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ABSTRACT 

Empirical test of structural model under time-varying volatility 

Ken Liu 

 

In trying to explain the “Credit Spread Puzzle”, we empirically examine two competing 

structural models: the Leland (1994b) constant volatility model and the Perrakis and 

Zhong (2013) Constant Elasticity of Variance (CEV) model. We use the Leland model as 

our benchmark and hypothesize that the CEV model under state-dependent volatility will 

outperform it. For our estimation, we incorporate firm level time series data from 

different markets. Our sample covers the period from 2001 to 2011.   We apply the 

General Method of Moment (GMM) for our estimation of the parameters of the diffusion 

process for the Leland and CEV models respectively. In our results, we document on 

average a significantly negative beta, the elasticity parameter in the Perrakis and Zhong 

CEV model. More importantly, we find that the CEV model can fit the historical data 

much better than the constant volatility Leland (1994b) model across all maturities, 

suggesting that the state-dependent volatility can explain the “Credit Spread Puzzle” to 

some extent.  
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1. Introduction 

Pricing debt as a contingent claim on the firm’s value is an approach known as a structural model 

of the firm, adopted from the option pricing domain. Following the Black and Scholes (1973) 

theory of option pricing, Merton (1974) implemented this approach in his pioneer work of bond 

pricing and risk structure of interest rates. In this approach, the firm asset value is treated as the 

underlying asset and the balance sheet items such as liability and equity play the role of 

contingent claims that can be valued by methods adapted from option valuation. Because of its 

detailed results, the structural model has drawn a lot of attention from academics and practitioners. 

Earlier studies have tackled, among others, the issues of debt pricing, credit risk, and optimal 

capital structure by applying this method. These structural models of the firms are distinct from 

the other major class of bond pricing models known as reduced form models. In reduced form 

models the underlying asset is no longer the unlevered firm value. Instead, observable variables 

such as equity returns and equity value take the place of underlying assets. Therefore, reduced 

form models do not tackle the optimal capital structure as structural models do. 

 The first study by Merton (1974) imposed several assumptions and restrictions to the model 

which may seem a little bit unrealistic by now. These restrictions include debt composed of zero 

coupon discount bonds, no transaction costs, no taxes, no bankruptcy cost, fully liquid markes 

and default that can only happen at the time of debt maturity. The firm valueV was set to follow a 

simple diffusion process. Thus, we can treat any security of the firm as a contingent claim on the 

underlying asset, the firm value. The closed-form solution was derived under this framework. 

Based on this pioneer model, Black and Cox (1976) proposed a new model which relaxed some 

of the assumptions. They allow the default to happen before the maturity and make the default 

boundary depend on certain types of bond indenture provisions. In particular, they examined the 

effect of three types of provision: safety covenants, subordination agreements and restrictions on 
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the financing of interest and dividend payments. Their conclusion is that these provisions would 

certainly increase the value of bonds and may affect the behaviour of the firm’s securities. Also, 

they mentioned the possible effects of the introduction of bankruptcy cost and taxes, the 

time-varying volatility and the presence of a jump process. Although these models were adopted 

in many subsequent studies, the criticisms never disappeared. One of the most important such 

criticisms is the empirical result found by many researchers that the credit spreads predicted by 

those models were much smaller than actually observed credit spreads.
1
 This phenomenon was 

termed the “Credit Spread Puzzle” by Huang and Huang (2003). Several subsequent studies have 

tried to explain this phenomenon from different aspects. In Longstaff and Schwartz (1995) the 

authors proposed a two-factor model which incorporated interest rate risk. They derived a 

closed-form solution for risky coupon bond and debt value, distinguishing their work from that of 

others who also took into consideration interest-rate risk. They concluded that the interest rate can 

affect the valuation of firm securities through its correlation with firm value. Following Longstaff 

and Schwartz (1995), Collin-Dufresne and Glodstein (2001) adopted this same two-factor 

framework to allow the interest rate to follow a stochastic process. However, they relaxed the 

assumption of constant default boundary while still keeping it exogenous. They argued that there 

was a target level of leverage for each individual firm or the firms in a certain industry, a 

stationary leverage ratio. They used a mean-reverting default threshold to represent this feature. 

Most importantly, in their work, they developed an exact solution for the Fortet equation of the 

first passage time to default under a multi-dimensional diffusion framework, which in Longstaff 

and Schwartz (1995) is only found by an approximation of the true solution. Their model predicts 

credit risk more consistent with the observed credit spread. Huang and Zhou (2008) show that the 

Collin-Dufresne and Glodstein (2001) model was the only one that survives their empirical test.  

                                                           
1
 Longstaff and Schwartz (1995) 



 

3 
 

Leland (1994a, b) and Leland and Toft (LT 1996), introduced the endogenous default boundary 

for infinite maturity debt and finite maturity debt respectively. They also incorporated in their 

model the Modigliani and Miller (MM) theorems by introducing the tax benefit and bankruptcy 

cost of debt into their model. They derived closed-form solutions for corporate debt value, firm 

value, equity value and the endogenous default boundary. Based on Leland (1994b), Perrakis and 

Zhong (2013) proposed a new structural model which incorporated time-varying volatility. 

Unlike the working paper of Elkamhi, Ericsson and Jiang (2011), which also introduced 

time-varying stochastic volatility into their structural model, Perrakis and Zhong (2013) used 

constant elasticity variance (CEV), a one-dimensional asset dynamic that significantly reduces the 

complexity of derivation and calculation of the model. Their conjecture is that the time-varying 

volatility will explain the “Credit Spread Puzzle” to some extent. Our objective in this paper is to 

test their conjecture empirically. 

We adopt the framework and method from Huang and Zhou (2008). In their work, these authors 

used Credit Default Swap (CDS) market information because compared with corporate bond 

spreads the CDS spreads are relatively more pure for default risk pricing because of better 

liquidity in their respective markets. They also used the whole term-structure of the CDS spreads 

that can make the pricing error of the model more efficient. To solve this over-identified system, 

the General Method of Moments (GMM) is implemented here for the parameter estimation.
2
 

Unlike Huang and Zhou (2008), which examined five classic structural models and compared 

their performance, our estimation goal is more specific here. We like to examine whether the 

introduction of time-varying volatility would explain the well-known “Credit Spread Puzzle”. 

                                                           
2
 In Duan (1994), Maximum Likelihood Estimation (MLE) was introduced as a superior method to 

estimate the parameters for a unobservable asset value process. In Ericsson and Reneby (2005), the authors 

also demonstrated the strength of MLE in this kind of estimation work compared to the previous method. 

However, in Huang and Zhou (2008), the term-structure of CDS spreads plus the equity volatility made the 

system an overidentified one since normally there are just two or three parameters to be estimated. So 

GMM estimation was implemented here to incorporate all the information carried in the moment conditions. 

We adopted this same econometric method, following also Elkamhi, Ericsson and Jiang (2011). 
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Therefore, we only compared two models directly. One is Leland (1994b), with constant volatility, 

finite maturity and a closed-form solution; the second one is Perrakis and Zhong (2013) which 

adopts CEV asset dynamic for firm value and make the Leland (1994b) a special case, while still 

having a closed-form solution.  

We collected 10 years firm level time series data for the estimation. Then we fitted all the 

available historical data into these two competing models. Those data include historical CDS 

spreads, firm financial statement data, equity market data, historical term structure of interest rate, 

and implied equity volatility from option market. Since  and  are the only parameters we are 

interested, all the data from the different markets build up an over-identified model. Therefore, 

we applied the General Method of Moment (GMM) to empirically estimate our parameters. In 

our results, we document that the CEV model with time-dependent volatility outperforms the 

Leland (1994b) constant volatility model in fitting across all maturities. 

To close our introduction and literature review, we discuss briefly the reduced form models. Even 

if our scope in this paper does not cover these models, they are an alternative strand of models for 

debt valuation. Similar with structural models, reduced form models also allow their primary 

asset dynamics to follow the diffusion or jump diffusion process. Reduced form models have 

their own advantages by using observable variables as their underlying asset instead of the 

unobservable unlevered firm value. However, reduced form models have the disadvantage of 

lacking the link between the default process and the capital structure, or the first time that asset 

value falls below a certain level. Due to this reason, reduced form models will not be examined 

and tested in this paper.
3
 

The rest of this paper is structured as follow. Section 2 will briefly review the two models that we 

will compare in our estimation. Section 3 will discuss our econometric method and our empirical 

                                                           
3
 See Jarrow and Turnbull (1995), Duffie and Singleton (1999) and Duffie and Lando (2001) for more 

details on reduced form models. 
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estimation techniques in details. Section 4 will present our data cleaning and construction. 

Section 5 will be the analysis of our empirical results. Finally, Section 6 concludes. 

2. Review of structural models 

In this section, we will review several important structural models which have appeared in the 

literature since the Merton model. They are: Merton (1974), Black and Cox (1976), Longstaff and 

Schwartz (1995), Collin-Dufresne and Goldstein (2001), Leland (1994b), and Perrakis and Zhong 

(2013). The structural models that will be tested by our empirical work are the last two models: 

Leland (1994b) and Perrakis and Zhong (2013) constant elasticity of variance (CEV) model. 

Since the major concern of our empirical work is testing whether the introduction of time-varying 

volatility into the model can improve the fitting of the historical data, we set in these two models 

everything equal except for the parameter which represents the time variation of the volatility. In 

other words, we consider the Leland (1994b) model as a special case of Perrakis and Zhong (2013) 

CEV model when the elasticity parameter   is equal to zero. Therefore, we can get a 

straightforward result of the model performance by comparing the fitting of these two models. 

2.1 The Merton (1974) model 

The Merton (1974) model is the pioneer structural model, which considers securities of a firm as 

contingent claims on the underlying asset, firm value. This model has relatively strict restrictions 

such as: no transaction costs or taxes and bankruptcy costs, fully liquid market, zero coupon bond, 

unlimited borrowing and lending and the default can only happen at maturity. Unlike default in 

the subsequent barrier models, default in this model happens when the firm cannot pay the 

promised payment to the debt holder at maturity. Namely, when V B , the firm will not make 

the payment to the debt holder and default, otherwise the equity holder will pay extra money. 
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Here V is the underlying asset or firm value and B is the promised payment to the debt holder at 

maturity. The firm value V is following a simple diffusion process: 

 dV Vdt VdW    (2.1) 

Therefore, the market value of any security of the firm at any point of time can be written as a 

function of the value of the firm at that time, ( , )Y F V t . Applying Ito’s lemma, we can get the 

diffusion process for debt and then the differential equation which must be satisfied by the value 

of the debt: 

 2 21
0

2
VV VV F rVF rF F      (2.2) 

Subject to the condition: 

 ( ,0) ( , )F V Min V B  

Then the value of the equity of the firm can be written as ( , ) ( , )f V t V F V t  , and it satisfies 

the following partial differential equation: 

 2 21
0

2
VV VV f rVf rf f      (2.3) 

Subject to the condition: 

 ( ,0) (0, )f V Max V B   

It is identical to a European call option with the firm value corresponding to the stock price and 

the payment B corresponds to the exercise price. Then we get directly the solution of the 

differential equation from the Black-Scholes option model: 



 

7 
 

 
1 2( , ) ( ) ( )rf V V x Be x     (2.4) 

Where 

   21 1
exp

22

x

x z dz
 

 
  

 
  

And 

 
  2

1

2 1

1
log /

2
x V B r

x x

   

 

  
    

  

 

 

From ( , ) ( , )f V t V F V t  , we can get the value of the debt as: 

    2 2

2 1

1
( , ) , ,rF V Be h d h d

d

                 
 (2.5) 

Where 

    

   

2 2

1

2 2

2

/

1
, log

2

1
, log

2

rd Be V

h d d

h d d



     

     



 
   

 

 
   

 

 

2.2 The Black and Cox (1976) model 

After Merton (1974), Black and Cox relaxed some of that model’s assumptions and examined the 

effect of certain types of bond indentures which are encountered in practice. Namely, they 

examined three kinds of bond indentures: safety covenants, subordination arrangements and 

restrictions on the financing of interest and dividend payments. Their model has the following 
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assumptions: fully liquid market; no transaction cost, tax and bankruptcy cost; unlimited 

borrowing and lending with identical interest rate; and the value of the firm follow a diffusion 

process. However, default can happen before maturity when the firm value hits a certain 

boundary.  

2.2.1 Safety covenants 

Safety covenants are contractual provisions that give the debt holder the right to force a 

bankruptcy or firm reorganization before maturity if the firm is doing poorly by certain standards 

which are described in the covenants. One of these standards is that the firm omit the interest 

payment to the debt holder. However, the authors argued that if the equity holders are allowed to 

sell assets to fulfill the requirement, then this provision is not effective. Therefore, they made the 

safety covenants as follow: if the firm asset value falls below a certain level which was decided in 

the covenants, then the debt holder has the right to force a bankruptcy or reorganization. Thus, the 

value of bond F will satisfy the following differential equation: 

  2 21
0

2
VV V tV F r VF rF F       (2.6) 

Subject to condition 

 
( ) ( )

( , ) ( , )

( , )T t T t

F V T Min V P

F Ce t Ce    




 

Where P is the promised payment to the debt holder,  is the proportion of dividend the equity 

holder can receive continuously and 
( )T tCe  

is the time-depended bankruptcy level. 

Similarly, the value of stock has to satisfy the following differential equation: 

  2 21
0

2
VV V tV f r Vf rf f V         (2.7) 
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Subject to the conditions 

 
( )

( , ) ( ,0)

( , ) 0T t

f V T Max V P

f Ce t 

 


 

Solving the differential equation, the authors got the closed form solution for debt under the 

safety covenants as: 

 

( ) 2 2 ( ) 2 ( )

1 2 3 4 5

( )

6 7 8

( , ) [ ( ) ( )] [ ( ) ( ) ( )

             ( ) ( ) ( )]

r T t T t T t

T t

F V t Pe N Z y N Z Ve N Z y N Z y e N Z

y e N Z y N Z y N Z

     

      

      

   

    

  
(2.8) 

Where 

 ( ) 2 2 21
/ ,  ( ) / ,  /

2

T ty Ce V r                

 2 2 2 2 21
2 / ,  ( ) 2 ( )

2
r r                   

 2 2

1

1
[ ( ) ( ) ( )( )] / ( )

2
Z Ln V Ln P r T t T t          

 2 2

2

1
[ ( ) ( ) 2 ( ) ( )( )] / ( )

2
Z Ln V Ln P Ln y r T t T t           

 2 2

3

1
[ ( ) ( ) ( )( )] / ( )

2
Z Ln P Ln V r T t T t          

 2 2

4

1
[ ( ) ( ) 2 ( ) ( )( )] / ( )

2
Z Ln V Ln P Ln y r T t T t           

 2 2 2 2

5 6[ ( ) ( )] / ( ),  [ ( ) ( )] / ( )Z Ln y T t T t Z Ln y T t T t            

 2 2 2 2

7 8[ ( ) ( )] / ( ),  [ ( ) ( )] / ( )Z Ln y T t T t Z Ln y T t T t            
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2.2.2 Subordination arrangements 

The second kind of bond indenture provision is a subordination arrangement. It means that there 

exist two kinds of debt holders, senior debt holder and junior debt holder. Junior debt holders are 

subordinated to senior debt holders: they can get paid only after the promised payments to senior 

debt holders have been fully fulfilled at maturity. Suppose the payments to senior and junior debt 

holder are P and Q respectively. The author argued that the value for senior debt is the same as 

the value of debt in safety covenants provisions, and the value of junior debt is given by the 

following expression: 

 

( ) ( )

( ) ( )

( )

( , ; , ) ( , ; , ),    1

( , ) ( , ; , ) ,                       1

,                                                                 

r T t r T t

r T t r T t

r T t

F V t P Q Pe F V t P Pe if

P Q
J V t F V t P Q Pe Pe if

P

P
Qe if

  

 



   

   

 

  


    


Q

P











 (2.9) 

Where 
( )( , ; , )r T tF V t P Pe  

denote the expression given in (2.8), and 
( ) )r T tPe  

is the safety 

covenants boundary.  

