
LIMITED LOOKAHEAD POLICIES FOR ROBUST

SUPERVISORY CONTROL OF DISCRETE EVENT SYSTEMS

FARZAM BOROOMAND

A THESIS

IN

THE DEPARTMENT

OF

ELECTRICAL & COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

AUGUST 2013

© FARZAM BOROOMAND, 2013



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Farzam Boroomand

Entitled: Limited Lookahead Policies for Robust Supervisory Control of

Discrete Event Systems

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. S. Williamson

External Examiner

Dr. W. F. Xie

Examiner

Dr. K. Khorasani

Supervisor

Dr. S. Hashtrudi Zad

Approved
Dr. W. E. Lynch, Chair

Department of Electrical and Computer Engineering

2013

Dr. C. W. Trueman

Interim Dean, Faculty of Engineering and Computer Science



Abstract

Limited Lookahead Policies for Robust Supervisory Control of Discrete

Event Systems

Farzam Boroomand

In this thesis, Limited Lookahead Policies (LLP) have been developed for Robust Non-

blocking Supervisory Control Problem (RNSCP) of discrete event systems. In the robust

control problem considered here, the plant model is assumed to belong to a given finite set

of DES models.

The introduced supervisor computes the control action in online fashion and it is named

Robust Limited Lookahead (RLL) supervisor. In comparison with offline supervisory con-

trol, RLL supervisor can reduce the complexity associated with the computation of control

law as it looks at the behavior of system at the current state and of a limited depth in future.

Since a conservative policy is adopted here, the behavior of the system under supervi-

sion of the RLL supervisor is generally more restrictive than the optimal offline supervisor.

A sufficient condition is presented under which a limited lookahead window can guarantee

the optimality (maximal permissiveness) of the RLL supervisor.

In some problems, the required window length for maximally permissive RLL supervi-

sor may become unbounded. To overcome this limitation RNSCP with State information

(RNSCP-S) is studied and solved resulting in a state-based RLL (RLL-S) supervisor.

The results of this thesis can be regarded as an extension of previous work in the lit-

erature on limited lookahead policies for (non-robust) supervisory control to the case of

nonblocking robust supervisory control.

The robust limited lookahead design procedures are implemented in MATLAB envi-

ronment and applied to two examples involving spacecraft propulsion systems.

iii



Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Shahin Hashtrudi Zad,

whose guidance, patience and support from the initial to the final stage enabled me to write

this thesis. Completion of my masters would not have been possible without his continuous

help and support. I appreciate all his contributions of time and ideas.

iv



Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Supervisory Control of Discrete Event Systems . . . . . . . . . . . . . . . . 2

1.2 Robust Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Lookahead Policies for Supervisory Control . . . . . . . . . . . . . . . . . . 5

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Robust Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Lookahead Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 14

2.1 Discrete Event Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Operations on Languages . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Operations on Automata . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Robust Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Online Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3 Limited Lookahead Policy for Robust Nonblocking Supervisory Control:

A Linguistic Approach 33

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Robust Limited Lookahead Supervision . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 General Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Formalizing RLL Supervisor . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Properties of RLL Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Maximally Permissive RLL Supervisor . . . . . . . . . . . . . . . . . . . . . 47

3.5 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Off-line Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Online Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Example 3: Computational Complexity . . . . . . . . . . . . . . . . . . . . . 58

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Limited Lookahead Policy for Robust Nonblocking Supervisory Control:

A State-based Approach 62

4.1 State-based Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 State-based Conventional Supervisory Control Problem . . . . . . . 63

4.1.2 State-based Robust Supervisory Control Problem . . . . . . . . . . . 64

4.1.3 Converting RNSCP to RNSCP-S . . . . . . . . . . . . . . . . . . . . 65

4.2 Robust Limited Lookahead Supervision with State Information . . . . . . . 68

4.2.1 Linguistic Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 RLL-S Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Properties of RLL-S Supervisor . . . . . . . . . . . . . . . . . . . . . 72

4.2.4 Maximally Permissive RLL-S Supervisor . . . . . . . . . . . . . . . 77

4.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Off-line Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Online Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Application Examples 88

5.1 Viking Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Discrete Event Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



5.1.2 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.3 Robust Formulation of the Problem . . . . . . . . . . . . . . . . . . . 95

5.1.4 Off-line Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.5 Online Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Cassini Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Discrete Event Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Offline Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.4 Online Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusion 113

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 116

A Spacecraft Propulsion System Diagrams 122

B Discrete Event Control Kit (DECK) 124

C MATLAB Code 125

vii



List of Figures

1.1 Simplified CMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Supervisory control framework. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Tree expansion in the LLP scheme. . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Supervisory Control with Lookahead Policies. . . . . . . . . . . . . . . . . . 7

2.1 Supervisory control scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 System with “n” permanent failure modes. . . . . . . . . . . . . . . . . . . . 25

2.3 Supervisory control with multiple sets of marked states. . . . . . . . . . . . 26

2.4 Application of supervisory control with multiple sets of marked states. . . . 26

2.5 Block diagram of Limited Lookahead Supervisor . . . . . . . . . . . . . . . 28

3.1 Block diagram of Robust Limited Lookahead Supervisor . . . . . . . . . . . 36

3.2 Plant automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Union plant model G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Realization of supervisor S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 fN(ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 fN(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 RNSCP with unbounded Nnnf . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Tree-expansion of the RNSCP with unbounded Nnnf . . . . . . . . . . . . . 58

4.1 Plants and specifications before refinement . . . . . . . . . . . . . . . . . . . 66

4.2 Modified automata: Example 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Refined automata: Example 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Automaton G: Example 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Subgraph expansion of G: Example 4.2 . . . . . . . . . . . . . . . . . . . . . 69

4.6 Tree expansion of G: Example 4.2 . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Block diagram of State-based Robust Limited Lookahead Supervisor . . . . 71

4.8 Example 4.3: Plant automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Example 4.3: The overall specification H . . . . . . . . . . . . . . . . . . . . 85

viii



4.10 Example 4.3: Realization of off-line state-based supervisor. . . . . . . . . . 85

4.11 Hnb: Example 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.12 fN(ε): Example 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.13 fN(a): Example 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Simplified pressure control assembly of Viking orbiter. . . . . . . . . . . . . 89

5.2 Simplified MGS propulsion system . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 DES models of isolation valve V1 . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 DES models of pyro-valve PV1 . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 DES models of pyro-valve PV1 . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 PVi: DES model of pyro-valve i = 2,3, ..,7 . . . . . . . . . . . . . . . . . . . 93

5.7 P1: DES model of pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 M : DES model of the appropriate marking . . . . . . . . . . . . . . . . . . . 94

5.9 Events enabled by γ10 along S1: Viking spacecraft . . . . . . . . . . . . . . 99

5.10 Events enabled by γ10 along S2: Viking spacecraft . . . . . . . . . . . . . . 100

5.11 Cassini Main Propulsion System. [33] . . . . . . . . . . . . . . . . . . . . . . 101

5.12 Cassini Pressure Isolation Assembly. [34] . . . . . . . . . . . . . . . . . . . . 101

5.13 Simplified CMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.14 V iNF : Regular Valve (Normal-faulty mode) . . . . . . . . . . . . . . . . . . 103

5.15 PVi: Pyro-Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.16 Sensor reading with multiple set of marked states . . . . . . . . . . . . . . . 104

5.17 Interaction between pressures and valves status . . . . . . . . . . . . . . . . 105

5.18 SPEC: Overall specification automaton . . . . . . . . . . . . . . . . . . . . . 106

5.19 Enabled events by RLL-S supervisor along the path S1 . . . . . . . . . . . . 110

5.20 Enabled events by RLL-S supervisor along the path S2 . . . . . . . . . . . . 111

A.1 Mars Global Surveyor [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Cassini Spacecraft Propulsion System [39]. . . . . . . . . . . . . . . . . . . . 123

ix



List of Tables

3.1 Comparison between online and off-line complexity. . . . . . . . . . . . . . 59

3.2 Effect of maximum distance between two states on the sufficient window

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Effect of size of automata on the sufficient window size. . . . . . . . . . . . 60

3.4 Effect of the percentage of marked states on the sufficient window size. . . 61

5.1 Event list for Viking propulsion system . . . . . . . . . . . . . . . . . . . . . 91

5.2 Average sizes of expanded automata . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Event list for CMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Average sizes of expanded automata . . . . . . . . . . . . . . . . . . . . . . . 112

x



Chapter 1

Introduction

This thesis studies robust nonblocking supervisor control problem of discrete event systems

where the exact model of the system is unknown but it belongs to a finite set of possible

models. The solution to the robust nonblocking control problem in literature is computed

off-line before the system starts execution. Finding the off-line supervisory control map

can be computationally infeasible due to the size of the system. Even storing the resulting

supervisor may not be possible because of limited available computer memory. Further,

the complete description of the system might be unavailable in the design stage in the case

of time-varying systems. To tackle these issues, we present an online solution for robust

nonblocking supervisory control problem based on limited lookahead policy. The online

supervisor computes the control action for the current state based on some knowledge of

the future behavior of the plant.

In the remainder of this chapter, we first introduce conventional (non-robust) supervi-

sory control problem in Section 1.1. In Section 1.2 robust supervisory control with model

uncertainty is introduced. Section 1.3 introduces online supervisory control with lookahead

policies. After a literature review on robust supervisory control and lookahead policies in

Section 1.4, the objectives and contributions of this thesis are presented in Section 1.5. The

organization of this thesis is finally presented in Section 1.6.

1



1.1 Supervisory Control of Discrete Event Systems

Discrete-event systems (DES) constitute a class of systems with a discrete state-space

whose dynamics can be characterized by sequences of discrete events. A transition within

the state-space of a DES happens upon the occurrence of a discrete event.

Example 1.1. As an example of DES consider pressure isolation assembly of a simplified

version of the Cassini Main Propulsion System (CMPS) [1] presented in Figure 1.1. The

system consists of four pyro-valves (PVi, i = 1, ...,4), two regular valves (V1, V2) and

two pressure sensors. The valves have two states which are open or closed. The pressure

sensors measure the pressure in the upstream of each engine which can be either low or

high. The overall state of the system can be expressed by considering combination of the

components’ states. ∎

Fuel

E2

PV1 PV2

PV4PV3

V1 V2

P1 P2

E1

Figure 1.1: Simplified CMPS.

In general, some behaviors of the system may be undesirable. In the preceding example,

we would like to avoid the states where both engines are fired simultaneously. We must

2



assure that there exists a fuel path between the tank and only one of the engines at each

time. The goal of supervisory control is to determine how the behavior of a system should

be altered in order to achieve the desired behavior and avoid the undesirable behavior. This

can be achieved through the Ramadge-Wonham supervisory control framework presented

in [2], [3], [4].

In this framework, a supervisor positioned in a feedback loop as shown in Figure 1.2,

alters the behavior of the plant by disabling or enabling controllable events so that the

behavior of system is restricted to the desirable behavior. The supervisor also prevents

the system from being blocked. In Example 1.1 opening and closing of the valves are

controllable events. The changes in pressure sensor readings are uncontrollable as they are

dependent to some other events in the system.

Event

Supervisor

Plant

Control
Action (State Info)

Figure 1.2: Supervisory control framework.

In many practical cases, the supervisor can be regarded as a finite-state automaton. Each

state of this automaton corresponds to a unique control action. Specifically, the presence

of an event in a state indicates that the event is enabled. If an event is absent in a state of

the supervisor automaton, then it means that the event will be disabled by the supervisor

(should the plant attempt to execute the event). The control action can also be based on

3



the plant states (instead of executed event sequences). In this case, the supervisor is a state

feedback law (a map from plant state to control action).

1.2 Robust Supervisory Control

Conventional supervisory control assumes that the system model is known and it is certain

at the design stage. This assumption is not always true, the system model may change

during the operation due to different reasons (e.g. failure in a component). Also, the design

objectives may vary over the course of operation. Robust control is developed in order to

deal with this uncertainty in the systems. Robust control approaches have been studied in

both continuous and discrete systems.

For discrete event systems different approaches exist to study modeling uncertainty. In

this thesis, we assume that the exact model of the DES is unknown but it belongs to a finite

set of possible models. The specification for each of the possible models might be different

from the others. The goal is to design a robust supervisor which works properly for all

plant models. This means that the plants should remain nonblocking under supervision,

while their behavior remain within the legal limits. The main problem of this thesis is to

design a maximally permissive online supervisor which ensures safety and nonblocking

requirements of all the possible models.

Two problems that can be regarded as special cases of the robust control problem are

fault recovery [22] and supervisory control with multiple marked state sets [5]. In fault

recovery problem, the true model of a system can be either the normal model or any of the

normal-failure models. In case of a component failure, a robust supervisor should guarantee

that the system fulfills safety requirement while remaining nonblocking.

Consider the propulsion system in Example 1.1. Assume that each of the regular valves

V1 or V2 has a failure mode, stuck-closed. Before the system starts operation, we do not

know if any of the failures will happen or not. Considering a single failure scenario, we

4



will have three different possible models of the system. A normal model, where there is

no failure in the system, and two normal-failure models, where either V1 or V2 fails and

become stuck-closed.

In addition to uncertainty in components’ models, the mission goals might be different

before and after a failure. By mission goal, we mean the states in a system which corre-

sponds to completion of a task. In our example, the goal before a failure is: to fire one of

the engines and possibly switch from one engine to another. The objective after a failure

is usually less strict. In this example, we want to make sure that we can always generate

thrust in case of a single failure. This multi-objective problem, which is robust supervisory

control with multiple marking, can be formulated as a special case of robust problem.

1.3 Lookahead Policies for Supervisory Control

In off-line supervisory control, the control action (off-line supervisor) for all possible plant

behavior is computed at the design stage before the plant starts operation. This off-line

computation is a one-time investment, which guarantees satisfaction of the design speci-

fication. However, when the size of the plant state space becomes very large, it might be

impossible to accommodate this enormous computation. In addition, the size of an off-line

supervisor may become too large to be stored in computer memory. Consider a propulsion

system with thousands of failure models. Storing an off-line supervisor for such a system

requires memory which may not be available. On the other hand, in online computation of

the control action there is no need for storing a design.

In light of the above mentioned considerations, [7] presented supervisory control with

Limited Lookahead Policy (LLP) as an alternative to off-line computation.

In LLP supervisory control, the control action is computed online after execution of

each event. This computation is based on an N-step prediction of the future behavior of

the system. Assuming that an event sequence “s” has been generated, the control action

5



N

s

(a) All possible behavior after s up to N steps

N

s

(b) All legal behavior after s up to N steps

Figure 1.3: Tree expansion in the LLP scheme.

following “s” will be a list of enabled events. This procedure must be repeated after the

execution of every event. This means that the off-line design problem (which may be

computationally expensive) is replaced with repetitive computation of some similar but

smaller problems.

In LLP scheme, the set of event sequences (language) that the system can generate in

the next N-steps is initially generated (Fig. 1.3 (a)). Next, a subset of this set which includes

legal sequences according to a specification is constructed. The two sets (languages) are

finite and are represented by their tree generators. The latter language is represented by a

sub-tree of the former one (Fig. 1.3 (b)). These trees change dynamically from step to step

and must be updated after the execution of every event.

The control action is then computed by finding supremal controllable sublanguage of

the predicted legal behavior with respect to the predicted closed behavior. The control loop

for LLP supervision is shown in Figure 1.4 [8].

6



LLP supervisor

Knowledge base

about plant 

Control

Control
action

Event
(state info)

specifications

Plant

Figure 1.4: Supervisory Control with Lookahead Policies.

In the LLP framework, the behavior of the system beyond a trace (event sequence) with

the length of “N” is completely unknown. These traces are called pending traces. Two

different policies can be adopted toward pending traces. A pending trace may lead to an

illegal string by executing a set of uncontrollable events. To avoid the risk, we may adopt a

conservative policy toward the pending traces which treats all pending traces to be illegal.

In this sense, conservative policy assumes the worst situation and thus a conservative su-

pervisor is more restrictive than an optimal off-line supervisor. On the other hand, we may

assume that all the pending traces lead to a legal marked string which is an optimistic atti-

tude. In this situation, the system is given maximum freedom to proceed. However, some

of the pending traces may not lead to a legal marked state through a controllable path. This

means that an optimistic supervisor is more permissive than an optimal off-line supervisor.

Variable Lookahead Policies (VLP) are later presented as a modification of LLP in

order to compute the control action more efficiently. In this scheme, the tree expansion

ends whenever the control decision can be made unambiguously or whenever the boundary

7



of N-level tree is reached, whichever comes first [8].

In this thesis, we extend LLP with conservative policy to solve the robust nonblocking

supervisory control problem. We also obtain a set of sufficient conditions for optimality of

the robust LLP supervisor.

1.4 Literature Review

1.4.1 Robust Control

Robust supervisory control of DES was first studied by Lin in [12]. In the proposed frame-

work the author assumes that the exact model of the DES is unknown while it belongs to a

finite set of possible models G = {G1, ...,Gn}. It also assumes a common specification, K,

which is a sublanguage of marked behaviors of the possible models (K ⊆ ⋂
i
Lm(Gi)). The

goal within the framework is to find a supervisor which works with all the possible DES

models.

Takai [18] relaxes the constraint K ⊆ ⋂
i
Lm(Gi) in [12]; however, it only studies the

case of prefix-closed specifications. Thus, it does not consider the nonblocking property.

Later Takai [14], generalized the framework presented by [12] to the case of timed DES.

Park-Lim [19], [20] generalizes the framework presented by [12] to work with nondeter-

ministic DES.

In another attempt, [21] generalizes the framework of [12] by considering non-prefix

closed specifications that are not necessarily the same for all the models. The nonblocking

property of the models is ensured by a sufficient condition referred to as nonconflicting

property. Later [23] extended the results of [21] by (i) replacing nonconflicting property

with G-nonblocking property (which results in a necessary and sufficient condition set the

solution) and (ii) considering control under partial observation.

8



The authors in [28], extend robust supervisory control in [21] to the hierarchical frame-

work presented by [32].

In another framework of robust supervisory control, Curry-Krogh [29] and Takai [15],

[17] model the uncertainty in modeling using ω-languages. Having a supervisor which

works for a nominal plant, the framework aims to maximize the (infinite) set of plants for

which the supervisor is suitable.

In this thesis we are interested in the problem of robust nonblocking supervisory control

studied in [21] and [23]. We modify conventional LLP supervisor to solve the Robust

Nonblocking Supervisory Control Problem (RNSCP) in an online fashion.

The presented approach is referred to as Robust Limited Lookahead (RLL) Supervisor.

It considers the behavior of the possible DES models by finding tree-expansions N-step

beyond the currently executed trace.

1.4.2 Lookahead Policies

Limited Lookahead Policy

In conventional (non-robust) DES framework of Ramadge-Wonham the supervisors are

computed entirely before the system begins operation (off-line design). Limited lookahead

supervision is referred to as online control because the control action is computed after

the occurrence of each event, while the system is operational. Limited Lookahead Policies

(LLP) are proposed in [7] to address the following difficulties of traditional supervisory

control:

• Finding off-line supervisor could be computationally infeasible due to the complexity

of DES or its legal behavior;

• Complete description of the DES or its legal behavior might be unavailable due to

time-varying property of the system.

9



In view of these observations, [7] proposed LLP supervisor for online supervisory con-

trol of DES, where control action is computed based on N-step truncation of DES and its

legal behavior. The estimation of the plant model is in form of a tree-expansion. A tree-

expansion distinguishes between states based on their event histories. Once the plant and

its specification are estimated, the rest is very similar to off-line supervisory control. In

order to compute the control action, [7] has taken two different attitudes toward traces of

the length N in truncated model of DES (which are called pending traces): 1- conservative,

and 2- optimistic. The conservative policy assumes the worst case, where all pending traces

lead to an illegal string with execution of a set of uncontrollable events. Generally speaking,

the LLP supervisor with conservative attitude is less permissive compared with the off-line

supervisor. On the other hand the optimistic policy assumes that every pending trace lead to

a legal marked state through a controllable path. Thus, the LLP supervisor with optimistic

attitude is more permissive compared with the optimal supervisor. In summary, with an

insufficient length of lookahead window the LLP supervisor can be overly-accepting with

optimistic policy or overly-restrictive following the conservative policy.

The main challenge in the scheme of LLP supervisory control is to determine the min-

imum required length of lookahead window which guarantees optimality of the online su-

pervision. [7] presented a set of sufficient conditions under which the LLP supervisor

performs as well as optimal supervisor with complete information about the plant and its

specification.

Variable Lookahead Policy

The authors of [7] later observed that length of lookahead window can be modified for

some of the strings. Thus, in [8] they proposed a method for efficient calculation of online

supervisory control decision. Like LLP supervisor, the new approach works based on N-

step tree-expansion of the systems behavior, while tree expansion terminates whenever

10



the control action can be made unambiguously or whenever the boundary of the N-step

projection reaches. This new approach is called Variable Lookahead Policy (VLP). VLP is

an efficient way of implementation for LLP.

Both LLP and VLP supervisors take linguistic approach for online computation of con-

trol action. This causes the required window size for the optimal supervisor to be infinite in

some cases. [9] presented a variable lookahead policy with state information named VLP-

S. The window size required for optimal VLP-S is always bounded for finite state plants.

VLP-S requires the specification to be a sub-automaton of the plant. If this is not the case,

[9] provides an approach for modifying the automata appropriately. Finally, [6] presents a

VLP for robust supervisory control of DES.

Other works in the area of online supervisory control of DES are as follows. Extension-

based Limited Lookahead (ELL) Policy is presented [10], [11]. The ELL supervisor avoids

the notion of pending traces by extending the behavior of the plant with any arbitrary behav-

ior beyond the N-step lookahead window. [13] presents an estimate-based Limited Looka-

head Policy which studies a special case where the specification is a closed language. [24]

generalizes the LLP framework to work with probabilistic DES. [25] studies the methods

for estimation of the size of state-space for lookahead tree-expansions.

In this thesis we study the robust nonblocking supervisory control with a conservative

limited lookahead policy. We also study the problem using state information in order to

guarantee the optimality of the Robust Limited Lookahead (RLL) supervisor.

1.5 Thesis Contributions

We can summarize the major contributions of this thesis as follows:

• We generalize the conservative limited lookahead policy presented in [7] to the case

of robust nonblocking control. We call the new supervisor Robust Limited Lookahead

11



(RLL). We show the monotonicity property of the RLL supervisor in terms of the

length of the lookahead window. We determine the closed-form expression of the

language generated by the DES under supervision of the RLL supervisor. We also

present the lower bound of N which guarantees the optimal performance of the RLL

supervisor (under certain conditions).

• We study the case where the required length of window size for optimality becomes

infinite. To deal with this situation, we extend the linguistic approach of the RLL

supervisor to the case of supervisory control with state information. We refer to the

new supervisor as RLL-S. We present algorithms for online computation of RLL-S

based control actions.

• Furthermore, the procedures required for our lookahead policies are implemented in

MATLAB environment using the toolbox Discrete Event Control Kit (DECK) [44].

• We apply our proposed method to two different problems in propulsion systems of

Viking and Cassini spacecrafts. We study the effectiveness of the approach in each

of the two cases.

1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews the supervisory

control of DES, as well as robust supervisory control, and LLP supervision. Chapter 3

formulates the problem studied in the thesis and provides the solution to online robust non-

blocking supervisory control with limited lookahead policy. It also discusses the properties

of the RLL supervisor. Chapter 4 transforms the RNSCP to a state-based problem and then

solves the online problem with state information. Chapter 5 discusses two application ex-

amples of the proposed method. The thesis is concluded at the end with a discussion and

presenting possible future research.

12



1.7 Summary

This chapter provides an introduction to this thesis by introducing and motivating the Ro-

bust Limited Lookahead (RLL) supervision problem. The relevant literature has been re-

viewed, and the contributions of the thesis have been explained.

13



Chapter 2

Background

This chapter contains two parts. The first part presents a quick review on formal languages,

conventional and robust supervisory control, and online supervisory control scheme. The

second part presents preliminaries on the properties of post languages and other results

which are used to prove main results of this thesis. This chapter is mainly based on [42],

[41].

2.1 Discrete Event Models

A DES is formally defined as a dynamic system with a discrete state space, performing

asynchronous event driven transitions within the state-space. Discrete event systems are

typically employed to model man-made system which are governed by man-made rules

rather than physical laws. Examples of this type of systems are manufacturing systems,

telecommunication protocols and database systems. Different models are proposed in lit-

erature to model a DES each of which focuses on a different aspect of a DES. For example,

finite-state automaton takes a logical deterministic approach while Markov chain models

probabilistic aspect of a DES. In this research we model a DES using a finite-state automa-

ton.

14



2.1.1 Languages

The transitions of a DES in state-space follows the occurrences of discrete events. We

assume that each event happens abruptly and that only one event happens at a time. Let Σ

be the event set of a DES also called an alphabet. A sequence of events over the alphabet

Σ is called a string or a trace. The empty string, denoted by ε, is defined as a string with no

event. A set of strings over an alphabet Σ is called a language. The language that includes

all the strings except ε is defined as:

Σ+ = {α1...αn∣n > 0, αi ∈ Σ}
Then define:

Σ⋆ = Σ+ ∪ {ε}

2.1.2 Operations on Languages

Basic set operations are defined for languages as the language are sets of strings. Such basic

operations on two languages L1 and L2 are intersection L1∩L2, union L1∪L2, complement

Lco
1

and negation L1−L2. Some other operations on languages are defined in the following:

Definition 2.1. Prefix-closure: Let L ⊆ Σ∗, then L ∶= {s ∈ Σ∗∣∃t ∈ Σ∗, st ∈ L}.
The string s is then called to be a prefix of t and it is denoted by s ≤ t. If s is a prefix of

t and s ≠ t then we denote it with s < t.
Definition 2.2. Post-language of a language L ⊆ Σ∗ after trace s ⊆ Σ∗ is defined as:

L/s ∶= {t ∈ Σ∗ ∣ st ∈ L}

15



Definition 2.3. Quotient of L by M with L,M ⊆ Σ∗ is defined as:

L/M ∶= {w ∈ Σ∗ ∣ (∃x ∈M)wx ∈ L}

For a sequence s, let ∣s∣ denotes the length of s, i.e., the number of events in s when

s ≠ ε and ∣s∣ = 0 when s = ε.
Definition 2.4. Truncation of L to a non-negative integer N is defined as:

L∣N ∶= {t ∈ L ∣ ∣t∣ ≤ N}

Some useful properties of the post-language operation which are employed in this thesis

are presented in Lemma 2.1.

