. Erosion

is the removal of the material from the flow path by hard particles impinging on

flow surfaces. These particles typically have to be larger than 20m in diameter to

cause erosion by impact. Erosion is a problem for aero engine applications. Erosion

changes airfoil shape, contours and surface finish and it contributes to 45% of the

deterioration in modern turbofan engines [181].

This phenomenon will result in increase of the pressure losses, performance degra-

dations and even blade failure. Erosion can reduce up to 5% of the performance in

the compressor or the turbine and consequently the engine life [10]. Erosion is a type

of non-recoverable deterioration. Typically, Erosion has the most significant effects

on the blade leading edges. Erosion increases blade surface roughness, thus lowering

slightly the efficiency. The effect of the erosion is studied on the turbine section and

its blade for this thesis. Figure 3.5 depicts a severe erosion effect in the turbine blade

which has resulted in a missing blade.

Figure 3.5: Missing blade due to erosion and burning [11].

To model the erosion we have to study their effect on the engine health parameters.

As the health parameters are not always measurable, gas path measurements are
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employed for trend analysis and prognostics in this work. To represent the erosion

effects on the engine performance quantitatively, the Erosion Index is employed and

is denoted by EI. This index is determined based on the ratio of the reduction of the

turbine efficiency and increase in the turbine mass flow with the ratio of 1:2. For

example, if EI=1% it implies a 0.5% increase in the mass flow rate and a 1% decrease

in the turbine efficiency [10]. Similar to fouling, erosion index is also applied as a

linear degradation process per cycle.

Different degradations can happen in different engine components such as airfoils,

clearances, combustor, etc. . However, in this work we are considering the effect

of fouling and erosion/corrosion on the compressor and the turbine as major engine

components.

Erosion Degradation Modelling

As a consequence of the erosion (abrasive removal of hard particles), the nozzle throat

cross-section will be wider and the mass flow rate will be increased. Moreover, the

efficiency of the turbine will drop. Although with different root causes, erosion and

corrosion have similar effects on the engine health parameters. Hence the corrosion

will not be modelled separately. In order to model the erosion degradation phenomena

a degradation index is introduced (DI) and its relationship to the mass flow capacity

and efficiency of the turbine for the erosion is set according to equations (3.1.7) and

(3.1.8), where Flow Index denotes the flow capacity index and Efficiency Index

denotes the efficiency index, that is

Flow Index = 0.5 ∗DI (3.1.7)

Efficiency Index = DI (3.1.8)
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The effects of the degradation, as pointed out previously, are considered to be linear on

the health parameters of the system. The resulting change slopes in each degradation

phenomena are summarized in equations (3.1.9) to (3.1.12) for the erosion.

Rate of change in the mass flow capacity of the turbine (mt slope):

mt slope = Flow Index/(100 ∗ Erosion cycles) (3.1.9)

Degradation gain in each cycle for the turbine mass flow (mt deg gain):

mt deg gain = 1−mt slope ∗ i (3.1.10)

Rate of change in efficiency of the turbine (etat slope):

etat slope = Efficiency Index/(100 ∗ Erosion cycles) (3.1.11)

Degradation gain in each cycle for the turbine efficiency (etat deg gain):

etat deg gain = 1− etac slope ∗ i (3.1.12)

where i denotes the cycle number and Erosion cycles denotes the total number of

cycles after which turbine erosion will be completed with an index DI.

It must be indicated that to maintain a constant maximum take-off thrust in

the degraded engine during cycles of operation, fuel flow injection to the combus-

tion chamber has to be increased to yield higher temperature in the turbine inlet.

Therefore, the amount of increase in the fuel flow for each cycle is approximated by

a second order polynomial as given by :

Δfuel flow = p1 ∗ i2 + p2 ∗ i+ p3 (3.1.13)
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where p1, p2 and p3 are set differently corresponding to each degradation index.

Thermal Distortion

The hot sections of the jet engine are more subject to thermal distortion, for exam-

ple, combustor, turbine and propelling nozzles. These components are operating at

high temperatures as well as high-varying stress environment. Creep and thermal

fatigue (thermo-mechanical fatigue) are the most severe consequences of the thermal

distortion [186]. The effect of the thermal distortion is considered in our model by

introducing certain compensating coefficients.

Another important factor that may affect both the type of the engine deterioration

and the rate of reduction in the engine performance is the engine duty cycle which

is related to the flight mission profile. For example, in military applications, rapid

throttle movements will cause unequal growths of hot end parts [187].

The developed model may be used as a test bench for studying failure prognostics

of the system components when empirical data is not available. To validate the

developed degradations caused by the fouling and the erosion, the GSP11 software

[176] is used. This software is a versatile tool to study the behaviour of the jet engine.

More information on the GSP software can be found in Chapter 2.

In this research we are considering component degradation. The effect of fouling

on the compressor and erosion on the turbine blades are more significant, hence we

are studying these two components and in the next section we will see how their

measurements are affected by degradation.
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3.2 Simulation Results

In order to study the effects of the degradation originated from fouling of the com-

pressor or the erosion of the turbine on the engine measurable parameter which can

be used later for prognostics, the dynamical model of a single spool engine that is

developed in Matlab/Simulink [9] is used. The degradation model is integrated into

the Simulink model. We have already described the nonlinear equations that allows

us to derive such a model. The fouling and erosion effects on the system have been

considered as changes in the engine health parameters, i.e. the efficiency and the

mass flow rate.

To achieve a constant level of thrust for a given aircraft performance, the engine

may run at higher speeds or higher turbine-entry temperatures. In our model, the

strategy is to maintain the thrust constant by increasing the turbine-entry tempera-

ture through increase in the fuel consumption.

Simulations Under Different Degradation Levels

In this part we have conducted simulation scenarios to demonstrate how degradation

changes the engine outputs such as spool speed and temperature and how they can

adversely affect the engine performance. We have considered the fouling effect on the

compressor and the erosion on the turbine separately. Moreover, the results related

to the degradation modelling and the changes to the engine output parameters due to

different degradation levels are compared with the GSP single spool turbojet model

[175].

It is assumed that the flight mission takes 3000 seconds for each simulated cycle,

from which in the first 20 seconds (the take-off mode) the engine operates from the

ground idle to the maximum power. We will study and show the results associated

with the take-off mode. All the simulations are performed in the standard operating
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conditions. In other words, the ambient pressure and the ambient temperature are

assumed to be at the standard sea level.

In order to obtain the same level of maximum take-off thrust, in presence of

degradation the amount of the injected fuel to the combustion chamber is increased

to maintain a constant level of thrust. The increased fuel follows the equation (3.1.13).

We have considered simulation scenarios where 100 take-off flights are simulated

using 3 different severity levels of fouling index and 200 flight cycles are simulated for

three (1%, 2% and 3%) erosion indices. For each scenario we will present the turbine

temperature, compressor temperature, maximum spool speed and fuel consumption.

Scenario 1: Fouling Modelling

In the first scenario, the effects of the compressor fouling are modelled under three

different fouling indices, namely 1%, 2% and 3% per 100 flight cycles. It is also

possible for the user to change the fouling level of the compressor. It is also possible

to run the simulations for other cycles which shows the versatility of our developed

model. The results related to the fouling modelling are shown in Fig. 3.6. The fouling

phenomenon, reduces the compressor efficiency and mass flow rate with a ratio of 1:2.

It can be verified from Fig. 3.6 that the presence of the fouling in the engine causes

an increase in the maximum output temperature of the compressor and the turbine

and a decrease in the maximum value of the spool speed (for maintaining a constant

maximum take-off thrust). Although the injected fuel level is being increased but

because of the mass flow reduction, the maximum spool speed is not compensated

and it drops. As the fouling index increases, these effects become more pronounced.

In the next step, we have conducted the same scenario in the GSP11 environment

for a single spool engine and found the corresponding changes in the engine parame-

ters. Per unit changes in the engine output parameters for the fouling scenarios from
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Figure 3.6: The outputs of the model corresponding to different levels of fouling
degradation.
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both the GSP and our developed model corresponding to the same fouling levels are

summarized in Table 3.1. Although there are discrepancies between the results of the

GSP and the developed model, the results from both models show the same trend.

The reason for the differences is due to different fuel flow levels and compressor and

turbine maps and different design points.

Table 3.1: Per unit changes in the engine parameters corresponding to the fouling
scenarios.

Engine Parameter Per Unit Change in Per Unit Change
Our Model in the GSP [176]

Fuel Flow Consumption in FI 1% 0.0699 0.01678
Fuel Flow Consumption in FI 2% 0.04855 0.02368
Fuel Flow Consumption in FI 3% 0.02127 0.03210
Compressor Temperature in FI 1% 0.05798 0.03817
Compressor Temperature in FI 2% 0.03287 0.08371
Compressor Temperature in FI 3% 0.01776 0.01187
Turbine Temperature in FI 1% 0.093 0.01151
Turbine Temperature in FI 2% 0.0652 0.02370
Turbine Temperature in FI 3% 0.02839 0.03255
Spool Speed in FI 1% -0.007087 -0.01456
Spool Speed in FI 2% -0.02325 -0.02795
Spool Speed in FI 3% -0.03543 -0.04016

Scenario 2: Erosion Modelling

In the second scenario the effects of the erosion on the engine parameters are studied

corresponding to the erosion indices 1%, 2% and 3% that are applied to the turbine

of the model corresponding to 200 flight cycles. The related results are depicted in

Fig. 3.7.

Because of the removal of material from the flow path, the efficiency of the turbine

reduces however the nozzle throat will become wider which results in an increase in

the turbine mass flow rate. The relation is assumed to be linear with a ratio of 1:2.

Erosion effects on the single spool engine increase the maximum turbine temper-

ature while decrease the compressor output temperature. Furthermore, the spool
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Figure 3.7: The outputs of the model corresponding to the different levels of erosion
degradation.
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speed has a decreasing trend again. The increase in the erosion index has more sig-

nificant effects on the variations of the engine parameters. We should mention again

that this integrated model is adaptable and we can adjust the number of cycles, flight

duration, degradation level, etc. As the erosion level increases, these consequences

become more pronounced in a nonlinear fashion.

Here again, we have conducted the same scenarios. The output of both models are

shown in a tabular form (Table 3.2). One should note that the levels and values are

not the same as the design specification of the single spool gas turbines used in each

model are different. The compressor and the turbine maps are different and thus the

fuel levels are different. But in both methods the output thrust are kept constant as

compared to the healthy mode where the degradations are not initiated in the system

yet. One can see the similar trend.

Table 3.2: Per unit changes in the engine parameters corresponding to the erosion
scenarios.

Engine Parameter Per Unit Change in Per Unit Change
Our Model in the GSP [176]

Fuel Flow consumption in EI 1% 0.04181 0.01763
Fuel Flow consumption in EI 2% 0.08272 0.03367
Fuel Flow consumption in EI 3% 0.01236 0.04949
Compressor Temperature in EI 1% -0.05626 -0.04173
Compressor Temperature in EI 2% -0.01112 -0.07378
Compressor Temperature in EI 3% -0.01648 -0.09640
Turbine Temperature in EI 1% 0.0568 0.01771
Turbine Temperature in EI 2% 0.01086 0.03352
Turbine Temperature in EI 3% 0.01632 0.05396
Spool Speed in EI 1% -0.07583 -0.01029
Spool Speed in EI 2% -0.01502 -0.01854
Spool Speed in EI 3% -0.02246 -0.02500

At the end it is worth to note that in the results shown above we chose to show

them in figures or tables as they are easier to read and to study and we only showed

the maximum value of each cycle. However, in the developed model, it is possible

to have all the measurements from each flight cycle. For example, if we would like
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to have 2% FI in the system after 100 flights, the changes in the health parameters

(efficiency and mass flow rate) start to increase until they reach their ultimate point

at the 100th cycle. We will save all the available gas path measurements associated

with this level of degradation and use them to train and test the neural network for

trend analysis. This will be discussed in details in the following chapter.

3.3 Conclusion

In this chapter, possible degradations in the jet engine were introduced. Our goal in

this thesis is to track and predict the degradation propagation. We presented different

causes for the degradations and the components which can potentially get affected

by these, i.e. fouling/erosion. A solution was then presented on how to model the

degradation as a function of the engine health parameters (efficiency and the mass

flow rate) and how to relate them to the gas path measurements.

The equations are used to integrate the degradation modelling part to a previously

developed single spool jet engine model. We studied fouling effect on the compressor

and erosion effect on the turbine separately. In each scenarios three different levels of

deterioration were considered and the goal was to keep the output thrust constant.

The data derived from this model will be analyzed for the engine prognosis purposes.

The model is compared and validated with the GSP11 software and the result from

the two models were tabulated and were proven to have the same trend. Some result

are presented in the following work.

N. Daroogheh, A. Vatani, M. Gholamhossein, K. Khorasani, ” Engine Life Eval-

uation Based on a Probabilistic Approach”, ASME congress, IMECE2012, Houston,

TX, USA.
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Chapter 4

Jet Engine Degradation

Prognostics Using Recurrent

Neural Networks

In this chapter the problem of trend analysis and prognostics for a single spool air-

craft engine is addressed. Towards this end, recurrent neural networks (RNN) are

developed and trained to learn the degradation growth dynamics and then to predict

the pattern for some flight steps ahead. This work does not consider diagnostics or

anomaly detection and instead focuses on prognostic aspects. The aim of the prog-

nosis function is to predict a sensor signal evolution, where its function is strongly

dependent on the dynamic behaviour of the process.

RNNs have proven to be suitable for the task of prediction. The base of this

type of network is a feedforward multi layer perceptron (MPL) and the dynamics is

achieved by feeding the output of the network back to its input layer which introduces

memory to the network. We introduced the RNNs in Chapter 2, in addition to the

different architectures, training algorithms, etc. In this chapter we investigate on
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the type of the recurrent networks we have proposed for predicting the gas turbine

degradation trends by studying their effect on the gas path measurements. Various

simulations under different scenarios are carried out to demonstrate the performance

and accuracy of the proposed network.

Application of RNNs for prognostics has become quite popular recently. RNNs

incorporate temporal information and store these into their functionality. In [140]

Wang et al. have utilized recurrent wavelet neural networks to predict the future

dynamics. The network is used to prognosticate the remaining useful lifetime of a

defective bearing with a crack in its inner race. In [86] RNNs are combined with

a fuzzy-based (NF) approach to build a reliable machine fault prognostic system.

The performance of the system is evaluated by using two benchmarks. Tse et al. [79]

have introduced a prognostic method for forecasting the rate of machine deterioration

using recurrent neural networks. Vibration-based fault trends have been analyzed for

industrial gas turbine and the results are promising for predicting the remaining life

span of defective components.

Due to adding feedback connections to the feedforward network, there are at times

the risk of network instability and unrobustness. This problem has been addressed in

[188, 6]. It should be noted that in RNNs as with other models, the input configuration

is critical to good prediction performance, implying that the training data should be

sufficiently rich so that it contains all the relevant information including noise that is

necessary for learning.

4.1 Recurrent Neural Network Prognosis Approach

In this section, we will see how RNNs are used for predicting the future value of a

parameter and afterwards we will see how knowing the future value of some engine

parameters will help us to study the degradation and its propagation through time.
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Note that the main aim of this chapter is to develop an RNN-based engine degradation

prognostic system.

RNNs have shown potential in temporal forecasting and neural networks in general

are flexible models for nonlinear prediction, especially in certain complex dynamical

systems where a comprehensive expert system is not available. These types of pre-

dictors are build automatically by training. They usually do not need any a priori

statistical information from the data and do not require any identification of the

model structure or the parameters. According to [6], the main reasons for using

neural networks for prediction rather than statistical time series analysis are:

• NNs are computationally as fast or even faster than most available statistical

techniques;

• NNs are as accurate or even more accurate than most of the available statistical

techniques;

• NNs are self-monitoring meaning that they learn how to make accurate predic-

tions;

• NNs provide iterative forecast; and

• NNs are capable of coping with nonlinearity and nonstationarity of input pro-

cesses.

Although some researches have used feedforward neural networks for prediction

[189, 190], RNNs have better performance in learning the dynamic behavior and the

projecting them to the future [188, 191, 192].

As described in Chapter 2, recurrent neural networks are similar to feed-forward

neural networks but with an additional feedback path. In other words, RNN is a

closed network which is now suitable for learning temporal behaviour [79]. Hence, in
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a recurrent neural network the current output and its activation state is a function

of the previous activation states as well as the current input. For instance, for a one-

step-ahead prediction at time k, the activation of the output node at time k + 1 is a

function of activations of the neurons in the hidden layer and the input layer at the

previous steps. There are no explicit equation that can determine the number of input

nodes, neurons in the hidden layer, delays etc. and the choice of these parameters

can affect the goodness of the prediction and possible steps-ahead. This is an open

subject and we will investigate more on this matter in the rest of this chapter until

we get our satisfactory results.

