Application of Dynamic Mesh Method in CFD to Engineering
Designs of Needle-Free Liquid Jet Injector and Diaphragm-less
Shock Tube

Haruka Nakayama

A Thesis
in
The Department
of
Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science (Mechanical Engineering) at

Concordia University
Montreal, Quebec, Canada

August 2013

©Haruka Nakayama, 2013



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Haruka Nakayama

Application of Dynamic Mesh Method in CFD to Engineering Designs of
Entitled: Needle-Free Liquid Jet Injector and Diaphragm-less Shock Tube

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Mechanical Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

l. Contreras Chair

A. Dolatabadi Examiner
N. Bouguila Examiner
H.D. Ng Supervisor

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Date August 26, 2013




Abstract

Application of Dynamic Mesh Method in CFD to Engineering Designs of
Needle-Free Liquid Jet Injector and Diaphragm-less Shock Tube

Haruka Nakayama

Many engineering devices have dynamic components and hence, their computational
models are no longer fixed in space and time. In these cases, dynamic mesh method is
often applied to analyze their motion or unsteady fluid dynamics around/inside them.
This study deals with the engineering application of CFD particularly using dynamic
mesh methods to simulate firstly the compressible transient flow in a needle-less liquid
jet injector for biomedical application and secondly, the performance of a diaphragm-less
shock tube design for investigation of high-speed compressible gas dynamics. The CFD
software OpenFOAM® is used as the main research tool to carry out this study.

For the first application, the dynamic behavior of the liquid jet is approximated using
multi-phase compressible immiscible fluids LES solver together with the Volume-of-
Fluid (VOF) method for the interface capturing. The liquid retained in the injector
chamber is impacted by the moving grid boundary to mimic the injector piston driven by
the driver air pressure; and the high speed liquid jet is emitted to atmosphere region
though a nozzle. Numerical results are validated and discussed by comparing with
experimental measurements. Performance plots as a function of various injector
parameters are constructed and explained.

The second application concerns with the diaphragm-less shock tube design which
consists of an outer tube contained with high pressure and an inner one with low pressure.
A particular design of diaphragm-less shock tube utilizes a rapid opening sleeve to mimic
the rupture of a diaphragm which is traditionally used to separate the two pressure region.
Applying CFD with dynamic mesh to the sleeve motion contributes to the analysis of the
process of shock wave generation in this device and the shock tube parameters such as
opening time of the sleeve for reliable performance.

It is proven in this work that the numerical CFD models with dynamic mesh can
accurately predict the performance of both engineering devices and provide a useful tool

to analyze which parameters most significantly impact the performances.
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Chapter 1

Introduction

1.1. General overview

Fluid dynamics is one of the primary engineering sciences used to design a wide
variety of vehicles, machines, and other practical devices. In the past, fluid dynamic
analysis was fairly simple, using either empirical formulas from engineering handbooks
or other simplified mathematical analysis such as linearized or asymptotic theory. With
the advance in scientific computing and the expoential growth of computer power in the
past decades, the application of Computational Fluid Dynamics (CFD) is becoming more
practicable and less expensive, making it a useful tool in engineering design to provide
innovative solutions to fluid flow problems (Tu et al. 2008). The trend of engineering
design is increasingly shifting toward more-complex, powerful CFD techniques for
multi-physics phenomena (Elder et al., 2003).

In a nut shell, the purpose of Computational Fluid Dynamics is to use computers to
approximate solutions of conservation equations governing fluid mechanics or in other
words, to provide useful approximations of the real solution in many hitherto intractable
fluid flow phenomena. In engineering applications, CFD can be used to clarify
operational issues by providing insight of fluid behaviour and physical processes. CFD

also assists in the development of new designs by allowing the analysis of fluid flow



problems in detail, faster and earlier in the design cycle and hence, reducing the cost and
lowering the risks involved in the design process which traditionally relies on building
experimental test-rig or prototype. An illustrative example is the design of an aircraft
which in the past was mainly based on approximate theories of fluid flow, on engineering
data sheets and relied heavily on vast amount of wind tunnel testing. For example in the
new design of Boeing 787, most of the aircraft components and performances were
designed and tested in the conceptual/preliminary stage using CFD (presented in Fig. 1.1)
and that reduces significantly the number of costly wind tunnel validations and flight
tests (Johnson et al., 2005; Desai, 2003). The increased use of CFD early in the design
stage of any engineering device becomes evident and this trend is only likely to grow
more pronounced in the future as comptuers become increasingly cheaper and more
powerful. For instance, Fig. 1.2 shows the number of publications regarding CFD- based
Optimization (Thévenin & Janiga, 2008). It should be noted that “Optimization” means
not only the best (design) but also “better” and “improvement”. According to the Fig. 1.2,
the number of papers related to design by using CFD in 2006 is 12 ~ 13 times larger than

in 1999 as a reference year.
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Figure 1.1. CFD contributions to Boeing 787 (AIAA Pacific Northwest Section http://pnwaiaa.org)
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1999 2000 2001 2002 2003 2004 2005 2006

Figure 1.2. Number of Publications regarding CFD/Optimization based on the search tool Scopus.
The year 1999 was retained as reference year and given to a value of 1 (Thévenin & Janiga, 2008).

1.2. Dynamic mesh

As engineering application of CFD becomes popular, engineers and researchers in
industries demand to simulate their machines and devices in more realistic situations. In
the early application of CFD, their machines and devices are modeled in a simplified way
since computational resources are limited in each company. For example, aircraft consists
of only body and main wing, and air flow around it is often assumed to be inviscid.
However, as computational hardware performance is constantly and increasing
improving, not only full CAD modeling and compressible Navier-Stokes simulation but
also dynamic (unsteady) simulation can be realized nowadays (Tinoco et al., 2005;
Cebeci et al., 2005).

Although, much progress has been made in CFD over the past years toward the
development of a reliable tool for practical engineering designs, some issues and
challenges remain to be addressed. In most engineering designs such as aircraft, often the
device of interest has dynamic components and its performance analysis requires fully-
coupled simulations to describe the influence of the moving shape on the flow (Batina,

1991; Salas, 2006). At first level of complexity, their computational models are no longer
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fixed in the space and time. It is essential, therefore, to consider computational techniques
that include the motion of these components and can successfully approximate the
unsteady flow field encountered on these moving parts. For this purpose, dynamic mesh
method was developed.

Dynamic mesh method requires special treatments and techniques to simulate
dynamic motion precisely and efficiently. For instance, when dynamic mesh method is
incorporated into flow solver, an additional geometric constraint called ‘“Space
Conservation Law (SCL)” should be introduced to ensure numerical stability. This is not
required in our real world but in the computational world discretized by mesh or grid,
since artificial mass may be generated by (moving) mesh convection and affects the
accuracy and efficiency of flow simulation. SCL was considered in late 1970s and many
researchers proposed methods to incorporate it into discretized governing equations, i.e.,
mass conservation and momentum equation, in 1980s. For a thorough review, see Zhang
et al. (1992) and Lai & Przewaks (1994).

In addition, after establishing procedures for handling SCL, another issue is how to
move mesh efficienty and precisely for applying dynamic mesh method to many types of
flow problems (Jasak & Tukovic, 2007). Generally, coding of boundary motion and those
of internal-point motion are distinguished from each other. This is because while the
feature of physical/mechanical motion can be defined on boundary points, most CFD
programs require specifying the position of every vertex in each time-step. The
movement of internal points should accommodate boundary motion with keeping the
whole mesh quality and validity. To handle this problem, there are many mesh-

manipulation approaches. For instance, "mesh (re) generation" technique, like smoothing



is used. However, in practical way, this is quite limited since it becomes difficult to
prescribe solution-dependent motion or perform mesh motion on dynamically adapting
meshes. In real engineering world, one of the most conventional methods is deforming
(or moving) mesh approach. In this method, internal points interact with each other and
determine their own positions at each time-step. The movement of vertices follows
simple algebraic rules such as constant displacement (constant mesh speed), applying
algebraic formula (e.g., spring analogy) or solving motion equations; Laplace equation.
Another useful approach is mesh-topology changing. Mesh topology, connectivity and
resolution need to be updated or the mesh needs to be locally regenerated during
calculation. In some cases, deforming mesh method is combined with topological
changes, where the number or points, faces or cells in the mesh or its connectivity change
as well as the mesh points move during the simulation. Each approach to the dynamic
mesh problem has in fact its own advantages and drawbacks. Thus, the user trying to
simulatte dynamic motion of an engineering device in CFD should choose an appropriate
dynamic mesh method as well as sutable flow solver. Different concepts and issues on

dynmaic mesh problem will be disccused in more detail in Chapter 2.

1.3. CFD software packages

As discussed in the previous section, researchers, students and engineers have to
learn, to select and some times, to develop numerical methods before using CFD as a
research or an engineering tool. Thus, in the early age of CFD, it took much time for
them to develop their own computer program and configure it for their own specific

topics and purposes. With the progress of computational technology, commercial CFD



software emerged after 1980s. Especially, the software packages are demanded in
industries. This is because it can be used as a design tool without programming and
debugging which are time-consuming. For example, ANSYS®, CFX®, Fluent® and
STAR-CD® from ANSYS Inc. are famous among many types of industries (Boysan et
al., 2009). Though users need neither to debug nor to modify it by themselves, each
licensee has to pay contract fees to software developers to introduce and use it.

As “Open-source” principle is expanding, source codes for part of software become
freely available. Among these types of software packages in CFD field, OpenFOAM®
(Open Source Field Operation and Manipulation) is the most popular in academic
organizations and industries (OpenCFD, 2013). It has been discussed and modified
through the internet communication and used in many peer-reviewed papers.
OpenFOAM was first released in 2004 and is regularly updated, and expanded by the
community. It can be installed on a personal computer or set up on a network of
computers taking advantage of parallel processing. In OpenFOAM, libraries written in
C++ are used to create applications. Applications consist of solvers or/and utilities.
Solvers are designed to solve a specific physical problem in continuum mechanics and
utilities are used to perform tasks that involve data manipulation. OpenFOAM has many
libraries, solvers and utilities as default. The noble implementation of mesh motion
equation and topology change is also developed by Jasak & Tukovic (2010) in this free
software package. The open source nature of OpenFOAM also means that any users can
write their own solvers, although enough understanding of the physics and underlying
method for specific problems are required. Their custom solvers and utilities are available

to others through a broad community.



Even though CFD is becoming a part of design and development stages in industries
and a powerful research tool in academia, it should be noted that CFD remains
“approximation” with the physical quantities such as velocity, pressure and temperature
defined only in the discretized time and space. Despite the fact that many commerical or
open-source CFD codes are available, proper validation and numerical assessments are
still required to gain confidence in the solutions and simulate the real physics of the
problem (Tu et al. 2008). Note that in most cases, physical models are required to
simulate complex flows such as turbulence, chemical reaction and multi-phase flows. In
addition to the governing models, suitable numerical methods (e.g., discretization, grid
resolution, code algorithm, etc.) should also be selected carefully so as to approximate the
solution of the model and simulate real flows on a computer. The numerical solutions
needed to be properly validated against experimental data. Otherwise, the solutions
become unphysical even if they have beautiful visualized results, particularly the CFD

alogrithm is becoming increasingly sophicated.

1.4. Objective and thesis organization

In this research thesis, the purpose is to apply and assess CFD, particularly the
dynamic mesh techniques to generate precise flow prediction and to simulate
performance of two engineering devices, namely the needle-free jet injector and a
diaphragm-less shock tube, which both have fluid dynamics resulted from a moving
boundary. All the simulations were done using the OpenFOAM software packages and
this work contributes to this open-source code by providing validation of the algorithm

available in this CFD code.



Since the main challenge of this CFD work deals with moving grids, Chapter 2 first
provides an overview on the dynamic mesh methods in CFD. The most widely used
techniques and their limitations are described and its implementation in the open soruce
software OpenFOAM is discussed.

Chapter 3 applies the numerical methods to study the fluid mechanics in a air-
powered needle-free injection device. This is the first attempt to combine several CFD
techniques to simulate the liquid jet generated from the impact of a moving plunger and
emerged from the needlefree injector and the reults are compared to those obtained. A
number of interesting features revealed from CFD are discussed including the high speed
jet characteristics and its properties during the needl-free liquid injection. The content of
this chapter was published at the 21* Annual Conference of the CFD Society of Canada,
Sherbrooke, Quebec, May 6-9, 2013; the extended work is currently under review for
publication in Engineering Applications of Computational Fluid Mechanics.

Using the CFD tools with dynamic mesh method, Chapter 4 presents a performance
analysis of a diaphragm-less shock tube driver design where shock wave is generated by
a system of high/low pressure regions and the movement of an inner wall to replace the
traditional use of thin Mylar diaphragm to separate the pressure sections. The results
obtained from the CFD illustrates the important roles played by the different shock tube
parameters such as the opening time, driver pressure ratio. The numerical results were
compared with experimental measurement and published at the Proceeding of the 29"
International Symposium on Shock Waves, in Madison, W1, July 14-19, 2013.

Finally, Chapter 5 provided an overall conclusion and future directions of this

research work.



Chapter 2

Dynamic Mesh Method

2.1. General overview

In many engineering CFD applications, the computational domain changes with time
due to the movement of boundaries. The movement is determined either by external
effects (e.g., a piston driven by external pressure) or by calculation as a part of the
solution such as free-surface flow. Dynamic mesh method can handle these problems and
be essential especially for practical engineering uses. For example, turbo-machinery,
pumps and internal combustion engines are typical products. These dynamic motions can
be modeled as simple methods such as linear deformation of the boundaries, solid body
motion and algebraic-expressions surface. However, in complex cases, we have to handle
time-varying geometry, solution dependent motion and mesh deformation obtained by
solving a mesh motion equation (Weller et al. 1988).