Lemma 2.1. Let K1,K2 ⊆ Σ∗ and s ∈ Σ∗. Then:

1) (K1 ∩K2)/s =K1/s ∩K2/s
(K1 ∪K2)/s =K1/s ∪K2/s

2) K1/s =K1/s
3) ∀s ∈K1⇒ (K1/s)K2 ⊆ (K1K2)/s

2.1.3 Automata

Modeling a DES as a language is a good approach to study the theoretical aspect of dis-

crete events systems and theory of supervisory control. However, it is not practical for

16



developing computational algorithms. For this purpose, other modeling methods such as

automaton and Petri nets are used. In this part we discuss automaton as a visual tool for

representing a DES. An automaton is also called a generator. A deterministic automaton is

a five-tuple:

G = (X,Σ, δ, x0,Xm)
where Σ is the set of alphabet, X is the set of states with initial state x0, δ is the partial

transition function with δ ∶ X × Σ → X and Xm denotes the set of marked states. The

marked states typically signing the completion of a task or some reset mode. The behavior

of a DES G is described by its prefix-closed language and marked language.

L(G) = {s ∈ Σ∗ ∣ δ(x0, s) is defined}

Lm(G) = {s ∈ L(G) ∣ δ(x0, s) ∈Xm}.

2.1.4 Operations on Automata

Definition 2.5. Equivalent automata We say that two automata G1 and G2 are equivalent

iff L(G1) = L(G2) and Lm(G1) = Lm(G2).
Definition 2.6. Let G = (X,Σ, δ, x0,Xm). The automaton G is reachable if there is a path

to every state, x, from the initial state, x0. In other words, for every x ∈ X , there exists a

trace s such that δ(x0, s) = x is defined. The reachable subautomaton of G is denoted by

Gr.

Definition 2.7. Let G = (X,Σ, δ, x0,Xm). The automaton G is coreachable if there is a

path from every state to a marked state.

An automaton is said to be nonblocking if there exists a path from every reachable

state to a marked state. The formal definition of nonblocking (for deterministic automaton

17



) given in terms of its languages is provided below.

Definition 2.8. Nonblocking automaton An automaton G is called nonblocking if and

only if Lm(G) = L(G).
Next we discuss the trim and complement operation.

Definition 2.9. Trim operation: For an automaton G, Trim(G) is reachable and coreachable

subautomaton of G.

A generator is trim if all of its states are reachable and coreachable.

Definition 2.10. Complement: Let G = (X,Σ, δ, x0,Xm), then Gcomp marks Lm(G) =
Σ⋆ −Lm(G) and generates Σ∗.

Definition 2.11. Product (Meet): Consider two automata:

G1 = (X1,Σ1, δ1, x0,1,Xm,1), G2 = (X2,Σ2, δ2, x0,2,Xm,2)
Then

G1 ×G2 ∶= Reachable part of (X1 ×X2,Σ1 ×Σ2, δ, (x0,1, x0,2),Xm,1 ×Xm,2)

where:

δ((x1, x2), σ) ∶=
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(δ1(x1, σ), δ(x2, σ)) if δ1(x1, σ) and δ(x2, σ) are defined

undefined otherwise

By the definition at the state (x1, x2) the event σ appears in G1 ×G2 if and only if G1

and G2 can execute σ from x1 and x2 respectively. Consequently, it can be shown that

product operation represents the intersection of languages of automata G1 and G2:

L(G1 ×G2) = L(G1) ∩L(G2)

Lm(G1 ×G2) = Lm(G1) ∩Lm(G2)

18



The synchronous product is used in modeling the joint operation of two (or more) au-

tomata.

Definition 2.12. Synchronous Product (Parallel Composition) Let G1 = (X1,Σ1, δ1, x0,1,Xm,1)
and G2 = (X2,Σ2, δ2, x0,2,Xm,2). Then define:

G1 ∥ G2 ∶= Reachable part of(X1 ×X2,Σ1 ∪Σ2, δ, (x0,1, x0,2),Xm,1 ×Xm,2)

where

δ((x1, x2), σ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δ1(x1, σ), δ2(x2, σ))

(δ1(x1, σ), x2)

(x1, δ2(x2, σ))

undefined

if σ ∈ Σ1 ∩Σ2 ∧ δ1(x1, σ)! ∧ δ2(x2, σ)!

if σ ∈ Σ1 −Σ2 ∧ δ1(x1, σ)!

if σ ∈ Σ2 −Σ1 ∧ δ2(x2, σ)!

otherwise

The supervisory control theory partitions the event set into two disjoint sets, control-

lable and uncontrollable, denoted by Σc and Σuc respectively. Assume the legal marked

behavior is represented by with a language K. The objective is to design a supervisor V

that limits the behavior of the plant G to its legal behavior K with ensuring nonblocking

property of the system under supervision V /G, by disabling only controllable events. The

supervisor itself is a map V ∶ Σ∗ → Γ where Γ = {γ ∈ 2Σ ∣ γ ⊇ Σuc}. We present a

preliminary on supervisory control in the next section.

2.2 Supervisory Control

In the supervisory control theory which is introduced by Ramadge and Wonham [2], the

plant is modeled by an automaton G = (X,Σ, δ, x0,Xm). The theory partitions the event

set Σ into two disjoint sets, controllable events and uncontrollable events denoted by Σ =
19



Plant

Supervisor

V(s) s = σ1....σn

Figure 2.1: Supervisory control scheme

Σc and Σuc respectively. The objective is to limit the marked behavior of the plant to a

desirable legal sublanguage K by disabling some controllable events while assuring that

the nonblocking property holds for the system under supervision. Supervisory control is

a feedback control as shown in Figure 2.1. The supervisor observes events which are

generated by the plant. Considering the legal behavior K, the supervisor V makes the

control decision about the enablement of events. The supervisor must also ensure that the

system under supervision is nonblocking.

For s ∈ L(G), V (s) denotes the set of enabled events by the supervisor. Note that

V can not disable any uncontrollable event. The language generated by the plant under

supervision of supervisor V , L(G,V ), can be recursively defined as:

1) ε ∈ L(G,V )
2) If s ∈ L(G,V ) and σ ∈ V (s), then sσ ∈ L(G,V )

Further, the marked language of the plant under supervision, Lm(G,V ), is defined by the

following equation:

Lm(G,V ) = Lm(G) ∩L(G,V )

20



Nonblocking Supervisory Control Problem (NSCP)

As previously discussed supervisory control aims to design a supervisor which limits the

behavior of the plant under supervision to legal language while maintaining nonblocking

property for the system under supervision. The Nonblocking Supervisory Control Problem

(NSCP) is described in the following.

Nonblocking Supervisory Control Problem: Let G = (X,Σ, δ, x0,Xm) and Σ = Σc ⊍
Σuc. Also suppose the legal marked behavior of the plant is described by K ⊆ Lm(G) and

K ≠ ∅. Find a supervisor V such that:

1) Lm(G,V ) ⊆K
2) L(G,V ) = Lm(G,V )

A supervisor which solves NSCP is called a nonblocking supervisor. There is no

unique solution for NCSP in general. Define:

V ∶= {V ∣ V solves NSCP}

A supervisor V is called to be maximally permissive if

∀V ′ ∈ V ∶ Lm(G,V ) ⊆ Lm(G,V ) ∧L(G,V ) ⊆ L(G,V )

The following definitions are necessary for introducing the solution to NSCP.

Definition 2.13. Controllability Let Σu ⊆ Σ be the set of uncontrollable events and au-

tomaton G = (X,Σ, δ, x0,Xm). A language K ⊆ Σ∗ is controllable with respect to G

if

KΣu ∩L(G) ⊆K
21



It is easy to show that if the language K is not controllable, it has a supremal controllable

sublanguage denoted by supC(K,G). (If K is controllable, then K = supC(K,G))
Definition 2.14. L

m
(G)-closure: We say that a language K ⊆ Lm(G) is Lm(G)-closed if

K =K ∩Lm(G)

Obviously, ∅ is Lm(G)-closed. It is easy to show that Lm(G)-closure is preserved under

the union operation of languages and consequently any language K has a supremal Lm(G)-
closed sublanguage which is denoted by supR(K,G). The supremal Lm(G)-closed sub-

language of K can be calculated with the formula supR(K,G) =K − (Lm(G) −K)Σ∗.
Lemma 2.2. [41] If a language K is Lm(G)-closed, then supC(K,G) remains Lm(G)-
closed.

Theorem 2.1. [41] Let G = (X,Σ, δ, x0,Xm), Σu ⊆ Σ be the set of uncontrollable events.

Also suppose K ⊆ Lm(G) be a nonempty language. Then there exists a supervisor V such

that Lm(G,V ) =K and L(G,V ) =K if:

1) K is controllable w.r.t G ∶KΣu ∩L(G) ⊆K
2) K is Lm(G)-closed ∶K ∩Lm(G) =K

Optimal Solution to NSCP

We previously formulated the NSCP. Note that in the case of full-observation, there always

exists a maximally permissive (optimal) supervisor which solves NSCP. The optimal solu-

tion for NSCP is characterized by the supremal Lm(G)-closed, controllable sublanguage of

the legal language K. By Lemma 2.2, the supremal controllable sublanguage of an Lm(G)-
closed language remains Lm(G)-closed. Consequently, the maximally permissive solution

22



is obtained by first finding supR(K,G) (if K is not Lm(G)-closed) and then applying the

supR(K,G) and then applying the operator supC( ,G).

2.2.1 Robust Supervisory Control

In the conventional (non-robust) supervisory control, it is assumed that the model of the

system is known and it does not change over time. On the other hand, this is not always

the case. In some problems the system can change over time or there might be other

uncertainties in the modeling of the system. It is then necessary to take the uncertainty

of modeling into account. Robust supervisory control is developed to cover these cases.

There are several ways for modeling the uncertainty and consequently for the formula-

tion of robust supervisory control. We are interested in the problem of robust supervisory

control studied in [21] and [23].

Problem Formulation

Suppose the model of the system belongs to a finite set of possible models G = {G1, ...,Gn}.
Each model has its own legal marked behavior Ki ⊆ Lm(Gi). It is assumed that if an event

α belongs to the event sets of Gi and Gj (i ≠ j), then α controllable (respectively uncon-

trollable) for Gi implies α controllable (respectively uncontrollable) for Gj . In the Robust

Nonblocking Supervisory Control Problem (RNSCP) the goal is to design a supervisor V

such that Lm(Gi, V ) ⊆ Ki and Lm(Gi, V ) = L(Gi, V ) (i = 1, ..., n). Let G be a DES

such that L(G) = ⋃n
i=1L(Gi) and Lm(G) = ⋃n

i=1Lm(Gi). The answers to RNSCP can be

expressed using the following sublanguages. For K ⊆ Σ∗ define:

1. Controllable sublanguages of K

C(K,G) = {E ⊆K ∣ EΣuc ∩L(G) ⊆ E}.

23



2. Lm(G)-closed sublanguages of K

R(K,G) = {E ⊆K ∣ E ∩Lm(G) = E}.

3. Gi-nonblocking sublanguages of K

Nb(K,Gi) = {E ⊆K ∣ E ∩Lm(Gi) = E ∩L(Gi)}.

The set of controllable, Lm(G)-closed and Gi-nonblocking sublanguages of K is de-

fined as:

RCNb(K,G) = R(K,G) ∩C(K,G) ∩Nb(K,G1) ∩ ... ∩Nb(K,Gn).

The set RCNb(K,G) of sublanguages of K is nonempty and closed under union and

hence has a supremal element denoted by K⋆ [23].

Theorem 2.2. [23] Consider RNSCP and let

K = Lm(G) ∩ ( n⋂
i=1

(Ki ∪ (Σ∗ −Lm(Gi))))
For every nonempty element of RCNb(K,G), Ks, there exists a supervisor V which

solves RNSCP with Lm(G,V ) = Ks and vice versa. In particular, K∗ = supRCNb(K,G)
characterizes the maximally permissive solution of RNSCP.

The language K is the overall specification of RNSCP which includes all the strings

which are not illegal in any of the possible models. Two problems that can be treated as

special cases of robust control problem are described in the following.

24



1

...

N
X

X X
F Fn

Figure 2.2: System with “n” permanent failure modes.

Example 2.1. Fault recovery [22], [23] in DES can be treated as a special case of Ro-

bust Nonblocking Supervisory Control Problem. The system is initially assumed to be

in the normal mode where no failure has happened. Assume that there exist “n” perma-

nent failure events in the system. Considering a single fault scenario, the state of the sys-

tem can be in Xn,XF1
, ...,orXFn

(Figure Figure 2.2). The normal and each faulty mode

has its own legal specification. Thus the problem is an example of robust control with

G = {GN ,GNF1
, ...,GNFn

}. Here GNFi
is the subautomaton containing states Xn ∪XFi

.

The goal is to design a supervisor such that each model under supervision meets its corre-

sponding specification and be nonblocking. This problem can be formulated as a special

case of RNSCP.

Example 2.2. Supervisory control with multiple sets of marked states [5] can be mod-

eled as a RNSCP. Assume that we are given a plant G = (X,Σ, x0, δ,Xm1
, ...Xmn

) with

multiple sets of marked states and specifications Ki ⊆ Li
m(G) where Li

m(G) represents

marked language with only states in Xmi
marked. This problem can be treated as a robust

problem with G = {G1, ...,Gn} where Gi = (X,σ, x0, δ,Xmi
). Each model has its own

specification Ki ⊆ Lm(Gi) = Li
m(G).

As an example, consider G = {G1,G2} as shown in Figure 2.3. Assume that all se-

quences are legal. We want to synthesize a robust supervisor V such that Lm(Gi, V ) =
L(Gi, V ) for i = 1,2, i.e., the plant under supervision is nonblocking with respect to

Xm1
= {4,5} and Xm2

={5,6}

25



0 1

2

3

4

5

6

b 

a 

b 
a 

b 

b 

b 

a 

b 

(a) Xm1
= {4,5}

2

3

4

5

6

1

a 

b 

a 

b b 

b b 

a 

b 

(b) Xm2
= {5,6}

Figure 2.3: Supervisory control with multiple sets of marked states.

As a practical example of this kind, consider a propulsion system with two engines as

depicted in Figure 2.4. The first set of marked states includes all the states where both

engines are off. The second (resp. third) set of marked states includes all states where only

engine one (resp. two) is fired. We want to switch from one configuration to another at

anytime as required. Also, as a safety requirement, we must avoid the states where both

engines are fired simultaneously. This problem can be regarded as control with multiple

marked state sets and hence a special case of RNSCP.

(a) (b) (c)

Figure 2.4: Application of supervisory control with multiple sets of marked states.

2.2.2 Online Supervisory Control

In the conventional (non-robust) supervisory control supervisor is entirely designed and im-

plemented before the system begins operation. This approach is called off-line supervisory

control. As an alternative to off-line approach [7] introduced an online supervisory con-

trol framework based on Limited Lookahead Policies. In this approach the control action

is computed online while the plant (under supervision) is operational. The computation

26



repeats each time the plant executes an event [7].

Limited Lookahead Policies

Limited Lookahead Policy supervisor first proposed by [7] computes the control action

based on the knowledge about plant’s behavior and its legal language up to N−step beyond

the currently executed trace. N is a fixed number which is determined before the plant starts

operation. The choice of N , can for instance, be imposed by the amount of information

available from future behavior of the system or by limitations of the controller such as

processing power or available memory.

The prediction about future behavior of a plant is in the form of a tree expansion. A

tree structure is useful and simple since it distinguishes between the states based on their

event history and it makes no assumption about equivalence of the strings.

LLP supervisor: General Scenario

Let G be the automaton representation of a system under supervision. Also let K ⊆ Lm(G)
be the nonempty legal marked behavior of G. Σuc and Σc denote the set of uncontrol-

lable and controllable events respectively. The objective is to design an online supervi-

sor γN that restricts the behavior of the plant to its specification (i.e., Lm(G,γN) ⊆ K)

while maintaining nonblocking property for the system under supervision nonblocking, i.e.

Lm(G,γN) = L(G,γN). The procedure can be described in five steps Figure 2.5:

1. Based one the knowledge available about the plant, the supervisor predicts the pos-

sible behavior of the plant N step beyond the currently executed trace s. This is the

function of block fN
L(G)

to build the tree-expansion of the model.

2. The supervisor then determines which traces in the tree-expansion of G are illegal.

String st is illegal if and only if st ∉ K. Removing illegal string is to be done by the

block fN
K in Figure 2.5

27



real time knowledge

Knowledge base about

Control action

Plant

event

fN⇑fN
L(G) fN

K fN
a fN

u
γN(s)

L(G), Lm(G),Kσ

Figure 2.5: Block diagram of Limited Lookahead Supervisor

3. [7] introduced the notion of pending traces as traces of length N in tree-expansion

which are not in the illegal region. A pending trace may continue into illegal region

by executing uncontrollable events. Therefore, the block fN
a modifies the tree expan-

sion by adopting an optimistic or a conservative attitude toward the pending traces.

conservative attitude treats all pending traces as illegal as they may lead to an illegal

string with an uncontrollable sequence. On the contrary, the optimistic attitude treats

all pending traces as legal and marked.

4. Afterward, the block fN
⇑ computes the supremal controllable part of the output of

block fN
a with respect to the tree-expansion G/s∣N .

5. Finally, the block fN
u finds the enabled events for the currently executed string s by

restricting the output of block fN
⇑ to its first level and then adding all the enabled

uncontrollable events to it.

One can see that after generating the tree expansion of the plant, the rest is very similar

to the conventional supervisory control. There are three main issues in this framework.

First, what if the supremal controllable sublanguage of K/s∣N becomes empty in some

strings and for some length of lookahead windows. The second issue is to investigate about

the effect of choosing an attitude on effectiveness of the proposed methods. Finally, the

28



third concern is to find conditions under which the proposed method results in a maximally

permissive supervision. The following results are from [7].

Definition 2.15. If fN(s) = ∅ for some s ∈ L(G,γN), then we say that there is a Run-Time

Error (RTE) at s. If s = ε then then it is called a Starting Error (SE).

Definition 2.16. An LLP supervisor with control policy γN is called maximally permissive

if and only if L(G,γN) = supC(K,G).
The following lemmas address the occurrence of RTE and SE in LLP supervision.

Lemma 2.3. If there is no SE in L(G,γN
cons), then supC(K,G) ≠ ∅.

The above lemma states that conservative LLP supervisor is a pessimistic supervisor.

In other words, if supC(K,G) = ∅, then SE would definitely happens with conservative

attitude. This is not necessarily the case for the optimistic LLP supervisor.

Proposition 2.1. supC(K,G) ⊆ L(G,γN+1
opt ) ⊆ L(G,γN

opt).
The above proposition says that the optimistic LLP supervisor is more permissive than

the optimal supervisor. It becomes less permissive as it receives more information about

the plant if longer lookahead window is used.

Proposition 2.2. In general L(G,γN
cons) ⊆ L(G,γN+1

cons) ⊆ supC(K,G).
In other words, the conservative LLP supervisor is less permissive compared with the

optimal solution. It approaches the optimal solution as we increase the length of lookahead

window.

The next issue in LLP supervision is to determine if there exist conditions for maximal

permissiveness of the LLP supervisor. The conditions are presented in the following. These

conditions are considered for both prefixed-closed and non-closed specifications.

29



Prefix-closed specification K =K:

In this case we do not care about the marking. The following definition formalizes the

length of longest uncontrollable string in K, the parameter which plays an important role

in determining the length of sufficient window size.

Definition 2.17. The length of the longest uncontrollable subtrace of strings in K is de-

noted by Nu and is defined as:

Nu(K) ∶=
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

max{∣s∣ ∶ s ∈ Σ∗u ∧ (∃v, u ∈ Σ∗ ∣ vsu ∈K)} if exists

undefined otherwise

Theorem 2.3. If K =K and N ≥ Nu(K) + 2, then γN
opt is maximally permissive.

Theorem 2.4. If K = K, no SE happens at L(G,γN
cons) and N ≥ Nu(K) + 2, then γN

cons is

maximally permissive.

General Case K ⊆K:

In this more general case the marking is important and the LLP supervisor needs to ensure

that the system under supervision is nonblocking. Thus, we expect the length of sufficient

lookahead window to be even longer than the prefix-closed case. We need the following

definitions before presenting the theorems on the length of sufficient lookahead window for

optimality.

Definition 2.18. The set of all legal marked traces in which the active event set is control-

lable is formalized as:

Kmc = {s ∈K ∶ (∀σ ∈ Σu)sσ ∉ L(G)}

30



The set of all traces that cross the boundary between K and L(G) −K by executing a

sequence of uncontrollable events is formalized as the language

Kfc = ((L(G) −K)/Σu) ∩K

Definition 2.19. Nmcfc is the length of the longest subtrace in K which leads the plant to

an illegal state from the initial state or a marked state without generating any marked legal

controllable or illegal strings.

Nmcfc ∶=
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

max{∣t∣ ∶ ∃s ∈ (Kmc ∪ {ε})st ∈Kfc ∧ (∀ε < v < t)sv ∉ (Kfc ∪Kmc)} if exists

undefined otherwise

Definition 2.20. Kmcmc is the length of longest subtrace in K which leads the plant from

the initial state or marked controllable strings to their neighbor legal marked controllable

strings.

Nmcmc ∶=
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

max{∣t∣ ∶ ∃s ∈ (Kmc ∪ {ε})st ∈Kmc ∧ (∀ε < v < t)sv ∉Kmc} if exists

undefined otherwise

Theorem 2.5. [7] Assume supC(K,G) ≠ ∅ and N ≥ Nmcfc(K) + 1 then γN
opt is a valid

LLP supervisor.

Theorem 2.6. [7] Assume no SE happens in L(G,γN
cons) and N ≥ Nmcmc(K) + 1. Then

γN
cons is a maximally permissive LLP supervisor and L(G,γN

cons) = supC(K,G).

Theorem 2.6 formalizes the most useful case in the LLP supervision framework since:

• It deals with the general case K ≠K.

• Conservative supervisor is always an admissible supervisor while optimistic LLP su-

pervisor may lead the system to blocking or even illegal region since supC(K,G) ⊆
31



L(G,γN
opt)

As a consequence, in this thesis we focus our efforts to generalize Theorem 2.6 to the

the case of robust supervisory control.

Other Preliminaries

The following lemmas are also needed to prove the results of this thesis.

Lemma 2.4. [6] For L,K ⊆ Σ∗ we have L ∪LK = LK.

Lemma 2.5. For three sets A,B,C

(A −B) ∩C = (A ∩C) − (B ∩C)

2.3 Conclusion

This chapter provides the background that is needed in the developments of this thesis. A

brief background in discrete event models, robust supervisory control, and online supervi-

sory control has been covered.

32



Chapter 3

Limited Lookahead Policy for Robust

Nonblocking Supervisory Control:

A Linguistic Approach

As with many other areas of control theory, the notion of online control has been introduced

to supervisory control of discrete event systems by the lookahead policies. In this setting,

it is assumed that the behavior of the plant under supervision is known a few steps beyond

the currently executed trace. The most one word setting of online supervisory control in

term of implementation and putting into practice is the Limited Lookahead Policies (LLP),

where all possible behaviors of the plant and its legal behavior are known up to N steps

beyond the currently executed trace (where N is fixed number). In Chapter 2, we discussed

the LLP for supervisory control of DES introduced in [7], where it is assumed that the exact

model of plant is known and there is no uncertainty associated with the modeling. In this

chapter, we extend the results of [7] to the case of robust control where the plant model is

assumed to belong to a given finite set of DES models.

33



3.1 Problem Formulation

This section is intended to formulate the Robust Nonblocking Supervisory Control Problem

based on Limited Lookahead policy (RNSCP-LL). The problem studied here is an exten-

sion of the problem studied in [7] to the case of robust control. Consider a DES whose true

model is one of the G1, ...,Gn. Let Σi and Σc,i denote the event set and the set of control-

lable events of Gi. The event sets are not necessarily the same; however it is assumed that

all plants agree on the controllability status of the events. This means that if σ ∈ Σi ∩ Σj ,

then σ is controllable in Gi if and only if σ is controllable in Gj . The set of all events is

denoted by Σ = ∑n
i=1Σi, and Σc = ∑n

i=1Σci ⊆ Σ is the set of all controllable events.

For each plant it is assumed that a nonempty language Ki ⊆ Lm(Gi) describes the

legal behavior for marked traces. The problem is to design an online supervisor based

on the available knowledge about the behavior of the plants a fixed “N” steps beyond the

currently executed trace s. The supervisor is supposed to generate the control law based

on the available information in the tree expansions of Gis. The resulting Robust Limited

Lookahead (RLL) supervisor must ensure the legality and nonblocking properties of the

plants under supervision:

(1) L(Gi, γN) ⊆Ki, i = 1, ..., n
(2) Lm(Gi, γN) = L(Gi, γN), i = 1, ..., n

where L(Gi, γN) and Lm(Gi, γN) are the closed and marked behaviors of Gi under

supervision of the RLL supervisor γN .

34



3.2 Robust Limited Lookahead Supervision

3.2.1 General Scenario

A new online approach for Robust Nonblocking Supervisory Control (RNSC) problem

based on LLP is introduced in this section. It is an extension of LLP in [7] to the case of

robust control. Figure 3.1 shows the block diagram of the RLL supervisor. Suppose that

the process has been executed trace s so far. The online control functions in Figure 3.1 are

described in the following:

1. Suppose that the plant under supervision has executed string s so far. Based on the

knowledge about the behavior of Gi, i = 1, ..., n, the supervisor determines whether

plant Gi is compatible with the currently executed trace s. This is the function of

block f s
G; without loss of generality, suppose that the first n′ plants are compatible

with the trace s.

2. On the basis of knowledge available about the plants, the supervisor predicts the pos-

sible behavior of all compatible plant models N step beyond the currently executed

trace s. The function of block fN
L(G)

is to build tree-expansions of the models.

