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ABSTRACT 

Emotions and Topics in Online WOM: Application of Latent Semantic Analysis 

Shimi Naurin Ahmad 

Concordia University, 2013 

The Web has changed the way that consumers express their opinions. They can now post 

reviews of products and express their opinions on almost anything on the websites. 

Potential customers often search online for product information and they often have 

access to hundreds of product reviews from other customers. Some of the reviews are 

found to be more helpful than other reviews as evidenced the potential customer’s 

helpfulness vote. This online word-of-mouth (WOM) behavior represents new and 

measurable sources of information.  

Recent research has shown that helpfulness votes of customer reviews can have a positive 

influence on sales. While it is clear that helpfulness vote of a review is important, less is 

known about why certain pieces of online review are more helpful than others. Despite 

the fact that, customers encounter a variety of emotions in a purchase situation and those 

emotions are likely to be documented in the review, few researches have investigated 

how emotions elicited by the review affect the helpfulness of the review beyond the 

valence. Do discrete emotions have differential informational value in this case? Based on 

cognitive appraisal theory, in the first essay of this dissertation, I examine how specific 

emotions (hope, happiness, anxiety, disgust etc.) embedded in the review affect the 

helpfulness votes of potential customer. I adopt a quantitative content analysis (Latent 

Semantic Analysis) approach to measure emotions in these reviews.  
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In the second essay of the dissertation, I explore how the topics of online reviews differ 

between positive and negative reviews. Examination of real product reviews shows that 

there are thematic differences between them. Also, service related complains are found to 

be more helpful by potential customers. This enables us to better understand the 

conceptual differences in WOM . 

Lastly, in the third essay, I compare two text mining techniques: Latent Semantic 

Analysis and Probabilistic Latent Semantic Analysis (PLSA) in extracting common 

themes in the positive and negative product reviews. Results shows that the choice of text 

mining approaches should be based on the goal of the marketing researcher. If the goal is 

to learn about a specific brand, PLSA might reveal more specific information. However, 

if the goal is to learn about important aspects of a broader product category, LSA works 

better in terms of interpretability.  
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CHAPTER 1 

INTRODUCTION AND RATIONALE 

Alice wants to buy a blender for her kitchen. She prefers to buy online to save her 

time; more importantly, she likes to go through some of the online customer reviews of 

blenders in a website like Amazon to gain knowledge about different brands and their 

advantages and disadvantages. She really likes the idea that these reviews are written by 

people like her and she feels comfortable to trust these reviews. She reads some of the 

reviews and finds a few of these reviews very helpful to decide about her blender 

purchase. After buying and using that blender for some time, Alice goes back to the 

review website to express her opinion about that particular blender. Did she make a good 

decision or a bad one? Did her expectation match with the product performance? Which 

reviews did she think helpful? How did she arrive at the purchase decision after reading 

the reviews in the first place? These questions and many more can be answered by 

properly analyzing this word-of-mouth (WOM) data. Online WOM behavior thus 

represents measurable sources of information. Techniques are now being developed to 

infer the hidden information and intention.   

In the dissertation titled ―Emotions and topics in online word of Mouth: Application of 

Latent Semantic Analysis‖, questions related to online word of mouth (numerical and 

text) have been examined. The dissertation asks the following three questions and 

develops three essays in an attempt to answer these questions:  
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Figure 1: Example of Product Reviews (retrieved from Amazon.com) 

 

Research Question 1: Some of the reviews are found to be more helpful than other 

reviews as evidenced by the potential customer’s helpfulness vote often found in a 

website like Amazon. Some of the reviews also contain emotions happiness, disgust etc. 

Do these emotions have differential impact on helpfulness of the review?  

Research Question 2: What are the main themes or topics in online product reviews? Do 

they differ between positive and negative review? Do these topics affect helpfulness of 

the review?  
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Research Question 3: Analyzing customer review data often needs data mining and Text 

mining techniques. What type of text mining techniques should a marketing specialist use 

to look at the market?    

The first part of this research investigates emotions expressed in the product 

review. Recent research has shown that customer reviews and the helpfulness vote can 

have a positive influence on sales (Liu, 2006).  While it is clear that helpfulness vote of a 

review is important, less is known about why certain pieces of online review are more 

helpful than others.  

Past research has shown that valence (positive and negative) and volume of the 

product review affect helpfulness vote of a review (Mudambi & Schuff, 2010). However, 

valence defined by positive and negative may not be sufficient to examine the effect of a 

wide variety of emotions described in reviews. Emotions of the same valence can be 

further divided according to their appraisals (Tiedens & Liton, 2001). For example, love 

hope, happy, excitements are all positive emotions but they are distinct according to their 

appraisals. Research demonstrates that these fine grained emotions may have distinct 

influences on decision making and cognitive processing (Nabi, 2003). In a consumption 

situation, people often encounter these emotions (Ritchins, 1997) which may range from 

happiness, hopeful, joy, and love to sadness, anger, disappointment etc. Therefore, this 

part examines how discrete emotions embedded in the review affect the helpfulness votes 

of potential customer.  

A quantitative content analysis approach is employed to measure emotions in 

these reviews. Specifically, a text mining technique, Latent Semantic Analysis (LSA) 
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(Deerwester et al., 1990) which is able to extract emotions in a text is employed to 

measure emotional content of the product review. This field experiment was augmented 

with laboratory experiment data to increase the validity of the result.  

After examining the effect of emotions on the helpfulness vote, the dissertation 

goes further and examines other driving factors of the helpfulness vote. For this, the 

themes or topics of online reviews and difference among positive and negative reviews  

are examined. This exploratory examination of real product reviews shows that there are 

thematic differences between them. Positive reviews tend to focus on the product; on the 

contrary negative reviews tend to report service related failure. Next, the effect of these 

topics on the helpfulness vote of the review is examined.  

  The examination of helpfulness vote requires the use of real customer reviews. 

However, it involves large dataset and traditional way of analysis might not reveal the 

pattern. Therefore the use of quantitative method is warranted. The examples of these 

techniques are Latent semantic Analysis and probabilistic Latent Semantic Analysis. 

These techniques have been used in the previous researches of this dissertation. Therefore 

in the last essay we  compare two text mining techniques: Latent Semantic Analysis and 

Probabilistic Latent Semantic Analysis (PLSA) (Hoffmann, 1999) in extracting common 

themes in the positive and negative product reviews. Results shows that the choice of text 

mining approaches should be based on the goal of the marketing researcher. Both 

techniques have advantages and disadvantages. This essay runs a comparative study and 

tries to understand the suitability of these text mining techniques for marketing context.  
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This research has wide range of practical implications. In today’s digital world 

where Alice’s story is a typical purchase scenario, it is crucial for the marketing 

researchers to try to understand what persuades a potential customer when S/he reads a 

review. How the subject matter topics and emotions expressed in the reviews affect a 

potential customer? These can be answered by properly analyzing the customers’ reviews 

available on the internet. However, usually these data are huge and determination of the 

appropriate tools to analyze these huge data including numerical and unstructured text 

data is critically important. Computer science literature has been focusing on analyzing 

these unstructured data for a decade. Marketing Science literature needs to analyze/adapt 

these techniques according needs and applicability of this discipline to enhance the 

usability. This research sheds light on these cutting-edge issues. The findings are also 

applicable to other marketing contexts such as advertising and customer to customer 

interaction.   

1.1 Contribution of the Thesis 

 Although a range of emotions are expressed in customers review, very few studies 

have examined the effect of these emotions on the potential customers. We 

explained that not all the discrete emotions have the same effect. . This 

contributes to the better understanding of discrete emotions and their effects in an 

information seeking situation. 

 We also examined the underlying process of the above mentioned effect and thus 

provided the answer why the effect will be observed. 
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 Motive and consequences of online word of mouth have been examined in the 

literature. Although motive provides some idea about what is being said in the 

WOM, a direct content analysis of the reviews have been mostly overlooked 

mostly because of the fact that in the pre- internet era, WOM were not traceable. 

This essay fills the gap and shows what is actually being talked about in a review.  

 The previous study also focuses on the thematic difference between positive and 

negative reviews. It also contributes to the growing literature on what kind of 

information are found helpful in a decision making / information searching 

situation 

 For the sake of generalizability, the essays utilized text mining techniques (in 

combination with controlled experiments). Recently the techniques of text 

analysis are being explored in Marketing Discipline. The thesis also contributes to 

this area of research by adapting a text mining technique to extract emotions in a 

Marketing setting. 

 Lastly, the last essay compares two text mining techniques from a marketing 

manager’s perspective. This contributes to the growing need of analyzing user 

generated content by marketers.  

1.2 Organization of the Thesis 

The rest of the thesis is organized as follows: 

CHAPTER 2: Literature Review 
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This chapter provides an overall perspective on the whole research program and reviews 

the state of the art literature of Online Word of Mouth, Emotions, Topics and use of 

content analysis in Marketing.  

CHAPTER 3: How do fine-grained emotion affect helpfulness vote of a product 

Review?  

This chapter reviews the related work and develops hypotheses regarding discrete 

emotions expressed in the reviews and their effect on perceived helpfulness of reviews. It 

then supports the claim with the help of controlled and field experiments  

 

CHAPTER 4: Exploring Conceptual Differences between Positive and Negative 

Reviews and its Effects on Perceived Helpfulness. 

 

This chapter reviews the related work regarding motives and contents expressed in the 

reviews. It is an exploratory research. The topics are extracted from the actual reviews 

and in depth analysis is done. The study then examines the effect of these topics on the 

perceived helpfulness. The result is analyzed and discussed. 

CHAPTER 5: A Comparative study of Latent Semantic Analysis and Probabilistic 

Latent Semantic Analysis on extracting topics in product reviews.  

This chapter compares two text mining techniques (Latent Semantic Analysis and 

Probabilistic Latent Semantic Analysis) to see their suitability of the use in marketing 

context.   
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CHAPTER 6 : Conclusion and Summary 

This chapter discusses the overall result of this research program and concludes with 

limitation and future research directions.  

 

1.3 Presented and Under Review Manuscripts from the Thesis 

Ahmad, Shimi N. and Michel Laroche (May, 2012), "How Do Fine-Grained 
Emotion Affect Helpfulness Vote of a Product Review? Evidence from User 
Generated Content Using Latent Semantic Analysis," 41st Academy of Marketing 

Science Conference, New Orleans, LA. (Abstract only) 
 

Ahmad, Shimi N. and Michel Laroche (June, 2012), "A Comparative Study of 
Latent Semantic Analysis and Probabilistic Latent Semantic Analysis on 
Extracting Topics in Product Reviews,‖  23rd AMA’s Annual Advanced Research 

Technique (ART) Forum, Seattle, WA. (Abstract only) 
 

Ahmad, Shimi N. and Michel Laroche, "How Do Fine-Grained Emotion Affect 
Helpfulness Vote of a   Product Review? Evidence from User Generated Content 
Using Latent Semantic Analysis,‖  Journal of Retailing (under review) 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Electronic Word of Mouth (eWOM) and its Content 

Customers are informed more than ever before. Despite the fact that the customers mostly 

purchase offline, information search and collection are performed online majority of 

time. Therefore, the content which are available in the web play a crucial role on the 

customer’s decision making process. Customers’ purchase decisions can be influenced by 

others’ opinions, or word of mouth (WOM), and/or others’ actions, or observational 

learning (OL) (Chen, Wang & Xie, 2011). Literature has suggested that both volume and 

valence of word of mouth influence future customers. For example, Khare Labrecque, & 

Asare, 2011) argued that WOM message’s persuability depends on WOM-relevant 

characteristics such as WOM volume.  Posted reviews are expected to influence the 

message recipients or the potential customer in the same direction of their valence 

(positive versus negative) with negative message with more intensity (Chakravarty, Liu 

& Majumdar, 2009). 

2.2 Emotions in WOM 

In customer research, emotions experienced by customers are classified traditionally in 

two groups:  positive and negative (Westbrook, 1997, Oliver,1993, Derbaix,1995). Some 

researchers classify emotions in pleasure, arousal and dominance dimensions (Holbrook, 

& Hirschman, 1982).) and argue that the value of the dimensions vary depending on the 

specific emotions. Upbeat, warm or negative (Mano & Oliver,1993) are another structure 
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of emotions experienced by customers. In discrete emotions theory, emotions can be 

differentiated on the number of dimensions such as action tendencies, motivation, etc. 

other than valence (Ruth et al., 2002). Recent research has started to investigate a more 

comprehensive view of emotions where similar discrete emotions are treated as factors 

(Laros & Steenkamp, 2004). Each discrete emotion has its own unique feature that can 

have different impact on outcome variables than its valence only. Therefore, there is 

ample evidence that customers experience a range of emotions and it is likely that these 

emotions will be expressed in the word of mouth; little research has investigated how 

these emotions affect the future customers. Negatively valenced product reviews have 

been shown to be more helpful than the positive ones (Chakravarty, Liu & Majumdar, 

2009). This gap in literature is discussed in more detail in chapter 3.  

2.3 Message Framing, Discrete Emotions and Persuasion 

In the customer research, most discrete emotions research has investigated the interaction 

between mood and emotions elicited by advertisements (Mukherjee & Dube, 2012). Fear 

appeal is the most research discrete emotion (Dillard, 1993). However, eWOM resembles 

more to message framing because there is no reason to assume that customers who are 

reading several reviews of a product or service will feel every emotions described in the 

reviews. For this reason, the knowledge in advertising is not directly transferable to the 

research on how each of the discrete emotions embedded in the message influence the 

message recipient. The majority of framing literature to date has focused on the cognitive 

effects rather than the emotional effects while at the same time many scholars have called 

for more research on how emotion can affect attitude change (Dillard, 1993; Gross, 

2008). 
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Relevant to this area of research, although political consultants have been using emotion 

in political campaigns for years, surprisingly few scholars have examined how emotional 

aspects of campaign messages influence political persuasion (Gross & D'Ambrosio, 

2004). Moreover, discrete emotions are likely to have particular implication for the 

process, direction of persuasive influence and appropriate applicat ion context (Nabi, 

2003). Thus there is a greater need for investigation of persuasive effects of discrete 

emotions. More on the direction of persuasion is discussed in chapter 3.  

2.4 Content Analysis  

To better understand eWOM (what customers are saying and thinking, what other 

customers think about a particular review, is there pattern? and many more questions), 

content analysis is a reliable method.  ―Content analysis is a method of analyzing written, 

verbal or visual communication messages― (Cole, 1988). This method is being used in 

many disciplines such as Sociology, Psychology, Marketing, and Communication for a 

very long time. It was introduced to analyze newspaper and magazine articles, 

advertisements and political speeches (Harwood & Garry 2003). It enables the researcher 

to test theoretical issues to enhance understanding of the data. Moreover, ―through 

content analysis, it is possible to distil words into fewer content related categories. It is 

assumed that when classified into the same categories, words, phrases and the like share 

the same meaning‖ (Cavanagh, 1997).  

However, the method is criticized by people in the quantitative field mainly. For some 

people, it is a simplistic technique that is not subjected to detailed statistical analysis and 

therefore sometimes very subjective in nature. The content analysis is often considered as 
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qualitative research. This analysis (classification or revealing any aspect of the data) is 

most often done by human coders.  

Nowadays, people generate a lot of content in web in the form of blogs, product reviews, 

videos etc. For sociology, psychology, communication, marketing and many other 

experts, this brings a huge opportunity to analyze these data. This data is often very 

reliable as people are not biased by interviewer and experiment setting. People express 

their feelings and opinions without any intervention. Moreover, these data are freely 

available. So, there has been a recent trend of analyzing these data to reveal behavioral 

pattern, social interaction and human communication. However, these user generated 

content are generally huge and it is often impossible to analyze these data by human 

coders alone. Quantitative methods have been developed to analyze these data. There are 

lots of text mining techniques which can be used to infer pattern in the text data, classify 

and make groups of data. These can also reveal behavioral pattern. These methods are 

based on statistical foundation and/or other quantitative techniques. Therefore, these 

methods overcome the limitation of the traditional content analysis by providing 

numerical measure attached to it. However, people criticize these methods for being 

overly depended on data and for lacking human intelligence in the process of revealing 

the patterns. The techniques are being improved and are trying to achieve the accuracy of 

human coders without compromising the speed and capability of analyzing huge amount 

of data.  

Among those techniques Latent Semantic Analysis  (Deerwester et al., 1990) is one of the 

oldest one. This method is based on the word co-occurrence and not really founded on 

statistics. However, this method yields fairly accurate result that match with human coder 
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in terms of accuracy of classification and retrieval. The next version of this method is 

Generative models. This family of models is based on statistical foundation and topics are 

found according to the probability of the terms belonging to the topic. Example of these 

kinds of models is Probabilistic Latent Semantic Analysis (Hoffman, 1999) or Latent 

Dirchilit Analysis (LDA). These provides some superior results in terms of retrieval, 

however, LSA also has some unique advantages which will be discussed later in the 

thesis.   

Overall, these models are quantitative content analysis methods with the advantage of 

analyzing huge data without human intervention. Moreover, decisions are based on 

probabilities. The rest of the thesis uses quantitative content analysis techniques for the 

experimental purposes.   
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CHAPTER 3 

ESSAY 1 

Discrete emotions and Customers perceived helpfulness of the 

Review: Application of Latent    Semantic Analysis. 

 

    Abstract 

 
With the growth of internet usage, customers often search online for product information 

and have access to dozens or hundreds of product reviews from other customers. While it 

is clear that not all customer reviews are helpful, less is known about why certain online 

reviews are more helpful than others. Past research demonstrated that valence of a review 

affects the informational value of the contents and thus the perceived helpfulness of the 

review. However, in a purchase or information search situation, people encounter a 

variety of emotions which are likely to be expressed in the reviews. Potential customers 

read the reviews to collect or verify information and to see what other people think. 

Despite the fact that reviews contain emotions, few studies have investigated how 

emotions expressed in the review affect the helpfulness of the review. Do discrete 

emotions have differential informational value in this case? In this article, we build on 

cognitive appraisal theory to examine how discrete emotions (e.g., hope, happiness, 

anxiety, and disgust) embedded in the reviews affect the helpfulness votes of potential 

customers. We hypothesize that reviews containing emotions associated with certainty 

are more helpful and that reviews containing emotions associated with uncertainty are 

less helpful regardless of their valences. We adopt a quantitative content analysis 

approach to measure emotions in these reviews. Specifically, we use Latent Semantic 

Analysis (LSA) to measure the emotional contents of the reviews. Findings demonstrate 
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that discrete emotions have differential effects on the helpfulness of the reviews. By 

analyzing actual customer review data from Amazon.com, we contribute to a better 

understanding of what makes customers’ reviews helpful in their decision process.  

 

Keywords: Online word of mouth; Cognitive Appraisal theory; Certainty; Latent 

semantic analysis. 

3.1 Introduction 

With the growth in internet use, customers increasingly search for online 

information prior to purchase. They look for basic information on a product or a third 

party opinion on the product. Nowadays, whether the real purchase is done online or in 

store, the information search process is usually executed online. These potential 

customers often have access to many review websites (manufacturer’s or third party site) 

which contain product descriptions, expert reviews, automated recommendations as well 

as reviews from other customers. Although each of these options has the potential to 

influence future customers on their process of choosing or buying (Chen & Xie 2005; 

Forman, Ghose & Wiesenfeld 2008), research has shown that customers trust other 

customer’s opinions more than experts’ (Senecal & Nantel, 2004).  

   In the literature, valence (positive/negative) and volume of the peer generated 

product reviews influence the sales of the product (Chevalier & Mayzlin 2006; Ghose & 

Ipeirotis 2006). Chen, Dhanasobhon, and Smith (2008) indicate that the quality of the 

review as measured by helpfulness votes also positively influences sales. As defined by 

Mudambi and Schuff (2010, p-186), ―a helpful customer review is a peer-generated 

product evaluation that facilitates the customer’s purchase decision process.‖ Since the 
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helpful product reviews influence other potential customers and in turn sales, examining 

the content characteristics that make a product review helpful is managerially and 

theoretically important.  