A summary of the work done in this chapter is provided below. For each parameter

i.e. pressure and temperature we have data which shows the changes and evolution in

the parameters under study through time or flight cycles for a degraded engine. We

divide a portion of the data and feed it to the input layer of the RNN. The neurons

are connected to each other by weights. The input neurons distribute the signals

forward to the next layer. In the next layer, which is the hidden layer, each neuron

receives a signal which is the weighted sum of the output of the neurons in the input

layer. The total output in a neuron is obtained through a nodal activation function.

The first portion of the data is used for training. In this phase the goal is to find an

input-output relationship between the set of training data.

We have chosen a batch supervised learning method which consists of processing

and learning phases. In learning the result or the output pattern is compared with the

target pattern, and the error is computed as the difference between these two values.

The error or the residual is then propagated back to the previous layer and all the

weights are adjusted based on this error. Different error functions can be defined and

minimized such as the sum of the squares of the errors. This formulation is presented

in Chapter 2. Once the error goal is reached the network is said to be trained. The
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final error can help us determine the percentage of the data that are used for training

the network.

Once our recurrent network is trained we use the rest of the available data for

the same parameter to test the network. We do so by feeding this data that has

never been seen by the network to the input layer and then find the network output

and compare it to the test output. If the test error is high while the training phase

error is low, we take it as a sign that the network was over trained implying that too

much information was fed in the training phase. This is a common challenge with

the employment of neural networks and one has to be careful when one divides the

data or selects the network parameters. In the case that the test error is high the

percentage of data used for training has to be readjusted and the network has to be

tested and trained again until the desired requirements are satisfied. Otherwise, if

the error is acceptable we state that the network has learned the process dynamics

well and can be used for trend prediction.

4.2 Engine Data Generation

All neural network based methods are data-driven methods and their performance

relies on the set of data they are provided with. In this chapter we investigate data

generation and the type of data that was used in this thesis. The data that we

use for testing and training our neural network are derived from a single spool jet

engine model. The original model, nonlinear equations and validation with the GSP

software were described in Chapter 2. Since the purpose of this thesis is to study the

degradations in the system, we added certain important causes of engine deterioration

to this model in Chapter 3. The formulation and data validation with GSP can be

found there.

We utilize the knowledge about the measured variables taken along the engine’s
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Table 4.1: Available engine measurements and their abbreviations.

Gas Path Measurement Abbreviation
Fuel flow rate ṁf

Spool speed N (RPM)
Compressor temperature CT (K)
Compressor pressure CP
Turbine exit temperature TT (K)
Turbine pressure TP

gas path and then by studying their trends we can determine the engine’s health state

and the time to failure or probable maintenance actions that have to be taken. For a

single spool engine temperature and pressure of both the compressor and the turbine

are available as well as the spool speed connecting these components together and

the fuel flow rate. In addition to the fuel flow (wf (t)) which is the system input we

have five measurements. These measurements are summarized in Table 4.1.

Each engine component has an efficiency value and a mass flow rate. The changes

in the turbine and compressor efficiency and mass flow rate allow one to model the

fouling and the erosion. We will refer to these values by the notations presented in

Table 4.2. Efficiency and the mass flow rate are also referred as the engine health

parameters, as changes from the nominal value can be a sign of an unhealthy engine.

Variations in the health parameters affect the gas path measurements. In this thesis

we will analyze and predict these trends when they are only due to soft degradation

and not hard degradations such as FOD.

The gas path measurements can be generated for different phases of the flight

such as take-off, cruise, etc. We have assumed that for each simulated cycle the

flight mission takes 3000 seconds. Generally the take-ff mode can be divided to two

individual phases, namely the ground roll phase and the air phase. The former is

from the break release to the lift-off of the last aircraft wheel. The air phase is from
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Table 4.2: Engine health parameters and their notations.

Engine Health Parameter Notation
Compressor efficiency ηC
Compressor mass flow rate ṁC

Turbine efficiency ηT
Turbine mass flow rate ṁT

the lift-off until the aircraft reaches an arbitrary altitude. In the ground roll phase

the engine operates from its idle condition to its maximum power and the effect of

degradation is more significant in this phase, therefore we will consider this phase of

the flight for our investigation.

If we assume the take-off time to be at t seconds, using our simulation software

we can choose our desired sampling time s. This value determines the number of

samples taken at each second. After each simulation the number of data points for

one parameter is t × s. We considered a standard take-off time to be 20 seconds.

We can apply different fuel rates to the system and determine the flight phase by

adjusting the Mach number and the altitude. A general turbine temperature variation

(in Kelvin) during the take-off is depicted in Figure 4.1 for a healthy engine. Healthy

engine in this context refers to an engine which does not suffer from any type of

degradation.

After determining the take-off duration, we can set the cycle or the number of

flights being taken. Now let us assume we would like to study the effect of fouling on

the system. We will observe the turbine temperature (TT ) variation as it is a suitable

indicator. Since the turbine is at the last stage of the engine, its output temperature

entails valuable information. As an example, if we want a 2% fouling to affect the

compressor at the end of the 100th flight, which is equivalent to 2% reduction in the

compressor efficiency (ηC) and 1% increase in the compressor mass flow rate (ṁC),
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Figure 4.1: Turbine temperature variations during take-off for a healthy engine.

these changes have to be linearly applied. Since we want to keep the output thrust

constant at all times, even when the engine is degraded, we have to increase the fuel.

The details can be found in Chapter 3.

The procedure for erosion data generation is the same, except that erosion mostly

happens in the turbine, affecting the turbine blades, and causes a reduction in the

turbine mass flow rate (ṁT ). Erosion causes an efficiency drop in the turbine.

In this thesis our objective is not to train the neural network to develop the

dynamics of the engine, instead we are interested in training the network to learn

and predict the dynamics of degradation and how it grows in the system as the flight

cycles continue. Towards this end, we take only one sample from each flight rather

than using all the data points. Since fouling and erosion are soft degradations they

do not change the system’s behaviour drastically in only one flight cycle. Therefore,

from each flight cycle we collect the 12th second data. In fact, prognosis can be

accomplished in either time or frequency domain or even the event domain, as these

domains are made up of ordered points.

In reality all the measurements and readings are affected by noise. Therefore we
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Table 4.3: Noise standard deviations.

CT CP TT TP N ẇf

0.23 0.164 0.097 0.164 0.051 0.51

have conducted all our analysis in presence of noise. The nominal values of noise

levels are given in Table 4.3 where the standard deviations are given as a percentage

of the nominal values [97] at our typical take-off profile when reaching the steady-state

condition.

4.3 Simulation Results

In order to study the effects of degradation originated from fouling of the compressor

or the erosion of the turbine on the engine measurable parameters which can be used

later for prognostics, the dynamical model of a single spool engine that is developed in

Matlab/Simulink [9] is used. The degradation model is integrated into the Simulink

model. We have already described the nonlinear equations that allows us to derive

such a model. The fouling and erosion effects in the system have been considered as

changes in the engine health parameters, i.e. in the efficiency and the mass flow rate.

To achieve a constant level of thrust for a given aircraft performance, the engine

may run at higher speeds or higher turbine-entry temperatures. In our model, the

strategy is to maintain the thrust constant by increasing the turbine-entry tempera-

ture through increase in the fuel consumption.

4.3.1 Simulation Results for Fouling Scenarios

The general approach for prediction using RNNs was explained at the beginning of

this chapter. Our general goal in prognosis is to identify the degradation level at
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a certain point in time in future. When applying neural networks, there are many

parameters that we have to adjust. Some of these parameters are the number of

layers, the number of neurons in the hidden layer, the number of input neurons,

the number of delays, activation functions, the number of epochs, the percentage

of data for training the network, etc. The choice of neural networks to represent a

physical process depends on the dynamics and complexity of the network that is best

for representing the problem in hand. There is no optimal value to all the above

parameters and the optima have to be found through trial and error which can be

tedious. Below we demonstrate different choices for these parameters and show how

they can affect the capability of the prediction. The prediction horizon can be time

or cycle and we have chosen cycle numbers for our prediction horizon. Finally, we

will present the neural network that gives the best prediction performance.

In the following subsections we will show our simulation results for different sce-

narios. In our scenarios the effects of fouling and erosion degradations are studied

separately on the system. In each scenario the degradation level is increased from 1%

to 3%. We do not go beyond this level as washing and maintenance is recommended

beyond this level. Each scenario itself consists of a number of cases. By following

the cases one can observe how we have decided on the data size and the network

parameters and how the results are improved by adjusting different variables. One

can also note how many steps-ahead prediction is viable by using our proposed net-

work. Toward these ends, we will compare the actual and predicted values which are

obtained as the NN outputs, study statistically and depict the errors. Now let us

start by the first fouling scenario.
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4.3.1.1 First Scenario: FI = 1%

FI = 1%: Case 1

As mentioned above, we collect the 12th second of each take-off cycle for an engine

degraded by fouling. The fouling level is fully effective at the end of 100th cycle and

hence we have 100 data points. The data is depicted in Figure 5.1. We assume that

according to the accuracy expectation and the network architecture we have to decide

on the percentage of data which are to be fed to the network for training. In the first

case, let us consider a RNN with one hidden layer. The approach is schematically

depicted in Figure 4.3.

Figure 4.2: Turbine temperature variations due to a fouled compressor.

Our goal is to achieve the best result for three-step-ahead prediction (l = 3) that

here implies three cycles ahead. This three-step ahead is a starting point case and

once we have achieved this number of steps, we can widen our prediction horizon. As

mentioned earlier, no specific rule exists for the minimum or the maximum number of

steps-ahead feasible and the results are to be determined experimentally. In the first
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Figure 4.3: Schematic of the RNN-based prediction approach.

case we use half of the available data for training the network and the rest for testing

the network. The number of neurons in the hidden layer are set to be five and the

network epoch is 20. The input to the network will be the previous values of turbine

temperature and the fuel flow rate. The number of the delays is set to be 2 (d = 2),

this results in a 4-5-1 network architecture (4 = 1+1+2 where input, output and two

delayed inputs serve as the input to the RNN). The error is defined as the difference

between the network output in the testing phase and the real turbine temperature

data, which defines the actual prediction error. We will represent the error graphically

and quantitatively by calculating the mean (μae) and standard deviation (σae) of the

absolute error (ae). Absolute error is defined as the difference between the real data

and the network output. Another quantitative way is to find the root mean square

of the error (rmse). In Figure 4.4, the actual and the predicted turbine temperature,

which is in fact the output of the network, are presented.

In Figure 4.4, the circles denote the actual temperature incremental trend and
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Figure 4.4: Actual vs. predicted TT for a 1% fouled compressor (3-step ahead).

Table 4.4: Prediction error for FI=1% case 1.

μae 4.901 (K)
σae 2.187 (K)
rmse 5.319 (K)

the stars show the predicted ones. It is clear that the network is not able of learning

the degradation dynamics and predict it. The cause of this poor performance can be

either due to insufficiency of the input data or the poor adjustment of the network

parameters. In Figure 4.5 the prediction error is shown which is increasing and does

not show improvement.

The mean of the prediction error in this case is μae = 4.556K, the prediction

standard deviation is σae = 2.187K and the error root mean square is rmse = 5.043K.

These error results are summarized in Table 4.4.

We conclude that this prediction performance is not acceptable and the network

needs more samples to learn the dynamics of the degradation. In the next case we

provide the network with 70% of the available data.
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Figure 4.5: Temperature prediction error for a 1% fouled compressor (3-step ahead).

FI = 1%: Case 2

In the second case we still consider a fouled compressor in which the fouling level is

1%. We try to predict the turbine temperature over 100 take-off cycles which was

depicted in Figure 5.1. This time we provide the network with 70% of the data and

use the remaining 30% for testing the network performance. The number of delays is

the same as in case 1 (d = 2) which results in the same 4-5-1 network. The comparison

of the actual data and the predicted value are depicted in Figure 4.6.

It can be observed from Figure 4.6 that now with additional amount of training

data, the network has become able to distinguish and learn the increasing trend of

the turbine temperature due to the fouling. The error level shown in Figure 4.7 is

also decreased compared to the Case 1.

In addition to the graphical representation of the error we use the statistical

performance measure to judge the results in this second case. The mean of the

prediction error is μae = 1.177K, the prediction standard deviation is σae = 1.073K
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Figure 4.6: Actual vs. predicted TT for a 1% fouled compressor for three-step ahead
prognostication.

Figure 4.7: Temperature prediction error for a 1% fouled compressor (3-step ahead).
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Table 4.5: Prediction error for FI=1% case 2.

μae 1.177 (K)
σae 1.073 (K)
rmse 1.579 (K)

and the error root mean square is rmse = 1.579K. These error results are summarized

in Table 4.5.

Referring to these results, one can note the improvement in the prediction per-

formance, however one would still need to achieve a more accurate prediction before

performing a more-steps ahead prediction. In the next case we adjust the network

parameters through the number of the neurons in the hidden layer.

Remark. One important concept in prognosis is uncertainty and uncertainty

management. According to [140], uncertainty in prognosis is the rule rather than

exception and it manifest itself at different levels of this procedure such as data

level and decision level. Dealing with uncertainties is inevitable. As one extends

the prediction horizon, the uncertainty will increase consequently. The prognosis

procedure operates over time horizon from the past, through the present and to the

future. It is not always straightforward to identify the uncertainty sources and model

them. These uncertainties could be originated from insufficient data or the changes

in the operating conditions. Thus to manage the data uncertainty, in this thesis

we define upper and lower bounds for reporting prediction performance as well as

point prediction. When the upper bound of the prediction variable meets a specified

threshold, one may declare that the engine should be taken for maintenance. To

determine the confidence bounds for evaluating the prediction performance of the

model, according to normal theory [193] a multiple of standard deviations of the

prediction error (for a given confidence level, that is 95%) are added and subtracted

from the prediction values. More details are given in the next remark.
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Remark on defining the lower and upper bands.

A prediction or confidence band is used in statistical analysis to represent uncer-

tainty about the value of a new (predicted) data point which is subjected to noise.

The bands are usually used as part of the graphical representation of the prediction,

estimation or regression results (See Figure 4.8 as an example) [194].

The prediction bands build up a prediction interval. In other words, a prediction

interval is an estimate of an interval in which future observations will fall, with a

certain probability, given what has already been observed. In the case involving a

single independent variable, results can be presented in the form of a plot showing

the predicted data points along with the point-wise prediction bands. Prediction

intervals are also present in forecasts. The concept of prediction intervals need not

be restricted to inference just a single future sample value but can be extended to

more complicated cases. This shows the ample application of them [195].

The construction of these bands needs to be formulated. In the data set that

was shown above, and throughout this thesis we consider the effect of measurement

noise on our data points. Without loss of generality we assume that the measurement

noise follows a normal distribution. We define a significance level denoted by α. The

confidence level is determined by (1 − α) [196]. If for example we set α = 0.05, the

confidence intervals covers the corresponding data points with the probability 0.95 .

If we are interested in finding the lower and the upper prediction bounds denoted

by l and u, respectively, a prediction interval [l, u] for a future data point in a normal

distribution may easily be calculated from [195]:

γ = P (l < X < u) = P

(
l − μ

σ
<

X − μ

σ
<

u− μ

σ

)
= P

(
l − μ

σ
< Z <

u− μ

σ

)
(4.3.1)

108



Table 4.6: z values [17].

Cofidence level z
50% 0.67
90% 1.64
95% 1.96
99% 2.58

where Z =
X − μ

σ
is a standard normal distribution. Hence,

l − μ

σ
= −z;

u− μ

σ
= z (4.3.2)

or

l = μ− zσ; u = μ+ zσ (4.3.3)

Equation (4.3.1) can be rewritten as:

γ = P
(− z < Z < z

)
(4.3.4)

The prediction interval is conventionally written as:

[
μ− zσ, μ+ zσ

]
(4.3.5)

In this thesis, we have presented the error statistics in tables. To find the lower and

upper bounds we need to find the value of z. The values of z for different confidence

levels are given in Table 4.6.

For instance, to calculate the 95% prediction interval for a normal distribution

with a mean μae and a standard deviation σae, then z is approximately 2 and therefore

our lower and upper bounds are calculated as:
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[
μae − 2σae, μae + 2σae

]
(4.3.6)

where ae refers to the prediction error. The above calculation is used in this thesis

to construct a 95% confidence band.