3. The supervisor then determines which traces in the tree expansion of Gi are illegal.

String s is illegal if and only if s ∉K. We define K according to:

K = Lm(G) ∩ ( n⋂
i=1

(Ki ∪ (Σ∗ −Lm(Gi)))) (3.1)

The plant G is defined to be the union model of the plants: L(G) = n⋃
i=1
L(Gi) and

Lm(G) = n⋃
i=1
Lm(Gi). Removing illegal strings is to be done by the block fN

K in

Figure 3.1.

35



Knowledge base about

real time knowledge

Control action

event

fN⇑f sG

σ

fN
L(G) fN

K fN
a fN

u

L(Gi), Lm(Gi),Ki

Gi
i = 1, ..., n

γN(s)

Figure 3.1: Block diagram of Robust Limited Lookahead Supervisor

4. [7] introduced the notion of pending traces as traces of length N in tree-expansion

which are not in the illegal region. A pending trace may continue into illegal region

by executing uncontrollable events. Therefore the block fN
a modifies the tree expan-

sion by adopting a conservative attitude toward the pending traces, which means that

all pending traces as treated as illegal [7].

5. Afterward, the block fN
⇑ computes the supremal Lm(G)-closed, controllable, and

Gi/s-nonblocking part of the output of block fN
a with respect to the tree expansions

of Gi/s.

6. Finally, the block fN
u finds the enabled events for the currently executed string s, by

determining the element in every sequence in the output of the block fN
⇑ .

3.2.2 Formalizing RLL Supervisor

The previously mentioned six steps are formally expressed in this section.

1. f s
G determines if s ∈ L(Gi) (Gi is compatible with s).

2. fN
L(G)
○ f s
G = (L(G/s∣N), Lm(G/s∣N)) where G/s∣N is the union of tree expansion of

Gi, i = 1, ..., n′ up to N steps after the execution of trace s. The block also passes

G/s∣N and Gi/s∣N to the other blocks for the computation of supremal elements.

36



3. fN
K ○ fN

L(G)
○ f s
G = (K/s∣N ,K/s∣N) where K is the legal behavior of robust problem

which is described by Equation 3.1.

4. fN
a ○ fN

K ○ fN
L(G)
○ f s
G =K/s∣N − (K/s∣N −K/s∣N−1) =K/s∣N−1 which means that we

treat all the pending traces as illegal.

5. fN(s) ∶= fN
⇑ ○ fN

a ○ fN
K ○ fN

L(G)
○ f s
G = supRCNb(K/s∣N−1,G/s∣N)

computes the supremal Lm(G/s∣N)-closed, controllable, and Gi/s∣N -nonblocking

(i = 1, ..., n′) part of K/s∣N−11.

6. Finally, the control action γN(s) is determined through fN
u block γN(s) ∶= fN

u ○
fN(s) ∶= fN(s) ∩Σ.

So the closed and marked languages of the plants under supervision can be defined

recursively as follows:

• ε ∈ L(Gi, γN(s));
• ∀s ∈ Σ∗, σ ∈ Σ ∶ s ∈ L(Gi, γN(s)), sσ ∈ L(Gi), σ ∈ γN(s) ⇒ sσ ∈ L(Gi, γN(s)).

3.3 Properties of RLL Supervisor

In this section we prove some general properties of the RLL supervisor for a given looka-

head window size N . In the following section, we will discuss how N can be chosen.

The following lemma and proposition are required for the proof of the monotonicity

property (Theorem 3.1).

Lemma 3.1. Let s ∈ Σ∗. Then:

supRCNb(K/s∣N−1,G/s∣N) = supRCNb(K/s∣N−1,G/s∣N+1)
1For n′ < i ≤ n, Gi/s is an empty automaton and Gi/s-nonblocking condition holds trivially.

37



Proof: Let

LHS ∶= supRCNb(K/s∣N−1,G/s∣N)
RHS ∶= supRCNb(K/s∣N−1,G/s∣N+1)
∆Li = L(Gi/s∣N+1) −L(Gi/s∣N)
∆Lm,i =∆Li ∩Lm(Gi/s∣N+1)
∆L = L(G/s∣N+1) −L(G/s∣N)
∆Lm =∆L ∩Lm(G/s∣N+1)

Note that ∀s ∈∆Li → ∣s∣ = N + 1. First we prove that LHS ⊆ RHS. For this we prove

that LHS is relative closed and controllable with respect to G/s∣N+1 and nonblocking with

respect to Gi/s∣N+1, i = 1, ..., n′.
i) G-nonblocking: Since LHS is Gi/s∣N -nonblocking we have:

LHS ∩L(Gi/s∣N) = LHS ∩Lm(Gi/s∣N)

Also LHS ∩∆Li = LHS ∩∆Lm,i = ∅. Thus:

LHS ∩Lm(Gi/s∣N+1) = LHS ∩ (Lm(Gi/s∣N) ∪∆Lm,i)
= LHS ∩Lm(Gi/s∣N) ∪LHS ∩∆Lm,i

= (LHS ∩L(Gi/s∣N)) ∪ (LHS ∩∆Li)
= LHS ∩L(Gi/s∣N+1)

ii) Controllability: By assumption, LHSΣu ∩ L(G/s∣N) ⊆ LHS. Also, we know ∀t ∈

38



LHS the ∣t∣ ⩽ N−1. So for all t ∈ LHS and σ ∈ Σ ∣tσ∣ ≤ N and thus LHSΣu∩∆L = ∅.

LHSΣu ∩L(G/s∣N+1) = LHSΣu ∩ (L(G/s∣N) ∪∆L)
= (LHSΣu ∩L(G/s∣N)) ∪ (LHSΣu ∩∆L)
⊆ LHS

iii) Lm(G)-Closure: We know that LHS ∩ Lm(G/s∣N) = LHS and LHS ∩∆Lm = ∅.

Thus we can easily conclude that LHS ∩ Lm(G/s∣N+1) = LHS ∩ (Lm(G/s∣N) ∪
∆Lm) = LHS.

Now we prove the second part RHS ⊆ LHS following a similar procedure.

i) G-nonblocking: Since RHS is Gi/s∣N+1-nonblocking, we have:

RHS ∩L(Gi/s∣N+1) = RHS ∩Lm(Gi/s∣N+1)

Also RHS ∩∆Li = RHS ∩∆Lm,i = ∅. Thus:

RHS ∩Lm(Gi/s∣N) = RHS ∩ (Lm(Gi/s∣N) ∪∆Lm,i)
= RHS ∩Lm(Gi/s∣N+1)
= RHS ∩L(Gi/s∣N+1)
= RHS ∩ (L(Gi/s∣N) ∪∆Li)
= RHS ∩L(Gi/s∣N)

ii) Controllability: By assumption, RHSΣu ∩ L(G/s∣N+1) ⊆ RHS. Also, we know ∀t ∈

39



RHS, ∣t∣ ⩽ N −1. So for all t ∈ RHS and σ ∈ Σ ∣tσ∣ ≤ N and thus RHSΣu∩∆L = ∅.

RHSΣu ∩L(G/s∣N) = RHSΣu ∩ (L(G/s∣N) ∪∆L)
= RHSΣu ∩L(G/s∣N+1)
⊆ RHS

iii) Lm(G)-Closure: By assumption, RHS∩Lm(G/s∣N+1) = RHS and RHS∩∆Lm = ∅.

Thus we can easily conclude that RHS∩Lm(G/s∣N) = RHS∩(Lm(G/s∣N)∪∆Lm) =
RHS ∩Lm(G/s∣N+1) = RHS.

Similar to Lemma 3.1 we can derive the following proposition.

Proposition 3.1. Let s ∈ Σ∗. Then:

supRCNb(K/s∣N−1,G/s∣N) = supRCNb(K/s∣N−1,G/s)
Proof: The proof is very similar to Lemma 3.1 and it is removed for brevity.

The following theorem establishes the expected results that a larger lookahead window

results in a more permissive supervision. The theorem generalizes the result which was

first presented as Theorem 4.5 in [7] and [27].

Theorem 3.1. (Monotonicity) L(G,γN) ⊆ L(G,γN+1)
Proof: It is enough to show that (∀s ∈ Σ∗) fN(s) ⊆ fN+1(s). By definition:

fN(s) ∶= supRCNb(K/s∣N−1,G/s∣N)
= supRCNb(K/s∣N−1,G/s∣N+1) (by Lemma 3.1)

40



But we know that

(K/s∣N−1) ⊆ (K/s∣N) ⇒ supRCNb(K/s∣N−1,G/s∣N+1) ⊆ supRCNb(K/s∣N ,G/s∣N+1)
⇒ supRCNb(K/s∣N−1,G/s∣N) ⊆ supRCNb(K/s∣N ,G/s∣N+1)
⇒ fN(s) ⊆ fN+1(s)

Remark 3.1. The monotonicity property of union model under supervision can be easily

extended to each of the plants with exactly the same procedure and hence L(Gi, γN) ⊆
L(Gi, γN+1), i = 1, ..., n.

The following lemma generalizes Theorem A.1 of [7]. It will be needed later to prove

Theorem 3.2.

Lemma 3.2.

1)(∀s ∈ Σ∗) supRCNb(K,G)/s ⊆ supRCNb(K/s,G/s)
2)(∀s ∈ supRCNb(K,G)) supRCNb(K,G)/s = supRCNb(K/s,G/s)

Proof: For notational simplicity let

H ∶= supRCNb(K,G)
1) We need to show that i) H/s ⊆ K/s, ii) H/s is nonblocking with respect to Gi/s,

i = 1, ..., n, iii) H/s is relative closed with respect to G/s and iv) H/s is controllable with

respect to G/s. Clearly, H/s ⊆K/s. We first show that H/s is nonblocking with respect to

41



Gi/s.

H ∩Lm(Gi) =H ∩L(Gi) ⇒ (H ∩Lm(Gi))/s = (H ∩L(Gi))/s
⇒ (H ∩Lm(Gi))/s = (H ∩L(Gi))/s (by Lemma 2.1)

⇒ H/s ∩Lm(Gi/s) =H/s ∩L(Gi/s)
⇒ H/s ∩Lm(Gi/s) =H/s ∩L(Gi/s)

Next we show that H/s is relative closed with respect to G/s.

H/s ∩Lm(G/s) = H/s ∩Lm(G)/s (part 2, Lemma 2.1)

= (H ∩Lm(G))/s (part 1, Lemma 2.1)

= H/s (since H is Lm(G)-closed)

Finally, we show that H/s is controllable with respect to G/s.

H/sΣu ∩L(G/s) = H/sΣu ∩L(G/s) (part 2, Lemma 2.1)

⊆ HΣu/s ∩L(G/s) (part 3, Lemma 2.1)

= (HΣu ∩L(G))/s (part 1, Lemma 2.1)

⊆ H/s (since H is controllable)

= H/s

2) Based on the result of part 1, we only need to prove the reverse containment:

supRCNb(K/s,G/s) ⊆ supRCNb(K,G)/s

For simplicity let H ′ ∶= supRCNb(K/s,G/s). So, we need to show H ′ ⊆ H/s or equiva-

lently sH ′ ⊆ H . Since H is supremal relative-closed, controllable with respect to G , and

42



Gi-nonblocking sublanguage of K, it is enough to show that H∪sH ′ is also relative-closed,

and controllable with respect to G and Gi-nonblocking sublanguage of K. This means that

we need to show that H ∪ sH ′ ⊆ H . First we show that H ∪ sH ′ is Gi-nonblocking. Note

that H ′ is Gi/s-nonblocking.

(H ∪ sH ′) ∩Lm(Gi) = H ∩Lm(Gi) ∪ (sH ′ ∩Lm(Gi))
= H ∩Lm(Gi) ∪ s(H ′ ∩Lm(Gi/s))
= H ∩Lm(Gi) ∪ (s ∪ s (H ′ ∩Lm(Gi/s))) (by Lemma 2.4)

= (H ∩L(Gi)) ∪ s ∪ s (H ′ ∩L(Gi/s))
= (H ∩L(Gi)) ∪ ((s ∪ sH ′) ∩ (s ∪L(Gi)))
= (H ∩L(Gi)) ∪ (sH ′ ∩ (s ∪L(Gi)))
⊇ (H ∩L(Gi)) ∪ (sH ′ ∩L(Gi))
= (H ∪ sH ′) ∩L(Gi)

Next we show that H ∪ sH ′ is controllable with respect to G. Since s ∈ H we have

sΣu ∩ L(G) ⊆ H . Also, H ′ is controllable with respect to G/s or equivalently sH ′Σu ∩
L(G) ⊆ sH ′. Thus:

(s ∪ sH ′)Σu ∩L(G) ⊆ (H ∪ sH ′)
sH ′Σu ∩L(G) ⊆ H ∪ sH ′ (by Lemma 2.4)

Since H is controllable with respect to G itself, we can easily see that H ∪ sH ′Σu∩L(G) ⊆
H ∪ sH ′. Next we show that H ∪ sH ′ is relative closed with respect to G. s ∩Lm(G) ⊆H
since s ∈ H and H is relative-closed with respect to G. Also by assumption we have

H ′ ∩ Lm(G)/s ⊆ H ′ or equivalently, sH ′ ∩ Lm(G) ⊆ sH ′. Considering the union of two

43



equations we have:

(s ∪ sH ′) ∩Lm(G) ⊆ H ∪ sH ′
sH ′ ∩Lm(G) ⊆ H ∪ sH ′ (by Lemma 2.4)

By assumption H is relative-closed with respect to G and consequently, H ∩Lm(G) = H .

Therefore (H ∪ sH ′) ∩Lm(G) ⊆H ∪ sH ′ and finally:

H ∪ sH ′ ∩Lm(G) ⊆ H ∪ sH ′

Since the reverse containment always holds, we have proved that H ∪sH ′ is relative-closed

with respect to G. This completes the proof.

The following lemmas are required to prove Theorem 3.2 and Theorem 3.3. Theorem

3.2 explains the admissibility of the RLL supervisor.

Lemma 3.3. Let s ∈ Σ∗. Then:

supRCNb(K/s∣N−1,G/s∣N) ⊆ supRCNb(K/s,G/s)

Proof:

supRCNb(K/s∣N−1,G/s∣N) = supRCNb(K/s∣N−1,G/s) (by Proposition 3.1)

⊆ supRCNb(K/s,G/s) (since K/s∣N−1 ⊆K/s)

44



Lemma 3.4. Let s ∈ Σ∗. Then:

supRCNb(K/s∣N−1,G/s∣N)/σ ⊆ supRCNb(K/sσ∣N−1,G/sσ∣N)

Proof:

supRCNb(K/s∣N−1,G/s∣N)/σ = supRCNb(K/s∣N−1,G/s∣N+1)/σ (by Lemma 3.1)

⊆ supRCNb(K/s∣N ,G/s∣N+1)/σ (since K/s∣N−1 ⊆K/s∣N )

⊆ supRCNb(K/s∣N/σ,G/s∣N+1/σ) (by Lemma 3.2, part 1)

= supRCNb(K/sσ∣N−1,G/sσ∣N)

In the following we define the notions of starting error and run-time error similar to

[7].

Definition 3.1. We say that there is a run-time error (RTE) in L(G,γN) at string s ∈
L(G,γN) if fN(s) = ∅. An RTE is said to be a Starting Error (SE) if s = ε. We say there

is no RTE in L(G,γN) if no RTE happens for all s ∈ L(G,γN).
The following theorem states that in the absence of SE, the RLL supervisor is always

nonblocking and admissible.

Theorem 3.2. If there is no SE in L(G,γN), then L(G,γN) ⊆ supRCNb(K,G).
Proof: We use induction on the length of s to prove this. For ∣s∣ = 0, s = ε. By definition

ε ∈ L(G,γN). Also, since there is no SE, supRCNb(K,G) ≠ ∅; this implies that ε ∈
supRCNb(K,G). So we have the base step by assumption. For the induction step, let

s = s′σ where σ ∈ Σ. Since L(G,γN) is prefix closed we have s′ ∈ L(G,γN). On the

other hand, we have s′ ∈ supRCNb(K,G) by the induction hypothesis. Also, s = s′σ ∈
L(G,γN). By definition we have σ ∈ γN(s′), which means that σ ∈ fN(s) ∩ Σ. So, we

45



need to show that if σ ∈ fN(s) ∩ Σ, then σ ∈ supRCNb(K,G)/ s′. Consider the case of

σ ∈ fN(s′) ∩Σ.

fN(s′) ∩Σ = supRCNb(K/s′∣N−1,G/s′∣N) ∩Σ
⊆ supRCNb(K/s′,G/s′) ∩Σ (by Lemma 3.3)

= supRCNb(K,G)/s′ ∩Σ (by Lemma 3.2, part 2)

= supRCNb(K,G)/s′ ∩Σ (by Lemma 2.1, part 2)

So σ also belongs to supRCNb(K,G)/ s′. This completes the proof.

The next theorem explains the relation between SE and RTE for a system under super-

vision of an RLL supervisor.

Theorem 3.3. If there is no SE in L(G,γN), then there is no RTE in L(G,γN).
Proof: In order to prove this theorem we use induction on the length of traces. Since there

is no SE in L(G,γN), there is no RTE at s = ε. In other words the base step holds by

assumption for ∣s∣ = 0. For the induction step, suppose that s = s′σ with σ ∈ Σ, where we

know that there is no RTE in s′ based on the induction hypothesis or equivalently:

supRCNb(K/s′∣N−1,G/s′∣N) ≠ ∅

This implies that:

ε ∈ supRCNb(K/s′∣N−1,G/s′∣N)
Since σ ∈ L(G,γN)/s′, we have:

σ ∈ γN(s′) = fN(s′) ∩Σ

46



We can conclude that:

σ ∈ fN(s′) = supRCNb(K/s′∣N−1,G/s′∣N)
⇒ supRCNb(K/s′∣N−1,G/s′∣N)/σ ≠ ∅

So from Lemma 3.4 we can say that:

supRCNb(K/s′σ∣N−1,G/s′σ∣N) ≠ ∅

which means that there is no RTE at s = s′σ. This completes the proof.

3.4 Maximally Permissive RLL Supervisor

In this section we provide a set of conditions under which N can be chosen to ensure that

RLL is maximally permissive.

Definition 3.2. An RLL supervisor with control policy γN is called maximally permissive

if L(G,γN) = supRCNb(K,G).
For an RLL supervisor to be maximally permissive the size of lookahead window

should be large enough to cover the minimum number of safe traces in the lookahead

window for every prefix of legal marked behavior. By a safe trace we mean a trace which

is legal and Gi-nonblocking with respect to each of the plants. Also transitions of a safe

trace should be controllable. We call such traces to be nonblocking frontier traces as a

generalization of frontier traces in [7].

Definition 3.3. Given a set of plants Gi, i = 1, ..., n, the set of nonblocking traces is defined

as:

Knb ∶= {t ∈K ∣ t ∩Lm(Gi) = t ∩L(Gi) ∧ ∀σ ∈ Σu ∶ [tσ ∉ L(G)]}

47



Also, we define the set of nonblocking frontier traces after the trace s ∈K as:

(K/s)nf ∶= Knb/s

= {t ∈K/s ∣ st ∩Lm(Gi) = st ∩L(Gi) ∧ ∀σ ∈ Σu ∶ [tσ ∉ L(G)/s]}

Further the set of neighboring nonblocking controllable frontier traces is defined as

follows:

(K/s)nnf ∶= {t ∈ (K/s)nf ∣ t ≠ ε ∧ [∀t′ < t ∶ t′ ∉ (K/s)nf ]}
where t′ < t means t ≤ t′ and t ≠ t′.
As will be discussed later, the length of the longest neighboring nonblocking control-

lable frontier trace plays a role in the length of sufficient lookahead window. Nnnf denotes

the length of longest neighboring nonblocking frontier trace, and is defined as follows:

Nnnf ∶=
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

maxs∈K {maxt∈(K/s)nnf
∣t∣} if it exists (3.2)

undefined otherwise

Note that Nnnf is considered undefined if at least one of the sets in (3.2) is unbounded

or if all the sets become empty. Also, in (3.2) max of empty set is taken to be zero.

The following lemmas are used to prove the main result.

Lemma 3.5. Let H ∈ RCNb(K/s,G/s) and s ∈ supRCNb(K,G). Suppose for t ∈H:

1. t ∩Lm(Gi/s) = t ∩L(Gi/s)

2. ∀σ ∈ Σu ∶ [tσ ∉ L(G/s)]
Then H − (t(H/t) − t) ∈ RCNb(K/s,G/s).

48



Proof: H ′ = t(H/t) − t and H ′′ = t(H/t) − t. First we show that H −H ′ =H −H ′′.

H −H ′′ = [H −H ′ ∪H ′] − (tH/t − t)
= [H −H ′ − (tH/t − t)] ∪ [H ′ − (tH/t − t)]
= H −H ′ ∪ [H ′ − (tH/t − t)]

(H −H ′ and (tH/t − t) are disjoint)

= H −H ′ ∪ [t(H/t) − t − (tH/t − t)]

= H −H ′ ∪ [(t ∪ tH/t) − (tH/t − t)]

(by Lemma 2.4)

= H −H ′ ∪ [t ∪ (tH/t − (tH/t − t))]

= H −H ′ ∪ t ∪ t

= H −H ′ ∪ t

= H −H ′

To prove the Gi/s − nonblocking property consider two different cases.

1) t ∉ Lm(Gi)/s: By Lemma 2.5 we have

(H −H ′) ∩Lm(Gi/s) = (H ∩Lm(Gi/s)) − (H ′ ∩Lm(Gi/s))

Since, in this case H ′ ∩Lm(Gi/s) = ∅ we conclude

(H −H ′) ∩Lm(Gi/s) =H ∩Lm(Gi/s)

49



Furthermore

H −H ′ ∩L(Gi/s) ⊆ H ∩L(Gi/s)

= H ∩Lm(Gi/s)

= (H −H ′) ∩Lm(Gi/s)

So, H −H ′ ∩ L(Gi/s) ⊆ (H −H ′) ∩Lm(Gi/s). Since the reverse containment always

holds we have H −H ′ ∩L(Gi/s) = (H −H ′) ∩Lm(Gi/s)

2) t ∈ Lm(Gi)/s: Therefore t ∈ L(Gi)/s. Now, consider:

(H −H ′) ∩L(Gi/s) = (H − (tH/t − t)) ∩L(Gi/s)

= (H ∩L(Gi/s)) − ((tH/t − t) ∩L(Gi/s))

= (H ∩L(Gi/s)) −∆LL (3.3)

where ∆LL ∶= (tH/t − t) ∩L(Gi/s). Next, let R = (H −H ′) ∩Lm(Gi/s) and consider:

H ∩Lm(Gi/s) = R ∪H ′ ∩Lm(Gi/s)

= R ∪ (t(H/t) − t) ∩Lm(Gi/s)

= R ∪ t(H/t − ε) ∩Lm(Gi/s)

= R ∪ (t(H/t − ε) ∩Lm(Gi/st) ∪ t)

= R ∪ tH/t ∩Lm(Gi/st) (since t ⊆ R)
= R ⊍ (tH/t ∩Lm(Gi/st) − t)

50



Let ∆LR = (tH/t ∩Lm(Gi/st) − t), then:

(H −H ′) ∩Lm(Gi/s) =H ∩Lm(Gi/s) −∆LR (3.4)

Note that:

∆LR = tH/t ∩Lm(Gi/st) − t

= tH ∩Lm(Gi/s)/t − t (by Lemma 2.1)

= t(H ∩L(Gi/s))/t − t (H is Lm(Gi/s)-closed)

= t(H/t ∩L(Gi/st)) − t (by Lemma 2.1)

= (tH/t ∩L(Gi/s)) − t

= (tH/t − t) ∩L(Gi/s)

= ∆LL

From (3.3), (3.4), and Gi/s-nonblocking property of H it follows that H −H ′ is Gi/s −

nonblocking. For controllability we need to ensure that the behavior of L(G/s) can be

limited to H −H ′. This goal can be simply achieved by disabling the events after the trace

t, which we know are all controllable. Finally, for relative-closure:

H −H ′ ∩Lm(G/s) = (H − (tH/t − t)) ∩Lm(G/s)

= (H ∩Lm(G/s)) − ((tH/t − t) ∩Lm(G/s))

= H − ((tH/t ∩Lm(G/s)) − t) (since H is Lm(G/s)-closed)

= H − (t(H/t ∩Lm(G/st)) − t)

= H − (t(H/t) − t) (since H/t ∩Lm(G/s)/t =H/t)
= H −H ′

51



This completes the proof.

Lemma 3.6. Suppose s ∈ supRCNb(K,G) and H = supRCNb(K/s,G/s). Then

(K/s)nnf ∩H ⊆H.

Proof: We know that (K/s)nnf ⊆ (K/s)nf ⊆K/s ⊆ Lm(G/s). Therefore:

(K/s)nnf ∩H ⊆ Lm(G/s) ∩H

= H (since H is Lm(G/s)-closed)

Theorem 3.4. Assume Knb = K and that there is no SE in L(G,γN). If N ≥ Nnnf + 1,

then L(G,γN) = supRCNb(K,G).

Proof: To prove the theorem we start with the language H ∶= supRCNb(K/s,G/s) and

then construct the language:

H ′ ∶=H − (K/s)nnfcΣ+

where Σ+ = Σ∗ − {ε}. By considering Lemma 3.6 and the definition of (K/s)nnf we

know that all traces in (K/s)nnf∩H satisfy the conditions for Lemma 3.5. Thus, by Lemma

3.5 H ′ is also Gi/s−nonblocking, controllable, and Lm(G/s)-closed. In the following, we

first show that H ′∣1 =H ∣1 and H ′ =H ′∣N−1 where N = Nnnf+1. Consider the two following

cases:

1. (K/s)nf − {ε} ≠ ∅: In this case (K/s)nnf ≠ ∅. Obviously, H ′∣1 ⊆ H ∣1. So we only

need to show the reverse containment. Suppose t ∈ H ∣1 and therefore t ∈ H and

∣t∣ = 1. Thus there exists t′ such that tt′ ∈ H . If tt′ ∉ (K/s)nnfΣ+, then tt′ ∈ H ′ and

52



t ∈H ′∣1. If tt′ ∈ (K/s)nnfΣ+, then there exists t′′ < t′ such that tt′′ ∈ (K/s)nnf ∩H ⊆

H ′ and therefore t ∈H ′∣1. Consequently:

H ′∣1 =H ∣1

Now suppose that N = Nnnf + 1 and Knb = K. Suppose there exists t ∈ H,H ′

such that ∣t∣ ≥ N , then t ∈ H ⊆ H ⊆ K/s = Knb/s. Also, by Definition 3.3

Knb/s = (K/s)nf . Consequently, t ∈ (K/s)nf . Thus there exists t′ such that

tt′ ∈ (K/s)nf . This is equivalent to the existence of t′′ < tt′ such that t′′ ∈ (K/s)nnf .