In this study, Finite Volume Method (FVM) is selected as discretization method and
in the following sections, two types of dynamic mesh methods in finite volume

formulation are discussed in detail.



2.2. Deforming/moving mesh

Figure 2.1 shows the mesh deformation schematically (Jasak & Tukovic, 2010).
There are computational domain represented as €2, its inner surface S; and outer surface
S, at a given time, ¢. They compose valid computational mesh. After a time interval dt, Q
changes its shape into a new configuration QQ’ by the movement of S;, in other words,
displacement between S; and S;’. A mapping between Q and Q’ is sought such that the
mesh on Q forms a valid mesh on ’ with minimizing distortion of control volumes. As a

result of this motion, inner point P moved to P’.

Initial Configuration (time: )  Deformed Configuration (time: ¢+dr)

Figure 2.1. Schematic showing the mesh deformation

2.3. Moving mesh discretization on finite volume method

Moving mesh on FVM is formulated by applying the integral form of the governing
equation over an arbitrary moving volume V bounded by a closed surface S. For a

tensorial property ¢

%J'pwy+§pn‘ (U-U, JpdS - § py, m-VdS = [ S,dv (2.1)
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where p is the density, n is the outward unit normal vector on the boundary surface, U is
the fluid velocity, Uy, is the boundary mesh velocity, y;1s the diffusion coefficient and Sy
is the volume source/sink of ¢ (Jasak & Tukovic, 2010).

As the volume V is not fixed in space any more, its motion is characterized by the
motion of its bounding surface S with the grid (or mesh) velocity Uy . Comparing with a
static mesh, the second-order FV discretization of Eq. (2.1) shows only two differences:

e The temporal derivative introduces the rate of change of the cell volume

e The mesh motion flux accounts for the grid convection.

Figure 2.2 is a sample of finite volume cell (control volume) in which Eq. (2.1) is
evaluated. The unstructured FVM splits the computational domain into a finite number of
polyhedral cells bounded by complex polygons which do not overlap and completely
cover the domain. The temporal dimension is split into a finite number of time steps and
the equations are solved in a time-marching manner. As shown in Fig. 2.2, the sample
cell around the computational point P located in its centroid, a face f, its area Sy and unit

normal vector ny with the neighboring computational point Q.

Figure 2.2. Control volume (cell) on FVM
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2.4. Space Conservation Law (SCL)

Solving Navier-Stokes equations has no new problems when the location of grid is
known as a function of time. The convective fluxes are calculated by using the relative
velocity components on the cell faces. However, conservation of mass is not always
satisfied if the grid velocity is used to calculate the mass flux (Demirdzic & Peric, 1988;
Ferziger & Peric, 2004). For simple example, the mass-conservation equation is
considered with implicit Euler time integration. The following assumptions are assumed:

e Control volume (CV) is rectangular whose area AS = AxAy

e Fluid is incompressible; p is constant

e Fluid velocity is constant; U = (u, v) is neither a function of time nor space

e Boundary grid (or mesh) velocity Up = (us, vp) 1s a function of space but not of

time
Figure 2.3 shows the relative sizes of the CV at the old and new time. The size of the

control volume is grows with time (Ferziger & Peric, 2004).

New position

Sy
Old position
(Ay) n+1 w

I
I
I
I
I
@an" !
I
I
I
I

(Ax)" 6x

(Ax)n+1

Figure 2.3. A rectangular control volume whose size increases with time
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The discretized continuity equation for the CV with the implicit Euler scheme is given by

p{(AS)n+1 _ (AS)n }4— p{(u —u, )e - (U —u, )W }nH (Ay)nﬂ (2.2)

At
tplv=v,), (=) )" ()" =0

The contribution of fluid velocity is in the above equation cancels out and the difference

in grid velocities remains:

p{(AS)nJ;t— (AS)” }_ p{(ub )e - (”b )w }(AJ’)’M - p{(vb )n - (Vb )s }(Ax)n+1 =0 (2.3)

The difference in grid velocities at the opposite CV sides can be expressed as

(). =), = 2.4)
(), (), =2 @3

Area of the CV is also expressed as:

(AS)nH _ (AxAy)nH

(as)' = {(ax)™ — s fay)™ - o) 2.7)

Substituting Egs. (2.4) ~ (2.7) into the Left Hand Side (LHS) of the Eq. (2.3) we have:

} {&(Ay)/ﬁl N éj}(Ax)nﬂ}

(2.6)

LHS = f [(AXA n+l { n+l _&}{ il

< LHS = —Aﬁtaxay #0 2.8)

Thus, one find that the discretized mass conservation is not satisfied. There is a mass sink

as follows:
om = —iﬁxéy = —P{(ub )e - (”b )w }{(Vb )n - (Vb )s }At 2.9)
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The same error is calculated with the explicit Euler scheme but the sign is opposite (mass
source). Even through this error is a first-order discretization error in time step with
constant grid velocities, “artificial mass source/sink” may accumulate with time and
cause serious problems. The error is eliminated if only one set of grid lines moves or if
the grid velocities are equal at opposite CV sides. When one uses higher schemes such as
the Crank-Nicolson and three-time-level implicit scheme, the continuity equation can be
satisfied. However, in more general cases like fluid and/or grid velocities are not constant
with respect to time and space, these schemes can also generate artificial mass
sources/sinks.

Mass conservation can be obtained by applying Space Conservation Law (SCL). This

is thought of as the continuity equation in the limit of zero fluid velocity:

%jdV—§n-Ude=o (2.10)
V

N
Equation (2.10) expresses the conservation of space when the CV changes its shape
and/or position with time. Applying the midpoint rule and central-difference schemes to

the above equation yields:

Vnew _ Vold
%_Z(n/"Uh)Sf -0 (2.11)
S

The difference between the new and the old CV can be obtained by summation of
volumes o0V swept by the CV faces during the time step, which is shown in Fig. 2.4

(Ferziger & Peric, 2004).

new old n+l n
v, =V, _ V," -V, _ Zf 5Vf
At At At

(2.12)
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Figure 2.4. A typical CV at two time steps and the swept volume by a cell face

By comparing these two equations, the swept volume by a cell face is:

v,

V=, -u0,) s, =—F (2.13)

The grid movement affects only mass fluxes. If the positions of the CVs during all time
steps are known, the grid velocity Uy, can be calculated. This is expressed at the cell face

center:

U=~ (2.14)

When the mesh moves in only one direction, the above approach causes no problems.
However, if the mesh moves in more than one direction, it is difficult to satisfy mass
conservation using the expressions as equation; artificial mass sources/sinks may be

made. These errors can be avoided by computing the volumes which is defined by the
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cell face positions at each time step. The mass flux through a cell face, f'can be calculated

by:

n, = jpn- (U-U, S =p,(Un), S, —p,V, (2.15)

Sy

Thus, for the implicit Euler scheme, the discretized continuity equation is given by:

(pAV)"™ —(pAV) + Y, =0 (2.16)
At T

The unsteady term should be treated as satisfying the space conservation law. In addition,

the treatment is different between incompressible and compressible flow.

For incompressible flow

The contribution of the mesh movement to the mass fluxes has to cancel the unsteady

term. This leads the mass conservation equation to:

jpn~UdS=o (2.17)

Sy
If the volume change and mass fluxes are calculated as above, the conservation is
ensured. Therefore, the mesh movement does not have any influence on the pressure-

correction equation.

For compressible flow

A special care is required since density is not constant any longer. So, density has to
be determined to satisfy both space and mass conservation equations. The problem is that
the mass conservation equation has the cell-center density, p in the unsteady term and

cell-face density, pr in the mass fluxes. If the density changes rapidly in both space and
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time, it is very difficult to evaluate it. Especially, small time step should be applied when

one wants to use the following approximation for the density varying drastically:

Py =0+ p") 2.18)

Finally, topological changing is considered. When the number of CVs and their
connectivity change, we need the old solution (values at previous time step) to
approximate volume integrals over the new CV. If midpoint rule is used for this
calculation, the old solution is interpolated to the locations of the new CV-centers. One
possible procedure is indicated below:

e Compute gradient vectors at the center of each old CV

¢ Find the nearest center of an old CV for each new CV-center

e Interpolate the old value at the new CV-center linearly;

P = g2+ (gradg), (1. — 1) (2.19)
However, a fine grid should be used to obtain better results when one uses the above
approximation. Other higher interpolation like quadratic and cubic ones would be better
candidates if the mesh is coarse locally or globally.
Finally, it is noted that OpenFOAM used in this study introduces flux correction and

non-orthogonal correction into discretized governing equations to satisfy SCL (Jasak &

Tukovic, 2008).

2.5. Mesh motion equation

The next step is how to determine the positions of internal vertices following the

boundary motion at each time step. In the present work, a mesh motion equation is
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applied. In the equation boundary motion acts as a boundary condition and determines the
position of both boundary vertices and internal ones. The motion is characterized by the
spacing between nodes, which are changed by stretching and squeezing. This mesh
motion equation has mainly four types (Kassiotis, 2008):

e Spring analogy

e Linear plus torsional spring analogy

e Laplace equation with constant and variable diffusivity

e Linear pseudo-solid equation for small deformations
These can be used in the cases where the resolution is not changing too much during the
mesh motion; i.e., relatively small changes in mesh occur, so that cell density changes do

not affect the results during the computations.

2.6. Topological changing method

In extreme cases of boundary deformations, mesh quality can be deteriorated
dramatically and we cannot obtain a reliable solution by applying only mesh deforming
method. Even worse, it takes more time to converge the flow field. In this case,
topological changing method is introduced. During simulation, the number of points,
faces, cells and (or) mesh connectivity changes. In engineering applications, three types

of topological changing methods are particularly important.

Cell layer addition/removal

A set of oriented faces is assigned to add another layer to the current ones or remove
one layer from them. Usually, the thickness threshold value is set to do the above

operations. Figure 2.5 shows layer addition and removal during the motion of a cone in a
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rectangular mesh (Jasak, 2006).When the mean cell thickness exceeds a prescribed value,
new cells are added. On the contrary, when the thickness is lower than a prescribed
minimum thickness, one (cell) layer is removed. This is often used for linear piston or

cylinder movement.

P ] [

Figure 2.5. A moving cone in a rectangular mesh using cell layers addition/removal (Jasak, 2006)

Sliding interface

Changing the cell connectivity dynamically in the interface between meshes, it
enables to keep a high mesh quality in complex geometries like internal combustion
engines or mixers. In Figure 2.6, the sliding-interface operation is applied to mixer

geometry (Jasak, 2006).

Figure 2.6. Sliding mesh interface applied to the interior part of a mixer mesh (Jasak, 2006)

Attach/detach boundary

This is not directly involved with mesh motion but related to the volume connectivity.

In the operation of attach/detach boundary, two new boundary entities are created from a
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list of internal faces in order to separate or connect two distinct volumes in the same
mesh. In Fig. 2.7, the use of attach-detach boundary is shown when a T junction is
attached and detached (Jasak, 2006). This is quite useful in the application of internal

combustion engines, such as a valve opening/closing action.

Figure 2.7. Attach-detach boundary applied to a T-shape junction (Jasak, 2006)

When the mesh is not only deforming but also changing its topology in time step by time
step, scalar and vector fields are mapped from the old mesh to the new mesh.
Furthermore, surface fluxes are recalculated when sliding interfaces are used and new
boundary conditions are imposed when boundary are attached. Therefore, it should be
noted that topology changing is typically associated with mapping errors, which mean

either non-smooth local field values or the loss of global conservation.

2.7. Mesh validity and quality

In this section, mesh definition in FVM is discussed firstly. Creating a valid mesh is
the first step of simulating flow field correctly and precisely (of course, valid physical
model in other words, appropriate governing equations should be selected). Even if the

valid mesh is made and good physical models are chosen, we have to try the same
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simulation in the meshes with different mesh density. This is because the solution is
influenced by mesh-induced discretization errors. This is referred as to “Mesh

dependency” (Jasak, 1996).

2.7.1. Mesh validity

A valid mesh is a pre-requisite for a reliable numerical solution and a critical
ingredient of mesh motion. The investigation of mesh validity can be separated into
topological and geometrical tests. The topological tests can be performed without
knowing the actual point positions, while the geometrical ones deal with the shape of

cells and the boundary (Demirdzic & Peric, 1988; OpenCFD, 2013).

Face based mesh definition

In the face-addressed mesh definition, a polyhedral mesh in FVM is defined by the

following components:

e A list of points. For every point, its space co-ordinates are given; the point label is
implied from its location in the list.

e Every point must be used in at least one face.

e A list of polygonal faces, where a face is defined as an ordered list of point labels.
Faces can be separated into internal (between two cells) and boundary faces.
Every face must be used by at least one cell.

e A list of cells defined in terms of face labels. Note that the cell shape is unknown
and irrelevant for discretization.

e Boundary faces are grouped into patches, according to the boundary condition. A

patch is defined as a list of boundary face labels.
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Face orientation is determined using the right-hand rule and the face list will first collect
all internal faces and then all boundary faces patch by patch in the order of patch
definition. Internal faces are ordered to contain all faces from the first cell with the
increasing neighbor label, followed by the faces owned by the second cell etc. This
approach has proven to be robust and easy to handle as it enforces strict and unique face

ordering (Demirdzic & Peric, 1988; OpenCFD, 2013).