Taking the above remarks into account, we are now able to define our prediction

bounds. The goal is to evaluate the network for a 95% confidence level. We first

find the standard deviation of the prediction error which for Case 2 is 1.073 K. The

resulting upper and lower bounds are depicted in Figure 4.8. The actual turbine

temperature during 100 cycles for a fouled compressor is shown with circles, the

predicted temperatures are indicated by stars and the two dashed lines represent the

prediction upper and lower bounds. Although this prediction capability is improved

compared Case 1, but only half of the data points are close enough to their real values.

Figure 4.8: Actual vs. predicted TT for a 1% fouled compressor considering prediction
bounds (3-step ahead).

Before proceeding we again emphasize that to be able to judge the goodness of
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the prediction one has to study both the predication bands and the error statistics

represented in the tables. With only one of them a correct conclusion cannot be

drawn.

FI = 1%: Case 3

In the third case, we consider the same inputs and data (a 4-5-1 network) and try

to improve the three-steps-ahead prediction by adjusting the network parameters.

The number of neurons are set to five and the epoch number to 30. The resulting

prediction performance is shown in Figure 4.9. Furthermore, the prediction error for

Figure 4.9: Actual vs. predicted TT for a 1% fouled compressor (3-step ahead).

the 30 test data point is shown graphically in Figure 4.10.

The network errors after the above changes are as follows. The mean of the

prediction error is μae = 0.177K, the prediction standard deviation is σae = 1.384K

and the error root mean square is rmse = 1.343K. The negative mean implies

that the predicted data are always above the real value and so that the maintenance
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Figure 4.10: Temperature prediction error for a 1% fouled compressor (3-step ahead).

Table 4.7: Prediction error for FI=1% case 3.

μae 0.177 (K)
σae 1.384 (K)
rmse 1.343 (K)

should take place before the real severity level reaches a critical value. However, when

compared to the previous case the standard deviation is larger which implies that the

data are farther away from the mean . These error results are also given in Table 4.7.

Finally, if we predict the upper and lower prediction bounds the result are shown in

Figure 4.11.

When one considers predicting the bounds for the future turbine temperature

when the engine is subjected to 1% fouling it is understood that although the standard

deviation of the error has increased, but most of the real values lie in the prediction

bounds as predicted by our recurrent neural network. Most of the data implies that

only 2 out of the 27 data points are out of the bands. This shows that 92.6% of the
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Figure 4.11: Actual vs. predicted TT for a 1% fouled compressor considering predic-
tion bounds (3-step ahead).

data are inside in the bands.

We fix the resulting neural network in case 3 to be the most suitable network for

predicting a 1% fouling effect on the TT. In the following case that we consider for this

level of fouling our goal is to extend the prediction horizon beyond a three-step-ahead

or cycle-ahead range using the same trained predictor.

FI = 1%: Case 4

The network developed in Case 3 is considered to be a suitable network that has

learned the dynamics of the degradation propagation through flight cycles, we now

use it to extend the prediction to beyond three-step-ahead as the results deemed

satisfactory. For the next try, let us consider a six-step ahead prediction, implying

that we are interested in predicting the turbine temperature for the 6th flight from now

by having the fuel mass flow rate (ṁf ) and previous values of the turbine temperature

which are fed back to the network. The number of output delay is d = 4 (TT) and
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the current state of the fuel flow rate (with no delay) is set as the input which gives

a 6-5-1 network architecture. In other words from the 30 data points available for

testing, if one starts with the first point then the network will predict 6 steps further

and thus gives 24 results for prediction. That is, in the test phase one provides the

network with data point which has never been seen by the network and wants to

verify how six-step-further in the future is predicted by the network. Starting with

the first point, the 7th point is predicted, providing us with 24 temperature data. The

predicted versus the actual values are depicted in Figure 4.12.

Figure 4.12: Actual vs. predicted TT for a 1% fouled compressor (6-step ahead).

The test error is shown in Figure 4.13. The error levels are not high and the

obtained six-steps-ahead prediction is reasonably good. The mean of the prediction

error is 1.968 K, the standard deviation is equal to 1.829 K and the rmse is 2.658 K.

The error mean and the rmse are both increasing. A summary of error results for

Case 4 are shown in Table 4.8.

Figure 4.14 shows the results of predicting with the lower and upper prediction
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Figure 4.13: Temperature prediction error for a 1% fouled compressor (6-step ahead).

Table 4.8: Prediction error for FI=1% case 4.

μae 1.968 (K)
σae 1.829 (K)
rmse 2.658 (K)
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bounds. A large percentage of data are within these bounds (more than 70%) which

demonstrates the capability of our recurrent neural network for predicting the turbine

temperature for six cycles ahead under a 1% fouling index.

Figure 4.14: Actual vs. predicted TT for a 1% fouled compressor considering predic-
tion bounds (6-step ahead).

FI = 1%: Case 5

In this Case we study a 1% fouled compressor for a ten-steps ahead prediction of

the turbine temperature using the same 6-5-1 network as in the previous case. The

prediction results as well as the test error are presented in Figures 4.15 and 4.16,

respectively. It is observed that as we increase the prediction steps, more output

delays are needed for a satisfactory result. The error statistical results for the ten-

steps-ahead prediction are shown in Table 4.9 and they indicate reasonable error

levels. We state that our error level is reasonable as the maximum error is 4 degrees

which is less than 1% of the range of 1400K implying that the prediction is accurate

by 99%.
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Figure 4.15: Actual vs. predicted TT for a 1% fouled compressor (10-step ahead).

Figure 4.16: Temperature prediction error for a 1% fouled compressor (10-step ahead).
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Table 4.9: Prediction error for FI=1% case 5.

μae -0.338 (K)
σae 1.810 (K)
rmse 2.786 (K)

If we also consider the prediction bounds, as depicted in Figure 4.17, one can

see that the actual data points have exceeded beyond the bound (65% are within

the bands). Hence, one can conclude that this network is capable of predicting the

turbine temperature for ten cycles ahead and can provide us with accurate results to

be used for condition-based maintenance purposes.

Figure 4.17: Actual vs. predicted TT for a 1% fouled compressor considering predic-
tion bounds (10-step ahead).

4.3.1.2 Second Scenario: FI = 2%

In the second scenario that we consider in this chapter a 2% fouling index that is

effective at the end of the 100th cycle is applied. This implies that at the end the
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engine efficiency will drop by 2% and the mass flow rate will increase by 1%. The

data generation method follows the same routine that was described for the case of

1% FI. The difference is that because the degradation level is increased, the changes

in the turbine temperature to the compressor fouling will be more significant, i.e.

the slope of the change will increase. The turbine temperature variations over 100

take-off cycles are depicted in Figure 5.11. The following cases will be discussed.

Figure 4.18: Turbine temperature variations due to a 2% fouled compressor.

FI = 2%: Case 1

We start by performing a three-steps-ahead prediction using the same network that

was used in Case 3 of FI = 1%. The network inputs are the same thus using a 4-5-1

network. The fuel flow rate (ṁf ) will serve as the network input which is adjusted by

the pilot and the current value of the TT is fed back to the network to help us predict

its values in future, d is equal to two. In Figure 4.19 we have presented the prediction

results versus the actual turbine temperature that is derived from our SIMULINK

model (see Chapter 3). The predicted turbine temperatures are indicated with stars
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Table 4.10: Prediction error for FI=2% case 1.

μae 1.600 (K)
σae 1.948 (K)
rmse 2.717 (K)

and the real turbine temperatures are indicated with circles.

Figure 4.19: Actual vs. predicted TT for a 2% fouled compressor (3-step ahead).

It is verified from the Figure 4.19 that the network has learnt the increasing trend

for the fouled compressor. The prediction error is depicted in Figure 4.20. At the

early stages the error values are higher, but it becomes smoother as cycles proceed

further on.

The predicted data points are in average 1.6K different from the actual values

which is a very good prediction result as the nominal turbine temperature during

take-off is about 1400K. The statistics of the network performance are shown in

Table 4.10
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Figure 4.20: Temperature prediction error for a 2% fouled compressor (3-step ahead).

FI = 2%: Case 2

In the second case where the engine is under 2% fouling, we use the network that

was used in Case 1 of FI = 2% to determine how many steps-ahead prediction one

can accomplish. The inputs are the same as before, the number of neurons in the

hidden layer are ten, 70% of the available data are used for training and d = 4. The

architecture is now 6-10-1. By tuning the network through many simulations the best

prediction results are now reported. It was concluded that ten-step ahead prediction

yield satisfactory results, considering the training data amount, training time, errors

and whether or not the actual data lie in the prediction bounds. The comparison of

the real and predicted turbine temperatures for a 2% fouled compressor are depicted

in Figure 4.21.

The error results are graphically shown in Figure 4.22. Similar to the previous

Case, the error has an increasing trend. The reason is that when one looks fur-

ther through the cycles the network uses the previously predicted point which are
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Figure 4.21: Actual vs. predicted TT for a 2% fouled compressor (10-step ahead).

Table 4.11: Prediction error for FI=2% case 2.

μae -1.815 (K)
σae 3.632 (K)
rmse 5.792 (K)

themselves prone to error and this causes an increase in the overall error.

By studying the error statistics for performance assessment, as presented in Table

4.11 one can conclude that the error mean and variance are low and the overall error

is less than 1%. This demonstrates the effectiveness of using RNNs for prognostics.

The obtained prediction bounds as depicted in Figure 4.23 confirm this conclusion.

65% of the data points are within the predicted bands.

4.3.1.3 Third Scenario: FI = 3%

In the third scenario, we increase the fouling level in the compressor by decreasing the

efficiency and increasing the mass flow rate even further. As a consequence, higher
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Figure 4.22: Temperature prediction error for a 2% fouled compressor (10-step ahead).

Figure 4.23: Actual vs. predicted TT for a 2% fouled compressor considering predic-
tion bounds (10-step ahead).
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changes in the turbine temperature will occur as depicted in Figure 5.21.

Figure 4.24: Turbine temperature variations due to a 3% fouled compressor.

FI = 3%: Case 1

We use the developed network in Case 3 of FI = 1% to predict the turbine temper-

ature variations where 70% of the data is used for training the network and the rest

are used for testing the network prediction performance resulting in a 4-5-1 network.

The actual and predicted temperatures are shown in Figure 4.25. The resulting error

which is the difference between the actual and the predicted temperatures at each

point are shown in Figure 4.26.

The statistical result for the error are given in Table 4.12. One should note that

compared to 1400 K which is the nominal turbine temperature in kelvin during the

take-off mode this is less than 1% error which is quite acceptable. The prediction

results when combined with the prediction of upper and lower bounds are depicted

in Figure 4.27. One can verify that all 100% of the data points are within the bands.

This confirms the accuracy of the prediction, obtained by RNN for this case using
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Figure 4.25: Actual vs. predicted TT for a 3% fouled compressor (3-step ahead).

Figure 4.26: Temperature prediction error for a 3% fouled compressor (3-step ahead).

125



Table 4.12: Prediction error for FI=3% case 1.

μae -1.812 (K)
σae 1.705 (K)
rmse 2.610 (K)

the aforementioned number of neurons, delays, etc.

Figure 4.27: Actual vs. predicted TT for a 3% fouled compressor considering predic-
tion bounds (3-step ahead).

In the next two cases we will try to improve the prediction results by changing

the network parameters and then increase the prediction horizon.

FI = 3%: Case 2

As changes in the turbine temperature are more significant due to higher levels of

degradation, the results obtained in the previous case deemed satisfactory but to go

further in the prediction horizon, after some trials and errors it was concluded that

one needs to provide the network with more examples. This time we feed the network
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Table 4.13: Prediction error for FI=3% case 2.

μae -0.410 (K)
σae 5.369 (K)
rmse 5.187 (K)

with 80% of the data for training and verify if the prediction results for five-step-ahead

is improved. Furthermore , one more delayed version of the output is needed (d = 3).

This results in a 5-5-1 NN. The results are depicted in Figure 4.28. Furthermore the

error is shown in Figure 4.29.

Figure 4.28: Actual vs. predicted TT for a 3% fouled compressor (5-step ahead).

In this case the network has distinguished the trend. The errors have decreased

after the changes are in the portion of training data made as can be verified quanti-

tatively in Table 4.13.

To overcome the problem of uncertainty associated with prediction, the lower and

upper bound are found and depicted in Figure 4.30. The results shown in this figure

confirm that we have achieved a good prediction result. Three of the 15 data are out
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Figure 4.29: Temperature prediction error for a 3% fouled compressor (5-step ahead).

the band made by the lower and the upper prediction bounds. This correspond to

only 20% of the data points.

FI = 3%: Case 3

In the third case which is the last case associated with fouling scenarios, the de-

veloped recurrent neural network is tested to find a larger prediction horizon while

yielding satisfactory results (A 5-5-1 network). Through examining many cases we

have concluded that eight-steps ahead prediction is feasible implying that from the 20

data point available for testing, if one starts with the first point then the network will

predict 8 steps further and thus provides 12 results for prediction. We have compared

the actual and the predicted turbine temperatures in Figure 4.31. The prediction

errors for the test data are shown in Figure 4.32. In this case the mean of the

error is 1.410 K, the standard deviation is 1.100 and the rmse is equal to 1.760 K as

summarized in Table 4.14.
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Figure 4.30: Actual vs. predicted TT for a 3% fouled compressor considering predic-
tion bounds (5-step ahead).

Figure 4.31: Actual vs. predicted TT for a 3% fouled compressor (8-step ahead).
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Figure 4.32: Temperature prediction error for a 3% fouled compressor (8-step ahead).

Table 4.14: Prediction error for FI=3% case 3.

μae 1.410 (K)
σae 1.100 (K)
rmse 1.760 (K)
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Determining two bounds for the prediction results and managing uncertainty is

even more critical as the prediction steps increase through the cycles as the probability

of uncertainty modelling becomes higher. Again we have predicted and shown these

in Figure 4.33. Note that 8 of the 12 predicted data points are inside in the bands.

This corresponds to more than 65% of them.

Figure 4.33: Actual vs. predicted TT for a 3% fouled compressor considering predic-
tion bounds (8-step ahead).

Through many trial and error attempts and network adjustments it is concluded

that the network is capable of eight-cycles-ahead prediction. To go beyond this hori-

zon one needs a higher percentage of the data for training, besides the prediction

error has an increasing trend which can be regarded as a sign for the limit of the

step-ahead possible. Moreover, as we considered flight cycles for our prediction hori-

zon, this number of step-ahead is good enough and gives enough time to the operators

to decide about the necessary maintenance actions while the engine condition is still

safe. In the next sections, we study and discuss the cases in which the turbine is

affected by the erosion.
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4.3.2 Simulation Results for Erosion Scenarios

In this section we will focus on erosion and its effect on the aircraft engine. Erosion is

the removal of material from the flow path components with hard particles. Erosion

mostly occurs in the turbine component and can cause aerodynamic changes in the

behaviour of blades. We will also consider erosion to occur in the turbine section.

Pressure losses, performance degradations and even blade failure are consequences of

the erosion. It is very important to track the effects of the erosion on the gas path

measurements and be able to predict them.

Erosion changes the engine health parameters. It will cause the turbine efficiency

and mass flow rate to drop. It is assumed that a 2:1 linear relationship exists between

the turbine efficiency and the mass flow rate, respectively. To quantify these effects

we use the EI that is explained in Chapter 3. Changes in the efficiency and the mass

flow rate due to erosion increase the turbine exit temperature (TT). In the following

scenarios we will use RNNs for predicting the turbine temperature through various

simulations. Three levels of erosion constitute as basis for our scenarios. The process

of making the scenarios and cases are similar to the ones in the fouling cases.

4.3.2.1 First Scenario: EI = 1%

If erosion occurs and stays in the turbine it can change the spool speed, turbine

temperature, etc. The rate of these changes were studied and validated with the

GSP software in Chapter 3. The simulations for a system under erosion have been

performed for 200 take-off cycles. In the take-off mode, since the engine is operating

from the ground idle condition to the maximum level of fuel, the degradation initiation

and propagation is more significant and therefore are studied here. For EI = 1%, this

1% is equivalent to 1% drop in the turbine efficiency and 0.5% drop in the turbine

mass flow rate. Recurrent neural networks are employed here to learn this evolution
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trough flight cycles. Thus it is not necessary to save and use all the data points

from the 200 cycles. Degradations have low dynamics and do not change the system

abruptly or significantly in only one cycle. Hence, instead one can pick the same time

from each flight cycle and put them in a vector. From this vector a portion will serve

as the training data set and a portion for testing purposes.

The turbine temperature evolution for a 1% eroded turbine during 200 cycles is

depicted in Figure 5.28. The effect of the measurement noise on the data is clear.

Figure 4.34: Turbine temperature variations due to a 1% eroded turbine.

EI = 1%: Case 1

Given an appropriate data set one can train the neural network for the following

objective. If a 1% erosion occurs in the turbine and remains there implying that no

maintenance is performed, what would be the engine condition in some flights ahead.