It is also documented that product type, valence (positive/negative), and volume 

of the review affect the helpfulness votes of a review (Mudambi & Schuff 2010). 

However, valence as defined by positive and negative may not be sufficient to capture the 

impact of a wide variety of emotions described in customer reviews. In a consumption 

situation, people encounter emotions which may range from happiness, joy and love to 

sadness, and disappointment (Ritchins, 1997). Often customers choose to spread the word 

by writing a review on a website. Therefore, it is likely that potential customers, who visit 

a website with the intention of gaining knowledge, encounter these reviews containing 

varied emotional content related to customer experiences. Research demonstrates that 

discrete emotions of the same valence may have distinct influences on decision making 

(Raghunathan, Pham & Corfman 2006) or information processing (Tiedens & Linton 

2001) and thus emotions of the same valence may have very differential impacts (Nabi, 

2003). However, the influence of the emotional content beyond positive and negative 

valence of WOM on other potential customers is yet to be examined.  

In this article, we examine the discrete emotional contents (e.g. happiness, 

hopefulness, disgust, and anxiety) of a review and their effect on the potential customer 

as evidenced by the helpfulness votes. In other words, we try to answer the following 

research question: Do potential customers find a content of a review more or less helpful 

depending on the discrete emotions expressed in the review? We build on cognitive 

appraisal theory to answer this question. Based on this theory, d iscrete emotions can be 
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classified along a certainty appraisal dimension among others. Some emotions are 

associated with certainty and some are with uncertainty regardless of their valence. 

Drawing on the literature, we propose that reviews containing certainty emotions are 

more helpful and that certainty mediates this process.  

We content analyze the real reviews from the Amazon website by adopting a 

word pattern recognition approach to measure emotions in these reviews. Specifically, 

Latent Semantic Analysis (LSA) is used to measure the emotional attributes and the 

effects of these emotions on customer’s perceived helpfulness of the review are 

examined. We also test our hypotheses in experimental settings by manipulating the 

specific emotions expressed in a review. The combination of the field study and the 

experiments ensure the generalizability and validity of our findings.  

This chapter is organized as follows: First, we review the relevant literature in 

three areas: word of mouth, customer emotional experiences and cognitive appraisal 

theory of emotions. These lead to the conceptual development of the hypotheses. Next, 

we present our data and methodology along with the findings. We conclude with a 

discussion and the implications of this research.  
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3.2 Literature Review 

3.2.1 Word of mouth message content  

Prior research on online word of mouth extensively examined message content  

characteristics. For example, volume (Chevalier & Mayzlin 2006; Liu 2006), valence 

(Duan, Gu & Whinston 2008; Liu 2006) and dispersion (Godes & Mayzlin 2004) of word 

of mouth messages were shown to affect product sales. Cheema and Kaikati (2010) 

experimented and discussed the effects of uniqueness in WOM recommendations. In the 

context of product reviews, Mudambi and Schuff (2010) found that people thought a 

review to be more or less helpful depending on the valence, volume and total votes of the 

review. Negative messages are likely to have stronger effects than positive ones 

(Chakravarty, Liu & Majumdar 2009). However, Mudambi and Schuff (2010) argued that 

product type (utilitarian or experience) moderate this relationship.  

Although this research stream suggests that emotional aspects of the content as 

evidenced by valence of a review affect the helpfulness vote of a product review, 

surprisingly little attention was paid to this area. Past research demonstrated that an array 

of emotions is experienced in a purchase situation (Richins, 1997). Ruth, Brunel and 

Otnes (2002) elaborated this point with an example: ―a customer may feel surprised and 

happy to find a product on sale which s/he intends to buy. However, s/he might be 

disappointed to know that her/his favorite color is not on the shelf and actually be angry 

if the sales person does not help find the right product.‖ Thus, customer’s experiences 

involve not only the experience with the core product but also the service and other 

aspects in the whole buying process. Nowadays, customers often share these experiences 

through word of mouth using the internet. In fact, the WOM model has been transformed 
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from the organic intercustomer influence model (one customer influencing another 

customer) to the network coproduction model (every customer influences every other 

customer) (Kozinets, Valck, Wojnicki & Wilner, 2010). Therefore, online product 

reviews or word of mouth are very likely to contain varied emotional content felt in the 

real buying experiences. Customers experiencing sadness, anger, joy and satisfaction are 

reported to be more likely to be engaged in word of mouth (Nyer, 1997). In another 

research stream, there is evidence that each discrete emotion has its own unique 

characteristics that can have different effects on outcome variables than only valence 

(Nabi, 2003). Therefore, it is interesting to examine how these discrete emotions in a 

product review affect potential customers.  

3.2.2 Cognitive Appraisal Theory and Consumption Emotions 

The Cognitive appraisal theory of emotion is often used to understand many 

consumption situations (Ruth et al. 2002). Nyer (1997) documented the relationship 

between the appraisal patterns and consumption/post consumption emotions. Appraisal 

theories claim that emotions are induced from processing or evaluating personally 

relevant information (Smith & Ellsworth 1985). The meanings of a situation or 

surroundings come through the appraisal process that individuals take. Situations are 

evaluated and judged on different dimensions including, but not limited to, valence.  

The primary cognitive appraisal is the valence and this is conceptualized as the 

extent to which the situation tends to have positive or negative outcomes on the evaluator 

(Lazarus 1991). Other appraisals are: (2) anticipated need to expend effort; (3) certainty; 

(4) need to allocate attention to the situation; (5) other agency (responsibility control); (6) 

self-agency; (7) fairness; (8) a situation that is beyond anyone’s control; and (9) presence 
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of a goal or obstacle to the goal (Ellsworth & Smith 1988). Thus emotions can be 

classified along these dimensions and are associated with certain appraisal patterns. For 

example, although hope and anxiety are of positive and negative valence respectively, 

they both are placed close to each other at one end of the certainty cognitive appraisal. 

On the other hand, happiness and disgust are associated with certainty. And despite the 

fact that they are of opposite valence, they are placed very close to each other on 

certainty appraisal. Moreover, hope/anxiety resides at one end and happiness/disgust 

resides on the other end of the certainty appraisal and thus differentiating themselves in 

terms of certainty. In the context of product reviews, the reviews very often contain 

varied emotional content induced in the whole buying or decision making process. 

However, the emotions induced in these situations are associated with cognitive 

appraisals. In other words, the emotions expressed in the text reflect how the customer 

lived the whole situation. When a potential customer reads this, the emotional perspective 

taken by the poster may influence the reader. Among other dimensions, certainty has 

been deemed quite important in the determination of emotional reactions (Tiedens & 

Linton, 2001). In this research, we look at certainty appraisal.  

3.2.3 The role of certainty in the helpfulness vote of a review  

The literature recognized the ―helpfulness vote‖ of a product review as a measure 

of word of mouth adoption (Li & Zhan 2011). WOM adoption is defined as the attitude 

change of a receiver as a result of accepting what the communicator advocates. This is an 

effective measure of WOM persuasion (Li & Zhan 2011). There is evidence that 

perceived review helpfulness might predict review adoption (Saussman & Seigal 2003). 

Therefore, to study the effect of certainty appraisal on the helpfulness vote, we take a 
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look at the attitude certainty and persuasion literature.  

 As mentioned before, certainty appraisal (Smith & Ellsworth 1985) differentiates 

emotions on the basis of the certainty and predictability that it conveys about a situation. 

The certainty appraisal has been conceptualized as the ―extent to which the outcome of a 

situation is perceived to be known with confidence or the degree to which future events 

seem predictable versus unpredictable‖ (Roseman 1986; Smith & Ellsworth 1985). Some 

emotions are associated with feeling certain; individuals know what is happening in the 

current situation and have a feeling of certainty and confidence in predicting future 

situations (Tiedens & Linton 2001). For example, when people feel disgust, they report 

thinking that the situation is unpleasant and that they are certain and confident about what 

is happening. In contrast, when people feel anxious, the situation is unpleasant but also 

uncertain and less predictable. Therefore, certainty-related emotions tend to express a 

higher certainty and confidence while uncertainty related emotions express low 

confidence about the surroundings (Tiedens & Linton 2001).  

 

Figure 2a: Relation between certainty and helpfulness 

We suggest that this difference in certainty affects WOM adoption. Indeed, the 

literature suggested that recommendations with certainty and confidence are more 

influential than uncertain ones (Sniezek & Van Swol 2001). In a judge-advisor setting, 
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the authors found that expressing high confidence by advisors had a positive effect on 

judges’ trust rating and judges were more likely to follow their advice. More directly 

relevant here, in a word of mouth situation, Karmarkar and Tormala (2009) found 

evidence that certainty expressed by customers rather than experts or critics induced 

greater persuasion. Participants were more persuaded when the source of the message 

were other customers and expressed high compared to low certainty. Moreover, the 

confidence heuristic which states that individuals expressing high levels of confidence 

are more influential than those expressing lower levels of confidence has consistently 

been supported in the literature (Karmarkar & Tormala 2011; Price & Stone 2004). 

Although the literature suggests that expressed certainty may boost influence on others, it 

is interesting to know if certainty expressed through the certainty appraisal of emotions 

would result in the same outcome.  

Prior research suggested that emotions act as frames (Nabi, 2003). Framing theory 

states that the way of presenting information and the perspective taken in the message 

influence the receiver’s response. Entman (1993) argued ―to frame is to select some 

aspects of the perceived reality and make them more salient in a communicating context 

in such a way as to promote a particular problem definition, causal interpretation, moral 

evaluation and/or treatment recommendation.‖ Nabi (2003) suggested that emotions can 

also be used as frames. The author illustrated this with an example: if a report about a 

crime is focused on a potential threat, it is expected to elicit fear. On the other hand, the 

same news can be reported with an ―anger‖ frame focusing on the blame on the 

perpetrators. The author argues that the message receiver response to these reports will be 

different depending on the emotional frame although the essential message content 
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remains the same. Therefore, different discrete emotions can promote different message 

processing with cognitive appraisal as the moderator (Nabi 2002; Tiedens & Linton 

2001).  

Taken these altogether, some emotions are associated with certainty (happy, disgust) and 

some emotions are associated with uncertainty (hope, anxiety). A potential customer 

would find a review associated with high certainty appraisal to be more certain. Since 

expressed certainty is more influential, we propose that s/he would find it to be more 

helpful (certainty is more influential in an information exchange situation). On the other 

hand, reviews containing uncertainty will be less helpful.  

The graphical representation of the model is shown in Figure 2.    

 

Figure 2b: Conceptual model linking discrete emotions and helpfulness 

vote 

H1: Hope in the review has a negative effect on helpfulness of the review.  
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H2: Happiness in the review has a positive effect on helpfulness of the review. Happiness 

in the review will be more helpful than hope in the review.  

H3: Anxiety in the review has a negative effect on helpfulness of the review.  

H4: Disgust in the review has a positive effect on helpfulness of the review. Disgust in 

the review will be more helpful than anxiety in the review.  

H5: Certainty expressed through these emotions mediates the effect of emotions on the 

helpfulness vote. 

 

 

3.3 Research Methodology 

We examine how discrete emotions expressed in the reviews affect the 

helpfulness of a review. We go beyond valence and examine the certainty expressed 

through these emotions and their effects. We use a field study combined with 

experiments where we manipulate the independent variables. In study 1 we use real 

consumer reviews and analyze it by using quantitative text analysis. It enhances 

generalizability. Next, to pinpoint the source of variation, we turn to lab and experiments. 

We manipulate our independent variables in Study 2 and 3 and study the effect.  

 

                                                  Figure 3: Progression of Studies 
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                                                    Figure 4: Variables of the Studies 

 3.4 STUDY 1:  

3.4.1 A field study of emotions and helpfulness vote of a product review 

The data for this study came from the online reviews available through Amazon.com. 

This dataset has been used in prior research and is publicly available for research (Blitzer, 

Dredze & Pereira, 2007). Although the data dates back to 2006, there is no reason to 

expect that people wrote and reacted differently at that time. We are examining the effect 

of certainty expressed through emotions on perceived helpfulness. As mentioned before,  

the effect of certainty on persuasion has been examined for a long time, and therefore, it 

is believed that the use of this dataset is appropriate for the purpose of this study. 

Amazon.com provides consumer reviews on the product page along with general 

information on product and price. For the purpose of this study, we chose to use the 

reviews on kitchen appliances from the above mentioned dataset since this product 

domain does not have emotional product attributes. For example, books or movies have 

emotional product attributes (e.g. a sad movie, or a comic book). Therefore, the 

emotional content of a review solely comes from consumers’ opinions of the product and 

experiences.  

We analyzed 15701 reviews in total. The dependent variable helpfulness was 

measured by the percentage of people who found a review helpful (Helpfulness %). This 
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was derived by dividing the number of people who found the review helpful by the total 

votes. The total vote was the number of people who responded to the question ―was this 

reviews helpful to you?‖ 

3.4.2 Coding the reviews  

Reviews are automatically coded for happy, hope, anxiety and disgust. Word count, 

number of causation and certainty words, affect words and social words have been coded 

by LIWC. The details of these variables coding are described below. Coding of automatic 

discrete emotions algorithm and its foundation are described in the next sections.  

3.4.3 Latent Semantic Analysis 

A text analysis algorithm, Latent Semantic Analysis (LSA) (Deerwester, Dumais, 

Furnas, Landauer & Hashman, 1990), is used for coding every review on four 

hypothesized discrete emotions (i.e. hope, happy, anxiety, and disgust). We obtained the 

scores for each of the emotions for each of the product review. LSA extracts concepts 

hidden in the text data based on word usage and word co-occurance within the 

documents. It does not have an a priori theoretical model. For this algorithm, first a term 

by document matrix X is constructed from the text data. This matrix holds the frequency 

of all terms in all documents in a given collection. We used the American National 

Corpus for this purpose. Then singular value decomposition (SVD) is applied to the term-

by-document matrix (X). It represents terms and documents with fewer dimensions and 

thus creates a new vector space. By retaining a small number of significant factors k, X 

can be approximated by X = TkSkDk
T . Therefore, contextual information is exploited 

from the document- level word co-occurrences in a large corpus and the information is 

stored in a relatively low dimensional vector space. Then, emotion categories (i.e. happy, 
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hope, anxiety, and disgust) are constructed by combining the specific word denoting the 

emotion and its associated synonyms. These words are then converted into a ―pseudo-

document,‖ and mapped into the low dimensional vector space. Finally, the emotional 

score of a given consumer review is determined by converting it in a ―pseudo-document‖ 

and by computing its distance to all emotion categories pseudo-documents. This 

algorithm is well established in automatic sentiment analysis and adapted from 

Bellegarda (2011). The algorithm is depicted in Figure 3 and is implemented in Matlab. 

Examples of real reviews which have high scores for hope, happiness, disgust or anxiety 

are presented in Table 1.     

 Figure 5: Emotion Analysis using Latent Semantic Analysis 
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Table 1: Examples of real product reviews 

 

3.4.4 Dependent and control variables 

The dependent variable is the measure of helpfulness vote for each of the review. 

This is expressed in percentage. For example, ―5 out of 10 people found the review 

helpful‖ is expressed as 0.5. The independent variables are the scores for the each of the 

emotions (i.e. hope, happy, anxiety, and disgust).  
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We included the total number of votes on each review’s helpfulness (total votes) 

as a control variable given that the dependent variable is a percentage. Review extremity 

(measured as the star rating) and its squared value are included as control variables since 

the literature has shown an inverted U shape relationship of rating with the helpfulness 

vote (Mudambi & Schuff, 2010). We also control for several content characteristics. 

Amount of information content of a review or review depth (measured by word count) is 

included as a control variable. A computer program LIWC (Pennebaker, Booth & 

Francis, 2007) counted the number of causation (e.g. because, or hence) and certainty 

words (e.g. always, or definitely) in the review which measure the certainty expressed 

and quality of the argument respectively (Newman, Pennebaker, Berry & Richards, 2003; 

Tausczik & Pennebaker, 2010). Some words and expressions signal the presence of 

certainty information which indicates the degree of the writer’s confidence (Rubin, Liddy 

& Kandoo, 2005). By controlling for the linguistic certainty, we could be more confident 

of our findings. The use of LIWC is well-established in current consumer research 

(Berger & Milkman, 2012; Pang & Lee, 2008). Berger and Milkman (2012) studied the 

effect of discrete emotions on virality of a text. The authors used LIWC to count the 

affect laden words which indicated overall emotionality of the text and investigated the 

effect of it. Moreover, the authors manually coded the discrete emotions to see the effect 

on the virality. Since affective framing regardless of discrete emotions can impact 

persuasion (Mayer & Tormala, 2010), we also included affect as control variable.  We 

included the variable social as it is well documented in the literature that social influence 

has impact on persuasion (Cialdini, 2007). LIWC counts the number of social words and 

it has been demonstrated to detect meaning of social processes and relationship (Tausczik 
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& Pennebaker, 2010). 

3.4.5 Data analysis 

We used the Tobit regression to analyze the model because our dependent 

variable (helpfulness) is censored and has been used in past research in similar contexts 

(Mudambi & Schuff, 2010). Since Amazon does not indicate the number of persons who 

read the review, there might be a selection bias in the sample. It is unlikely that all 

readers of the review voted on helpfulness. This can cause biased estimation of OLS and 

GLS. Thus estimation through Tobit regression is more appropriate (Mudambi & Schuff, 

2010). 

The following model is estimated: 

Helpfulness% = happy+ hope+ anxiety+ disgust + rating + rating2 + vote + wc + affect 

+social + certain + certain2 + cause  

3.4.6 Findings  

The findings are shown in Table 3a and indicate the effects of the predictor 

variables. The summary statistics of the variables of the model are presented in Table 2. 

The result (Model 3, Table 3a) shows that expressed anxiety has a negative effect on the 

helpfulness vote of a review. Moreover, the effect of happiness and disgust are also 

supported in the hypothesized direction. Happiness and disgust have a positive effect on 

the helpfulness vote of a review. These findings still hold when we control for 

information depth, argumentation and linguistic certainty. Linguistic certainty seems to 

have an inverted U relationship with the dependent variable. However, we did not find 

support for the effects of hope. Although hope and happy are positive emotions, the y are 

hypothesized to have opposite effects on the helpfulness vote. Except the effect of hope, 
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these findings are consistent with our hypotheses that certainty expressed through 

discrete emotions drives helpfulness.  