Topological tests

Topological validity tests consist of the following criteria:
e A point can appear in a face only once
e A face can appear in a cell only once. A face cannot belong to more than two cells.
A boundary face can belong to only one patch
e Two cells can share no more than one face
e Collecting all faces from one cell and decomposing faces into edges, every edge
must appear in exactly two cell faces
e Collecting all faces from the boundary and decomposing faces into edges, every
edge must appear in exactly two boundary faces.
The first four conditions control the validity of the mesh definition while the last two
conditions check that all cells and the boundary hull are topological closed. Additionally,
mesh ordering rules are checked and enforced. If topological changing method is applied,
the above rules are strictly satisfied after changing from the old mesh to the new mesh

during simulation.
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Geometrical tests

Geometrical tests deal with the positivity of faces areas and cell volumes, as well as
convexity and orientation requirements. Geometrical validity criteria can be summarized
as follows:

e All faces and cells must be weakly convex

e All cells must be geometrically closed: the sum of the outward-pointing face area

vectors for a cell faces must be zero to machine tolerance

e The boundary must be geometrically closed

e For all the internal faces, the dot-product of the face normal vector ny and the

d, = F) in Fig. 2.2 must be positive; this is usually termed the orthogonality test:
d;'n, >0 (2.20)

We shall assume the existence of a topologically and geometrically valid mesh as a
starting point for dynamic mesh. In the moving mesh method, mesh topology remains
unaffected and only the point positions change. Thus, preserving the mesh quality only
relates to the geometrical tests. Moreover, once the convexes and orthogonality tests are
satisfied, an initially valid mesh remains valid if no triangles or tetrahedra are inverted

(Demirdzic & Peric, 1988).

2.7.2. Mesh quality

Mesh skewness and non-orthogonality
The famous parameters judging mesh quality in FVM are skewness and non-
orthogonality. Figure 2.8 illustrates the definition of skewness and non-orthogonality.

The mesh skewness is defined as the ratio between the length of m and d shown in Fig.
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2.8 (a). It is a measure on how much the face center f; is displaced from the line
connecting the two cell centers (PQ). In an ideal cell there is no skewness and the face
center is located on this line. A low skewness is desired to ensure that the interpolation
from the cell centers to the face center is accurate.

On the other hand, non-orthogonality is defined as the angle ax between the face
normal and the line connecting the two cell centers in Fig. 2.8 (b). Minimizing the

truncation error on the diffusion term requires a low non-orthogonality (Bos, 2010).

s

(a) Skewness (b) non-orthogonality

Figure 2.8. Definition of mesh skewness and non-orthogonality

Discretization error

A valid mesh does not always insure the reliable solution since every mesh has an
error called discretization error. Therefore, the important thing is how this error can be
minimized without increasing computational cost too much. At least the following two

things should be considered in addition to generate a valid mesh (Ferziger & Peric, 2004).

Local mesh refinement

In most cases, important physical phenomena happen in a local flow field (for
example, boundary layer near walls and interface between two fluids in VOF solver).
Therefore, it is a big advantage for users to have some knowledge about the flow physics
before making a mesh in order to refine the mesh in the region where important physics

appear. This enable for us to obtain a good result without increasing computational costs
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such as time, memory and data storage.

Global mesh refinement

After making a solution-adapted mesh, one should examine the effect of changing
mesh density as keeping the ratio of between local mesh densities. This refinement
should be done systematically and substantially. Systematic refinement means that the
mesh topology and relative spatial density of grid vertices should remain comparable on
all grid levels. Usually, users prepare 3 types of mesh as coarse, base and fine. The base
and fine meshes have mesh density twice and four times as large as coarse one
respectively.

It is noted that applying dynamic mesh method should neither deteriorate mesh
skewness and non-orthogonality nor change the solution-adaptive mesh distribution.
Especially, boundary conditions are taken care in case of using mesh motion solvers in

mesh deformation methods.

2.8. Dynamic mesh application in OpenFOAM

In this thesis, the OpenFOAM® CFD software package is used to apply dynamic
mesh method (OpenCFD, 2013). OpenFOAM supports both of moving mesh and
topological changing methods (Jasak & Tukovic, 2010). These are named
dynamicFvMesh and topoChangerFvMesh of which the second includes topological
changes. There are several types of operations in moving mesh and topology changes.
Users have to prepare the file whose name is dynamicMeshDict for applying dynamic
mesh to the simulation. However, if another file, meshModifiers exists in the case

directory, this file is read firstly. It is useful when the user re-runs the simulation at the
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time when he/she interrupted it. Moreover, other input files or data written in

dynamicMeshDict are required depending on the method selected by the user.

2.8.1. Automatic mesh motion: DynamicFvMesh

In OpenFOAM, an automatic mesh motion algorithm has been adopted. A second-
order FEM scheme is applied and the user defines how the vertices on the boundary
move, using a set of boundary conditions (Demirdzic & Peric, 1988). The boundary
motion is built into to code and can be an arbitrary function of the solution. Therefore,
nothing is done in advance of the simulation. A Laplace equation is solved on the vertices
to calculate the motion of all vertices based on the boundary motion. This equation is
solved directly on vertices as doing it on volumes is not satisfactory. There are a number

of available Laplacian solvers in OpenFOAM. Their names and descriptions are:

displacementLaplacian

The equations of cell motion are solved based on the Laplacian of the diffusivity and
the cell displacement. For applying this solver, one should specify the final displacement

of mesh components as well as the mesh displacement of the internal field.

velocityLaplacian

The equations of the Laplacian of the diffusivity and the cell motion velocity are
solved. This code deals with the boundary velocities instead of the final motions, so a
care has to be taken when determining the dimensions. The user determines the velocity
at which each single boundary moving. It is used when an order of magnitude of the

maximum displacement is known to be not too big.
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LaplaceFaceDecomposition

This is applied when the order of magnitude of the maximum displacement is not
known or known to be big. The mesh is rebuilt after a decomposition of all cells and
faces and the Laplace smoothing equation is solved by Finite Element Method. It
increases the robustness. However, it increases the computational cost compared to the

velocityLaplacian solver.

SBRStress
This is a displacement model solving the Laplacian of diffusivity and the

cellDisplacement. 1t also considers the solid body rotation term in calculations.

In mesh motion solvers, the mesh spacing and quality is controlled by variable
diffusivity. Changing the diffusivity implies redistribution of the boundary motion
through the volume of the mesh. The definition of valid motion from an initially valid
mesh implies that no faces or cells are inverted during motion, which helps to preserve
mesh validity and quality. In OpenFOAM, users can select diffusivity models from as

follows:

Quality based methods

The diffusion field is a function of a cell quantity measure. There are four types and
these names are following:

® uniform

The mesh manipulation is done uniformly for all moving boundaries by stretching or

squeezing with the same ratio for all the cells in each region.
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e directional

The mesh stretching or squeezing is done proportionally to the direction of the
motion. The main idea in this case is that the mesh manipulation is done by
considering the slipping boundaries. Two scalar coefficients are required, one
defining the mean cell non-orthogonality and the other one to determine the mean
cell skewness.

e motionDirectional

The mesh manipulation is done by prioritizing the moving body and adjusting the
cells in a way that is more appropriate for the moving body. The same coefficients,
the mean cell non-orthogonality and the mean cell skewness in the above method
have to be specified.

e inverseDistance

The user specifies one or more boundaries. The diffusivity of the field is based on the

inverse of the distance from that boundary.

Distance based methods

They are used together with the quality based method; inverseDistance. The diffusion
field will be a function of the inverse of cell centre distance ‘I’ to the nearest selected
boundary.

e Linear

The diffusivity field is based linearly on the inverse of the cell center distance to the

nearest boundary.

e  Quadratic

The only difference from the above is a quadratic relation instead of a linear one.
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o FExponential
In this case the diffusivity of the field is based on the exponential of the inverse of

cell-center distance to the selected boundaries.

One should specify the name of appropriate solver and the type of diffusivity model
in dynamicMeshDict. This way the equations of cell motion will be solved according to
the selected solver specifications and with help of mesh diffusivity models.

Stating again, the topology of the mesh remains constant and the only change in

geometry, if any, will be done by stretching or squeezing the cells and node positions.

2.8.2. Topological changes: TopoChangerFvMesh

Topological changes in OpenFOAM have hierarchy and they are coded in object-
oriented way. This enables for us to use the operations much easier than other CFD

packages. The hierarchy has three structures.

1* structure: Primitive Mesh Changes

Primitive mesh manipulation consists of addition, modification (changing
connectivity) or removal for a single point, a face or a cell in the mesh. The mesh is
collapsed or built from empty space by the nine operations combining the above each
element (3x3). They are much flexible but impractical and unfriendly to use. Therefore,
they are executed in the batch way; the mesh is resolved, rebuilt and checked for its

validity.
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2™ structure: Mesh Modifiers

The second level of topological changes is called “mesh modifiers”. A mesh modifier
bundles a set of primitive operations and has a triggering mechanism for a topological
change. As we discussed in the previous section, typical examples are cell layer
addition/removal, sliding interface and attach-detach boundary. After setting a topology
modifier in a file, the execution is done automatically by the definition or trigger value

such as minimum layer thickness in layer addition/removal.

3" structure: Dynamic Mesh Objects (class)

Mesh modifiers are much more practical than primitive mesh changes. But, in an
engineering problem, we apply complex and multi mesh modifications for the simulation.
For example, in engine combustion, piston moves (layer addition/removal) along the
inner surface of a cylinder (sliding interface) and valves open and close. OpenFOAM
presents several types of dynamic mesh objects to simulate typical physical and

engineering problems. They are called “class”.

2.8.3 Dynamic mesh implementation in OpenFOAM

This section presents how dynamic mesh works in OpenFOAM. The main focus is on
the mechanism of dynamic mesh and visualization of mesh changing. For first example,
velocityLaplacian is selected as a motion solver to move a sliding sleeve inside
diaphragm-less shock tube with constant velocity. Secondly, an original class of
TopoChangerFvMesh is applied to piston motion for a liquid jet injector. Through two
examples, it can be observed how dynamic mesh effects on the mesh quality such as non-

orthogonality and skewness.
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A sliding sleeve inside diaphragm-less shock tube

The diaphragm-less shock tube facility is discussed and simulated by CFD in Chapter
4. In this section, the dynamic mesh mechanism for its CFD model is featured. To
simulate the sliding sleeve motion, velocityLaplacian is used to an initial computational
mesh indicated in Fig. 2.9. The wall located at left hand side of the boundary is moved
with constant velocity, U,. Setting Uy, as a part of boundary condition, the mesh velocity
field, Uy, can be calculated by solving the equation below:
The Laplace operator:

V-(oVU,)=0 2.21)

Here, 0 is constant or variable diffusion field to govern mesh motion. Boundary
conditions for Eq. (2.21) include slip boundaries, symmetry planes and cyclic boundaries
besides moving body boundary. Uy, is used for modifying mesh point positions:

Voow = Tog + U, dt (2.22)

The choice to solve for motion velocity is related to the fact that it changes slower than
point position and a better initial guess is available. For stationary meshes the velocity
solution equals to zero everywhere and is less polluted by round-off errors than the point
position field. For constant-velocity deformation the computational cost of solving the
motion equation in terms of velocity becomes trivial comparing with choosing point
position as the primitive variable. For better precision, the motion velocity on the
boundary is calculated from the current and desired point position and the time-step. This
approach avoids the accumulation of round-off errors associated with solving for motion

velocity and using point position (Demirdzic & Peric, 1988).
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Computational conditions are Uy = (-100, 0, 0). ps (driver pressure) = 0.8 MPa, p,
(driven pressure) = 101,325 kPa and dr = 10°. For diffusivity field 6 directional
diffusivity model (discussed in Section 2.8.1) is selected and parametric study indicated
in Table 2.1 is performed for coefficients of non-orthogonality and skewness to examine
their influences on mesh quality. It is noted that diffusion field is identical if the
coefficient ratio of non-orthogonality and skewness is same. The parametric study is
applied to two types of geometry models shown in Fig. 2.9. It should be noted that mesh

deformation is severe inside the expansion gap suggested in Fig. 2.9.