Once the turbine temperature is predicted for some flights ahead, one can then decide

if the next flights will be safe or the temperature has reached certain thresholds that

makes it necessary to take the engine off-line for maintenance.
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First we start training our recurrent neural network that is provided with a global

feedback path from the network output to the network input. Using the present

value of the input which is the fuel flow rate, the current value of the temperature

which is the network output and three of its previous values (d = 3) the network is

trained. In the first case 50% of the data shown in Figure 5.28 are used to train a

5-5-1 RNN network. This implies that we have two inputs namely the current value

of the fuel flow rate and past value of the turbine temperature (TT), five neurons in

the hidden layer and one output which is the turbine output temperature. The actual

versus the predicted data for a five-step-ahead prediction are compared in Figure 4.35.

It is understood from the figure that that network is not able to learn the turbine

Figure 4.35: Actual vs. predicted TT for a 1% eroded turbine (5-step ahead).

temperature trend for a 1% eroded turbine. Especially as one proceeds further in

time the predicted points are not updated and they are remaining constant. This

network is unable to perform the prediction task and we either have to provide the

network with more examples or change the network parameters. The resulting error

is depicted in Figure 4.36. The increase in the error confirms that this network is
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Table 4.15: Prediction error for EI=1% case 1.

μae 6.664 (K)
σae 8.537 (K)
rmse 8.703 (K)

unable to predict the turbine temperature.

Figure 4.36: Temperature prediction error for a 1% eroded turbine (5-step ahead).

Similar to the fouling cases, we will calculate some error statistics which help

us judge the prediction performance. We obtain the mean (μ) and the standard

deviation (std) of the error in addition to the root mean square of the instantaneous

error (rmse). For the Case 1 the mean of the prediction error is equal to 6.664 K,

the standard deviation is 8.537 K, and rmse=8.703 K. The values are summarized in

Table 4.15. We will increase the number of input data in the next case.
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EI = 1%: Case 2

Our recurrent neural network requires more examples to learn the dynamic of the

turbine temperature increase when the turbine is affected by erosion. In this second

case, 70% of the data vector is assigned for network training. Moreover, the network

architecture is changed to 5-10-1 (d = 3 and number of neurons in the hidden layer

is set to 10). The comparison results are shown in Figure 4.37 where the circles

represent the actual data and the starsrepresent the predicted values (neural network

output).

Figure 4.37: Actual vs. predicted TT for a 1% eroded turbine (5-step ahead).

Furthermore, the prediction error for the test data is shown graphically in Figure

4.38 and as expected the error level increases as the prediction horizon increases. The

test error mean, standard deviation and rmse are -0.198 K, 2.735 K, and 2.718 K

respectively which are also tabulated in Table 4.16. The errors are sufficiently small

enough (less than 1% error).

The importance of uncertainty management and defining some bounds for the
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Figure 4.38: Temperature prediction error for a 1% eroded turbine (5-step ahead).

Table 4.16: Prediction error for EI=1% case 2.

μae 1.016 (K)
σae 1.971 (K)
rmse 1.599 (K)
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prediction instead of just relying on the point prediction has been highlighted in

the previous section. In Figure 4.39, the actual data, the network output and the

predicted bounds are shown in the same diagram. The graph shows that most of

the data points are within the bounds and this implies an acceptable five-step-ahead

prediction (87% of the data points are inside the area made by the lower and the

upper prediction bounds).

Figure 4.39: Actual vs. predicted TT for a 1% eroded turbine considering prediction
bounds (5-step ahead).

To summarize put the results of this case both the error results and the prediction

bounds show that the 5-10-1 RNN is suitable for predicting the turbine temperature

changes when it is due to 1% erosion. Thus we consider this network for our prediction

and will attempt to extend the number of cycles ahead in the next case.

Remark. One should note that in order to be able to judge the neural network

performance and the goodness of the prediction, we use both the prediction bands

and the quantitative error statistics. First of all we verify if most of the data points

are in the predicted band. Then, we study the error mean, standard deviation and
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the mean-squared error. If all of these values are small enough i.e. the absolute mean

plus three times the standard deviation (this is a common measure) is less than 1%

of the nominal value of the temperature, we conclude that the prediction error is

less that 1%. In the other words, the network is capable of predicting the turbine

temperature for that certain level of the degradation with 99% accuracy. This 1%

measure is being studied in all the cases and scenarios, it does not depend on the

level of degradation and the prediction preciseness is important for us.

EI = 1%: Case 3

In this case, we assume that the turbine is still having the same level of erosion.

We examine the network to determine the most achievable step-ahead for the turbine

temperature prediction using the same 5-10-1 network architecture. We test our RNN

for an eight-step-ahead temperature prediction. The prediction results are depicted in

Figure 4.40. Moreover, the errors between the actual and the predicted temperatures

are shown in Figure 4.41.

Figure 4.40: Actual vs. predicted TT for a 1% eroded turbine (8-step ahead).
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Table 4.17: Prediction error for EI=1% case 3.

μae 1.578 (K)
σae 2.410 (K)
rmse 2.511 (K)

Figure 4.41: Temperature prediction error for a 1% eroded turbine (8-step ahead).

We have also found the error statistics quantitatively and presented them in table

4.17. The error is still within the reasonable and acceptable ranges. This demon-

strates that we can rely on this network for an eight-step-ahead prediction.

Finally, we have also predicted two lower and upper prediction bounds to overcome

uncertainties associated with the prediction and determine if the data points are

within these ranges. The bounds and the predicted temperatures for this case are

depicted in Figure 4.42. One can see that 4 data points are not inside the bands and

in other words 92% are within these bands.

It follows that error results are quite good. In the next case we try to find the

largest cycle possible for which an acceptable prediction horizon can be achieved.
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Figure 4.42: Actual vs. predicted TT for a 1% eroded turbine considering prediction
bounds (8-step ahead).

EI = 1%: Case 4

For Case 4 we have conducted many simulations to find the maximum allowable time

step horizon for the turbine temperature prediction. Two performance measures have

to be monitored carefully. The first is the set of error statistics such as the mean and

the std of the prediction error and the second one is the set of prediction bounds. It

is both important that the errors are low and also the actual values lie within the

prediction bounds. After various trials and errors we conclude that for the case of 1%

erosion in the turbine component, with adjusting the number of delays to 4 (d = 4),

the 6-10-1 RNN gives us the temperature in the 15th cycle from the present time. The

results are shown in the following Figures 4.43 - 4.45 and Table 5.11.

Considering the error levels and the position of the data with respect to the pre-

diction bounds (77% of them are inside the bands), a 15-step ahead is the maximum

number of cycles that can be projected satisfactorily. We could obtain better results
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Figure 4.43: Actual vs. predicted TT for a 1% eroded turbine (15-step ahead).

Figure 4.44: Temperature prediction error for a 1% eroded turbine (15-step ahead).
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Table 4.18: Prediction error for EI=1% case 4.

μae 2.301 (K)
σae 3.989 (K)
rmse 3.990 (K)

Figure 4.45: Actual vs. predicted TT for a 1% eroded turbine considering prediction
bounds (15-step ahead).
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by increasing the number of delays but it will cost us computational complexity and

thus we stop going further at this point.

4.3.2.2 Second Scenario: EI = 2%

In this scenario we follow the procedure that was followed in the first scenario with

EI = 1%. First we have to generate the proper data. The standard take-off duration

is assumed to be 20 seconds. We run the simulations 200 times (200 cycles) and pick

up the 12th second of each take-off and construct the data set. We assume that a

2% EI is effective in the entire simulation. This is equivalent to a 2% drop in the

efficiency and a 1% drop in the turbine mass flow rate. We also assume that the

erosion levels remain the same. If the erosion remains in the system it causes and

increases the effects in the turbine temperature. We would like to train the neural

network to predict the temperature of an eroded turbine for certain steps ahead. Our

data set considering the measurement noise are depicted in Figure 5.38 where all the

temperatures are measured in Kelvin.

Figure 4.46: Turbine temperature variations due to an eroded turbine with EI= 2%.
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EI = 2%: Case 1

In the first case that we investigate the goal is to achieve a reliable five-step-ahead

prediction with the same ”optimum” network that was derived in the previous sce-

nario. We have a 5-10-1 recurrent neural network where 70% of our data set are

given as training examples to the neural network. We use the rest of the data to test

the neural network as shown in Figure 4.47. However in this case to achieve good

results we had to use 80% of the data points for training purposes. The actual and

Figure 4.47: Actual vs. predicted TT for a 2% eroded turbine (5-step ahead).

the predicted data deviate from each other as can be seen in Figure 4.48 where the

error increases.

The predicted data points are in average 1.5K different from the actual values

which is a good prediction result as the nominal turbine temperature during the

take-off is about 1400K. The statistics of the performance are shown in Table 4.19

In addition to the error values, the prediction bounds confirm that with our RNN

architecture, a five-step-ahead prediction is possible for the turbine temperature. The
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Figure 4.48: Temperature prediction error for a 2% eroded turbine (5-step ahead).

Table 4.19: Prediction error for EI=2% case 1.

μae 1.507 (K)
σae 1.216 (K)
rmse 1.926 (K)
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bounds when compared to the predicted and actual temperatures are depicted in

Figure 4.49. One can see that 80% of the data points are inside the created bands.

Figure 4.49: Actual vs. predicted TT for a 2% eroded turbine considering prediction
bounds (5-step ahead).

FI = 2%: Case 2

We finish the second scenario which considers EI to be equal to 2% by investigating

the maximum step-ahead horizon for the prediction. We use the same network archi-

tecture as in Case 4 of the previous scenario. d is set to four which gives a 6-10-1 NN.

We want the mean, standard deviation and rmse of the error to be as low as possible,

implying that the predicted point are close to the real temperature as derived from

our SIMULINK model. Moreover, we want the predictions to be inside the bounds

to overcome uncertainty. The comparison results are presented in Figure 4.50.

The error level is within the range (less than 1% error) when compared to the

nominal value for the turbine temperature in the take-off. The error is depicted in
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Figure 4.50: Actual vs. predicted TT for a 2% eroded turbine (8-step ahead).

Table 4.20: Prediction error for EI=2% case 2.

μae 0.325 (K)
σae 2.085 (K)
rmse 2.091 (K)

Figure 4.51 for the network testing phase. Moreover, the mean, std and rmse of the

error are found in Table 4.20.

The bounds are predicted and depicted in Figure 4.52. Defining the bounds is very

important especially when we are taking larger steps ahead. Since the error level is

low and also most of the points stay between the lower and the upper prediction

bounds (22 of the 32 data point which corresponds to 70% of them) one can conclude

that the trend has been learned satisfactorily. A reliable eight-step-ahead prediction

can be performed with our RNN when 2% erosion is effective in the turbine.
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Figure 4.51: Temperature prediction error for a 2% eroded turbine (8 step-ahead).

Figure 4.52: Actual vs. predicted TT for a 2% eroded turbine considering prediction
bounds (8 step-ahead).
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4.3.2.3 Third Scenario: EI = 3%

In our final scenario we assume that a 3% erosion has occurred in the turbine section.

This is equivalent to 3% drop in the turbine efficiency and 1.5% drop in the turbine

mass flow rate. We need to generate a proper data set as it can affect the performance

of the neural network. We have considered the measurement noise as well. The

resulting data set are depicted in Figure 5.45. In the following we will investigate our

Figure 4.53: Turbine temperature variations due to a 3% eroded turbine.

final scenario.

EI = 3%: Case 1

In the fist case, we assume that a 3% erosion has occurred in the turbine. We have

modelled the erosion by changing the engine health parameters, varying the health

parameters, and changing the gas path measurements. The turbine temperature is

the best candidate for prognostics study as it contains important information about

the changes in the entire system. This level of erosion is fully effective in the system
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at the end of 200th cycle. We will start training our 5-10-1 RNN implying 3 delayed

outputs plus the turbine temperature itself as the out pit and the mass flow rate as

the input for this case. Once the training phase is completed, in the testing phase

we compare the network output with the obtained SIMULINK model output. The

results are shown in Figure 4.54.

Figure 4.54: Actual vs. predicted TT for a 3% eroded turbine (5-step ahead).

The difference between the network output and the real data at each point is

depicted in Figure 4.55. The learning is more accurate at the beginning but as one

reaches to the end the error levels increase and this shows the need for updating the

information that we feed to the network.

The error statistics are provided in Table 4.21 and the prediction bounds are

shown in Figure 4.56. Combining these two measures one can see that error levels

are very low and most of the data points (78% of the entire data set) are within the

bounds which show that an effective 5-step ahead can be performed with our RNN.
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Figure 4.55: Temperature prediction error for a 3% eroded turbine (5-step ahead).

Table 4.21: Prediction error for EI=3% case 1.

μae 2.495 (K)
σae 1.674 (K)
rmse 2.996 (K)
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Figure 4.56: Actual vs. predicted TT for a 3% eroded turbine considering prediction
bounds (5-step ahead) .

Table 4.22: Prediction error for EI=3% case 2.

μae 0.747 (K)
σae 2.349 (K)
rmse 2.339 (K)

EI = 3%: Case 2

In the last case that we present in this chapter, our RNN will be tested to find its

limit for cycles ahead prediction horizon. We use the 6-10-1 RNN with global feedback

from the network output to verify the results for a five-step ahead prediction when

the erosion index is equal to 3%. After feeding the network with 80% of the data for

training, the following results were obtained in the testing phase as shown in Figure

4.57.

The error results for ten-steps-ahead prediction are shown in Figure 4.58. More-

over, the error mean, std and rmse are tabulated in Table 4.22.

153



Figure 4.57: Actual vs. predicted TT for a 3% eroded turbine (ten-step ahead).

Figure 4.58: Temperature prediction error for a 3% eroded turbine (ten-step ahead.
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The error results are reasonable. We also have to check the prediction bounds to

be able to comment on the prediction performance (Figure 4.59). One can see that

60% of the data are within the bands created by the upper and the lower prediction

bounds. The ten-step-ahead prediction is an accurate prediction and we can ensure

that on average our prediction of the turbine temperature is quite close to the real

value with only a 1% error.

Figure 4.59: Actual vs. predicted TT for a 3% eroded turbine considering prediction
bounds (ten-step ahead).

In several scenarios that we have presented in this chapter the prediction results

using our recurrent neural network are showing promising results. For a gas turbine

engine that is due to either fouling or erosion, if we provide the network with some

data points from the temperature evolution, the network will be able to predict the

temperature values for future cycles with a good error percentage. Knowing the

future values of the temperature allows one to schedule the maintenance based on the

predicted condition of the engine.
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4.4 Summary of the Simulation results

In this section we Summarize the simulation results obtained in the previous section,

in a tabular form. In all of the simulation results, We studied the results both

qualitatively and quantitatively. We compared the predicted values which were the

output of our recurrent NN with the test data vector that we had kept for comparison

and network testing purposes. In addition, we verified if the data points were within

the bands created by the upper and the lower prediction bands. Finally, we found the

prediction error which is defined as the difference between the real and the predicted

turbine temperatures. The error is found for each point and the number of error

points depend on the size of the test vector and number of cycles ahead predicted.

Utilizing the points, Some error statistics are calculated. Error mean (μae), error

standard deviation (σae) and the mean squared-error (rmse ) were calculated and

presented in tables as well as the network structure for each case.

These quantitative measures were calculated for all Scenarios and cases for dif-

ferent degradation types, different degradation levels ( 1% to 3%) and different steps

ahead. These error statistics helped us judge if the prediction was reliable (less than

1% error). To achieve satisfactory prediction result, We had to change the networks

parameters such as the number of delays fed into the network input. l is the number

of prediction steps ahead, d is the number of output delays fed back to the network

input.

4.4.1 Summary of the results for fouling scenarios

The results for the fouling scenarios (a fouled compressor) are presented in the fol-

lowing tables. We do not go beyond 3% of fouling as engine washing is recommended

after this level. It is understood form the tables that if we want to keep the error

low and increase the cycles ahead in time, we have to increase the number of neurons
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Table 4.23: Summary of the results for FI=1% scenarios.

FI = 1% Network Structure μae σae rmse
d = 2 / l = 3 4-5-1 1.177 1.073 1.579
d = 2 / l = 3 4-5-1 0.177 1.384 1.343
d = 4 / l = 6 6-5-1 1.968 1.829 2.658
d = 4 / l = 10 6-5-1 -0.338 1.810 2.786

Table 4.24: Summary of the results for FI=2% scenarios.

FI = 2% Network Structure μae σae rmse
d = 2 / l = 3 4-5-1 1.600 1.948 2.717
d = 4 / l = 10 6-10-1 -1.815 3.632 5.792

in the hidden layer as well as increasing the number of output delays d given to the

network as input.