 M SD 

Happy 0.179 0.0258 

Hope 0.182 0.0253 

Disgust 0.153 0.0297 

Anxiety 0.157 0.0283 

Rating 3.99 1.504 

Word count 101.21 91.093 

Affect 6.98 4.17 

Social 4.39 3.74 

Argument 2.525 2.28 

Certainty 1.56 1.79 

 

 

Table 2: Variables’ Descriptive Statistics 
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                    Model 1                           Model 2                                  Model 3                

Predictors 

 

Happy                              1.477177 ***                    1.507947***                            0.768670**    

                                          (0.379089)                         (0.368562)                                (0.363539)                                                            

Hope                   -0.617435 *                      -0.735982**                              -0.225259    

                                          (0.375257)                         (0.364731)                               (0.359076)      

Disgust                             2.502318***                      0.969989*                                1.059761**    

                                          (0.540873)              (0.528450)                               (0.525086)    

Anxiety                             -3.832514***                     -2.223298***                          -1.962205***    

                                          (0.487941)                          (0.477457)                              (0.471497)   

 

Controls 

         

Rating                                                                          5.774867***                             4.679939***    

                                                                        (0.984318)                      (0.973772)      

Rating
2
                                                          -0.308779**                               -0.087566      

                                                                                     (0.157480)                                  (0.155937)   

Total Vote                                                                   -0.152341***                              -0.272648***    

                                                                                     (0.023942)                                  (0.024102) 

Content Controls 

 

Argument                                                                                                             -0.263032**    

                                    (0.086265)   

Information Depth                                                                                                            0.038046***         

                                           (0.002348)           

Linguistic Certainty                                                                                                          1.259732***    

                                                                                                              (0.199963)   

Certainty
2                                                                                                                                                                                           

-0.160381***                 

                                                                                                                                          (0.024659)  

Affect                                                                                                                                -0.483496***       

                                                                                                               (0.051879)   

Social                                                                                                                             -0.282382***     

                                (0.053131)   

Log Liklihood (model)                    -73270                       -72820                                       -72514  

 

*** Significant at p<0.001, ** Significant at p< 0.05, * Significant at p<0.1   

 

Table 3a : Model Comparison 

We also ran other models with different dependant variables. Instead of helpfulness 

percentage as a dependant variable, we ran the analysis with only total number of 

helpfulness vote. The result is shown in Table 3b. It can serve as robustness check of our 
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findings because the independent variables are predicting helpfulness of the review. The 

result shows that the effect o hope, happy, anxiety and disgust are indeed in the 

hypothesized direction but they were not significant. We believe this is because of the 

noise in data. Since percentage of helpfulness is more accurate measurement of the 

helpfulness of the review than the total number of ―yes‖ vote alone, we see an weaker 

effects of our predictor variable on the helpfulness vote. For example, ― 5 out of 10 

people found this review helpful‖ is not same as ―5 out of 30 people found this review 

helpful.‖ Although in both of the cases total number of yes vote is the same, the former 

one is more helpful than the later one for obvious reason (and therefore percentage is a 

better measurement of helpfulness). We believe, for this noise in data (when our 

dependant variable is total number of people of found the review helpful), we found 

directional support but could not achieve significance.  

We also ran the analysis with total number of votes as the dependant variable. It can be 

argued that if voting ―yes‖ means ― I have found  the review helpful‖ and voting ―no‖ 

means ― I have not found this review helpful‖, then the total number of votes can be 

regarded as a measure of attention. When we ran this analysis, not surprisingly, the 

previous hypotheses do not hold. The results seem to indicate that reviews with low 

ratings gain more attention, so does long reviews. Moreover, hope has a positive effect on 

attention and disgust has a negative effect on attention. Since this is not our central focus 

of our research, we did not analyze this in great detail. However, it is interesting to see 

how the result changes in this case.  
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Dependant Variables                                   Number of helpfulness vote  Total number of votes  

Predictor variables 

Happy  0.04 

(0.047) 

0.025 

(0.120) 

Hope  -0.021 

(0.046) 

0.574*** 

(0.119) 

Disgust  0.050 

(0.068) 

-0.592*** 

(0.174) 

Anxiety -0.097 

(0.061) 

0.061 

(0.156) 

Rating                                                                                                                                                 0.615*** 

(0.125) 

-2.960*** 

(0.322) 

Rating
2
   -0.037 

(0.020) 

0.362 

(0.052) 

Total Vote                                                                         0.766 *** 

(0.033) 

 

Used as DV 

Argument -0.015 

(0.011) 

0.028 

(0.029) 

Information Depth

(0.0003) 

0.020*** 

(0.001) 

Linguistic Certainty                                                                                                                              0.056** 

(0.026) 

-0.019 

(0.066) 

Certainty
2
 -0.008**  

(0.003) 

0.006 

(0.008) 

Affect     -0.033*** 

(0.007) 

-0.079*** 

(0.017) 

Social                                                                                                                             -0.041*** 

(0.007) 

0.011 

(0.018) 

   

 

Table 3b : Analysis with other DVs 

3.4.7 Discussion 

The analysis of real consumer reviews sheds new light on which reviews are 

perceived to be more helpful than others. Our findings reveal that reviews containing 

emotion associated with high certainty are perceived to be more helpful. In general, 

reviews containing emotion associated with uncertainty are less helpful. This result still 

holds when we control for amount of information and certainty expressed through 

linguistics. Particularly, our findings show that reviews containing disgust and happy 
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have a positive effect and reviews containing anxiety have a negative effect on perceived 

helpfulness. To directly test the process behind these results and the effects of these 

discrete emotions, we used some experiments.  

3.5 STUDY 2:  

3.5.1 Negative Emotions and Helpfulness Vote 

 

We study the effects of negative emotions (i.e. anxiety and disgust) on the 

helpfulness votes. First, we want to directly test the causal effects of these discrete 

emotions on the helpfulness votes. The field study provided evidence for the negative 

emotions: anxiety and disgust. Here we manipulate the emotions in a more controlled 

setting and study the effects. We also test the mechanism behind these effects. We 

investigate if the certainty (or uncertainty) expressed through these emotions indeed 

mediates the process. 

Data were collected by ways of an online survey of US residents (via Mechanical 

Turk or MT). Recent consumer studies (Goodman and Malkoc 2012b; Raghubir, 

Morwitz, and Santana 2012) have used MT and it is regarded as a valuable source for 

data collection (Goodman, Cryder, and Cheema 2012a). To ensure quality, we only 

included participants who had more than a 90% approval rate. We asked participants to 

read a product review and then indicate if they found the review helpful. The scale was 

adapted from the review usefulness scale used in Sen and Lerman (2007). We 

manipulated the product review with discrete emotions (i.e. anxiety and disgust).These 

mock reviews were adapted from real reviews which had high score on these discrete 

emotions on the Latent Semantic Analysis (LSA) system. We also included a control 
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condition which did not express any emotion. The contents of the messages were kept the 

same for all the conditions. The emotions expressed were tied to the product (i.e. ―I am 

anxious about the new blender performance‖ or ―disgusting performance‖). The central 

aspect of the hypotheses is that emotions can be associated with cognitive appraisals. A 

certain emotion is evoked according to the appraisal or core relational theme. For 

example, hope arises when the situation is uncertain and positive. Therefore mere 

presence of emotional words may not represent the emotional perspective taken by the 

poster. Consistent with other emotional framing research (Nabi, 2003), a context is 

created according to the emotion. In both of the emotions stimuli, consumers had a bad 

experience with the previous model, and they have not used the newer model and ne wer 

model has got some good reviews. In the disgust conditions, the consumer was disgusted 

with the older model performance and do not want to try the product again. In the anxiety 

condition, the consumer had the same experience and is apprehensive about the new 

blender performance. The manipulation check was successful in each study stimuli and 

confirmed that these expressed anxiety and disgust, but not any other emotion. To rule 

out the alternative explanation that the manipulation changed the mood state of the 

participants and that contributed to the effect, we ran a confound check. The result 

confirmed that the manipulation did not alter participant’s mood state1. For example, the 

participants in the anxiety condition did not feel more anxious (M=2.53 than the 

participants in the control condition (M= 2.83; F (1, 58)= 0.456, p=0.502 after reading the 

stimuli. Also, the participants in the disgust condition did not feel more disgust (M=2.36 

than the participants in the control condition (M= 2.47; F (1, 58) = 0.052, p=0.820 after 

reading the stimuli.  
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3.5.2 Study 

Four hundred and fifty participants were compensated $.25 to complete the study. 

All participants (43% male) were US residents with an average age of 33.6 years. They 

either read an anxiety, disgust or control version of a product review (see Appendix). The 

participants then rated how helpful the review was. We also measured the extent of 

certainty that participants thought the reviewer had in the review about his experiences.  

This scale was adapted from Tiedens and Linton (2001).  

 

3.5.3 Anxiety Findings  

The participants reported that they were less likely to find a review helpful when 

they were in the anxiety condition than when they were in control condition. This was 

driven by the decreased in certainty. Participants found a review less helpful if they were 

in anxiety condition (M = 3.30) as opposed to the control one (M = 3.74; F (1,298) = 

4.109, p<0.05). Moreover, the control condition (M = 3.584) evoked more certainty than 

the anxiety condition (M = 3.04; F (1, 298) = 7.884, p< 0.05). As predicted, this decrease 

in certainty mediated the effect of the anxiety condition on helpfulness. The Sobel 

mediation test confirmed that certainty mediated the effect of anxiety condition on 

helpfulness (Sobel z = 2.76, p<0.05). Since bootstrap method is known to be superior to 

other methods (Hayes 2009) of mediation testing, we also performed a bootstrap analysis. 

Bootstrapping involves repeated extraction of samples from the data set (in this case 5000 

samples were used). The 95% confidence interval for the effect size of the indirect path 

through certainty was 0.06 to 0.39 and did not include zero, indicating that it is a 

significant mediator.  



 
 

39 
 

3.5.4 Disgust findings 

The participants reported that they were more likely to find a review helpful when 

they were in the disgust condition than when they were in control condition. This was 

driven by the increase in certainty. Participants found a review more helpful if they were 

in disgust condition (M = 3.74) as opposed to the control one (M = 3.30; F (1,298) = 

10.07, p<0.05). Moreover, the disgust condition (M = 4.79) evoked more certainty than 

the control condition (M = 3.58; F (1, 298) = 35.12, p< 0.01). As predicted, this increase 

in certainty mediated the effect of the anxiety condition on helpfulness. The Sobel 

mediation test confirmed that certainty mediated the effect of disgust condition on 

helpfulness (Sobel z = 5.67, p<0.01). Bootstrap analysis shows that the 95% confidence 

interval for the effect size of the indirect path through certainty was 0.67 to 1.37 and did 

not include zero, indicating that it is a significant mediator.  

Moreover, comparison between disgust and anxiety condition shows that disgust 

condition (M= 4.45) found the review more helpful than anxiety condition (M=3.30; 

F(1,298)= 22.67, p< 0.01; . Here also, the certainty plays the media ting role in the 

relationship. The Sobel mediation test confirmed that certainty mediated the effect of 

disgust condition on helpfulness (Sobel z = 8.1246, p<0.01). Bootstrap analysis shows 

that the 95% confidence interval for the effect size of the indirect path through certainty 

was 1.09 to 1.80 and did not include zero, indicating that it is a significant mediator.  

3.5.5 Discussion of Study 2 findings 

The experimental results support our hypotheses related to negative emotions. It 

also reinforces the findings obtained in our field study. These results were found for both 

certain and uncertain discrete emotions. The reviews with certainty related negative 
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emotions are perceived to be more helpful than uncertainty related negative emotions. 

The findings also support the hypothesized mediation process. Certainty mediated the 

impact of discrete emotions on perceived helpfulness.  

 

3.6 STUDY 3:  

3.6.1 Positive Emotions and Helpfulness Vote 

We study the effects of positive emotions (i.e. hope and happy) on the helpfulness 

votes. The field study provided evidence for the positive emotions: happy. However, we 

did not get support for hope. Here, we directly manipulate the emotions in a controlled 

setting and investigate the effects.  

The manipulation check was successful in each study stimuli and confirmed that 

expressed hope and happy, but not any other emotion. To rule out the alternative 

explanation that the manipulation changed the mood state of the participants and that 

contributed to the effect, we ran a confound check. The result confirmed that the 

manipulation did not alter participant’s mood state1. For example, the participants in the 

happy condition did not feel happier (M= 4.89) than the participants in the control 

condition (M= 4.51; F (1, 58) = 1.207, p=0.277) after reading the stimuli. Also, the 

participants in the hope condition did not feel more hopeful (M=2.86 than the participants 

in the control condition (M= 2.70; F (1, 58) = 0.134, p=0.715 after reading the stimuli.  

3.6.2 Study 

Four hundred and thirty participants were compensated $.25 to complete the 

study. All participants (46% male) were US residents with an average age of 32.5 years. 

They either read a hope, happy or control version of a product review (see Appendix).  
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3.6.3 Hope Findings 

The participants reported that they were less likely to find a review helpful when 

they were in the hope condition than when they were in control condition. This was 

driven by the decreased in certainty. Participants found a review less helpful if they were 

in hope condition (M = 4.44) as opposed to the control one (M = 5.01; F (1, 277) = 8.308, 

p<0.01). Moreover, the control condition (M = 6.02) evoked more certainty than the hope 

condition (M = 5.17; F (1, 258) = 25.351, p< 0.01). As predicted, this decrease in 

certainty mediated the effect of the hope condition on helpfulness. The Sobel mediation 

test confirmed that certainty mediated the effect of anxiety condition on helpfulness 

(Sobel z = -4.75, p<0.001). Bootstrap analysis shows that  the 95% confidence interval 

for the effect size of the indirect path through certainty was -0.9857 to -.3956 and did not 

include zero, indicating that it is a significant mediator.  

 

3.6.4 Happy Findings 

The participants reported that they were more likely to find a review helpful when 

they were in the happy condition than when they were in control condition. Participants 

found a review more helpful if they were in happy condition (M = 5.22) as opposed to the 

control one (M = 5.01). Although this effect was d irectionally supported, the difference 

was not significant. However, comparison between happy and hope condition shows that 

happy condition (M= 5.22) found the review more helpful than hope condition (M=4.44; 

F(1,287)= 17.35, p< 0.001); Moreover, the happy condition (M = 6.09) evoked more 

certainty than the hope condition (M = 5.17; F (1, 272) = 37.33, p< 0.001). Here also, the 

certainty plays the mediating role in the relationship. The Sobel mediation test confirmed 
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that certainty mediated the effect of disgust condition on helpfulness (Sobel z = 5.59, 

p<0.01). Bootstrap analysis shows that the 95% confidence interval for the effect size of 

the indirect path through certainty was 0.52 to 1.05 and did not include zero, indicating 

that it is a significant mediator.  

3.6.5 Discussion of Study 3 findings 

The experimental results support our hypotheses related to positive emotions. The 

reviews with certainty related positive emotions are perceived to be more helpful than 

uncertainty related negative emotions. The findings also support the hypothesized 

mediation process. Certainty mediated the impact of discrete emotions on perceived 

helpfulness. Now, if certainty is mediating this process, if we increase certainty with 

words in uncertain emotions stimuli, the effect of uncertainty (less helpfulness) should 

diminish. To test these we ran another set of studies where we alter the uncertainty 

emotions stimuli (anxiety and hope) by inserting sentences that express certainty about 

the whole situation (i. e. ―I am pretty sure that newer model will not be good either‖ or ―I 

am confident that it will be a great addition to your kitchen‖ .  

One hundred and fifty participants read an anxiety version with certainty 

(hereafter anxiety-certain condition) of the product review. The participants in the 

anxiety-certain condition are more likely to find a review more helpful (M=3.77) than the 

participants in the anxiety condition (M=3.30; F(1, 298)= 4.30, p<0.05). The anxiety-

certain condition evoked more certainty (M=4.21) than the anxiety condition (M=3.04; F 

(1,298)= 39.94, p< 0.001). Lastly, this increase in certainty mediated the process. The 

Sobel mediation test confirmed that certainty mediated the effect of disgust condition on 

helpfulness (Sobel z = 5.54, p<0.01). Bootstrap analysis shows that the 95% confidence 
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interval for the effect size of the indirect path through certainty was 0.67 to 1.34 and did 

not include zero, indicating that it is a significant mediator.  

One hundred and fifty participants read a hope version (with certainty words) 

(hereafter hope-certain condition) of the product review. The participants in the hope-

certain condition are more likely to find a review more helpful (M=5.05) than the 

participants in the anxiety condition (M=4.44; F(1, 287)= 9.925, p<0.01). The hope-

certain condition evoked more certainty (M=5.62) than the hope condition (M=5.17; F 

(1,272)= 7.54, p< 0.001). Lastly, this increase in certainty mediated the process. The 

Sobel mediation test confirmed that certainty mediated the process (Sobel z = 2.70, 

p<0.01). Bootstrap analysis shows that the 95% confidence interval for the effect size of 

the indirect path through certainty was 0.11 to 0.68 and did not include zero, indicating 

that it is a significant mediator.  

These studies further support our hypotheses and the mediation process. The 

studies found support for the notion that reviews containing uncertainty emotions are 

perceived to be less helpful. The studies also provide evidence for the robustness of the 

valence on this effect. Moreover, the decrease in certainty actually mediates the process. 

It also provides strong support for our hypotheses in the sense that, increasing emotional 

content does not necessarily increase helpfulness. For example, increasing hope or 

anxiety does not increase perceived helpfulness.  

  

  

 

 



 
 

44 
 

3.7 General Discussion 

Increasingly, customers are using online information sources for making a 

decision prior to purchase. Along with other information, customers are particularly 

interested in other customer’s reviews since these reviews are seen to be more credible 

than even the experts’ (Senecal and Nantel 2004). In this situation, some reviews are 

perceived to be more helpful than others making it very important to examine what 

makes a review helpful. Some studies examined the content characteristics of a product 

review (Duan et al. 2009; Mudambi and Schuff 2010). These studies mainly focused on 

the valence (positive or negative) of the product review along with volume, and product 

type, among others. However, research documented distinct effects of discrete emotions 

on the outcome variable (Dillard 1993; Nabi 2003) despite the fact that these emotions 

can be of the same valence. Clearly, the positive/negative dimension cannot capture all 

the dynamics present in these complex situations. Moreover, it is very likely that the 

customer reviews contain varied emotional content since customers express their 

consumption experiences which may range from sadness, joy to anger and disgust. 

However, little attention was paid to discrete emotion’s effects on the perceived 

helpfulness of the review.  

This article examines the role of discrete emotions on the perceived helpfulness of 

a review. In so doing, we combine an analysis from a field study with those from a series 

of controlled experiments. We documented the emotional content characteristics along 

with its mediation process. Departing from previous studies of examining the valence as 

one of the content characteristics of helpful customer reviews, we focused on discrete 

emotions. Building on cognitive appraisal theory, we hypothesized that reviews 
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containing emotions associated with certainty are perceived to be more helpful and that 

reviews containing emotions associated with uncertainty are perceived to be less helpful. 

These two types of emotions (certainty and uncertainty) come from cognitive appraisal 

theory which groups emotions according to several appraisals or dimensions and provide 

the answer to why a certain emotion was induced in a situation. Therefore, the emotions 

actually express the perspective taken by the reviewer. Moreover, the literature has 

consistently supported for the notion that information with certainty is perceived to be 

more influential (Price & Stone 2004). In a discrete emotion context, indeed in a series of 

studies we found that certainty emotions are more helpful and uncertainty emotions are 

less helpful. For generalization, we included certain and uncertain emotions with both 

positive and negative valences. It suggests that emotions of the same valence may have 

different impacts. Moreover, certainty mediates this process.  

In the field study, real reviews from Amazon were examined. We found support 

for our hypotheses for two positive emotions even after controlling for information 

content and linguistic certainty. In a series of controlled experiments, we manipulated the 

discrete emotions. Across experiments, our result consistently showed that certainty 

emotions are perceived to be more helpful. We also examined the mediation process and 

found that certainty was the key variable which is mediating the relationships between 

discrete emotions and helpfulness. It is interesting to see that more of an emotion does 

not necessarily lead to more helpfulness rating. For example, more of hope and anxiety 

do not increase helpfulness. This also rules out an alternative explanation that more of an 

emotion was causing this result.  
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3.8 Theoretical implications 

Our findings expand the current understandings of the role of discrete emotions. 

There is an urgency to examine the role discrete emotions beyond the positive/negative 

valence dimension (Nabi 2003) since emotions of the same valence may have different 

effects on the outcome variable. This study contributes to this area of research by 

demonstrating that although hope and happy (or anxiety and disgust) are of same valence, 

they have different effects on the perceived helpfulness of the reviews. Many of the 

discrete emotion studies focus on incidental and integral emotional mood (Winterich & 

Haws, 2011) and their effects. Instead of focusing on mood, this research focuses on 

discrete emotions as a source of information. Therefore, it contributes to the growing 

literature on the framing effects of discrete emotions. This research stream suggests that 

the effect of content depends on how the information is presented in terms of emotions. 

The same piece of information may have different impacts if it is framed with different 

discrete emotions. 