Case | (1) Non-orthogonality (2) Skewness Ratio (2)/(1)
1 1 2 2
2 0.1 2 20
3 0.01 2 200
4 0.001 2 2000
5 0.001 20 20000
6 0.001 200 200000

Table 2.1. Diffusivity coefficients for non-orthogonality and skewness

Figure 2.10 shows time histories of max non-orthogonality and max skewness for 6
cases. It is confirmed that the mesh quality is improved as the coefficient ratio increases
for both two geometry models. OpenFOAM judges a bad mesh if the skewness is more
than 4 in default setting. In terms of accuracy and convergent, non-orthogonality should
be less than (at least) 90 deg since the calculations in Case 1 and 2 become divergent for
both geometries. Visualization results in Fig. 2.11 show clear differences in mesh shape

especially at the corner of the tube in Case 1 and 6 for 2 geometry models. Thus, an
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appropriate selection of diffusivity coefficients is essential and makes the mesh move

without high distortion otherwise dynamic simulation diverges due to mesh invalidity.
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a) Geometry Model 1 b) Geometry Model 2

Figure 2.9. Two types of geometry models for the diaphragm-less shock tube
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Figure 2.10. Time history of mesh qualities for geometry model 1 and 2 of the diaphragm-less

shock tube. a) max non-orthogonality; b) max skewness
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Geometry Model 1

(b) Case 6

(a) Case 1

Figure 2.11. (continued)
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Geometry Model 2

Time: 0.000001 Time: 0.000001

Time: 0.000003

Time: 0.000005 Time: 0.000005

Figure 2.11. Comparison of mesh movement between different diffusivity coefficients for

geometry model 1 and 2 of the diaphragm-less shock tube. a) case 1; b) case 2
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Piston motion for a liquid jet injector

If there is no an appropriate class to simulate a specific subject in OpenFOAM, an
original class can be developed by the user. Here, an original dynamic mesh object,
liquidJetTopoFvMesh is explained. This class is based on a default class whose name is
movingConeTopoFvMesh and modified specially to simulate high-speed jet generation
from a needle free injector presented in Chapter 3. In this class, as the volume of the
cylinder is compressed or expanded by the piston motion, a mesh layer is removed or
added. The user has to specify the following parameters in dynamicMeshDict
/meshModifiers before running the simulation.

e motionVelAmplitude: magnitude of moving wall (i.e., the piston) velocity

e rightObstacleEdge: the position of moving boundary, which is basically function

of time during calculation

o minThickness/maxThickness: threshold values for layer addition/removal

operation
High-speed liquid jet emits from a cylinder which consists of a chamber, a piston and an
orifice. As the volume of the cylinder is decreasing, the mesh deformation inside cylinder
is increasing. This affects the precision of the solution and computational time little by
little. Therefore, cell layers are removed layer by layer by the developed class. This gives
a better resolution control during the simulation since the minimum and maximum
allowable cell layer thicknesses are specified. The mesh motion is firstly performed
simply by the original squeezing/stretching approach until either the minimum or the
maximum cell layer thicknesses reach a critical (specified) value. In this case, depending

on the region and criterion, a new cell layer is added (to the expanding region) or an old
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cell layer is removed (from the compressing region) and the new cell sizes are adjusted;
these operations are done while the simulations continues, so that the solution will remain
continuous, independent of the number or the size of the cell layers.

Here, a simple comparison between layer addition/removal (topology change) and
mesh expansion/squeezing (mesh motion solver) is presented. The moving wall velocity
is 10 m/s in x-direction, cylinder length is 10 mm at # = Os and the simulation is stopped
at t = 0.9 ms. This means the cylinder is compressed by 90% at end time of the
simulation. Preset parameters for both methods are as follows:

liquidJetTopoFvMesh: minThickness = 0.15mm, maxThickness = 0.4mm

dynamicFvMesh (velocityLaplacian): non-orthogonality = 1, skewness = 200 (for 0)
Figure 2.12 indicates that max non-orthogonality is increased almost linearly in motion
solver but those in topology change does not change throughout the simulation. Thus,
topology change method has advantages in terms of mesh quality comparing with mesh
motion solver if the total volume inside computational domain compressed severely, i.e.,
more than 50%. The reason why the max skewness in both cases remains same is that
moving wall moves only in x-direction in this sample case and the most distorted cell
located at the interface between the cylinder and the orifice is not affected by only one-
direction movement. Figure 2.13 visualizes the compression sequences by motion
topology change. One can observe that topology change method has no-mesh movement
(deformation) except for the moving boundary. It is noted that in Chapter 3, all
simulations are carried out by mesh deformation method since the ratio of compression is

enough small not to deteriorate mesh quality and the convergence of calculations.
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Figure 2.12. Time histories of mesh qualities for the cylinder with the moving piston. a) max non-

orthogonality; b) max skewness
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Figure 2.13. Piston motion by topology change method
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Chapter 3

CFD Analysis of Needle Free Liquid Jet Injectors

3.1. General overview

A liquid jet injector is a biomedical engineering device for drug delivery, which is
typically driven by a force from a power source such as spring or compressed gas. A set
of cylinder and piston in the device emits a stream of fluid containing the drug through a
nozzle. The fluid exits as a high-speed small diameter liquid jet of sufficient pressure
penetrating the skin and delivering the appropriate amount of medication. In this Chapter,
CFD simulation is carried out to investigate the fluid mechanics and performance of the
needle free injector powered by an air source. A combined numerical approach using
moving boundary method as introduced in Chapter 2 and multiphase LES/VOF
techniques is used to simulate the fluid dynamics of the jet through the orifice generated

by the motion of the plunger.

3.2. Problem description

Drug delivery using conventional hypodermic needles has long remained one of the
only means available to healthcare professionals to effectively administer a broad range

of medication. Nevertheless, this traditional practice is accompanied by many
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disadvantages; vaccination by a needle-syringe is troublesome for many children since it
accompanies pain, scare and causes additional stress. In insulin delivery, traditional
injections using needle-syringes is often a burden especially for beginners and children.
In animal-production industries, there is also a need for improvement in vaccines and
their delivery system in terms of cost, safety compliance as well as minimizing animal
stress. To address the above issues, needle-free jet injections have long been considered
as an alternate technique to effectively deliver medication to the different layers of skin
for humans and animals other than traditional drug delivery using hypodermic needles
(Mitragotri, 2005, 2006). The liquid jet injector delivers medication by a force generated
from a power source which is imparted on a cylinder and forces a column of fluid
containing the drug through a nozzle. The liquid exits as a high-speed small diameter
liquid jet of sufficient pressure penetrating the skin and delivering the appropriate amount
of medication. Typical design of needle-free injectors generally produces jet exit
velocities greater than 100 m/s and diameters ranging from 100 to 360 um with an initial
pressure change of 27.5 MPa within 0.5 ms (Mitragotri, 2005; Kendall, 2010). The
volume of injection ranges from 0.1 to 1 ml with a skin penetration depth of up to 10 mm.
Figure 3.1 illustrates the process of liquid jet injection into a ballistic gel and to air from a

custom-built air-powered needle-free injector prototype (Portaro & Ng, 2013).
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(a) (b)

Figure 3.1. Photographs showing a) the jet penetration into a ballistic gel; and b) the liquid jet exiting the
injector nozzle (Portaro & Ng, 2013).

In order to alleviate the problems with the early use of liquid jet injectors such as
pain, bruising, hematomas, incomplete delivery of medication, excessive penetration and
cross contamination (Hingson et al., 1963; Wijsmuller & Snider, 1975; Schneider et al.,
1994), much research has been conducted on improving their performance by analyzing
the fluid mechanics of jet injection. A number of research papers, notably by Schramm &
Mitragotri (2002), Schramm-Baxter & Mitragotri (2004), Schramm-Baxter et al. (2004),
etc., performed detailed experiments and reported the dependence of fluid jet penetration
into human skin on different injector parameters. Furthermore, the development of simple
analytical models to simulate the skin fracture and medicine delivery, as well as to
predict the jet pressure and velocity distribution are also emerging and serve to
compliment experimental studies (e.g., Baker & Sanders, 1999; Shergold et al. 2006;
Chen et al. 2010).

Although there exists a number of different types of needle-free liquid jet injectors
that can be classified by their power source such as, spring-loaded devices (Schramm-

Baxter & Mitragotri 2004), Lorenz-force actuators (Taberner et al., 2006, 2012; Hemond
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et al. 2006) and piezoelectric actuators (Stachowiak et al. 2007), this study focuses on the
development and analysis of air-powered liquid jet injectors using Computational Fluid
Dynamics (CFD). Studies demonstrate that the majority of commercially available
injectors are gas/air powered units (Mohanty et al. 2011), however there is no indication
of an engineering model that prescribes the performance characteristics of this particular
type of injector. The main goal of this work is therefore to create and validate a numerical
CFD model which can accurately capture the fluid dynamic behavior of the high speed jet
emanating from an air-powered needle-free injector. This Chapter reports its validity by
comparing the numerical results with experimental measurement obtained using a
prototype injector with identical geometry. The experimental prototype functions in a
very similar fashion and produces jets of similar geometry and velocities as the vast
majority of commercially available units. A parametric study using the developed
numerical model is also carried out to analyze the influence of various injector
parameters such as driver pressure, injection chamber length and volume as well as

nozzle sizes, on the jet injection process.
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Figure 3.2. A photograph showing the experimental prototype of an air-powered needle-free injector
(Portaro & Ng, 2013).

3.3. Numerical model

In this study, CFD is applied to the analysis of needless jet injectors. The research
mainly addresses the fluid dynamics of the high speed jet emanating from an air-powered
needle-free injector and analyzes the effect of injector parameters on the jet injection
process. Numerical simulations of the high-speed liquid jet generation process from the
needle-free injector are carried out using the OpenFOAM® CFD software package
(OpenCFD, 2013). The geometrical model is equivalent to a custom-built experimental
prototype (Portaro & Ng, 2013) as shown in Fig. 3.2, which consists of a driver part

containing high-pressure gas, a moving piston with O-rings, a chamber containing the
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liquid and an orifice-type nozzle. High-speed jets are emitted into the air through the
orifice. Some important dimensions and operating characteristics of the experimental

prototype injector are summarized in Table 3.1.

Injector Parameters
Nozzle Diameter 100 pm - 260 um
Driver Pressure 3 Bar - 10 Bar
Injection Volume Oml-1.2ml
Piston Diameter 6.35 mm
Driver Diameter 38.1 mm
M, {Mass of Piston- 30
Driver Assembly)

Table 3.1. Key dimensions and operating characteristics of the injector

The chamber, the orifice and the atmospheric region are modeled in this simulation
study as an axi-symmetric geometry as shown in Fig. 3.3. The piston is modeled as a
two-dimensional moving wall located at the left hand boundary. Physical dimensions and
average gird size for each domain are summarized in Table 3.2. It is noted that average
cell size given in the table is for the base mesh case and the grid is in fact refined near the
orifice inlet/exit to capture steep gradient of pressure, velocity and volume fraction of
liquid. The structured mesh is generated by a built-in utility in OpenFOAM. The domain
boundaries have zero gradient Neumann conditions for the liquid volume fraction, the
sub grid scale (SGS) stress, pressure and temperature; and non-slip condition on velocity.
Dirichlet condition is applied for the SGS turbulent energy and a fixed total pressure (i.e.,

101,325Pa) is imposed on the atmosphere exit boundaries.
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Domain Name | Radius ()- coordinate) Length (x- coordinate)
Dimension | Average Cell Size | Dimension | Average Cell Size

Chamber 3.175 0.064 10 0.20

Orifice 0.1 0.01 2.1 0.04

Atmosphere 2 0.033 4 0.16

Table 3.2. Physical dimensions of the computational domain and the base mesh size (unit: mm).
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Figure 3.3. The layout of the computational domain

In order to physically model the injection process, the liquid retained in the injector

chamber is initially impacted abruptly by the moving grid boundary to mimic the injector

piston which is driven by the driver air pressure. Consequently as a result of injector
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piston impacting the fluid a high speed liquid jet is emitted to atmospheric region through
a nozzle. The moving boundary position/velocity is obtained by solving an ordinary
differential equation obtained from a force balance (Newton’s ond law) at each
computational time step. For the numerical modeling of the piston motion, the following
assumptions are introduced:

e The piston is a solid body (no-deformation occurs) and its mass is constant;

e The thickness of the piston is neglected (assumed as 2-dimentional object);

e Back leakage of liquid through the gap between the O-ring and the inner surface of

the cylinder is neglected;

¢ Gravitational force is neglected.
During the injection process, the piston is pushed by the high-pressure gas contained in
the driver part and impacts the liquid inside the chamber. However, the liquid plays a role
as a damper and hence, the backward force by the liquid is generated as the fluid is being
compressed. Furthermore, the friction force between O-rings and the inner surface of the
cylinder should be taken into consideration during the motion. As a result, the piston
motion is determined as summation of the driver force by the gas pressure inside the
driver part, the damping force by the fluid inside the chamber and the friction force (Chen

et al., 2011; Portaro & Ng, 2013).

d’x, F(t) 4,p) F, () (3.1)

2
dt m, m, m,

where Fp and Fyare the driving force and frictional force, and p() is the fluid pressure on
the piston boundary and A4, and m, are the piston surface area and mass, respectively. For

an air-powered injection system, the driving force Fp which moves the plunger forward is
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produced by pressurizing the driver chamber. The pressure within the chamber can be
modeled by using the ideal gas law. After the chamber is pressurized to a known
pressure, the mass within the chamber can be computed. Once the initial mass of air
within the chamber is known, then the pressure within the chamber can be computed as a

function of driver displacement, i.e.:

Pa= ZR(tT) (3.2)
with
Vo(t)=(L, +x,(t))4, (3.3)

As the driving force begins to move the piston forward, there is resistance created by both
atmospheric pressures p, acting on the opposite side of the driver face. This force can be
assumed to remain constant throughout the injection process and is simply the product of
atmospheric pressure and the driver area. This gives:

FD<f>=AD{m—”-pa]

V,(t) (3.4)

The frictional forces within the mechanism serve to counteract and damp the
movement of the driver/piston assembly. The friction is caused by the O-ring seals which
make contact and rub against the inner walls of both the driver chamber and the injection
chamber. In order to model the O-ring friction it must be broken down into two
components, the first consists of the friction force caused by the compression fit of the O-
ring into its housing, the second is a result of the thin fluid film which is generated in the
clearance gap between the two components that the O-ring must seal. The forces caused

by the compression of the O-ring, in the barrel of the injector is also dependent on the
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force generated by the pressure of the fluid. Consequently, the two major forces causing
O-ring friction must be coupled in order to accurately model friction. Using the concepts
from tribology (Chen 2011; Portaro & Ng, 2013), the fluid pressure imposed on the O-

ring can be approximated by applying the Reynolds equations.