4.4.2 Summary of the results for erosion scenarios

In this subsection we summarize the prediction results when the engine is under

different levels of erosion. Erosion in the turbine causes efficiency drop and increases

the mass flow rate by a linear relation of 2:1. By studying these three tables one can

see that to achieve more steps ahead, more delayed outputs need to be fed back to

the RNN input otherwise the error level would go high and beyond our ideal error

level (Less than 1%).

Table 4.25: Summary of the results for FI=3% scenarios.

FI = 3% Network Structure μae σae rmse
d = 2 / l = 3 4-5-1 -1.812 1.705 2.610
d = 3 / l = 5 5-5-1 -0.410 5.369 5.187
d = 3 / l = 8 5-5-1 1.410 1.100 1.760
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Table 4.26: Summary of the results for EI=1% scenarios.

EI = 1% Network Structure μae σae rmse
d = 3 / l = 5 5-10-1 1.016 1.971 1.599
d = 3 / l = 8 5-10-1 1.578 2.410 2.511
d = 4 / l = 15 6-10-1 2.301 3.989 3.990

Table 4.27: Summary of the results for EI=2% scenarios.

EI = 2% Network Structure μae σae rmse
d = 3 / l = 5 5-10-1 1.507 1.216 1.926
d = 4 / l = 8 6-10-1 0.325 2.085 2.091

4.5 Conclusion

In this chapter we have carried out various simulation results using our developed

recurrent neural network. We considered two main causes of engine degradation

namely fouling and erosion, which are soft degradation causes. They have a slow

dynamics and their effect has to be studied along relatively large number of cycles.

Among the available gas path measurements, the turbine temperature was chosen to

be observed and predicted. the degradation initiate in different engine components

and stays in the system. The RNN is provided with a portion of this data (we keep

one data from each cycle at the same time) and the rest are used for testing the

network. All of the temperatures are derived from our developed SIMULINK model.

The engine is working in the take-off mode. Different scenarios were considered for

Table 4.28: Summary of the results for EI=3% scenarios.

EI = 3% Network Structure μae σae rmse
d = 3 / l = 5 5-10-1 2.495 1.674 2.996
d = 4 / l = 10 6-10-1 0.747 2.349 2.339

158



different levels of fouling and erosion. To evaluate the performance of our network for

each scenario, we found the mean, standard deviation and the root mean square of

the error. Furthermore, we introduced two prediction bounds at each simulation for

uncertainty management associated with the prediction problem and we presented

the formulation. The obtained results demonstrate that this type of neural network

can be used for prediction and the prognosis results can be used for condition based

maintenance. A summary of all the simulation cases is tabulated at the end of this

chapter.
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Chapter 5

Jet Engine Degradation

Prognostics Using Dynamic Neural

Networks

In this chapter, the investigation on degradation prognostics using another neural

network will be presented. The network to be used is the nonlinear autoregressive

neural networks (NARNNs). This is a combination of recurrent and dynamic neural

networks which enjoys both features. The engine soft degradations are being consid-

ered. Their dynamics is slow and show their effects in the engine system after some

cycles. They are similar to abrupt faults in the sense that once they occur in the

system they remain there unless the engine is taken for maintenance. We are inter-

ested in predicting their future values for scheduling condition-based maintenance.

This goal is to be achieved by using the proposed neural network. At the end of this

chapter we compare the prediction performance of the two neural networks that are

considered in this thesis.
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5.1 Degradation Trend Prognostics Using Nonlin-

ear Autoregressive Neural Networks (NARNNs)

In this section, we predict the degradation trends and their effects on the turbine

measurable data using the nonlinear autoregressive neural networks (NARNNs). It

was shown in Chapter 4 that recurrent neural networks (RNNs) are capable of learning

short-time dependencies due to their global feedback from the network out put to

the network input. On the other hand, NARNNs are capable of learning long-term

dependencies. This implies that the output at the present time is dependent on the

present and past values of the input as well as the past vales of the output itself. This

is explained in [197] as to why learning long-term dependencies is not a feasible task.

The general type of the NARNNs that are used in this chapter belongs to a class

of architectures that is based upon nonlinear autoregressive models with exogenous

inputs (NARX model). NARX model is in fact a recurrent neural network capable

of modelling and predicting efficiently time-series data. NARX is based on the linear

ARX model that is commonly used in time-series modelling. Therefore, it benefits

from the advantages of both recurrent and dynamical neural networks. The defining

equation of the NARX network was presented earlier in Chapter 2. In NARX NN,

the next value of the dependent output signal y(n) is regressed on previous values of

the output signal and previous values of an independent (exogenous) input signal as

follows

y(n+ 1) = f [y(n), ..., y(n− dy + 1); u(n), u(n− 1), ..., u(n− du + 1)]

= f [y(n);u(n)]

(5.1.1)

where f is a nonlinear function, u and y are the input and output regerssors, respec-

tively, du and dy are the number of input and output delays, respectively. In other
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words, we are dealing with two tapped delay lines, one sliding over the input signal and

the other sliding over the network’s output. The set of time-delay operators serves as

memory elements. To achieve our prediction purpose, especially in multi-steps-ahead

prediction where we are interested in a wider prediction horizon, the model’s output

should be fed back to the input regressor for a fixed but finite number of time steps.

It should be pointed out that NARX networks are also powerful tools for nonlinear

system identification.

NARX networks normally converge much faster and generalize better than other

networks [159]. Moreover, NARX networks are shown to be universal computational

devices. In [198], NARX networks have been compared with nine other recurrent

neural networks and these capabilities of the NARX neural networks have been con-

firmed. The challenge associated with NARX networks is determining the optimum

values of the autoregressive model and the exogenous input order. They have to be

determined empirically and through trial and error. Normally the performance will

improve with increasing the model orders, but this comes at the cost of additional

parameters and learning time.

NARX neural networks have applications in chaotic time-series prediction ([199]).

They have also been applied in some non-engineering fields such as variable bit rate

(VBR) video traffic time series prediction ([200]), and nearshore sandbar behaviour

modelling ([170]). Although very useful, they have not found their way in engineer-

ing prediction problems. In [143], the authors have demonstrated a model reduction

technique for computing critical engine component parameters for remaining life pre-

diction. In this chapter, our goal is to demonstrate the effectiveness of this approach

for predicting the degradation trend in a jet engine. In the following section we

describe our NARX approach followed by the obtained simulation results.
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5.1.1 NARX Neural Network Prognosis Approach

In this section we follow the same steps as in the previous chapter. Jet engine, like any

other physical system degrades thorough time due to operational and environmental

conditions. This in return can change the engine health parameters such as the

efficiency and the mass flow rate. These quantities are not directly measured by

sensors but they consequently change the gas path measurements such as the spool

speed, pressure and the temperature at the engine critical points. One can track these

changes by monitoring gas path data. After studying certain data points and feeding

them into the NARX NN for training, we expect the neural network to predict the

future value of them for certain steps ahead in time of the engine flight cycle. The

challenge would be the choice of the network architecture such as the number of hidden

layers, the number of the neurons in the hidden layers, the activation functions, and

the number of input and output delays.

We also have to decide about the portion of the data used for training and the

portion used for testing and validation. Once we are confident about our network

(called the trained predictor) and methodology (by studying the errors and statisti-

cal measures), we will demonstrate the approach by applying it to different engine

degradation scenarios for two different degradation types. When working with neural

networks one should always make sure that the network is trained enough and at the

same time it is not over trained. We try to simulate the same scenarios and cases

in order to be able to make a proper comparison. We also use the same inputs and

predict the same gas path measurement, i.e. the turbine temperature.

For the data set, we use the same ones as in Chapter 4. Similar approach is followed

to build these data sets, to be used for training and testing our proposed NARX neural

network. When our degraded engine model is simulated certain number of data points

become available. The data points are the gas path measurements. We consider the
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two main causes of engine degradation namely the fouling and the erosion. They

are called soft as they have as low dynamics and do not change the system abruptly.

They affect the efficiency and the mass flow rate of the engine components which

in return change the gas path measurements. Fouling mostly affects the compressor

and erosion changes the turbine performance more, as compared to the other engine

components.

The resulting changes are not observable with only one flight cycle, that is why one

must run the simulations for the take-off mode for hundred cycles and pick one point

(the same point) from each flight cycle. The procedure for generating the simulations

is described in the previous chapter. Measurement noise has been considered as well.

The thrust level is kept constant in spite of degradations by increasing the fuel flow

rate. The data are then used to train our proposed NARX NN architecture toward

learning the fouling/erosion dynamics and the turbine temperature increasing effects

caused by these phenomena.

5.1.2 Simulation Results

Once the data sets (ordered points) are selected, they are used toward training a

suitable NN predictor and then testing it. To achieve prognostics and to be able to

identify the degradation level at a certain point in time in future, the time evolution of

the turbine temperature has to be learnt. The task in the training phase is to adjust

the network parameters such as the number of hidden layers, the number of neurons,

the data portion for training and testing are selected to obtain acceptable training

error. This shows the ability of the trained NARX NN predictor to dynamically map

the historical and current data into the future. When the network is trained properly,

the prediction task starts for predicting the future TT development.

In the following sections we first demonstrate different cases and scenarios for a
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fouled compressor and then scenarios and cases for an eroded turbine. By following

these cases the selection of the data and the network parameters become more clear

and how the results are improved by adjusting different variables. One can also see

how many step-ahead prediction is achievable by using our proposed network. For

that we will compare the actual and the predicted values which are the NN outputs.

We also study them statistically and depict the errors.

5.1.3 Simulation Results for Fouling Scenarios

The first degradation to be studied is the fouling. Fouling mostly occurs in the

compressor and adversely impact its functionality by reducing the efficiency and the

mass flow rate. In the following cases and scenarios, the fouling level varies from 1%

to 3%. We do not exceed this level of fouling. As when the fouling goes beyond this

level, the engine is recommended to be take off-line for washing. The simulations

for a fouled engine are run 100 times (100 cycles) and one point from each cycle at

the same time is chosen to build-up our data vectors to be used for neural network

training and testing phases. We pick the 12th second of each take-off cycle for an

engine degraded by fouling.

5.1.3.1 First Scenario: FI = 1%

At the 1% fouling level, the compressor efficiency drops 1% and the mass flow rate

decreases 1%. The turbine temperature for 100 cycles (already shown in Chapter 4)

are depicted here again in Figure 5.1.

FI = 1%: Case 1

To examine the capability of our NARX NN for prediction, we feed the network

with the fuel flow as the input and the turbine temperature (TT) is predicted as the
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Figure 5.1: Turbine temperature variations due to a fouled compressor.

output. The previous values of the input and the output are regressed and used for

neural network training. We start by setting the input and output delays to be equal

to three (du = dy = 3) as after some trials and errors these seem to be the proper

delay values. Out of the 100 available data points half of them are used for training

and the other half is used for testing the network. The number of neurons in the

hidden layer is five. The above mentioned parameters result in a 8-5-1 network ( 8

= 1+1+3+3 where we have fuel flow as input, turbine temperature as out put and

three delayed versions of each).

The approach for demonstrating and evaluating the prediction result is the same

as before. First, we depict the real values and the predicted values in the same figure.

Then the prediction error obtained from the NN training phase are plotted point-wise.

Afterwards, as explained earlier, we add the upper and the lower prediction bounds

to overcome the uncertainty associated with the problem of prognostics. Finally, the

statistical error measures such as the prediction error mean (μae), prediction error

standard deviation (σae) and root mean squared error are presented in a tabular form
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to provide quantitative measures about the goodness of the prediction results.

Our goal is to achieve the best result for a three-step ahead prediction that here

implies three cycles ahead (l = 3). Once we achieve this number of steps, we can

widen our prediction horizon. The results are depicted in Figure 5.2. The circles

denote the actual temperature values and the stars show the predicted ones. The

increasing trend is learnt and predicted by our network. By studying Figure 5.2, one

can see that 97 data points are being compared although the test data vector has

100 entries. The reason is that we are conducting a 3-step ahead prediction and thus

starting from the first point of the test data set, 97 points can be predicted.

Figure 5.2: Actual vs. predicted TT for a 1% fouled compressor (3-step ahead).

Furthermore, the prediction error for the 30 test data point is shown graphically

in Figure 5.3. The error varies between -3K and 2K. Again, we have considered the

upper and the lower prediction bounds for uncertainty management and the result

are shown in Figure 5.4. One can observe from the Figure 5.4 that only 6 of the 97

data points are outside of the bands which yield that 93.8% are inside the bands.
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Figure 5.3: Temperature prediction error for a 1% fouled compressor ( 3-step ahead).

Figure 5.4: Actual vs. predicted TT for a 1% fouled compressor considering prediction
bounds ( 3-step ahead).
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Table 5.1: Prediction error for FI=1% case 1.

μae 0.970 (K)
σae 1.149 (K)
rmse 1.220 (K)

The above three figures demonstrate the NARX network prediction capability

graphically. One also needs a quantitative measure of performance. These measure

are presented in Table 5.1. The mean of the prediction error (absolute value) is

μae = 0.970K, the prediction standard deviation is σae = 1.149K and the error root

mean square is rmse = 1.220K.

Remark. If one compares the error results obtained in this case with the error

results obtained in Case 3 of Chapter 4, one can see that they are quite close to each

other. When comparing the results, this fact should be highlighted that for training

our RNN, 70% of the data were used to train the network where only half of the data

are used in training our NARX NN scheme. Moreover, training the NARX network

is relatively faster, as compared to our other proposed scheme.

FI = 1%: Case 2

In the second case, we still investigate turbine temperature prediction for a 1% fouled

compressor. In this case, 50% of the available data are used for training our NN and

50% are used for testing it. It is not possible to always follow certain predetermined

rules for neural network parameter selection. One has to try different number of

hidden neurons, different input delays, and different output delays. Following the trial

and error process for 10-step ahead prediction, we concluded that a 11-5-1 network

with four input delays du (fuel flow) and five output delays dy (turbine temperature)

can give us suitable prediction results (11 = 1+1+4+5 where we have the fuel flow

as input, turbine temperature as output, four delayed version of the input and five
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Table 5.2: Prediction error for FI=1% case 2.

μae 1.535 (K)
σae 1.721 (K)
rmse 1.860 (K)

delayed version of the output). The prediction results are depicted in Figure 5.5.

Figure 5.5: Actual vs. predicted TT for a 1% fouled compressor (10-step ahead).

Moreover, the prediction error for the 40 predicted data points is shown point-wise

in Figure 5.6. The mean, standard deviation and rmse of the prediction error are

1.535, 1.721 and 1.860, respectively. The values are also presented in Table 5.2. One

can verify that the prediction error is less than 1% and the results are even better

than the same case as obtained in Chapter 4.

We have also depicted the prediction bounds in Figure 5.7. Full explanation on

deriving these bounds is given as a form of a Remark in Chapter 4. We follow the

same methodology in this chapter. One can observe that the points are within the

prediction bounds to a very good extent (at the rate of 87.5%).
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Figure 5.6: Temperature prediction error for a 1% fouled compressor (10-step ahead).

Figure 5.7: Actual vs. predicted TT for a 1% fouled compressor considering prediction
bounds (10-step ahead).
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FI = 1%: Case 3

In the third case of the first scenario, we widen the prediction horizon further in time.

Many trials are conducted and only the best results are depicted. The aim of the

investigation in this case is to find the maximum prediction capability of this NARX

NN scheme. By changing the number of neurons in the hidden layer or increasing

the size of training data vector, one may be able to have ma larger cycles ahead

prediction but as the goal is to examine our proposed network developed in Case

2, we keep the same network parameters and data portion and just change the step

ahead factor. The 11-5-1 network is capable of predicting the turbine temperature

for a fouled compressor for 16 cycles ahead with reasonable error values (less than

1%). The comparison between the actual and the predicted temperatures is depicted

in Figure 5.8.

Figure 5.8: Actual vs. predicted TT for a 1% fouled compressor (16-step ahead).

The error is depicted graphically in Figure 5.9 for the 34 predicted points. This

represents the difference between the actual and the predicted temperature for each
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Table 5.3: Prediction error for FI=1% case 3.

μae 2.055 (K)
σae 2.373 (K)
rmse 2.479 (K)

data in the testing set. Furthermore, the error statistics for the 16-step ahead are

shown in Table 5.3. Finally, one can see from Figure 5.10 the predicted versus the

actual values that are within the zone made by the lower and upper prediction bounds

that confirms the goodness of this prediction. Specifically, 82.8% of the data points

are within the bands.

Figure 5.9: Temperature prediction error for a 1% fouled compressor (16-step ahead).

We emphasize again that prediction results by using the NARX network show that

training and handling this network is easier as compared to the other architecture

and less data are needed for the same level of preciseness. We now proceed to the

second scenario which considers a 2% fouling in the compressor.