2.2.3 Restrictions on the financing of interest and dividend payments  

Under the third kind of bond indenture provisions, the author supposed that the firm has interest 

paying bonds outstanding. It must fulfill these payments to the bond holder periodically. Once the 

firm missed one of these interest payments, the bondholder will force a reorganization and take 

over the firm. However, in this model, raising money by selling part of the firm asset is totally 

forbidden. Therefore, the stockholder can only issue new securities to meet the requirement of the 

payments. But in some situation the stockholder may not be able to do this if the equity value 

after the payments would be less than the payments. The author argued that even if the 

stockholders offer an equity issue which will dilute their own interest, there might be no taker for 
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the issuance. Therefore, it explained the observed fact that many firms end up with bankruptcy 

even if their asset value is still quite significant. On the other hand, if the firm issues new bond, 

the old bond holders must require that the new bond be subordinate bond. However, issuing a 

new junior bond at this situation would in fact help the senior bond holder and hurt the 

stockholder. Because issuing junior bond will make it more likely that interest payments will be 

missed and the bondholder will take over the firm. After this discussion, the authors stated that 

the value of security should satisfy the following equation: 

 2 21
0

2
VV VV F rVF rF C      (2.10) 

Then, the solution can be obtained as follow: 

 1 1( ) [( ) ( ) ]( )
1 1

C C
F V V

r r

    

 

    
 

 (2.11) 

Where  

 22 /r   

And C is the continual interest payment of the bond. 

2.3 The Longstaff and Schwartz (1995) and Collin-Dufresne and Goldstein 

(2001) models 

After Black and Cox (1976), two other important structural models were presented in the 

literature. One such structural model is the Longstaff and Schwartz model. The authors adopted 

most features from Merton (1974) and Black and Cox (1976), while gradually relaxing more 

assumptions and examining more variables that might affect the credit spread. As in the previous 

models, they also allow the firm value to follow a diffusion process, but with one step further: 
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they make the interests rate time varying and following a diffusion process itself. Then basically, 

this model is a two dimensional diffusion model rather than the previous one-dimensional model. 

Moreover, in their model, a bankruptcy cost was introduced. With  percent bankruptcy cost, if 

default happens, the bond holder will only receive 1-（ ）percent of the face value of the default 

boundary, making their model more realistic. And they also challenged the strict absolute priority 

rules which were discussed in the Black and Cox (1976) model. They argued that growing 

evidences shows that in realistic corporate restructuring, the absolute priority rules are frequently 

violated. Furthermore, the authors provided evidence supporting that the actual payments 

allocation among different debt holders might be affected by many other factors such as: firm size, 

bargaining power of the debt holder, the strength of ties between firm manager and stockholders. 

Despite all these improvements of their model, they still adopted the setup in Black and Cox 

(1976) that the default boundary is a prefixed level which will not change during the process. In 

general, their major contributions in this model as they announced in paper are two aspects: first, 

the introduction of time varying interests rate; second, the violation of strict absolute priority 

rules. 

In their model, the asset dynamic is as follow: 

 
 

1

2

dV Vdt VdZ

dr r dt dZ

 

  

 

  
 (2.12) 

Where 1Z and 2Z are standard winner process,  ,  ,  ,  , and  are constants, and the 

asset dynamics of r are drawn from the Vasicek (1977) model. 

They derive the following expression for the value of fixed rate debt in their model: 

 ( , , ) ( , ) ( , ) ( , , )P X r T D r T D r T Q X r T   (2.13) 

Where 
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 

 

   

   

1

1 1

1

1

( , , , )

( )

( ) ( ),    2,3,...,

( ) ,

, ,

n

i

i

i

i i j ij

j

i

ij

Q X r T n q

q N a

q N a q N b i n

Ln X M iT n T
a

S iT n

M jT n T M iT n T
b

S iT n S jT n











  

 









  

And where 

 

      

       

       

2 2 2

2 2 3

2 2

2 3 3

2 2 2
2

2 2 3 3

, exp exp 1
2 2

               1 exp exp 1 exp
2

1 exp 1 exp 2
2 2

M t T t T t

r
t T t

S t t t t

     
 

   

  
  

   

    
  

    

   
         
   

   
           
   

     
              
     

 

And ( , )D r T is the value of a riskless discount bond given by Vasicek (1977) and have the 

following form: 

     ( , ) expD r T A T B T r   (2.14) 

Where 

 

       

 
 

2 2 2

2 3 2 3
exp 1 exp 2 1

2 4

1 exp

A T T T T

T
B T

    
 

    





     
             
     

 


 

Then, the expression for the value of floating rate debt is given as: 



 

14 
 

 ( , , , ) ( , , ) ( , , ) ( , ) ( , , , )F X r T P X r T R r T D r T G X r T      (2.15) 

Where 

           
2 2

2 2
( , , ) exp 1 exp exp exp exp

2
R r T r T

  
     

  

   
            

   
 

 
 

 
 

1

, /
( , , , , ) ,

/

n

i

i

C iT n
G X r T n q M iT n T

S iT n






  

And where 

 

       

       

2

2

2

2

, exp exp , 1

            exp exp exp 2 , 1
2

C T Min t

t Min t

 
   

 


   



 
    
 

   

 

After Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein (2001) also proposed a two 

factor model with stochastic interest rate which took a step further in relaxing the constant capital 

structure assumption and allowing the firm to issue new debt in the future. They also argued that 

there exists a target leverage level for each firm or each kind of industry. Then, the process for 

firm leverage follows mean-reverting asset dynamics, which means the firm will issue more debt 

if its leverage is below the target and otherwise retire the debt. In the later empirical work of 

Huang and Zhou (2008), the Collin-Dufresne and Glodstein (2001) model was the only one that 

survived their empirical tests. 

2.4 The Leland (1994b) model 

Leland (1994a) derives the close form solutions for corporate debt and optimal capital structure 

under an infinite maturity framework. Moreover, it introduces the impact of tax shield and 

bankruptcy cost into the model for the first time. The Leland (1994b) model inherited most of its 
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assumptions but with one very important modification: changing the maturity of bonds from 

infinity to arbitrary maturity. However, to keep the time-homogeneous cash flow feature of the 

debt, the new model allows a constant fraction of currently outstanding debt to be retired and 

replaced by newly-issued counterpart. Then the debt service cash flow will be constant as long as 

the firm is solvent. The author defined the rate at which the principal of debt is retired as the 

retirement rate g. We assume that at time t =0 the firm has total principal P , paying a constant 

total coupon rate C . As time goes by, the remaining value for this debt will be
gte P

. The 

bondholder will receive the cash flow including coupon payments and fraction repayment of 

principal as  gte C gP  . Average debt maturity is given by: 

  
0

1gtM t ge dt
g



    (2.16)                                                                                                

As in the previous Merton (1974), Black and Cox (1976) and Leland (1994a) studies, the firm 

value V follows a diffusion asset dynamic with constant volatility: 

  ,
dV

V t dt dz
V

    (2.17) 

Where dz is standard Brownian motion. This process will continue endlessly as long as the firm 

is solvent. The default is triggered when V first touches BV , the default boundary which is 

endogenously determined by a “Smooth Pasting” condition.  

Under this setup, Leland (1994b) derived the closed form solution for corporate debt D , firm 

value v , equity value, E and endogenous default boundary BV . 

Corporate debt value D : 
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  1 1

y y

B

B B

C gP V V
D V

r g V V


     
       

      

 (2.18) 

Where  

 
     

0.5
2

2 2 2

2

0.5 0.5 2r r g r
y

    



       
    (2.19) 

 is the fraction of value lost in the event of bankruptcy; is the proportional payout rate; 

 1 BV is the total amount that bondholder will receive if default happens. 

Firm value v : 

 v V TB BC    (2.20) 

It can be interpreted as the total value of the firm equals the unlevered firm value plus the value 

of tax benefit, minus the bankruptcy cost. Tax benefit and bankruptcy cost are as follows: 

  / 1

x

B

V
TB C r

V


  
    
   

 (2.21) 

 

x

B

B

V
BC V

V




 
  

 
 (2.22) 

Implying: 

 

  / 1

x x

B

B B

V V
v V C r V

V V
 

     
       
     

 (2.23) 
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Where x is given by equation (2.4) of y by setting g =0, another word, when the average 

maturity of debt is infinity. 

Equity value E : 

  [1 ] 1 1

x x y y

B B

B B B B

C V V C gP V V
E V V V

r V V r g V V


 

             
                 

            

(2.24) 

This value of equity is calculated as firm value minus debt value: E v D  . v  and D are 

given by equations (2.23) and (2.18). 

Endogenous default boundary: 

 

 

 1 1
B

C gP y Cx

r g r
V

x y



 

 
 

 
  

 (2.25) 

This closed form solution for endogenous default boundary is derived by applying the “Smooth 

Pasting” condition.  

Therefore, we can clearly see that under this framework of Leland (1994b), the very neat and 

intuitive closed form solution for all the balance sheet items we are interested in can be derived 

easily. Due to its simplicity of computation and straightforward intuition, we apply this model in 

our empirical estimation as a benchmark to compare with the CEV model. However, there is a 

clarification needed to be made: in our estimation, we used the KMV
4
 default boundary instead 

of the endogenous default boundary to make our comparison of these two models more directly. 

                                                           
4
 Moody’s KMV defines as trigger value 0.5*Short LongK P P  . Where P represent firm liability. 
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2.5 The Perrakis and Zhong (2013) CEV model 

This CEV model is the main target of our empirical estimation and test. It was derived in 

Stylianos Perrakis and Rui Zhong’s working paper “Structural Models of the Firm under 

State-Dependent Volatility: Theory and Empirical Evidence”. The authors took the Leland 

(1994b) as their base case and introduced the time-varying volatility into the model. The major 

assumptions also follow the previous models: continuous coupon payment, finite maturity for 

debt, endogenous default boundary
5
 and first passage time default. The unlevered firm valueV

following a diffusion process with state dependent volatility  DV (Q-distribution) 

 ( ) ( )D QdV
r q dt V dW

V
    (2.26) 

Where r is the risk free rate; q is the payout rate of the asset, including coupon to debt-holder 

and dividend to shareholder; ( )DV is the state dependent volatility; W is the standard 

Brownian motion. Then if we consider the bond maturity date T , and the first time firm value 

touches the boundary  , then we will have the following asset dynamics: 

 
( ) ( ) ,  if 0

min{ , } if 0

D Qt

t

t

dV
r q dt V dW t T

V

V V K t T

 




     


    

 (2.27) 

 

Where K is the default boundary. Once the firm valueV passes this value for the first time, the 

default will be triggered and the debt-holder will receive  1 K . Under the CEV model, the 

                                                           
5
 In our empirical estimation and test, we reduce this endogenous default boundary into a KMV pre-fixed 

default boundary as we did for the Leland (1994b) model to make the computation more efficient and 

comparison between these two models more directly. 
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state-dependent volatility then can be presented as ( )DV V   .  , the elasticity of volatility, 

is the key parameter in the CEV model, which is also the key parameter in our estimation. When 

 0 0    then the volatility is positively (negatively) correlated with firm value; when 

0  , the model is reduced to constant volatility as in Leland (1994b). In Perrakis and Zhong 

(2013), the authors adopt 0  without further restrictions. However, in this paper, our 

empirical results can give reader an idea of how exactly beta is distributed across our sample. 

To make the debt maturity finite in this model, the authors also applied the continuous retirement 

of fraction of the debt principal and replaced it with newly issued equal amount of debt. The 

retirement rate is also g , and satisfies the same relationship as Leland (1994b) does in equation 

(2.16): 

  
0

1gtM t ge dt
g



   

Under this framework, Perrakis and Zhong (2013) derived the close form solution for corporate 

debt value, firm value and equity value. 

Corporate debt D : 

  
( ) ( )

, , 1 (1 )
( ) ( )

r g r g

r g r g

V VC gP
D V K g K

r g K K

 


 

 

 

 
       

 (2.28) 

Where  
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( )

( )

r g

r g

V

K









is the expected present value of one dollar payment when bankruptcy happens.
6
 The 

expression for can be found in Lemma 2 from Perrakis and Zhong (2013): 

  
 

 

1

2 2
,

1

2 2
,

, 0, 0

, 0, 0

x

k m

r
x

k m

V e W x r
V

V e M x r















 

 
  

 (2.29) 

Where  

   2

2

1
 , ,

4

r q
x V sign r q m 

  




     

 
1 1

2 4 2 | ( ) |

r
k

r q 

 
   

 
 

Where  ,k mW x and  ,k mM x are Whittaker functions
7
. 

Firm value v : 

    , , ( , )v V K V TB V K BC V K    (2.30) 

Where: 

  
( )

,
( )

r

r

VwC wC
TB V K

r r K




   (2.31) 

                                                           
6
 The cumulative default probability  A T and the present value of one dollar payments when default 

happens  B T are very crucial for our estimation.  Perrakis and Zhong (2013) applied 

Laplace-transformation and inverse Laplace-transformation to get the closed-form solution for them under 

finite maturity. The details and proofs of these equations can be found from Proposition 2 in Davydov and 

Linetsky (2001) and Appendix A in Perrakis and Zhong (2013). 
7
 To avoid the enormous time and resources consumption when computing the Whittaker Function in 

Matlab, we used numerical method instead of the Matlab build-in function to calculate the Whittaker 

Function. It will be discussed in detail in a later section of this paper. 
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  
( )

,
( )

r

r

V
BC V K K

K





  (2.32) 

Then: 

  
( ) ( )

,
( ) ( )

r r

r r

V VwC wC
v V K V K

r r K K

 


 
     (2.33) 

Where w is the tax rate. The intuition and structure here is similar with the one in Leland (1994b). 

Equity value E : 

 E v D   (2.34) 

Then: 

 
 

 

 

 

 

 

( )
1 1 (1 )

( )

r g r gr r

r r r g r g

V VV VwC C gP
E V K K

r K K r g K K

  
 

   

 

 

   
              

(2.35) 

3. Empirical estimation method and techniques 

3.1 Parameters to be estimated 

The unlevered firm value is the unobservable basic process in structural models. Our task here is 

to estimate the components of the unlevered firm value process; for this we need the parameters 

of the basic unlevered firm value process. In the Leland (1994b) model, the asset dynamics of this 

unlevered firm value are: 

  ,
dV

V t dt dz
V

    (3.1) 

Since we are interested in the risk neutral version of this process, the only parameter that needs to 

be estimated is . According to the model specification, the endogenous default boundary should 
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be another important component to be estimated for the Leland (1994b) model. However, for 

simplicity of the calculation and the direct examination of the effect of time-varying volatility, we 

set the default boundary exogenously, for both the Leland (1994b) and the Perrakis and Zhong 

(2013) models. We implemented the KMV default boundary in our estimation.
8
 Thus, the only 

difference between these two models is the form of the diffusion volatility. 