_ _leuult)d

pO—r[ng ~ 2 h2 2 + p(t) (3'5)

As a result of knowing the pressure imposed by the fluid on the O-ring seal the resisting
force caused by this pressure is simply the area of exposed O-ring multiplied by the
corresponding pressure, i.€.,

Fﬂuid = ﬁO—ringﬂDh (36)

The amount of compression fit k as a function of load that an O-ring will produce can be
found from empirical charts (Darcoid Norcal Seals). In addition to the force caused by
the compression of the O-ring into the barrel of the injector, it is also necessary to take
into consideration the transfer of forces caused by the fluid pressure on the O-ring. The
fluid pressure that acts on the seal also serves to further increase the compression loading.
Studies conducted by Guang & Wang (1994) demonstrate that the transfer coefficient
between the fluid pressure acting on a seal in relation to the increase of compression
force of the O-ring can be estimated at 1. In other words, the pressure contained within
the thin film acting on the seal almost entirely serves to increase the amount of
compression forces on the sealing surfaces. Knowing that the coefficient of friction
between aluminum and nitrile rubber is oo = 0.2 (Chen et al. 2011; Portaro & Ng, 2013),

the resisting force encountered by individual O-ring seals in the injector can be
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completely described through Eq. 3.7:

Fr(® g =@ Poring (()DB)+ (B (()2DR)+ -5 (3.7)
During the computation, the piston position/velocity as a function of time can therefore
be obtained by solving the ordinary equation, i.e., Eq. (3.1) together with Eq. (3.2) to Eq.
(3.7). The new velocity and position of the piston are determined by integrating the

acceleration X ,(#) at the present time step.
X,0)=X,-A)+X (A (3.8)
X,0)=X,t-A)+ X, (1)At (3.9)

These equations govern the equation of motion of the piston and are incorporated into a
class in OpenFOAM. Figure 3.4 illustrates the behavior of the piston from sample
simulations showing the maximum piston velocity occurring at the very beginning before
the frictional forces and fluid forces can damp the motion. Using the piston
position/velocity as boundary conditions, a Laplace equation related to the mesh motion
as illustrated in Fig. 3.5 is solved to determine new mesh using the dynamic mesh classes

in OpenFOAM (see Chapter 2), i.e.,
V-(6Vu, )=0 (3.10)

where 0 is constant or variable diffusivity and u,, is mesh motion velocity or mesh point
displacement. As a result of introducing these classes, the piston motion is a part of CFD

solution in this study.
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Figure 3.4. Simulation of the driver piston velocity for four different driver pressures

Phase Kinematic Density Compressibility | Volumetric Thermal Gas
Viscosity p [kg/m’] | y[s*/m’] Heat Capacity Conductivity | Constant
v[m%/s] ¢ [J/m’K] k [W/mK] [m%/s’K]

Liquid: | 8.714x 107 [ 9.97x10° | 4.44x 107 4.18 x 10° 6.13x 10" (3x 10%)

Water

Gas: Air | 1.557x10° | 1.19 1.16 x 107 7.21x 10° 2.62x 107 2.87x 10°

Table 3.3. Physical Properties for 2 phases at room temperature
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Figure 3.5. An example showing the 1-D piston motion and the dynamic mesh

For the fluid properties, the two fluid phases are initially divided into a liquid phase in
the chamber/orifice and a gas phase in the atmosphere region. The physical properties for
water and air are listed in Table 3.3 and Surface tension for water is 0.072 [N/m]. The
gas density is simply specified by using the ideal gas formula for the air to cope with the
compressible flow field. In the chamber/orifice, it is however more complicated to

specify the water as a compressible liquid. In this study, variable density is specified with
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compressibility, in other words, the bulk of modulus to water. In Eq. (3.11), the variables
p and p are the liquid pressure and density, respectively. The compressibility y and the
bulk modulus of elasticity of the liquid B are a function of pressure and temperature.
These are updated after solving the energy equation (Eq. 3.12) at each time step. Then,
the density is updated in the linearized equation (Eq. 3.13) during the simulation.

Subscripts 0 and 1 denote the respective quantity at the initial and current time.

op_p

F_F_ 3.11

> B v (3.11)

o(pT) k p
VAiApUT)-V:|— VI =—V.U 3.12

~—+V-(pUT) (CJ c (3.12)

p~py+v(p, - py) (3.13)

The Volume-of-Fluid (VOF) method is then used to update the position of the interface
between two phases by computing the transport equation for the liquid volume fraction as

the indicator function to locate the interface.

A02) 5. (pta)=0 (3.14)

with the liquid-phase volume fraction a,

0 for a cell inside the gas
a=:0<a<l1 for a cell in the transitional region
1 for a cell contained completely the liquid

By determining the volume of fraction a, the local properties of fluid are computed based
on the single state of each phase, i.e., the local density p and the local viscosity u of the

fluid are interpolated across the interface as follows:
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P =op, +(1—a)pg

(3.15)
H= alul +(l_a)/ug

where the subscripts / and g denote the liquid- and gas-phases, respectively.

The governing equations of the phenomenon consist of the transport equations for
conservation of mass and momentum of a two-phase flow system, comprised of two
immiscible, compressible Newtonian fluids, including surface tension (OpenCFD, 2013).
The single set of conservation equations that simultaneously describe the flow the two-

phase mixture are:

0 (3.16)

op
v (pU
= (pU)

o(pU)
or

+V-(pUU)=-Vp+V-r+F, (3.17)

The stress balance of dynamics is realized by introducing a body force Fsv in the last
term on the right hand of Eq. (3.17). Fj, represents the surface tension concentrated at the
interface. The localized body force F, near the interface is calculated from the volume

fraction data and is given by

F, = [oxn's(x—x')ds (3.18)
S(t)

where p is the pressure, p the density, U the velocity, T the stress tensor and ¢ the surface

tension coefficient. n represents the unit vector normal to the liquid surface S(¢) and
K=V-ﬁ(ﬁ =£J is the curvature of the liquid surface. Eq. (3.18) acts only at the

g

interface between two phases (indicated by the Dirac function, d(x)) over the entire liquid

53



surface, S(7). F, in Eq. (3.17) removes the explicit boundary condition at the interface in
the governing equations.

As a turbulence model, Large Eddy Simulation (LES) is applied. To capture dynamic
water jet phenomena more precisely, LES model is more appropriate than Reynolds
Averaged NS equation (RANS) model. In the unsteady flow solution, the time step size
At is 107~ 107 ps is selected to obtain stable solutions. The LES-VOF equations are
derived from Eq. (3.17) through a localized volume averaging of the phase weighted
properties. This is more commonly known as filtering process because it removes the
very small scales of motion from direct calculation. This averaging in conjunction with
the non-linear convection term in Eq. (3.14) produces an additional quantity into the
momentum equation that cannot be directly calculated. The effect of the subgrid scales on
the resolved eddies in momentum Eq. (3.17) is presented by the subgrid scale (SGS)

stress. It represents the effect of the unresolved small scales of turbulence; it is given by
Teos =UU -UU (3.19)
The SGS stress is approximated through a single subgrid scale model of the eddy

viscosity type as:

Tos — %kl = —”;%(vﬁ + VF) (3.20)

where £ is the subgrid scale turbulent energy and usgs is the subgrid scale viscosity, both

of which are calculated from the one-equation SGS turbulent energy transport model:

‘2_’;+v.(kﬁ): V[0 v Wk + 75 .U]_g_%rm vosvoT) @2

with:
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1
C.k?
Veos = ST (3.22)
1

A=(AAA )
where ¢ is the SGS turbulent dissipation and A is the SGS length scale corresponding to
the filter width (in most cases equivalent to the cell size). Ay, Ay, A, are the grid spacings
in the x, y and z directions, respectively. The constants in Egs. (3.22) are C, = 1.048 and
Cr = 0.094 from statistical considerations. Additional ‘‘subgrid’’ terms are produced by
the filtering of the integral in Eq. (3.17) and the convection term in Eq. (3.14). The
former represents the subgrid-scale influence of surface tension, known as the capillary
force. It becomes more important relative to the resolved surface tension when the
surface curvature approaches the grid size. In cases where the influence of surface tension
is small compared to that of inertia, the effect of subgrid-scale surface tension also
becomes small. The latter term represents deformation of the liquid-gas interface due to
subgrid-scale turbulence and is experienced at the grid scale as an added inter-phase
diffusion. This effect is in direct opposition to the estimated SGS surface tension force.
Numerical effort has been made to preserve the sharpness of the gas-liquid interface.
Both these SGS terms, which can be potentially used to construct a new model for
closure, have not been developed to date. In high-speed liquid jet simulation, the
influence of surface tension is relatively small compared with the effect of inertia at the
resolved scales. The relatively fine mesh spacing (which minimizes SGS contributions)
and the effect of grid-scale deformation of the liquid-gas interface tend to oppose one

another.
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3.4 Numerical schemes and algorithm

The Finite volume scheme in OpenFOAM is built on Gaussian integration with linear
flux interpolation. To limit numerical artifacts while discretizing some divergence form
such as the convective term, bounded second order TVD (Total Variation Diminishing)
schemes with either linear limiter or vanleer limiter were chosen (Ferziger & Peric 1999).
For multi-phase solvers, the multidimensional universal limiter for explicit solution
(MULES) method is applied in OpenFOAM to enchance boundedness of the phase
fraction independent of underlying numerical scheme, mesh structure, etc. For other
terms such as the first time derivative uses the first order implicit Euler scheme
(OpenCFD, 2013).

The solver used in to compute the solutions of the discretizing equations follows the
PISO-SIMPLE (PIMPLE) algorithm (Barton, 1998; Ferziger & Peric 1999). The
SIMPLE algorithm calculates pressure on a staggered grid from velocity components by
applying an iterative procedure coupled with the Navier-Stokes equations. Meanwhile,
the PIMPLE algorithm combines the SIMPLE algorithm and pressure implicit with
splitting the operators (PISO) algorithm to rectify the second pressure correction and
correct both velocities and pressure explicitly. In the unsteady flow solution, the time step
size At of 1 x 10®~ 5 x 107 sec is selected to obtain stable solutions. In OpenFOAM, the
combination of compressiblelnterFoam and oneEgEddy realizes the above models as
multi-phase Navier—Stokes solver and LES model respectively. Figure 3.6 illustrates the

flowchart of the numerical procedure to carry out the simulation.
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Figure 3.6. Flow chart of solving set of governing equations
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Figure 3.7. CFD results showing the time evolution of the jet emitted from the 200 pum injector
nozzle and driven by a 413 kPa driver pressure.
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3.5. Results and discussions

The dynamic characteristics of the high-speed liquid jet emitted from the injector nozzle
can be illustrated qualitatively first by the phase fraction plots shown in Fig. 3.7. In this
figure, the liquid jet structure is computed with a fine mesh (i.e., with the smallest level
Ax =0.01 mm and Ar = 2.5x10™ mm) to reveal detailed features of the liquid jet. These
images from CFD provide a clear depiction of jet roll-up during the initial start-up of the
injection process. As the jet emerges from the nozzle the re-circulation on the corner
causes a blunt shape of the leading front of the jet. The CFD solution also demonstrates
that part of the jet starts to atomize generating a spray. In practice, the initial enlargement
of the jet front causes pain and bruising. Nevertheless, it is possible to conclude that at
initial stages the overall jet divergence is minimal. The diameter of the jet is relatively

close to the nozzle diameter during the continuous injection process.

For a quantitative assessment of the numerical model, it is possible to extract some
key wvariables from the simulations and compare with available experimental
measurement. Among different injection performance indicators the stagnation pressure
is one of the fundamental measurements as it is the key parameter which determines the
force at which the liquid jet will penetrate the skin and deliver a successful injection
(Chen et al. 2011). To validate the numerical solutions, the computed stagnation jet
pressures are compared with experimental results. It is worth noting that experimental
stagnation pressures were measured using a force transducer Honeywell (Model
FSG15N1A). The stagnation pressure is subsequently computed with the force readings
obtained by simply dividing them by the area of the jet, which is assumed to be

equivalent to the nozzle size. Comparison is first made for an injector with a 200 micron
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nozzle driven at 413 kPa and results are shown exemplarily in Fig. 3.8. In general, the
CFD simulation demonstrates a similar behavior as that observed from the experiment. A
pressure peak first occurs within the first millisecond and the pressure then oscillates
about a mean injection pressure. This peak is often believed to be responsible for the
formation of a fracture in the skin and the subsequent average delivery pressure
determines the depth at which the medication is delivered (Arora et al. 2007). The
magnitude of the peak pressure and average pressure obtained from CFD and
experimental measurement also agree well with each other within the experimental
limitation. A possible explanation for the discrepancy stems from the degree of accuracy
and sensitivity of the force transducer and the correct estimate of the jet area/location for
the conversion to stagnation pressure. In fact, for the sensitivity of the probe a variation
of 2 MPa represents approximately a force variation of 0.0264 N (2.693 g). The
transducers range varies from 0 - 1500 g. Hence, a difference of 2 MPa would correspond
to 0.18% of the transducers range, as a result the slight difference between CFD and
experiments can be attributed to the inaccuracies of the force transducer. It is worth
noting that if the computed stagnation pressure at the centerline is used for comparison
instead of the space-averaged value from CFD data, a much better result can be obtained
as shown in Fig. 3.9. Furthermore, the rise time to peak pressure and subsequent
stabilization to the average pressure occur very rapidly. On the modeling side, the
limitation of the O-ring friction model is another possible source for discrepancy relating
to the greater divergence from the CFD solution of peak pressure, as O-ring friction is

difficult to model because of its variability with pressure.
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Figure 3.8. The time evolution of stagnation pressure from the CFD simulation (space averaged
value) and experimental measurement for 200 um nozzle at 413 kPa driver pressure.
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Figure 3.9. The time evolution of stagnation pressure from the CFD simulation (centerline value)
and experimental measurement for 200 um nozzle at 413 kPa driver pressure.