Since N = Nnnf + 1, then ∣t′′∣ ≤ N − 1. Furthermore, since t′′ < t we conclude that

t ∈ (K/s)nnfΣ+. This contradicts the first assumption of t ∈ H ′. Thus ∣t∣ < N and

consequently:

H ′ =H ′∣N−1 ⊆K/s∣N−1
2. (K/s)nf −{ε} = ∅: In this case Knnf/s = ∅. This means that H ′ =H . Consequently:

H ′∣1 =H ∣1

On the other hand, H ′ =H ⊆K/s ⊆K/s ⊆ (K/s)nf = {ε}. This implies that:

H ′ =H ′∣N−1 ⊆K/s∣N−1

Therefore, similar to the Proposition 3.1 we can prove that:

H ′ = supRCNb(H ′,G/s) = supRCNb(H ′,G/s∣N)

53



And finally:

H ′ ⊆K/s∣N−1

⇒ H ′ = supRCNb(H ′,G/s∣N)

⊆ supRCNb(K/s∣N−1,G/s∣N) ∶= fN(s)

⇒ H ′∣1 ⊆ fN(s)∣1

⇒ H ∣1 ⊆ fN(s)∣1

By induction on the length of traces of supRCNb(K,G) and consideration of the above

result for the induction step, we can conclude that L(G,γN) = supRCNb(K,G). Note that

the absence of SE is necessary to establish the base step.

Remark 3.2. The reader should note that in the special case of standard supervisory control

(number of plants under supervision is n = 1) the conditions in Theorem 3.4 reduce to

the conditions of Theorem 5.5 in [7]. Since Knb reduces to Kmc (which is the marked

controllable sub-language of K) and Nnnf becomes equal to Nmcmc (the maximum distance

between two subsequent members of Kmc).

3.5 Example 1

Suppose G = {G1,G2} as shown in Figure 3.2, and the legal behavior of the plants are

described by K1 = {ε, b, bc, bcbg} and K2 = {ε, b, bc, bcag}. The marked states in Figure 3.2

are shown by double circles. Assume that Σc = {a, b, c, d, e, f} and Σuc = {g, h}.

54



0 1 3
b 

7e 

8
c 

6

a 

12
g 

11
b 

10

14

b 

g 

13

a 

(a) G1

0 1 3
b 

8e 

7
c 

6

f 

12

h 

11a 

b 

10
b 

13b 

14

g 

(b) G2

Figure 3.2: Plant automata

In the following we first present the off-line solution for the above mentioned problem.

3.5.1 Off-line Solution

First we synthesize a plant G where L(G) = L(G1) ∪ L(G2) and Lm(G) = Lm(G1) ∪

Lm(G2). The automaton of G is shown in Figure 3.3. The overall specification which is

calculated based on Equation 3.1 is K = {ε, b, bc, bcag, bcbg}.

0 1 3
b 

6

e 

5c 

4

a 

7

f 

12

h 

11
g 

10
b 

9
a 

8

17
g 

16
a 

13

15

b 

b 

g 

14

b 

Figure 3.3: Union plant model G

We then solve the problem based on the algorithm presented in [23] to find supRCNb(K,G).

The supervisor can be realized by automaton S as shown in Figure 3.4.

0 1 2
b 

3
c 

4
a 

5
g

Figure 3.4: Realization of supervisor S

55



Now that we know how the off-line solution works (i.e. allows only the sequence bcag),

we can go forward to the online solution.

3.5.2 Online Solution

In this example we focus on finding the maximally permissive RLL supervisor. First we

determine Nnnf .

Length of Lookahead Window

To determine Nnnf we have to determine (K/s)nf and (K/s)nnf for every s ∈K:

(K/ε)nf = {ε, b, bc, bcag, bcbg} , (K/ε)nnf = {b}
(K/b)nf = {ε, c, cag, cbg} , (K/b)nnf = {c}
(K/bc)nf = {ε, ag, bg} , (K/bc)nnf = {ag, bg}
(K/bcb)nf = {ε, g} , (K/bcb)nnf = {g}
(K/bca)nf = {ε, g} , (K/bca)nnf = {g}
(K/bcbg)nf = {ε} , (K/bcbg)nnf = {}
(K/bcag)nf = {ε} , (K/bcag)nnf = {}

Having the sets (K/s)nnf we find Nnnf = 2.

Control Action Computation

Setting lookahead window to N = 3 and considering that Knb = K, we expect L(G,γ3)

to be maximally permissive. Starting from s = ε, both models are compatible with the

currently executed trace; the output of fN
⇑ block is shown in Figure 3.5.

56



0 1 2
b 

3
c 

Figure 3.5: fN(ε)

So, the control action is γ3(ε) = {b}. After executing event b, with s = b, the control

action is γ3(b) = {c}, and the output of block fN
⇑ is as Figure 3.6. One can see that

executing further events, and going ahead through the lookahead window causes new events

to be enabled. The control action following string s = bc is γ3(bc) = {a}.
0 2 3

c 
4

a 
5

g

Figure 3.6: fN(b)

Continuing with execution of the events the next control action would be γ3(bca) = {g}.
This shows that by choosing the window size long enough

L(G,γN) = supRCNb(K,G) = bcag.

3.6 Example 2

As previously discussed, a sufficient lookahead window size for optimality of RLL super-

visor is defined if and only if Nnnf is defined and bounded. However, this is not always

the case. In some problems the Nnnf may become undefined or unbounded. This affects

the performance of RLL supervisor. The next example illustrates a case where Nnnf is

unbounded.

Example 3.1. Consider G = {G1,G2} as shown in Figure 3.7. Assume that there is no ille-

gal behavior (Ki = Lm(Gi)). If s = ε, then (K/ε)nf = {umc, umc2, umc3, umc4 ∣ m is odd}

and (K/ε)nnf = {umc ∣ m is odd}. Since there exists t ∈ (K/ε)nnf such that ∣t∣ = ∞ Nnnf

is unbounded.

57



0 1 32
u c

u

(a) G1

0 1 3 4
c

5
c

6
c

2
u c

u

(b) G2

Figure 3.7: RNSCP with unbounded Nnnf

To explain more about necessity of an unbounded window, consider the tree-expansion

of the union model after s = ε as shown in Figure 3.8. We observe that for any bounded

length of lookahead window, there exists a path of uncontrollable events from the initial

state to a pending trace. As we are treating the pending traces to be illegal, for any bounded

window size we encounter a SE. However the off-line solution is non-empty. In the next

chapter, we propose an RLL supervisor with state information in order to address this issue

in the next chapter.

0 1

4 6
c

9
c

8 11
c

12
c

2
u

c

3

u
5

u c

7

u

10

u

Figure 3.8: Tree-expansion of the RNSCP with unbounded Nnnf

3.7 Example 3: Computational Complexity

In this section we investigate the effectiveness of the proposed RLL supervision in handling

computational complexity. For this we solve a problem of supervisory control with mul-

tiple marking set (which was reviewed in Example 2.2 Chapter 2) using first the off-line

approach. Next we solve the problem in an online set up using RLL policy. For this prob-

lem a random acyclic automaton is generated and assigned two different sets of marked

states. Next the automaton is used to formulate a Robust Nonblocking Supervisory Con-

trol Problem with Multiple Marking (RNSCP-MM). All plant sequences are considered

58



legal (Ki = Lm(Gi)) and the objective is to ensure the nonblocking property. We obtain

the length of “N” to generate maximal permissiveness and then solve the robust control

problem for various tree expansions and report the average and maximum sizes of three

expansions.

The results are reported in Table 3.1. As we can see the proposed RLL supervisor

is a very effective approach for handling the computational complexity associated with

the RNSCP. The effectiveness becomes more pronounced when the number of states and

transitions in the plant increase. Considering the last row in Table 3.1, we observe that

the off-line problem with about 2500 states and 10000 transitions has reduced to an online

problem with an average size of 184 states and 487 transitions. Specifically, the average

state size of the online problem (i.e. tree expansion) is about %7 of the off-line problem

(i.e. plant state size).

# states # transitions Window Size
Tree expansion size

avg (states) max (states) avg (trans) max (trans)

415 1490 3 8 29 10 48

751 2865 6 61 338 128 920

1296 5461 6 73 359 174 1056

1885 7343 4 18 85 22 137

2545 10199 8 184 862 487 2985

Table 3.1: Comparison between online and off-line complexity.

Finally, we study the effect of three different parameters on the sufficient lookahead

window size.

i) Maximum distance between two states of the automaton: First, as explained before a

random acyclic automaton is generated with two plants. Next we marked %30 of the

states of each automaton. The maximum distance between two states of the automaton

was set to ND = 6,10,14,18 and 22. The size of automata was selected proportional

to ND. The results are reported in Table 3.2. The reported window size is the sample

mean of the required lookahead window over 25 experiments (rounded to the nearest

59



integer). We observe that the length of sufficient lookahead window is highly corre-

lated with the maximum distance between the states of the automata.

# states # transitions Max distance Window Size
Tree expansion size

avg (states)
max

(states)
avg (trans) max (trans)

170 634 6 3 10 59 15 119

639 1288 10 5 43 142 91 390

591 2161 14 8 137 343 411 1205

768 3005 18 10 193 399 650 1478

989 4038 22 14 310 590 1167 2352

Table 3.2: Effect of maximum distance between two states on the sufficient window size.

ii) The size of automata: A random automaton for RNSCP-MM was generated with two

sets of marked stats. We randomly marked %30 of the states of each automaton. The

maximum distance between two states of the automaton was fixed to ND = 10. The

size of the automata was increased gradually (5 times), and the required length of

lookahead window was determined. The results are reported inn Table 3.3. We observe

that there is no high correlation between the length of sufficient lookahead window and

the size of automaton if the maximum distance between the states remains unchanged.

# states # transitions Max distance Window Size
Tree expansion size

avg (states)
max

(states)
avg (trans) max (trans)

369 1288 10 5 43 142 91 390

435 1748 10 4 40 134 77 349

738 2891 10 5 74 333 138 835

964 3530 10 6 111 461 304 1683

1241 4659 10 6 113 564 251 1732

Table 3.3: Effect of size of automata on the sufficient window size.

iii) The ratio of marked states: A random automaton for RNSCP-MM was generated with

two sets of marked states. The maximum distance between two states of the automa-

ton was ND = 10 and the two automata did not change during the experiment. We

randomly marked 30%,40%,60%,80% and 90% of the states of each automaton in

60



five experiments. We monitored the sufficient window size. The results are reported

in Table 3.4. We observe that by increasing the percentage of marked states the re-

quired window size increases and it settles at a number (10). As an explanation, we

can say that increasing the number of marked states causes the worst case scenario

(i.e. the longest path between two consecutive nonblocking states) to be inside the

legal marked behavior.

# states # transitions Marked (%) Window Size
Tree expansion size

avg (states)
max

(states)
avg (trans) max (trans)

415 1490 30% 5 58 151 135 442

415 1490 40% 7 90 256 258 914

415 1490 60% 10 134 415 367 1490

415 1490 80% 10 134 415 367 1490

415 1490 90% 10 134 415 367 1490

Table 3.4: Effect of the percentage of marked states on the sufficient window size.

3.8 Conclusion

In this chapter, Robust Limited Lookahead (RLL) supervisor has been proposed as an ex-

tension of the conventional (non-robust) limited lookahead policy. The chapter proves that

under certain condition, the optimality of RLL supervisor can be guaranteed if the win-

dow size is sufficiently long. A case where the required window size for optimality of the

RLL supervisor becomes unbounded has been discussed. The next chapter presents the

state-based RLL supervisor in order to overcome the issue of unbounded required window

size.

61



Chapter 4

Limited Lookahead Policy for Robust

Nonblocking Supervisory Control:

A State-based Approach

In Chapter 3 we solved Robust Nonblocking Supervisory Control Problem (RNSCP) using

an online approach called Robust Limited Lookahead (RLL) supervision. The RLL su-

pervisor is language-based and the control domain presented there is based on the strings.

Under certain condition, the optimality of RLL supervisor can be guaranteed if the window

size is sufficiently long. As we discussed at the end of Chapter 3, a sufficient length for

lookahead window of optimal RLL supervisor is not always available.

In this chapter, we study the state-based RNSCP problem (RNSCP-S) in which the

design specifications are given in terms of legal/illegal states and the supervisory map is a

state feedback control law. We will develop an RLL algorithm for RNSCP-S. Furthermore,

we provide a set of conditions under which the RLL supervisor with State information (

referred to as RLL-S supervisor) is maximally permissive.

In Section 4.1 we first discuss the requirements for control domain to be taken as states.

62



Then we formulate Robust Nonblocking Supervisory Control Problem with State informa-

tion (referred to as RNSCP-S). We also show that the state-based control requirements do

not impose any limitation on RNSCP-S by presenting a procedure for conversion of any

RNSCP problem to RNSCP-S if the requirements are not met as a priori.

In Section 4.2 we present the implementation of RLL-S supervisor. Next, we discuss

the properties of RLL-S supervisor and find a set of conditions for the optimality of RLL-S

supervisor. We present an illustrative example at the end.

4.1 State-based Supervisory Control

This section is intended to set up state-based RNSCP (RNSCP-S). First, we formulate

state-based supervisory control problem and discuss its requirements. Next, we study the

conversion of any RNSCP problem to an equivalent RNSCP-S problem.

4.1.1 State-based Conventional Supervisory Control Problem

State-based supervisory control assumes (without loss of generality) that the specification

K is marked by an automaton H which is a subautomaton of the plant G. This means that

for a plant G = (Σ,X, δ, x0,Xm) the specification should be in the form of an automaton

H = (Σ,XH .δH , x0,XmH), where XH ⊆ X , XmH ⊆ Xm, δH is a restriction of δ and

K = Lm(H) [9]. If the conditions are not satisfied, [31] presents a procedure to transform

the plant and its specification appropriately so that the control domain can be taken as

states.

The goal is to design a state-feedback supervisory controller V ∶ X → 2Σ which de-

termines the set of events to be enabled at each state of the plant under supervision such

63



that:

1) Lm(G,V ) ⊆ Lm(H)

2) L(G,V ) = Lm(G,V )

Note that the state set of the closed-loop system is the same as G, however, not all the

states are necessarily reachable [30].

4.1.2 State-based Robust Supervisory Control Problem

Definition 4.1. Mutually Refined Automata: Consider the two automata:

G1 = (Σ1,X1, δ1, x01,Xm1) and G2 = (Σ2,X2, δ2, x02,Xm2)

Assume that there is a one-to-one relation between a subset of X1 and X2. For simplicity,

assume the corresponding states have the same label. We say that G1 and G2 are mutually

refined if δ1(x01, s) = δ2(x02, s) for s ∈ L(G1) ∩ L(G2). Also, δ1(x01, s) ≠ δ2(x02, t) if

s ∈ L(G1) − L(G2) for all t ∈ L(G2), and δ1(x01, t) ≠ δ2(x02, s) if s ∈ L(G2) − L(G1) for

all t ∈ L(G1).

The requirement for taking the control domain of robust nonblocking supervisory con-

trol problem as states is given in [6] as follows.

Theorem 4.1. [6] If any two automata in {G1, ...,Gn,H1, ...,Hn} are mutually refined

then the control domain of robust nonblocking supervisory control problem can be taken

as states.

State-based RNSCP Problem Formulation (RNSCP-S): Suppose the model of the

system belongs to a finite set of possible models G = {G1, ...,Gn}. Each model has its own

specification which is marked by the automaton Hi, i = 1, .., n where Hi is a subautomaton

of Gi. Assume any two automata in {G1, ...,Gn,H1, ...,Hn} are mutually refined so the

64



control action can be taken as states. The goal is to design a state feedback law V ∶ ⋃n
i Xi →

2Σ so that:

1) Lm(Gi, V ) ⊆ Lm(Hi)

2) L(Gi, V ) = Lm(Gi, V )

In this Chap we find a lookahead solution for this problem.

4.1.3 Converting RNSCP to RNSCP-S

Generally speaking, the sufficient condition in Theorem 4.1 may not be satisfied in an

RNSCP. This by no means causes a limitation to supervisory control with state information

as we can always refine the automata appropriately to satisfy the conditions.

The following definition is a generalization of biased synchronous product presented in

[31] and is required for the conversion of RNSCP to RNSCP-S.

Definition 4.2. Multiple biased synchronous product [6] Given a set of automata: R =
{R1,R2, ...,Rn} with Ri = (Xi,Σi, δi, x0i,Xmi) the multiple biased synchronous product

of Rk is defined as:

Rk ∣∣mr(R−{Rk}) ∶= Ac(X1×...×Xn,Σk, δ, (x01, ...x0n),X1×...×Xk−1×Xmk×Xk+1×Xn)

where:

δ((x1, ..., xn), σ) =
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(x′
1
, ...x′n) if σ ∈ ΣRk

(xk)

undefined otherwise

and

65



x′i =
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

δi(xi, σ) if σ ∈ ΣRi
(xi)

xi if σ ∉ ΣRi
(xi)

The key point is that the multiple biased production of Rk does not alter its generated

or marked languages. Thus [6] presents the following procedure for mutual refinement of

a set of plants and their specifications. It shows that the closed and marked languages of

the resulting automata remain unchanged and that any two automata are mutually refined.

Consequently, the resulting problem can be treated as a RNSCP-S.

Procedure 4.1. 1. Define the set R ∶= {G1, ...,Gn,H1, ...,Hn}. Add a dump state to

each automaton Ri and add transitions Σ − ΣRi
(x) from each state x to the dump

state. Then, add self-loop Σ to the dump state. The resulting automata are denoted

as R′ ∶= {G′
1
, ...,G′n,H

′
1
, ...,H ′n}

2. Replace G′i in R′ with Gi and derive G′′i = Gi ∣∣mr (R′ − {Gi}) for all i = 1, ..., n.

3. Replace H ′i in R′ with Hi and derive H ′′i =Hi ∣∣mr (R′ − {Hi}) for all i = 1, ..., n.

Example 4.1. Consider G = {G1,G2} as shown in Figure 4.1 and the corresponding spec-

ifications K1 and K2. Initially, the control domain can not be taken as states. For example,

in G1 we observe that δ(1, abc) = δ(1, aa) considering the fact that abc is legal while aa is

illegal we understand that the control domain can not be taken as states.

0 1 2
a 

b 

3
a 

c 

(a) G1

0 1 2
a

3
b 

4
c 

(b) K1

0 1 2
a 

c 

3
a 

b 

(c) G2

0 1 2
a 

3
b 

(d) K2

Figure 4.1: Plants and specifications before refinement

66



Following the Procedure 4.1 we first add a dump state to all the generators in order to

have a closed-behavior equal to Σ∗. The resulting automata are shown in Figure 4.2

0

1 2
a

d1

b,c

b

3

a

c

a,b,c
a,b,c

(a) G1
′

1 2
a

b,c a,c a,b a,b,c

3
b

4
c

d2

a,b,c

(b) K1
′

0

1 2
a

d3

b,c

c

3

a

b

a,b,c
a,b,c

(c) G2
′

1 2
a

b,c a,c a,b,c

3
b

d4

a,b,c

(d) K2
′

Figure 4.2: Modified automata: Example 4.1

Next we find the set of refined automata as G′′i = Gi ∣∣mr (R′ − {Gi}) and H ′′i =
Hi ∣∣mr (R′ − {Hi}) where i = 1,2. The set of refined automata is shown in Figure 4.3.

We can verify that the refined problem satisfies the assumption of an RNSCP-S problem.

0 1 2
a 

3
a 

4
b 

5

c 

6

a 

7
b 

8

c 

b 

9
a 

c 

(a) G1
′′

0 1 2
a 

3
a 

4
c 

5

b 

6a 

b 

7

c 
c 

8
a 

b 

(b) G2
′′

0 1 2
a

3
b 

4
c 

(c) K1
′′

0 1 2
a 

3
b 

(d) K2
′′

Figure 4.3: Refined automata: Example 4.1

67



4.2 Robust Limited Lookahead Supervision with State In-

formation

4.2.1 Linguistic Preliminaries

Let G = (X,Σ, δ, x0,Xm) and L(G) ∶= {s ∈ Σ∗ ∶ δ(x0, s) is defined}. We define [x] as the

set of all traces leading to state x from the initial state x0:

[x] = {s ∈ Σ∗ ∣ δ(x0, s) = x ∧ (/∃ t < s ∶ δ(x0, t) = x)}

Definition 4.3. Post-automaton G/[x] is the subautomaton of G which is reachable from

the state x ∈XG. L(G/[x]) denotes the language of G/[x].

L(G/[x]) ∶= {t ∈ Σ∗ ∣ s ∈ [x] ∧ δ(x0, st) ∈XG}

Obviously, L(G/[x]) = L(G/s).
Definition 4.4. Truncation of G after [x] The truncation of G/[x] to N is the subautomaton

of G which is reachable within N steps from x and it is denoted by G/[x]∣N .

In general we can see that L(G/s)∣N ⊆ L(G/[x])∣N . If t ∈ L(G/[x])∣N and t ∉ L(G/s)∣N ,

then ∣t∣ > N .

Expansion as a subgraph The main difference between RLL and RLL-S supervisors

is the expansion procedure. The RLL supervisor estimates the behavior of a plant under

supervision using an N-step tree expansion. A tree is a structure which distinguishes states

based on their event history without making any assumption about the equivalence of the

states. Thus tree structure is a useful tool since it permits to compute the control action

with no need of state information, while it is also limiting because the size of state space of

a lookahead tree increases quickly with increasing the length of lookahead window [26]. It

68



may also cause the length of required window for the optimality of RLL supervisor to be

unbounded.

These problems can be resolved if we replace the tree structure with a subgraph. Similar

to the RLL supervision we assume that we are given L(Gi/s∣N) and L(K/s∣N) for any

executed trace s along with the state following each event. The information is enough to

estimate the future behavior of each model as a subgraph. We should note that the size of

state space for expansion of an automaton as a subgraph is bounded by the automaton’s

number of states which is always finite in the case of finite state automata.

Example 4.2. Consider the automaton in Figure 4.4. Let the length of lookahead window

to be N = 2. The subgraph expansion at state 1 of the automaton is shown in Figure 4.5.

0 1

21,2 

3

3 

1 3 

4
2 

5

6

2,3 

1 

2 

71 

8

3 

93 

2 

10
1 

2,3 1 

1,2,3 

2 

1 

3 

1,3 

2 

1 

2 

3 

Figure 4.4: Automaton G: Example 4.2

0 1

21,2 

3

3 

1 3 

42 

5
2,3 

1 

Figure 4.5: Subgraph expansion of G: Example 4.2

Now, if we expand the plant G as a tree, the outcome would be the automaton shown

in Figure 4.6. Comparing the tree-expansion with the subgraph expansion we observe that

69



(i) the language of the tree expansion is a subset of the language of the subgraph expansion

and (ii) the size of state space for three expansion is larger.

0 1

2

1 

3
2 

4

3 

5

3 

6
2 

7

1 

10

1 

8
3 

9

2 

11

12

13

3 

2 

1 

Figure 4.6: Tree expansion of G: Example 4.2

Definition 4.5. Pending State A state is pending if it is only encountered at the frontier of

L(G/s∣N). It is formally defined as:

Xpending = {x ∈XG ∣ x ∈XG/[x]∣N ∧ x ∉XG/[x]∣N−1}

In the preceding example, states 4 and 5 are designated as pending states. Taking a

conservative approach these states must be treated as illegal when solving a problem in

online fashion.

70



Knowledge base about

real time knowledge

Control action

event

fN
⇑f s

G

σ

fN
L(G) fN

K fN
a fN

u

L(Gi), Lm(Gi),Ki

Gi
i = 1, ..., n

γN(s)

Figure 4.7: Block diagram of State-based Robust Limited Lookahead Supervisor

4.2.2 RLL-S Supervisor

In this section we discuss Robust Limited Lookahead supervisor with State information

(RLL-S). Compared with the RLL supervisor, the procedure steps remain unchanged ex-

cept the expansion procedure. Here we briefly explain how the RLL supervisor should be

modified to properly accommodate the problem of undefined required window size asso-

ciated with the RLL supervisor. Further, we briefly discuss the properties of the RLL-S

supervisor compared with the RLL supervisor. We also find a lower bound for the looka-

head window size which guarantees the optimality of the RLL-S supervisor.

Consider a problem which is formulated as RNSCP-S and thus the control domain can

be taken as states. Referring to Figure 4.7, the RLL-S supervisor is briefly described.

Similar to RLL supervisor, suppose that the process has executed the trace s ∈ [x] so far.

The online control functions in Figure 4.7 are described in the following:

1. Similar to RLL supervisor the block f s
G identifies the plants which are compatible

with the currently executed trace s where s ∈ [x] and x is current state of the plant.

Without loss of generality suppose that the first n′ models are compatible with s (i.e.

Gi, i = 1, ..., n′).
2. On the basis of knowledge available about the plants, the supervisor predicts the

possible behavior (states and language) of all compatible plant models N step beyond

the current state x. It is the function of block fN
L(G)

to build subautomaton Gi/[x]∣N of

71



all models.

3. The supervisor then determines which states in the subautomaton of Gi/[x]∣N are

illegal. State x is illegal if it is illegal in some plant model. In other words, x is illegal

if x ∈
n

⋃
i=1
(X(Gi) −X(Hi)). Removing illegal states is to be done by the block fN

K in

Figure 4.7.

4. Next we take the conservative attitude toward the pending states since they may reach

into illegal region by executing uncontrollable events. This is to be done by the block

fN
a .

5. Afterwards, the block fN
⇑ computes the supremal relative-closed, controllable, and

G/[x]∣N -nonblocking part of the output of block fN
a with respect to the Gi/[x]∣N ,

i = 1, ...n′, and G/[x]∣N .