173



Figure 5.10: Actual vs. predicted TT for a 1% fouled compressor considering predic-
tion bounds (16-step ahead).

5.1.3.2 Second Scenario: FI = 2%

In the second scenario that we consider in this section a 2% fouling is considered.

This implies that at the end the engine efficiency will drop by 2% and the mass flow

rate will increase by 1% following the 1:0.5 rule. The data generation method follows

the same routine that was described for the case of 1% FI. The difference is that

because the degradation level is now higher, the changes in the turbine temperature

to the compressor fouling will be more significant, i.e. the slope of the change will

increase. The turbine temperature variations over 100 take-off cycles are depicted in

Figure 5.11. The following cases will be discussed using the depicted data.

FI = 2%: Case 1

In the first case we perform a 5-step ahead prediction using the neural network pro-

posed in case 1 of the first scenario. The fuel flow and its three delayed values are the
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Figure 5.11: Turbine temperature variations due to a 2% fouled compressor.

network inputs in addition to the three delayed turbine temperature (du = dy = 3).

We used three as trials and error showed us that one can obtain satisfactory results

while still keeping the parameters as low as possibles. Five neurons exist in the hid-

den layer of the proposed NARX network which results in a 8-5-1 architecture (8

is obtained as the sum of the input, the output and three delayed version of each :

8+1+1+3+3). We train the network using only half of the available data and the

rest are used for testing the prediction performance.

In Figure 5.12 we have presented the prediction results versus the actual tur-

bine temperature that is derived from our SIMULINK model (see Chapter 3). The

predicted turbine temperatures are indicated with stars and the real turbine temper-

atures are indicated with circles. One can observe that the predicted temperatures

properly follow the real ones.

The point-wise error is depicted in Figure 5.13. By studying Figures 5.12 and 5.13

and the error statistical results all together, confirm the effectiveness of this method

for a 5-step ahead prediction in time for a 2% fouled compressor.
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Figure 5.12: Actual vs. predicted TT for a 2% fouled compressor (5-step ahead).

Figure 5.13: Temperature prediction error for a 2% fouled compressor (5-step ahead).
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Table 5.4: Prediction error for FI=2% case 1.

μae 1.764 (K)
σae 1.073 (K)
rmse 1.293 (K)

The predicted data points are in average 1.7K different from the actual values

(absolute value) which is a very good prediction result as the nominal turbine tem-

perature during take-off is about 1400K. The statistics of the network performance

are shown in Table 5.4

One can note that the predicted versus the actual values mostly stay within the

zone made by the lower and upper prediction bands. Only 5 of the 45 data points

are outside the bands which means more that 88% of them are inside. This confirms

the goodness of this prediction scheme. The results are shown in Figure 5.14.

Figure 5.14: Actual vs. predicted TT for a 2% fouled compressor considering predic-
tion bounds (5-step ahead).

177



FI = 2%: Case 2

In the second case that we consider in the scenario of a 2% fouled compressor, the

prediction horizon is extended to 10 flight cycle ahead. To achieve this goal the

same type of inputs were used except that du was set to 4, dy was set to four as

well. Achieving good results were viable using three delays. Besides, we do not want

to increase the delays and number of network parameters unboundedly, hence four

appeared to give satisfactory results. We do not change the number of neurons in the

hidden layer or the data portion used for training and testing purposes. This results

in a 10-5-1 NARX NN (10 = 1+1+4+4 which is the input, and the output and four

delayed values of input and output). One can compare the actual and predicted

values (network output) in Figure 5.15.

Figure 5.15: Actual vs. predicted TT for a 2% fouled compressor (10-step ahead).

The resulting error is shown in Figure 5.16 followed by Table 5.5 which summarizes

the results of this case. One can find the mean of the absolute error, the error standard

deviation and the rmse of the prediction error in this table.
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Figure 5.16: Temperature prediction error for a 2% fouled compressor (10-step ahead).

Table 5.5: Prediction error for FI=2% case 2.

μae 0.873 (K)
σae 0.989 (K)
rmse 0.987 (K)
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Furthermore, in Figure 5.17 we have added the upper and the lower prediction

bounds to overcome prediction uncertainty and one can note that the data points are

within these two bands to a great extent. One can verify this by observing that 34

of the 40 predicted point are inside the band with corresponds to 85% of them.

Figure 5.17: Actual vs. predicted TT for a 2% fouled compressor considering predic-
tion bounds (10-step ahead).

FI = 2%: Case 3

In the third case we go further in time to find out the maximum allowable cycles

ahead which still gives good prediction results, implying that the error statistics are

low (less than 1% as compared to the nominal turbine temperature) and the values

are mostly within the prediction bands. We keep the same number of neurons in the

hidden layer (set to 5) and use 50% of the data for our NARX NN training. After

many trials and errors we concluded that in order to keep these parameters constant,

and achieve a 16-step ahead prediction (l = 16), du should be equal to 7 and dy
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Table 5.6: Prediction error for FI=2% case 3.

μae 1.215 (K)
σae 1.810 (K)
rmse 1.900 (K)

should be equal to 8. Taking all of these parameters, we have a 17-5-1 NARX NN.

The comparison results are depicted in Figure 5.18.

Figure 5.18: Actual vs. predicted TT for a 2% fouled compressor (16-step ahead).

One can observe the error results graphically in Figure 5.19 and quantitatively in

Table 5.6. Note that half of the data were used for testing implying that 50 points

are available. As the network uses the current and previous data to predict 16 cycles

ahead in time, 34 predicted values are obtained.

Moreover, in Figure 5.20, the prediction bounds are added to the comparison

figure. One can verify that 92% of the data are within the bands made by the lower

and the upper prediction bounds. One can go further than a 16-step prediction but

the amount of computation regarding the time and the cost is one issue that limits
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Figure 5.19: Temperature prediction error for a 2% fouled compressor (16-step ahead).

the number of cycles ahead possible to be predicted by our proposed NARX NN.

5.1.3.3 Third Scenario: FI = 3%

In the third scenario, we increase the fouling level in the compressor by decreasing

the efficiency and increasing the mass flow rate even further. The efficiency drops

by 3%. As a consequence, higher changes in the turbine temperature will occur as

depicted in Figure 5.21. Temperature variations are more significant as compared to

previous case with less level of degradation.

In the following case we use a portion of these data to train and the rest to

test our proposed NN. The network performance is demonstrated graphically and

quantitatively in each case.

FI = 3%: Case 1

Similar to the previous scenario, we start the first case by a 3-step ahead prediction

and by finding the suitable network structure and parameters to achieve this goal. By
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Figure 5.20: Actual vs. predicted TT for a 2% fouled compressor considering predic-
tion bounds (16-step ahead).

Figure 5.21: Turbine temperature variations due to a 3% fouled compressor.
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Table 5.7: Prediction error for FI=3% case 1.

μae 0.991 (K)
σae 1.451 (K)
rmse 1.749 (K)

setting du = dy = 3, and the number of hidden neurons to five, we have a 8-5-1 neural

network. The network is trained with 50% of the data points and as can be seen in

the following figures and table, the prediction result is very good. The predicted and

real temperatures are compared in Figure 5.22.

Figure 5.22: Actual vs. predicted TT for a 3% fouled compressor (3-step ahead).

The error for the 47 predicted points which is the difference between the real and

predicted value (NN output) at each time is depicted in Figure 5.23. The absolute

error mean, error standard deviation and the rmse are 0.991K, 1.451K and 1.749K,

respectively which confirms the suitability of the prediction.

One should note that although tight, most of the data are in the prediction band

as can be verified from Figure 5.24. By most we mean that 41 of the 47 data points
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Figure 5.23: Temperature prediction error for a 3% fouled compressor (3-step ahead).

which results in 87.2% of them being inside the bands.

FI = 3%: Case 2

As the results in the previous case deemed satisfactory, we now examine the obtained

network in that case and verify whether it can be used for further cycles ahead, or

some modifications on the network parameters are needed. After performing a number

of simulations we came to the conclusion that the number of input and output delays

must be increased to four (du = dy = 4), providing us with a 10-5-1 NARX NN. Note

that we are still using 5 neurons in the hidden layer of our proposed network and

the amount of data needed for training this network is less as compared to the RNN

developed in the previous chapter. Both real and predicted values for 8-step ahead

prediction are depicted in Figure 5.25.

Similar to the previous case we have tabulated the error statistics in Table 5.8

(μae, σae , rmse ). The error for all the 42 predicted points versus the real points are

shown in Figure 5.26. By verifying Figure 5.27, one can see that both points at each
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Figure 5.24: Actual vs. predicted TT for a 3% fouled compressor considering predic-
tion bounds (3-step ahead).

Figure 5.25: Actual vs. predicted TT for a 3% fouled compressor (8-step ahead).
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Table 5.8: Prediction error for FI=3% case 2.

μae 1.023 (K)
σae 1.078 (K)
rmse 1.339 (K)

time are close and in the bands although the points start to move out of the bands

at the end. Note that 6 of the 42 data points are outside of the bands which amounts

to only 14% of them (86% are inside the bands).

Figure 5.26: Temperature prediction error for a 3% fouled compressor (8-step ahead).

Having obtained satisfactory results from our developed NARX neural network, we

conclude our investigation on the cases associated with fouling scenarios. If one wants

to have a larger prediction horizon while yielding satisfactory results, the network

parameters such as the number of input and output delays have to be adjusted as

well as the number of neurons and data percentage used for training. One has to

always consider the amount of computation time as there is a trade-off between the

accuracy and the complexity. Note that since we considered flight cycles for our
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Figure 5.27: Actual vs. predicted TT for a 3% fouled compressor considering predic-
tion bounds (8-step ahead).

prediction horizon, the number of step-ahead is good enough and gives enough time

to the operators to decide about the necessity of the maintenance actions while the

engine condition is still safe. In the next sections, we study and discuss the cases in

which the turbine is affected by the erosion.

5.1.4 Simulation Results for Erosion Scenarios

In this section, we investigate a number of scenarios associated with the erosion.

Erosion mostly occurs in the turbine section and can change the behaviour of the

blade. According to its definition, erosion is the removal of the material from the

flow path components with hard particles. This removal results in loss of efficiency

and increase in the mass flow rate. We assume a linear relationship in the form of

2:1 between the turbine efficiency and the mass flow rate, respectively. If the erosion

occurs and then remains in the system, it will degrade the engine performance and
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in long term it can even lead to blade failure, hence it is important to keep track of

this degradation and predict it.

The erosion index (EI), as explained in Chapter 3 is used here. For different levels

of erosion we study the resulting effects on the turbine temperature (TT). To predict

the future values of the turbine temperature we used our proposed NARX NN, which

is a type of recurrent dynamic neural network. We have tried to produce the same

scenarios for the three levels of fouling, as in previous subsections, to be able to make

a comparison between the cases.

5.1.4.1 First Scenario: EI = 1%

If erosion occurs and stays in the turbine it can change the spool speed, turbine

temperature, etc. The rates of these changes were studied and validated with the

GSP software in Chapter 3. The simulations for a system under erosion have been

performed for 200 take-off cycles. In the take-off mode, since the engine is operating

from the ground idle condition to the maximum level of fuel, the degradation initiation

and propagation is more significant and therefore it is studied here. For EI = 1%, this

1% is equivalent to 1% drop in the turbine efficiency and 0.5% drop in the turbine

mass flow rate. Nonlinear autoregressive neural networks are employed here to learn

this evolution trough flight cycles. Thus it is not necessary to save and use all the

data points from the 200 cycles. Degradations have slow dynamics and do not change

the system abruptly or significantly in only one cycle. Hence, instead one can pick

the same time from each flight cycle and put them in a vector. From this vector a

portion will serve as the training data set and a portion for testing purposes.

The turbine temperature evolution for a 1% eroded turbine during 200 cycles is

depicted in Figure 5.28. The effects of the measurement noise on the data have been

considered as well. In the following three cases, we consider three different prediction
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steps.

Figure 5.28: Turbine temperature variations due to a 1% eroded turbine.

EI = 1%: Case 1

Our goal in this case is to predict the future turbine temperature considering the

following assumptions. Firstly, we assume that a suitable data set is available which

contains information about the engine and the degradation dynamics (an engine sub-

jected to soft degradations and erosions for this case). Secondly, the 1% erosion has

occurred in the system and remains there implying that no maintenance action has

been done. Taking these two conditions into account one is able to predict the tur-

bine temperature for certain cycles ahead and the results are shown in the following

subsections. Once the turbine temperature is predicted for some flights ahead, one

can then decide if the next flights will be safe or the temperature has reached certain

thresholds that makes it necessary to take the engine off-line for maintenance.

The fuel flow rate and the turbine temperature are the NARX NN inputs. In

addition, the delayed version of these two measurements will serve as network input
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for the training phase so that the network learns the system dynamics. We study the

case for a 5-step ahead prediction. We set du = dy = 3 and the number of neurons in

the hidden layer to five. We explained earlier that the number of delays is determined

through trials and errors. We obtain a 8-5-1 NARX NN architecture where 50% of

the data shown in Figure 5.28 are used to train the network. The results for the

five-step-ahead prediction are depicted in Figure 5.29.

Figure 5.29: Actual vs. predicted TT for a 1% eroded turbine (5-step ahead).

The prediction error for the test data is shown graphically in Figure 5.30. The

test error mean, standard deviation and rmse are 1.078 K, 1.081 K, and 1.155 K,

respectively which are also tabulated in Table 5.9. The errors are sufficiently small

enough (less than 1% error).

In the previous chapter we have highlighted the importance of uncertainty man-

agement. To overcome this problem we add prediction bounds instead of merely

relying on predicting the points. If most of the data are within these bands, the

prediction is deemed satisfactory. For more information on how we find these bounds
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Figure 5.30: Temperature prediction error for a 1% eroded turbine (5-step ahead).

Table 5.9: Prediction error for EI=1% case 1.

μae 1.078 (K)
σae 1.081 (K)
rmse 1.155 (K)

192



one can refer to Chapter 4. The results are depicted in Figure 5.31. This confirms a

satisfactory five-step ahead prediction when we take all the metrics into account. The

data points are mostly within the bands (only 10 of the 95 data are outside which

implies that 89.4% of them are inside the lower and upper bands) and error is less

than 1% as compared to the nominal turbine temperature.

Figure 5.31: Actual vs. predicted TT for a 1% eroded turbine considering prediction
bounds (5-step ahead).

EI = 1%: Case 2

In this case, we assume that the turbine has still the same level of erosion. We test our

NARX NN for an eight-step-ahead temperature prediction and see if any change in

the parameters is necessary. After a number of trials and errors it is understood that

all the parameters can be kept the same except for the delays, which are changed to

du = 3 and dy = 4, and this results in a 9-5-1 NARX NN. The prediction results are

depicted in Figure 5.32. Moreover, the errors between the actual and the predicted

temperatures are shown in Figure 5.33.
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Figure 5.32: Actual vs. predicted TT for a 1% eroded turbine (8-step ahead).

Figure 5.33: Temperature prediction error for a 1% eroded turbine (8-step ahead).
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Table 5.10: Prediction error for EI=1% case 2.

μae 0.951 (K)
σae 1.175 (K)
rmse 1.229 (K)

We have also found the error statistics quantitatively and presented them in Table

5.10. The actual and predicted values are in average 1K different. The error is still

within the reasonable and acceptable ranges (less than 1% error in prediction). This

demonstrates that we can rely on this network for an eight-step-ahead prediction.

To complete this case, we have also added the lower and upper prediction bounds

to overcome uncertainties associated with the prediction and determine if the data

points are within these ranges. The bounds and the predicted temperatures for this

case are depicted in Figure 5.34.

Figure 5.34: Actual vs. predicted TT for a 1% eroded turbine considering prediction
bounds (8-step ahead).

It follows that error results are quite good. Note that 80 of the 92 data points are
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inside the bands which is equal to 87% of them. In the next case we try to find the

largest cycle possible for which an acceptable prediction horizon can be achieved.

EI = 1%: Case 3

In this case we keep the same number of input and output delays and find the max-

imum number of cycles ahead possible. The measure for that limit is obtained by

observing the mean and the standard deviation of the error. We do not go beyond

the 1% error level. Our developed 9-5-1 NN is capable of 17-step ahead prediction

and the comparison results confirm this conclusion in Figure 5.35.

Figure 5.35: Actual vs. predicted TT for a 1% eroded turbine (17-step ahead).

It can be seen that our 9-5-1 NARX NN is capable of giving the temperature in

the 17th cycle from the present time. The error is depicted in Figure 5.36. Note that

the error starts increasing at the end and we stop increasing the step ahead beyond

this point.