However to verify the difference is not due to the numerical grid resolution, a mesh

dependency test is performed and the results are shown in Fig. 3.10. It confirms that the
(base) mesh size used in Fig. 3.8 and Fig. 3.9 is sufficient for convergence of both the
computed peak and average stagnation pressures. Taking all these influences into

account, the numerical CFD model is valid in predicting performance of the injector in
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terms of the peak and average stagnation pressures, given the injector geometry and

driver pressure.
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Figure 3.10. Resolution test showing the mesh dependency of the computed stagnation pressures
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Figure 3.11. The time evolution of jet velocity from the CFD simulation (space averaged value) and
experimental measurement for 200 pm nozzle at 413 kPa driver pressure.

The numerical result of space-averaged velocity from CFD is also shown in Fig. 3.11.
It can be observed that the peak velocity obtained from the CFD simulation also

corresponds well with the 150 - 200 m/s range described in literature. For comparison,
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the jet velocity as the jet exits the orifices, converted from the experimentally measured
stagnation pressure using the Bernoulli equation, is also shown in the plot and a good

agreement can also be seen.
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Figure 3.12. Peak stagnation pressure as a function driver pressure. a) space-averaged CFD value;
and b) centerline CFD value.
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Figure 3.13. Average stagnation pressure as a function driver pressure. a) space-averaged CFD
value; and b) centerline CFD value.

A parametric study of two main injector characteristics, i.e., driver pressure and
nozzle size, is performed and summarized in Fig. 3.12 and Fig. 3.13. Simulations were

performed for five different nozzles operating at four different driver pressures of 413,
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550, 620 and 690 kPa. Also shown in these figures are the experimental data with 95%
confidence interval error bars for comparison.

Figure 3.12 illustrates the peak stagnation pressure variation as a function of driver
pressure for different nozzle sizes. A visual examination of both CFD and experimental
data suggests a linear increase in the peak pressure as the driver pressure is increased
from 413 to 690 kPa. Indeed, the least square linear regressions obtained for both results
have the coefficient of determination R* values above 0.80 (0.9968 for CFD space-
averaged, 0.9871 for CFD center-line and 0.8396 for the experiments). In addition, the
numerical results from the CFD model agree very well with the experimental data again
by taking into account different experimental limitations as previously discussed.

Similarly, the average stagnation pressure after the pressure peak was also analyzed.
Figure 3.13 demonstrates the variation of average injection pressure after the pressure
peak, as a function of driver pressure for varying nozzle diameters. The CFD solutions
show a linear increase in stagnation pressure as the driver pressure increases within the
operating range, and this agrees with the trend from the experimental measurement. The
R? values from the least-square regression are 0.8006, 0.9984 (space-averaged) and
0.9996 (center-line), respectively, for the experimental and CFD correlations. However, it
appears that the experimental data for average pressure is slightly higher than the
predicted values obtained using the CFD model. Nevertheless this variation is still
acceptable given that the force it represents is only a small fraction of the force
transducers range.

From Fig. 3.12 and Fig. 3.13, it can be observed from CFD simulations and

equivalently depicted from experimental results that there is no significant variation
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between the stagnation pressures values obtained using different nozzle sizes at the same
driver pressure. These pressure values with different nozzle sizes (particularly from the
CFD simulations) are very close to each other. In this numerical study, the obtained CFD
results confirm our previous conjecture that the nozzle diameters do not have a large
impact on the resulting stagnation pressures (Portaro & Ng, 2013). The weak dependency
between the nozzle size and resulting stagnation pressure can be explained by analyzing
the system in terms of energy. Although the area of the nozzle exit is varied, the area of
the plunger remains the same which means the total energy imposed on the fluid for a
given driver pressure remains the same irrespective of the exit nozzle area. If fluid
damping is not present in the system then one would expect much higher velocities for
smaller nozzle areas. However, fluid damping in the system causes there to be more
energy dissipation for smaller nozzles due to the coupled hydro-mechanical activity
through pressure change and the force required to push the fluid through a smaller exit
area. Consequently, the CFD model predicts the same stagnation pressure for the tested
nozzle sizes from a 250 to 130 pm nozzle diameter, which is in agreement with the
experimental observation (Portaro & Ng, 2013).

Simulations are also performed to look at the effect of stand-off distance. The stand-
off distance is defined as the gap between the pressure measurement point and the nozzle
exit. Although in real practice when the injector is used to administer medication, the
nozzle shall come in direct contact with the skin and that the stand-off distance will
typically not exist. Nevertheless, it is of interest to analyze if this can represent a source
of error in the experimental measurement since it was not possible to have the injector

contact the force transducer directly, and to reveal the significance of this effect on the
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injection performance parameters. Figure 3.14 illustrates three different gap sizes tested
with a 180 um nozzle and at a driver pressure of 690 kPa and in agreement with the
experimental observation (Portaro & Ng, 2013), the numerical results confirms that
within the distance from 0 to 15 mm, there is no significant variation in both peak and

average stagnation pressure measurement in relation to different gap distances.
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Figure 3.14. Effect of stand-off distance on stagnation pressure. a) space-averaged CFD value;
and b) centerline CFD value.
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The CFD results also confirm that the injection chamber volume does not play a
significant role in impacting the peak or average stagnation pressure. The results show
that it affects mostly the period over which the damping occurs. Figure 3.15 illustrates the
modeled differences from CFD in the injection time pressure profile for both a 25 mm
and 10 mm long chamber length. The CFD results demonstrate an almost identical match
in peak pressure and average stagnation pressure; however the shorter column oscillates
more frequently about the average stagnation pressure than the longer column.
Furthermore, there is also a time shift between the peak stagnation pressures of both
column lengths. The longer column requires about 0.2 ms more to reach its peak
stagnation pressure than the short column. The time shift can be explained by the fact that
the larger volume imparts more damping thereby shifting the peak of the injection

pressure slightly.

67



Stagnation Pressure (MPa)

Stagnation Pressure (MPa)

18
16
14
12
10

o N b OO

18
16
14
12
10

o N B OO

Experiment with 10 mm chamber length

= == CFD (space-averaged) with 10 mm chamber length

f: CFD (space-averaged) with 25 mm chamber length

Time (ms)

(@)

Experiment with 10 mm chamber length

" I — — CFD (centerlined) with 10 mm chamber length

CFD (centerlined) with 25 mm chamber length

Time (ms)

(b)

Figure 3.15. Effect of injection chamber length on stagnation pressure. a) space-averaged CFD
value; and b) centerline CFD value.
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Figure 3.16. Peak and average stagnation pressures obtained for different chamber lengths of the
injector with a 129 um nozzle and pp = 550 kPa.

More simulations are also performed in order to further validate the notion that
injection chamber length has a minimal effect on peak and average pressure. Simulations

were carried out using a 129 um nozzle in conjunction with a 550 kPa driver pressure,
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and the injection peak and average stagnation pressures were tracked for three different
chamber lengths of 10, 25 and 40 mm. Figure 3.16 illustrates these numerical results,
together with the experimental measurement. It shows that the CFD results remain
constant as chamber length is increased from 10 mm to 40 mm. Experimentally, there is
no specific trend that emerges and the test points are scattered nearby the a constant
value. Hence, both results from simulations and experiments illustrate that the injection
chamber length has no effect on average stagnation pressure.

As discussed earlier, the accuracy of the numerical solutions of the peak and average
stagnation pressures can depend on the modeling of O-ring friction. In addition, the O-
ring friction also has an important influence on the settling time for the oscillatory
behavior of the time-pressure profile of a given injection. Figure 3.17 illustrates the
modeled behavior of friction; it is possible to see that without friction the model oscillates
significantly about an average stagnation pressure, whereas at 50% friction the model
settles to an average stagnation pressure more rapidly. Finally, the numerical model
behavior with friction settles to an average value within approximately the first 2 ms of
the injection. The peak and average stagnation values are slightly lower than those

predicted without O-ring friction.
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Figure 3.17. Effect of friction on the stagnation pressure. a) space-averaged CFD value; and b)
centerline CFD value.

3.6. Summary

Using a combined LES/VOF technique with dynamic mesh and moving boundary

method, made it possible to successfully simulate the behavior and performance
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characteristics of an air-powered needle free injector. Numerical results for stagnation
pressure, one of the key performance parameters for needle free liquid injectors, are
validated with experimental measurements; and the general experimental observations
agree very closely with the numerical model developed throughout this study. The CFD
model makes it possible to analyze which parameters among driver pressure, nozzle
diameter, liquid column length and frictional losses most significantly impact the peak
and average stagnation pressures of the jet exiting the air-powered needle free liquid
injector and to obtain an optimal design of this biomedical engineering device. The CFD
model also agrees very closely with similar experimental studies discussed in Portaro &
Ng (2013). CFD results demonstrate that as the driver pressure increased both the peak
and average stagnation pressure increased almost linearly within the operating range
considered. Varying the injection nozzle diameter, whilst keeping the driver pressure
constant does not have any significant impact on the peak or average stagnation pressure.
The chamber length and the stand-off distance were varied, and no significant influence
is found on peak or average stagnation pressure. The validated numerical results obtained
in this work mean this numerical model can be readily used in future research, to further
explore the relationships between various injector design parameters and improve the

injector’s effectiveness in delivering an injection.
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Chapter 4

CFD Analysis of a Diaphragm-less Shock Tube

4.1. General overview

Shock tube is a classical research tool to study shock wave dynamics and high-speed
compressible flows. It is a facility used in many disciplines such as thermo-
aerodynamics, combustion, chemical kinetics or biomedical engineering, etc. A shock
tube consists of low and high pressure regions and conventional designs usually use
diaphragms to separate the driver and driven section from each other before experiment.
A shock wave is generated and propagates into the low pressure region upon the rupture
of this diaphragm. A number of mechanisms have been designed to replace diaphragms
in shock tubes, resulted in a so-called diaphragmless shock tube. In this Chapter, CFD
simulation is carried out to investigate the fluid mechanics and performance
characteristics of a diaphragmless shock tube driver based on the design by Downey et al.
(2011) using a rapid opening sleeve valve. A combined numerical approach using
moving boundary method as introduced in Chapter 2 for the motion of the sleeve and
compressible fluid solver is used to simulate the shock formation during the operation of

the diaphragmless shock tube.
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4.2. Problem description

Shock waves play integral roles in many industrial, medical and scientific
environments, consequently it is important to observe the behavior of these waves and
how they interact with their surroundings; see the review paper by Takayama & Saito
(2004). Traditionally, shock tube is a standard facility to investigate the physics of shock
waves and is generally composed of high-pressure driver and low-pressure driven test
sections. The classical design is to use a thin diaphragm to separate these two sections
and a sudden rupture of the diaphragm leads to the generation of a shock wave traveling
into the low-pressure section.

Although the bursting diaphragm is an easy way to realize the near instantaneous
removal of the separation between the driver and driven sections, this traditional method
has several practical disadvantages as follows. A new diaphragm must be used for each
test and the preparation is time consuming and inconvenient to automate. Although it is
possible to obtain rupture pressures within 1% reproducability with the use of cross-
scratched diaphragms, it can also result in poor repeatability due to the inconsistent
rupture of each diaphragm (Bradley, 1962). Moreover, fragments of the burst diaphragm
may impact and damage the pressure transducers attached along the driven tube, and
require partial disassembling of the shock tube to remove the debris (Tranter et al., 2001).

Alternatively, diaphragm-less shock tubes have been developed by many research
groups to provide a quick and effective means of producing shock waves, (e.g., Ikui et
al., 1976; Yang et al., 1994; Takano and Akamatsu, 1984; Kosing et al., 1999; Hariharan
et al. 2011; Hosseini et al., 2000). The major advantages compared to conventional

diaphragms include, minimal downtime between repeated experiments, opening times
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comparable to those of conventional diaphragms and infinitely adjustable opening
pressure without the use of various diaphragm thicknesses and hence, eliminates
fragments that are carried downstream of the shock tube once the conventional
diaphragm is ruptured. However, one of the primary challenges with the diaphragm-less
approach is to achieve a sufficiently rapid or optimal valve opening time to generate a
well-formed shock wave in a reasonable tube length.

In this Chapter, the objective is to analyze a recent design of diaphragm-less shock
tube by Downey et al. (2011) particularly to look at the effect of opening times on the
shock formation and to study the flow field during the process. Computational Fluid
Dynamics (CFD) simulation is carried out to investigate the influence of shock tube
driver parameters to the shock formation and to validate numerical results with

experimental data for the shock strength as a function of driver pressure.