The CEV risk neutral asset dynamics for the unlevered firm value in Perrakis and Zhong (2013) 

is: 

  = - +dV r q Vdt V dW  (3.2) 

Then for this model, the parameters that need to be estimated are and  .  is the elasticity 

coefficient for the CEV process as mentioned in the previous section. However,  does not have 

a direct economic intuition here. Thus I define a new variable 0 here, which satisfies the 

following relationship: 

 
0 0= V    (3.3) 

Where 0V is the initial value of firm, and is scaled to value 1 in our estimation.
9
 Obviously, 0

here is the initial volatility of the firm value. Since it has a straightforward economic intuition, we 

estimate this parameter instead of  . There is a good reason we did this. Since we apply 

numerical methods to estimate the parameters we are interested in, we have to guess an initial 

value of the parameters to start the process. If the parameters have straightforward economic 

intuition, it will be easier for us to give those parameters meaningful initial guesses. Moreover, 

once we get the results of our estimation, it will give us the convenience to check whether the 

                                                           
8
 Moody’s KMV defines as trigger value 0.5*Short LongK P P  . Where P represent firm liability. 

9
 Other related balance sheet items are also scaled accordingly. The details will be discussed in the data 

section. 
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results fall into a reasonable range. Then, after we get the value of 0 , we can calculate the 

value of  by applying the above relationship.  

3.2 Moment conditions and the GMM method 

To estimate those parameters we are interested in by the GMM method, we first construct our 

moment conditions which will be used to calculate the objective function for the GMM method. 

Follow Huang and Zhou (2008), we use the term structure of CDS spreads and volatility as part 

of our moment conditions. In addition, we incorporate equity value and leverage ratio into our 

moment condition. In particular, we have nine moment conditions: equity value, equity volatility, 

leverage ratio, and six different maturity CDS spreads (1, 2, 3, 5, 7, and 10 years). First, we will 

present the method used to calculate these values.  

Model predicted CDS spreads:
10

 

  
       

   

4

-1

=1

4

=1

1- 0, 0, - 0,

0, =       

0, 0, /4

T

i i i

i

T

i i

i

R D T Q T Q T

CDS T

D T Q T

  


 (3.4) 

Here we assume that the CDS premium payment is quarterly. R is the recovery rate,  0, iD T is 

the discount factor, and  0, iQ T is the survival probability during the time interval 0, iT . The 

CDS spreads can be calculated while the survival probability can be derived based on the asset 

diffusion process. Actually, the survival probability  0,Q T is the crucial connection bridge 

between our empirical estimation and the model: 

    0, =1- 0,  Q T A T  (3.5) 

                                                           
10

 This formula for CDS spreads is directly adopted from Huang and Zhou (2008). 
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Where  0,  A T is the first passage default probability. Unlike the first passage default 

probability of the Leland (1994b) model, the probability for the Perrakis and Zhong (2013) CEV 

model is very complicated. It has already been proved that the first passage default probability for 

the CEV model can be calculated by the formula bellow:
11

 

  
 

 
1

=  
V

A T inverselaplace
K







 

 
  

 
 (3.6) 

Where can be calculated by applying equation (2.29). However, the build-in functions in Matlab 

to calculate the Whittaker Functions W and M are very inefficient. Moreover, there is an 

overflow problem with the Matlab programing,
12

 so we used numerical methods to approximate 

the Whittaker Functions in our estimations. The details can be found in Appendix A.  

Then applying the inverse-Laplace transformation we can get the default probabilities we need 

for the CDS spreads.
13

  

Model predicted equity value: 

  

 

 

 

 

 

( )
   1 1 (1 )

( )

r g r gr r

r r r g r g

E v D

V VV VwC C gP
V K K

r K K r g K K

  
 

   

 

 

 

   
              

 (3.7) 

Notice that in the expression for the equity value, there are several  -values in our calculations. 

For these we adopt the same numerical method as the one presented in Appendix A to 

approximate the value of the Whittaker Function and  . 
14

 

                                                           
11

 The proof can be found in Perrakis and Zhong (2013) Appendix A and in Proposition 2 in Davydov and 

Linetsky (2001). 
12

 Extremely small numbers in Matlab will be treated as zero. However, when this number takes the 

position of denominator, overflow will happen. 
13

 The numerical method of inverting Laplace transforms can be found in Section 5 of Kuo and Wang 

(2003). We present the method in Appendix B in our paper. Note that we have modified some of the 

parameters of their method. 
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Model predicted equity volatility: 

 

1

E

E
V

V

E






  (3.8) 

This relationship between equity volatility and firm value volatility was first pointed out by 

Merton (1974). We can see that both the equity volatility and firm value volatility here are 

time-varying. Since we already have the expression for equity value E , the crucial part of this 

formula now is the partial derivative of equity value with respect to firm value. We can find the 

answer in Appendix B of Perrakis and Zhong (2013). However, if we directly apply their 

expressions, we will encounter some technical issues such as the overflow of the Matlab 

programming. Therefore, we have to find a way to numerically estimate the partial derivative. We 

provide our numerical solution in Appendix C of this paper. 

Model predicted leverage ratio: 

 
D

Lev
D E




 (3.9) 

Where D and E can be calculated by equation (2.18) and equation (2.24). 

Then we can use these values to build up our moment conditions and conduct our empirical test. 

In our first exercise, we only incorporate seven moments: equity volatility, and term structure of 

CDS spreads. We denote the estimation parameter vector  1 0 ,   . The Leland (1994b) 

model will be a special case when 0  . Thus, we will have the following over-identified 

system: 

                                                                                                                                                                             
14

 The proof can also be found in Appendix B of Perrakis and Zhong (2013) 
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 (3.10) 

Where 1f is a function of our parameter set at each time point 1,2,...,t T . E , is observed 

equity volatility.  , iCDS t T  is observed term structure of CDS spreads. Under the null 

hypothesis that the model is correct, we have: 

  1 1, 0E f t     (3.11) 

By applying the GMM method, we want to minimize  1 1,E f t   . We set: 

    1 1 1 1

1

1
, ,

T

G t f t
T

    (3.12) 

Then we can estimate our parameter 1 by minimizing the following objective function: 

    
'

1 1 1 1 1=arg min , ,G t WG t    (3.13) 

WhereW is the inverse of the variance-covariance matrix of the moment conditions. In Huang 

and Zhou (2008) and Elkamhi, Ericsson and Jiang (2011), they specify that the weighted matrix 

W is the asymptotic covariance matrix. However, from page 443-447 in Green’s Econometrics 

Analysis (Sixth Edition), we can see that the most efficient weighted matrix is the inverse of the 

variance and covariance matrix of the moments. Moreover, intuitively, due to the different 

magnitude of each moment, if we directly apply the covariance matrix as our weighted matrix, it 

will definitely give different weights to different moments in our estimation, causing bias. On the 

other hand, the inverse of the variance-covariance matrix will give each moment equal weight, 
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incorporating information in different moments equally. Therefore, we chose the inverse of 

variance matrix to be our weighted matrix. We also used the variance matrix as a robustness 

check and, as we predicted, the results were not as good. The results of this robustness check are 

not reported in this paper. The details of the GMM method are presented in Appendix D of this 

paper. 

In our next exercise, we add leverage ratio and equity value in our estimation. Thus, we have the 

following over-identified restrictions: 
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  

 (3.14) 

Where 2 is the parameter vector. CDS , E , E , and Leverage are the observed CDS term 

structure, equity volatility, equity value, and leverage ratio respectively. Then, it is obvious that 

each moment in this system is the difference between the observed value and its model calculated 

counterpart. This difference is the pricing error of the model.  

As in the previous exercise, the null hypothesis is that the model is specified correctly; we have: 

  2 2 , 0E f t     (3.15) 

To minimize  2 2 ,E f t   by the GMM method, we set: 
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    2 2 2 2

1

1
, ,

T

G t f t
T

    (3.16) 

Our objective function will be: 

    
'

2 2 2 2 2=arg min , ,G t WG t    (3.17) 

The calculation of the weighted matrix W is the same as the one in the previous exercise. 

4. Data description 

We incorporate data from different sources: Credit Default Swap market, equity market, option 

market, debt market, and firm financial statements. 

Our CDS spreads data is from the Markit database. The data period is from January 2001 to 

December 2011. We restrict our sample to United States firms and the currency is in US dollars. 

Moreover, we focus on CDS contracts with modified restructuring (MR) policy because they are 

the most popular in the US market.
15

 Observations for which important variables
16

 are missing 

or have unreasonable values
17

 are deleted from our sample. After these cleaning up steps, the 

observations left will constitute our final sample. Since we need to build up our dataset monthly 

while all the CDS data from Markit is daily, we chose the last Wednesday of each month to 

represent that month and convert our daily data into monthly data. Eventually, to make our 

estimation more reliable, we only select those firms which have at least 60 months’ consecutive 

observations. 

                                                           
15

 We follow Huang and Zhou (2008) for this part. 
16

 “Important variables” means those variables which will be used in our estimation, such as Recovery 

Rate, CDS Spreads, etc.. 
17

 “Unreasonable” means the value of the variable does not make economic sense, for example, negative 

recovery rates or bigger than one CDS spreads. 
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The financial statement variables and equity variables are acquired from the Compustat and 

CRSP databases. After unifying their measurement units
18

 and standardizing
19

 them, we 

expanded their frequency form quarterly to monthly by SAS.
20

 Equity value is calculated as 

stock price times shares outstanding, firm value is calculated as book value of debt plus market 

value of equity, and payout rate is calculated as dividend payments plus interest payment scaled 

by the firm’s total assets. As for the CDS spreads data, we eliminated those observations whose 

important variables values are missing or unreasonable. 

The option implied volatility is obtained from the OptionMetrics database and the realized 

volatility is obtained from the TAQ database on five-minutes intervals and is then converted to 

monthly data. In our main test, we used implied volatility only, with the realized volatility used 

just for robustness checks. The reason is that the option implied volatility can reflect the 

information from option market. Cao, Yu and Zhong (2010) argue that implied volatility is a 

more efficient forecast for future realized volatility. 

[Insert Table 1] 

Following Longstaff and Schwartz (1995) and Collin-Dufresne and Glodstein (2001), we used the 

term structure of interest rates instead of a constant interest rate as our risk free rate. We 

interpolated our risk rate term structure from observed 3 month, 6 month Libor rates and 1, 2, 3, 5, 

7, 10 years interest rate swap rates. 

After merging and cleaning all the data from the different databases by the above criteria, we 

have 104 firms surviving in our total sample.  

[Insert Table 2] 

                                                           
18

 Unit for Compustat items is $millions and unit for CRSP items is $thousands. 
19

 The standardization is achieved by scaling the accounting items to the total assets of the firm in the first 

observation for each individual firm. 
20

 Expand Procedure is used in SAS. 
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5. Estimation Results and Analysis 

In this section, we summarize and analyze the findings of the empirical test of the GMM 

estimator defined in the last section using the CDS spreads term. On the basis of these results, we 

also compare the Leland (1994b) and Perrakis and Zhong (2013) models in terms of their 

goodness of fit. For the estimation, we use two alternative data sets in our tests: the first is the 

7-moment set, which includes 1-year, 2-year, 3-year, 5-year, 7-year and 10-year CDS spreads and 

implied equity volatility; and the second set is the 9-moment, which contains two additional 

moments, equity value and leverage.  

5.1 Summary Statistics 

In this paper, we used data from different sources and converted their frequencies to monthly. 

Table 1 defines the variables used in our empirical tests and their units of measurement. Table 2 

lists the 103 firms in our data base and provides descriptive statistics of their most important 

characteristics. Table 3 provides summary statistics on firm characteristic and CDS spreads of our 

sample firms across both rating and sector categories in terms of average value. As can be seen 

from Panel A of this table, our sample firms’ debt ranges from triple-C to triple-A. Nonetheless, 

most of our sample is concentrated in the single-A and triple-B categories, which account for 82% 

of the total, consistent with the study of Huang and Zhou (2008). In terms of the averages in the 

entire sample, the 5-year CDS spread is 61.76 basis points, implied equity volatility is 27.31%, 

and leverage ratio is 37.91%. As we expected, the CDS spreads, volatility and leverage increase 

as rating decreases. However, we note that single-B and triple-C are two exceptions, with the 

CDS spreads and implied volatilities actually decreasing as rating decreases. Since they only have 

1 observation in each category respectively, we attribute this finding to lack of sufficient sample 

size. Consistent with our intuition, the CDS spreads for all rating are increasing as maturity 

increases. 
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[Insert Table 3] 

[Insert Table 4] 

Figure 1 plots the time series of the average CDS spreads (5-year CDS spreads from January 

2001 to December 2011). As presented in the figure, the average CDS spreads show large 

variation during the period and have two peaks around late 2002 and late 2008 respectively. 

[Insert Figure 1] 

5.2 Tests for the Leland model 

We use Leland (1994b) as our benchmark model. However, to simplify the calculations at this 

point, we used the fixed exogenous default boundary instead of the endogenous default boundary 

setting. Hence, the parameter we care about in Leland model is “Sigma”, the volatility of the 

unlevered firm value. In Tables 5 and 7, the parameter estimation results are shown respectively 

for 9- and 7-moment estimations under the Leland model. As can be seen in Panel C of Tables 5 

and 7, the average values of Sigma are 15.57% and 16.18% respectively. Also shown are the test 

statistics for each rating and sector categories. The T value shown in the table are the average T 

values of the estimated parameters for each individual firm. We can clearly see that they are all 

highly significantly different from zero. However, in both tables we could not find a clear pattern 

about Sigma across different rating groups and different industrial sectors. The column titled “F 

Value” reports the optimized value of our object function, equation 3.17. And the column titled “J 

test” reports the value of the J statistic, _J T F value  .  

[Insert table 5] 

[Insert table 7] 
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In Table 9, the distributions of Sigma under the Leland model across individual firms are shown , 

respectively for 7- and 9-moment estimations. Firm “Dow Chem Co” has the largest Sigma 

values for 7- and 9-moment, 0.2974 and 0.2913 respectively; firm “Raytheon Co” has the 

smallest Sigma values for 7- and 9-moment, 0.05 and 0.05 respectively. We can see that overall, 

the Leland model with 7-moment conditions will get a bigger estimation for Sigma. However, 

even if the T-statistics under 7- and 9-moment are both highly significant, we can still observe a 

significant difference, 40.33 and 64 on average for 7- and 9-moment respectively. Since the 

T-statistics are calculated as the quotient of the values of Sigma and the standard errors of the 

sigma, the standard errors for Sigma under 9-moment conditions must be smaller than their 

counterparts under 7-moment conditions, especially since the values of Sigma under 9-moment 

conditions are generally smaller. In fact, in our estimation, most of the firms have a smaller 

standard error under the 9-moment condition, only two firms (“Merck & Co Inc” and “Wal Mart 

Stores Inc”) have a smaller standard error under 7-moment conditions. Therefore, from the aspect 

of parameter estimation, the Leland model under 9-moment conditions perform a little bit better 

than the Leland model under 7-moment conditions due to its smaller estimation standard error. 

On the other hand, if we take a look at Figure 6, we can see that from the aspect of historical data 

fitting, both Leland models with 7- and 9-moments are very similar with each other. The 

7-moment condition fit is slightly better than the 9-moment condition. 

[Insert table 9] 

Since Single-A and Triple-B CDS account for 82% in our total sample, their Sigma distribution 

are shown separately in Table 10. The average Sigma value for A- rated firms with 7- and 

9-momnet are 0.1743 and 0.1675 respectively; The average Sigma value for BBB rated firms 

with 7- and 9-moments are 0.1494 and 0.1444 respectively; The total average Sigma values for 

these firms with 7- and 9-moments are 0.1607 and 0.1549 respectively. For A rated firms, “Baker 

Hughes Inc” has the largest Sigma value of 0.2756 and 0.2749 for 7- and 9-moments respectively; 
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“Raytheon Co” has the smallest Sigma value of 0.05 and 0.05 for 7- and 9-moments respectively. 