The error mean, standard deviation and rmse are shown in Table 5.11, followed by

the prediction bounds depicted in Figure 5.37. Note that 93.9% of the data points are
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Figure 5.36: Temperature prediction error for a 1% eroded turbine (17-step ahead).

Table 5.11: Prediction error for EI=1% case 3.

μae 0.735 (K)
σae 2.080 (K)
rmse 2.078 (K)

inside the prediction bands. We could obtain better results by increasing the number

of delays but it will cost us computational complexity and thus we stop going further

at this point.

5.1.4.2 Second Scenario: EI = 2%

In this scenario we follow the procedure that was followed in the first scenario. First,

we have to generate a proper data set. The standard take-off duration is assumed to

be 20 seconds. We run the simulations 200 times (200 cycles) and pick up the 12th

second of each take-off and construct the data set. A 2% erosion index is equivalent

to a 2% drop in the efficiency and a 1% drop in the turbine mass flow rate. We
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Figure 5.37: Actual vs. predicted TT for a 1% eroded turbine considering prediction
bounds (17-step ahead).

also assume that the erosion levels remain the same. If the erosion remains in the

system it causes and increases the effects in the turbine temperature. We train the

NARX neural network to predict the temperature of an eroded turbine for certain

steps ahead. Our data set considering the measurement noise is depicted in Figure

5.38 where all the temperatures are measured in Kelvin.

EI = 2%: Case 1

We start off the first case by a five-step ahead prediction. We use the same 8-5-1

NARX NN derived in Case one of the previous scenario to verify if this network is able

to earn faster dynamics and more significant changes occurring in the system. The

8-5-1 structure means that in addition to the fuel flow and the turbine temperature,

three delayed values of each is fed into the NARX neural network as inputs which

all together are 8 inputs. We have five neurons in the hidden layer and the number

of output is one which is the turbine temperature subjected to 2% erosion. We still
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Figure 5.38: Turbine temperature variations due to an eroded turbine with EI= 2%.

Table 5.12: Prediction error for EI=2% case 1.

μae 1.132 (K)
σae 1.400 (K)
rmse 1.566 (K)

use only half of the data for network training. This shows one of the advantages of

the NARX network which requires a shorter training time. This advantage is more

highlighted when working with larger data sets. The remaining half of the data are

used for testing the prediction results and are depicted and compared in Figure 5.39

and the prediction error is shown in Figure 5.40.

By studying the error statistics it is understood that the two values at each point

are 1.132k in average different from each other. The summary of the statistics is given

in Table 5.12. Lower than 1% error confirms a proper prediction result. In addition

to the error values, the prediction bounds confirm that with the proposed NARX

NN architecture, a five-step-ahead prediction is possible for the turbine temperature.

The bounds when compared to the predicted and actual temperatures are depicted
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Figure 5.39: Actual vs. predicted TT for a 2% eroded turbine (5-step ahead).

Figure 5.40: Temperature prediction error for a 2% eroded turbine (5-step ahead).
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in Figure 5.41. Note that 88.4% of the data points are inside the prediction bands.

Figure 5.41: Actual vs. predicted TT for a 2% eroded turbine considering prediction
bounds (5-step ahead).

FI = 2%: Case 2

In the second case the goal is to obtain the results for a ten-step-ahead prediction.

The engine is still under 2% erosion. After comparing the values and studying the

error we concluded that one more delayed version of the measurements is needed for

the network input to obtain satisfactory training and testing results.

The prediction results for the 10-5-1 network implying du = 4 and dy = 4 are

depicted in Figure 5.42. It is required the mean, standard deviation and rmse of the

error to be as low as possible. The resulting errors are depicted in Figure 5.43. One

should note that the predicted points are mostly above the real turbine temperatures

in this case. The negative error and higher absolute error mean confirm this obser-

vation. Moreover, the absolute mean, std and rmse of the error are found in Table

5.13.
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Figure 5.42: Actual vs. predicted TT for a 2% eroded turbine (10-step ahead).

Figure 5.43: Temperature prediction error for a 2% eroded turbine (10-step ahead).
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Table 5.13: Prediction error for EI=2% case 2.

μae 2.172 (K)
σae 0.984 (K)
rmse 2.379 (K)

The bounds are predicted and depicted in Figure 5.44. More than half of the data

are inside the band. Defining the bounds is very important especially when we are

taking larger steps ahead. We now complete the second scenario and proceed to cases

where the erosion level is increased to 3%.

Figure 5.44: Actual vs. predicted TT for a 2% eroded turbine considering prediction
bounds (10-step ahead).

5.1.4.3 Third Scenario: EI = 3%

In our final scenario we assume that a 3% erosion has occurred in the turbine section.

This is equivalent to 3% drop in the turbine efficiency and 1.5% drop in the turbine

mass flow rate. A proper data set is vital as it can affect the performance of the
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neural network. We have considered the measurement noise as well. The resulting

data set are depicted in Figure 5.45. In the following, we perform the last series of

Figure 5.45: Turbine temperature variations due to a 3% eroded turbine.

our investigation.

EI = 3%: Case 1

In this case the engine is subjected to a 3% erosion. When the degradation level

is higher, the changes in the turbine temperature are higher as a consequence. We

should verify if our NARX network is still capable of learning the dynamics of the

degradation and projecting the information into the future. We start by examining the

same 8-5-1 neural network used in the first case of the two previous erosion scenarios

with the same number of input and output delays. Half of the data are used for

training and compared to the similar cases shown earlier with different networks. It

follows that that the NARX networks are trained easier and with less amount of data.

The test phase results are depicted in Figure 5.46.

The comparison results in addition to the errors are depicted in Figure 5.47, which
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Figure 5.46: Actual vs. predicted TT for a 3% eroded turbine (5-step ahead).

Table 5.14: Prediction error for EI=3% case 1.

μae 0.708 (K)
σae 0.825 (K)
rmse 0.883 (K)

show that the network has properly learnt the erosion dynamics and its effects on the

turbine temperature. According to the error results, the dynamics is learnt quite well

for the entire testing phase. The mean, standard deviation and rmse of the error are

0.7084K, 0.8254, and 0.8833, respectively as shown in Table 5.14.

The above represents a very good error level as it is less that 1% as compared to

the nominal turbine temperature in the take-off mode. Moreover, when one adds the

lower and upper prediction bounds, one can observe that 92% of the data points are

within the bands as only 7 data points are outside. The bands are depicted in Figure

5.48.

We will complete our investigation by extending the prediction horizon to ten
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Figure 5.47: Temperature prediction error for a 3% eroded turbine (5-step ahead).

Figure 5.48: Actual vs. predicted TT for a 3% eroded turbine considering prediction
bounds (5-step ahead).
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cycles ahead in the next case.

EI = 3%: Case 2

In the last case that we present in this chapter, to be consistent with the previous

examples we test the network for a 10-step ahead prediction. We start examining the

8-5-1 NARX network. If the results are not satisfactory we make some changes in the

parameters of our proposed network. The prediction results (test phase) are depicted

in Figure 5.49. The results are satisfactory but not as good as the previous case as

the error starts to increase at the end of the prediction horizon.

Figure 5.49: Actual vs. predicted TT for a 3% eroded turbine (10-step ahead).

The error results for a ten-steps-ahead prediction are shown in Figure 5.50. More-

over, the error mean, std and rmse are tabulated in Table 5.15.

The above error results are reasonable. We have also checked the prediction

bounds to be able to comment on the prediction performance (Figure 5.51). Almost

all of the points are inside except 6 of them. This implies that 93% of them are within
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Figure 5.50: Temperature prediction error for a 3% eroded turbine (10-step ahead).

Table 5.15: Prediction error for EI=3% case 2.

μae 1.144 (K)
σae 1.167 (K)
rmse 1.481 (K)
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the bands. The ten-step-ahead prediction is an accurate prediction and we can ensure

that on average our prediction of the turbine temperature is quite close to the real

value by only a 1% error.

Figure 5.51: Actual vs. predicted TT for a 3% eroded turbine considering prediction
bounds (5-step ahead).

This completes our simulation case using the NARX neural network. As men-

tioned earlier after trials and errors it is concluded that this network is easier to

handle and to work with as compared to the other network architecture (RNN).

Besides, fewer amount of data are needed to achieve the same accuracy. We have

obtained promising results in the numerous cases presented in this chapter. Knowing

the future values of the temperature allows one to schedule the maintenance based

on the predicted condition of the engine. In the next section, we will compare all the

proposed networks and compare their prediction performance. Before we proceed, let

us summarize all the simulation results obtained using the NARX NN in the following

subsection.
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Table 5.16: Summary of the results for FI=1% scenarios using NARX NN.

FI = 1% Network Structure μae σae rmse
du = 3 ; dy = 3 / l = 3 8-5-1 0.970 1.149 1.220
du = 4 ; dy = 5 / l = 11 11-5-1 1.535 1.721 1.860
du = 4 ; dy = 5 / l = 16 11-5-1 2.075 2.373 2.479

5.1.5 Summary of the Simulation Results

A summary of the obtained results for all the case are tabulated in the following two

parts. These correspond to the quantitative measures that show how changing the

number of input and output delays can let us increase the number of cycles ahead

to be predicted. Error mean (μae), error standard deviation (σae) and the mean

squared-error (rmse ) are calculated and compared in these tables.

One can note how changing the number of the delays can improve the results.

Our goal was to maintain lower than 1% error, l is the number of prediction steps

ahead, du is the number of input delays and dy is the number of output delays fed

back to the network input.

Summary of the results for the fouling scenarios

The results for the fouling scenarios are presented in Tables 5.16 - 5.18. The results

are categorized according to the number of delays, network structure and steps ahead

prediction, The prediction error mean, the standard deviation and the rmse are pre-

sented as well . When fouling occurs, the system efficiency drops and the mass flow

rate is dropped as well in a linear 2:1 fashion. We did not go beyond the 3% of fouling

as engine washing is recommended after this level. One can verify that if one wants

to keep the error low and increase the cycles ahead in time, one has to increase the

number of input and output delays given to the network as inputs.
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Table 5.17: Summary of the results for FI=2% scenarios using NARX NN.

FI = 2% Network Structure μae σae rmse
du = 3 ; dy = 3 / l = 5 8-5-1 1.762 1.073 1.293
du = 4 ; dy = 4 / l = 10 10-5-1 0.873 0.989 0.987
du = 7 ; dy = 8 / l = 16 17-5-1 1.215 1.810 1.900

Table 5.18: Summary of the results for FI=3% scenarios using NARX NN.

FI = 3% Network Structure μae σae rmse
du = 3 ; dy = 3 / l = 3 8-8-1 0.991 1.451 1.749
du = 4 ; dy = 4 / l = 8 10-5-1 1.023 1.078 1.339

Summary of the results for erosion scenarios

In this part we summarize the prediction results when the engine is under different

levels of erosion from 1% to 3%. Erosion mostly occurs in the turbine and causes

efficiency drop and increases the mass flow rate by a linear relation of 2:1. By studying

Tables 5.19 - 5.21 one can observe that to achieve higher steps ahead, more delayed

inputs and outputs need to be fed back to the RNN inputs otherwise the error level

would become high and goes beyond our desired error level (less than 1%).

Table 5.19: Summary of the results for EI=1% scenarios using NARX NN.

EI = 1% Network Structure μae σae rmse
du = 3 ; dy = 3 / l = 5 8-5-1 1.078 1.081 1.155
du = 3 ; dy = 4 / l = 8 9-5-1 0.951 1.175 1.229
du = 3 ; dy = 4 / l = 17 9-5-1 0.735 2.080 2.078
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Table 5.20: Summary of the results for EI=2% scenarios using NARX NN.

EI = 2% Network Structure μae σae rmse
du = 3 ; dy = 3 / l = 5 8-5-1 1.132 1.400 1.566
du = 4 ; dy = 4 / l = 10 10-5-1 2.172 0.984 2.379

Table 5.21: Summary of the results for EI=3% scenarios using NARX NN.

EI = 3% Network Structure μae σae rmse
du = 3 ; dy = 3 / l = 5 8-5-1 0.708 0.825 0.883
du = 3 ; dy = 3 / l = 10 8-5-1 1.144 1.167 1.481

5.2 Evaluation of the Results Using the Normal-

ized Akaike Information Criterion (NAIC)

After presenting all the simulation results, we now need a measure or criterion to

enable us compare the different neural network architectures used for prediction. It

is worth mentioning the fact that any model of evolution we can construct is never

going to be the ”true model” that generated the data we observed [201]. In other

words there is always a deviation between the real and the predicted values from our

model.

Different model selection criteria exist in the literature such as the Bayesian in-

formation criterion (BIC) and the Akaike information criterion (AIC) [202]. We are

interested in finding the best fit using the available data. A method called the nor-

malized Akaike information criterion (NAIC) is employed here which is based on the

classical maximum likelihood estimation procedure [203]. According to [202], NAIC

is a ”versatile procedure for statistical model identification which is free from the am-

biguities inherent in the application of conventional hypothesis testing procedure.”

Akaike criterion has a large number of uses in different model selection applications
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such as curve-fitting [204].

One can test the goodness of the prediction model by using the NAIC. We need

to show which of the neural networks presented in Chapters 4 and 5 outperform the

others. An investigation is therefore performed in this section to compare the effec-

tiveness of the prediction results provided by different neural network architectures

[79]. Two main issues should be addressed in the selection of suitable models for pre-

diction purposes. Firstly, we need a proper data set for investigating the prediction

capabilities. Secondly, an evaluation method is necessary for the comparison study.

Our data set for network testing and training is obtained from a developed engine

simulation program which was described in Chapter 2. The second main issue is

addressed by employing the popular normalized Akaikeinformation criterion (NAIC).

The NAIC is used as a basis for comparing the accuracy of several prediction models

and selecting the model with the best performance [205].

The notion of the NAIC metric is defined as follows:

NAIC = lnσ2 +
2ρ

N
(5.2.1)

where σ2 is the variance of the prediction error calculated by squaring the std of the

error presented in tables in this thesis, ρ is the total number of parameters of the NN

model and N is the total number of samples in the predicted data set.

A smaller NAIC value implies a better prediction model. Hence one can find the

most appropriate prediction method (model) by using this criterion as the one with

the smallest NAIC. In the following we compare our proposed neural networks using

the NAIC metric for some of the prediction results presented in this thesis.
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5.2.1 Evaluation of the Prediction Results

The prediction results by using the RNN are summarized in Tables 4.23 - 4.28 for

both degradation types. Moreover, the prediction results using the NARX NN are

presented in Tables 5.16 - 5.21. We clarify the NAIC calculations by giving one

example.

Let us consider the first row of the entry in Table 5.16. This entry corresponds to

a 1% of fouling effective in the engine compressor. According to the table, to achieve a

3-step ahead prediction, 3 input delays and 3 output delays were regarded as the NN

input in addition to the current input and output to predict the turbine temperature

in 3 cycles ahead from present time. The number of neurons in the hidden layer is set

as five resulting in an 8-5-1 NN. The number of parameters in this case is 54. This is

the sum of the 8 parameters from the input, 40 parameters represent the connections

between the 8 input nodes and five hidden nodes (8×5 = 40), 5 parameters represent

the connections from the five hidden neurons to the one network output, and finally

one parameter represents the feedback connection from the output neuron to the

input node. Therefore, in this case ρ = 54.

As defined earlier σae is the standard deviation of the prediction error which is

the difference between the output of the NN and the target output corresponding to

the test data set. The variance or var is obtained by squaring the std. In this case

the standard deviation is equal to 1.149 and the variance is thus equal to 1.320. N is

the number of data used for prediction which is 50. Therefore, NAIC = 2.437 (Table

5.28, first row). The same procedure is followed for finding the other NAIC values

for the other cases.

Remark. One can observe that in the NAIC presented by equation (5.2.1), the

contribution of the first term which is the error variance to the NAIC value is more
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Table 5.22: NAIC values for FI=1% scenarios using RNN.

FI = 1% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.384 1.915 30 30 2.650
Case 2 1.829 3.345 42 30 4.007
Case 3 1.810 3.276 42 30 3.986

Table 5.23: NAIC values for FI=2% scenarios using RNN.

FI = 2% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.948 3.794 30 30 3.333
Case 2 3.632 13.191 77 30 7.712

effective and more significant than the second term which uses the number of param-

eters and the number of observations. This shows that a lower error variance is more

important than having llower number of parameters. In other words, increasing the

number of parameters, as long as the computational cost is acceptable may result in a

better and more accurate prediction model. We will verify this argument by compar-

ing some of the same prediction results from our different developed neural networks.

NAIC is calculated and presented in the following tables for all the simulation cases.

NAIC Values Using the RNN

NAIC values for the fouling scenarios obtained from our RNN are presented in Tables

5.22 - 5.24. NAIC values for the erosion scenarios and cases obtained from our RNN

are presented in Tables 5.25 - 5.27.
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Table 5.24: NAIC values for FI=3% scenarios using RNN.