4.3. Design and functionality

In this work, the performance characteristics of a diaphragm-less shock tube driver
based on a design proposed by Downey et al. (2011) is investigated. Such proposed
design utilizes a rapid opening sleeve to mimic the rupture of a diaphragm. Portaro & Ng
(2012) had constructed the similar diaphragm-less shock tube driver based on the
Downey et al. (2011)’s design using a longer sleeve length to achieve increased opening
times. The drawing shown in Fig. 4.1 illustrates this design concept. The shock tube’s
mechanisms function on differential pressures. The trigger chamber is first filled to the
same pressure as the driver; this will close the exhaust ports and prevent gas from

escaping. Once the trigger chamber is filled, it is then possible to fill the actuating
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chamber. This action will force the high speed aluminum sleeve to seal the driven section
of the shock tube. It is then possible to fill the driver with the test gas and vacuum the
driven tube if necessary. Completing these quick steps will result in a shock tube which is
ready to perform an experiment. In order to create the shock wave it is necessary to
release the gas in the triggering chamber, thereby opening the exhaust ports allowing the
gas from the actuating chamber to escape rapidly. This will result in the high speed
aluminum sleeve being driven backwards and creating an opening at speeds close to 100
m/s for the high pressure gas to escape. For instance, Fig. 4.2 shows the resulting opening
time of the sleeve as a function of initial pressure ratio based on a force balance and
kinematic analysis by Portaro & Ng (2013) from the prototype design and the terminal
velocity based on these time scales corresponds roughly to the same order of magnitude
(with a max. 1 inch gap). Consequently, the rapid opening combined with the drastic

pressure change will generate a shock that will travel in the driven part of the shock tube.

Actuating Charmbkeer Fill Port

Trigger Chambk er Releaze

Trigg er Tharmb<r

Excatuhst Chamb
ravhst Ehamier Driver Gas

Aluminum High Speed Sleeve
Exhaust Ports

T Sl
HERSERSers Actsating Chamber

Figure 4.1. Schematic diagram of the diaphragm-less shock tube driver using a rapid opening
sleeve originally proposed by Downey et al. (2011).
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Figure 4.2. Terminal velocity of the sleeve as a function of initial pressure ratio based on a force

balance and kinematic analysis (Portaro & Ng, 2013).

4.4. CFD modeling

In this research work, CFD is applied to the equivalent Downey et al.’s diaphragm-
less shock tube design to analyze and understand better the process of shock wave
generation and propagation inside this device for improvement. All simulations are
carried out using the OpenFOAM® CFD software package (OpenCFD, 2013). As a first
stage in the analysis, a simple numerical model considered of a axi-symmetric domain
and a flat moving boundary is considered as given in Fig. 4.3. The key dimensions of the
numerical model such as the sleeve thickness, the tube diameters are equivalent to those
of the experimental facility shown in Fig. 4.1. These physical dimensions and average
grid size for each domain used in the CFD simulation are summarized in Table 4.1. It is
noted that average cell size in Table 4.1 is for base mesh case and the grid is refined in
the gap region to capture steep gradient of pressure, velocity and temperature, in other
words, discontinuity of physical properties. The most important part is the inner driven

tube section since the shock strength is measured in this section.
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Domain Name

Radius (y- coordinate)

Length (x-coordinate)

(variable domain)

Model 1 Dimension Average Cell Size Dimension Average Cell Size
Outer Tube 63.5 0.13 101.6~152 2.1

Inner Tube 25.4 0.13 101.6~152 0.53

Expanding gap 63.5 0.12 2x107~254 5x 10"~ 0.64

Table 4.1. Physical Dimensions of Computational Domain (unit: mm)

Outer High Pressure
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Inner Driven Tube Section
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Figure 4.3. Computational domain for the diaphragm-less shock tube driver

The sliding sleeve is actuated by the relief of high-pressure gas contained in the
actuating chamber and creates the opening gap between the inner and outer tube. To
simulate the high-speed motion of the driver sleeve, the dynamic mesh technique is used
with the 2-dimensional moving boundary. Constant force is assumed to move the sleeve
during operation and the friction force between the sleeve and a housing part is
negligible. Therefore, the speed of the sliding sleeve is treated as constant. The moving
boundary moves in totally 1 inch during simulation and the initial expanding gap is set as
a minimal since the gap is required so as to begin simulation. During the opening motion,
the high pressure gas is exposed to the inner tube though the resulting opening gap

leading to the shock formation process within this device. The moving boundary position
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is obtained by solving Laplace equation for mesh velocity at each computational time
step. For the modeling of the sleeve motion, the following assumptions are introduced:

e The sleeve is a solid body, i.e., no-deformation occurs;

e The sleeve-opening speed is constant;

e The mass of the sleeve does not change during the simulation;

e The thickness of the sleeve and mechanical structure are neglected;

e The friction force between the sleeve and the housing part is neglected.
These assumptions are used in OpenFOAM (OpenCFD, 2013) and a built-in
velocityLaplacian class is selected as a motion solver to move the sleeve model with
constant velocity. In this class, the sleeve is treated as a moving boundary with constant
velocity Uy. As discussed in Chapter 2, the mesh-point velocity field Uy, is determined by
setting U, as a part of boundary condition and solving the Laplace equation for mesh
velocity field below.

V-(6VU,)=0 (4.1)
where, 6 is constant or variable diffusion field to govern mesh motion. Boundary
condition for the motion equation includes other boundaries such as inner surface of the
inner/outer tubes, cyclic surfaces, symmetry plane (line) besides the moving sleeve
boundary. After solving Eq. (4.1), Uy, is used to modify vertices:
Voo =g T U, dt 4.2)

Much attention is taken into consideration when diffusivity and non-orthogonal
coefficients are chosen in velocityLaplacian class (OpenCFD, 2013). Otherwise, internal
mesh especially within the generated expanding gap is squeezed and deformed too much

so that flux cannot be calculated precisely.
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For the shock tube simulation, the inviscid compressible Newtonian fluid flow is

governed by the following equations expressing conservation of mass, momentum and

energy:
Z—’;W-(pU):O *3
R
ot ¢,
where:
e = CvTa b= pRsT (46)

which are dicretized using the Finite Volume Method with 2" order accuracy and the
used computational scheme is the pressure-correction based PISO (Pressure Implicit with
Splitting of Operators) algorithm (OpenCFD,2013) to rectify the second pressure
correction and correct both velocities and pressure explicitly. Temperature is calculated
in Eq. (4.5) after obtaining energy at each time step and density is updated by obtained p
and T in the equation of state. In all simulations, air is used as the medium in the
simulation and treated as as a perfect gas. Pressure value is set to 4 ~ 25 kPa inside the
outer tube and a part of the expanding gap and others to atmospheric pressure (e.g.,
101,325 Pa) as initial condition. Temperature is set to 298 K throughout the domain at ¢ =
0 s. Then, the moving-wall boundary moves in negative x-direction with constant speed
and expands computational domain during simulation. Thus, the high-pressure gas passes
through the gap created by the moving wall. Other boundaries are physical walls except
for axi-symmetric conditions such as symmetric line and cyclic surfaces. Physical walls
are slip surfaces since Euler-type equation is adopted as governing equation. Details are

indicated in Table 4.2.
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Physical Quantity Physical Walls Moving Wall
Pressure (p) zeroGradient zeroGradient
Velocity (U) Slip movingWallVelocity, uniform (0 0 0)
Temperature (T) zeroGradient zeroGradient

Table 4.2. Boundary and Initial Conditions in OpenFOAM

The time step size At of the order of 10™ s is selected to obtain stable solutions and not to
deform the mesh dramatically in one time step. In OpenFOAM, the combination of
sonicFoam and dynamicFVMesh, whose name is sonicDyMFoam, is selected as a
complete solver to simulate the fluid phenomenon inside the diaphragmless shock tube

driver (OpenCFD, 2013).

4.5. Results and discussions

4.5.1. Validation

To first validate the numerical method in OpenFOAM, one-dimensional ideal shock
tube simulation is also run and initial conditions described in Table 4.1 are selected based
on the well-known Sod’s shock tube problem (Sod, 1978). The derivation of the exact
analytical solution to the shock tube problem can be found in any gasdynamic or CFD
textbook (e.g., Hirsch, 2007; Toro, 2009) with simple computer code available to
describe the evolution of the fluid in the 1-D shock tube flow. Detailed derivations of the
ideal 1-D shock tube flow are provided in Appendix A. One can test any computational
fluid code against this analytical solution and get information how good the numerical
scheme captures and resolves shocks and contact discontinuities and reproduce the

correct flow field profile.
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In the present validation, the 1-D shock tube has a length of 254 mm (10 inch) and
computational mesh (Ax = 0.01 mm) is generated in OpenFOAM. The diaphragm is
placed in the exact middle at x = 127 mm (or 5 inch). Both sections are filled with air, so
vy = 1.4, but at different pressures and densities. The tube is closed at both ends. The end
walls have slip conditions for velocity and air is treated as a calorically perfect gas. The

computation continues until any wave has reached the left or right boundaries.

Region Pressure p4/pret Density [kg/m3] Velocity [m/s]
Driver Part (Regionl) 1.0 1.0 0
Driven Part (Region 2) 0.1 0.125 0

Table 4.3. Initial conditions for the Sod’s shock tube problem
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Figure 4.4. Comparison between the CFD results (— red) with the exact solution of the Riemann
problem (— gray) using the Sod’s shock tube problem.
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Figure 4.4 compares the analytical shock tube solutoin with the numerical results
obtained from the CFD simulation. It can be seen that both solutions are in good
agreement. This classical validation case by Sod (1978) therefore demonstrates the use of
the OpenFOAM algorithm in capturing the shock and expansion waves inside a shock

tube.

4.5.2. Diaphragmless shock tube results

With the proper validation, the numerical results from the simulation can thus be used
to assess the performance of the diaphragm-less shock tube configuration which is multi-
dimensional. Figure 4.5 shows exemplarily the pressure contour plots illustrating the
shock formation with an initial driver pressure pa/p; ratio of 7.91 and an opening gap
velocity of -50 m/s. In addition, the pressure variation within the shock tube recorded at
different axial positions is also given in Fig. 4.6. In general, due to the geometry of the
shock tube driver, there are a number of different wave interaction and reflection near the
opening gap region. In general, a planar shock appears to establish well within 100 mm.
The large pressure increase at shorter distances from the opening gap is due to the wave

reflection from the centerline axi-symmetry (recorded at y = 0 mm).
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Figure 4.5. Pressure contours showing the shock evolution with an initial driver pressure ratio of
p4/p1="7.91 and a gap opening velocity of -50 m/s

To assess the effect of the numerical resolution, simulations are also performed with
different grid size and an example of comparison of the pressure profile at the early
transient shock development is given in Fig. 4.7. One can see that there is no significant
discrepency between the results using the base grid (Ax = 0.53 mm) and those with higher
resolution (Ax = 0.26 mm). Therefore, the base grid results are used in all the subsequent

analysis.
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Figure 4.6. Pressure profiles at different axial positions along the driven section (from x = 50 to
100 mm) and three different radii (y =0, 12.7 and 25.4 mm)
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Figure 4.7. Pressure profiles at a position of x = 40 mm and y = 0 mm obtained using different
mesh sizes.

The shock strength resulted from different initial driver pressure ratios and gap

opening velocities is plotted in Fig. 4.8. The numerical results obtained from an earlier
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study (Portaro & Ng 2013) with complete opening of the gap at # = 0 s with non-moving
boundary are included. In this plot, the experimental measurement by Portaro & Ng
(2013) from the present shock tube driver operated at low pressures ranging from 400 to
750 kPa using PCB pressure transducers are also shown, as well as those from literature
(Kosing et al., 1999; Downey et al., 2011). Using the analytical solution of the 1-D ideal
shock tube problem as derived in the Appendix A, the incident shock strength p,/p; as an
implicit function of the diaphragm pressure ratio p,/p; can be obtained for comparison

with the experimental results, i.e.,

p“zpz[l_ (7_1)(a1/a4)(p2/p1 _1) % 4.7)
poopi\ 2 2r+ (1) p, /o 1)
P _2M-(r-1) (4.8)
12 y+1

The above equations the shock strength should be solved iteratively and the relationship
between p./p; and pyp; can be expressed on a graph. These results are used for

benchmark to validate the simulation of the diaphragm-less shock tube.
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Figure 4.8. The shock pressure from CFD simulations at x = 100 mm and experiments as a
function of the initital driver pressure ratio. The solid line indicates the theoretical solution
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obtained from the 1-D shock tube theory.

From Fig. 4.8, one can see that the numerical results agree very well with data from
literature as well as the ideal 1-D shock tube solution at low initial driver pressure ratios.
Increasing the gap opening velocity tends to give better results comparable to the 1-D
ideal shock tube solution. However, as we increase the driver pressure ratio to higher
values using the simplified numerical model as shown in Fig. 4.8, it appears that there is
an optimal gap opening velocity and further increase in sleeve velocity (or the left
boundary motion) has an adverse effect by lowering down the shock strength away from
the ideal 1-D value. In fact from either Fig. 4.6 or Fig. 4.7, one may notice an expansion
(or referred to the vaccuum effect) in the driven section due to the movement of the
sleeve by the left-hand boundary. The inertial of the left boundary wall is similar to the

creation of a vaccuum effect as by a piston extraction (Anderson, 2003). Such effect can
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generate expansion waves which can therefore influence the flow field in the driven
section and hence in turn decrease the strength of the resulting shock wave created by the

expansion of the high pressure gas from the opening gap.