6. Finally, the block fN
u finds the enabled events for the currently executed string s, by

restricting the output of block fN
⇑ to single-event sequences.

4.2.3 Properties of RLL-S Supervisor

In this section we study some of the properties of the RLL-S supervisor. We also compare

the RLL-S with RLL supervisor.

Lemma 4.1. Let s ∈ Σ∗ and s ∈ [x]. Then:

supRCNb(K/s∣N−1,G/[x]∣N) ⊆ supRCNb(K/[x]∣N−1,G/[x]∣N)

The proof follows the fact that K/s∣N−1 ⊆ K/[x]∣N−1. Note that we are applying the

same monotone operator on both sides of the inclusion, thus the inclusion would be pre-

served under the operation.

72



Lemma 4.2. Let s ∈ Σ∗ and s ∈ [x]. Then:

supRCNb(K/s∣N−1,G/s∣N) = supRCNb(K/s∣N−1,G/[x]∣N)

Proof: Let

LHS ∶= supRCNb(K/s∣N−1,G/s∣N)

RHS ∶= supRCNb(K/s∣N−1,G/[x]∣N)

∆Li = L(Gi/[x]∣N) −L(Gi/s∣N)

∆Lm,i =∆Li ∩Lm(Gi/[x]∣N)

∆L = L(G/[x]∣N) −L(G/s∣N)
∆Lm =∆L ∩Lm(G/[x]∣N)

Note that ∀t ∈∆Li → ∣t∣ ≥ N +1. Also ∀t′ ∈ RHS and LHS, then ∣t′∣ ≤ N −1. First we

prove that LHS ⊆ RHS. For this we prove that LHS is relative closed and controllable

with respect to G/[x]∣N and nonblocking with respect to Gi/[x]∣N , i = 1, ..., n′.
i) G-nonblocking: Since LHS is Gi/s∣N -nonblocking we have

LHS ∩ L(Gi/s∣N) = LHS ∩Lm(Gi/s∣N)

Also, LHS ∩∆Li = LHS ∩∆Lm,i = ∅. Thus:

LHS ∩Lm(Gi/[x]∣N) = LHS ∩ (Lm(Gi/s∣N) ∪∆Lm,i)

= LHS ∩Lm(Gi/s∣N) ∪LHS ∩∆Lm,i

= (LHS ∩L(Gi/s∣N)) ∪ (LHS ∩∆Li)

= LHS ∩L(Gi/[x]∣N)

73



ii) Controllability: By assumption, LHSΣu ∩ L(G/s∣N) ⊆ LHS. Also, ∀t ∈ LHS,

∣t∣ ⩽ N − 1. So for all t ∈ LHS and σ ∈ Σ, ∣tσ∣ ≤ N and thus LHSΣu ∩∆L = ∅.

LHSΣu ∩L(G/[x]∣N) = LHSΣu ∩ (L(G/s∣N) ∪∆L)

= (LHSΣu ∩ (L(G/s∣N)) ∪ (LHSΣu ∩∆L)

⊆ LHS

iii) Lm(G)-closure: We know that LHS∩Lm(G/s∣N) = LHS and LHS∩∆Lm = ∅. Thus

we can easily conclude that LHS ∩ Lm(G/[x]∣N) = LHS ∩ (Lm(G/s∣N) ∪∆Lm) =
LHS.

Now we prove the other inclusion which is RHS ⊆ LHS following a similar procedure.

i) G-nonblocking: Since RHS is Gi/[x]∣N -nonblocking, we have:

RHS ∩L(Gi/[x]∣N) = RHS ∩Lm(Gi/[x]∣N)

Also RHS ∩∆Li = RHS ∩∆Lm,i = ∅. Thus:

RHS ∩Lm(Gi/s∣N) = RHS ∩ (Lm(Gi/s∣N) ∪∆Lm,i)

= RHS ∩Lm(Gi/[x]∣N)

= RHS ∩L(Gi/[x]∣N)

= RHS ∩ (L(Gi/s∣N) ∪∆Li)

= RHS ∩L(Gi/s∣N)

ii) Controllability: By assumption, RHSΣu ∩ L(G/[x]∣N) ⊆ RHS. Also, we know ∀t ∈

74



RHS, ∣t∣ ⩽ N −1. So for all t ∈ RHS and σ ∈ Σ, ∣tσ∣ ≤ N and thus RHSΣu∩∆L = ∅.

RHSΣu ∩L(G/s∣N) = RHSΣu ∩ (L(G/s∣N) ∪∆L)

= RHSΣu ∩L(G/[x]∣N)

⊆ RHS

iii) Lm(G)-closure: By assumption, RHS ∩Lm(G/[x]∣N) = RHS and RHS ∩∆Lm = ∅.

Thus we can easily conclude that RHS∩Lm(G/s∣N) = RHS∩(Lm(G/s∣N)∪∆Lm) =
RHS ∩Lm(G/[x]∣N) = RHS.

Lemma 4.3. Let s ∈ Σ∗ and s ∈ [x]. Then:

supRCNb(K/s∣N−1,G/s∣N) ⊆ supRCNb(K/[x]∣N−1,G/[x]∣N)

Proof:

supRCNb(K/s∣N−1,G/s∣N) ⊆ supRCNb(K/s∣N−1,G/[x]∣N) (by Lemma 4.2)

⊆ supRCNb(K/[x]∣N−1,G/[x]∣N) (by Lemma 4.1)

Property 4.1. It follows from Lemma 4.3 that, in general, the RLL-S supervisor is more

permissive than the RLL supervisor:

L(G,γN
RLL) ⊆ L(G,γN

RLL−S)

75



Lemma 4.4. Let s ∈ Σ∗ and s ∈ [x]. Then:

supRCNb(K/[x]∣N−1,G/[x]) ⊆ supRCNb(K/[x],G/[x])

Proof: The proof follows the fact that K/[x]∣N−1 ⊆K/[x].

Lemma 4.5. Let s ∈ Σ∗ and s ∈ [x]. Then:

supRCNb(K/[x]∣N−1,G/[x]∣N) = supRCNb(K/[x]∣N−1,G/[x])

Proof: Let

LHS ∶= supRCNb(K/[x]∣N−1,G/[x]∣N)

RHS ∶= supRCNb(K/[x]∣N−1,G/[x])

∆Li = L(Gi/[x]) −L(Gi/[x]∣N)

∆Lm,i =∆Li ∩Lm(Gi/[x])

∆L = L(G/[x]) −L(G/[x]∣N)
∆Lm =∆L ∩Lm(G/[x])

Further, note that:

∆Lm,i ∩Lm(Gi/[x]∣N) = ∅, LHS ⊆ Lm(Gi/[x]∣N)→∆Lm,i ∩LHS = ∅
∆Li ∩L(Gi/[x]∣N) = ∅, LHS ⊆ L(G/[x]∣N)→∆Li ∩LHS = ∅
∆L ∩L(G/[x]∣N−1)Σu = ∅, LHSΣu ⊆ L(G/[x]∣N−1)Σu →∆L ∩LHSΣu = ∅
∆L ∩L(G/[x]∣N) = ∅, LHS ⊆ L(G/[x]∣N)→∆L ∩LHS = ∅→∆Lm ∩LHS = ∅

Similar statements can be driven for RHS. Having the above mentioned statements the

rest of proof follows a same procedure as the Lemma 4.2 and its removed for brevity.

76



Lemma 4.6. Let s ∈ Σ∗ and s ∈ [x]. Then:

supRCNb(K/[x]∣N−1,G/[x]∣N) ⊆ supRCNb(K/s,G/s)

Proof:

supRCNb(K/s,G/s) = supRCNb(K/[x],G/[x])) (since s ∈ [x])
⊇ supRCNb(K/[x]∣N−1,G/[x]) (by Lemma 4.4)

= supRCNb(K/[x]∣N−1,G/[x]∣N) (by Lemma 4.5)

Property 4.2. In general the RLL and RLL-S supervisors are both legal and the behavior of

the system under supervision of these supervisors is a subset of the behavior of the system

under supervision of the optimal off-line supervisor V .

L(G,γN
RLL) ⊆ L(G,γN

RLL−S) ⊆ L(G, V )
Proposition 4.1. Assume that the RLL supervisor is maximally permissive L(G, γN

RLL) =
L(G, V ). Then the RLL-S supervisor too would be maximally permissive L(G, γN

RLL−S) =
L(G, V ).

Proof: The proof directly follows from Property 4.2.

4.2.4 Maximally Permissive RLL-S Supervisor

In this section, we would like to find a set of sufficient conditions which guarantee that

RLL-S is maximally permissive. We assume that the problem is already converted to

77



RNSCP-S form. The set of plants and their specifications is {G1, ...,Gn,H1, ...,Hn}, the

union model is G and the overall specification is characterized by the automaton H .

Definition 4.6. Given a set of plants Gi, i = 1, ..., n, the set of nonblocking states is defined

as:

Hnb ∶= {x ∈H ∣ [x] ∩Lm(Gi) = [x] ∩L(Gi) ∧ (∀σ ∈ Σu ∶ [x]σ ∉ L(G))}.
Next we define w(x, s) which contains the set of reachable states from the state x

through execution of string s, if none of these states belongs to Hnb. w(x, s) is defined for

each given x ∈XH and s ∈ L(H/[x]) as follows:

w(x, s) ∶=
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

{δ(x, t) ∶ t ≤ s} if δ(x, s) ∈XHnb
∧ (∀ε < t < s) ∶ δ(x, t) ∉XHnb

∅ otherwise

The desired bound for optimality of the RLL-S supervisor, N , is then defined as fol-

lows:

NB ∶= max
x∈XH ,s∈L(H/[x])

∣w(x, s)∣

Note that NB is always defined in case of finite state automata. This is not always true

for Nnnf which determines the required bound for RLL supervisor. We should also note

that if Nnnf is defined then Nnnf + 1 = NB (Because, we count the number encountered

states between two states in XH , instead of counting the events in between).

The following lemma generalizes Lemma 3.5 to the case of state-based supervisory

control. Note that for notational simplicity we use H instead of L(H).

Lemma 4.7. H ∈ RCNb(K/[y],G/[y]) and [x] ⊆ supRCNb(K,G). Suppose for [x] ⊆H:

1. [x] ∩Lm(Gi/[y]) = [x] ∩L(Gi/[y])

78



2. ∀σ ∈ Σu ∶ [σ ∉ L(G/[y])]

Then H − ([x](H/[x]) − [x]) ∈ RCNb(K/[y],G/[y]).

Proof: H ′ = [x](H/[x])−[x] and H ′′ = [x](H/[x])−[x]. First, we show H −H ′ =H−H ′′.

H −H ′′ = [H −H ′ ∪H ′] − ([x]H/[x] − [x])
= [H −H ′ − ([x]H/[x] − [x])] ∪ [H ′ − ([x]H/[x] − [x])]
= H −H ′ ∪ [H ′ − ([x]H/[x] − [x])]

(H −H ′ and ([x]H/[x] − [x]) are disjoint)

= H −H ′ ∪ [[x](H/[x]) − [x] − ([x]H/[x] − [x])]

= H −H ′ ∪ [([x] ∪ [x]H/[x]) − ([x]H/[x] − [x])]

(by Lemma 2.4)

= H −H ′ ∪ [[x] ∪ ([x]H/[x] − ([x]H/[x] − [x]))]

= H −H ′ ∪ [x] ∪ [x]

= H −H ′ ∪ [x]

= H −H ′

To prove the Gi/[y] − nonblocking property, consider two different cases.

1. [x] /⊆ Lm(Gi/[y]): By Lemma 2.5 we have:

(H −H ′) ∩Lm(Gi/[y]) = (H ∩Lm(Gi/[y])) − (H ′ ∩Lm(Gi/[y]))

Since, in this case H ′ ∩Lm(Gi/[y]) = ∅ we conclude

(H −H ′) ∩Lm(Gi/[y]) =H ∩Lm(Gi/[y])

79



Furthermore

H −H ′ ∩L(Gi/[y]) ⊆ H ∩L(Gi/[y])

= H ∩Lm(Gi/[y])

= (H −H ′) ∩Lm(Gi/[y])

So, H −H ′ ∩ L(Gi/[y]) ⊆ (H −H ′) ∩Lm(Gi/[y]). Since the reverse containment

always holds, we have H −H ′ ∩L(Gi/[y]) = (H −H ′) ∩Lm(Gi/[y]).

2. [x] ⊆ Lm(Gi)/[y]: Therefore t ∈ L(Gi/[y]). Now, consider:

(H −H ′) ∩L(Gi/[y]) = (H − ([x]H/[x] − t)) ∩L(Gi/[y])

= (H ∩L(Gi/[y])) − (([x]H/[x] − [x]) ∩L(Gi/[y]))

= (H ∩L(Gi/[y])) −∆LL (4.1)

where ∆LL ∶= ([x]H/[x] − [x]) ∩ L(Gi/[y]). Next, let R = (H −H ′) ∩Lm(Gi/[y])

and consider:

H ∩Lm(Gi/[y]) = R ∪H ′ ∩Lm(Gi/[y])

= R ∪ ([x](H/[x]) − [x]) ∩Lm(Gi/[y])

= R ∪ [x](H/[x] − ε) ∩Lm(Gi/[y])

= R ∪ ([x](H/[x] − ε) ∩Lm(Gi/[y][x]) ∪ t)

= R ∪ [x]H/[x] ∩Lm(Gi/[y][x]) (since [x] ⊆ R)
= R ⊍ ([y]H/[x] ∩Lm(Gi/[y][x]) − [x])

80



Let ∆LR = ([x]H/[x] ∩Lm(Gi/[y][x]) − [x]), then:

(H −H ′) ∩Lm(Gi/[x]) =H ∩Lm(Gi/[x]) −∆LR (4.2)

Note that:

∆LR = [x]H/[x] ∩Lm(Gi/[y][x]) − [x]

= [x]H ∩Lm(Gi/[y])/[x] − [x] (by Lemma 2.1)

= [x](H ∩L(Gi/[y]))/[x] − [x] (H is Lm(Gi/[y])-closed)

= [x](H/[x] ∩L(Gi/[y][x])) − [x] (by Lemma 2.1)

= ([x]H/[x] ∩L(Gi/[y])) − [x]

= ([x]H/[x] − [x]) ∩L(Gi/[y])

= ∆LL

From (4.1), (4.2), and Gi/[y]-nonblocking property of H it follows that H − H ′ is

Gi/[y] − nonblocking.

For controllability we need to ensure that the behavior of L(G/[y]) can be limited to

H −H ′. This goal can be simply achieved by disabling the events after the state x which

we know are all controllable. Finally, for relative-closure:

H −H ′ ∩Lm(G/[y]) = (H − ([x]H/[x] − [x])) ∩Lm(G/[y])

= (H ∩Lm(G/[y])) − (([x]H/[x] − [x]t) ∩Lm(G/[y]))

= H − (([x]H/[x] ∩Lm(G/[y])) − [x]) (H is Lm(G)-closed)

81



= H − ([x](H/[x] ∩Lm(G/[y][x])) − [x]) (H/[x] ∩Lm(Gi/[y])/[x] =H/[x])
= H − ([x](H/[x]) − x)

= H −H ′

This completes the proof.

Finally the next theorem formalizes a set of sufficient conditions that guarantees the

RLL-S supervisor is maximally permissive.

Theorem 4.2. Assume H = Hnb and that there is no SE in L(G,γN). If N ≥ NB then

L(G,γN
RLL−S) = supRCNb(K,G).

Proof: To prove the theorem we start with the automaton H ∶= supRCNb(K/[x],G/[x])

and then construct H ′ with the following procedure:

• Expand H ′ as a subgraph of H .

• Stop the expansion in every state x ∈Xnb.

This is equivalent to removing all strings after a nonblocking controllable state. Accord-

ing to Lemma 4.7, the language represented by H ′ remains Gi/[x]-nonblocking, controllable

and relative-closed with respect to G/[x].

We now claim that the expansion of H ′ terminates in NB − 1 steps. Since H = Hnb we

conclude that all states in H are coreachable with respect to states in Hnb. If this was not

the case then the condition H = Hnb would be violated. The distance between every state

and a nonblocking state x ∈ Hnb is bounded by NB − 1 and we know that the expansion

82



terminates in all branches. Consequently, this termination happens the worst case in NB −1

steps. This means that:

H ′ =H ′/[x] =H ′/[x]∣NB−1 =H ′/[x]∣N−1 ⊆K/[x]
Next we show that

L(H ′∣1) = L(H ∣1)
Obviously, L(H ′∣1) ⊆ L(H ∣1) so we only need to show the reverse containment. Sup-

pose t ∈ L(H ∣1) and therefore ∣t∣ = 1. Also let δ(t, x) = x′ where x′ ∈ XH . If x′ is a

nonblocking controllable state, then t ∈ L(H ′) and consequently L(H ′∣1) = L(H ∣1). If x′

is not a nonblocking controllable state then there exists a t′ such that δ(x′, t′) = x′′ such that

x′′ is nonblocking controllable. Again this means t ∈ L(H ′) and thus L(H ′∣1) = L(H ∣1).
Finally similar to Lemma 4.2 we can show that:

H ′ = supRCNb(H ′,G/[x]) (by Lemma 4.7)

= supRCNb(H ′,G/[x]∣N) (Proof similar to Lemma 4.2)

Remark 4.1. Let E = supRCNb(K,G). The condition H = Hnb can be replaced by E =
Enb as we only remove the post-language of nonblocking states in supRCNb(K[x],G/[x]).

Thus, it is not necessary for all states in K to be coreachable to with respect to a nonblock-

ing state.

83



4.3 Illustrative Example

In this section we present a simple example in order to clarify the presented results.

Example 4.3. Consider two mutually refined automata G = {G1,G2} as shown in Figure

4.8 with Σc = {a, b, c}, Σuc = {d, e}, and the illegal states 3, 10. The marked states in

Figure 4.8 are shown by double circles.

1 2

a

3
c

4
b

5 6
a

7 8
b

b

a

a

b
b a c a

a

(a) G1

1 2

a

3
c

4
b

5 6
a

7 8
b

b

a

a

b
b a c a

a

9 10

a

11 12

b

e

b

a

a

d

d

(b) G2

Figure 4.8: Example 4.3: Plant automata.

In the following we first determine the off-line solution to the problem.

4.3.1 Off-line Solution

First we consider the union model of the plant which is equal to G2 in this problem (G =
G2). The overall specification, H , is obtained by removing illegal states and all the attached

edges and it is shown in Figure 4.9.

84



1 2

a

4

5 6
a

7 8
b

b

a

a

b
b a

a

9

11 12

b

e

d

d

Figure 4.9: Example 4.3: The overall specification H .

We then solve the problem based on the algorithm presented in [23] to find supRCNb(K,G).

For this purpose we use the MATLAB function supRCN which is listed in Appendix B.

The supervisor can be realized by the automaton shown in Figure 4.10.

1 2

a

5 6
a

7 8
b

b

a

a

b
b

a
11 12

b

e

d

Figure 4.10: Example 4.3: Realization of off-line state-based supervisor.

Next we work out to find the online solution to the problem.

4.3.2 Online Solution

The focus of this example is on finding the maximally permissive RLL-S supervisor. With

this purpose, we first determine NB.

Length of Lookahead Window

To determine NB we have to determine Hnb and w(x, s) for every x ∈XH and s ∈ L(H)/[x].

The bolded states in Figure 4.11 characterize Hnb.

85



1 2

a

4

5 6
a

7 8
b

b

a

a

b
b a

a

9

11 12

b

e

d

d

Figure 4.11: Hnb: Example 4.3

Next, we form w(x, s) for all x ∈XH and s ∈ L(H)/[x] that w(x, s) is nonempty.

w(1, a) = {1,2}
w(2, ba) = {2,5,6}, w(2, bb) = {2,6,7}, w(2, bd) = {2,6,11}
w(5, b) = {1,5}, w(5, ab) = {5,6,7}, w(5, ad) = {5,6,11}
w(6, b) = {6,7}, w(6, a) = {5,6}, w(6, d) = {6,11}
w(7, b) = {7,8}, w(7, aa) = {5,6,7}, w(6, d) = {6,11}
w(11, be) = {11,12}

Having the sets w(x, s)we find NB = 3 which is the required window size for optimality

of RLL-S supervisor.

Control Action Computation

According to Theorem 4.2 and Remark 4.1 we expect L(G,γ3) to be maximally permis-

sive. We investigate the performance of the supervisor along the path abb. Starting from

s = ε, both models are compatible with the currently executed trace; the output of fN
⇑ block

is shown in Figure 4.12.

86



1 2

a

a

Figure 4.12: fN(ε): Example 4.3

So, the control action is γ3(ε) = {a}. After executing event a, with s = a and x = 2, the

control action is γ3(a) = {a, b}, and the output of block fN
⇑ is as Figure 4.13. One can see

that executing further events, and going ahead through the lookahead window causes new

events to be enabled. The control action following string s = bc is γ3(bc) = {a}.

1 2

a

5 6
a

7

b

a

a

b
b

a
11

d

Figure 4.13: fN(a): Example 4.3

Continuing with execution of the events the next control action would be γ3(ab) =
{a, b, d}. This shows that by choosing the window size long enough, we can achieve

L(G,γN) = supRCNb(K,G).

4.4 Conclusion

In this chapter, the state-based RNSCP problem in which the specifications are in terms

of legal/illegal states and the supervisor is a state feedback control law has been studied.

State-based RLL (RLL-S) supervisor has been proposed as a dual of the linguistic approach

presented in Chapter 3. Furthermore, a set of conditions under which the RLL-S supervisor

is maximally permissive has been provided. In the next chapter, the proposed online RLL-S

supervision will be applied to the robust control of spacecraft propulsion systems.

87



Chapter 5

Application Examples

Robustness of a spacecraft is an important criterion due to the long time operation of the

spacecraft with no maintenance in between. It is essential to take a robust, fault-tolerant

control strategy in case of designing an autonomous spacecraft. In this section we consider

the propulsion systems of two spacecraft: Viking and Cassini. The systems studied here

are subject to some simplifications.

Spacecraft are subject to numerous failures, which means that off-line supervisor re-

quires a large amount of memory for implementation onboard. We apply the proposed

online RLL-S supervision for robust control of the spacecraft propulsion systems.

5.1 Viking Spacecraft

The simplified propulsion system of Viking orbiter is depicted in Figure 5.1 [35]. It consists

of a high pressure Helium tank, a pyro-ladder consisting five pyro-valves (PV 1, PV 3, PV 5

are normally closed; PV 2 and PV 4 are normalcy open), a regulator valve to pressurize fuel

tanks, and an engine usable for trajectory correction and orbiter insertion maneuvers. The

pyro-valves can operate only once, meaning that if a normally-closed (resp. normally-

open) turns open (resp. turned close), it remains open (resp. closed) for the rest of mission

88



and the action is not reversible. In Figure 5.1, the pyro-valves in solid black are normally

closed, while the others are normally open.

C

Nitrogen 

tetroxide

Monomethyl
hydrazine

Regulator

PV3

PV5

PV2

PV4

Helium

Engine

PV1

R

A

B

pt, ft

p1

Figure 5.1: Simplified pressure control assembly of Viking orbiter.

As Viking 1 was approaching to the Mars, a major anomaly was detected in its pressure

control assembly. On June 7, 1976, PV 3 was opened to pressurize the fuel tanks for the

Approach Course Manoeuver (ACM). However, the tanks pressure continued to rise after

the regulator threshold was reached due to regulator leakage. The obvious solution was to

fire PV2 in order to cut-off the pressure from the regulator. This would leave PV 1 as the

only path for pressurizing the tanks prior to Mars Orbit Insertion (MOI). If PV1 failed to

open (get stock closed), the whole mission would be lost because of low fuel pressure [37].

The adopted solution, which was uplinked to the spacecraft from ground station, was to

split ACM into two parts. Thus they could keep the tanks’ pressures below rapture pressure

during the 12 days remaining to MOI. Such decisions cannot be made autonomously and

they must be made by human operators.

89



The Viking’s design did not have enough redundancy for onboard autonomous deci-

sions. The design was later modified in Mars Global Surveyor (MGS) spacecraft [35] ,[40].

The schematic diagram of MGS propulsion system is shown in Figure A.1. A simplified

version of the design is shown in Figure 5.2.

P1

tetroxide

Monomethyl
hydrazine

Regulator R

L

Engine

PV3

PV5

PV2

PV4

PV1

A

B

C

Helium

V1
PV6

PV7

Nitrogen 

Figure 5.2: Simplified MGS propulsion system

The new design has enough redundancy for single-failure scenarios. In this section

we aim to design a supervisor which handles the the same situation happened for Viking

spacecraft. This means that at the start of the ACM, PV3, PV4 and PV5 are already fired,

V1 is open, and the regulator is leaking. In the next section, we find the DES model of the

system.

90



5.1.1 Discrete Event Modeling

In this section we present DES model of different components and the interactions between

them. Then we construct the complete model of the system by combining the components

and interactions. Table 5.1 describes all the events which appears in the modeling. For

simplicity we assume that only V1 and PV1 are subject to failure.

Event Tag Description

101 V1,OC Valve 1 open command (controllable)

100 V1,SC Valve 1 fails stuck-closed (uncontrollable)

110 V1,O Valve 1 opens (uncontrollable)

201 V1,CC Valve 1 close command (controllable)

200 V1,SO Valve 1 fails stuck-open (uncontrollable)

210 V1,C Valve 1 closes (uncontrollable)

10 PV1,OC Pyro-valve 1 open command (controllable)

11 PV1,O Pyro-valve 1 opens (uncontrollable)

12 PV1,SC Pyro-valve 1 fails stuck-closed (uncontrollable)

i1 PVi,OC Pyro-valve i open command, i = 3,5,7 (controllable)

i2 PVi,O Pyro-valve i opens, i = 3,5,7 (uncontrollable)

i0 PVi,CC Pyro-valve i close command, i = 2,4,6 (controllable)

i1 PVi,C Pyro-valve i closes, i = 2,4,6 (uncontrollable)

1000 P1,L P1 goes down (uncontrollable)

1001 P1,H P1 goes high (uncontrollable)

Table 5.1: Event list for Viking propulsion system

The DES models for normal and normal-faulty modes of V1 are shown in the following

following figure.