This research also contributes to the certainty and persuasion literature. The 

literature has long documented the robust effects of certainty and confidence in 

influencing information seeking and adoption situations. Information with certainty is 

viewed to be more persuasive (Sneizek & Van Swol, 2001). However, given that some 

emotions express higher certainty than others, it is important to study the effects of 

certainty expressed through discrete emotions. This research fills the void by 

demonstrating the effects of certainty expressed through emotions in an opinion seeking 

situation. 

Moreover, this topic is very relevant and important specially now, when people 
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are increasingly relying on others’ reviews or comments for consumption. However, 

these online data are huge and often involves text data. These text data open the 

opportunity for more research since it is a door to customers’ minds. There is a major 

need for quantitative content analysis to better understand online customer behavior. As 

echoed in various studies, it is often difficult to code data. In this research, we applied a 

text analysis method to code the emotions in the product review data. This method can be 

used in other contexts to extract emotions from a text. By adopting the established 

method from computer science literature to a marketing context, we contribute to the 

emerging area of text analysis in marketing.  

3.9 Marketing implications 

These findings have important implications for marketing managers. Since some 

discrete emotions are more helpful than others, when emphasizing positive buying 

experiences in an advertisement or online contents, these finding will provide useful 

guidance to managers. In a manufacturer’s website, the positive reviews from customers 

are often displayed. High certainty related emotions in a review will more likely help the 

manufacturer. Similarly, when providing any content (either in advertisement or 

information) related to consumption experiences, positive certainty related emotions 

should be used. 

Moreover, there is great need today for managing online sentiments. The negative 

comments can eventually lead to a negative opinion about the product in general and thus 

may affect potential sales. Therefore, it is very important to address the certainty related 

negative emotions so that potential customers are not influenced. Every effort has to be 

made to eliminate the cause of these negative emotions. It might not be humanly possible 
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to address all concerns and therefore, managers should be very vigilant about the 

certainty related negative emotions.  

3.10 Limitations and Future Research 

Like any research, the current study is not without limitations. First, the field study used a 

small dataset. This might be the reason for the non-significance of the two negative 

emotions. Also, the dataset dated back to 2005. Although there is no reason to believe 

that the findings would be any different in a newer dataset, repeating the study might be 

useful. Including reviewer related variables in the model can be a promising future 

extension of this work. There is also some need for research in finding content 

characteristics that play a moderating role on the effects found in this research. Such 

moderation approach will broaden the current understanding of the customer reviews and 

their impacts.  Future research might also examine if the product and service related 

customer reviews would behave in the same way. For example, the effect might not hold 

for customer reviews on vacation places and tours. Since the choice of this vastly 

depends on interpersonal tastes, potential customers might not find a review more or less 

helpful depending on their emotions.  

Future studies might also examine the effects of discrete emotions on other 

outcome variables such as product sales. The literature examined the effects of valence 

and volume on product sales (Liu, 2006). It is important to test if the emotions expressed 

in the reviews would also affect sales. Further research is also needed for other discrete 

emotions associated with cognitive appraisals. Among these, fairness appraisal seems to 

be very promising. It is intuitive that high fairness appraisal might be more helpful in an 

opinion seeking situation. Self responsibility appraisal might also be very interesting to 
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look at. Lastly, the text mining approach is still in its infancy. Developing and validating 

text mining techniques for marketing contexts is an important need.  

 

3.11 Study Stimuli 

High Happy:  I am replacing my blender with the same brand blender that I have used 

continually for the past nine years or so. I am extremely happy with this blender! It has 

been an indispensable part of our kitchen all those years. It is not too complicated, but has 

everything you need. SO happy I bought it!  It would be a great addition to your kitchen.  

Low Happy I am replacing my blender with the same brand blender that I have used 

continually for the past nine years or so. It has been an indispensable part of our kitchen 

all those years. It was not too complicated, but had everything you need. The new blender 

will serve my purpose as before. It would be a great addition to your kitchen.  

High Disgust:  I bought this ice cream maker for my little ones. At first, everything 

seemed ok. But after a few days of use I started to notice that I was getting small 

shavings of metal in my ice cream! It is totally disgusting. Crank and cast-iron gears rub 

against each other during use that leaves sharp metal shavings in the ice cream! I am no 

longer using it.  

Low Disgust:  I bought this ice cream maker for my little ones. At first, everything 

seemed ok. But the ice cream took about 30 minutes to get hardened. There were also 

problems with the crank and the gears…loud noise. We could have driven to the local ice 

cream store by the time the ice cream hardened. I am no longer using it.  

High Hope:  I am replacing my blender with the same brand blender that I have used 

continually for the past nine years or so. It has been an indispensable part of our kitchen 
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all those years. It was not too complicated, but had everything you need. I am hopeful 

about the new blender and hope this new one will continue the tradition.  

Low Hope: I am replacing my blender with the same brand blender that I have used 

continually for the past nine years or so. It has been an indispensable part of our kitchen 

all those years. It was not too complicated, but had everything you need. The new blender 

will serve my purpose as before. It would be a great addition to your kitchen.  

High Anxiety: I bought this ice cream maker for my little ones. At first, everything 

seemed ok. But the ice cream didn’t harden enough until about 30 minutes. Anxious 

moments! We were even more anxious because crank and cast iron gears were making 

noise. We could have driven to the local ice cream store by the time the ice cream 

hardened. I am no longer using it.  

Low Anxiety: I bought this ice cream maker for my little ones. At first, everything 

seemed ok. But the ice cream took about 30 minutes to get hardened. There were also 

problems with the crank and the gears…loud noise. We could have driven to the local ice 

cream store by the time the ice cream hardened. I am no longer using it.  
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CHAPTER 4 

Essay 2 

Exploring Conceptual Differences between Positive and Negative 

Reviews and its Effects on Perceived Helpfulness. 

 

Abstract 

The Web has fundamentally changed the way that customers express their opinions. They 

can now post reviews of products at merchant sites and express their views on almost 

anything in Internet forums, discussion groups, and blogs. There is a vast amount of user 

generated content reviewing a product or service. From a marketer viewpoint, it is 

important to know what is in the reviews because this is an open door to the customer 

minds. Although literature has focused on the antecedents and consequences of word of 

mouth, the content of online word of mouth has been largely ignored (some exceptions, 

Kim, Lee & Ragas, 2011; Cambell et al., 2011). In this part of the dissertation, the 

content of online word of mouth has been explored. To explore the thematic differences 

between positive and negative review, an automatic text mining technique, latent 

Semantic Analysis has been used. It should be noted that LSA with different variation 

was also used in the previous research. It was found out that negative reviews tend to 

report more service related failure than positive reviews. Next, I explore the types of 

topics that are found to be more helpful than others. More specifically, the effect of topics 

on the helpfulness is investigated. This research sheds light on that by first exploring the 

topics of positive and negative reviews and then examining the effect of these topics on 

the perceived helpfulness. 
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4.1 Introduction 

The Web has fundamentally changed the way customers express their opinions. They can 

now post reviews of products at merchant sites and express their views on almost 

anything in Internet forums, discussion groups, and blogs. This online word-of-mouth 

behavior represents new and measurable sources of information for marketing 

intelligence. Techniques are now being developed to exploit these sources to help 

companies and individuals to gain such information effectively and easily. 

There is a vast amount of user generated content reviewing a product or service. From a 

marketer viewpoint, it is important to know what is in the reviews because this is an open 

door to the customer minds. In the pre internet era, it was very difficult to track and 

measure the consequences of word of mouth since most of these opinions were expressed 

verbally and to limited number of people. However, with the change in the way of 

expressing opinions, word of mouth tracking has been easier. Marketers are now able to 

see what is being said in the customer reviews, blogs, posts, virtual brand communities 

etc. However, a vast majority of literature has mostly focused on the antecedents and 

consequences of word of mouth. It has been shown that word of mouth can affect product 

sales and there are number of variables that affect the motives of word of mouth. With 

some exceptions, the content of online word of mouth has been largely ignored (Kim, Lee 

& Ragas, 2011; Cambell et al., 2011). In this part of the dissertation, the content of online 

word of mouth has been explored. Generally speaking, the positive reviews contain the 

good aspects of an offering and the negative reviews contain the aspects which the 

customer didn’t like. Prior research has shown that negative reviews have stronger effect 

on sales than the positive reviews (Duan, Gu & Whinston, 2008). However, there is a 
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little research on the content of positive and negative reviews. More specifically, do the 

themes of positive and negative reviews differ more than the valence? If so, in what 

respect? In this exploratory research, I try to explore these aspects.  

As mentioned before, the availability of word of mouth data has been increased 

exponentially with the rise of web usage. This advantage comes with another obstacle. 

This huge unstructured data needs to be analyzed in a systematic fashion which requires 

rigorous application of sophisticated mathematical techniques. To explore the thematic 

differences between positive and negative review, an automatic text mining technique, 

latent Semantic Analysis has been used. It should be noted that LSA with different 

variation was also used in the first essay. Although the algorithm to extract emotional 

content is different from exploring the topics in the content, the basic premise on which 

the technique is established is the same. It leverages on hidden meaning of the text.  The 

result of this research shows that negative reviews tend to report more service related 

failure than positive reviews. Next, different topics and its relation to helpfulness vote are 

examined. More specifically, the previous essay examines the effect of emotional content 

on the helpfulness of the review. Here, the effect of review topics in on the helpfulness is 

investigated. People write about various aspects of the product and services. However, all 

the topics might not be of interest in terms of making purchase decision to a potential 

customer. This research sheds light on that by first exploring the topics of positive and 

negative reviews and then examining the effect of these topics on the perceived 

helpfulness. Since helpfulness vote contribute to the product sale (Chen et al., 2008), 

examining the driving factors of helpfulness vote is very important. Moreover, by 

knowing the factors discussed in positive and negative reviews, marketing managers will 
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be better able to adapt their products according to the need of the customers. Moreover, 

the topics also reveal the important factors that are considered by the customers. This 

information is of great importance to build the brand strength.  

4.2 Literature Review 

Electronic Word of Mouth (eWOM hereafter) is defined as the ―any positive or 

negative statement made by the potential, actual or former customers about a product or 

company, which is made available to a multitude of people and institutions via the 

Internet‖ (Hennig-Thurau et al., 2004, p39).  The interest in online word of mouth has 

increased in recent years because of its ability to affect several key marketing variables. 

This effect of  eWOM has been investigated in many empirical studies. For example, 

Chevalier and Mayzlin (2006) examined the effect of eWOM on the product sales and 

this effect is also echoed in other studies such as Goldsmith and Horowitz (2006). De 

Bruyn and Lillien (2008) examined the customer decision making process and how 

eWOM affect this process. Lee, Rodgers  and  Kim (2009) investigated the attitude 

towards brands and websites expressed in electronic word of mouth.  

4.2.1 Motivation to Engage in Word of Mouth 

While one stream of research in word of mouth investigates the consequences of 

word of mouth, the other stream deals with the antecedents and the motives of WOM. 

There is a rich literature that has examined the motive of customers as to why they share 

word of mouth (Dichter, 1966; Sundaram, Mitra & Webster, 1998). Traditionally content 

analysis or surveys have been used to explore the motives of the customer for providing 

eWOM.  Prior research has demonstrated that there are mainly four dimensions for which 
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customers contribute to word of mouth. Dichter (1966) showed in traditional or offline 

WOM that, product involvement, self involvement, other involvement and message 

involvement are the motives of word of mouth. Later, Engel et al. (1993) confirmed the 

findings. Sundaram et al. (1998) study echoed the same dimensions except the message 

involvement. Dellarocas and Naryan (2006) developed a theoretical model of customer 

motives based on the theory of public good in economics. The authors posit that 1. 

Product involvement  2. Message involvement 3. Self involvement 4. concern for others 

5. Social benefits are the main reasons why customers engage in word of mouth. 

Sweeney et al. (2012) characterize word of mouth to contain three factors namely 

cognitive content (reflects the nature of WOM content, i.e how informative, reliable and 

clear), Richness of WOM (reflects the extent to which the message is vivid, elaborate and 

reinforcing ) and lastly, Strength of Delivery (reflects the way the message is delivered , 

i.e how strongly the message is delivered). Later, Soutar, Sweeney and Mazzarole (2009) 

grouped the positive WOM message senders into four distinct groups (namely involved, 

uninvolved, realistic, and emotional senders). The groups varied in motivation, 

situational, and demographic characteristics. The study highlighted that there are different 

types of WOM communication that vary across given message. There were tow key 

differentiators that varied across these four groups and these are service interaction and 

personal contribution to the communication. In another study, three most frequent 

reasons for sharing word of moth was revealed: firstly, if someone is asked about a 

definite service, secondly a coincidental conversation and thirdly an intense satisfaction 

or dissatisfaction about a service provider. The authors also found out that WOM usually 

contain two types of content, Quality oriented and Price and Value oriented (Gangold, 
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Miller & Brockway, 1999). In a recent meta-analysis, it has been demonstrated that 

satisfaction, loyalty, quality, commitment, trust and perceived value are the antecedents 

of word of mouth where valence of the WOM, types of product and WOM incidence act 

as moderators (Matos & Rossi, 2008).  

Therefore, there is an ample research on what motives to people to engage in 

word of mouth. However, motivation only cannot infer the content of WOM. For 

example, a customer might be very dissatisfied with a service provided by a company. 

Although, dissatisfaction is a cause to engage in WOM, nothing can be inferred about 

what actually made this customer dissatisfied. This piece of information might help 

marketing managers to remove that unwanted phenomenon from the service. Therefore, 

analysis of the content of WOM is extremely important.  

4.2.2 Online Word of Mouth 

The motives in the context of Electronic word of mouth (eWOM) have also been 

examined (Hennig-Thurau et al., 2004). The authors found that 1. Venting negative 

feelings 2. Positive Self enhancement 3. Concern for other Customers and Helping the 

company 4. Social benefits and 5. Economic incentives are the motivation for customers 

to be involved in online word of mouth. Recently, Berger and Iyengar (2012) 

demonstrate that conversation channel shape what is discussed.  Specifically, in online 

posts or text (where you have to think what you are going to write), more interesting 

products (have something unique/special to talk about) are discussed about more than 

boring ones. In channels where conversations are expected to occur more continuously 

(face-to-face or on the phone), interesting products might not be the focus of discussion.  



 
 

57 
 

The message characteristics of eWOM have also been investigated. Many of the 

studies measured eWOM on the basis of frequency counts or volume (Chevalier & 

Mayzlin 2006; Liu, 2006). This has let to mixed results and thus other message 

characteristics should be carefully examined (Sweeney, Soutar & Mazzrol, 2012). 

eWOM’s valence (Basuroy, Chatterjee & Ravid, 2003; Chevalier & Mayzlin, 2006; 

Duan, Gu & Whinston, 2008; Liu 2006), dispersion (Godes & Mayzlin, 2004) have also 

got attention in many studies. The rational and emotional dimensions of the message have 

been looked at (Allsop et al., 2007) . Words and language style have also been examined 

in some studies (Gabbott & Hogg, 2000). Moreover, message provider characteristics, 

such as reputation (Hu, Liu & Zhang 2008), experience (Bone, 1995), and need for 

uniqueness (Cheema & Kaikati 2010) as well as message recipient characteristics, such 

as expertise (Bansal & Voyer, 2000); situational and product characteristics (Hogan, 

Lemon & Libai 2004) have also been the focus of many studies.  

Overall, there is an ample research on the antecedents and consequences of WOM 

and also eWOM . These motives provide us some insight about the content of the word of 

mouth (please refer to Table 2.1 for key references). However, one aspect of the eWOM 

is scarce in the eWOM research. The content or topics of the reviews have not been 

examined in great detail with some exceptions (Campbell et al., 2011; Lee, Kim & Ragas, 

2011). For example, Lee et al. (2011) studied ―what is In ― the reviews rather than what 

motivated to write the review. The authors found differences in review length and quality 

in experience and search goods.  
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             Study          Content               Motives 

Gangold, Miller & 

Brockway, 1999 

Quality 

Perceived Value 

 

Hennig-Thurau et al., 2004 Venting negative feelings 
Positive Self enhancement 
Concern for other 

Customers and Helping the 
company  

Social benefits  

Economic incentives 

 

Dellarocas and Naryan 
(2006) 

 Product involvement  
Message involvement  

Self involvement  

concern for others 

Social benefits 

Sweeney et al. (2012 ) Cognitive content 

Richness of WOM 

Strength of Delivery 

 

 

Campbell et al. (2011a)  Emotive 

Conceptual  

Collaborative 

Oppositely 

 

 

Table 4 : Important Studies Relating to WOM Content and Motives 
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Tucker (2011) content analyzed yelp reviews and discovered some key characteristics of 

the reviews. According to the author, the reviews can be in general classified to three 

categories: cool, funny and useful. In these reviews service quality, atmosphere of a 

restaurant and price seemed to be important topics of the reviews. Campbell et al. (2011a) 

based their study on a large set of customer conversations about a two customer 

generated ads uploaded to Youtube. Sometimes customers become the brand ambassador 

and make their own ad on the product. Due to the free video platforms like youtube, these 

ads can be uploaded there. Many other customers see this video and start to talk about the 

product and ad. The authors developed a typology of these reactions to these ads along 

emotive/conceptual and collaborative/ oppositely dimensions. In a different study 

Campbell et al. (2011b) uncovered how customer’s comments reflect each brand and ads 

For example: comments on Ipod dance advertisement was reflected by the words 1. ipod 

cool, song, Gabrealtvs, lol, 2. Mac-PC ad was by Unofficial , Song , Young folks, 3. 

Starbucks coffee by money, people, kid, starving  4. Think Australia people, funny love. 

Therefore, by content analyzing  the comments, the perception about the ad or the brand 

can be inferred. This is very important piece of information given that, this information 

provides access to customers mind and perception.  

The present study takes this direction by exploring what is in the positive and 

negative reviews. In this attempt, first an in depth content analysis (by extracting 

common themes in the review) is performed to see the similarities and differences 

between positive and negative eWOM. Later, the relationship between these topics and 

perception of helpfulness of these contents to other potential customers in their decision 

making process is examined. As mentioned in the previous research that in a website like 



 
 

60 
 

Amazon, a product contains thousand of reviews and each review can be rated as helpful 

or not by the readers of the reviews. Like before, this number of helpfulness vote has 

been taken as the measure of perceived helpfulness of that review. Along this line, Cao, 

Duan and Gan (2011) uncovered the factors in customer’s reviews and their effect on the 

perceived helpfulness. However, the authors didn’t focus on topics discussed in the 

review. In contrast, the present study focuses on the topics or concepts expressed in the 

reviews by using Latent Semantic Analysis followed by a factor analysis after a manual 

inspection of the terms associated with a concept. After that, the relation between these 

concepts and helpfulness vote was explored.   

To carry out this study, real reviews from Amazon.com were collected and 

content analyzed by Latent Semantic Analysis. Text mining techniques are being used in 

Marketing and have a lot of potential to be used by market researcher to obtain a Market-

Structure Surveillance (brand comparison in a market) and other relevant information 

(Netzer, Feldman, Goldenburg & Fresko, 2012). The mathematical background of the 

technique used in this study is discussed in the subsequent sections.  

4.2.3 Latent Semantic Analysis: the Background 

Latent semantic analysis (Lauder & Duamais, 1997) allows for extraction of concepts 

hidden in text data and holds great promise for free text analysis, as it allows for 

identification of key common themes in a collection of documents without an a priori 

theoretical model, based solely on word usage within the documents. Customer reviews 

are likely to have common topics   about a specific product. Latent semantic factors 

reveal these common themes/topics of the reviews by relying on common word patterns. 
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Some mathematical details (singular value decomposition, TF-IDF, factor rotation) on 

which LSA is based are presented in the next. 

4.2.4 Singular Value Decomposition. The mathematics of LSA are based on a matrix 

operation called singular value decomposition (SVD), applied to a term-by-document 

matrix holding the frequency of use of all terms in all documents in a given collection. 