For BBB rated firms, “Dow Chem Co” has the largest Sigma value of 0.2974 and 0.2913 for 7- 

and 9-moments respectively; “Textron Inc” has the smallest Sigma value of 0.0685 and 0.0507 

for 7- and 9-moments respectively. We can clearly see from Table 10 that the Leland model with 

7-moment conditions will yield a bigger estimate of sigma than the Leland model with 9-moment 

conditions, consistent with the result of Table 9.  

[Insert Table 10] 

5.3 Tests for the CEV model 

In the CEV model, we estimate two parameters, Sigma and Beta. Because of the computational 

complexity mentioned in the previous section of this paper, we estimated positive betas and 

negative betas separately. Then, we use the F value as the standard to decide whether our firm is 

positive beta or negative beta (whichever has the smaller F value). Table 6 shows the estimation 

results for the CEV model using 9 moments. The left panel shows the result for all firms, the 

middle part shows the firms with positive beta, and the right panel shows the firms with negative 

beta. We can clearly see that all betas in the left panel are not significant, while most of the betas 

in the middle panel and the right panel are highly significant. Our total sample here is 103 firms 

(Republic Services Inc. cannot be calculated for either positive or negative betas), the number of 

firms with positive betas is 52, and the number of firms with negative betas is 51. Hence, in the 

entire sample the values of positive betas and negative betas cancel out and make the test statistic 

not significant. Once we separate the sample into positive and negative betas, they are both very 

significant. In terms of the averages in each sub-sample, the value of beta is 0.6392 for the 

positive group and -0.5204 for the negative group, both significant. Looking at the T values, we 

find that on the individual firm level, all our estimated parameters are significant except for the 

triple-A firm with positive beta, which has a T value equal to 1.7. 
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[Insert table 6] 

Table 8 shows the estimation results for the CEV model using 7 moments. In contrast with Table 

6, the number of firms with negative beta dominates this time. The total sample number is still 

103 (Diamond Offshore Drilling Inc. cannot be calculated for both positive and negative betas), 

but the number of firms with positive beta is only 29, while the number of firms with negative 

beta is now 74, accounting for 71.84% of the total sample. All betas in the negative group are 

highly significant. When we directly compare these two CEV models with different moments 

settings, we find that the CEV model with 7-moments performs better than the CEV model with 9 

moments, with a total average J test value equal to 13.51, which is smaller than the J test value in 

the 9-moment model of 14.39. This finding is confirmed further on, by the figures presented in 

the next subsection. In addition, all T values in this test are highly significant. We can also see 

that in Table 8, the T values for both positive and negative groups are much larger than the 

corresponding T values in Table 6. This finding implies that from the point of view of parameter 

estimation, the CEV model with 7-moment conditions also perform better than the CEV model 

with 9-moment conditions. 

[Insert table 8] 

In Tables 11 and 12, we show the beta distributions across our sample firms. Table 11 presents 

the beta distribution for the CEV model with 9-moment conditions. There are 51 firms with 

negative betas and 52 firms with positive betas. Panel A shows the firms with negative betas. 

Firm “Gen Mls Inc” has the smallest beta. The average beta, average J statistic, and average T 

value are -0.5204, 14.159 and 64.8393 respectively for the negative group ; panel B shows the 

firms with positive betas. Firm “AmerisourceBergen Corp” has the largest beta. The average beta, 

average J statistic, and average T value are 0.6392, 14.6222 and 5.656 respectively for the 

positive group. Table 12 presents the beta distribution for the CEV model with 7-moment 
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conditions. There are 74 firms with negative betas and 29 firms with positive betas. Panel A 

shows the firms with negative betas. Firm “Smithfield Foods Inc” has the smallest beta. The 

average beta, average J statistic, and average T value are-0.9508, 13.4377 and 200.7618 

respectively for the negative group; panel B shows the firms with positive betas. Firm “Gen Mls 

Inc” has the largest beta. The average beta, average J statistic, and average T value are 0.5201, 

13.7058 and 61.777 respectively for the positive group. We can see that, in both 7- and 9-moment 

condition CEV model, the negative beta groups have larger T values and smaller J statistics. This 

implies that for both historical data fitting and firm level parameter estimation levels, the negative 

beta group performs better than the positive beta group. On the other hand, we can directly 

compare the test statistics between 7- and 9-moment condition models. Clearly, in both positive 

and negative beta groups, the 7-moment condition CEV model has a much larger T value and a 

smaller J statistic, implying that the leverage ratio as a moment condition in the CEV model does 

not improve the fitting and estimation ability of the model. 

[Insert table 11] 

[Insert table 12] 

5.4 Comparing results 

In Figure 2 and Figure 4, we show the 5-year CDS spreads, the historical data and the fitted 

values of both models using 7-moment and 9-moment estimations respectively. The solid line 

represent the observed historical data, the dot line represent the CEV model calculated 5-year 

CDS spreads, and the dashed line represent the Leland model-calculated 5-year CDS spreads. 

Consistent with Huang and Huang (2013), the “Credit Spread Puzzle” can be observed in the 

figures. The Leland model calculated 5-year CDS spreads are consistently underestimating the 

observed spreads during the whole period. . On the other hand, we can see that the CEV model 

calculated CDS spreads are much higher, and follow the trend more precisely than the Leland 
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model. At this point, we can state with confidence that the introduction of time varying volatility 

can enhance the fitting ability of the structural model significantly.  

[Insert figure 2] 

[Insert figure 4] 

However, when we compare the two CEV models with different moments settings, we find that 

the CEV model with 7 moments outperforms the CEV model with 9 moments. In Figure 6, we 

put all model and moments combinations together, and it is clear that the CEV model with 7 

moments is the best. 

[Insert figure 6] 

Figures 3 and 5 present the historical data fitting of equity volatility for the Lelandand CEV 

models with 7- and 9-moment conditions respectively. The Leland- calculated equity volatility is 

a little more volatile than the CEV- calculated equity volatility. However, there is no other 

obvious difference between the Leland and CEV models with different moment conditions. We 

attribute this to the weight of equity volatility as a moment condition in the estimation, which is 

not as large as the weight of CDS spreads since there are five CDS spreads moment conditions 

and only one equity volatility moment condition.  

We speculate that making Leverage a moment condition would decrease the model- calculated 

CDS spreads. In Perrakis and Zhong (2013), the authors have similar findings in their model 

calibration.  

At this point, we state that the introducing of time-varying volatility can improve the historical 

data fitting for structural model significantly, and the 7-moment condition has a better 

performance compared to the 9-moment condition. However, a comprehensive comparison 

between the CEV and Leland models should be done in a more systematic way, such as by 
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comparisons of the mean square errors of the moment conditions across all the firms. In addition, 

we can differentiate the sample firms into different quartiles by beta values and investigate the 

effect of firm characteristics on beta value by regression. Last but not least, the effect of leverage 

as a moment condition should be examined thoroughly, ,since the major difference between 7- 

and 9- moment conditions is the leverage ratio.  

6. Conclusion and suggestions for future research 

In trying to explain the “Credit Spread Puzzle”, we empirically examined two competing 

structural models: Leland (1994b) and Perrakis and Zhong (2013) Constant Elasticity of Variance 

(CEV) model. The sample we applied in our test covered the time period from 2001 to 2011. The 

GMM method was used in this paper to conduct the parameter estimation.  

One of our most important findings and conclusions is that the introduction of time-varying 

volatility into the structural model can significantly improve the model fitting compared to the 

constant volatility one. We found that most of the betas in the CEV model are highly significant 

and the time series figures of model calculated CDS spreads show that the Perrakis and Zhong 

(2013) model performs much better than Leland (1994b) and can fit the historical CDS spreads 

data better. 

Another finding is that Leverage as a moment condition in the GMM test has the effect of driving 

the model predicted CDS spreads downwards, while CDS spreads as moment conditions have the 

opposite effect. This finding is consistent with the finding in Perrakis and Zhong (2013) in their 

calibration.  

Last, we note several ideas for expanding and solidifying the conclusions of this paper. First, we 

note that in our estimation we only used option implied volatility to do the calculations. As a 

robustness check, the realized volatility can be used to conduct the same estimations. Second and 
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most important, out of sample test of the two models should definitely be carried out to verify the 

predictive power of the models. Third, since we have already found that leverage as a moment 

condition has the effect of suppressing the CDS spreads, we should delete leverage and do an 

8-moment condition estimation to check independently the effects of equity value on the CDS 

estimates. Fourth, we should examine the distribution of the CEV model’s beta estimates across 

firms, by identifying firm characteristics that affect their beta values. Last but not least, the 

difference of the pricing errors between the Leland and CEV models should be examined and 

quantified more systematically. 
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Appendix A: Numerical approximation for Whittaker Functions 

The definition of Whittaker Functions can be found on “Wolfram MathWorld” 

website
21

.According to their definition, Whittaker Functions can be written as: 
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Where 1 1F is the first kind Confluent Hypergeometric Function, andU is the second kind of 

Confluent Hypergeometric Function
22
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Where: 
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   and are rising factorial
k k

a b  

The expressions for m and k are given in equation (2.14). For Whittaker M function, the 

expression is basically an infinite summation. To get reasonable accuracy without sacrificing too 

much efficiency, we chose to pick out the first 2000 terms in this summation to calculate the 

function.  

                                                           
21

 Website address: http://mathworld.wolfram.com/WhittakerFunction.html 
22

 We found that the definitions or expressions for Whittaker Function W and M are not unique. However, 

what we report here are the most efficient expressions for those two functions to do our task. 

http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html
http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheSecondKind.html
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On the other hand, however, the estimation for the Whittaker W function is a little bit tricky. The 

value of parameter “ a ” for  ; ;U a b x is negative due to its expression. The negative parameter 

in the Gamma Function will cause a lot of trouble in the calculations: first, when the parameter is 

a negative integer, the value of the Gamma Function will be infinite; second, for some negative 

values of the parameter, the magnitude of the value of the Gamma Function will be too large and 

would cause the overflow of the programming. Therefore, we have to find a way to get rid of the 

Gamma Function  a  in  ; ;U a b x . Fortunately, in our estimation, the calculation of 

always comes in pairs under the form of:  
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After eliminating the Gamma Function  a , the calculation became fairly easy and 

straightforward. In addition, we did some transformations to the integrand of the above 

expression. The reason is that we have to eliminate the parameter a on the exponential due to its 

magnitude, which might cause some calculation problems. We can clearly see that after the 

transformation, the positive a  and negative a  will offset each other to some extent.  

Even though we use the definition of Whittaker functions to approximate the calculation of the 

exact function,.,the results we get from these approximations are very accurate when compared to 

the results we get from the built-in function of Matlab and Mathmatica.  

Appendix B: Numerical method of inversion of Laplace transformation. 

We directly apply the method provided in Kuo and Wang (2003) to do the Inverse-Laplace 

transformation. The method is presented as follows: 
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nf is the inverse-Laplace transformation. Breaking down this expression, we have: 
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Which is the extrapolation weight for an n-point Richardson extrapolation.  k B
f t
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Where f is the Laplace transformation: 
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Therefore, the counterpart of this Laplace transformation in our paper is
 

 
1 V

K
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

 
 . Substituting 

this expression into the formula presented above, we can get the inverse-Laplace transformation 

for our calculation. 

However, we still made some small modifications to this method. In Kuo and Wang (2003), the 

authors stated that the typical value for parameter B is 2 or 3, and the typical range for parameter 

n is from 5 to 10. In our work, for  >0, we found that n=8 and B=2 is the most efficient value. 

For <0, we found that for large values of n, the algorithm did not converge very well, especially 

for very short time periods. Therefore, for time periods less than two quarters, we set n=4, 

otherwise, n=5, and we set B=0 for all time periods.  

Appendix C: The numerical approximation for the partial derivative of equity value with 

respect to firm value. 

In Appendix B of Perrakis and Zhong (2013), the authors gave their expression for the partial 

derivative of equity value with respect to firm value as follows: 
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However, when we apply this expression to our empirical work, the programming cannot 

generate the right value. After scrutinizing the code piece by piece, we located the problem in the 

part of the partial derivative of  with respect to firm value. Therefore, we implemented the 

following definition of the derivative to get around this problem: 

 
   

2

f y y f y ydy

dx y

  
  

Hence: 

 

     

     
2

2

r r r

r g r g r g

V V V V V

V V

V V V V V

V V

  

    

   




   




 (C.2) 

Incorporating the adjacent multiplier, we got: 
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We can see that, after this transformation, the expression changes into a familiar  over  shape. 

Therefore, we can apply the technique derived in Appendix A to approximate its value.  

Substituting into the whole expression of the partial derivative of equity value with respect to 

firm value, we can get: 
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Appendix D: GMM estimation. 

One advantage of the GMM method is that the weight matrix W can be updated during every 

iteration of the estimation. Therefore, the objective function is evolving during the whole 

estimation process by incorporating new information from the last iteration. The entire estimation 

starts from setting the weight matrix W equal to a same dimension identityl matrix I . Then, 

during the first iteration, the objective function will be like: 

    
'

1 1=arg min , ,G t G t    (D.1) 

Which is similar to an OLS estimation. After we get the parameter vector  , we can build up 

the moment conditions and weight matrix 1W based on this parameter vector. Then the objective 

function is updated to: 

    
'

2 2 1 2=arg min , ,G t W G t    (D.2) 

Then, the new parameter vector 2 is used to construct a new weight matrix. This procedure will 

continue for several iterations and eventually converge to the desired parameter. In our estimation, 

we set our number of iterations to 8. 
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Table 1: Description of the important variables 

This table shows how we constructed the most important variables that will be heavily used in our 

estimation. Panel A shows the variables from COMPUSTAT database; panel B shows the variables from 

CRSP; panel C shows the data from Markit database; panel D shows volatility measurements. 

Table 1 

Panel A: Description of Compustat variables           

Variable   Description             

LCTQ  Current liability total. It is used to calculate the value of the asset as 

following: 

V=LCTQ+LLTQ+PRC*SHROUT 

LLTQ  Long term liability total. It is used to calculate the value of asset. 

XINTQ  Interests and related expense. It is used to calculate the payout rate: 

Payout=XINTQ+DVY 

DVY  Cash dividend. It is used to calculate the payout rate. 

Panel B: Description of CRSP variables           

Variable   Description             

PRC  Stock price. It is used to calculate the value of asset. See panel A. 

SHROUT  Shares Outstanding. It is used to calculate the value of asset. See 

panel A. 

Panel C: Description of Markit variables 

Variable   Description             

spre1y 

 

CDS spread for 1 year maturity 

      Spre2y 

 

CDS spread for 2 year maturity 

      Spre3y 

 

CDS spread for 3 year maturity 

      Spre5y 

 

CDS spread for 5 year maturity 

      Spre7y 

 

CDS spread for 7 year maturity 

      Spre10y   CDS spread for 10 year maturity             

recovery_new  Recovery Rate       

 

Panel D: Volatility measurement 

Variable   Description             

Option implied volatility  Extracted from OptionMetrics database.       

Realized volatility  

 

Extracted from TAQ database by five minutes 

interval, and converted to monthly frequency.       
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Table 2: Summary Statistics of Individual Firms 

This table reports the summary statistics of individual firms. We have 104 firms in our total sample. Note 

that in sector column, BM, CG, CS, EN, HC, IN, TE, TS are abbreviations of  Basic Materials, Consumer 

Goods, Consumer Services, Energy, Healthcare, Industrials, Technology and Telecommunications Services, 

respectively. The payout ratio is the sum of cash dividend and interest expense divided by the total asset. 

The recovery rates are the estimated recovery rates reported in Markit datasets. The implied volatilities are 

extracted from Optionmetrics for the at the money call options. 