The valve is prone to two different failures (stuck-open and stuck-closed). Thus, we

would have two different normal-faulty models as depicted in Figure 5.3.

The next model is for the pyro-valves. For simplicity, we assume that only PV1 is

subject to failure. Once PV1 is commanded open, it may turn-on or it may get stuck-

closed. If the valve becomes stuck, there is still a chance of operation by issuing more

open commands. This means that PV1 has three possible DES models: 1- the normal

model with no failure event 2- normal-faulty model, where the valve fails stuck-closed and

it remains stuck-closed (further commands are not effective) 3- normal-recovery model,

91



1

2

201

4

210

3

110

101

(a) V 1N

1

2

201

4

210

5

200

3

110

101

(b) V 1NF1

1

2

201

4

210

3

110

5

100

101

101: V1 open command

100: V1 fails stuck-closed

110: V1 opens

201: V1 close command

200: V1 fails stuck open

210: V1 closes 

(c) V 1NF2

Figure 5.3: DES models of isolation valve V1

where the valve fails after issuing the first command but it turns-on after issuing more open

commands (has a recovery option). The DES models for PV1 are show in Figure 5.4.

1 2
10

3
11

(a) PV 1N

1 2
10

3

11

4

12

10

(b) PV 1NF1

1 2
10

3

11

4
12

11

10

10: PV1 open command

11: PV1 opens

12: PV1 stuck-closed

(c) PV 1NF1R

Figure 5.4: DES models of pyro-valve PV1

Remark 5.1. In order to conform to the state-domain control requirements normal and

normal-faulty models of every components need to be mutually refined. Thus, the DES

models of PV1 need to be modified as shown in Figure 5.5.

1 2
10

3
11

(a) PV 1N

1 2
10

3

11

4

12

10

(b) PV 1NF1

1 2
10

3

11

4
12

10

10: PV1 open command

11: PV1 opens

12: PV1 stuck-closed

5
11

(c) PV 1NF1R

Figure 5.5: DES models of pyro-valve PV1

92



For the rest of pyro-valves, the DES model are similar to PV 1N and are shown in

Figure 5.6.

1 2
i0

3
i1

For i=3,5,7

i0: open PVi command

i1: PVi opens

For i=2,4,6

i0: close PVi command

i1: PVi closes

Figure 5.6: PVi: DES model of pyro-valve i = 2,3, ..,7

Finally, we need the DES model of pressure sensor P1 as shown in Figure 5.7. Note

that the pressure is initially high.

1000: P goes down

1001: P goes high
1 2

1000

1001

Figure 5.7: P1: DES model of pressure sensor

Now that we have the DES models of the components, the next step is to model the

interaction between them. In this example, pressure P1 depends on the state of the valves.

Pressure P1 is high if and only if:

• PV1 AND PV7 are open,

• OR PV1 AND V1 AND PV6 are open,

• OR PV2 AND PV7 are open,

• OR PV2 AND V1 AND PV6 are open,

This can be described as a DES model obtained from sync operation of sync(V1, PV1,

PV2, PV6, PV7) and then adding self-loops of appropriate pressure events to each state.

The obtained DES has 6×4×33 = 648 states. We refer to the DES model of the interactions

as INT.

Lastly, we should determine the set of marked states in our model. We would like to

bring down the pressure P1 (in the upstream of the regulator), so we prevent the regulator

93



from leaking (this keeps tank pressures below the rapture pressure). Then we have to bring

up the pressure P1 and keep it high in order to pressurize the tanks for MOI maneuver. Thus

the following automaton presents the set marked strings in this problem. To determine the

appropriate marking, it would be enough to sync the automaton with DES model of the

other components and interactions.

1 3

Σ -{1000}

4
1000

Σ -{1000}

2
1000 1001

Σ -{1001} Σ

1000: P1 goes down

1001: P1 goes high 

Figure 5.8: M : DES model of the appropriate marking

Considering a single-failure scenario the set of possible models for RNSCP will be as

follows. The pair of (# states,# transitions) is shown for each model. The union model has

2592 states and 11394 transitions.

GN = sync(V 1N , PV 1N , PV2, ..., PV7, P, INT,M) (1296, 6556)

GNF1
= sync(V 1N , PV 1NF1

, PV2, PV6, PV7, P, INT,M) (1728, 7596)

GNF1R = sync(V 1N , PV 1NF1R, PV2, PV6, PV7, P, INT,M) (1728, 8028)

GNF2
= sync(V 1NF1

, PV 1N , PV2, PV6, PV7, P, INT,M) (1944, 9834)

GNF3
= sync(V 1NF2

, PV 1N , PV2, PV6, PV7, P, INT,M) (1944, 9834)

5.1.2 Design Specification

The design specification does not identify any certain state as illegal in the plant model.

Thus, the main objective is to ensure that the system under supervision is nonblocking.

The set of marked states includes the states that reach after bringing the pressure P1 down

and then bringing and keeping it up again. This corresponds to completion of the task.

94



5.1.3 Robust Formulation of the Problem

As described in Chapter 1, fault recovery problem can modeled as a RNSCP. In fault recov-

ery problem, we aim to design a robust supervisor which guarantees that the system under

supervision meets the safety requirements and it is nonblocking in both normal and failure

modes.

If we apply conventional (non-robust) supervisory control to this problem, pyro-valve

PV2 will be allowed to close in order to bring down the pressure P1 and stop regulator

leakage. However, if PV1 fails to open, then the system under supervision of non-robust

supervisor may reach a deadlock; since the recovery event in PV1 is not forcible. As a result

of the failure of PV1 failure P1 can not rise anymore and a deadlock happens in the failure

mode. This show that non-robust supervisory control is not able to meet nonblocking

requirement and thus, the problem must be formulated in the robust control framework.

Problem formulation: Let G = {GN ,GNF1
, ...,GNF4

} be the set of normal and normal-

failure models of MGS propulsion system. Gunion = ⋃Gi with Gi ∈ G. Assuming that

all the states are legal, the overall specification is K = Lm(Gunion). Design a maxi-

mally permissive nonblocking state-based supervisor such that L(GN , γ) = Lm(GN , γ)

and L(GNFi
, γ) = Lm(GNFi

, γ) for i = 1, ...,3 and L(GNF1R, γ) = Lm(GNF1R, γ). Note

that the plant models are mutually refined. ∎

5.1.4 Off-line Solution

In this section, we summarize the procedure for the computation of off-line robust supervi-

sor. The process which is presented here is developed in MATLAB environment using the

DECK toolbox [43]. The implemented procedures are presented in Appendix B.

1. After building DES model of every component, the problem is setup by constructing

the set of possible models G = {GN ,GNF1
, ...,GNF3

}. The overall specification K is

set equal to the union plant model since there is no illegal state.

95



2. Using the procedure E = supRCN(K,Gunion,Σu,GN ,GNF1
, ...,GNF3

), we find the

supremal relative-closed, controllable Gi-nonblocking part of K.

3. The off-line supervisor is characterized by the closed-behavior of the automaton E.

The resulting off-line supervisor has 763 states and 2361 transitions.

We use off-line solution to validate maximal permissiveness of the corresponding RLL-

S supervisor.

5.1.5 Online Solution

In order to design a maximally permissive RLL-S supervisor we have to (i) First, determine

NB which is the required length of lookahead window and (ii) verify the condition of

Theorem 4.2 and Remark 4.1. Here we present the functions which are developed for

solving the online problem.

• In the first step, we determine Hnb as defined in Chapter 4. This is to be done us-

ing the function detKnb(H,Σu,GN ,GNF1
, ...,GNF4

). The function examines every

marked controllable state in H to determine the set of nonblocking states.

• Next, the output of detKnb(Hnb,Σu) is used to determine NB through detNSB func-

tion. detNSB determines the maximum distance between every two neighboring non-

blocking states (two states which are nonblocking and are connected through a se-

quence of events. The event sequence does not go through any nonblocking states in

between). In this example NB is determined to be 10.

• Next, the maximum distance between every two states of Gunion is determined. This

is accomplished using expandLLSB(Gunion, S,N ) function. The function expands

Gunion (as a subgraph) from every state S and for various lengths of lookahead win-

dow, N . The maximum of required length for discovering the farthest state is equal

96



to Nmax. Comparing NB with Nmax is an indication of the effectiveness of online

supervision. In this example Nmax = 21.

• Having the set of nonblocking states, we verify the condition in Remark 4.1. In other

words, we verify that every state in the off-line supervisor coreachable with respect

to a nonblocking state.

• Finally, we simulate the plant under supervision of RLL-S supervisor (γ10) using

RLL(Gunion,K,Σu,NB,GN ,GNF1
, ...,GNF4

) function. The function prompts a set

of enabled events after execution of each event and asks the user to select the next

event in the sequence.

To study the performance of the designed RLL-S supervisor, we monitor the set of

enabled events by the supervisor along two sample paths. Each path contains a different

failure for two different single-failure scenarios.

Path 1:

The first selected path is the event sequence S1 = 201 − 200 − 60 − 61 − 1000 − 70 − 71 −
1001 which contains the failure V1 stuck open. The enabled/disabled events by the RLL-S

supervisor, γ10, is shown in Figure 5.9. In each step, the enabled events are shown by solid

line while disabled events are shown using dashed line. We observe the RLL-S supervisor

disables the events 20 and 70 in the normal mode. The events are later enabled when V1

gets stuck open.

Path 2:

The second selected path is the event sequence S2 = 201−210−1000−10−12−11−70−71
which contains the failure PV1 stuck closed. The enabled/disabled events by the RLL-S

supervisor, γ10, is shown in Figure 5.10. We observe the RLL-S supervisor disables the

97



event 20 in the normal mode. This means that the supervisor prevents does not allow PV2

to get closed as there is a risk of failure in PV1.

Finally, we investigate the size of the expansions which are encountered during online

supervision. With this purpose, we construct subgraph expansions of the union model and

the overall specification, starting from every state. The obtained information is shown in

Table 5.2. We observe that the online supervisor is capable of reducing computational

complexity associated with off-line supervision. Specifically, the off-line problem with

3240 states and 14364 transitions has been reduced to an online problem with an average

size 200 states and 700 transitions.

Table 5.2: Average sizes of expanded automata

Automata # states # transitions
# states in expansions # transitions in expansions

min avg max min avg max

G 3240 14634 1 200 2070 0 700 8282

K 3240 14634 1 189 1785 0 648 6938

98



0 1

2
10

3
20

4
60

5

70

6

201

7
10

8
20

960

10

70

11

210

12

200
13

10

1420

15

70

16

60

17

10

1820

19

70

20

61

21
10

2220

23

70

24

1000 25
10

26
20

27

70
28

10

29
20

30

71
31

10

32
20

33

1001

  101: Valve 1 open command  

  100: Valve 1 fails stuck-closed 

  110: Valve 1 opens 

  201: Valve 1 close command

  200: Valve 1 fails stuck-open

  210: Valve 1 closes

  10: Pyro-valve 1 open command 

  11: Pyro-valve 1 opens

  12: Pyro-valve 1 fails stuck-closed

  i1: Pyro-valve i open command, i=3,5,7

  i2: Pyro-valve i opens, i=3,5,7 

  i0: Pyro-valve i close command, i=2,4,6

  i1: Pyro-valve i closes, i=2,4,6

  

  1000: goes down

  1001: P1 goes high 

Figure 5.9: Events enabled by γ10 along S1: Viking spacecraft

99



1

2
10

3
20

4
60

5

70

6

201

7
10

8
20

960

10

70

11

200

12

210

13
10

14
20

1560

16

70

17

101

18

1000

19

20

20
60

21
70

22

101

23

10

24

11

25
20

2660

27

70

28

101

29

12

30

20

31
60

32
70

33

101

34

11

35
20

3660

37

101

38

70

39
20

4060

41

101

42

71

  101: Valve 1 open command  

  100: Valve 1 fails stuck-closed 

  110: Valve 1 opens 

  201: Valve 1 close command

  200: Valve 1 fails stuck-open

  210: Valve 1 closes

  10: Pyro-valve 1 open command 

  11: Pyro-valve 1 opens

  12: Pyro-valve 1 fails stuck-closed

  i1: Pyro-valve i open command, i=3,5,7

  i2: Pyro-valve i opens, i=3,5,7 

  i0: Pyro-valve i close command, i=2,4,6

  i1: Pyro-valve i closes, i=2,4,6

  

  1000: goes down

  1001: P1 goes high 

Figure 5.10: Events enabled by γ10 along S2: Viking spacecraft

5.2 Cassini Spacecraft

In this example, we consider a simplified version of the propulsion system of Cassini space-

craft propulsion system. The Cassini spacecraft is equipped with a bipropellant propulsion

system with a high number of redundant parts. Figure A.2 shows a P&ID map of the

100



propulsion system. A schematic of the CMPS (not simplified) is presented in Figure 5.11.

Helium tank

Fuel tank

Oxidizer tank

Main

Engines

Valve

Pyro valve

Pyro ladder

Regulator

Figure 5.11: Cassini Main Propulsion System. [33]

Referring to Figure A.2, CMPS consists of two major subsystems (i) Pressure Control

Assembly (PCA) which controls the pressure in propellant tanks (ensuring that the pressure

remains in the normal range) and (ii) Pressure Isolation Assembly (PIA) which isolates the

tanks pressures from the engines. In this example we consider the design of a supervisor

for the PIA, assuming that the tanks have enough pressure to provide fuel to the engines

while maintaining safety requirements. This system is shown in Figure 5.12.

Main
Engines

Propellant
Tanks

Figure 5.12: Cassini Pressure Isolation Assembly. [34]

For simplicity, we do not consider the coordination between the assemblies of the fuel

and oxidizer and reduce the model to a mono-propellant propulsion system. The schematic

101



diagram of the system studied here is shown in Figure 5.13. It consists of a fuel tank, two

latch valves V1 and V2, four pyro-valves and two engines.

Fuel

E2

PV1 PV2

PV4PV3

V1 V2

P1 P2

E1

Figure 5.13: Simplified CMPS

The normal operation of the plant is as follows: initially the pyro-valves PV1, PV2 and

PV4 are closed. The pyro-valve PV3 is normally open. The regular valves can be opened

or closed in normal operation. The safety requirement is to avoid increasing the pressures

P1 and P2 simultaneously as we never want to fire both engines together. Furthermore, we

want to be able to switch between the engines if it is required. This means that we must be

able to increase P1 while decreasing P2 and vice versa. Thus, the problem in normal mode

is an RNSCP with Multiple set of Marked states (RNSCP-MM) [6].

The failure event f1 (resp. f2) is defined as the regular valve V1 (resp. V2) get stuck in

closed position. In this failure recovery mode, the goal is to keep the pressure P2 (resp. P1)

high while reducing P1 (resp. P2) to zero. This means that we want the engine in healthy

side E2 (resp. E1) to be fully functional. The failure events and pressure sensor events are

uncontrollable. Note that the events associated with pyro-valves are not reversible. Being

102



an expensive spacecraft, CMPS has sufficient redundancy in the mission operation to stand

multiple failures. However, we only consider single fault scenarios for simplicity. (It is

worth mentioning that CMPS is still fully functional after 16 years of operation.)

5.2.1 Discrete Event Modeling

This section presents the DES models of the components and the interactions between

them. The dynamics of the components are presented based on [35], [36], [38]. Table 5.3

describes the events which appearing in the models.

Event Tag Description

i0 ViC Valve i closes, i = 1,2 (controllable)

i1 ViO Valve i opens, i = 1,2 (controllable)

i3 ViSC Valve i fails stuck close, i = 1,2 (uncontrollable)

i11 PViF Pyro-valve i fires, i = 1,2,3,4 (controllable)

i00 PiL Pressure i goes low, i = 1,2 (uncontrollable)

i01 PiH Pressure i goes high, i = 1,2 (uncontrollable)

Table 5.3: Event list for CMPS

The DES model for the regular valves are shown in the following figure. The valves are

prone to failure in closed position. The failure events are assumed permanent and thus the

corresponding valve never returns to normal mode.

0 C

O

i1

SC

i3

i0

i0: Valve i closes

i1: Valve i opens

i3: Valve i fails

Figure 5.14: V iNF : Regular Valve (Normal-faulty mode)

The next model is for the pyro-valves assumed fault-free.

103



0 O C
i11

(a) Normally open pyro-valve

0 C O
i11

  i11: Pyro-valve i fires

(b) Normally closed pyro-valve

Figure 5.15: PVi: Pyro-Valves

Next, we model the sensor readings as a DES. The two different objectives on the

pressures P1 and P2 require two different sets of marked states for sensor readings.

0 L,L

H,L

100

H,H

201
101

L,H

201

200

101

200

100 100: P1 goes low

101: P1 goes high

200: P2 goes low

201: P2 goes high

(a) PM1
: P1: high, P2: low

0 L,L

L,H

100

H,H

201
101

H,L

201

200

101

200

100
100: P1 goes low

101: P1 goes high

200: P2 goes low

201: P2 goes high

(b) PM2
: P1: low, P2: high

Figure 5.16: Sensor reading with multiple set of marked states

Finally, we model the interaction the between state of the valves and the sensor read-

ings. Pressure P1 (resp. P2) is high if and only if PV3 (resp. PV4) is open AND at least one

of the PV1 (resp. PV2) OR V1 (resp. V2) is open. This can be described as the DES models

which are shown in the Figure 5.17. The models have been obtained by adding self-loops

of pressure events to sync(V1, PV1, PV3) (resp. sync(V2, PV2, PV3).

104



0 C,C,O

100

O,C,O
11

SC,C,O

13

C,O,O

111

C,C,C311

10

101

O,O,O
111

O,C,C

311

100

SC,O,O

111

SC,C,C

311

101

11

13

C,O,C

311

100

11

13

111

10101

O,O,C

311

10

100

111

101

SC,O,C

311

100

111

100

11

13

10

100

100
10: Valve 1 closes

11: Valve 1 opens

13: Valve 1 fails stuck close

111: Pyro-valve 1 opens

311: Pyro-valve 3 closes

100: P1 goes low

101: P1 goes high

(a) INT1NF : Interaction between P1 and sync(V1, PV1, PV3) (Normal-faulty mode)

0 C,C,C

200

O,C,C
21

SC,C,C

23

C,O,C

211

C,C,O411

20

200

O,O,C
211

O,C,O

411

200

SC,C,O

211

SC,O,C

411

200

21

23

C,O,O

411

200

21

23

211

20200

O,O,O

411

20

201

211

200

SC,O,O

411

200

211

201

21

23

20

201

201
20: Valve 2 closes

21: Valve 2 opens

23: Valve 2 fails stuck close

211: Pyro-valve 2 opens

411: Pyro-valve 4 closes

200: P1 goes low

201: P1 goes high

(b) INT2NF : Interaction between P2 and sync(V2, PV2, PV4) (Normal-faulty mode)

Figure 5.17: Interaction between pressures and valves status

We use DECK [43] to compute the possible plant models. In this problem, the set of

possible models G contains two normal models (with different sets of marked states) and

two normal-failure models. The models are:

G{N,1} = sync(V 1N , V 2N , PV1, PV2, PV3, PV4, PM1
, INT1N , INT2N)

G{N,2} = sync(V 1N , V 2N , PV1, PV2, PV3, PV4, PM2
, INT1N , INT2N)

G{NF,1} = sync(V 1NF , V 2N , PV1, PV2, PV3, PV4, PM2
, INT1N , INT2N)

G{NF,2} = sync(V 1N , V 2NF , PV1, PV2, PV3, PV4, PM1
, INT1N , INT2N)

105



where normal models (V 1N , V 2N , INT1N and INT2N ) are obtained by removing

the failure events from the DES model of components. G{N,1} and G{N,2} (the two normal

models) contain 192 states and 896 transitions. G{NF,1} and G{NF,2} (the two normal-faulty

models) contain 288 states and 1344 transitions. The marked states for G{N,1} and G{NF,2}

(respectively G{N,2} and G{NF,1}) are states where P1 is high and P2 is low (respectively

P2 is high and P1 is low).

5.2.2 Design Specification

The safety specification is that P1 and P2 should not be high at the same time at it is

a common specification for all the four plants. In addition, the closed-loop behavior

should be nonblocking for both normal models (G{N,1},G{N,2}) and normal-faulty mod-

els (G{NF,1},G{NF,2}). The safety specification is marked by the automaton SPEC shown

in Figure 5.18.

0 1

2

101

3

201

100

200

Σ −{ , }200 101

Σ −{ , }200 101

Σ −{ , }200 101

100: P1 goes low

101: P1 goes high

200: P2 goes low

201: P2 goes high

Figure 5.18: SPEC: Overall specification automaton

The specifications Ki are then obtained by finding the intersection of the language by

SPEC and closed language of the plant.

106



K{N,1} = product(SPEC,G{N,1})

K{N,2} = product(SPEC,G{N,2})

K{NF,1} = product(SPEC,G{NF,1})

K{NF,2} = product(SPEC,G{NF,2})

Having plant models Gis and Kis, we can find the overall specification by Equation

3.1. The specification K has 348 states and 1594 transitions.

In order to formulate the problem as RNSCP-S we have to form the specifications Kis

as a subautomaton of Gis. This can be accomplished by removing illegal states, where both

of the pressures are high, from Gis. Therefore, the specification can be in terms of illegal

states where both pressures are high. We consider a few scenarios of executed events in

order to examine the validity of the RLL-S supervision.

5.2.3 Offline Supervisor

As described in [6] and [23] both multiple marking and fault recovery problems can be

treated as special cases of robust supervision. Our example is a combination of both mul-

tiple marking and fault recovery problems. The supervisor should satisfy the safety re-

quirement while ensuring that (1) we can achieve two different goals in normal mode (2)

the system is nonblocking in both normal and faulty modes. Having the specification Kis

as a subautomaton of Gis and considering the fact that the fault recovery problem can be

considered with state set as the control domain [6], we model our problem as an RNSCP-S.

The procedures presented here are developed in MATLAB environment using Discrete

Event Control Kit (DECK) [43] and are presented in Appendix B.

1. The problem is first initialized by building G{N,1}, G{N,2}, G{NF,1}, G{NF,2} and also

107



the specifications K{N,1}, K{N,2}, K{NF,1}, K{NF,2} by removing illegal states from

the plant models.

2. Next, the procedure E = supRCN(K,G,Σu,G1, ...,G4) applies supremal relative-

closed, supremal controllable and supremal Gi-nonblocking operators iteratively un-

til it finds the fixed point of Ω defined by Ω(Z) = supRG(supNG(supCG(Z))) [21].

3. The offline supervisor is obtained by marking all the states of the automaton E

from the previous step. The procedures isNonblocking, isRelativeClosed and

controllable are used to verify that the system under supervision of the offline su-

pervisor is nonblocking and admissible.

The resulting supervisor has 181 states and 647 transitions. We used the off-line super-

visor in order to confirm that the RLL-S is valid and maximally permissive.

5.2.4 Online Solution

Next we consider the CMPS under supervision of the RLL-S supervisor. Unlike the Viking

problem, the conditions of Theorem 4.2 and/or Remark 4.1 do not hold for CMPS. How-

ever, we would like to show that the problem is still solvable using the online approach,

noting that the conditions in 4.2 are sufficient but not necessary. Here, we present an expla-

nation of why the conditions in Theorem 4.2 do not hold for CMPS problem: In modeling

of CMPS components we assumed that the failure events (which are uncontrollable) may

occur at any time while the system is operating. This is not the case for the Viking problem.

In the Viking problem, a failure may happen only after issuing a controllable command (e.g.

commanding a valve to open/close). Thus, there are a few nonblocking (controllable) states

in CMPS problem, as a failure may happen in most of the states.

Although the sufficient conditions do not hold for the CMPS problem, the problem

is still solvable using the online approach. Starting from a lookahead window size of 2

108



and increasing it step-by-step we found a minimum required window length for maximal

permissiveness of RLL-S supervisor. We verified the maximally permissiveness of RLL-S

supervisor by comparing the enabled events in every states with off-line supervisor. The

required window length is determined to be 8.

The procedures which are developed for implementation of RLL-S supervisor were

previously explained and are the same as those of the Viking problem.

To observe the maximally permissiveness of RLL-S supervisor, we monitor the enabled

events along two different sample paths. The sample path s1 = V1O-P1H-V2O-V1C-P1L-V1SC

is a sequence which contains the failure of valve V1. We also consider another sample path

s2 = PV4F -V2O-P2H-V2C-V2SC-P2L which contains the failure of valve V2.

By observing the enabled events along the path S1 and comparing it with the behavior

of the off-line supervisor, we can confirm the maximal permissiveness of the RLL-S su-

pervisor. We can also observe that the RLL-S supervisor disables events PV1F , PV2F and

PV3F prior to occurrence of the failure. These events are later enabled for fault recovery

mode. The automaton representing the set of enabled events in each step is represented in

Figure 5.19.

Next we consider the enabled events along the executed path S2. Like the previous

scenario we can confirm maximally permissiveness of RLL-S supervisor by comparing it

with the off-line solution. Observe that V1C and V2C are the only enabled events if both V1

and V2 are open. This happens because we assumed that the valves are fault free while they

are open.