Given a t × d matrix X of terms by documents containing raw or weighted term 

frequencies, with rank (X) = r < min(t,d), the SVD of X is given by X = TSDT , where T is 

the t × r matrix of eigenvectors of the square symmetric matrix of term covariances XXT , 

D is the d × r matrix of eigenvectors of the square symmetric matrix of document 

covariances XTX, and S is an r × r diagonal matrix containing the square roots of 

eigenvalues (called singular values) of both XXT  and XTX. Then, TS are the factor 

loadings for terms and DS are the factor loadings for documents. Retaining a small 

number of significant factors k, X can be represented by its least squares approximation = 

TkSkDk
T  . 

4.2.5 Inverse Document Frequency (TF-IDF) Transformation: Inverse document 

frequency transformation, commonly referred to as TF-IDF, is a traditional approach to 

term-frequency weighting (Han & Kamber 2006). As a part of the TF-IDF 

transformation, the raw term frequencies are replaced by the product wij = tfij * idfi , 

where idfi = log2(N/ni) + 1, N is the number of documents in the collection, tfij is the raw 

term frequency of term i in document j, ni is the term frequency of term i in the entire 

collection of documents, and the inverse document frequency (IDF) idfi serves as a 

metric of rarity of term i in the entire collection of documents. Such transformation 

promotes the occurrence of rare terms and discounts the influence of more common non-



 
 

62 
 

stopwords such as ―information‖ or ―system.‖ After weighting, the term frequencies are 

typically also normalized so that the sum of squared transformed frequencies of all term 

occurrences within each document is equal to one . 

A number of alternative term frequency transformations have been proposed in the 

literature. Some of them, notably the log-entropy transformation (Lauder & Duamais, 

1997), have been found to outperform TF-IDF for purposes of information retrieval and 

document classification. For purposes of document summarization, however, one may 

want to try more than one transformation to ensure interpretative consistency. 

4.2.6 Factor Rotations. Rotations of loadings can be performed in a number of ways. 

One way would be to first rotate the term loadings LT  = TkSk into LTM, by multiplying 

them by a rotation matrix M according to some term structure simplification criterion and 

then reciprocate with the rotation of the document loadings matrix LD = DkSk into LDM. 

A second way to perform loading rotations would be to first rotate the document loadings 

LD and then reciprocate with the rotation of LT . A third way would be to implement a 

matching rotation technique that combines LT  and LD, for we apply varimax. rotations on 

the term factor loadings alone. The rationale behind this choice is that a simpler term 

structure will facilitate factor interpretation in a more straightforward manner than a 

simpler document structure. The same rotations are subsequently applied to the document 

structure so that both terms and documents maintain the same factor space representation.  

4.3 Methodology 

The analysis begins by compiling the list of all terms used in all the reviews. Therefore it 

is a huge matrix which consist of all the terms (words) used in all the reviews and their 
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respective frequency in each of the reviews. For example if only 5 reviews ae considered, 

there might be 250 unique words used in all the reviews. Then a matrix is constructed 

with a dimension of 250 X 5. So each row will contain the frequency of one word in each 

of the 5 reviews.  Then the unique terms (those appearing in only one document) are 

removed. That reduced the size. Trivial English words (stopwords) such as ―and,‖ ―the,‖ 

and so on are also removed as they do not contribute to infer meaning of the context.  

This step further reduced the size.  Then term suffices are removed (known as term 

stemming). For example, we replaced ―easier,‖ ―easiest,‖ ―ease,‖ and ―easy‖  by ―eas–.‖   

A tabulation of the retained terms and their appearance in the documents  produced a 

term frequency matrix with 1,046 rows (terms) and 148 columns (reviews) for the 

positive reviews and 1,190 rows (terms) and 258 columns for negative reviews. The raw 

term frequencies were transformed using a weighting and normalization scheme known 

as inverse document frequency (IDF) weighting or TF-IDF.  Such transformation 

promotes the occurrence of rare terms and discounts the influence of more common non-

stopwords . The transformed term frequency matrix was then subjected to a SVD.  This 

decomposition produced term eigenvectors, document eigenvectors, and square roots of 

eigenvalues, known as singular values, appearing in descending order. A 10 factor 

solution is retained and is used in subsequent factor analysis. As mentioned before, first 7 

factors in the positive review and first 6 factors in the negative review seem to have 

meaning in terms of associated words. Next manual inspection picked the terms 

associated with each factor picked along with its adjusted frequency for each of the 

review from the adjusted SVD matrix. These terms are then subjected to factor analysis. 

Lastly the factor scores of each factor are obtained for each of the review. These factor 
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scores are the independent variables for the Tobit regression. It is presented in figure 4 

graphically. 

 

 

Figure 6: Algorithm Flow Chart 
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4.4 Analysis 

Data  

For the purpose of initial experimentation, the data for this study came from the online 

reviews available through Amazon.com. These data are publicly available for research 

and have been used in the prior research (Blitzer, Dredze & Pereira, 2007). The reviews 

are from November, 2007. Review data on Amazon.com is provided through the product 

page, along with general information on product and price. For the purpose of this study, 

we chose to use the reviews on kitchen appliances. There were 406 reviews including 148 

positive reviews and 258 negative reviews. The reviews having star rating 4 and above 

are categorized as positive and reviews having star rating 1 and 2 are categorized as 

negative reviews. We extract the hidden concepts of positive and negative reviews using 

the method mentioned above.  

4.5 Results  

4.5.1 Negative Reviews 

The rule for keeping eigenvectors is not clear in the literature.  Following factor analysis, 

usually eigenvectors which have value greater than 1 are kept. Sometimes a graph of the 

eigenvectors is helpful. Here, while performing SVD, 10 eigenvectors were kept to 

represent the whole data because of the fact that the other factors were not representing a 

topic that is interpretable. Since interpretation is the key to this research, we retained the 

eigenvectors in a way that the corresponding factors represent a meaning. Therefore, 

there were ten groupings of words that can be evaluated. However, six prominent factors 
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emerge from the negative reviews and the rest of the four factors does not express any 

meaning in particular and therefore was not presented in the subsequent analysis.  

Factor 1—(Online Order Anomaly). The first factor is mainly about annoying aspect of 

online ordering, slow service, mismatch with the review posted earlier.  

Factor 2-(Core Functionalities) In this factor the frustration with the product’s core 

functionalities is expressed. Unlike positive review’s core functionalities dimension, it is 

associated with ―terrible‖ ―stuck‖(opposite of non stick) etc. So, this factor taps on 

quality concept. 

Factor 3-(Mishandling) This factor corresponds to mishandling and how the service 

fails to take care of the product delivery. Customers are also concerned about return and 

refund policies. This is unique to the online retailing phenomenon. There is a lot of 

disutility cost associated with online buying from the customer’s perspective. 

Mishandling of the product expresses that aspect.  

Factor 4- (Warning). This factor relates to the opposite of recommendation factor of 

positive review. Customers want to warn other potential customers about malfunction of 

the product’s core functionalities. This taps to the concern for others concepts found in 

the literature (Dellarocas & Naryan (2006)  

Factor-5 (Value) Customers are comparing the price and quality and thus portraying the 

product as lesser value. This concept has also been reported in the literature (Gangold, 

Miller & Brockway, 1999)   
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Factor-6 (Shipping Charge). Shipping charge has always been a huge drawback in the 

context of online marketing. This issue has been brought up in this factor.  

The top terms (here words) which are loading on each factor are shown in Table 5. The 

bold terms in table are the key words associated with the factor.  

 

                                       Top terms of negative reviews 

F1 
Online Order 

Anomaly 

amazon  annoyed  battery bowl    coffe    customer    delivery     
disappoint email      forward    give       go         item       online      order      

price      product    purchase    read       receive     return     review     say        
sell       service     slow       sold       super      supplier   teflon      

F2 
Core 

Functionalities 

bacon   bake    cake    clean    coat     complete  cook     cool    egg     
fry        heat       inch             madelin    metal       non        nonstick   o il        

pan            pot        release don        fit     set       side       silicon    spray      
springform stick      stuck      terrible    traditional     store 

F3 

Mishandling 

amazon  arrive   box     break   broken  disappoint fragil     give        

glass      item       large       live       month      need       order      pack       
piec       plate      properly  quality    receive     refund   replace     return     
review     send       side       thin       up         wine          

F4 

Warning 

bare    bread   control  cook     cuisinart doesn    work     fact       feature     

grill      heat       lightli    look       luckily    mean       month      oven  
part       problem    rack       replace     set        side       start      thought    

timer      toast      toaster    turn       warn                 

F5 
Value 

blade   bread   buy     chef     chip     cut       discard   discoveri doesn      
dont       dull            feel       handl      henckel     inch       knife      knive      

metal      need       plan       price      quality    set        sharp      so ft       
thick      thin       wusthof    sharpen dissapointment     

F6 
Shipping 

Charge 

amazon  big     buy     ship charg    cream     deal      design    don        
fal        garment    heat       hold       hose       hot        ice         iron       

item       market     miss       pay        product    profession     sew               
steam      steamer    tank       waste       water       

 

Table 5: Negative Reviews Factor 
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4.5.2 Positive reviews 

Like negative reviews, 10 SVD factors were retained to represent the whole data.  

Predominantly, seven factors emerge from the positive reviews. The rest of the four 

factors were not included in the subsequent analysis due to loss in meaning: As it can be 

seen from the cluster of words, each factor conveys a concept.  

Factor 1- (Core Functionalities) Customers are paying attention to the core 

functionalities of the product and expressing that these product do a good job in 

performing the core functionalities. This taps to the quality and satisfaction concept 

found in previous studies (Motaos and Rossi, 2008).   

Factor 2- (Aesthetic, More Functionalities) In this factor the aesthetic of the product 

(look, design), more functionalities (how it fits the kitchen) are discussed. Customers also 

express their concerns about the product (even who liked it found some problem with it) 

Factor 3-(Branding) This factor corresponds to branding in general. Customers are 

comparing the product with other brands in the market as evidenced by the words 

―differ‖,‖hundreds‖ , ―cutting edge‖ ―analogy‖, ―brand‖ etc. Products lifetime use and 

price comparison are also pointed out 

Factor 4- (Technical Aspect). This factor relates to more advanced customer who know 

about the technical aspect of the product. ―Motor‖, ―power‖, ―processor‖, ―speed‖ 

,―need‖ ,‖does‖, ―don‖  indicate that these are more critical and knowledgeable talk. 

Wojnicki and Godes (2010) show that customer propensities to talk about satisfying and 

dissatisfying experiences depend in part on their desire to communicate domain expertise.  

This factor certainly expresses that.  
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Factor-5 (Online Specific): Customers also let the other customers know about the 

information search process. ‖review‖, ―search‖ and ―post’ are indicative of that. The 

online information search discussion is an integral part of eWOM content.  

Factor-6 (Helping the Company). As found in the prior research that one of the motives 

of WOM is to help the companies (Henning-thrau et al., 2004). This factor taps on that 

aspect. High loading terms are ―company‖ Duty‖ ―nice‖ ―buy‖ ―customer‖ “service” etc 

Factor-7 (Affective) This factor expresses the affective side of positive WOM  which 

leads to ―recommend‖ ,‖top‖ ―wedding‖   ―gift‖ ―family‖ ―love‖ ―enjoy‖ words. As 

found in Campbell et al. (2011) that customers express emotion in eWOM .  
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                                                 Top 30 Terms (Positive Review) 

F1 
Core 

Functionalities 

bake     blue       cake       calphalon  clean      coat       cook         creuset      
dishwash     easy        flat         fry          grease        handle       heat         

muffin       non          nonstick     oil          pan         set          side         
spray        stainless    stick        stir         surface       ware        wash        
wonder       

F2 

Aesthetic, 

More 

Functionalities 

bad      bagel    bake     braun      bread      button     consume       

counter      design        
heat         kitchen      look         muffin       oven         perfectly    pick         

piece          
problem      pull         retro        room         slice        slot         super        
toast        toaster     whatsoever   wide        small         

F3 

Branding 

analogy   chef       chore      cuttting   edge       cutleri      differ                 

global       henckel      hundred        knife        knive        lifetime      
beauty  blade      block      box        brand      carv    nice         price        

pro          roast        set          sharpen      sharper      shear        slice        
steak           

F4 

Technical 

Aspect 

fit          hand         kitchenaid   look         love         mix          mixer        

motor        need         potato       power        processor    quart        short        
speed        store        whip        wonder      attach   beater   big        bowl       
cake       case       cloth      cover        cream        doesn        don          

dough         

F5 
Online 

Specific 

braun      brew       coffe      cream        cup          dark         drip         
fantast      grind        ground       hot            ingredients      kettle       

love         machine       maker        mug          pour  post         press        
processor    review       run          search       space        stop         tea          
want         water       whistl       

F6 

Helping the 

Company 

blade      buy        company  customer       dish         disk         duty        

everyday     food         hot          ingredient      kettle        knives     
machine       month        need         nice               processor    product      

quiet        save         service       skillet      steamer      storage       stuck        
tea          water       work         

F7 
Affective 

awesome   bar      beauty  calphalon  clad       clean      color      
embroidery      enjoy       family      gift         haven        love         

mattress     month        nonstick     pillow      purchase      quality      
recommend    seen         set          shaker       sheet        size         skillet      

stainless    top          wedding          

 

Table 6: Positive Reviews Factors 
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4.5.3 Comparison Of Positive and Negative eWOM  

As we can see from the factors of positive and negative reviews, the positive reviews are 

more about the product itself (core functionalities, aesthetic, technical aspect, branding 

etc). On the other hand, the negative reviews tend to report more service related failure 

(online order, delivery mishandling, shipping charge etc). However, in the both kind of 

review, reviewers show the concern for other customers either by recommending the 

product or warning about the product.  Another similarity is that in bo th types reviews the 

success or failures of the core functionalities are discussed. It should be noted that 

customers discuss about their online shopping experience (information search to 

mishandling of the product to online order anomaly etc.). Customers do not necessarily 

discuss this aspect in the positive reviews (if everything goes right) but discuss a lot in 

the negative reviews.  

 

4.5.4 Factor Analysis 

The SVD result gives an overall perspective of the content of the online reviews. The 

result of the factors depends on the interpretation of the associated words. To make the 

result more objective, the words which best describe a factor are picked manually. 

Consequently, for each of the factors, there are associated words (manually picked from 

the top 30 loadings words and best describe the factor). A factor analysis is run with these 

words. However, this factor analysis is performed on the matrix obtained by SVD (not on 

the original matrix). The reason behind this is the fact that the approximate matrix after 

SVD better represent the data (often correcting for the true relationship) (Deerwester et. 
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al., 1990). Next, a regression analysis is run with the factor scores as independent 

variables and helpfulness vote as the dependant variables. Tobit regression is chosen 

again for the fact that the dependant variable (helpfulness vote) is bounded between 0 and 

1. The result of factor analysis and regression is presented next.  
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Component 

Initial Eigenvalues Rotation Sums of Squared Loadings  

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 9.438 36.301 36.301 9.119 35.073 35.073 

2 5.277 20.296 56.597 4.927 18.949 54.022 

3 4.031 15.504 72.102 4.265 16.405 70.427 

4 3.370 12.962 85.064 3.806 14.637 85.064 

5 1.273 4.896 89.960       

6 1.023 3.934 93.894       

7 .779 2.995 96.889       

8 .531 2.042 98.931       

9 .192 .739 99.670       

10 .086 .330 100.000       

11 2.124E-15 8.170E-15 100.000       

12 1.344E-15 5.168E-15 100.000       

13 1.262E-15 4.855E-15 100.000       

14 1.092E-15 4.200E-15 100.000       

15 8.386E-16 3.225E-15 100.000       

16 5.702E-16 2.193E-15 100.000       

17 3.937E-16 1.514E-15 100.000       

18 1.913E-16 7.359E-16 100.000       

19 -3.345E-17 -1.287E-16 100.000       

20 -7.216E-17 -2.775E-16 100.000       

21 -2.217E-16 -8.529E-16 100.000       

22 -6.163E-16 -2.370E-15 100.000       

23 -7.812E-16 -3.005E-15 100.000       

24 -1.064E-15 -4.094E-15 100.000       

25 -1.247E-15 -4.795E-15 100.000       

26 -1.402E-15 -5.393E-15 100.000       

 

Table 7: Factor Analysis of Negative Reviews 

 

It can be seen from the table 7 that 4 factors cumulatively represent around 86% of the 

variability of the data set which is high.  Although, terms from six factors are included for 

the initial analysis, 4 factors are retained because of the low and/or cross loadings of the 

terms associated these two factors. Finally the following four factors emerged.  
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  Component 

  

Online 

Anomaly 

Shipping 

Mishandling 

Shipping 

Charge Core functionalities 

V33 .900 .097 .306 -.042 
V39 .946 -.185 -.064 -.070 

V251 .404 -.177 .132 -.198 
V291 .876 -.223 -.087 -.040 

V342 .942 -.133 -.075 -.135 
V428 .948 -.181 -.010 -.006 
V705 .969 -.084 .060 -.043 

V710 .852 .344 .220 -.137 
V865 .790 .252 .205 .037 

V866 .721 .382 .079 -.099 
V955 .689 .087 -.384 -.341 
V1035 .955 -.173 .015 -.028 

V702 -.088 -.226 .113 .875 

V1020 .049 -.151 -.175 .927 

V1060 .016 -.072 .093 .857 

V1096 -.177 .010 -.057 .964 

V49 -.109 .952 .183 .029 

V118 -.116 .962 .060 -.033 
V430 -.094 .822 -.271 -.095 

V719 .008 .846 -.226 -.119 
V798 .076 .881 -.137 -.154 
V852 .601 .426 .095 .090 

V150 .116 -.064 .957 -.031 
V635 -.076 -.090 .915 -.081 

V667 -.020 -.149 .910 -.105 
V924 .200 -.002 .922 .139 

 

Table 8:  Rotated Component Matrix of Negative Reviews 

 

 
 

The rotated matrix shows that, term loadings are high. In table 8, the first column 

represents the variable (here words/terms) and the rest of the column represents the 

loading for each factor. The associated words in each factor properly represent each 

factor which justifies the use of factor analysis. It is more quantitatively confirmatory 

when a topic is represented by high loading associated words rather than grouping based 

on SVD. 
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                               Factor                     Associated Words 

Online  Order Anomaly Amazon,Annoyed,Customer, 
Disappointment, Email, Forward, Online, 
Order, Review, Return, Slow, Supplier 

Core Functionalities Traditional, Oil, Stuck, Terrible 

Shipping Mishandling Arrive, Broken, Fragile, Pack, Properly, 
Replace 

Shipping Charge Ship, Charge, Market, Miss 

Table 9: Factors and their Associated Words (Negative Reviews) 

Table 9 shows that associated words represent the factors fairly well. ―Return‖, ―slow‖, 

―Disappointment‖, ―annoyed customer‖ represent the topic of online order anomaly. The 

other factors and their associated words are representative of the topic.  