Table 2 

Company Name Sector Rating 

Begin 

date 

End 

date 

Total 

Asset 

(billion) 

Payout 

Ratio 

Leverage 

Ratio 

Recovery 

Rate 

Implied 

volatility 

3M Co IN AA 04/2003 12/2011 69.56 0.01 0.18 0.40 0.22 

Abbott Labs HC AA 10/2003 12/2011 98.95 0.01 0.23 0.40 0.21 

Air Prods & Chems Inc BM A 04/2003 09/2008 20.78 0.01 0.30 0.40 0.22 

Alcoa Inc. BM BBB 08/2001 09/2008 45.79 0.01 0.42 0.40 0.34 

AmerisourceBergen Corp CS BBB 02/2004 12/2011 17.37 0.00 0.55 0.40 0.27 

Anadarko Pete Corp EN BBB 01/2003 09/2008 40.52 0.01 0.48 0.40 0.31 

Anheuser Busch Cos Inc CG A 06/2003 10/2008 51.64 0.01 0.25 0.40 0.18 

APACHE CORP EN A 03/2003 09/2008 31.58 0.00 0.30 0.40 0.31 

Archer Daniels Midland  CG A 06/2003 09/2008 31.83 0.01 0.44 0.40 0.30 

Arrow Electrs Inc CG BBB 11/2001 12/2011 7.43 0.00 0.57 0.40 0.38 

Autozone Inc CS BBB 03/2003 07/2011 12.58 0.00 0.35 0.40 0.27 

Avon Prods Inc CG BBB 01/2003 12/2011 19.04 0.01 0.25 0.40 0.31 

Baker Hughes Inc EN A 11/2001 09/2008 20.82 0.01 0.17 0.40 0.34 

Baxter Intl Inc HC A 02/2002 12/2011 36.91 0.01 0.26 0.40 0.26 

Black & Decker Corp CG BBB 05/2002 01/2010 8.50 0.01 0.47 0.41 0.32 

Boeing Co IN A 04/2001 09/2008 92.46 0.01 0.50 0.40 0.28 

BorgWarner Inc CG BBB 11/2001 09/2008 5.21 0.01 0.43 0.40 0.31 
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Bristol Myers Squibb Co HC A 04/2003 12/2011 64.12 0.02 0.26 0.40 0.25 

Campbell Soup Co CG A 06/2002 10/2011 17.43 0.01 0.32 0.40 0.21 

Caterpillar Inc IN A 04/2001 09/2008 67.27 0.01 0.54 0.40 0.28 

CenturyTel Inc TS BBB 03/2003 04/2008 8.99 0.01 0.50 0.40 0.22 

Clorox Co CG BBB 07/2004 07/2009 13.16 0.01 0.32 0.40 0.21 

Coca Cola Entpers Inc CG A 06/2003 09/2008 30.04 0.01 0.66 0.40 0.23 

Colgate Palmolive Co CG AA 08/2003 12/2011 41.92 0.01 0.19 0.40 0.20 

ConAgra Foods Inc CG BBB 08/2001 07/2011 20.08 0.03 0.42 0.40 0.22 

ConocoPhillips EN A 01/2003 09/2008 152.40 0.01 0.45 0.39 0.25 

Costco Whsl Corp CS A 07/2004 07/2011 35.93 0.00 0.29 0.40 0.25 

CSX Corp IN BBB 01/2003 09/2008 29.17 0.01 0.58 0.40 0.29 

Cytec Inds Inc BM BBB 02/2004 12/2011 4.30 0.00 0.49 0.40 0.36 

Danaher Corp IN A 01/2004 12/2011 29.13 0.00 0.23 0.40 0.25 

Diamond Offshore 

Drilling 
EN A 07/2003 09/2008 10.89 0.02 0.19 0.40 0.37 

Dover Corp IN A 12/2004 12/2011 12.74 0.01 0.31 0.40 0.29 

Dow Chem Co BM BBB 01/2002 09/2008 65.87 0.02 0.44 0.40 0.28 

Eastman Chem Co BM BBB 01/2003 09/2008 8.57 0.01 0.52 0.40 0.25 

FedEx Corp IN BBB 08/2002 07/2011 36.34 0.00 0.30 0.40 0.28 

Gen Dynamics Corp IN A 11/2004 12/2011 41.54 0.01 0.36 0.40 0.24 

Gen Mls Inc CG BBB 04/2002 07/2011 31.57 0.02 0.39 0.40 0.19 

Goodrich Corp IN BBB 09/2001 09/2008 9.19 0.01 0.52 0.40 0.33 

Halliburton Co EN A 02/2003 09/2008 34.94 0.01 0.30 0.40 0.33 

H J HEINZ CO CG BBB 04/2001 10/2011 21.96 0.02 0.38 0.41 0.21 

Home Depot Inc CS A 02/2002 09/2008 95.07 0.01 0.22 0.41 0.28 

Honeywell Intl Inc IN A 11/2001 12/2011 54.86 0.01 0.41 0.40 0.30 

Intl Business Machs Corp TE AA 04/2001 12/2011 233.09 0.01 0.34 0.40 0.25 

Intl Paper Co BM BBB 04/2001 09/2008 39.13 0.01 0.56 0.40 0.27 

Johnson & Johnson HC AAA 03/2003 12/2011 207.15 0.01 0.15 0.40 0.17 
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Kellogg Co CG BBB 03/2003 12/2011 27.45 0.01 0.33 0.40 0.18 

Kimberly Clark Corp CG A 02/2004 12/2011 38.91 0.02 0.29 0.40 0.18 

The Kroger Co. CS BBB 08/2006 10/2011 33.61 0.01 0.53 0.40 0.29 

Eli Lilly & Co HC A 06/2003 12/2011 70.15 0.02 0.22 0.40 0.24 

Ltd Brands Inc CS BB 03/2003 09/2008 12.76 0.01 0.29 0.40 0.32 

Lockheed Martin Corp IN A 04/2001 12/2011 52.81 0.01 0.45 0.40 0.26 

Lowes Cos Inc CS A 01/2003 09/2008 54.34 0.00 0.22 0.40 0.28 

Marriott Intl Inc CS BBB 05/2002 09/2008 18.00 0.00 0.31 0.40 0.30 

Masco Corp CG BB 07/2002 09/2008 18.45 0.01 0.39 0.41 0.31 

Medtronic Inc HC A 09/2003 10/2011 62.35 0.01 0.16 0.40 0.24 

Merck & Co Inc HC AA 03/2004 10/2009 105.48 0.02 0.23 0.40 0.27 

Mohawk Inds Inc CG BBB 12/2004 12/2011 7.91 0.00 0.44 0.40 0.38 

Molson Coors Brewing CG BBB 10/2005 12/2011 12.93 0.01 0.41 0.40 0.27 

Monsanto Co BM A 04/2003 09/2008 31.34 0.01 0.22 0.40 0.32 

Motorola Inc TE BBB 08/2002 09/2008 57.09 0.01 0.35 0.39 0.38 

Newell Rubbermaid Inc CG BBB 05/2001 02/2009 11.75 0.02 0.43 0.41 0.30 

Nordstrom Inc CS A 11/2001 09/2008 10.30 0.01 0.35 0.41 0.37 

Norfolk Sthn Corp IN BBB 04/2001 09/2008 29.32 0.01 0.54 0.39 0.32 

Northrop Grumman Corp IN BBB 04/2003 03/2011 36.98 0.01 0.46 0.40 0.22 

OCCIDENTAL PETRO EN A 09/2002 09/2008 45.32 0.01 0.29 0.40 0.29 

Omnicare Inc CS BB 11/2004 02/2011 7.65 0.01 0.50 0.26 0.40 

Omnicom Gp Inc CS BBB 05/2002 12/2011 25.77 0.01 0.47 0.40 0.29 

ONEOK Partners LP EN BBB 05/2006 12/2011 7.79 0.04 0.53 0.40 0.22 

J C Penney Co Inc CS BB 06/2001 09/2008 20.37 0.01 0.51 0.38 0.39 

Pepsico Inc CG A 06/2004 12/2011 124.03 0.01 0.19 0.40 0.18 

Pfizer Inc HC AA 10/2003 12/2011 234.37 0.02 0.28 0.40 0.24 

Pitney Bowes Inc TE BBB 11/2003 12/2011 15.76 0.02 0.53 0.40 0.24 

PPG Inds Inc BM BBB 07/2001 12/2011 17.96 0.01 0.42 0.40 0.27 

Praxair Inc BM A 10/2003 09/2008 25.16 0.01 0.26 0.40 0.23 
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Pride Intl Inc EN BBB 06/2003 09/2008 6.49 0.00 0.35 0.40 0.38 

Procter & Gamble Co CG AA 04/2001 12/2011 213.09 0.01 0.25 0.40 0.19 

Quest Diagnostics Inc HC BBB 09/2005 12/2011 14.15 0.01 0.30 0.40 0.24 

Raytheon Co IN A 06/2003 12/2011 32.39 0.01 0.42 0.40 0.22 

Rep Svcs Inc IN BBB 09/2004 12/2011 14.30 0.01 0.43 0.40 0.27 

Reynolds Amern Inc CG BBB 11/2004 12/2011 26.53 0.02 0.39 0.40 0.23 

Rohm & Haas Co BM BBB 05/2001 11/2008 15.81 0.01 0.39 0.41 0.27 

Ryder Sys Inc IN BBB 01/2003 09/2008 7.26 0.01 0.62 0.39 0.29 

Safeway Inc CS BBB 07/2005 12/2011 20.99 0.01 0.50 0.40 0.31 

Schering Plough Corp HC A 04/2003 09/2008 40.65 0.01 0.23 0.40 0.28 

Sealed Air Corp US IN B 02/2006 12/2011 7.05 0.01 0.47 0.40 0.31 

Sherwin Williams Co CG A 06/2002 12/2011 9.60 0.01 0.31 0.40 0.29 

Smithfield Foods Inc CG BB 07/2003 08/2008 7.53 0.01 0.57 0.39 0.29 

Southwest Airls Co IN BBB 06/2003 12/2011 18.62 0.00 0.45 0.39 0.35 

Sunoco Inc EN BB 07/2003 09/2008 14.55 0.01 0.51 0.40 0.34 

SUPERVALU INC CS CCC 03/2003 09/2008 15.13 0.01 0.60 0.40 0.28 

Sysco Corp CS A 03/2005 12/2011 24.48 0.01 0.26 0.40 0.23 

Target Corp CS A 04/2002 09/2008 64.06 0.00 0.35 0.40 0.30 

Textron Inc IN BBB 10/2002 09/2008 23.69 0.01 0.58 0.39 0.28 

Un Pac Corp IN BBB 09/2003 09/2008 45.93 0.01 0.49 0.39 0.24 

Utd Parcel Svc Inc IN AA 08/2004 12/2011 68.52 0.02 0.32 0.40 0.23 

Utd Tech Corp IN A 06/2003 09/2008 85.24 0.01 0.33 0.40 0.20 

Unvl Health Svcs Inc HC BB 03/2004 12/2011 5.10 0.01 0.42 0.40 0.31 

UST Inc. CG BBB 04/2003 10/2008 8.99 0.03 0.17 0.40 0.22 

V F Corp CG A 09/2004 12/2011 11.07 0.01 0.26 0.40 0.28 

Wal Mart Stores Inc CS AA 01/2001 10/2011 296.93 0.01 0.28 0.40 0.23 

Waste Mgmt Inc IN BBB 01/2004 08/2009 31.50 0.01 0.46 0.40 0.24 

Whirlpool Corp CG BBB 04/2001 09/2008 12.73 0.01 0.59 0.40 0.33 

Wyeth HC A 02/2003 07/2009 81.20 0.01 0.28 0.40 0.26 
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Table 3: Distribution of moments for individual firms under 9-moments models 

This table reports the industry and rating distribution of our sample firms in Panels A and B, respectively. “N” represents the number of firms in each 

category. The 1, 3, 5, 7, 10 years credit default swap spreads are reported as basis points (bps). The reported values of all variables are mean values. 

Table 3 

Panel A: Rating distribution 

Rating/Industry N 

1year 

spread 

2year 

spread 

3year 

spread 

5year 

spread 

7year 

spread 

10year 

spread 

Implied 

volatility  

Equity 

value Leverage 

AAA 1 11.51 14.05 16.57 22.33 26.19 30.76 0.1743 0.9223 0.1547 

AA 8 15.60 19.39 23.09 30.72 35.54 41.26 0.2262 0.8675 0.2478 

A 39 17.30 21.85 26.42 35.80 41.81 48.93 0.2643 1.0128 0.3123 

BBB 47 37.94 46.28 54.70 71.91 80.68 90.29 0.2797 0.6947 0.4420 

BB 7 83.09 104.23 121.94 154.16 166.00 177.62 0.3377 0.7335 0.4571 

B 1 72.47 91.65 111.10 150.17 163.88 176.62 0.3115 0.4640 0.4728 

CCC 1 54.54 71.96 89.48 124.22 140.64 157.33 0.2807 0.8826 0.6001 

Panel B: Industry distribution 

Basic Materials 10 26.85 33.17 39.11 51.92 59.30 68.51 0.2807 0.9606 0.4022 

Consumer Goods 27 32.96 40.62 48.07 62.81 70.40 78.63 0.2499 0.7797 0.3661 

Consumer Services 17 45.53 56.66 67.02 87.08 95.90 105.87 0.3000 0.7545 0.3937 

Energy 10 30.21 37.82 44.73 58.86 66.96 76.00 0.3134 1.2839 0.3576 

Healthcare 12 20.89 26.64 32.54 44.76 51.22 58.01 0.2486 0.7867 0.2516 

Industrials 24 29.49 35.94 42.60 56.27 63.71 71.82 0.2740 0.7536 0.4388 

Technology 3 37.66 45.74 54.12 68.55 76.46 85.50 0.2869 0.6178 0.4077 

Telecommunications Services 1 24.76 34.88 46.52 71.38 86.84 102.93 0.2224 0.5338 0.4962 

Panel C: All firms 

Total 104 31.90 39.49 46.90 61.76 69.49 78.07 0.2731 0.8299 0.3791 
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Table 4: Distribution of moments for individual firms under 7-moments models 

This table reports the industry and rating distribution of our sample firms in Panels A and B, respectively. “N” represents the number of firms in each 

category. The 1, 3, 5, 7, 10 years credit default swap spreads are reported as basis points (bps). The reported values of all variables are mean values. 

Table 4 

Panel A: Rating distribution 

Rating/Industry N 

1year 

spread 

2year 

spread 

3year 

spread 

5year 

spread 

7year 

spread 

10year 

spread 

Implied 

volatility  

AAA 1 11.51 14.05 16.57 22.33 26.19 30.76 0.1743 

AA 8 15.6 19.39 23.09 30.72 35.54 41.26 0.2262 

A 39 17.3 21.85 26.43 35.81 41.82 48.94 0.264 

BBB 47 37.94 46.28 54.7 71.91 80.68 90.29 0.2797 

BB 7 83.09 104.23 121.94 154.16 166 177.62 0.3377 

B 1 72.47 91.65 111.1 150.17 163.88 176.62 0.3115 

CCC 1 54.54 71.96 89.48 124.22 140.64 157.33 0.2807 

Panel B: Industry distribution 

Basic Materials 10 26.85 33.17 39.11 51.92 59.3 68.51 0.2807 

Consumer Goods 27 32.96 40.62 48.07 62.81 70.4 78.63 0.2499 

Consumer Services 17 43.87 54.62 64.65 84.1 92.76 102.56 0.2971 

Energy 10 30.21 37.82 44.73 58.86 66.96 76 0.3134 

Healthcare 12 20.89 26.64 32.54 44.76 51.22 58.01 0.2486 

Industrials 24 29.49 35.94 42.6 56.27 63.71 71.82 0.274 

Technology 3 37.66 45.74 54.12 68.55 76.46 85.5 0.2869 

Telecommunications Services 1 24.76 34.88 46.52 71.38 86.84 102.93 0.2224 

Panel C: All firms 

Total 104 31.76 39.32 46.7 61.52 69.23 77.79 0.2729 
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Table 5: Distribution of parameters with 9 moments under the Leland model 

This table reports average values of parameters by fitting leverage, equity value and equity implied 

volatility along with the CDS spreads under the Leland model. P-values for each parameter reported in 

the parentheses are category level test statistics. T value reported in the table is the firm level test 

statistic of each parameter we estimated. 