4.5.3. Improved design and numerical model configuration

To resolve the effect of the motion of the boundary which in turn disturbs the flow in
the driven section due to the suction effect generated by the inertia of the moving part, a
new numerical model is created by including a sleeve on the right moving part as shown
in Fig. 4.9. Unlike the original sleeve model 1 which has a flat geometry, this new model
2 has “T-shape” geometry where the opening gap (or the origin of the shock
development) is away from the moving boundary to minimize the suction effect. The

dimensions and grid sizes for the numerical computation is given in Table 4.4.

Tube Section

nner Driven
Tube Section

- Expanding Gap

Outer High Pressure
Tube Section

Inner Driven
Tube Section

(a) xy - plane View

Sliding Sleeve

(b) Isometric View

Axi-symmetric Line

Figure 4.9. New geometry model for the diaphragm-less shock tube facility

Domain Name

Radius (y- coordinate)

Length (x-coordinate)

Model 2 Dimension Average Cell Size Dimension Average Cell Size
Outer Tube (L, R) (63.5, 63.5) (0.13,0.13) (76.2,127~152) (2.1,0.53)

Inner Tube (L, R) (25.4,25.4) (0.13,0.13) (76.2,127~152) (2.1,0.53)
Expanding gap 63.5 0.12 2x10°~25.4 5x 10"~ 0.64
(variable domain)

Table 4.4. Physical Dimensions of Computational Domain (unit: mm)

88




The new model geometry is used to simulate the performance of the diaphragmless
shock tube at higher initial pressure ratios where the vaccuum effect by the moving
boundary becomes severe. The results are shown in Fig. 4.10; one can see that there is a
significant improvement and increasing the boundary velocity gives the results
approaching the typical performance of diaphragmless shock as shown by the
experimental value of Kosing et al. (1999).

As observed in Fig. 4.11 showing the pressure contours and Fig. 4.12 the pressure
profile at x = 110 mm (and y = 0 mm), where the opening gap is away from the moving
boundary in the new geometrical model, the effect of the expansion originated from the

boundary or the suction effect on the shock generation in the driven section is therefore

minimized.
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Figure 4.10. The shock pressure from CFD simulations at x = 100 mm using the new geometry
and experiments as a function of the initital driver pressure ratio. The solid line indicates the
theoretical solution obtained from the 1-D shock tube theory.
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Figure 4.11. Pressure contours showing the shock evolution with an initial driver pressure ratio of
p4/p1 = 14.8 and a gap opening velocity of -150 m/s using the new geometrical model
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Figure 4.12. Pressure profiles at a position of x = 110 mm and y = 0 mm obtained using the new
numerical model and different boundary velocities.

4.6. Summary

Comparing the theoretical results with their numerical and experimental counterparts
makes it possible to observe a strong correlation between the driver pressure, sleeve
opening time and shock mach number. Although the driver gas follows a more complex
geometry into the driven section, it is evident that the behaviour is very close to a
conventional shock tube with a controlled sleeve opening time. The present numerical
results help to validate the reliability of the present diaphragm-less shock tube originally
designed by Downey et al. (2011), which gives an invaluable tool for shock wave testing
as experiments can be repeated quickly (less than 1 min) and with more repeatability than
conventional shock tubes.

The numerical simulations also help to reveal some potential problems, for instance

the effect of the moving part which generates disturbance in the driven section such as
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the suction effect. A quick solution is proposed in this work by creating an improved
numerical model by extending the the moving part with a T-geometry. It is indeed
expected that better results will be obtained by contouring the opening and the left-hand

boundary to guide the flow and shock formation.
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Chapter 5

Concluding Remarks

5.1. General conclusion

Dynamic mesh method is a useful technique to apply CFD to industrial devices with
dynamic components. In this study, the dynamic mesh method is used to the design of
two engineering devices and the numerical CFD solutions are validated by comparing
with experimental measurements and theoretical analysis to confirm its accuracy and
efficiency as well as challenges and limitations.

The numerical methods applied in air-powered needle-free liquid jet injectors are the
first of its kind to integrate dynamic mesh method, interaction between a forcing term
that relates the air pressure used to drive the injection and fluid force, VOF and LES. The
combination with dynamic mesh and state-of—the-art CFD techniques made it possible to
verify which parameters most significantly impact the peak and average stagnation
pressures for air powered injectors. The CFD model integrated with dynamic mesh
proved so useful that it predicts reasonably accurate the stagnation pressure and jet
velocity of the liquid stream exiting the injector.

Similarly in the flow simulation of the diaphragm-less shock tube driven by a fast-
acting sleeve valve, introducing dynamic mesh into compressible flow simulation made it

possible to observe a correlation between the driver pressure, sleeve opening time and
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shock Mach number. The numerical model allows one to decide the initial pressure ratio
and opening time by changing moving boundary velocity required to develop enough
shock strength Furthermore, the results obtained in this study validate the reliability and
design potential of the present diaphragm-less shock tube for further improvement.
However, several special treatments were taken into consideration to obtain reliable
results in two application cases. Firstly, the correction terms (i.e., flux correction on the
moving cell boundaries) to maintain conservation laws in flow physics were introduced
into governing equation so as to handle dynamic mesh without any violation of physics in
computers. Secondly, mesh diffusion coefficients were adjusted to keep mesh quality and
validity. Thirdly, the geometry model in the shock tube simulation was modified not to

generate pressure drop inside the tubes due to computational-domain expansion.

5.2. Contribution and future work

This study has made the contributions to the two industrial devices with dynamic
components by using dynamic mesh method. The CFD approach with dynamic mesh can
be used to predict the key performance parameters such as stagnation pressure in the
needle-free injectors and the relationship between shock strength and opening time in the
diaphragm-less shock tubes. These are of great importance for determining the design
and operating performances in the two devices.

For future work of dynamic mesh applications, there are two indications such as
careful consideration of geometry model and combination with other types of solver (e.g.,
structure analysis). The geometry model selection with dynamic motion affects both the

tendency of mesh deformation and flow field itself such as vacuum effect in the shock
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tube simulation. In OpenFOAM, a solid body with 6-degree of freedom can be handled
coupling flow field (fluid force) with dynamic mesh (boundary mesh method). However,
a deformable body cannot be solved in the current platform. Thus, coupling stress
analysis solver and flow solver is being discussed and developed using dynamic mesh
approach as the interface between two solvers (Jasak & Tukovic, 2010). This can be a
powerful tool in the needle-free injector simulation since liquid jet penetration (fracture

pattern and depth into human body) can be examined quantitatively.
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Appendix

One-dimensional Shock Tube Theory

The ideal 1-D shock tube problem consists of a tube of fluid that is initially at rest. A
central diaphragm in the tube separates two sections of ideal gases with different
pressures and densities (see Fig. A.1). The fluid to the left has a higher pressure as
compared with the fluid on the right. The exact analytical solution to this problem is
known, which is essentially a special case of a Riemann problem. When the diaphragm is
ruptured instantaneously, a shock wave and contact discontinuity propagates into the low
pressure region, whilst an expansion fan propagates into the high pressure section as
shown in the Fig. A.2.

Vi

High pressure Low pressure
) driver section driven section )
i
atr=20
7
w
-T—>
4) 3) (2) (1)
i
atr=nt

Figure A.1. Flow pattern in a 1-D shock tube
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Figure A.2. x-t diagram showing the wave configuration of a 1-D shock tube flow

The time evolution of the fluid flow field in a 1-D shock tube is obtained by solving the

Euler equations.

P pu
ou| + put+p| =0 (A.1)
e | |u e+p) ;
with
p
e=——-—— (A.2)
ply-1)

The Euler system leads to three characteristics, describing the propagation speed of the
various regions of the system. Namely the rarefaction wave, the contact discontinuity and
the shock discontinuity as shown in Fig. A.2. The analytical approach is basically by
solving the state behind the generated normal shock and the tail of the rarefaction and

match both states at the contact discontinuity.
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Normal shock wave

The states after the shock are connected by the Rankine-Hugoniot (RH) normal shock
jump conditions. Written with respect to the shock-fixed frame, the continuity,

momentum and energy equations are given by:

P = p, (W ~u,) (A3)

AW =py+p,W—u,f (A.4)
2

h1+WTZ=h2+M (A.5)

Here enthalpy is defined as # = e + pv. The subscripts 1 and 2 refer to the gas upstream
and downstream of the stationary wave, respectively. U, = u; — u, thus denotes the
particle velocity behind the moving shock and u; = W and u, = W - u, are velocities
relative to the wave. Considering a perfect gas where e = ¢-T and p = p-R-T, the above
equations can be re-arranged and link the temperature and density ratios across the shock

wave as functions of the pressure ratio:

rl P
L _p| v=1 p
T, p l_l_LH&
y=1p

(A.6)

1+L+1&
-1

Lo TP (A.7)
p r+l Py
=1 p

By defining the moving Mach number of the normal shock as:

M == (A.8)
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The equations can be further combined to thus obtain the well-known Rankine—Hugoniot

relations or normal shock relationship (see, for example, Hirsch, 1988):

Py 1,2 (32
" _1+7/+1(MS 1) (A.9)
T, (r+1) M

P (M

= A.ll
Py 2+(y 1M (A0
Alternately, Equation can be re-arranged to give:
W=a, 7—”(&— j+1 (A.12)
2y \p
Here the fluid velocity behind the shock wave u, can be expressed with I, i.e.,
u, =u, —u, :W( —“—ZJ (A.13)
u
Incorporating the continuity Eq. (A.3) and Egs. (A.12) into (A.13) yields
27 )
u, :ﬂ[&_lj _r+l (A.14)
7\ P P " L_l
py y+l
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Figure A.3. Left propagating infinitesimal wave at the velocity of sound

Rarefraction wave

To determine the variation of properties across the expansion waves, consider an
infinitesimal wave propagating leftward at the velocity of sound with respect to the gas
moving at u, see Fig. A.3. Thus the absolute velocity of the wave relative to a fixed frame

of reference is a - u. By fixing the wave, the equation of continuity for the gas is:

pa=(p+dp)a-+du)
dp _—du (A.14)
Yo, a

For an isentropic flow and perfect gas p = p-R T, the isentropic relationship is given as:

pV'’" = constant
y—1

p 7 T = constant

y=ldp _dT (A.15)
ry p T
dp y dT
p y-1T

Introduce the following relationship:

da 1dT

2

a=yRT or —=—— A.16

VZ PR (A.16)
p p T
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Combining the above equation yields:

dp_dp_dT __y dT_dT_ 2 da

o2 (A.18)
p p T y-1T T y-1a
Therefore, one can obtain the following:
2 da _—du
-1
r "2 4 (A.19)
du + da=0
y—1
Finally the above equation can be integrated analytically to yield:
2
u +——a = constant (A.20)

y—1

If a right-moving wave is considered instead, similar expression can be obtained, that is:

—u+ a = constant (A.21)

y—1
These expressions are referred to as Riemann Invariant (Rathakrishnan 2010). For the
flow between region (3) and (4) as described in Fig. A.2, the gas velocity u = u4 1s equal

to zero. Thus, equation can be expressed as:

2 a, = 2 a+u (A.22)
y—1 y—1
and hence:
ﬂ:1_7__1£lj (A.23)
a, 2 \a,

which relates a and u within the expansion wave. With a* = yRT , we can readily get:

B B
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Applying the isentropic relation for region 3 and 4:

22 )

to obtain:

and

(A.25)

(A.26)

(A.27)

These equations give all the properties within the simple rarefaction wave as a function of

the local gas velocity u. For the simple wave, any finite information moves with local

velocity dx/dt = u —a along the straight characteristic. Hence, the front of the expansion

wave travels with speed a, and the tail of the wave moves at velocitydx/dt =u, —a,.

Because the wave is centred, the characteristics are straight lines through the origin with

x = (u - a)-t. Using the Riemann invariant:

-1
x:(u—a4+}/ u}t

or

Alerd
u=——-a, +—
y+1 t

With this, the properties within the expansion wave are determined.
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Incident shock strength

Applying Eq. (A.26) to the tail of the expansion wave (interface between region (3)

and (4)),
2
Py _ (1 _7_—1(”_3D7‘1 (A.30)
Pa 2 \a,
Solving the above equation for u; yields
y-1

2 27
u, =4 1—(&] ’ (A31)
y-1 Pq

Across the contact surface, the pressure and fluid velocity should be same, i.e., p3 = p>

and u3 = u,. Applying these relationships to equation (A.14) and (A.31) gives:

2r )
y\p )Py 7=l
p, r+l
E
2 2
u, =% 1—(&j ’ (A.33)
y-1 Py

Hence, combining both to yield:

y-1
Py _Pajy_ GAR (A.34)

boop \/27/{27/+(}/+1)(l;j— j}

The above equation gives the incident shock strength p./p; as an implicit function of the

diaphragm pressure ratio p/p; Thus the shock strength can be solved iteratively and the
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relationship between p,/p; and p/p; can be expressed on a graph. These results are used
for benchmark to validate the simulation of the diaphragm-less shock tube.

Using all the derived relationship, the profile at any time t can also be obtained using
the following approach:

e (Calculate the incident shock strength using Eq. (A.34)

e Obtain all the state properties cross the incident normal shock

e Calculate the strength of the expansion wave:

Py _PsP_Py Py (A35)
N P Py P Ps

and all the properties behind the expansion wave:

/4
) v
-1
Ps_ (_psj :(5]7 (A.36)
Py yon T,

e Once the boundaries of the regions are determined using the knowledge about the
velocities of head and tail of the expansion wave, particle velocity behind the
shock wave and the normal shock speed, all the state properties at different
characteristic regions of the shock tube flow including those inside the expansion

wave given by Eqs (A.24 — A.27) can be computed
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