Next, positive reviews are examined. LSA (SVD technique) extracted seven meaningful 

topics. The words associated with the seven topics are taken from the adjusted SVD 

matrix along with their loading measure for all 148 reviews. This matrix is then subjected 

to factor analysis. Unlike negative reviews, all the factors could be retained although 

some words were discarded due to low and/or cross loadings. The seven factors 

expressed almost 93% of data variability.  
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Component Initial Eigenvalues Rotation Sums of Squared Loadings 

  Total 

% of 

Variance 

Cumulat i

ve % Total 

% of 

Variance Cumulat ive % 

1 6.562 20.506 20.506 5.997 18.740 18.740 

2 6.175 19.298 39.804 5.467 17.083 35.823 

3 5.181 16.191 55.995 4.789 14.967 50.790 

4 4.178 13.057 69.052 4.695 14.671 65.460 

5 3.614 11.295 80.347 4.309 13.467 78.927 

6 2.410 7.531 87.878 2.530 7.906 86.833 

7 1.600 5.001 92.879 1.935 6.046 92.879 

8 1.184 3.700 96.579       

9 .854 2.669 99.248       

10 .241 .752 100.000       

11 1.457E-15 4.553E-15 100.000       

12 1.058E-15 3.307E-15 100.000       

13 8.610E-16 2.691E-15 100.000       

14 7.282E-16 2.276E-15 100.000       

15 6.375E-16 1.992E-15 100.000       

16 5.731E-16 1.791E-15 100.000       

17 4.605E-16 1.439E-15 100.000       

18 3.852E-16 1.204E-15 100.000       

19 3.155E-16 9.858E-16 100.000       

20 1.482E-16 4.633E-16 100.000       

21 4.546E-17 1.420E-16 100.000       

22 
-9.775E-17 

-3.055E-

16 
100.000       

23 
-1.779E-16 

-5.561E-

16 
100.000       

24 
-3.745E-16 

-1.170E-

15 
100.000       

25 
-4.326E-16 

-1.352E-

15 
100.000       

26 
-4.629E-16 

-1.446E-

15 
100.000       

27 
-6.453E-16 

-2.017E-

15 
100.000       

28 
-6.810E-16 

-2.128E-

15 
100.000       

29 
-1.114E-15 

-3.481E-

15 
100.000       

30 
-1.137E-15 

-3.553E-

15 
100.000       

31 
-1.663E-15 

-5.197E-

15 
100.000       

32 
-2.166E-15 

-6.767E-

15 
100.000       

 

Table 10: Factor Analysis of Positive Reviews 
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In table 11, the first column represents the variable (here words/terms) and the rest of the 

column represents the loading for each factor.  Like before, the factor loadings were high 

and ensured the validity of the factors.   

 Component 

  

Brandin
g 

Affectiv
e Service 

Technica
l Aspect 

Core 

Function
ali 

Aestheti
cs 

Online 
Specific 

V418 .001 -.054 -.063 -.095 .975 -.051 .023 

V431 .051 -.014 .158 -.104 .768 -.057 .175 
V606 .036 -.037 -.153 -.127 .969 .088 -.029 

V893 .018 .009 -.143 -.040 .975 .047 -.021 
V1008 .311 .480 -.110 .402 .655 -.004 -.032 
V260 -.126 .067 -.258 -.025 -.051 .777 .000 

V538 -.012 -.097 .120 .095 .032 .976 -.096 
V657 -.022 .345 .023 -.140 .059 .749 .339 

V845 -.339 .052 -.156 -.093 -.123 .451 .770 
V49 -.127 -.313 .293 .781 -.023 -.033 .314 
V227 -.120 -.017 .058 .922 .242 -.066 -.008 

V593 .122 -.148 -.080 .872 -.218 -.084 -.022 
V691 -.030 -.002 -.063 .973 -.147 .064 -.107 
V865 -.101 -.021 .277 .906 -.201 -.003 .167 

V684 -.028 .053 -.170 .213 .218 -.139 .892 

V35 .971 .110 .143 -.118 -.009 -.084 -.024 

V103 .788 .288 -.118 .299 .061 -.123 .010 
V270 .930 -.238 -.133 -.104 .155 .039 -.132 
V310 .978 -.063 .107 -.120 .064 -.014 .023 

V414 .976 -.128 .096 -.094 -.095 -.029 -.014 
V522 .854 -.135 -.307 .095 .094 -.029 -.173 

V187 -.229 -.022 .878 -.046 -.153 -.112 -.152 
V239 -.190 .066 .959 .100 -.011 -.034 .024 
V603 .467 .066 .832 .229 .031 .142 -.010 

V802 .144 -.083 .964 .068 -.062 -.048 -.123 
V53 -.054 .976 -.005 -.094 -.065 -.091 .124 

V76 .401 .822 .026 -.191 .072 -.027 -.091 
V325 -.157 .709 .395 -.082 -.093 -.152 .032 
V409 -.090 .925 -.089 -.155 .037 .034 -.127 

V437 -.087 .754 .214 .071 -.274 .197 -.114 
V738 -.124 .837 -.072 .044 .154 .148 .176 

V1015 -.034 .665 -.536 -.170 .130 .019 .280 

 

Table 11 : Rotated Matrix of Positive Factors 
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The following the factor and the associated words. The associated words provide the 

content of the topic. 

Factors  Associated Words 

Core Functionalities Grease, Handle, Non-Stick, Dish wash, 

Easy 

Aesthetics Design, Look, Perfectly, Small 

Technical Aspect Motor, Speed, Power, Attach, Cover 

Online Post 

Branding Analogy, Differ, Brand, Edge, Global, 

Lifetime 

Service Customer, Duty , Nice, Service 

Affective Awesome, Beauty, Enjoy, Gift, Haven, 
Recommend, Wedding 

 

Table12: Factors and their Associated Words (Positive Reviews) 

 

Table 12 shows that associated words represent the factors fairly well. ―Grease‖, 

―Handle‖, ―Non-Stick‖, ―Dish wash‖, ―Easy‖ represent the topic of core functionalities. 

The other factors and their associated words are representative of the topic.  
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After the factor analysis, the factor scores for each review were saved and were subjected 

to tobit regression next. 

4.5.5 The Regression Analysis 

A Tobit regression analysis is conducted with the factor scores of each review to see 

which factors are perceived helpful. In other words, when a review contains a specific 

factor, does it contribute to the perceived helpfulness.  The results are the following:  

 Value Standard Error Z P 

Intercept 7.102      0.1855  38.278   0.00e+00 

Online Order 

Anomaly 

 

0.956      0.1865 5.126   2.96e-07*** 

Shipping 

Mishandling 

 

0.578     0.1865 3.101   1.93e-03*** 

Shipping Charge 

 

0.170 0.1859 0.912   3.62e-01 

Core 

Functionalities 

-0.325 0.1859 -1.748   8.05e-02 

**p<0.05, R2=0.07  

 

Table 13: Regression Analysis Negative Reviews 

 

The result from the negative reviews regression analysis reveals that ―online order 

anomaly‖ and ― shipping mishandling‖ contribute to the perceived helpfulness of the 
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review. From the positive review, it can be seen that the ―technical aspect‖, ―core 

functionalities‖ and ―aesthetics‖ contribute to the perceived helpfulness.  

 

 Value  Std. Error        Z P 

Intercept 0.87644      0.0178   49.176   0.00e+00 

Branding -0.00304 0.0179   -0.170   8.65e-01 

Affective 0.00466      0.0179   0.261   7.94e-01 

Service 0.00859      0.0179 0.480   6.31e-01 

Technical 

Aspect 

0.03832 0.0179    2.141 3.23e-02** 

Core 

Functionalities 

0.03601 0.0179    2.012  4.42e-02** 

Aesthetics 0.04278      0.0179    2.392   1.67e-02** 

online 0.01209      0.0179    0.676   4.99e-01 

**p<0.05, R2=0.15  

Table 14: Regression Analysis Positive Reviews 

4.5.6 Review clustering 

We also cluster the positive and negative reviews. Five cluster solution for each review is 

obtained. The result is shown at the end of this chapter. The manual inspection show that 

the clusters actually correspond to the factors mentioned above (factors of reviews). This 

is possibly because usually each review contains one of the topics of the review. This 

clustering solution provides validity to the factor analysis result as the factors and cluster 

match with each other (please refer to appendix for results)  
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4.6 Discussion 

The topics in online reviews of kitchen appliances reveal that there are differences 

between positive and negative reviews. Basically, the negative reviews tend to report 

service related failure in a product review. For example, online order anomaly, shipp ing 

mishandling, shipping charge etc.  In a product purchase situation, the service associated 

with it (shipping and handling, credit card processing, refund, replace) are thought to be a 

means of buying the product online and therefore, expected to be without hassle. The 

customers expect the uncertainty to come from the product itself and not from the 

services. Consequently, when this expectation is violated (delivered late, broken, high 

shipping charge etc), the customers complain about it and that comes up in the negative 

reviews. When a potential customer reads about these service failures, it facilitates their 

decision process by providing information on moral violation. Therefore, the potential 

customers find these reviews helpful. There are also negative core functionalities aspect 

expressed in the reviews.  When they get the information about the related service which 

is part and parcel of this purchase process, they feel to be better informed and find these 

reviews helpful.  

On the other hand, when a positive review discuss about good aspect of service, 

customers do not find this piece of information helpful possibly because of the fact that 

customers expect the associated service to work well. So when it works well, the 

potential customers find this piece of information trivial and therefore do not find it 

helpful. However, as mentioned before, when the services do not work well and 

customers complain, potential customers find that information helpful (demonstrated by 

negative reviews ―shipping mishandling‖) because of expectation violation (Campo, 
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Cameron, Brossard & Frazer, 2004). An expectancy is what people predict will happen, 

rather than what they desire. The Violations Theory attempts to explain one’s reactions to 

unexpected behavior of the other party. People attribute various meanings to the violation 

and this strong perspective has the potential to influence people.  

The other factors extracted in the positive reviews are Branding, Affective, Technical 

aspect, core functionalities, Aesthetics, online. Among these, technical aspect, core 

functionalities and aesthetics are found to be helpful. Again, when a potential customers 

reads a positive review, she/he expects that the writer thinks it is better than the other 

brands- making the topic ―branding‖ somewhat trivial and not helpful. However, it may 

be a good source of information for the marketing managers who might have a keen 

interest in knowing the brands to which a particular brand is compared to. Potential 

customers read the positive reviews to gain knowledge and remove uncertainty about the 

product. More information about the product therefore becomes very helpful to potential 

customers. As indicated by Andreasen & Ratchford (1976)  information such varies 

according to the extent to which the needed information are objective or subjective. Some 

information, such as the location of a store, is essentially objective in character and can 

be obtained easily and reliably. Other information may require more information since 

they pertain either to personal preferences (who gives the "best" permanents) or to 

uncertain future outcomes (which brand of appliance requires least repairs). As 

preference of a kitchen appliance is a subjective information and everyone’s perspective 

is welcome from a potential customer’s perspective. Therefore, core functionalities, 

aesthetics and information on technical aspect are helpful in the decision making process. 

Moreover, literature has shown that when people convey domain knowledge to others, 
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they are seen as expert and expert advice is usually influential (Sniejek & Swol, 2001). 

Technical aspect of the review expresses knowledge of the actual machine of the 

appliances. It can be also seen from the words expressed in topic. ―Motor‖, ―Speed‖, 

―Processor‖ are the associated words. So, the reviews which are expressing knowledge 

about this domain specific information are likely to be more helpful. It is also evident 

from the result.     

 Therefore, customers write many things about a product and product experience. 

Positive reviews contain positive aspects of the product. On the other hand, negative 

reviews contain negative aspect of the product and a variety of information on the service 

failure.  Since the service associated with a online product purchase is expected to be 

efficient, any deviation from that invoke a larger need of expressing that in a review. 

Therefore, a trend of reporting service failure emerges in the negative reviews. Positive 

reviews usually report good aspect of the product with some information on good quality 

service.  

Later, when a potential customers read these reviews with an intention to gain knowledge 

or remove uncertainty about the product, positive reviews which contain product related 

information (core functionalities, technical aspect and Aesthetic) are found to be helpful 

as this provide information. On the other hand, negative reviews which report service 

related failure express expectation violation and this is powerful to influence future 

customers. The trend shows that these reviews are more helpful. 
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4.7 Limitations and Future Research 

Although the study uses quantitative content analysis which may provide some accuracy 

measure of the result, there are some limitations of the study. The number of terms 

(words) retained for each factor is much lower than what was found after performing 

SVD. This has potential on posing limitation on the interpretation of the factors. 

However, I tried to eliminate this problem by manually picking some words (which are 

not only based on high loadings). The terms which seemed to fit a factor from human 

knowledge among the first 30 terms (according to the loading) were chosen. This way we 

retained high loading as well as meaningful words associated with a factor. However, as 

mentioned before, there is a possibility that the low number of words associated with the 

factors may bias the result. Research in this area which deals with reliability and validity 

of the method in the marketing context is needed.  

 It would be very interesting to see the comparison between product and service reviews. 

As seen in this product review, positive reviews talk more about the functionalities of the 

product and the negative reviews express service opinion. In case of services, how this 

dynamics will change is worth investigating. It might be possible that, the differences 

seen the product review might not be present in the service review. Will the service 

failure be more pronounced in both cases? How the intangible aspects of the service 

affect the content of the positive review will be very interesting to watch.   

As has been discussed in the discussion session, literature implies that what kind of 

information is sought affects the type of information that will be found to be helpful. 

Since utilitarian and hedonic products are likely to have different criteria for information 
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search , investigation on these will also yield interesting results. It would be desirable to 

build a comprehensive typology of the information search behavior as found in eWOM.  
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CHAPTER 5 

Essay 3 

A Comparative study of Latent Semantic Analysis and Probabilistic Latent 

Semantic Analysis on extracting topics in product reviews. 

5.1 Introduction 

The web has grown like never before and consequently opinions about product/ services 

are found very easily. Customers can now post reviews at various sites and express their 

views on almost anything in forums, discussion groups, and blogs (Dellarocas & 

Narayan, 2005). Blogs, social networks like Facebook and Twitter, e-commerce sites, etc 

contain huge amount of opinions. Usually these opinions are to help other customers or 

friends. However, the vast availability of such reviews/opinions is sometimes 

overwhelming and many times overload them.  If someone searches for a blender at 

Amazon.com, she/he will encounter hundreds if not thousands of reviews of blenders. 

For marketing researchers, these opinions are the goldmine since this provides them with 

the customer perspective of their product. Therefore, online word-of-mouth is an 

important source of information for marketing researchers. However, such overwhelming 

amounts of information make it difficult to get an idea about the product’s perception. 

Consequently, summarization or any other kind of meaningful representation of this data 

is very critical. Techniques such as text mining are being used to understand what these 

customers are talking about the products/services (Guo et al., 2009).  
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In the computer science literature, over the last few years, the task of summarizing 

opinions or reviews has become a central research area among the text mining 

community. As mentioned before, these opinions may come from text data such as blogs 

or reviews as well as numerical data such as star ratings. Earlier studies in this area were 

limited to sentiment prediction (positive or negative). However, the techniques have 

become more sophisticated and studies generally report aspects/topics, textual summaries 

etc. The different formats and techniques provide different level of understa nding or 

precision on the topic. Some of these approaches rely on simple heuristics, while others 

use robust statistical models. Therefore, when using, the users has to adopt these methods 

to their own needs. As mentioned before, computer science literature has been 

researching in this area over a decade now. However, if marketers want to leverage the 

strength of this huge textual data, they have to be able to tailor these methods according 

to their own needs. The strength of statistical power and intuition of marketers have to 

come together to fully utilize this opportunity. With this in mind, this research project 

focuses on comparing two text mining techniques from a marketer’s perspective.  In the 

current study, two techniques: Latent Semantic Analysis (Deerwester et al., 1990) and 

Probabilistic Latent Semantic Analysis (Hoffman, 1999) are compared on reviews posted 

by customers on Amazon website. Common themes of reviews are extracted by using 

LSA and PLSA among positive and negative reviews in two contexts. First, the reviews 

are taken from the category of kitchen appliances (used before in Essay1 and Essay 2) 

where there were different brands and kitchen products within this category reviews. 

Second, only one brand of a product’s review is examined.  Their performances are 

compared in these two scenarios. These two scenarios are fundamentally different as seen 
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from market researcher’s perspective. The first scenario provides information about the 

whole market in that product category. It can be considered as market surveillance. On 

the other hand, the second scenario examines a single brand. This is useful for brand 

managers when an in depth analysis is needed of a particular brand. The current study 

compares two techniques in these two scenarios so as to see if the performance of these 

two techniques would be different depending on the context.   

The rest of the research is organized as follows: We review literature where Latent 

Semantic Analysis or Probabilistic Latent Semantic Analysis has been used in topic 

extraction from the customers’ review or related text. Experimentation is presented next 

along with results. Discussion is followed next.  

5.2 Literature Review 

With the emergence of Internet, the user generated content (UGC) has exploded. 

Marketers are analyzing these data to learn more about market and customers. UGC are 

very often the text data (blogs, reviews, social interactions). With this in mind, marketing 

scholars have started to use text analysis to gain knowledge. A special issue in Marketing 

Science was published in 2012 to encourage and flourish the research in this area. The 

scholars examined a range of issues such as how and why people make UGC 

contributions (Moe & Schweidel, 2012; Ransbotham, Kane & Lurie, 2012). Also the 

impact of UGC has been investigated (Zhang, Evgeniou, Padmanabhan & Richard, 2012)  

New methods for analyzing UGC data have been looked at (Netzer, Feldman, 

Goldenberg &  Fresko, 2012; Ghose, Ipeirotis & Li, 2012). Netzer et al. (2012) used user 

generated text data to learn about market structures and competitive landscape insights. 

http://mktsci.journal.informs.org/search?author1=Oded+Netzer&sortspec=date&submit=Submit
http://mktsci.journal.informs.org/search?author1=Ronen+Feldman&sortspec=date&submit=Submit
http://mktsci.journal.informs.org/search?author1=Jacob+Goldenberg&sortspec=date&submit=Submit
http://mktsci.journal.informs.org/search?author1=Moshe+Fresko&sortspec=date&submit=Submit
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The authors developed perceptual map of market without interviewing a single customer 

by utilizing text mining techniques on UGC. Ghose et al. (2012) generate a ranking 

system by using data from different sources including social media. Text miming 

techniques were used here to build such a system. Recently, AMA’s advanced research 

technique forum has dedicated the whole conference (2012) dealing with text analysis 

research.  

To begin with the related work in this research area, first, the background in opinion 

summarization is discussed since our experimentation of this research closely relates to 

this area. Opinion summarization provides idea about the whole document collection in 

brief. Sentiment prediction can be used as opinion summary because the aggregating 

sentiment score will provide an overall idea about the documents in the collection. 

Usually Sentiment classification is one of the important steps in analyzing this data. In 

this process, orientation of sentences or the whole documents are identified. This will 

result in overall summarization of the documents as users get an idea about what is being 

said (positive and negative). There are several approaches in identifying sentiments 

which finds out the adjective in the text and thus tries to understand the positivity or 

negativity of the text. Some studies (Kamps & Marx 2001) used WordNet-based 

approach, using semantic distance from a word to ―positive‖ and ―negative‖ as a 

classification criterion. This idea was used in the first essay to identify discrete emo tions 

in the reviews. While the results of sentiment classification can be used as a simple 

summary, methods have been improved a lot. Researchers are trying to make automatic 

human understandable summaries.  
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Extracting common themes from user generated content can be considered as 

summarizing the content since it tends to reflect the whole content. Many techniques 

have been used to summarize opinions in user generated contents such as Latent 

Semantic Analysis. Turney and Littman (2003) found that cosine distance can be used in 

latent semantic analysis (LSA) space to measure topic in the text. This method (LSA) 

mainly relies on the co-occurrence of the word and is not based on statistical modeling.  

Recently, topic model has become the center of interest in this area. Topic model can be 

defined as generative probabilistic model. It is based on solid foundation of statistics. 

Vocabulary distribution is used to find topics of texts. Basically, it first identifies the 

word frequencies and relation between other words (co-occurrences) effectively. There 

are several topic modeling approaches. Probabilistic Latent Semantic Analysis (PLSA) 

(Hofmann,1999) and LDA (Latent Dirichlet Allocation) are the important ones.   

A little example of topic modeling might be intuitive. Let’s say, word X and Y usually 

always occur together, and word X and Z rarely occurs together, it might be safe to 

assume that X and Y constitute a topic whereas Z is involved in another topic. So, the 

goal of these approaches is to identify a set of topics or themes from a large collection of 

documents. It is also possible to find documents that most relate to one of the topics.  