FI = 3% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.705 2.907 30 30 3.067
Case 2 5.369 28.826 36 20 6.961
Case 3 1.100 1.210 42 20 3.790

Table 5.25: NAIC values for EI=1% scenarios using RNN.

EI = 1% Error Error Parameters test data set NAIC
std var used size (N)

Case 2 1.971 3.884 66 30 5.757
Case 3 2.410 5.808 66 30 6.159
Case 4 3.989 15.912 77 30 7.900

Table 5.26: NAIC values for EI=2% scenarios using RNN.

EI = 2% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.216 1.478 66 20 6.991
Case 2 2.085 4.347 77 20 9.169

Table 5.27: NAIC values for EI=3% scenarios using RNN.

EI = 3% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.674 2.802 66 30 7.630
Case 2 2.349 5.517 77 30 9.408
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Table 5.28: NAIC values for FI=1% scenarios using NARX NN.

FI = 1% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.149 1.320 54 50 2.437
Case 2 1.721 2.961 72 50 3.965
Case 3 1.810 3.276 42 50 3.986

Table 5.29: NAIC values for FI=2% scenarios using NARX NN.

FI = 2% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.073 1.151 54 50 2.300
Case 2 0.989 0.978 66 50 2.617
Case 3 1.810 3.276 108 50 5.506

NAIC Values Using the NARX NN

In Tables 5.28 through 5.30 one can find the NAIC values for a fouled engine, when

the prediction results in each case are obtained from our proposed NARX neural

network. NAIC values for the erosion scenarios and cases obtained from our NARX

neural network are presented in Tables 5.31 - 5.33.

5.2.2 Comparison of the Results

After calculating the normalized Akaike information criterion (NAIC) value for dif-

ferent cases corresponding to all simulation results presented in this thesis we now

Table 5.30: NAIC values for FI=3% scenarios using NARX NN.

FI = 3% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.451 2.105 54 50 2.904
Case 2 1.078 1.162 66 50 2.790
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Table 5.31: NAIC values for EI=1% scenarios using NARX NN.

EI = 1% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.081 1.168 54 50 2.315
Case 2 1.175 1.380 60 50 2.722
Case 3 2.080 4.326 60 50 3.864

Table 5.32: NAIC values for EI=2% scenarios using NARX NN.

EI = 2% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 1.400 1.960 54 50 2.832
Case 2 0.984 0.968 66 50 2.607

Table 5.33: NAIC values for EI=3% scenarios using NARX NN.

EI = 3% Error Error Parameters test data set NAIC
std var used size (N)

Case 1 0.825 0.680 54 50 1.775
Case 2 1.167 1.361 54 50 2.468
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compare the two network structures utilized here for prediction purposes. In all simu-

lation results the time evolution of the turbine temperature for an engine subjected to

different levels of degradations were obtained. The two degradations that are studied

here are fouling and erosion. Fouling and erosion are the two main causes of engine

soft degradation. They are called soft because they do not cause abrupt changes in

the dynamics of the system and their effects can become sever throughout the time.

They are modelled by using the changes in the component efficiency and mass flow

rate.

Changes in the efficiency and mass flow rate in return change the gas path mea-

surements. Turbine temperature is considered as a suitable candidate which reflects

the effects of these degradations on the engine system. Three levels of degradations

are considered. To be able to compare the prediction capability of our proposed neu-

ral networks for degradation trend prognostics, one should compare the same cases.

An evaluation measure is needed. The NAIC is a suitable and popular evaluation

method that was introduced earlier in this section.

We may now compare the results of similar cases acquired from the proposed neu-

ral networks in Chapters 4 and 5. We compare the results for different degradations,

type by type and for each level separately. The comparison results are shown in tables

followed by the discussions where in the tables l denotes the number of steps ahead

in time.

In the first scenario we considered a fouled compressor under 1% of fouling. For

a 3-step ahead prediction the NAIC value using the RNN is 2.650 and the NAIC for

the NARX NN is 2.437 (Table 5.34). The smaller the NAIC value, the more effective

our prediction is. NAIC combines both the preciseness and the computational cost

by using both the prediction error variance and the number of parameters used.

The results obtained from the NARX network are slightly better. In the RNN the
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Table 5.34: Comparison of the NAIC values for FI=1%.

FI=1% NAIC NAIC
RNN NARX NN

l = 3 2.650 2.437
l = 10/11 3.986 3.965

Table 5.35: Comparison of the NAIC values for FI=2%.

FI=2% NAIC NAIC
RNN NARX NN

l = 3/5 3.333 2.300
l = 10 7.712 32.617

number of parameters is 30 and in the NARX NN it is equal to 45. However, the

NAIC is smaller when applying the NARX NN. This confirms our earlier remark that

the contribution of the number of parameters is less in this performance evaluation

measure, implying that obtaining a lower level of error is more important in the case

of prediction.

The last entry of Table 5.34 again shows that the NARX neural network has a

better prediction performance (although the number of steps ahead are increased)

thus resulting in a more reliable prognostics scheme.

The comparison results for the second fouling scenario are found in Table 5.35.

The NAIC value is smaller when we use the NARX architecture for both step-ahead

cases. Although some of the cases are not exactly the same, the results are still

comparable. The reason is that in the NARX the step-ahead value is higher, and

still the NAIC is smaller. This highlights the superiority of the NARX network even

more.

In Table 5.36, the comparison of the results of the third scenario for a 3% fouled

engine are shown. We have considered a 3-step and an 8-step ahead prediction using
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Table 5.36: Comparison of the NAIC values for FI=3%.

FI=3% NAIC NAIC
RNN NARX NN

l = 3 3.067 2.904
l = 8 3.970 2.790

Table 5.37: Comparison of the NAIC values for EI=1%.

EI=1% NAIC NAIC
RNN NARX NN

l = 5 5.757 2.315
l = 8 6.159 2.722

l = 15/17 7.900 3.860

the two schemes. One can see that in contrast with FI=1% results, now the difference

in the NAIC values from the two methods is increased. This shows us the predomi-

nance of the NARX methodology when dealing with faster dynamics (larger changes).

This shows that NARX NNs are capable of learning long-term dependencies as well.

In the following three tables, the results for the three erosion scenarios are com-

pared and tabulated. For EI=1% presented in Table 5.37, we have compared three

cases. Again, the NARX prediction results are more accurate as for all cases the

NAIC values stay in the same range but the RNN NAIC values increase more signif-

icantly. The prediction horizon is increased even larger, employing the NARX NN

which confirms this better capability.

For an increased level of erosion, the NARX network shows its advantage over the

RNN. This can be verified from Table 5.38 where we are dealing with a 2% of fouling.

In our final investigation, the NAIC comparison results for the EI=3% are shown

in Table 5.39. There is a significant difference between the calculated NAICs for the

two different networks. This shows that by utilizing the NARX NN is especially more
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Table 5.38: Comparison of the NAIC values for EI=2%.

EI=2% NAIC NAIC
RNN NARX NN

l = 5 6.991 2.832
l = 8/10 9.169 2.607

Table 5.39: Comparison of the NAIC values for EI=3%.

EI=3% NAIC NAIC
RNN NARX NN

l = 5 7.630 1.775
l = 10 9.408 2.468

advantageous for predicting the effects of the erosion on the turbine temperature as

the error levels are much less.

In all the cases, the evaluation of both methods show that the NARX NN perfor-

mance in prediction is better. In brief, we prefer to utilize nonlinear autoregressive

neural networks with exogenous input to achieve a more reliable prognostics. This

conclusion makes sense as the NARX NN is a more developed version of the recurrent

neural network and is in fact a dynamical recurrent neural network. It is equipped

with the advantageous of the RNNs. Moreover, it has some delay units (feeding input

delays to the NN input) in addition to the global feedback paths from the network

output to the network input. Our investigation in this thesis confirms this matter.

Hence, a novel method is proposed in this thesis for degradation trend prognostics

as part of a health monitoring scheme which can be later used for condition-based

maintenance.
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5.3 Conclusion

In this chapter, we proposed a novel neural network architecture for prediction pur-

poses. The nonlinear autoregressive neural network (NARX) with exogenous input

was employed to predict the degradation trends and the increase in the turbine tem-

perature level for certain steps ahead in time. Towards this end, we conducted various

simulation cases where the engine was under different types and levels of degrada-

tions. The fouling is considered to occur in the compressor and the erosion shows its

effects mostly in the turbine. The challenge associated with the NARX architecture

is determining the number of input and output delays. One has to perform trials and

error to obtain acceptable error levels while the network parameters are kept low as

well. We determine the suitability of the results by studying the error results. For

each case the error mean, the standard deviation and the root mean square error are

tabulated. Furthermore, to overcome uncertainty and to obtain a better insight into

the goodness of the prediction, lower and upper prediction bounds were depicted for

each case.

At the end of this chapter a metric called the normalized Akaike information crite-

rion (NAIC) was introduced. Using such metrics enables us to compare the prediction

results obtained from our two neural network architectures. The smaller NAIC value

implies better prediction results. Akaike metric entails a trade-off between the pre-

diction error and the number of parameters used in the network under study. The

NARX network shows to be superior to the RNN especially when the degradation

level is higher (faster dynamics) and also for erosion scenarios. This confirms that

NARX neural network since is a combination of recurrent and dynamic networks,

benefits from the features and advantages of both models.
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Chapter 6

Conclusions and Future Work

6.1 Summary of the Thesis

Prognostics of the nonlinear dynamics of an aircraft engine is addressed in this thesis.

Two artificial intelligence based approaches are employed to achieve this goal. Neural

networks that were used in this thesis belong to data-based approaches. They are

powerful tools that can learn the system dynamics from examples. They have a wide

range of applications especially when the dynamical system model is not available

and merely system measurements are available. In an aircraft engine, it is critical

to predict the future health condition of the system as for the safety issues are con-

cerned. Aging process and different degradations caused by environmental conditions

are inevitable in a gas turbine engine, as in any other physical system. Moreover,

condition-based maintenance can result in financial benefits as well. Hence, devel-

oping a reliable prognostics, condition monitoring and health management system is

highly important.

performance of the neural networks is dependent on the data set they are pro-

vided with for training and testing. Hence, before training the network one needs a

proper set of data that contains the degradation dynamics. Towards this end, we have

224



modelled the fouling and the erosion as two main causes of soft engine degradations.

They were modelled by changing the efficiency and the mass flow rate of different en-

gine components. These changes in return change the engine gas path measurements

which are directly measurable by sensors located in different parts of the engine.

Fouling occurs mostly in the compressor by decreasing the efficiency and decreasing

the mass flow rate, whereas erosion occurs mostly in the turbine by decreasing the

efficiency and increasing the mass flow rate. These models are investigated with a

MatLab-based engine simulator and the results were validated by the GSP which is

a gas turbine engine simulation program. Gas path measurement changes such as

the component temperature, pressure and spool speed for an engine working in the

take-off mode were studied when the engine is under different levels of fouling and

erosion.

The first proposed neural network for prediction was the recurrent neural network

(RNN). This network architecture is capable of learning short-term dependencies and

therefore is suitable for prediction. The dynamics is learnt by the additional feedback

from the network outputs to the network inputs. We had to adjust the number of

the delays to be fed back to the network outputs. This usually was tedious and

challenging as there is no general rule for determining the neural network parameters

and architectures. We obtained suitable number of neurons in the hidden layer,

data set size and delays through trials and errors. The goal was to make sure that

the degradation dynamic is learnt while the number of delays are kept as low as

possible to prevent larger computational storage and cost. Many simulation cases

were presented to demonstrate the network prediction capabilities for both fouling

and erosion degradations. For each case the prediction error was calculated and

the error mean, error standard deviation and the mean square error were tabulated.

Furthermore, because of the uncertainty and measurement noise we could not merely
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depend on the point prediction. To overcome this problem, prediction bounds were

calculated and added to allow us to observe what percentage of the data stay within

the band constructed by the lower and the upper prediction bounds.

The second proposed neural network architecture was the nonlinear autoregressive

neural network (NARX) with exogenous inputs. This is a type of recurrent dynamic

neural network capable of learning long-term dependencies. We were able to change

the number of input and output delays fed to the input of the NARX neural network.

Similar to the RNN determining the type and the number of input and output delays,

number of the neurons in the hidden layer, percentage of the data to be used for

training and testing the network were challenges associated with this work. NARX

NNs are equipped with good features of both recurrent neural networks and dynamic

neural networks. As a result, they were easier to handle and training was viable

using less number of examples as compared to the RNNs. Simulation cases were

investigated similar to the RNNs. They outperform RNNs regarding many aspects

mentioned above. Both the prediction bounds and the error statistics were obtained

for each case.

Finally, we have evaluated each neural network performance for all of the cases

using the normalized Akaike information criterion (NAIC) metric. The presented

metric combines the effects of the prediction error with the number of the network

parameters and the size of the test data set. It was observed that the error value

plays a more significant role than the number of network parameters. Thus, NARX

NNs, in spite of using more parameters due to the added input delays, resulted in

a better performance prediction as the error levels were lower and the predicted

data (NN output) were closer to the real data. Smaller NAIC values demonstrate

better prediction performance. Our conclusion is that the NARX NN performance

is superior to RNNs regarding the prediction task. Finally, it is worth mentioning
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that the prediction results can be used for calculation of the system time to failure

(TTF) when the gas path measurements reach pre-specified thresholds. Moreover,

condition-based maintenance actions can be planned using the accurate and reliable

prognostic schemes that are proposed in this thesis.

6.2 Suggestions for Future Work

The problem of modelling and predicting the degradation trends in a gas turbine

engine has been investigated for the first time in this thesis, to the author’s best

knowledge. The research presented in this thesis can provide a foundation for future

research in the field of gas turbine prognostics using artificial intelligence based meth-

ods. A number of potential future work emerge as extension to the present work as

it has a lot of potential for further development.

In Chapter 3, regarding the modelling and validation of the engine degradation,

other sources of engine degradation such as thermal distortion or other chemical-based

degradations can be modelled mathematically and added to the model in order to have

a more general models which contain the effects of a wider range of possible engine

degradation causes. This developed model can be used as a bench mark for data

generation and prognostics study. Moreover, we considered the engine to be working

in the take-off mode as the changes in the engine condition, fuel consumption level

and degradation growth are more significant. This work can be extended to other

modes of the flight profile such as the cruise or the landing phase.

For Chapter 4, another recommendation for further studies is pursuing the trend

prediction using different types of recurrent neural networks such as the Elman or

Jordan neural networks. One can verify if training the neural network and obtain-

ing acceptable error levels is viable using a network architecture with less number of

parameters. Although the turbine temperature is one of the best candidates to be
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studied as it reflects the effects of degradation very well, one could monitor, study

and predict other gas path measurements such as the pressure. Accurate prognostics

and maintenance policies are an invaluable assets for engine systems, hence one can

increase the prediction accuracy by combining two gas path measurements implying

that one can train a multiple input and multiple output network as an extension. In

this thesis we considered training and testing multiple input and single output neural

networks. Besides, in the present work we considered the effects of each degrada-

tion on the system separately. A suggestion is to consider concurrent degradations

occurring in the aircraft engine system.

The results obtained in Chapter 5 by using the NARX neural network were quite

satisfactory. It is suggested to employ other types of dynamical or hybrid neural net-

work architectures such as time-delay neural networks and see if they can outperform

NARX NN. One can also address the problem of determining network parameters in

a more explicit way rather than our trial and error methodology.

Uncertainty management is an important issue in an effective prognostics scheme.

It is important to know not only how the uncertainties propagate but also how they

could be reduced or managed. Other uncertainty management methods for determin-

ing lower and upper prediction bounds are suggested such as fuzzy auto regression to

establish probabilistic boundaries. We may also want to try not limiting ourself to

the noisy data that are merely normally distributed.

NAIC is a useful general metric. It is also possible to try different performance

assessment metrics and error measures in our planning future work such as calculating

and comparing the prediction target error, the prediction behaviour error, prediction

similarity error and the Bayesian information criterion (BIC).

By integrating the methodology and the results obtained in this thesis with FDI

and health management schemes, a reliable DPHM system can be developed for the
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gas turbine engine. First of all, by starting with a well-trained FDI scheme, the

presence of slow dynamic degradations can be detected and identified in the system.

This can trigger the prognostics scheme. This is beneficial when we are working with a

large data set and computational costs are important for us. The prognostics scheme

will not be working at all times, and it is only triggered when there are some alarms

from the FDI subsystem. Once the predicted values for certain cycles ahead reach

some pre-specified or adaptive threshold levels, the health management subsystem is

triggered and proper maintenance schedule and actions can be planned for the engine

system.
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