Lastly, we study the size of the automata which are used for online calculations (i.e. the

number of states and transitions for K and G). This can be an indiction of computational

complexity of RLL-S supervisor. A summary of this information is presented in Table 5.4

109



0 1

2

13

3

21

4

23

5111

6

211

7

311

8

411

9

11

10

10

11

21

12

23

13
111

14

211

15

311

16

411

17

101

18

10

19

23

20

111

21
211

22

311

23

411

24

21

25

20

26

111

27211

28

311

29

411

30

10

31

11

32

13

33

20

34111

35

211

36

311

37

411

38

100

39

11

40

20

41

111

42
211

43

311

44

411

45

13

46

20

47

211

48
311

49

411

50

111

  i0: Valve i closes, i=1,2

  i1: Valve i opens, i=1,2

  i3: Valve i fails stuck close, i=1,2

  i11: Pyro-valve i fires, i=1,2,3,4 

  i00: Pressure i goes low, i=1,2

  i01: Pressure i goes high, i=1,2

Figure 5.19: Enabled events by RLL-S supervisor along the path S1

110



0 1

2

11

3

13

4

21

523

6

111

7

211

8

311

9

411

10

11

11

13

12

23

13
111

14

211

15

311

16

21

17

11

18

13

19

20

20
111

21

211

22

311

23

201

24

11

25

13

26111

27

211

28

311

29

20

30

11

31

13

32

21

33111

34

200

35

211

36

311

37

23

38

11

39
111

40

200

41

11

42
111

43

211

  i0: Valve i closes, i=1,2

  i1: Valve i opens, i=1,2

  i3: Valve i fails stuck close, i=1,2

  i11: Pyro-valve i fires, i=1,2,3,4 

  i00: Pressure i goes low, i=1,2

  i01: Pressure i goes high, i=1,2

Figure 5.20: Enabled events by RLL-S supervisor along the path S2

111



Table 5.4: Average sizes of expanded automata

Automata # states # transitions
# states in expansions # transitions in expansions

min avg max min avg max

G 348 1597 2 54 289 2 190 1184

K 292 1294 2 47 242 2 161 938

We observe that the online supervisor is capable of reducing computational complexity

associated with off-line supervision. Specifically, the off-line problem with about 348 states

and 1597 transitions has been reduced to an online problem with an average size 54 states

and 190 transitions. We observe that at each state we can calculate the control action by

looking at about %12 of the transitions and %15 of the states (on average) of the original

plant and specification.

5.3 Conclusion

In this chapter, the proposed online RLL-S supervisor has been applied to robust supervi-

sion of the simplified versions of propulsion systems of Viking and Cassini spacecraft. The

effectiveness of the RLL-S supervisor in reducing complexity associated with the compu-

tation of off-line supervisor has been evaluated.

112



Chapter 6

Conclusion

6.1 Summary

In this thesis we study the problem of robust nonblocking supervisory control of discrete

event systems. We develop limited lookahead policies as an extension of previous work

in literature [7]. The supervisor developed under this policy is named Robust Limited

Lookahead (RLL) supervisor. We study the properties of RLL supervisor and obtain a set

of sufficient conditions for maximal permissiveness of the supervision.

The RLL supervisor reduces the computational complexity of off-line supervisor as it

only looks at the behavior of the system in the currently executed trace and over a limited

horizon in the future. However, RLL supervisor may cause the behavior of the system to be

more restrictive compared with the off-line maximally permissive supervisor. This happens

if the length of lookahead widow is not large enough or the required length of window size

is undefined.

In order to overcome this challenge, we formulate RNSCP with State information

(RNSCP-S). Then RLL-S supervisor is proposed to solve the problem. In contrast with

RLL supervisor, the required window size is always defined for RLL-S supervisor if the

system is modeled with finite state automata.

113



Finally, we apply RLL-S supervision algorithm to simplified versions of Viking and

Cassini main propulsion systems. The system is subject to failure and requires multiple

set of marked states. This means that the problem should be formulated as a RNSCP.

The procedures for solving the problem are developed in MATLAB environment based on

Discrete Event Control Kit (DECK).

6.2 Future Work

In this thesis we assumed full observability of the system under supervision. Future re-

search may include the extension of our results to the problem of robust nonblocking su-

pervisory control under partial observation.

The implementation of the proposed algorithms can be optimized in term of computa-

tional complexity. For instance, if we setup a recursive algorithm, then it will be possible to

use some of the information obtained in each step for the next step. Also the algorithm for

the computation of supremal relative-closed, controllable, Gi−nonblocking sublanguage is

computationally complex and should be optimized.

Two other lookahead policies are presented in literature for conventional supervisory

control (1) optimistic policy, which assumes that all the pending traces are legal and marked,

and (2) extension-based policy, which assumes that the behavior of the plant can be any-

thing in Σ∗ after a pending trace. These two policies can be generalized to the robust case.

The required length of lookahead window, “N” for optimal supervisor can be obtained

while adopting different policies. A good discussion is to compare “N” in different cases.

Variable Lookahead Policy (VLP) is also studied in literature for conventional supervi-

sory control. VLP can also be applied to RNSCP. Finally, RLL supervision can be adopted

in order to handel Timed Discrete Event Systems (TDES).

Only sufficient conditions are presented in this thesis and in the literature for optimality

of online supervisors. Future research may include studying of the existence of necessary

114



conditions for the optimality of online supervision. As we observed in the Cassini problem,

the sufficient conditions may be restrict in some problem. Another suggestion is to develop

an efficient algorithm to determine the minimum length of lookahead window (if exists) by

comparing online supervisor with the predetermined off-line solution.

115



Bibliography

[1] Williams B. C., Nayak, P. P., “A Model-based Approach to Reactive Self-configuring

Systems,”, Proceedings of AAAI , vol. 13, no. 2, pp. 971–978, 1996.

[2] Ramadge, P.J. and Wonham, W.M., “Supervisory control of a class of discrete-event

systems,” SIAM Journal of Control Optimization, vol. 25, no. 1, pp. 206-230, 1987.

[3] Ramadge P. J. and Wonham W. M., “The Control of Discrete Event Systems,” Pro-

ceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[4] Ramadge P. J. and Wonham W. M., “On the Supremal Controllable Sublanguage of a

given Language,” SIAM Journal of Control and Optimization, vol. 25, no. 3, pp. 637–

659, 1987.

[5] Chen, X. Y, Hashtrudi-Zad, S., “A direct approach to robust supervisory control of

discrete-event systems,” Proceedings of Canadian Conference on Electrical and Com-

puter Engineering, 2008, pp. 957–962, 2008.

[6] Chen, X. Y., “Online robust nonblocking supervisory control of discrete-event sys-

tems,” M.A.Sc. Thesis, Dept. Electrical and Computer Eng., Concordia Univ., Montreal,

2007.

[7] Chung, S.-L., Lafortune, S., Lin, F., “Limited lookahead policies in supervisory control

of discrete event systems,” IEEE Transactions on Automatic Control, vol. 37 , no. 12,

pp. 1921–1932, 1992.

116



[8] S. L. Chung, S. Lafortune and F. Lin, “Supervisory control using variable lookahead

policies,” Discrete Event Dynamic Systems: Theory and Applications, vol. 4, no. 3, pp.

237–268, 1994.

[9] Hadj-Alouane, N.B., Lafortune, S., Feng Lin, “Variable lookahead supervisory control

with state information,” IEEE Transactions on Automatic Control, vol. 39, no. 12, pp.

2398–2410, 1994.

[10] Kumar, R., Cheung, H.M. Marcus S.I., “Extension based Limited Lookahead Super-

vision of Discrete Event Systems,” Automatica, vol. 34, no. 11, pp. 1327–1344, 1998.

[11] Kumar, R., Cheung, H.M., Marcus, S.I., “Extension based limited lookahead control

for discrete event systems,” Proceedings of the 35th IEEE Decision and Control, vol.2,

pp. 2225–2230, 1996.

[12] Lin, F., “Robust and adaptive supervisory control of discrete event systems,” IEEE

Transactions on Automatic Control, vol. 38, no.12, pp. 1848–1852, 1993.

[13] Takai, S., “Estimate based limited lookahead supervisory control for closed language

specifications,” Automatica, vol. 33, no. 9, pp. 1739–1743, 1997.

[14] Takai, S., “Robust supervisory control of a class of timed discrete event systems under

partial observation,” Systems & Control Letters, vol. 39, pp. 267–273, 2000.

[15] Takai, S., “Maximizing robustness of supervisors for partially observed discrete event

systems,” Automatica, vol. 40, no. 3, pp. 531-535, 2004.

[16] Takai, S., “Maximizing robustness of supervisors for partially observed discrete event

systems,” Proceedings of the 10th IFAC Symposium on Large Scale Systems: Theory

and Applications, pp. 373-3780, 2004.

117



[17] Takai, S., “Synthesis of maximally permissive and robust supervisors for prefix-closed

language specifications,” IEEE Transactions on Automatic Control, vol. 47, no. 1, pp.

132-136, 2002.

[18] Takai, S., “Maximally permissive robust supervisors for a class of specification lan-

guages,” Proceedings of IFAC Conference on System Structure and Control, pp. 445-

450, 1998.

[19] Park, S.-J., Lim, S., “Robust and nonblocking supervisory control of nondetermin-

istic discrete event systems using trajectory models,” IEEE Transaction on Automatic

Control, vol. 47, pp. 655–658, 2002.

[20] Park, S.-J., Lim, S., “Non-blocking supervision for uncertain discrete event systems

with internal unobservable transitions,” IEE Proceedings Control Theory Applications,

vol. 152, pp. 165–170, 2005.

[21] Bourdon, S.E., Lawford, M., Wonham, W.M., “Robust nonblocking supervisory con-

trol of discrete-event systems,” IEEE Transactions on Automatic Control, vol.50, no.12,

pp. 2015–2021, 2005.

[22] Saboori, A., Hashtrudi-Zad, S., “Fault recovery in discrete event systems,” Computa-

tional Intelligence Methods and Applications, Congress on ICSC, six pages, 2005.

[23] Saboori A. , Hashtrudi-Zad, S. , “Robust nonblocking supervisory control of discrete-

event systems under partial observation,” Systems & Control Letters, vol. 55, no. 10, pp.

839–848, 2006.

[24] Winacott, C., Rudie, K., “Limited lookahead supervisory control of probabilistic

discrete-event systems,” 47th Annual Allerton Conference on Communication, Control,

and Computing, pp. 660–667, 2009.

118



[25] Winacott, C., Behinaein, B., Rudie, K., “Methods for the estimation of the size of

lookahead tree state-space,” Journal of Discrete Event Dynamic Systems, vol. 23, no. 2,

pp. 135–155, 2013.

[26] Winacott, C., “Limited Lookahead Control of Discrete-Event Systems: Cost, Proba-

bility, and State Space,” M.A.Sc. Thesis, Dept. Electrical and Computer Eng., Queen’s

Univ., Kingston, 2012.

[27] Chung, S. L., S. Lafortune and F. Lin, “Addendum to limited lookahead policies in

supervisory control of discrete event systems: proofs of technical results,” Technical

Report CGR- 92- 6, University of Michigan, Ann Arbor, Michigan, 1992.

[28] Fekri, M.Z., Hashtrudi-Zad, S., “Hierarchical robust supervisory control of discrete-

event systems,” Proceedings of American Control Conference, pp.1178–1183, June

2008.

[29] Cury, J.E.R., Krogh, B.H., “Robustness of supervisors for discrete-event systems,”

IEEE Transactions on Automatic Control, vol. 44, no. 2, pp. 376–379, 1999.

[30] Hill, R.C., Tilbury, D.M., Lafortune, S., “Covering-based supervisory control of par-

tially observed discrete event systems for state avoidance,” 9th International Workshop

on Discrete Event Systems, pp. 28-30, 2008

[31] Lafortune, S., Chen, E., “The infimal closed controllable superlanguage and its appli-

cation in supervisory control,” IEEE Transactions on Automatic Control, vol. 35, no. 4,

pp.398–405, 1990.

[32] Zhong, H. and Wonham, W.M., “On the consistency of hierarchical supervision in

discrete-event systems,” IEEE Transactions on Automatic Control, vol. 35, no. 10, pp.

1125-1134, 1990.

119



[33] Kurien, J., R-Moreno, M.D., “Costs and Benefits of Model-based Diagnosis,” Pro-

ceedings of IEEE Aerospace Conference, pp. 1–14, 2008.

[34] Williams, B. C., “Model-based autonomous systems in the new millennium”, Pro-

ceedings of the 3rd International Conference on Artificial Intelligence Planning Systems,

AAAI Press, pp. 275-282 1996.

[35] Brown, C., “Spacecraft Propulsion,” AIAA, 1996.

[36] Dieter K. H., David H.H, “Modern Engineering for Design Liquid-Propellant Rocket

Engines,” AIAA, 1992.

[37] Harland, D. M., Lorenz, R., “Space Systems Failure,” Springer, 2005.

[38] Bajwa A. and Sweet A., “The Livingstone Model of a Main Propulsion System”,

Proceedings of IEEE Aerospace Conference, vol. 2, pp. 869–876, 2002.

[39] Morgan, P.S., “Cassini spacecraft’s in-flight fault protection redesign for unexpected

regulator malfunction,” Proceedings of IEEE Aerospace Conference, pp.1–14, 2010.

[40] Wertz, J. R., Larson, W. J., “Space Mission Analysis and Design”, Klumer Academic

Publishers/Microcosm press, 1999.

[41] Wonham, W.M., Supervisory Control of DiscreteEvent Systems, Systems Control

Group, Edward S. Rogers Sr. Dept. of Electrical and Computer Engineering, Univer-

sity of Toronto, Canada, 2012; available at http://www.control.utoronto.ca/DES.

[42] Cassandras, C.G. and Lafortune, S., Introduction to Discrete Event Systems, Springer,

2008.

[43] Hashtrudi Zad, S., “Discrete Event Control Kit (DECK 1.2012.10) User Manual”,

available at http://users.encs.concordia.ca/ shz/deck/DECK-manual.pdf

120



[44] Discrete Event Control Kit (DECK), Department of Electrical and Computer Engr.,

Concordia University. [Online]; available at http://www.ece.concordia.ca/ shz/deck.

[45] Ellson J., Gansner E. R., Koutsofios E., North S. C., Woodhull G., “Graphviz

and Dynagraph Static and Dynamic Graph Drawing Tools,”; available at

http://www.graphviz.org/Documentation/EGKNW03.pdf

121



Appendix A

Spacecraft Propulsion System Diagrams

Figure A.1: Mars Global Surveyor [35].

122



 

Figure A.2: Cassini Spacecraft Propulsion System [39].

123



Appendix B

Discrete Event Control Kit (DECK)

DECK is a toolbox written in MATLAB for the analysis and supervisory control of discrete

event systems and it is equipped with the following functions [43], [44].

• Automaton: Creates an automaton model (automaton object) for use by DECK.

• Automatonchk: Verifies the validity of an automaton object.

• Complement: Returns complement of a deterministic automaton.

• Controllable: Determines if a language is controllable.

• Product: returns product of automata.

• Reach: Finds the reachable states of transition graph.

• Reachable: Finds reachable subautomaton.

• Selfloop: Adds selfoops to automaton.

• Supcon: Finds supremal controllable sublanguage.

• Sync: Returns synchronous product of automata.

• Trim: Finds the reachable and coreachable subautomaton.

124



Appendix C

MATLAB Code

This appendix complies the set of routines developed in the course of this thesis in the

following four sections: (i) functions for manipulation of automata (ii) off-line control (iii)

online control and (iv) examples.

C.1 Manipulation of automata

selfloopState: Adds selfloop to a specific state of an automaton.

1 function Gs=selfloopState(G,S,Es)

2 % SELFLOOPSTATE Adds selfloops to state S of automaton G

3 %

4 % SYNTAX: Gs=selfloopState(G,S,Es)

5 %

6 % INPUTS: G Input automaton

7 % S A state of input automaton

8 % Es List of events (vector)

9 %

10 % OUTPUTS: Gs Output automaton

11 %

12 % Empty input automaton

13 %

14 if G.N==0

15 Gs=automaton(0,[],[]);

16 return;

17 end

125



18 %

19 % Es empty

20 %

21 if isempty(Es)

22 Gs=G;

23 return;

24 end

25 %

26 Es=unique(Es);

27 if ¬isrow(Es)

28 Es=Es';

29 end

30 %

31 % The event set of the input automaton and Es must be disjoint.

32 %

33 if ¬isempty(G.TL)

34 Ind=G.TL(:,1)==S;

35 E=unique(G.TL(Ind,2))';

36 else

37 E=[];

38 end

39

40 if ¬isempty(intersect(E,Es))

41 error('The active event set of G at S and Es in SELFLOOPSTATE ...

must be disjoint.');

42 end

43 %

44 if ¬isempty(G.TL)

45 TLs=[G.TL; zeros(length(Es),3)];

46 j=size(G.TL,1);

47 else

48 TLs=zeros(length(Es),3);

49 j=0;

50 end

51 %

52 vi=zeros(length(Es),1);

53

54 vi(:)=S;

55 TLs(j+1:j+length(Es),:)=[vi,Es',vi];

56 %

126



57 Gs=automaton(G.N,TLs,G.Xm);

58 end

Closure: finds prefix closure of an automaton

1 function Gc=closure(G)

2

3 % CLOSURE CLOSURE of an automaton

4 %

5 % SYNTAX: Gco=complement(G)

6 %

7 % INPUTS: G Input automaton

8 %

9 % OUTPUTS: Gco Output deterministic automaton

10 %

11 G=trim(G); % Find all the states which are reachable to a marked ...

state

12 G.Xm=1:G.N;

13 Gc=G;

14 end

Gunion: finds union of two automata

1 function G=Gunion(G1,G2)

2

3 % Gunion Union of two automata

4 %

5 % SYNTAX: G=Gunion(G1G2)

6 %

7 % INPUTS: Gi Input automaton i (i=1,2)

8 %

9 % OUTPUTS: G Output automaton

10 %

11

12 Ea=union(G1.TL(:,2),G2.TL(:,2));

13 Ea1=setdiff(Ea,G1.TL(:,2));

14 Ea2=setdiff(Ea,G2.TL(:,2));

15 %

16 G1com=complement(G1,Ea1');

127



17 G2com=complement(G2,Ea2');

18 %

19 G=product(G1com,G2com);

20 G=complement(product(G1com,G2com),setdiff(Ea,G.TL(:,2)));

21 G=trim(G);

22 end

isIncluded: tests if Lm(G1) ⊆ Lm(G2)

1 function E=isIncluded(G1,G2)

2

3 % ISINCLUDED Checks if Lm(G1) \subset Lm(G2)

4 %

5 % SYNTAX: E=isIncluded(G1,G2)

6 %

7 % INPUTS: G1,G2 Input automatons

8 %

9 % OUTPUTS: E E is one if Lm(G1) \subset Lm(G2) and it is zero ...

otherwise

10 if isempty(G2.TL)

11 E=0;

12 return

13 elseif isempty(G1.TL)

14 E=1;

15 return

16 end

17 %

18 Sigma=union(G1.TL(:,2),G2.TL(:,2));

19 Ea=setdiff(Sigma,G2.TL(:,2));

20 %

21 G2comp=complement(G2,Ea);

22 G=product(G1,G2comp);

23 %

24 if isequal(length(G.Xm), 0)

25 E=1;

26 else

27 E=0;

28 end

29 end

128



isNonblocking: tests if an automaton is G-nonblocking

1 function b=isNonblocking(K,varargin)

2

3 % ISNONBLOCKING Checks if for all Gi, i=1,...,n

4 % pr(K) [INTERSEC] L(Gi) \subset pr(K [INTERSECT] ...

Lm(Gi))

5 %

6 % SYNTAX: E=isNonblocking(K,G1,...,Gn)

7 %

8 % INPUTS: K Input automaton to bechecked

9 % Gi The set of plant models, i = 1,...,n

10 %

11 % OUTPUTS: b b is one if if K is Gi-nonblocking and zero ...

otherwise

12 Km=closure(K);

13 B=[];

14 %

15 for i=1:length(varargin)

16 G=varargin{i};

17 Gm=G;

18 Gm.Xm=1:Gm.N;

19 LHS=product(Km,Gm);

20 RHS=trim(closure(trim(product(K,G))));

21 %

22 if isIncluded(LHS,RHS)

23 B=[B,1];

24 else

25 B=[B,0];

26 end

27 end

28 %

29 if unique(B)==1

30 b=1;

31 else

32 b=0;

33 end

34 %

35 end

129



C.2 Offline Control

supNb: finds supremal G-nonblocking sublanguage

1 function H=supNb(K,Gi,Sigma)

2

3 % SUPNB Supremal Gi-nonblocking Sublanguage

4 %

5 % SYNTAX: K=supNb(K,Gi,Sigma)

6 %

7 % INPUTS: K Specification (deterministic) automaton

8 % G Plant (deterministic) automaton

9 % Sigma System's alphabet (union model)

10 %

11 % OUTPUTS: K Trim (deterministic) automaton marking supremal

12 % Gi-nonblocking sublanguage.

13 GiM=Gi; % mark all the states of Gi, so L(GiM) == Lm(GiM) == L(Gi)

14 GiM.Xm=1:GiM.N;

15 %

16 %% pr(K) [INTERSECTION] Lm(GiM) == pr(K) [INTERSECTION] L(Gi)

17 %

18 Kbar=closure(K);

19 L1=product(Kbar,GiM);

20 %

21 %% (K [INTERSECTION] Lm(Gi))

22 %

23 L2=product(K,Gi);

24 L2=closure(L2);

25 %

26 %% Form L1-L2

27 %

28 if ¬isempty(L2.TL)

29 Ea=setdiff(Sigma,L2.TL(:,2));

30 else

31 Ea=Sigma;

32 end

33 %

34 L3=complement(L2,Ea');

35 L4=product(L1,L3);

130



36 %

37 %% Form L4 (concatination) Sigmaˆ*

38 %

39 % First, remove all the outgoing transitions from L4.Xm

40 Ind=[];

41 if ¬isempty(L4.Xm)

42 for i=1:size(L4.Xm)

43 Ind=[Ind,find(L4.TL(:,1)≠L4.Xm(i))];

44 end

45 end

46 L4.TL=L4.TL(Ind,:);

47 %

48 % Add selfloops of Sigma to all states in L4.Xm

49 %

50 TL=L4.TL;

51 Ea=Sigma;

52 for i=1:size(L4.Xm,2)

53 Ei=L4.TL(L4.TL(:,1)==L4.Xm(i),2);

54 L4=selfloopState(L4,L4.Xm(i),setdiff(Ea,unique(Ei)));

55 end

56 %

57 %% Find K-L4 = product(K,complement(L4))

58 %

59 if ¬isempty(L4.TL)

60 Ea=setdiff(Sigma,L4.TL(:,2));

61 else

62 Ea=Sigma;

63 end

64 L5=complement(L4,Ea');

65 %

66 H=trim(product(K,L5));

67 end

supR: finds supremal Lm(G)-closed sublanguage

1 function E=supR(K,G)

2

3 % SUPR Supremal Relative-Closed Sublanguage

4 %

5 % SYNTAX: K=supR(K,G)

131



6 %

7 % INPUTS: K Specification (deterministic) automaton

8 % G Plant (deterministic) automaton

9 %

10 % OUTPUTS: E Trim (deterministic) automaton marking supremal

11 % Lm(G)-closed sublanguage.

12 %

13 % Case 1:

14 %

15 if isempty(K.TL)

16 E=automaton(1,[],[]);

17 return

18 end

19 %

20 % Case 2:

21 %

22 Ea=setdiff(unique(G.TL(:,2)),unique(K.TL(:,2)));

23 Kcom=trim(complement(K,Ea'));

24 %

25 R=product(G,Kcom);

26 %

27 % Removing active events from marked states of R

28 %

29 Ind=[];

30 if ¬isempty(R.Xm)

31 for i=1:size(R.Xm)

32 Ind=[Ind,find(R.TL(:,1)≠R.Xm(i))];

33 end

34 end

35 %

36 R.TL=R.TL(Ind,:);

37 %

38 % Adding self-loops to the marked states

39 %

40 TL=R.TL;

41 Ea=unique(G.TL(:,2));

42 %

43 for i=1:size(R.Xm,2)

44 TLs=[R.Xm(i)*ones(size(Ea)),Ea,R.Xm(i)*ones(size(Ea))];

45 TL=[TL;TLs];

132



46 end

47 %

48 R.TL=unique(TL,'rows');

49 %

50 % SupR(K)=K-R

51 %

52 Ea=setdiff(unique(G.TL(:,2)),unique(R.TL(:,2)));

53 Rcom=trim(complement(R,Ea'));

54 size(Rcom.TL)

55 size(K.TL)

56 E=trim(product(Rcom,K));

57

58 end

supRCN: finds supremal Lm(G)-closed, controllable, G-nonblocking sublanguage

1 function K=supRCN(E,G,Eu,varargin)

2

3 % SUPRCN Supremal Relative-Closed, Controllable, Gi-nonblocking

4 % Sublanguage of E

5 %

6 % SYNTAX: K=supRCN(E,G,Eu,G1,...,Gn)

7 %

8 % INPUTS: E Specification (deterministic) automaton

9 % G Union model (deterministic) automaton

10 % Eu List of uncontrollable events (vector)

11 % Gi Plant models automaton

12 %

13 % OUTPUTS: E Trim (deterministic) automaton marking supremal

14 % Lm(G)-closed, controllable, Gi-nonblocking ...

sublanguage.

15

16 Sigma=unique(G.TL(:,2));

17 for i=1:length(varargin)

18 Gi{i}=varargin{i};

19 end

20

21 gray=1;

22

23 while gray≠0

133



24 if ¬isempty(E.TL)

25

26

27 S=supcon(E,G,Eu);

28 S=supR(S,G);

29

30 for i=1:length(varargin)

31 S=supNb(S,Gi{i},Sigma);

32 end

33

34 if isequal(size(S.TL),size(E.TL))

35 if isequal(length(S.Xm),length(E.Xm))

36 if S.TL==E.TL

37 if S.Xm==E.Xm

38 gray=0;

39 end

40 end

41 end

42 end

43 K=S;

44 else

45 return

46 end

47

48 end

49 end

GiveSpec: Returns overall specification of RNSCP

1 function K=GiveSpec(varargin)

2

3 % GIVESPEC Gives overall specification for robust problem.

4 %

5 % SYNTAX: K=GiveSpec(G1,...,Gn,K1,...,Kn)

6 %

7 % INPUTS: Ki Models' specifications, i = 1,...,n

8 % Gi Different models of robust problem

9 %

10 % OUTPUTS: K Overall specification of RNSCP

11 %

134



12 N=(length(varargin))/2; % find the number of plants

13 %

14 for i=1:N

15 Ei{i}=varargin{N+i};

16 Gi{i}=varargin{i};

17 end

18 %

19 G=Gi{1}; % union model

20 %

21 for i=2:N

22 G=Gunion(G,Gi{i});

23 end

24 %

25 Sigma=unique(G.TL(:,2));

26 %

27 % Find (Sigmaˆ*-Lm(Gi))

28 %

29 for i=1:N

30 compGi{i}=complement(Gi{i},setdiff(Sigma,Gi{i}.TL(:,2))'); ...