If a document collection contains blender reviews, some of the themes may be processor, 

cost, design etc. The themes that are extracted from the topic modeling may be the 

product feature or sentiments. For example, if the positive and negative reviews talk 

about different feature or topics about the product, then the model may identify the 

positive and negative topics along with product features. In this case, it works as 

identifying feature and also sentiments. From this family of models, Probabilistic Latent 
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Semantic is chosen. There are other methods where aspect or features are identified, 

sentiments of these texts are predicted and then overall summary is presented (Hu and 

Liu, 2004). In fact, there is a vast research investigating this algorithm for summarization 

using different technical methods. For example, Ku, Liang & Chen (2006) used 

frequency of the terms for feature identification and used sentiment words to assign 

opinion scores. Lu et al. (2009) used natural language processing techniques to K (K= 

any number) interesting aspects and utilized bays classifier for sentiment prediction. Mei, 

Ling, Wondra, Su, & Zhai (2007) and Titov and McDonald (2008) deviated from this 

algorithm. Both the papers used topic sentiment mixture models or joint topic and 

sentiment modeling. These types of models extract topics and sentiments together. Titov 

and McDonald (2008) utilized multi-grain LDA for this problem. It should be noted that 

in the current study does not focus on summary presentation instead it focuses on features 

and their sentiment orientation. Summary can be presented in mainly two ways: one is 

called Extractive summaries and the other is called Abstractive summaries. In the former 

one sentences from the documents collection is identified to represent the summaries. On 

the other hand, later does not use own sentences for summarization. For the obvious 

reason of simplicity, the former is more often used. Summary presentation is often used 

to make the summary of the reviews more understandable to customers. From a 

managerial perspective, they need to know in detail, what is being said about a particular 

feature. Therefore, this study concentrates and experiments on topic extraction and the 

suitability of two techniques from a managerial perspective.  
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5.2.1 Latent Semantic Analysis 

LSA is only briefly discussed here for the sake of completeness since it has been 

discussed in the previous chapter.  LSA extracts concepts hidden in text data without an a 

priori theoretical model and is based solely on word usage within the documents. It 

represents terms and documents with fewer dimensions and thus creates a new vector 

space (Han & Kamber, 2006). The LSA is actually singular value decomposition (SVD), 

applied to a term-by-document matrix (X) holding the frequency of use of all terms in all 

documents in a given collection. By retaining a small number of significant factors k, X 

can be approximated by X = TkSkDk
T .Term loadings (LT  = TkSk) are rotated (varimax 

rotation is used) to obtain meaningful concepts of the document collection. However, 

unlike previous study, factor analysis is not performed for mainly two reasons. Firstly, 

this study compares two text mining techniques namely LSA and PLSA and therefore 

there is no need for the factor scores in this study. The algorithm is shown in figure 5. 

Secondly, the previous research has   demonstrated the validity of uncovered concept 

through factor analysis. In this study, LSA (Landauer, Foltz, & Laham, 1998). is 

implemented using Matlab TMG graphical user interface.  
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Figure 7: Algorithm Flow Chart (LSA) 

 

5.2.2 Probabilistic Latent Semantic Analysis 

The PLSA model has been firstly presented and successfully applied in text mining by 

(Hofmann, 1999). PLSA is based on maximum likelihood principle, which is derived 

from statistical principle, while LSA utilizes the L2 or Frobenius norm as an optimization 

criterion.  

Basically, the PLSA model is based on a statistic model called aspect model, which can 

be utilized to identify the hidden semantic relationships among general co-occurrence 

activities. In a general sense, PLSA can be viewed as follows: 
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Figure 8: PLSA model 

 

 Given the aspect model in the context of ―review‖, it is first assumed that there is a latent 

factor space Z={z1,z2,…,zl} and each co-occurrence observation data is associated with 

the factor zk.  

The goal of PLSA  is to determine the conditional probabilities, in turn, to reveal intrinsic 

relationships among reviews based on the computed semantic probabilities.  

Firstly, let’s introduce the following probability definitions: 

p(d) denotes the probability that a particular review d will be observed in the occurrence 

data, 

P(zk|d) denotes a review-specific probability distribution on the unobserved class factor 

zk. 

P(w|zk) denotes the class-conditional probability distribution of words over a specific 

latent variable zk.  

Based on these definitions, the probabilistic latent semantic model can be expressed in 

following way: 
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1. Select a review d with probability P(d), 

2. Pick a hidden topic zk with probability P(zk|d), 

3. Generate a word w with probability P(w|z). 

Therefore, A joint probability model over D x W is defined by   

 

Based on the previous equation P(d, w) can be represented by the following equation 

 

The parameters of the models P(z), P(w|z) and P(d|z) are estimated while maximizing the 

likelihood of the observations. Thus the joint  probability of the DxW model can be 

obtained. In this model, P(z), P(w|z) and P(d|z)  are the parameters. For the corpus, the 

joint probability of sample S is  

 

Where n(w,d) is the frequency of the co-occurrence.  

In order to determine P(S), equation (2) is converted to log scale  
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To get the maximum likelihood estimation (MLE) of the parameters, the EM algorithm 

(DEmpster et al. 1977) is used.  

E step 

Initialize the values of the parameters and then compute the expectation of L(θ)  

 

Maximize the function in E step 

 

Where  

  

M step 

The goal is to maximize the function Q(θ). So the Lagrange multipliers λ1, λ2 λ3 are 

introduced. The following constraints are imposed: 

 

The target function is 

 

To maximize, the derivatives of the target function with respect to P(z) and λ1 are taken 

and set to zero (the process for λ2, λ3 are the same) 
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If this is equal to zero, the following results:   

 

The computing process is the same and other parameters are obtained by the following 

equations through iterations. 

 

 

 

When the result converges, the iteration process can be terminated.  

The flow chart of this process is shown graphically: 
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Figure 9: Algorithm Flow Chart (PLSA) 

 

 

5.2.3 Difference between LSA and PLSA 

Both LSA and PLSA can find the latent semantic space in a given corpus. But there is an 

important difference between the two methods. Firstly, SVD is based on Matrix 

decomposition. The reduced matrix is the F-norm approximation of the term frequency 

matrix, while PLSA relies on the likelihood function and wants to get the maximization 

conditional probability of the model. It introduces a prior probability of the latent class. 

The prior probability for a class is the probability of seeing this class in the data for a 

randomly chosen record, ignoring all attribute values. Mathematically, this is the number 

of records with a class label divided by the total number of records. Using EM algorithm, 

a local maximum of likelihood function can then be obtained. Secondly, LSA does not 

define a properly normalized probability distribution and X may even contain negative 

entries while in PLSA, the matrix of the co-occurrence table is a well-defined probability 
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distribution and the factors have a clear probabilistic meaning. Below are some 

similarities and differences between LSA and PLSA in brief form.  

 

 LSA and PLSA perform dimensionality reduction 

 In LSA, by keeping only K singular values 

 In PLSA, by having K aspects 

 Comparison to SVD 

 T Matrix related to P(d|z) (doc to aspect) 

 D Matrix related to P(z|w) (aspect to term) 

 S Matrix related to P(z)   (aspect strength) 

 The main difference is the way the approximation is done 

 PLSA generates a model (aspect model) and maximizes its predictive 

power 

 Selecting the proper value of K is heuristic in LSA 

 Model selection in statistics can determine optimal K in PLSA 

 

5.2.4 Performance Measure  

To compare two techniques, one needs to evaluate the performance of the techniques. 

The best evaluation would be human observation to all cases. However, because of 

limited resources, few scenarios are analyzed in detail. In addition to rigorous 

quantitative evaluation, qualitative observations are widely used to analyze example 

results (Mei et al. 2007; Titov & McDonald, 2008). Among the quantitative measure 

precision, recall curve is the most widely used measure (Titov & McDonald, 2008). 
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Precision is defined as the number of relevant words retrieved divided by number of all 

words retrieved. This provides a measure of accuracy. We also counted the number of 

irrelevant words to get a better picture.  

  

Moreover, the following classification helps in the measure of accuracy: 

 

Here, we also measured false positives and compare between these two techniques. We 

want false positives to be low. Since we do not have a list of total relevant words (for 

conversational text, it is difficult to develop and measure), we did not use recall or false 

positive/negative as a measure of performance.  

 

5.3 Data and Results 

As mentioned before, for the purpose of this study, the performance of PLSA and LSA 

are compared in two different contexts: one is extracting topics from reviews of a 

particular brand and the other is extracting topics from reviews of a product category. To 

empirically compare the hidden topics/factors and the associated words, LSA and PLSA 

are applied to reviews of ―Rose Handbag by FASH‖ which are obtained from Amazon. 

There were a total of 389 reviews of this brand. This constitutes the first context.  

The review data on the kitchen appliances analyzed in the previous chapters were used. 

This constitutes the broader product category reviews. These dataset contains reviews of 

several brands and products under kitchen appliances umbrella.  
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Firstly, LSA and PLSA are used to extract topics from the reviews of ―Rose Handbag by 

FASH‖ and compared with each other. The reviews are slatted in two categories. The 

reviews which got star rating 3 or more were classified in the positive reviews. On the 

other hand reviews with star rating 1 and 2 are classified in negative reviews.  In the LSA 

model, three dimensions are retained after SVD and also three topics are extracted from 

the PLSA model because of the fact that the dimensions in LSA are comparable to topics 

in PLSA. For the positive reviews, the three topics/factors are named as ―Leading 

positive attributes of the product‖, ―Core functionalities‖ and ―Affective‖ based on the 

associated words retrieved by the both methods. On the other hand, for the negative 

reviews, the three topics are ―Not Leather’, ―Problems‖, ―Service failure‖.   

 

Table 15: Comparison of PLSA and LSA Factors (and Associated Words) of the 

Positive Reviews of Handbag 
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Table 16: Comparison of PLSA and LSA Factors (and Associated Words) of the 

Negative Reviews of Handbag 

 

The comparison of the word associated with each topic shows that topics extracted by 

PLSA have more interpretability and contain more information. For example, for the 

positive reviews, the words which have high probability to be in the topic (―Leading 

Positive Attribute of the Product‖) are ―large‖, ―roomy‖, ―price‖, ―quality‖ (colored in 

pink). However, these important terms (since these words imply the competitive 

advantage of the brand and the topic) were not picked up by LSA. Moreover among the 

the words picked up by LSA, ―review‖ , ―purse‖, ―thank‖, ―shoulder‖ (colored in orange) 

are not relevant to this topic. The remaining words both in LSA and PLSA (colored 

black) contribute to the meaning of the factors (in both LSA and PLSA they are either 

relevant or neutral words). By neutral, we mean the words which are relevant and 

contributes to the better interpretation of the factor but does not have unique power like 

the orange words in PLSA. For example, ―amazing‖, ―beautiful‖, ―nice‖ etc contribute to 

the meaning of the ―lading positive attributes‖ and help in the interpretation that 

customers are happy with these attributes of the product. The results show top 10 terms 

(according to the probability for PLSA and loadings for LSA). A comparison of relevant 

and Irrelevant words picked up by both methods are presented below in subsequent 
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Tables. A human coder (the researcher herself) compares the relative relevance of the 

words of the two methods.  

 

 PLSA 

(Retrieved Relevant Words) 

LSA 

(Retrieved Relevant Words) 

Leading positive Attributes Large, Roomy, Stylish, 

Price, Quality  

Color, Design 

Core Functionalities Shoulder, Strap, Texture, 

Material, Double, Zipper, 

Pocket, Inside, Pattern 

Shoulder, Strap, Pocket, 

Inside, Zipper, Pattern 

Affective Birthday, Gift, Friend, 

Love, Sister, Happy 

Birthday, Gift, Fun, Sister, 

Love happy 

 

Table 17: Positive Reviews Relevant Words  

 PLSA 

(Retrieved Irrelevant 

Words) 

LSA 

(Retrieved Irrelevant 

Words) 

Leading positive Attributes Outfit Thank, Picture, Review, 

Purse 

Core Functionalities Fashion Order, Price, Pretty, Color 

Affective  Price, Absolute, Please 

Table 18: Positive Reviews Irrelevant Words 

To quantify the performance superiority of the, precision of the two methods are 

calculated and shown graphically below. The number of irrelevant words picked up by 

both the methods implies the inferiority of the method. This has been shown in the table 

below. It is noteworthy that, to be superior technique, a method ha to yield high precision 

as well as retrieve low irrelevant words. There are some words which are neutral and do 



 
 

104 
 

not yield additional information about a topic. So, these terms are neither relevant nor 

irrelevant in these cases. However, these words may help in understanding the meaning 

of the topic. For example: bag, nice, beautiful etc. In case of positive reviews of a 

handbag, nice and beautiful or bag do not provide any additional information, but 

provides more comprehension of the topic. These are not counted towards relevant or 

irrelevant towards the analysis.  

 

Figure 10: Precision Curve of Positive Reviews 
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Figure 9: Irrelevant Words of Positive Reviews 

For the negative reviews, the same pattern emerges. In the ―Problem‖ topic, 

PLSA extracts more words with problems like ‖Rough‖, ―Thread‖ ―Material‖ etc. than 

LSA. Both models convey the information that the product does not ―look‖ like the 

―picture/photo‖. Moreover, the service failure topic of PLSA also contains more specifics 

than LSA. 

 PLSA 

(Retrieved Relevant Words) 

LSA 

(Retrieved Relevant Words) 

Not Leather Plastic, Leather, Real, 

Expect 

Plastic, Leather, Pleather, 

Real, Expect 

Problems Material, Look, Photo, 

Picture, Rough, Thread, 

Leather, Pleather 

Photo, ugly, Picture, 

Deceive, Issues  

Service Failure Broken, Pieces, contact, 

customer, Help, Product, 

Quality, Attach, Phone, 

amazon 

Break, Pieces, Cheap, 

faulty, Phone, Receive 

Table 19: Negative Reviews Relevant Words 
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 PLSA 

(Retrieved Irrelevant 

Words) 

LSA 

(Retrieved Irrelevant 

Words) 

Not Leather Spacious, Pink, Color Spacious, Zip, Boo 

Problems Color Seller, Massive, Pink, Peach 

Service Failure  Zip, Money, Close 

 

Table 20: Negative Reviews Irrelevant Words  

 

Again, the precision of the two techniques for negative reviews are calculated. The 

Graphical representation of the precision curve is provided in Figure 10:  

 

 

Figure 12: Precision Curve of Negative Reviews  
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Percentage of irrelevant words retrieved by the techniques is shown below. For each 

factor, the irrelevant words are counted and percentage is calculated. The graph shows 

that LSA has much higher percentage of irrelevant words than PLSA.  

 

 

Figure 11: Percentage of Retrieved Irrelevant Words in Negative Reviews  

 

However, the superior performance of PLSA does not exist in every scenario. 

When LSA and PLSA were applied to a broader category like ―kitchen appliances‖ 

which contain reviews of various brands and appliances, PLSA has less interpretability 

since the topics are formed based on a specific appliance (blender, kettle 

etc.).Conversely, LSA provides general summarization of the important aspects and 

attributes of this product category. This problem can be attributed to the fact that PLSA 

tries find the highest probability terms that are likely to occur in the document. On the 

other hand, LSA tries to infer the topic based on the word co-occurrences.  
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Table 21:  Comparison of PLSA and LSA factors (associated words) of the positive 

reviews of kitchen appliances. 
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It can be seen that LSA extracts topics that provide information about an attribute of the 

product category. For example, it can be inferred by looking at the factors extracted by 

LSA that, customers talk about core functionalities, aesthetics, branding, Technical aspect 

and affective content in the reviews. However, if the topics of PLSA are examined, it is 

evident that the topics are extracted according to the appliances. For example, first topic 

relates to ―oven, pan, skillet‖, the second one relates to ―baking‖, the third one ―Knives‖ 

and then ―kettle and tea‖. Unlike LSA topics, these do not express core topics of the 

reviews. Therefore, from a managerial perspective, information in the topics extracted by 

PLSA has little to no use. On the other hand, the topics in LSA provide the perspective of 

what customers generally look for in this product category. For example, customers are 

happy if the appliances serve an aesthetic purpose in addition to the core functionalities 

and technical superiority. Moreover, this category seems to be a popular choice for gift 

giving. Customer also compares different brands to purchase in this product category. All 

these information helps a manager to decide about the attributes new product in the 

category or improvisation of the product. Therefore, in this scenario, LSA works better in 

terms of interpretability.  We do not produce a performance measure curve for this 

section because the result supporting the superiority in LSA is very obvious. As discussed 

the grouping of words are completely different and performance measure curve (or the 

table of relevance measurement) will not provide any valid comparison since there is no 

overlap of relevant and irrelevant words.    

5.4 Conclusion 

With the growth of internet usage, there is a vast availability of user generated contents. 

For the market researcher, these contents are utterly useful and important. These contents 
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are mainly in the form text.  In marketing, the use of content analysis goes back several 

decades. Qualitative content analysis reveals patterns and trends especially in a social 

setting. However, contents found in the web are huge in size and usually are not suitable 

for manual analysis. Therefore, an intelligent and automated method is needed where the 

analysis of large amounts of data is required.  

 There are lot of text mining techniques that are used to reveal trend and patterns in a text 

data. Every technique has its own advantages and disadvantages. The suitability of the 

techniques also depends on the context at which this is being used. Although computer 

science literature has been researching in this area for a long time, marketing discipline 

has just started to investigate in this area. The knowledge and performance measures of 

the techniques cannot be directly transferred to the Marketing domain, since the 

performances are context specific. For example, from a retrieval perspective (in computer 

science literature ), retrieval means if a query word is given to a system, the system’s 

ability to retrieve similar words or documents containing the same topic. So higher the 

performance, the higher the rate of bring out relevant (similar) words. In the contrary, in 

this marketing context, the higher the performance, the higher retrieval of Marketing 

manager’s important information terms/documents. Therefore, along this line, the present 

study investigates the performance of two popular text mining techniques. The study 

supports the idea that the choice of text mining approaches should be based on the goal of 

the marketing researchers. As mentioned before, the two contexts were different in terms 

of specificity meaning that one context contained customer reviews of only one brand of 

Handbag and the other context contained reviews of different brands and appliances of 

―Kitchen Products‖. The results show that, in the former case, PLSA extracted topics that 
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are more meaningful and vivid. It was more interpretable and contained more 

information. LSA extracted topics did fairly well; but were not as complete as PLSA 

topics. There were cross word meaning that one word belonged to more than one factors. 

There was also high number of irrelevant words in a topic compared to PLSA. Based on 

the precision and number of irrelevant word extracted by these two techniques, it I 

concluded that in this context PLSA work better in achieving goal.  

In the second context where the goal was to learn important topics in that product 

category, PLSA and LSA were performed. Here also PLSA extracted meaningful topics; 

but more importantly, these topics were around each appliance. Each topic represented 

each appliance in the product category ―kitchen appliance‖. More importantly, it did not 

group the topics according to the discussion topics of the product category (hence product 

attribute) which are of the main interest from a marketing mangers perspective. For 

example, PLSA revealed the grouped as Oven, Baking, Knives etc. Usually this 

information will not provide a marketing manager useful insight.  It should be noted that 

from an information retrieval perspective PLSA might have done a fair or even superior 

job; however depending on what kind of information is looked for, PLSA is not a 

superior technique in this context. On the other hand, LSA grouped the topics according 

to the discussion topics of the review. For example, core functionalities, technical aspect, 

branding etc. These information are of interest to the marketing manager. Therefore, the 

study concludes that if the goal is to learn about a specific brand and its positive and 

negative attributes, PLSA reveals more specific information. However, if the goal is to 

learn about important aspects of a broader product category, LSA works better. It 

provides more useful information foe decision making.  
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5.5 Limitation and Future Research 

Like any other studies, this study is not without limitation. First, for the performance 

measurement, the study uses precision measure which is a measure of number of relevant 

words retrieved in all retrieved words. However, there are words which are relevant to the 

topic but not really useful. For example, in the handbag positive reviews, the word 

―nice‖, ―favorite‖ do not provide any additional information. But these words are not 

irrelevant words at all. To be conservative, the present study left these words out from the 

―relevant‖ and ―irrelevant‖ word counts so that the results do not get biased. A count of 

irrelevant words provides another measure of performance which has been used in the 

current study. However, the main criticism of this kind of performance measure is the   

subjectivity of the meaning. The precision measure is a YES/NO approach which fail to 

capture the fuzziness in meaning of the words. Although the present study uses manual 

inspection along to measure precision, the subjectivity often becomes a problem and may 

bias the result. However, to combat this problem to some extent, the fuzzy meaning 

words are left out and a measure of irrelevant words is performed.  