Table 5 

Panel A: Rating Distribution 

  N sigma F value J test T value 

AAA 1 0.1439 0.1632 17.2986 40.1 

AA 8 0.1672 

(<0.0001) 

0.1590 15.6877 47.76 

A 39 0.1675 

(<0.0001) 

0.1757 14.4522 63.78 

BBB 47 0.1444 

(<0.0001) 

0.1750 15.3587 65.34 

BB 7 0.1673 

(<0.0001) 

0.1826 13.5247 76.06 

B 1 0.1342 0.1516 10.7666 91.88 

CCC 1 0.085881394 0.1715 11.4906 51.37 

      

Panel B: Industry Distribution   

  N sigma F value J test T value 

Basic Materials 10 0.1720 

(<0.0001) 

0.1756 13.9785 56.41 

Consumer Goods 27 0.1505 

(<0.0001) 

0.1725 14.9641 63.45 

Consumer Services 17 0.1663 

(<0.0001) 

0.1679  14.3626  76.6 

Energy 10 0.1848 

(<0.0001) 

0.1817  12.8199  87.08 

Healthcare 12 0.1718 

(<0.0001) 

0.1677  14.9742  63.97 

Industrials 24 0.1322 

(<0.0001) 

0.1822  16.0571  51.45 

Technology 3 0.1286 

(0.0293) 

0.1449  17.0801 44.63 

Telecommunications Services 1 0.109646727 0.2056 12.7460  69.68 

All firms   

  N sigma F value J test T value 



 

57 
 

Total 104 0.1557 

(<0.0001) 

0.1742 14.8580 64 
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Table 6: Distribution of parameters with 9 moments under the CEV model 

This table reports average values of parameters by fitting leverage, equity value and equity implied volatility along with the CDS spreads under the CEV model. 

P-values for each parameter reported in the parentheses are category level test statistics. T value reported in table is the firm level test statistic of each parameter we 

estimated. 

Table 6 

Panel A: Rating distribution 

  All   Positive beta   Negative beta 

  N sigma beta J test   N sigma beta J test   N sigma beta J test 

AAA 1 0.1447 0.9973 17.0762  1 0.1447 0.9973 17.0762  0    

AA 8 0.1850 

(<0.0001) 

0.1355 

(0.5534) 

16.6869  3 0.1622 

(0.0097) 

0.8358 

(0.0067) 

17.0910  5 0.1987 

(<0.0001) 

-0.2848 

(0.0701) 

16.4445 

A 39 0.1978 

(<0.0001) 

0.0107 

(0.9142) 

14.3201  20 0.1690 

(<0.0001) 

0.5108 

(<0.0001) 

14.5641  19 0.2280 

(<0.0001) 

-0.5157 

(<0.0001) 

14.0632 

BBB 46 0.1621 

(<0.0001) 

0.1359 

(0.2434) 

14.3273  25 0.1627 

(<0.0001) 

0.7306 

(<0.0001) 

14.5293  21 0.1614 

(<0.0001) 

-0.5722 

(<0.0001) 

14.0868 

BB 7 0.1937 

(<0.0001) 

-0.1087 

(0.6064) 

13.1295  2 0.1987 

(0.0051) 

0.5748 

(0.2046) 

13.0681  5 0.1917 

(0.0007) 

-0.3821 

(0.0350) 

13.1541 

B 1 0.1133 -1.3939 11.0940  0     1 0.1133 -1.3939 11.0940 

CCC 1 0.1172 0.1017 11.3541  1 0.1172 0.1017 11.3541  0    

T value 

AAA  13.28 1.7    13.28 1.7       

AA  54.72 18.2    20.32 3.94    75.36 26.76  
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A  159.76 58.2    37.21 5.51    288.77 113.66  

BBB  113.12 20.84    37.08 6.06    203.64 38.44  

BB  73.8 28.32    29.65 9.25    91.46 35.95  

B  31.47 26.6         31.47 26.6  

CCC  6.81 0.5    6.81 0.5       

Panel B: Industry distribution 

  All   Positive beta   Negative beta 

  N sigma beta J test   N sigma beta J test   N sigma beta j 

Basic Materials 10 0.2088 

(0.0006) 

0.3537 

(0.2252) 

13.9297  6 0.1785 

(0.0001) 

0.9427 

(0.0016) 

14.6331  4 0.2542 

(0.0899) 

-0.5294 

(0.1233) 

12.8745 

Consumer Goods 27 0.1603 

(<0.0001) 

0.0319 

(0.8159) 

14.8719  13 0.1491 

(<0.0001) 

0.6558 

(<0.0001) 

14.9825  14 0.1707 

(<0.0001) 

-0.5474 

(0.0001) 

14.7692 

Consumer Services 17 0.1836 

(<0.0001) 

0.0805 

(0.6380) 

13.9268  10 0.1681 

(<0.0001) 

0.5161 

(0.0067) 

13.9285  7 0.2058 

(<0.0001) 

-0.5417 

(0.0157) 

13.9243 

Energy 10 0.2194 

(<0.0001) 

-0.1670 

(0.2670) 

12.4489  4 0.2062 

(0.0078) 

0.2551 

(0.0675) 

12.9927  6 0.2282 

(0.0012) 

-0.4484 

(0.0182) 

12.0864 

Healthcare 12 0.1891 

(<0.0001) 

0.2169 

(0.2864) 

15.4313  5 0.1689 

(0.0002) 

0.9208 

(<0.0001) 

15.0928  7 0.2036 

(<0.0001) 

-0.2859 

(0.0631) 

15.6731 

Industrials 23 0.1594 

(<0.0001) 

-0.1138 

(0.4514) 

14.5958  11 0.1513 

(<0.0001) 

0.5054 

(0.0008) 

15.2057  12 0.1668 

(<0.0001) 

-0.6813 

(0.0001) 

14.0368 

Technology 3 0.1875 

(0.0152) 

0.5006 

(0.2398) 

15.5814  2 0.2090 

(0.0483) 

0.8014 

(0.0444) 

15.5213  1 0.1444 -0.101 15.7017 

Telecommunications 

Services 

1 0.1551 1.1093 12.7566  1 0.1551 1.1093 12.7566      

T value 
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Basic Materials  64.13 20.22    40.27 9.18    99.92 36.77  

Consumer Goods  130.74 19.22    29.73 4.7    224.54 32.71  

Consumer Services  278.67 80.21    36.44 5.04    624.7 187.6  

Energy  82.76 24.97    43.87 4.86    108.69 38.38  

Healthcare  60.65 42.6    25.45 5.89    85.8 68.82  

Industrials  75.86 31.42    32.49 4.9    115.62 55.74  

Technology  69.98 9.05    68.87 9.68    72.2 7.77  

Telecommunications 

Services 

 21.25 5.29    21.25 5.29       

Panel C: All firms 

  All   Positive beta   Negative beta 

  N sigma beta J test   N sigma beta J test   N sigma beta J test 

Total 103 0.1785 

(<0.0001) 

0.0650 

(0.3471) 

14.3928   52 0.1653 

(<0.0001) 

0.6392 

(<0.0001) 

14.6222   51 0.1919 

(<0.0001) 

-0.5204 

(<0.0001) 

14.1590 

T value 

    120.78 34.96       34.84 5.66       208.4 64.84   
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Table 7: Distribution of parameters with 7 moments under the Leland model 

This table reports average values of parameters by fitting equity implied volatility along with the CDS 

spreads under the Leland model. P-values for each parameter reported in the parentheses are category 

level test statistics. T value reported in table is the firm level test statistic of each parameter we 

estimated. 

Table 7 

Panel A: Rating Distribution 

  N sigma F value J test T value 

AAA 1 0.1407  0.1482 15.7082 38.98 

AA 8 0.1732 

(<0.0001) 

0.1473 14.5199 46.9 

A 39 0.1743 

(<0.0001) 

0.1662 13.6492 44.55 

BBB 47 0.1494 

(<0.0001) 

0.1660 14.6625 34.55 

BB 7 0.1821 

(<0.0001) 

0.1668 12.3731 48.1 

B 1 0.1254 0.1519 10.7862 42.1 

CCC 1 0.0816 0.1946 13.0372 39.83 

      

Panel B: Industry Distribution   

  N sigma F value J test T value 

Basic Materials 10 0.1729 

(<0.0001) 

0.1703 13.5040 41.14 

Consumer Goods 27 0.1563 

(<0.0001) 

0.1671 14.5313 38.73 

Consumer Services 17 0.1782 

(<0.0001) 

0.1602 13.6668 42.68 

Energy 10 0.1931 

(<0.0001) 

0.1680 11.8808 41.29 

Healthcare 12 0.1773 

(<0.0001) 

0.1570 13.9359 48.95 

Industrials 24 0.1359 

(<0.0001) 

0.1675 14.8851 35.01 

Technology 3 0.1404 

(0.0228) 

0.1353 16.1689 38.83 

Telecommunications 

Services 

1 0.1082 0.1976 12.2482 54.46 

All firms   

    sigma F value J test T value 
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Total 104 0.1618 

(<0.0001) 

0.1646 14.0746 40.33 
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Table 8: Distribution of parameter with 7 moments under the CEV model 

This table reports average values of parameters by fitting equity implied volatility along with the CDS spreads under the CEV model. P-values for each parameter 

reported in the parentheses are category level test statistics. T value reported in table is the firm level test statistic of each parameter we estimated. 

Table 8 

Panel A: Rating distribution 

  All   Positive beta   Negative beta 

  N sigma beta J test   N sigma beta J test   N sigma beta J test 

AAA 1 0.1639 -0.9688 16.484  0     1 0.1639 -0.9688 16.484 

AA 8 0.1899 

(<0.0001) 

-0.4820 

(0.0271) 

15.8734  2 0.2016 

(0.0303) 

0.1 14.6972  6 0.1860 

(<0.0001) 

-0.6761 

(0.0084) 

16.2655 

A 38 0.2198 

(<0.0001) 

-0.5197 

(<0.0001) 

13.2864  11 0.1858 

(<0.0001) 

0.3989 

(0.0015) 

13.2885  27 0.2336 

(<0.0001) 

-0.8940 

(<0.0001) 

13.2856 

BBB 47 0.1858 

(<0.0001) 

-0.5090 

(0.0001) 

13.6437  13 0.1555 

(<0.0001) 

0.7139 

(0.0005) 

14.2449  34 0.1973 

(<0.0001) 

-0.9766 

(<0.0001) 

13.4138 

BB 7 0.2175 

(<0.0001) 

-0.7865 

(0.1521) 

11.0514  2 0.1911 

(0.1131) 

0.5574 

(0.4270) 

12.0651  5 0.2281 

(0.0005) 

-1.3240 

(0.0448) 

10.6460 

B 1 0.1213 -1.3682 12.3008  0     1 0.1213 -1.3682 12.3008 

CCC 1 0.1261 0.1005 12.5876  1 0.1261 0.1005 12.5876  0    

T value 

AAA  28.75 169.96         28.75 169.96  

AA  37.21 88.85    28.71 14.39    40.04 113.66  

A  43.59 184.36    25.95 64.13    50.78 233.34  

BBB  33.6 167.24    20.27 77.44    38.69 201.57  
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BB  30.92 106.04    24.31 22.83    34.22 147.65  

B  19.89 224.3         19.89 224.30  

CCC  6.21 4.95    6.21 4.95       

Panel B: Industry distribution 

  All   Positive beta   Negative beta 

  N sigma beta J test   N sigma beta J test   N sigma beta J test 

Basic Materials 10 0.2291 

(0.0006) 

-0.8618 

(0.0032) 

13.2281  1 0.1751 1.0414 15.1523  9 0.2350 

(0.0013) 

-1.0733 

(<0.0001) 

13.0143 

Consumer Goods 27 0.1796 

(<0.0001) 

-0.5385 

(0.0112) 

13.9951  8 0.1524 

(<0.0001) 

0.7725 

(0.0091) 

14.9371  19 0.1911 

(<0.0001) 

-1.0906 

(<0.0001) 

13.5985 

Consumer Services 17 0.2016 

(<0.0001) 

-0.2254 

(0.1974) 

13.1237  9 0.1780 

(<0.0001) 

0.3621 

(0.0102) 

13.1865  8 0.2282 

(<0.0001) 

-0.8863 

(<0.0001) 

13.0530 

Energy 9 0.2683 

(<0.0001) 

-0.6084 

(0.0006) 

11.4854  1 0.2403 0.1605 10.6878  8 0.2718 

(<0.0001) 

-0.7045 

(<0.0001) 

11.5851 

Healthcare 12 0.1965 

(<0.0001) 

-0.2919 

(0.2241) 

15.0803  4 0.1917 

(0.0007) 

0.5998 

(0.0762) 

14.6710  8 0.1989 

(<0.0001) 

-0.7378 

(0.0023) 

15.2849 

Industrials 24 0.1925 

(<0.0001) 

-0.7108 

(<0.0001) 

13.5601  4 0.1590 

(0.0021) 

0.4084 

(0.1377) 

13.1652  20 0.1992 

(<0.0001) 

-0.9347 

(<0.0001) 

13.6391 

Technology 3 0.1492 

(0.0451) 

-0.7947 

(0.2900) 

12.2032  1 0.2099 0.2702 9.886  2 0.1189 

(0.1142) 

-1.3271 

(0.1348) 

13.3618 

Telecommunications 

Services 

1 0.1282 0.1393 12.2224  1 0.1282 0.1393 12.2224      

T value 

Basic Materials  28.41 172.44    13.37 79.50    30.08 182.77  

Consumer Goods  49.73 245.85    19.41 88.86    63.20 315.62  

Consumer Services  29.67 97.42    21.99 46.80    38.30 154.37  

Energy  31.44 75.18    26.41 17.64    32.07 82.38  
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Healthcare  34.19 108.18    20.38 49.58    41.10 137.49  

Industrials  35.26 156.92    26.16 65.21    37.07 175.26  

Technology  46.98 361.80    69.97 90.07    35.49 497.66  

Telecommunications 

Services 

 12.09 13.14    12.09 13.14       

Panel C: All firms 

  All   Positive beta   Negative beta 

  N sigma beta J test   N sigma beta J test   N sigma beta J test 

Total 103 0.1994 

(<0.0001) 

-0.5366 

(<0.0001) 

13.5132   29 0.1716 

(<0.0001) 

0.5201 

(<0.0001) 

13.7058   74 0.2103 

(<0.0001) 

-0.9508 

(<0.0001)  

13.4377 

T value 

    37 162.86       22.80 61.78       42.64 203.02   
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Table 9: Distribution of Sigma across different firms for the Leland model 

This table presents the distribution of Sigma across individual firms for the Leland model, and for both 7-moments and 9-moments. For 7-moments, the firm “Dow 

Chem Co” has the largest Sigma 0.2974, the firm “Raytheon Co” has the smallest Sigma 0.05, and the average value of Sigma is 0.1618. For 9-moments, the firm 

“Dow Chem Co” has the largest Sigma 0.2913, the firm “Raytheon Co” has the smallest Sigma 0.05, and the average value of Sigma is 0.1557. 