31 unique(compGi{i}.TL(:,2))

32 end

33 %

34 % Find (Ei (UNION) (Sigmaˆ*-Lm(Gi))

35 %

36 for i=1:N

37 U{i}=Gunion(Ei{i},compGi{i});unique(U{i}.TL(:,2))

38 end

39 %

40 % PU=product(Ui)

41 %

42 PU=U{1};

43 %

44 for i=2:length(U)

45 PU=product(PU,U{i});

46 end

47 %

48 K= product(G,PU);

49 end

135



C.3 Online Control

expandLLSB: Expands G as a subautomaton up to N step

1 function Gexp=expandLLSB(G,S,N)

2

3 % EXPANDLLSB Expands G as a subautomaton.

4 %

5 % SYNTAX: Gexp=expandLLSB(G,S,N)

6 %

7 %

8 % INPUTS: G Input automaton to be expanded

9 % S An automaton which marks Currently Executed ...

Trace (CET)

10 % N Number of steps expansion

11 %

12 % OUTPUTS: Gexp Expansion of input automaton G

13

14 %

15 % Change initial state to the state marked by S

16 %

17 [¬,states]=product(G,S);

18 %

19 r= states(:,2)==S.Xm;

20 SI=states(r,1);

21 %

22 Ind1= G.TL(:,1)==1;

23 Ind2= G.TL(:,3)==1;

24 Ind3= G.TL(:,1)==SI;

25 Ind4= G.TL(:,3)==SI;

26 %

27 G.TL(Ind1,1)=SI;

28 G.TL(Ind2,3)=SI;

29 G.TL(Ind3,1)=1;

30 G.TL(Ind4,3)=1;

31 %

32 Ind1= G.Xm==1;

33 Ind2= G.Xm==SI;

34 G.Xm(Ind1)=SI;

136



35 G.Xm(Ind2)=1;

36 %

37 % Expansion by using breath-first search algorithm

38 %

39 Gtemp=G;

40 Active_states=1;

41 TL=[];

42 %

43 for i=1:N

44 Ind=ismember(Gtemp.TL(:,1),Active_states);

45 TL=[TL;Gtemp.TL(Ind,:)];

46 Active_states=unique(G.TL(Ind,3));

47 end

48 %

49 Gtemp.TL=unique(TL,'rows');

50 Gexp=reachable(Gtemp);

51

52 end

expandVLSB: Expands G as a subautomaton. Stops expansion at marked control-

lable states or noncoreachable states.

1 function [Gexp,L]=expandVLSB(G,S,Euc,N)

2 % EXPANDVLSB Expands G as a subautomaton. Stops expansion at marked

3 % controllable states or noncoreachable states.

4 %

5 % SYNTAX: Gexp=expandVLSB(G,S,Euc,N)

6 %

7 % INPUTS: G Input automaton to be expanded

8 % S An automaton which marks Currently Executed ...

Trace (CET)

9 % Euc List of uncontrollable events

10 % N Maximum number of steps expansion

11 %

12 % OUTPUTS: Gexp Expansion of input automaton G

13 % L The actual number of expansion steps

14 %

15

16 %

137



17 % Change initial states to the state marked by S

18 %

19 [¬,states]=product(Gm,S);

20

21 r= states(:,2)==S.Xm;

22 SI=states(r,1);

23

24 Ind1= G.TL(:,1)==1;

25 Ind2= G.TL(:,3)==1;

26

27 Ind3= G.TL(:,1)==SI;

28 Ind4= G.TL(:,3)==SI;

29

30 G.TL(Ind1,1)=SI;

31 G.TL(Ind2,3)=SI;

32 G.TL(Ind3,1)=1;

33 G.TL(Ind4,3)=1;

34

35 Ind1= G.Xm==1;

36 Ind2= G.Xm==SI;

37 G.Xm(Ind1)=SI;

38 G.Xm(Ind2)=1;

39 %

40 % remove outgoing transitions from marked controllable states

41 %

42 Gc=statesCTL(G,Euc);

43 Xmc=setdiff(Gc.Xm,1);

44

45 Ind=¬ismember(G.TL(:,1),Xmc);

46 G.TL=G.TL(Ind,:);

47 %

48 % remove outgoing transitions of noncoreachable states

49 %

50 nonCR=[]; % List of non-coreachable states

51

52 for i=1:G.N

53 X=reach(G.TL,i);

54 if isempty(intersect(X,Xmc))

55 nonCR=[nonCR,i];

56 end

138



57 end

58

59 Ind=¬ismember(G.TL(:,1),nonCR);

60 G.TL=G.TL(Ind,:);

61

62 G=trim(G);

63 Gtemp=G;

64

65 Active_states=1;

66 TL=[];

67 L=1;

68

69 for i=1:N

70 Ind=ismember(Gtemp.TL(:,1),Active_states);

71 TLtmp=unique(TL,'rows');

72 TL=unique([TL;Gtemp.TL(Ind,:)],'rows');

73 Active_states=unique(G.TL(Ind,3));

74 %

75 if size(TL,1)≠size(TLtmp,1)

76 L=L+1;

77 end

78 %

79 end

80

81 Gtemp.TL=unique(TL,'rows');

82 Gexp=trim(Gtemp);

83

84 end

detKnb: determines controllable and uncontrollable nonblocking states.

1 function [Knbc,Knbu]=detKnb(K,Euc,varargin)

2

3 % DETKNB Determins nonblocking states of specification automaton K

4 %

5 % SYNTAX: Knbc=detKnb(K,Euc,G1,...Gn)

6 % [Knbc,Knbu]=detKnb(K,Euc,G1,...Gn)

7 %

8 % INPUTS: K Specification automaton

9 % Euc List of uncontrollable events (vector)

139



10 % Gi List of possible plant models

11 %

12 % OUTPUTS: Knbc automaton with all controllable nonblocking ...

states marked

13 % Knbc automaton with unontrollable nonblocking states ...

marked

14

15 % Initialization

16

17 K.Xm=1:K.N;

18 Ktemp=K;

19 Ktemp.Xm=[];

20 XmNb=[];

21 N=0;

22

23 % Mark one state of K at a time and check whether the state is ...

nonblocking

24

25 for i=1:length(K.Xm)

26 tic

27 Ktemp.Xm=K.Xm(i);

28 Ktemp=closure(Ktemp);

29 for j=1:length(varargin)

30 if isNonblocking(Ktemp,varargin{j})

31 N=N+1;

32 if N==length(varargin) % if it is nonblocking for G1,...Gn

33 XmNb=[XmNb,K.Xm(i)];

34 end

35 end

36 end

37 N=0;

38 toc

39 end

40

41 Knb=K;

42 Knb.Xm=XmNb;

43

44 Knbc=statesCTL(Knb,Euc);

45 Knbu=Knb;

46 Knbu.Xm=setdiff(Knb.Xm,Knbc.Xm);

140



47 end

detNSB: determines NB as defined before

1 function NB=detNSB(Knb,Euc)

2

3 % DETKNB Determins NB which is required to determine length of ...

window

4 %

5 % SYNTAX: NB=detNSB(Knb,Euc)

6 %

7 % INPUTS: Knb Input automaton marking nonblocking states of SPEC

8 % Euc List of uncontrollable events (vector)

9 %

10 % OUTPUTS: NB NB as defined in the thesis

11

12 Xnb=[1,Knb.Xm];

13 NN=[];

14 NandS=[];

15 for i=1:length(Xnb)

16 %

17 Ktemp=Knb;

18 Ktemp.Xm=Xnb(i);

19 S=Ktemp;

20 %

21 [¬,N]=expandVLSB(Knb,S,Euc,Knb.N);

22 NN=[NN,N];

23 NandS=[NandS;N,S.Xm];

24 end

25

26 NB=max(NN);

27

28 end

RLL: implements RLL supervisor

1 function [CET,ONLINE,ONLINE_SYS]=RLL(E,G,Eu,N,varargin)

2

3 % RLL Implements RLL supervisor to solve a RNSCP. It returns

141



4 % the set of enabled events at each step, so the user ...

can choose

5 % among the different possibilities. It cotinues until the

6 % execution is intrupted by the user. The program ...

returns an

7 % automaton which markes the executed trace.

8 %

9 % SYNTAX: CET=RLL(E,G,Eu,G1,...,Gn)

10 %

11 %

12 % INPUTS: E The overall specification of RNSCP

13 % G Union model

14 % Eu Lis of uncontrollable events

15 % N Length of lookahead window

16 % Gi Set of plant models, i = 1,..., n

17 %

18 % OUTPUTS: CET Output automaton markes the currently executed ...

trace.

19 %

20

21 for i=1:length(varargin)

22 Gi{i}=varargin{i};

23 end

24

25 CET=automaton(1,[],[]); %currently executed trace

26 CET.Xm=CET.N; %the last state of the string should be marked

27 ONLINE=CET; %the events enabled by RLL through execution

28 ONLINE_SYS=CET;

29

30 gray=1;

31 T=[];

32 while gray

33 tic

34 for i=1:length(varargin)

35 [temp,states]=product(CET,Gi{i});

36 if isequal(CET.TL,temp.TL)

37 In_Gi(i)=states(states(:,1) == CET.N,2);

38 else

39 In_Gi(i)=NaN;

40 end

142



41

42 end

43

44 Giexp={};

45

46 for i=1:length(varargin)

47 if ¬isnan(In_Gi(i))

48 Giexp{end+1}=expandLLSB(Gi{i},CET,N);

49 end

50 end

51 %

52 EexpN=expandLLSB(E,CET,N-1);

53 Gexp=expandLLSB(G,CET,N);

54 EexpN=product(EexpN,Gexp);

55 Sexp=supRCN(EexpN,Gexp,Eu,Giexp{1:end});

56 %

57 if isempty(Sexp.TL)

58 disp('epsilon')

59 return

60 else

61 Enabled_Events=unique(Sexp.TL(Sexp.TL(:,1)==1,2));

62 Active_Events=unique(Gexp.TL(Gexp.TL(:,1)==1,2));

63 %Disabled_Events=setdiff(Active_Events,Enabled_Events);

64 %

65 %deck2gviz(Sexp);

66 %winopen('Sexp.gv')

67 fprintf('Enabeled events:%s \n ',num2str(Enabled_Events'))

68

69 reply = input('EXE?\n');

70

71 if ¬isempty(reply)

72 CET.N=CET.N+1;

73 CET.TL=[CET.TL;CET.N-1,reply,CET.N];

74 CET.Xm=CET.N;

75

76 ONLINE.TL=[ONLINE.TL;ONLINE.N,reply,...

77 ONLINE.N+length(Enabled_Events)];

78 Enabled_Events=setdiff(Enabled_Events,reply);

79 %

80 ONLINE_SYS.TL=[ONLINE_SYS.TL;ONLINE_SYS.N,reply,...

143



81 ONLINE_SYS.N+length(Active_Events)];

82 Active_Events=setdiff(Active_Events,reply);

83 %

84 for i=1:length(Enabled_Events)

85 ONLINE.TL=[ONLINE.TL;ONLINE.N,Enabled_Events(i),ONLINE.N+i];

86 end

87 %

88 ONLINE.N=max(ONLINE.TL(:,3));

89 ONLINE.Xm=1:ONLINE.N;

90 %

91 %

92 for i=1:length(Active_Events)

93 ONLINE_SYS.TL=[ONLINE_SYS.TL;ONLINE_SYS.N,...

94 Active_Events(i),ONLINE_SYS.N+i];

95 end

96 %

97 ONLINE_SYS.N=max(ONLINE_SYS.TL(:,3));

98 ONLINE_SYS.Xm=1:ONLINE_SYS.N;

99 else

100 return

101 end

102

103

104 end

105 end

106 T(end+1)=toc;

107 end

C.4 Examples

1 %% Offline solution to Cassini Main Propulsion System Problem

2

3 %% DES Normal/Normal-faulty of Models of V1 and V2

4 V1_NF=automaton(3,[1,11,2;2,10,1;1,13,3],1:3);

5 V2_NF=automaton(3,[1,21,2;2,20,1;1,23,3],1:3);

6 V1_N=automaton(2,[1,11,2;2,10,1],1:2);

7 V2_N=automaton(2,[1,21,2;2,20,1],1:2);

144



8

9 %% DES Models of pyro valves

10 PV1=automaton(2,[1,111,2],1:2);

11 PV2=automaton(2,[1,211,2],1:2);

12 PV3=automaton(2,[1,311,2],1:2);

13 PV4=automaton(2,[1,411,2],1:2);

14

15 %% DES Models of Pressure sensors

16 P1_M1=automaton(2,[1,101,2;2,100,1],2);

17 P2_M1=automaton(2,[1,201,2;2,200,1],1);

18 P_M1=sync(P1_M1,P2_M1);

19 %

20 P1_M2=automaton(2,[1,101,2;2,100,1],1);

21 P2_M2=automaton(2,[1,201,2;2,200,1],2);

22 P_M2=sync(P1_M2,P2_M2);

23

24 %% Interaction between valves status and sensor readings

25 [INT1_N,states]=sync(V1_N,PV1,PV3);

26

27 for i=1:size(states,1)

28 if (states(i,1)==2 || states(i,2)==2) && states(i,3)==1

29 INT1_N.TL=[INT1_N.TL;i,101,i];

30 else

31 INT1_N.TL=[INT1_N.TL;i,100,i];

32 end

33 end

34

35 [INT1_NF,states]=sync(V1_NF,PV1,PV3);

36

37 for i=1:size(states,1)

38 if (states(i,1)==2 || states(i,2)==2) && states(i,3)==1

39 INT1_NF.TL=[INT1_NF.TL;i,101,i];

40 else

41 INT1_NF.TL=[INT1_NF.TL;i,100,i];

42 end

43 end

44

45 [INT2_N,states]=sync(V2_N,PV2,PV4);

46

47 for i=1:size(states,1)

145



48 if (states(i,1)==2 || states(i,2)==2) && states(i,3)==2

49 INT2_N.TL=[INT2_N.TL;i,201,i];

50 else

51 INT2_N.TL=[INT2_N.TL;i,200,i];

52 end

53 end

54

55 [INT2_NF,states]=sync(V2_NF,PV2,PV4);

56

57 for i=1:size(states,1)

58 if (states(i,1)==2 || states(i,2)==2) && states(i,3)==2

59 INT2_NF.TL=[INT2_NF.TL;i,201,i];

60 else

61 INT2_NF.TL=[INT2_NF.TL;i,200,i];

62 end

63 end

64

65 %% Normal/Normal-faulty models of the plant and their specifications

66 [sys_M1_N,states_M1]=sync(P1_M1,P2_M1,V1_N,V2_N,PV1,PV2,PV3,PV4,...

67 INT1_N,INT2_N);

68 %

69 K1=sys_M1_N;

70 Ind1=find(states_M1(:,1)==2 & states_M1(:,2)==2);

71 %

72 % Make specifications by removing illigal states.

73 %

74 for i=1:length(Ind1)

75 K1.TL=K1.TL(K1.TL(:,1)≠Ind1(i),:);

76 K1.TL=K1.TL(K1.TL(:,3)≠Ind1(i),:);

77 end

78 %

79 [sys_M2_N,states_M2]=sync(P1_M2,P2_M2,V1_N,V2_N,PV1,PV2,PV3,PV4,...

80 INT1_N,INT2_N);

81 %

82 % Make specifications by removing illigal states.

83 %

84 K2=sys_M2_N;

85 Ind2=find(states_M2(:,1)==2 & states_M2(:,2)==2);

86 %

87 for i=1:length(Ind2)

146



88 K2.TL=K2.TL(K2.TL(:,1)≠Ind2(i),:);

89 K2.TL=K2.TL(K2.TL(:,3)≠Ind2(i),:);

90 end

91 %

92 [sys_NF1,states_NF1]=sync(P1_M2,P2_M2,V1_NF,V2_N,PV1,PV2,PV3,PV4,...

93 INT1_NF,INT2_N);

94 %

95 % Make specifications by removing illigal states.

96 %

97 K3=sys_NF1;

98 Ind3=find(states_NF1(:,1)==2 & states_NF1(:,2)==2);

99 %

100 for i=1:length(Ind3)

101 K3.TL=K3.TL(K3.TL(:,1)≠Ind3(i),:);

102 K3.TL=K3.TL(K3.TL(:,3)≠Ind3(i),:);

103 end

104 %

105 [sys_NF2,states_NF2]=sync(P1_M1,P2_M1,V1_N,V2_NF,PV1,PV2,PV3,PV4,...

106 INT1_N,INT2_NF);

107 %

108 % Make specifications by removing illigal states.

109 %

110 K4=sys_NF2;

111 Ind4=find(states_NF2(:,1)==2 & states_NF2(:,2)==2);

112 %

113 for i=1:length(Ind4)

114 K4.TL=K4.TL(K4.TL(:,1)≠Ind4(i),:);

115 K4.TL=K4.TL(K4.TL(:,3)≠Ind4(i),:);

116 end

117 %

118 sys=Gunion(sys_M1_N,Gunion(sys_M2_N,Gunion(sys_NF1,sys_NF2)));

119 K=Gunion(K1,Gunion(K2,Gunion(K3,K4)));

120 %

121 S=supRCN(K,sys,[101,100,201,200,13,23],sys_M1_N,sys_M2_N,...

122 sys_NF1,sys_NF2);

123

124 %% Solving problem using conventional supervisory control.

125 %

126 SC=supcon(K,sys,[101,100,201,200,13,23]);

127 %

147



128 sys.Xm=intersect(sys_M1_N.Xm,intersect(sys_M2_N.Xm,...

129 intersect(sys_NF1.Xm,sys_NF2.Xm)));

130 %

131 KI=sys;

132 %

133 SI=supcon(KI,sys,[101,100,201,200,13,23]);

deck2gviz: constructs a .GV file of an automaton so it can be visualized by GraphViz

1

2 function deck2gviz(G, eventsLabels,statesLabels,fontSize)

3

4 % DECK2GVIZ Reads an automaton object G and save a G.GV file which

5 % constructs the automaton in DOT language to be ...

visualized

6 % in Graphviz

7 %

8 % SYNTAX: deck2gviz(G)

9 % deck2gviz(G,eventsLabels)

10 % deck2gviz(G,eventsLabels,statesLabels)

11 % deck2gviz(G,eventsLabels,statesLabels,fontsize)

12 % deck2gviz(G,[],[],fontsize)

13 % deck2gviz(G,eventsLabels,[],fontsize)

14 %

15 %

16 % INPUTS: G input automaton object

17 % eventsLabels struct('event',{...},'label',{...})

18 % a structure containing events and labels

19 % statesLabels struct('state',{...},'label',{...})

20 % a structure containing states and labels

21 % fontsize labels font size

22 %

23 % OUTPUTS: GraphViz .GV file

24 %

25

26

27 TL=G.TL;

28 Xm=G.Xm;

148



29

30 if nargin==1

31 [TL_labeled,Xm_labeled]=num2label(TL,Xm);

32 fontsize='14';

33 end

34 %

35 if nargin==2

36 [TL_labeled,Xm_labeled]=num2label(TL,Xm,eventsLabels);

37 fontsize='14';

38 end

39 %

40 if nargin==3

41 [TL_labeled,Xm_labeled]=num2label(TL,Xm,eventsLabels,statesLabels);

42 fontsize='14';

43 end

44 %

45 if nargin==4 && ¬isempty(eventsLabels) && ¬isempty(statesLabels)

46 [TL_labeled,Xm_labeled]=num2label(TL,Xm,eventsLabels,statesLabels);

47 fontsize=num2str(fontSize);

48 elseif nargin==4 && ¬isempty(eventsLabels) && isempty(statesLabels)

49 [TL_labeled,Xm_labeled]=num2label(TL,Xm,eventsLabels);

50 fontsize=num2str(fontSize);

51 elseif nargin==4 && isempty(eventsLabels) && isempty(statesLabels)

52 [TL_labeled,Xm_labeled]=num2label(TL,Xm);

53 fontsize=num2str(fontSize);

54 end

55 %

56 % open a file named "G.GV" for writing

57 %

58 filename=[inputname(1) '.GV'];

59 fid=fopen(filename,'w');

60

61 fprintf(fid,'digraph FSA{\n'); % name the graph as FSA

62

63 if ¬fontsize

64 fprintf(fid,'node[fontsize=0];\n');

65 end

66

67 fprintf(fid,'rankdir=LR;\n'); % sets direction of graph layout

68 fprintf(fid,'node [shape = none,fontcolor=white];0;\n');

149



69

70 if ¬isempty(Xm) % displayes edges of graph layout

71 for i=1:size(Xm,2)

72 fprintf(fid,...

73 'node [shape = ...

doublecircle,fontcolor=black,fontsize=%s];%s;\n',...

74 fontsize,num2str(Xm_labeled(i).state));

75 end

76 end

77 %

78 % sets initial state's name

79 %

80 if nargin<3 || (nargin≥3 && ¬isstruct(statesLabels))

81 IS=num2str(1);

82 else

83 IS=statesLabels(1).label;

84 end

85 %

86 % marks initial state with an arrow

87 %

88 fprintf(fid,...

89 'node [shape = circle,fontcolor=black,fontsize=%s];\n',fontsize);

90 fprintf(fid,'0 -> %s [labelsize = 0];\n',IS);

91 %

92 % adds transitions to graph layout

93 %

94 if ¬isempty(TL_labeled) && ¬isempty(TL)

95 for i=1:size(TL_labeled,2)

96 fprintf(fid,'%s -> %s [ label = ...

"',num2str(TL_labeled(i).source)...

97 ,num2str(TL_labeled(i).sink));

98 for j=1:size(TL_labeled(i).event,2)-1

99 fprintf(fid,'%s,',num2str(TL_labeled(i).event{j}));

100 end

101 fprintf(fid,...

102 '%s ",fontsize=%s];\n',...

103 num2str(TL_labeled(i).event{end}),fontsize);

104 end

105 end

106 %

150



107 fprintf(fid,'}');

108 %

109 fclose(fid); % closes the file

110

111 end

112

113 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

114 function TL_merged=merge(TL) % marges parallel edges into a ...

single edge

115 %

116 temp=struct('source',[],'event',[],'sink',[]);

117 %

118 i=1;

119 X=[];

120 while ¬isempty(TL)

121 %

122 clear X;

123 %

124 for j=1:size(TL,1)

125 if isequal(TL(1,1),TL(j,1)) && isequal(TL(1,3),TL(j,3))

126 X(j,:)=ones(1,3);

127 else

128 X(j,:)=zeros(1,3);

129 end

130 end

131 %

132 TL_temp=TL.*X;

133 TF = TL_temp==0;

134 TFrow = ¬all(TF,2);

135 TL_temp=TL_temp(TFrow,:);

136

137 if ¬isempty(TL_temp)

138 temp(i).source=TL_temp(1,1);

139 temp(i).sink=TL_temp(1,3);

140 temp(i).event=TL_temp(:,2);

141 end

142 %

143 TL_new=TL.*¬X;

144 %

145 TF = TL_new==0;

151



146 TFrow = ¬all(TF,2);

147 TL_new=TL_new(TFrow,:);

148 %

149 i=i+1;

150 TL=TL_new;

151 end

152 %

153 TL_merged=temp;

154 %

155 end

156 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

157 function [TL_labeled,Xm_labeled]=num2label(TL,Xm,varargin)

158 %

159 % If the event labels are specified then label the events ...

accordingly;

160 % otherwise use the event numbers as the ...

labelsTL_new=cell(size(TL'));

161 %

162 Xm_new=cell(size(Xm'));

163 %

164 if length(varargin)==2

165 statesLabels=varargin{2};

166 eventLabels=varargin{1};

167 elseif length(varargin)==1

168 eventLabels=varargin{1};

169 elseif isempty(varargin)

170 if ¬isempty(TL)

171 events=unique(TL(:,2));

172 eventLabels=struct('event',{},'label',{});

173 %

174 for i=1:size(events,1)

175 eventLabels(i).event=(events(i));

176 eventLabels(i).label=(events(i));

177 end

178 else

179 eventLabels=struct('event',{},'label',{});

180 end

181 end

182 %

152



183 % If the state labels are specified then label the states ...

accordingly;

184 % otherwise use the state numbers as the labels

185 %

186 for i=1:size(TL',1)

187 for j=1:size(TL',2)

188 TL_new{i,j}=TL(j,i);

189 end

190 end

191 %

192 for i=1:size(Xm',1)

193 for j=1:size(Xm',2)

194 Xm_new{i,j}=Xm(j,i);

195 end

196 end

197 %

198 TL_strc=merge(TL);

199 %

200 if ¬isempty(Xm_new)

201 Xm_strc=cell2struct(Xm_new','state');

202 else

203 Xm_strc= struct('state',[]);

204 end

205 %

206 temp=TL_strc;

207 Xm_temp=Xm_strc;

208 %

209 for i=1:size(temp,2)

210 temp(i).event={};

211 end

212 %

213 for i=1:size(eventLabels,2)

214 for j=1:size(TL_strc,2)

215 for k=1:size(TL_strc(j).event,1)

216 if eventLabels(i).event==TL_strc(j).event(k)

217 temp(j).event(k)={eventLabels(i).label};

218 end

219 end

220 end

221 end

153



222 %

223 if length(varargin)==2

224 for i=1:size(statesLabels,2)

225 for j=1:size(TL_strc,1)

226 if statesLabels(i).state==TL_strc(j).source

227 temp(j).source=statesLabels(i).label;

228 end%

229 if statesLabels(i).state==TL_strc(j).sink

230 temp(j).sink=statesLabels(i).label;

231 end

232 end

233 end

234 %

235 for i=1:size(statesLabels,2)

236 for j=1:size(Xm_strc,1)

237 if statesLabels(i).state==Xm_strc(j).state

238 Xm_temp(j).state=statesLabels(i).label;

239 end

240

241 end

242 end

243 %

244 for i=1:size(statesLabels,2)

245 for j=1:size(TL_strc,2)

246 %

247 if statesLabels(i).state==TL_strc(j).source

248 temp(j).source=statesLabels(i).label;

249 end

250 %

251 if statesLabels(i).state==TL_strc(j).sink

252 temp(j).sink=statesLabels(i).label;

253 end

254 end

255 end

256 end

257 %

258 TL_labeled=temp;

259 Xm_labeled=Xm_temp;

260 %

261 end

154


