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Abstract

Assembly to Open Source Code Matching for

Reverse Engineering and Malware Analysis

Ashkan Rahimian

The process of software reverse engineering and malware analysis often comprise a combina-

tion of static and dynamic analyses. The successful outcome of each step is tightly coupled with

the functionalities of the tools and skills of the reverse engineer. Even though automated tools

are available for dynamic analysis, the static analysis process is a fastidious and time-consuming

task as it requires manual work and strong expertise in assembly coding. In order to enhance and

accelerate the reverse engineering process, we introduce a new dimension known as clone-based

analysis. Recently, binary clone matching has been studied with a focus on detecting assembly

(binary) clones. An alternative approach in clone analysis, which is studied in the present research,

is concerned with assembly to source code matching. There are two major advantages in consid-

ering this extra dimension. The first advantage is to avoid dealing with low-level assembly code in

situations where the corresponding high-level code is available. The other advantage is to prevent

reverse engineering parts of the software that have been analyzed before. The clone-based analy-

sis can be helpful in significantly reducing the required time and improving the accuracy of static

analysis. In this research, we elaborate a framework for assembly to open-source code matching.
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Two types of analyses are provided by the framework, namely online and offline. The online

analysis process triggers queries to online source code repositories based on extracted features from

the functions at the assembly level. The result is the matched set of references to the open-source

project files with similar features. Moreover, the offline analysis assigns functionality tags and pro-

vides in-depth information regarding the potential functionality of a portion of the assembly file.

It reports on function stack frames, prototypes, arguments, variables, return values and low-level

system calls. Besides, the offline analysis is based on a built-in dictionary of common user-level

and kernel-level API functions that are used by malware to interact with the operating system.

These functions are called for performing tasks such as file I/O, network communications, registry

modification, and service manipulation. The offline analysis process has been expanded through

an incremental learning mechanism which results in an improved detection of crypto-related func-

tions in the disassembly. The other developed extension is a customized local code repository

which performs automated source code parsing, feature extraction, and dataset generation for code

matching. We apply the framework in several reverse engineering and malware analysis scenar-

ios. Also, we show that the underlying tools and techniques are effective in providing additional

insights into the functionality, inner workings, and components of the target binaries.
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Chapter 1

Introduction

The present research addresses the problem of assembly to open source code matching, which is an

important aspect of reverse engineering and static malware analysis. Generally, software reverse

engineering is conducted in situations where the source code of an application is not available. For

instance, software audits are performed on executable binaries and release versions to assess the

conformance with design and quality specifications. Similarly, malware reverse engineering is an-

other domain where detailed information is required on the behavior and functionality of malware

files. Two major reverse engineering approaches are common in this context, known as static and

dynamic. The static analysis approach focuses on assembly-level functions for performing tasks

such as data and control flow analysis. The disassembly is studied without executing the program.

Stack frame information, execution paths, and assembly functions convey important information

during the static analysis. On the other hand, the dynamic analysis approach is concerned with the

actual execution of the program and observation of its behavior and interaction with the operating
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system. When working with untrusted applications, the analysis is often done in a controlled en-

vironment such as a virtual machine. A combination of both approaches are required for getting a

complete picture of the program code and behavior. During the dynamic analysis, the live values

of registers and variables can be monitored and altered in memory.

Reverse engineering is a time-consuming task and it poses many challenges. In case of static

analysis, the disassembly consists of a large number of instructions in which data and code are in-

terleaved. The low-level representation of the program may not convey a clear idea of the program

behavior due to obfuscation and encryption. Therefore, a great amount of manual work should be

performed by the reverse engineer during the analysis. The successful outcome of the analysis is

tightly coupled with the functionalities of the tools and skills of the reverse engineer. Due to the

enormous number of assembly instructions, going through them, line by line is not often a feasible

solution. Therefore, a reliable and scalable approach is needed for providing a high-level picture of

the disassembled code. Then, the reverse engineer would be able to focus on interesting low-level

details only as required. This approach will reduce the required time for analysis and improve the

accuracy and reliability of the results. As an example, the disassembled version of a Win32 binary

file with a size of 150KB might result in an assembly file with more than 100,000 instructions.

One way to reduce the manual work is to utilize a clone-based analysis on the disassembly.

Since code reuse is common in application development, shared code and libraries can be identified

quickly through an automated clone search approach. Thus, the analysis focus is shifted to the

non-library code portions, which results in considerable savings in time and efforts spent by the

reverse engineer. To enhance and accelerate the malware analysis process, another dimension is

considered in our study as shown in Figure 1. This new dimension is called clone-based analysis.
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Figure 1: Overlap in Reverse Engineering Methodologies

In few words, the clone-based analysis identifies the pieces of code that are originated from other

malware and open-source applications.