Table 9 

Firm Sigma_7mom Sigma_9mom Firm Sigma_7mom Sigma_9mom 

Abbott Labs 0.1842  0.1567  Norfolk Sthn Corp 0.1282  0.1211  

Air Prods & Chems Inc 0.1551  0.1564  Northrop Grumman Corp 0.1099  0.1061  

Honeywell Intl Inc 0.1573  0.1598  OCCIDENTAL PETROLEUM CORP 0.2008  0.1929  

Alcoa Inc. 0.1947  0.1893  Omnicare Inc 0.2000  0.1788  

Wyeth 0.1869  0.1833  PPG Inds Inc 0.1524  0.1428  

Anheuser Busch Cos Inc 0.1382  0.1394  J C Penney Co Inc 0.1935  0.1474  

APACHE CORP 0.2179  0.2195  Pepsico Inc 0.1388  0.1327  

Archer Daniels Midland Co 0.1754  0.1519  Pfizer Inc 0.1637  0.1655  

Arrow Electrs Inc 0.1393  0.1134  Altria Gp Inc 0.2867  0.2443  

Avon Prods Inc 0.2170  0.2175  ConocoPhillips 0.1358  0.1285  

Baker Hughes Inc 0.2756  0.2749  Pitney Bowes Inc 0.0976  0.0847  

Baxter Intl Inc 0.1527  0.1210  Procter & Gamble Co 0.1509  0.1513  

Black & Decker Corp 0.1435  0.1428  Raytheon Co 0.0500  0.0500  

Boeing Co 0.1895  0.1834  Rohm & Haas Co 0.1389  0.1633  

Bristol Myers Squibb Co 0.1865  0.1818  Ryder Sys Inc 0.1352  0.1302  

CSX Corp 0.0804  0.0886  Safeway Inc 0.1366  0.1316  

Campbell Soup Co 0.1489  0.1330  Schering Plough Corp 0.2203  0.2200  
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Caterpillar Inc 0.1259  0.1153  Sealed Air Corp US 0.1254  0.1342  

CenturyTel Inc 0.1082  0.1096  Sherwin Williams Co 0.1867  0.1875  

Clorox Co 0.1513  0.1520  Smithfield Foods Inc 0.1253  0.1240  

Colgate Palmolive Co 0.1422  0.1457  Southwest Airls Co 0.1776  0.1699  

ConAgra Foods Inc 0.1147  0.1160  Sunoco Inc 0.1727  0.1505  

Molson Coors Brewing Co 0.1619  0.1522  SUPERVALU INC 0.0816  0.0859  

Danaher Corp 0.1921  0.1914  Sysco Corp 0.1684  0.1609  

Target Corp 0.1979  0.1917  Textron Inc 0.0685  0.0507  

Dover Corp 0.1551  0.1460  Un Pac Corp 0.1131  0.1256  

Dow Chem Co 0.2974  0.2913  Utd Parcel Svc Inc 0.1389  0.1437  

Omnicom Gp Inc 0.1321  0.1257  UST Inc. 0.1802  0.1784  

FedEx Corp 0.1938  0.1882  Utd Tech Corp 0.1387  0.1407  

Gen Dynamics Corp 0.1429  0.1354  Unvl Health Svcs Inc 0.1621  0.1603  

Gen Mls Inc 0.1019  0.1063  V F Corp 0.1954  0.1936  

Goodrich Corp 0.1394  0.1320  Wal Mart Stores Inc 0.2033  0.1836  

Halliburton Co 0.2444  0.2147  Whirlpool Corp 0.1216  0.1164  

H J HEINZ CO 0.1174  0.1181  Anadarko Pete Corp 0.1599  0.1569  

Home Depot Inc 0.2515  0.2170  Coca Cola Entpers Inc 0.0667  0.0665  

Intl Business Machs Corp 0.1667  0.1592  Waste Mgmt Inc 0.1241  0.1267  

Intl Paper Co 0.1049  0.1064  Pride Intl Inc 0.2466  0.2306  

Johnson & Johnson 0.1407  0.1439  Autozone Inc 0.1821  0.1718  

Kellogg Co 0.1279  0.1220  Mohawk Inds Inc 0.1950  0.1913  

Kimberly Clark Corp 0.1260  0.1088  Praxair Inc 0.1704  0.1734  

The Kroger Co. 0.1177  0.1148  BorgWarner Inc 0.1819  0.1728  

Eli Lilly & Co 0.1823  0.1811  ONEOK Partners LP 0.0924  0.0870  

Ltd Brands Inc 0.2341  0.2246  Marriott Intl Inc 0.2091  0.2037  

Lockheed Martin Corp 0.1352  0.1261  Costco Whsl Corp 0.1740  0.1645  
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Lowes Cos Inc 0.2216  0.2202  Eastman Chem Co 0.1073  0.1064  

Masco Corp 0.1868  0.1853  Cytec Inds Inc 0.1714  0.1643  

Medtronic Inc 0.1896  0.1888  AmerisourceBergen Corp 0.0828  0.0884  

Merck & Co Inc 0.1954  0.1959  Diamond Offshore Drilling Inc 0.1850  0.1929  

3M Co 0.1794  0.1797  Quest Diagnostics Inc 0.1633  0.1638  

Motorola Inc 0.1568  0.1419  Rep Svcs Inc 0.1214  0.1140  

Newell Rubbermaid Inc 0.1698  0.1566  Reynolds Amern Inc 0.1672  0.1578  

Nordstrom Inc 0.2440  0.2170  Monsanto Co 0.2365  0.2265  
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Table 10: Distribution of Sigma across A and BBB rated firms for the Leland model 

This table presents the Sigma distribution for A and BBB rated firms. The average Sigma value for A rated firms with 7- and 9-moments are 0.1743 and 0.1675 

respectively; The average Sigma value for BBB rated firms with 7- and 9-moments are 0.1494 and 0.1444 respectively; The total average Sigma value for these 

firms with 7- and 9-moments are 0.1607 and 0.1549 respectively. For A rated firms, “Baker Hughes Inc” has the largest Sigma value of 0.2756 and 0.2749 for 7- and 

9-moments respectively; “Raytheon Co” has the smallest Sigma value of 0.05 and 0.05 for 7- and 9-moments respectively. For BBB rating firms, “Dow Chem Co” 

has the largest Sigma value of 0.2974 and 0.2913 for 7- and 9-moments respectively; “Textron Inc” has the smallest Sigma value of 0.0685 and 0.0507 for 7- and 

9-momentsrespectively. 

 
Table 10 

Rating A Rating BBB 

Firm Rating Sigma_7mom sigma_9mom Firm Rating Sigma_7mom sigma_9mom 

Baker Hughes Inc A 0.2756  0.2749  Dow Chem Co BBB 0.2974  0.2913  

Home Depot Inc A 0.2515  0.2170  Alcoa Inc. BBB 0.1947  0.1893  

Halliburton Co A 0.2444  0.2147  FedEx Corp BBB 0.1938  0.1882  

Nordstrom Inc A 0.2440  0.2170  Mohawk Inds Inc BBB 0.1950  0.1913  

Monsanto Co A 0.2365  0.2265  Altria Gp Inc BBB 0.2867  0.2443  

Lowes Cos Inc A 0.2216  0.2202  Pride Intl Inc BBB 0.2466  0.2306  

Schering Plough Corp A 0.2203  0.2200  Avon Prods Inc BBB 0.2170  0.2175  

APACHE CORP A 0.2179  0.2195  Marriott Intl Inc BBB 0.2091  0.2037  

OCCIDENTAL PETROLEUM CORP A 0.2008  0.1929  BorgWarner Inc BBB 0.1819  0.1728  

Target Corp A 0.1979  0.1917  Southwest Airls Co BBB 0.1776  0.1699  

V F Corp A 0.1954  0.1936  UST Inc. BBB 0.1802  0.1784  
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Danaher Corp A 0.1921  0.1914  Cytec Inds Inc BBB 0.1714  0.1643  

Medtronic Inc A 0.1896  0.1888  Quest Diagnostics Inc BBB 0.1633  0.1638  

Boeing Co A 0.1895  0.1834  Reynolds Amern Inc BBB 0.1672  0.1578  

Wyeth A 0.1869  0.1833  Anadarko Pete Corp BBB 0.1599  0.1569  

Sherwin Williams Co A 0.1867  0.1875  Rohm & Haas Co BBB 0.1389  0.1633  

Bristol Myers Squibb Co A 0.1865  0.1818  Newell Rubbermaid Inc BBB 0.1698  0.1566  

Diamond Offshore Drilling Inc A 0.1850  0.1929  Autozone Inc BBB 0.1821  0.1718  

Eli Lilly & Co A 0.1823  0.1811  

Molson Coors Brewing 

Co BBB 0.1619  0.1522  

Archer Daniels Midland Co A 0.1754  0.1519  Safeway Inc BBB 0.1366  0.1316  

Costco Whsl Corp A 0.1740  0.1645  PPG Inds Inc BBB 0.1524  0.1428  

Praxair Inc A 0.1704  0.1734  Clorox Co BBB 0.1513  0.1520  

Sysco Corp A 0.1684  0.1609  Black & Decker Corp BBB 0.1435  0.1428  

Honeywell Intl Inc A 0.1573  0.1598  Motorola Inc BBB 0.1568  0.1419  

Dover Corp A 0.1551  0.1460  Ryder Sys Inc BBB 0.1352  0.1302  

Air Prods & Chems Inc A 0.1551  0.1564  Goodrich Corp BBB 0.1394  0.1320  

Baxter Intl Inc A 0.1527  0.1210  The Kroger Co. BBB 0.1177  0.1148  

Campbell Soup Co A 0.1489  0.1330  Norfolk Sthn Corp BBB 0.1282  0.1211  

Gen Dynamics Corp A 0.1429  0.1354  Kellogg Co BBB 0.1279  0.1220  

Utd Parcel Svc Inc A 0.1389  0.1437  Waste Mgmt Inc BBB 0.1241  0.1267  

Pepsico Inc A 0.1388  0.1327  H J HEINZ CO BBB 0.1174  0.1181  

Utd Tech Corp A 0.1387  0.1407  Omnicom Gp Inc BBB 0.1321  0.1257  

Anheuser Busch Cos Inc A 0.1382  0.1394  Un Pac Corp BBB 0.1131  0.1256  

ConocoPhillips A 0.1358  0.1285  Whirlpool Corp BBB 0.1216  0.1164  

Lockheed Martin Corp A 0.1352  0.1261  ConAgra Foods Inc BBB 0.1147  0.1160  

Kimberly Clark Corp A 0.1260  0.1088  Arrow Electrs Inc BBB 0.1393  0.1134  

Caterpillar Inc A 0.1259  0.1153  Rep Svcs Inc BBB 0.1214  0.1140  
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Coca Cola Entpers Inc A 0.0667  0.0665  CenturyTel Inc BBB 0.1082  0.1096  

Raytheon Co A 0.0500  0.0500  Eastman Chem Co BBB 0.1073  0.1064  

    

Intl Paper Co BBB 0.1049  0.1064  

    

Gen Mls Inc BBB 0.1019  0.1063  

    

Northrop Grumman Corp BBB 0.1099  0.1061  

    

CSX Corp BBB 0.0804  0.0886  

    

AmerisourceBergen Corp BBB 0.0828  0.0884  

    

ONEOK Partners LP BBB 0.0924  0.0870  

    

Pitney Bowes Inc BBB 0.0976  0.0847  

    

Textron Inc BBB 0.0685  0.0507  

Rating A Rating BBB 

    7 moment 9 momnet     7 moment 9 moment 

Average 

 

0.1743  0.1675  

  

0.1494  0.1444  

    7 moment 9 momnet         

Total Average 

 

0.1607  0.1549  
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Table 11: Beta distribution for CEV model with 9-moment conditions 

This table presents the beta distribution for CEV model with 9-moment conditions. There are 51 firms with negative beta and 52 firms with positive beta. Panel A 

shows the firms with negative betas. Firm “Gen Mls Inc” has the smallest beta. The average beta, average J statistic, and average T value are -0.5204, 14.159 and 

64.8393 respectively for the negative group; panel B shows the firms with positive betas. Firm “AmerisourceBergen Corp” has the largest beta. The average beta, 

average J statistic, and average T value are 0.6392, 14.6222 and 5.656 respectively for the positive group. 

 
Table 11 

Firm Beta Standard error J Test T 

Negative beta 

Gen Mls Inc -1.4099  0.0685  16.0398  20.5825  

Sealed Air Corp US -1.3939  0.0524  11.0940  26.6011  

The Kroger Co. -1.0664  0.0807  12.7630  13.2144  

Lowes Cos Inc -1.0215  0.0200  14.0085  51.0750  

Intl Paper Co -1.0119  0.0505  14.6964  20.0376  

Medtronic Inc -1.0091  0.0319  16.1936  31.6332  

Honeywell Intl Inc -0.9650  0.0443  17.3969  21.7833  

Textron Inc -0.9457  0.0275  12.4459  34.3891  

Ryder Sys Inc -0.9225  0.0273  12.0790  33.7912  

OCCIDENTAL PETROLEUM CORP -0.9067  0.0176  12.3581  51.5170  

Monsanto Co -0.9053  0.0422  11.4217  21.4526  

Pepsico Inc -0.8975  0.0424  15.2876  21.1675  

Caterpillar Inc -0.8855  0.0063  14.8702  140.5556  
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Mohawk Inds Inc -0.8650  0.0362  13.9250  23.8950  

Norfolk Sthn Corp -0.8525  0.0526  14.4680  16.2072  

Omnicare Inc -0.8358  0.0457  12.2683  18.2888  

H J HEINZ CO -0.7942  0.0719  18.0136  11.0459  

Un Pac Corp -0.7770  0.0332  12.4555  23.4036  

Waste Mgmt Inc -0.6778  0.0523  11.4072  12.9598  

Archer Daniels Midland Co -0.6696  0.0242  11.1345  27.6694  

Anheuser Busch Cos Inc -0.6653  0.0334  12.8858  19.9192  

Procter & Gamble Co -0.6456  0.0287  18.4776  22.4948  

Pride Intl Inc -0.6218  0.0156  11.1393  39.8590  

Halliburton Co -0.6108  0.0409  11.5637  14.9340  

Molson Coors Brewing Co -0.5213  0.0485  12.8712  10.7485  

Wal Mart Stores Inc -0.4772  0.0669  18.4947  7.1330  

Masco Corp -0.3785  0.0303  12.7038  12.4917  

UST Inc. -0.3609  0.0338  13.3902  10.6775  

Schering Plough Corp -0.3270  0.0187  13.3983  17.4866  

Sunoco Inc -0.3220  0.0032  12.2454  100.6250  

Southwest Airls Co -0.3060  0.0115  16.4563  26.6087  

Unvl Health Svcs Inc -0.2632  0.0063  15.7583  41.7778  

Goodrich Corp -0.2080  0.0010  13.5138  208.0000  

Target Corp -0.1683  0.0116  13.2191  14.5086  

Utd Parcel Svc Inc -0.1411  0.0023  14.9576  61.3478  

ConAgra Foods Inc -0.1361  0.0511  17.0622  2.6634  

ONEOK Partners LP -0.1292  0.0101  13.6648  12.7921  

Sysco Corp -0.1197  0.0001  13.7570  1157.6402  

Smithfield Foods Inc -0.1108  0.0169  12.7948  6.5562  

Altria Gp Inc -0.1088  0.0362  17.2010  3.0055  
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Home Depot Inc -0.1027  0.0020  12.9598  51.3500  