Application of text mining in marketing domain is a rising phenomenon. The fact that if a 

text mining technique is superior in terms of information retrieval (for representing the 

data, retrieving similar documents, search purposes), it might not be a superior text 

mining technique for a Marketer’s point of view. This idea warrants marketing researcher 

to experiment with techniques and find their suitability in different marketing contexts 

and needs.  
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CHAPTER 6 

6.1 OVERALL DISCUSSION 

 

Due to wide availability of user generated content, researchers are interested to analyze 

these data to better understand about people’s behavior, their intention and social actions. 

Marketers are also being interested since customer’s opinion in the web can provide a 

great deal of information which was unavailable otherwise. The content which are 

available are mostly text in nature. Therefore to analyze these data, text analyzing 

techniques are needed. In this dissertation, I analyzed electronic word of mouth (product 

review) with the help of quantitative content analysis techniques.  

As mentioned before, market researchers are very interested in analyzing the opinions of 

customers. In a series of three essays, I try to analyze electronic word of mouth and 

techniques needed for analysis. In the first essay I examine if discrete emotions expressed 

in the product reviews have differential effect on the future customers. It was done by 

analyzing the effect of these discrete emotion scores on helpfulness vote of a product 

review. Reviews with helpfulness vote of the product reviews are available in a retail site 

like Amazon. The analysis shows that indeed, reviews expressing emotions associated 

with high certainty are more helpful than reviews expressing emotions with less certainty. 

The claim was also supported by laboratory experiments.  

Along these lines, in the second essay, I explore the topics expressed in the positive and 

negative product reviews. The results shows that positive reviews mostly talk about the 

product itself, whereas the negative reviews tend to report service related failure. 

Customers expect smooth delivery and hassle free services when ordering something 
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online. The customers might be uncertain about the product quality and therefore might 

be more lenient about the product. However, they expect the related service to be smooth. 

Therefore, when this expectation violation occurs, people get upset and complain more 

about this. Moreover, the future customers find this services failure related topics to be 

more helpful than others.  

In the last essay, I compared two text mining techniques and measured their performance. 

The results show that, if a marketing researcher is particularly interested about one brand, 

PLSA works better. If She/ he is more interested in the broader product category, LSA 

should be used. 

This research has many managerial applications. First of all, knowing that some emotions 

are more helpful to future customers than others, marketing campaign and advertising 

should be accordingly based. There is a greater need for monitoring customers’ opinion 

online from a brand manager’s perspective. Marketers should avoid inducing negative 

certainty emotions since this type of emotions will affect future customers profoundly.  

Marketers would be able to track their brand performances by analyzing the reviews. This 

will give them the idea about the negative aspects of his brand and will provide an 

opportunity to improve that aspect.  Another important observation from the study is to 

improve service related to retailing. Since this failure spreads to future customers a nd 

potential customers find this information useful, it is very important to improve the 

service related to that product. This piece of information may be used for improving a 

product. For example, if the customer is talking about design in the reviews and a specific 

brand does not have good design, knowing that it is an important factor to the customers, 
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the product can be improved in look. Also, this information is also useful for new product 

development in a product category.  

Moreover, the research program also indicates the use of text mining technique in two 

contexts. This is directly applicable in the practice. With the improvement in techniques, 

Marketers might feel overwhelmed about the suitability of the technique to use. The third 

research is very closely practice oriented and indicates the direction.  

To interpret the results, the following limitations should be taken into consideration. 

First, to test the model and the Hypotheses in the first essay, real product review has been 

used. This improves external validity and generalization. However, this comes with the 

disadvantage of noisy data. In a real product reviews, there is so much noise involved that 

it was not possible to measure and control for every variables. For example, the 

reviewers’ characteristics were not included in the model as covariates. It is possible that 

these variables might affect the helpfulness vote. Another potential limitation of the study 

is the measurement of emotion scores. Text mining is still in its infancy. The reliability 

and validity of the measurement of emotion is increasing with the development of the 

techniques but not yet have reached its peak. It might be one source of imperfection of 

the study. Studies may conduct discriminant validity to more precisely capture the 

effects. Future research may investigate the proposed relation with more control variables 

to investigate it more carefully. Studies should investigate the effect of other certain and 

uncertain emotions to generalize the findings. For example, anger is another high certain 

emotion which can be investigated to see if the propose relationship holds. Future 

research may also examine the effect of other cognitive appraisal dimension on the 

helpfulness vote of a product review. For example, fairness is another cognitive appraisal 
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dimension. There are high fairness and low fairness emotions. It is intuitive that high 

fairness emotion might be more helpful than low fairness emotions. Future studies may 

also look into that.  

For the second essay, a factor analysis is run to quantify the result. It also provided us 

with the factor scores which were used in the subsequent analysis. However, a 

confirmatory factor analysis would have been more conservative. Since, the factor scores 

were used, we did not proceed to do the CFA. Future studies may also perform the 

analysis to see the factors in details.  Studies should investigate the topics of other 

product reviews. This will give a more comprehensive view on the topics discussed in 

different products. This can also extended for service. It will be vey interesting to see 

how the difference between positive and negative reviews differs in service context. All 

these results can be used to build a comprehensive typology.   

Thirdly, there are many areas open for research in this context. Marketers have to come 

forward to analyze these valuable text data to better understand today’s market and 

customer behavior. More importantly, these data provide an opportunity of learning about 

customers. However, it is important that these techniques are developed and adapted by 

marketers. The reason is, when an information technologist tries to improve a method, his 

goal might be increase retrieval accuracy. Marketers have different goals from the data. 

Therefore, it is suggestive that marketers take a step toward this direction. Future 

research may conduct research on comparing other techniques such as LDA and PLSA. 

Also marketers need to make the transition by adapting these techniques to marketing 

context.  
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Appendix 

 

Five Cluster solution for positive reviews (only the title showing) 

Cluster 1 (33 documents):  

      Document 3: must have                                                                         
      Document 5: buy it but keep your iron                                                         

      Document 8: skip cheap imitators with fancy gadgets                                           
      Document 15: excellent kettle  excellent company                                               
      Document 17: all clad 16 quart stainless stockpot                                              

      Document 24: oh come on                                                                        
      Document 25: shred away                                                                        

      Document 28: absolutely marvelous                                                              
      Document 30: for friday cocktails                                                              
      Document 33: fantastic coffeemaker   if you have the space                                     

      Document 37: my own tea butler                                                                 
      Document 41: great item                                                                        

      Document 47: cleave your meat in under 10 minutes                                              
      Document 50: couldn t live without it                                                          
      Document 51: seepex dust bin                                                                   

      Document 60: stainless steel is the best                                                       
      Document 68: does everything                                                                   

      Document 69: squeezes out the competition                                                      
      Document 70: kitchenaid  food processor                                                        
      Document 71: very good machine   enjoy the quietness                                           

      Document 76: nice and roomy                                                                    
      Document 77: customers beware                                                                  

      Document 94: cusinart  good quality                                                            
      Document 95: great foodprocessor                                                               
      Document 98: lovely really lovely                                                              

      Document 104: wow                                                                               
      Document 105: best lunch box ever   hot food stays hot for hours                                

      Document 114: my gorgeous cake                                                                  
      Document 122: great item for a great price                                                      
      Document 130: stainless is better than nonstick   calphalon is best value                       

      Document 132: love this                                                                         
      Document 140: very good  but expect some hiccups getting started                                

      Document 146: great little steamer  this hs900 model is only  19 99 at target                   
Cluster 2 (24 documents):  
      Document 1: best  knife  ever                                                                 

      Document 4: great pans for the price                                                          
      Document 16: treadable and edible                                                              
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      Document 18: 1 year of slicing roasts and still carving                                        
      Document 19: attachment only has one  e   not two                                              

      Document 20: luxurious beautiful sheets                                                        
      Document 31: casserole dish                                                                    

      Document 35: a great set at an even greater price                                              
      Document 36: black and decker tiered food steamer                                              
      Document 39: great knives                                                                      

      Document 40: cutting edge                                                                      
      Document 54: great set of knives                                                               

      Document 59: useful knife                                                                      
      Document 64: rowenta dz 9080                                                                   
      Document 74: favorite accessory                                                                

      Document 75: non stick and great for everyday                                                  
      Document 82: this makes my banana bread look even better                                       

      Document 83: surprisingly good kitchen shears                                                  
      Document 84: classic style                                                                     
      Document 93: well made at a good price                                                         

      Document 100: the best value i have seen                                                        
      Document 112: saw it for much   more this weekend                                               

      Document 119: great little grinder                                                              
      Document 141: super sharpener                                                                   
Cluster 3 (48 documents):  

      Document 2: excellent kid s game                                                              
      Document 9: perfect and evenly toasted                                                        

      Document 10: an elegantly designed long  wide toaster                                          
      Document 11: a step above the rest                                                             
      Document 12: great ice cream maker                                                             

      Document 13: great pan for a couple of people                                                  
      Document 14: some le creuset products need  seasoning                                          

      Document 22: best way to hang curtains on metal surfaces                                       
      Document 26: perfect for slow roasting roasts until the meat falls off the bone                
      Document 34: hoover vacuum                                                                     

      Document 42: totally worth it                                                                  
      Document 43: olga gill                                                                         

      Document 45: great toaster for a good price                                                    
      Document 52: whips like a pro                                                                  
      Document 53: excellent pan and great for bench pressing  too                                   

      Document 55: fantastic deal   plenty of light                                                  
      Document 56: my favorite salad spinner                                                         

      Document 57: so why did i absolutely love this pan                                             
      Document 62: excellent toaster                                                                 
      Document 66: nice set  but                                                                     

      Document 67: engineer  not a baker                                                             
      Document 78: i feel like a star  now                                                           

      Document 79: stylish  sexy  simply the best                                                    
      Document 87: let me whisk you away                                                             
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      Document 89: a bar favourite                                                                   
      Document 90: great all around pan                                                              

      Document 92: multi purpose equipment                                                           
      Document 99: because a one that isn t cold is scarcely a one at all                            

      Document 103: very nicely built aebleskiver pan                                                 
      Document 106: cooking can be easy                                                               
      Document 107: 1 2 toaster  1 2 oven                                                             

      Document 108: the best pan i ve ever had                                                        
      Document 111: perfect all in one pan                                                            

      Document 115: i m the baker                                                                     
      Document 117: kitchenaid silicone loaf pan                                                      
      Document 118: amazing iron for a great price                                                    

      Document 120: customer reports is right on                                                      
      Document 125: a great starter piece or addition to your le creuset collection                   

      Document 126: a nice little addition to your home bar                                           
      Document 128: great indoor grill                                                                
      Document 134: outstanding value                                                                 

      Document 135: love it                                                                           
      Document 136: pillow top king fiberbed                                                          

      Document 137: perfect for new users                                                             
      Document 138: my favorite grill pan                                                             
      Document 139: lightweight  excellent heat distribution  easy clean up                           

      Document 142: works well and looks nice                                                         
      Document 145: best cake pan you ll ever own                                                     

Cluster 4 (11 documents):  
      Document 6: the more you use it  the more you will love it                                    
      Document 27: no hassles  easy to read                                                          

      Document 29: strong reliable mixer  the best                                                   
      Document 49: easy amp  durable                                                                 

      Document 65: it  really does fit                                                               
      Document 72: size doesn t matter                                                               
      Document 85: bring the wine out                                                                

      Document 88: an excellent product                                                              
      Document 101: great scale                                                                       

      Document 110: a must have for any kitchen                                                       
      Document 147: outstanding quality and great price                                               
Cluster 5 (31 documents):  

      Document 7: pre seasoned is a plus  but not necessary   fabulous oven                         
      Document 21: works well                                                                        

      Document 23: the quot must havequot  kitchen gadget                                            
      Document 32: versatile oval dish                                                               
      Document 38: worth the money  just for the fun                                                 

      Document 44: great for a large family                                                          
      Document 46: just the right size for my family                                                 

      Document 48: le creuset   quality                                                              
      Document 58: not so much for the big mixers                                                    
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      Document 61: i love this pan                                                                   
      Document 63: wonderful                                                                         

      Document 73: it works like a charm                                                             
      Document 80: userful   wonderful  worth the money                                              

      Document 81: hot stuff                                                                         
      Document 86: cuisinart is short sighted                                                        
      Document 91: kitchenaid always has what you need                                               

      Document 96: great for a big family                                                            
      Document 97: good value fire protection                                                        

      Document 102: microwave egg boiler                                                              
      Document 109: strong and long lasting                                                           
      Document 113: best of the small digital thermometers                                            

      Document 116: feels like home                                                                   
      Document 121: awsome skillet                                                                    

      Document 123: great design  great function                                                      
      Document 124: your lodge will outlive you                                                       
      Document 127: lodge pro logic pre seasoned 8  pan is top notch                                  

      Document 129: crock pot cheesecakes                                                             
      Document 131: much cheaper at target                                                            

      Document 133: good coffee maker                                                                 
      Document 143: canister                                                                          
      Document 144: makes cooking fun                                          

 5 Cluster solution for negative reviews (only the title showing) 

Cluster 1 (60 documents):  

      Document 1: don t waste your time or money                                                    
      Document 3: very poor quality                                                                 
      Document 4: very thin for a name brand towel                                                  

      Document 10: warning                                                                           
      Document 13: almost useless                                                                    

      Document 21: bits of metal is not what i want with my cheese                                   
      Document 24: a very good external design  but it does not last very long                       
      Document 25: fiestaware 1 qt pasta bowls    i got what i paid for                              

      Document 29: dangerous to your health                                                          
      Document 41: not the best at all                                                               

      Document 43: so  you want to throw away  30                                                    
      Document 45: water reservoir poorly designed                                                   
      Document 49: an investment  that s funny                                                       

      Document 51: nice design   but it s broken too                                                 
      Document 58: broken item                                                                       

      Document 61: another dissapointed cuisinart customer                                           
      Document 65: looks don t always count                                                          
      Document 66: it s less trouble driving to carvels                                              

      Document 67: verry disappointed with cuisinart                                                 
      Document 70: stupid stupid stupid                                                              

      Document 80: reliability is the issue                                                          
      Document 81: worse than the ronco machine                                                      
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      Document 82: iced by machine                                                                   
      Document 90: easy to spin  but disappointing results                                           

      Document 104: buyer beware                                                                      
      Document 106: broken item                                                                       

      Document 107: chips the knife edge                                                              
      Document 108: very disappointing                                                                
      Document 109: ok quality  not much of an edge                                                   

      Document 110: just plain terrible                                                               
      Document 114: not what i expected                                                               

      Document 115: dirty water drips back onto carpet                                                
      Document 126: very disappointed                                                                 
      Document 128: this item does not work                                                           

      Document 136: very disappointing                                                                
      Document 139: not for smoothies                                                                 

      Document 155: is this some sort of sick joke                                                    
      Document 157: non absorbent towels                                                              
      Document 162: it was great   until i washed it                                                  

      Document 164: get a real grinder                                                                
      Document 168: i got out while the gettin  was good                                              

      Document 173: piece of junk                                                                     
      Document 175: glass is fragile                                                                  
      Document 176: works so so  company has exaggerated performance claims                           

      Document 178: does not work well to chill wine quickly                                          
      Document 185: doesn t do the job                                                                

      Document 190: vinchilla wine chiller                                                            
      Document 191: great pasta takes practice                                                        
      Document 194: battery replacement                                                               

      Document 196: keep looking                                                                      
      Document 197: wire slicers not durable                                                          

      Document 200: broken hearted pasta maker                                                        
      Document 207: perfect for the reckless customer                                                 
      Document 211: i don t get this positive feed back  animal abuse                                 

      Document 220: sunbeam 4200 smoothie maker                                                       
      Document 221: not happy                                                                         

      Document 223: negative on nordic cake keeper                                                    
      Document 233: mislabeled size                                                                   
      Document 235: they just increased the price                                                     

      Document 236: defective right out of the box                                                    
Cluster 2 (65 documents):  

      Document 7: the bad reviews are right    don t buy it                                         
      Document 9: disappointed                                                                      
      Document 12: calphalon                                                                         

      Document 18: not as described                                                                  
      Document 26: not that great                                                                    

      Document 33: would never buy anymore of this                                                   
      Document 35: overpriced  hate this pan                                                         
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      Document 37: impossible to remove the lids                                                     
      Document 53: not good for smooth surface cooktops                                              

      Document 60: disappointment                                                                    
      Document 64: good product   terrible vendor   buy elsewhere                                    

      Document 74: what a disappointment                                                             
      Document 78: not nonstick                                                                      
      Document 85: arrived broken                                                                    

      Document 86: do not recommend                                                                  
      Document 91: a joke of an appliance                                                            

      Document 93: ruined my cake                                                                    
      Document 94: stick with metal pans                                                             
      Document 96: very bad quality                                                                  

      Document 98: light intermittent household use at best                                          
      Document 99: bad idea if you are thinking cheesecakes                                          

      Document 100: save your money                                                                   
      Document 102: buyer beware                                                                      
      Document 103: caution    they don t warn you about a major problem                              

      Document 111: terrible quality                                                                  
      Document 116: stainless   not                                                                   

      Document 117: bad quality   a review after long term use                                        
      Document 125: warning    don t buy t fal                                                        
      Document 130: its ok                                                                            

      Document 131: not up to par                                                                     
      Document 132: not happy with this pan                                                           

      Document 138: give this one a pass                                                              
      Document 143: this product is horrible                                                          
      Document 147: i hate these pillows  they smell like a henhouse                                  

      Document 154: why anyone thinks this is a good iron is beyond me                                
      Document 158: title says nonstick  must be a typo                                               

      Document 159: siz is too small                                                                  
      Document 169: one kitchenaid attachment to skip                                                 
      Document 170: bad vacuum                                                                        

      Document 179: great concept  poor design                                                        
      Document 181: peeling after a couple years                                                      

      Document 201: auto shutoff is incompatible with sewing and quilting                             
      Document 203: nice  but not very durrable                                                       
      Document 206: wonderful  until the handle cracked                                               

      Document 212: amazon com delivers     used coffee mugs                                          
      Document 213: so so                                                                             

      Document 215: godzilla                                                                          
      Document 216: very difficult to clean  a truly horrible purchase                                
      Document 217: impossible to clean                                                               

      Document 218: dishonest marketing                                                               
      Document 219: ugh                                                                               

      Document 224: not the same as the cast aluminum rose bundt                                      
      Document 225: thanks for the reviews                                                            
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      Document 226: not a good foam pump                                                              
      Document 227: keep away from it                                                                 

      Document 229: it s true  this non stick pan is not what it pretends to be                       
      Document 234: way too thin                                                                      

      Document 241: do not recommend                                                                  
      Document 247: very disappointed                                                                 
      Document 251: i don t understand this product                                                   

      Document 253: cooks only meats well  cleaning is a real bear                                    
      Document 254: not so good                                                                       

      Document 256: worse frying pan i ever bought                                                    
      Document 257: if you fry it  it will stick                                                      
      Document 258: pure junk                                                                         

Cluster 3 (58 documents):  
      Document 2: don t bother with this model                                                      

      Document 6: old technology fat separator                                                      
      Document 8: barely gets one star                                                              
      Document 11: bad advertising by amazon                                                         

      Document 14: the cannister is too small                                                        
      Document 16: life span                                                                         

      Document 17: a bummer for a dyson lover                                                        
      Document 19: do not buy this brand                                                             
      Document 22: save your money                                                                   

      Document 23: completely ineffective candy thermometer                                          
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