Eli Lilly & Co -0.1022  0.0063  17.3523  16.2222  

3M Co -0.1011  0.0016  17.2972  63.1875  

Pitney Bowes Inc -0.1010  0.0130  15.7017  7.7692  

Praxair Inc -0.1002  0.0045  12.3330  22.2667  

Baxter Intl Inc -0.1001  0.0003  19.0565  333.6667  

Air Prods & Chems Inc -0.1000  0.0012  13.0470  83.3333  

Black & Decker Corp -0.1000  0.0004  14.9817  264.9709  

Merck & Co Inc -0.1000  0.0046  13.6090  21.7391  

Pfizer Inc -0.1000  0.0052  14.3440  19.2308  

Anadarko Pete Corp -0.1000  0.0095  11.5471  10.5263  

Average -0.5204  0.0263  14.1590  64.8393  

     Positive beta 

APACHE CORP 0.1000  0.0694  13.6553  1.4409  

Baker Hughes Inc 0.1000  0.0322  13.7164  3.1056  

CSX Corp 0.1000  0.1070  11.7133  0.9346  

Danaher Corp 0.1000  0.0971  16.0142  1.0299  

Kellogg Co 0.1000  0.0830  17.1015  1.2048  

Autozone Inc 0.1000  0.2091  16.8616  0.4782  

SUPERVALU INC 0.1017  0.2014  11.3541  0.5050  

Safeway Inc 0.1077  0.0613  13.0120  1.7569  

Northrop Grumman Corp 0.1587  0.1455  16.1149  1.0907  

Marriott Intl Inc 0.2156  0.0776  13.1209  2.7784  

Raytheon Co 0.2271  0.1511  17.1213  1.5030  

Coca Cola Entpers Inc 0.3032  0.3190  13.0901  0.9505  

FedEx Corp 0.3090  0.0632  14.8316  4.8892  
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V F Corp 0.3279  0.0788  14.3328  4.1612  

BorgWarner Inc 0.3583  0.1038  13.8510  3.4518  

Sherwin Williams Co 0.3625  0.0910  15.8362  3.9835  

Cytec Inds Inc 0.3684  0.1118  15.4304  3.2952  

Diamond Offshore Drilling Inc 0.3716  0.0328  12.8220  11.3293  

J C Penney Co Inc 0.3835  0.1103  14.8752  3.4769  

Nordstrom Inc 0.4221  0.0532  13.5369  7.9342  

ConocoPhillips 0.4487  0.1262  11.7771  3.5555  

Costco Whsl Corp 0.5342  0.1020  14.1839  5.2373  

Boeing Co 0.5382  0.1491  14.5554  3.6097  

Dover Corp 0.5983  0.0622  14.1908  9.6190  

Utd Tech Corp 0.6000  0.0626  12.9556  9.5847  

Campbell Soup Co 0.6002  0.1118  16.0267  5.3685  

Avon Prods Inc 0.6760  0.1113  16.4972  6.0737  

Dow Chem Co 0.6994  0.0767  13.8217  9.1186  

Intl Business Machs Corp 0.7454  0.1542  18.5198  4.8340  

Ltd Brands Inc 0.7662  0.0510  11.2610  15.0235  

Abbott Labs 0.7915  0.1393  16.3636  5.6820  

Motorola Inc 0.8574  0.0590  12.5227  14.5322  

Bristol Myers Squibb Co 0.8709  0.0883  17.4791  9.8630  

Lockheed Martin Corp 0.8879  0.1731  18.0761  5.1294  

PPG Inds Inc 0.9065  0.1036  17.0506  8.7500  

Wyeth 0.9191  0.1524  12.4004  6.0308  

Gen Dynamics Corp 0.9402  0.0846  14.5436  11.1135  

Whirlpool Corp 0.9476  0.2302  14.6319  4.1164  

Newell Rubbermaid Inc 0.9496  0.0569  15.9277  16.6889  

Kimberly Clark Corp 0.9637  0.1709  14.9676  5.6390  
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Reynolds Amern Inc 0.9655  0.2891  14.3849  3.3397  

Colgate Palmolive Co 0.9706  0.7450  16.3896  1.3028  

Johnson & Johnson 0.9973  0.5879  17.0762  1.6964  

Omnicom Gp Inc 0.9975  0.1457  16.3600  6.8463  

Clorox Co 1.0005  0.2056  11.7352  4.8662  

Quest Diagnostics Inc 1.0254  0.1656  12.1446  6.1920  

Alcoa Inc. 1.0903  0.0546  14.4232  19.9689  

Arrow Electrs Inc 1.0995  0.2044  17.1461  5.3792  

CenturyTel Inc 1.1093  0.2095  12.7566  5.2950  

Eastman Chem Co 1.1499  0.1531  11.8492  7.5108  

Rohm & Haas Co 1.4415  0.2232  15.2233  6.4583  

AmerisourceBergen Corp 1.5320  0.2398  14.7193  6.3887  

Average 0.6392  0.1478  14.6222  5.6560  
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Table 12: Beta distribution for the CEV model with 7-moment conditions 

This table presents the beta distribution for the CEV model with 7-moment conditions. There are 74 firms with negative beta and 29 firms with positive beta. Panel 

A shows the firms with negative betas. Firm “Smithfield Foods Inc” has the smallest beta. The average beta, average J statistic, and average T value are-0.9508, 

13.4377 and 200.7618 respectively for the negative group; panel B shows the firms with positive betas. Firm “Gen Mls Inc” has the largest beta. The average beta, 

average J statistic, and average T value are 0.5201, 13.7058 and 61.777 respectively for the positive group. 

 
Table 12 

Firm Beta Standard error J Test T 

Negative beta 

Smithfield Foods Inc -3.0525  0.0851  10.7882  35.8696  

Pitney Bowes Inc -1.6123  0.0596  9.8951  848.5789  

Masco Corp -1.4593  0.0645  9.6145  291.8600  

Quest Diagnostics Inc -1.4319  0.0459  12.1357  318.2000  

Intl Paper Co -1.4047  0.0665  13.8871  401.3429  

Reynolds Amern Inc -1.3858  0.0391  12.5708  230.9667  

Sealed Air Corp US -1.3682  0.0693  12.3008  224.2951  

Raytheon Co -1.2901  0.0788  14.9110  222.4310  

Eastman Chem Co -1.2259  0.0775  11.2071  215.0702  

Pepsico Inc -1.1710  0.0594  14.4490  249.1489  

Dow Chem Co -1.1502  0.0702  13.1101  426.0000  

Un Pac Corp -1.1016  0.1119  11.8393  121.0549  

Autozone Inc -1.0999  0.0469  17.0106  224.4694  



 

78 
 

Lowes Cos Inc -1.0823  0.0300  13.9755  300.6389  

Kellogg Co -1.0744  0.0956  17.2310  358.1333  

Black & Decker Corp -1.0572  0.0508  13.7356  160.1818  

Molson Coors Brewing Co -1.0524  0.0989  11.2845  113.1613  

Lockheed Martin Corp -1.0495  0.0775  14.1631  276.1842  

V F Corp -1.0479  0.0429  12.1260  2095.8000  

Cytec Inds Inc -1.0479  0.0465  14.7499  100.7596  

Anheuser Busch Cos Inc -1.0453  0.0576  12.6176  201.0192  

Intl Business Machs Corp -1.0419  0.0722  16.8284  146.7465  

Medtronic Inc -1.0410  0.0328  14.8923  185.8929  

Coca Cola Entpers Inc -1.0390  0.0733  15.5321  611.1765  

Colgate Palmolive Co -1.0292  0.0496  16.2404  177.4483  

Wyeth -1.0271  0.0690  14.5739  180.1930  

Gen Dynamics Corp -1.0094  0.0524  13.6122  142.1690  

Alcoa Inc. -1.0073  0.0681  14.7320  111.9222  

Northrop Grumman Corp -1.0035  0.0535  15.0197  346.0345  

Utd Tech Corp -0.9985  0.0378  12.1775  129.6753  

Air Prods & Chems Inc -0.9932  0.0636  10.8773  91.9630  

Ryder Sys Inc -0.9912  0.0534  11.8448  120.8780  

Sherwin Williams Co -0.9816  0.0625  14.0872  103.3263  

Monsanto Co -0.9742  0.0491  10.9551  35.4255  

Johnson & Johnson -0.9688  0.0606  16.4840  169.9649  

Pride Intl Inc -0.9673  0.0500  11.1092  89.5648  

The Kroger Co. -0.9651  0.0718  12.5403  229.7857  

Textron Inc -0.9580  0.0726  11.4960  177.4074  

FedEx Corp -0.9557  0.0119  16.4899  66.8322  

Marriott Intl Inc -0.9522  0.0535  12.4622  78.6942  
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PPG Inds Inc -0.9435  0.0334  16.6418  159.9153  

H J HEINZ CO -0.9138  0.0513  19.7234  179.1765  

Praxair Inc -0.9125  0.0455  10.9687  102.5281  

Procter & Gamble Co -0.9114  0.0530  15.4600  136.0299  

Archer Daniels Midland Co -0.9067  0.0803  11.0206  159.0702  

Altria Gp Inc -0.9064  0.0816  12.4950  95.4105  

Rep Svcs Inc -0.9052  0.0372  14.2439  100.5778  

Goodrich Corp -0.8988  0.0521  13.0832  187.2500  

Danaher Corp -0.8927  0.0420  15.2366  111.5875  

OCCIDENTAL PETROLEUM 

CORP -0.8911  0.0433  11.7143  64.5725  

Omnicare Inc -0.8541  0.0406  11.8905  94.9000  

Southwest Airls Co -0.8198  0.0424  15.3991  174.4255  

ConocoPhillips -0.8124  0.0270  11.7337  116.0571  

Honeywell Intl Inc -0.8088  0.0653  14.5204  149.7778  

Caterpillar Inc -0.7819  0.0426  12.8130  190.7073  

Safeway Inc -0.7657  0.0728  12.2633  104.8904  

ONEOK Partners LP -0.7655  0.0856  13.2526  74.3204  

Norfolk Sthn Corp -0.7629  0.0232  12.2674  231.1818  

Boeing Co -0.7290  0.0426  12.8739  220.9091  

Newell Rubbermaid Inc -0.7243  0.0711  13.2427  109.7424  

J C Penney Co Inc -0.7068  0.0597  11.4594  102.4348  

CSX Corp -0.7009  0.0120  11.1823  194.6944  

Anadarko Pete Corp -0.6910  0.0333  11.7730  93.3784  

3M Co -0.6675  0.0572  17.3084  117.1053  

Target Corp -0.6643  0.0273  12.8219  99.1493  

BorgWarner Inc -0.6277  0.0369  12.5538  313.8500  
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Sunoco Inc -0.5475  0.1004  9.4773  101.3889  

Baxter Intl Inc -0.5363  0.0588  19.6418  75.5352  

Schering Plough Corp -0.4909  0.0341  12.7961  65.4533  

Baker Hughes Inc -0.4875  0.0277  13.2236  79.9180  

APACHE CORP -0.4739  0.0250  10.3974  39.8235  

UST Inc. -0.3349  0.0240  13.5983  95.6857  

Pfizer Inc -0.2846  0.0400  18.6323  51.7455  

Merck & Co Inc -0.1217  0.0104  13.1233  52.9130  

Average -0.9508  0.0542  13.4377  200.7618  

     Positive beta 

Abbott Labs 0.1000  0.1090  13.8598  17.5439  

Wal Mart Stores Inc 0.1000  0.0799  15.5346  11.2360  

SUPERVALU INC 0.1005  0.2103  12.5876  4.9507  

Ltd Brands Inc 0.1152  0.0810  10.2125  23.0400  

Waste Mgmt Inc 0.1154  0.2223  11.1237  10.3964  

Home Depot Inc 0.1294  0.0660  10.7552  8.6846  

Dover Corp 0.1303  0.1004  12.4872  21.7167  

CenturyTel Inc 0.1393  0.3129  12.2224  13.1415  

Mohawk Inds Inc 0.1549  0.2042  13.3039  13.1271  

Halliburton Co 0.1605  0.0554  10.6878  17.6374  

Sysco Corp 0.2003  0.0877  12.3173  22.2556  

Campbell Soup Co 0.2342  0.1086  15.1319  38.3934  

Motorola Inc 0.2702  0.0874  9.8860  90.0667  

Eli Lilly & Co 0.3378  0.0881  14.1718  22.6711  

Nordstrom Inc 0.3855  0.0656  13.2957  66.4655  

Avon Prods Inc 0.3963  0.1130  15.7842  68.3276  
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Utd Parcel Svc Inc 0.4040  0.1249  12.0812  126.2500  

Costco Whsl Corp 0.4623  0.1418  13.7251  57.0741  

ConAgra Foods Inc 0.5029  0.1863  16.1409  34.9236  

Omnicom Gp Inc 0.7960  0.3310  15.6059  104.7368  

Clorox Co 0.8742  0.3979  11.4175  136.5938  

Bristol Myers Squibb Co 0.9619  0.1162  16.7348  135.4789  

AmerisourceBergen Corp 0.9697  0.4939  14.6450  122.7468  

Kimberly Clark Corp 0.9816  0.2035  14.7852  188.7692  

Whirlpool Corp 0.9819  0.3237  14.4610  78.5520  

Arrow Electrs Inc 0.9838  0.1927  16.9686  102.4792  

Unvl Health Svcs Inc 0.9996  1.1247  13.9177  22.6154  

Rohm & Haas Co 1.0414  2.1474  15.1523  79.4962  

Gen Mls Inc 2.0542  1.1858  18.4723  152.1630  

Average 0.5201  0.3090  13.7058  61.7770  
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Figure 1: Time series of the 5-year CDS spreads over the period from 2001 to 2011. 
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Figure 2: Time series of model calculated 5-year CDS spreads under 7-moments setting. 

 

Figure 2 
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Figure 3: Time series of equity volatility under 7-moments setting. 
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Figure 4: Time series of model calculated 5-year CDS spreads under 9-moments setting. 

 

Figure 4 

  

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0
1

/0
1

/2
0

0
1

0
1

/0
5

/2
0

0
1

0
1

/0
9

/2
0

0
1

0
1

/0
1

/2
0

0
2

0
1

/0
5

/2
0

0
2

0
1

/0
9

/2
0

0
2

0
1

/0
1

/2
0

0
3

0
1

/0
5

/2
0

0
3

0
1

/0
9

/2
0

0
3

0
1

/0
1

/2
0

0
4

0
1

/0
5

/2
0

0
4

0
1

/0
9

/2
0

0
4

0
1

/0
1

/2
0

0
5

0
1

/0
5

/2
0

0
5

0
1

/0
9

/2
0

0
5

0
1

/0
1

/2
0

0
6

0
1

/0
5

/2
0

0
6

0
1

/0
9

/2
0

0
6

0
1

/0
1

/2
0

0
7

0
1

/0
5

/2
0

0
7

0
1

/0
9

/2
0

0
7

0
1

/0
1

/2
0

0
8

0
1

/0
5

/2
0

0
8

0
1

/0
9

/2
0

0
8

0
1

/0
1

/2
0

0
9

0
1

/0
5

/2
0

0
9

0
1

/0
9

/2
0

0
9

0
1

/0
1

/2
0

1
0

0
1

/0
5

/2
0

1
0

0
1

/0
9

/2
0

1
0

0
1

/0
1

/2
0

1
1

0
1

/0
5

/2
0

1
1

0
1

/0
9

/2
0

1
1

Panel A: 5-year CDS spreads (9 moments) 

9mom Observed 5-year 9mom CEV 5-year 9mom Leland 5-year



 

86 
 

Figure 5: Time series of equity volatility under 9-moments setting. 

 

Figure 5 
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Figure 6: Time series of all scenarios together. 
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