The main objective of this research is to elaborate a framework for automated assembly to

source code matching. We devise methodologies and propose algorithms that help reverse en-

gineers get faster insights into the internal structure and inner workings of the programs under

analysis. Furthermore, we design and implement the necessary tools and techniques for a practi-

cal assembly to source code matching platform. Also, we test and evaluate the framework under

several real-world reverse engineering scenarios.

1.1 Problem Statement

Clone-based methodologies use similarity metrics for measuring the distance between the clones.

These approaches have applications in plagiarism detection, source code clone detection, and as-

sembly clone detection. Even though binary clone matching techniques are used in reverse en-

gineering research, assembly to source code matching techniques are still relatively unexplored.
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These techniques can be used for comparing the assembly of one source to the source of anther.

This research gap provides an opportunity for further studies in this area. One major advantage

of the assembly to source matching is that it provides insightful hints into the open-source com-

ponents and standard libraries used in the disassembly. As a result, the reverse engineer would be

able to circumvent dealing with low level assembly code when similar high level source code is

available. Working with source code is preferred by the reverse engineers due to parameters such

as readability and performance.

The other benefit of this approach is that it helps in unleashing the overall code context and po-

tential functionality. This is achieved through analyzing the library and system calls, classification

of functions based on API groups, and additional commenting. Decompilation is a common tech-

nique in reverse engineering, which aims at retrieving high-level source code from binaries. Since

the compilation options and optimization affect the reversibility of the process, the decompiled

files are often very different from the original sources. Assembly to source code matching tech-

niques can also be used for complementing and enriching the decompilation results by providing

links to similar source files.

1.2 Motivation

Due to the complex structure and the advanced anti-reverse engineering techniques utilized by

modern malware, the analysis process is often prolonged. This allows cyber criminals to carry on

with their attacks while the analysis is still in progress. Therefore, new tools and techniques are

required for accelerating the reverse engineering process and for providing additional insights into
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the functionality, inner workings, and components of the malware.

The first part of the present research pertains to the domain of static assembly code analysis,

and more precisely in mapping of assembly to source files. Although a decompiler seems to be

the program, which best fits our goals, we consider that an attempt of mapping the assembly to

existing source code could complement the decompilation and disassembly results. Compilation

is usually a lossy and one-way process in which many source level features are discarded due to

compilation options and optimization. Applications such as malware analysis can benefit from a

tool that is able to provide reliable information about the standard and open source files used by

a malicious developer. Such information can help the reverse engineer save a significant amount

of analysis time by finding references to available source code and algorithms. It can also provide

hints for unleashing the overall context of the assembly code.

In case of cryptographic algorithms or obfuscated code, delving deep into the individual as-

sembly instructions might not yield meaningful results. The disassembled code of such algorithms

contains different kinds of mov, xor, shift, and rotate operations such as shr, shl, ror, rol, etc. In

contrast, focusing on interesting blocks of assembly instructions provides more hints into revealing

the underlying algorithm. Besides, it requires less time spent on the machine-dependent assembly

instructions. The winning strategy in reverse engineering is to draw a global view of the code first,

and delve into the details only as needed.

Decompilers, methods and tools to analyze malware code already exist [41]. They can be

used by expert reverse engineers who seek to understand the origins and the creation process of

the malware. IDA Pro [59] allows disassembling a binary file and its rich and interactive GUI

simplifies the analysis process. It is widely used thanks to its heuristic disassembly, cross-platform
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compatibility, the integrated debuggers, and, more interestingly, plugins such as the Hex-Rays

decompiler - “the most advanced decompiler ever built!” [12]. IDA Pro can be used in security, as

well as general (non-security) applications.

Although there have been a few attempts to design generic debuggers to work on heterogeneous

platforms (e.g., GenDbg [4]), IDA Pro proves to be one of the most comprehensive tools in reverse

engineering. Two algorithms are common in generating assembly files from machine code instruc-

tions namely Linear Sweep and Recursive Descent [44]. As it will be discussed in later chapters,

these algorithms are vulnerable to anti-disassembly techniques used by malware. As a results, the

generated disassembly might lack certain functions or it might not distinguish between data and

code properly. The assembly code follows rather regular patterns and consequently the decompiler

is able to do a mapping between registers, memory locations, and abstract variables to C-like state-

ments. Yet, most of the decompilers are not generic. Other basic C constructs (e.g., loops) are more

difficult to extract and some decompilers fail to recognize them (e.g., Boomerang [2]). Another

challenging problem is reconstructing the abstract types (e.g., structures) and TyDec [13] tries to

tackle the problem but is limited to an experimental level. In this case, the best practice remains

the human expertise for manually defining the structures and abstracting the program elements.

Our approach is rather different in that our RE-Source framework is meant to inform the reverse

engineer about the standard and open source components that might have been used by the creator

of the binary file. To our knowledge a similar functionality was only provided by the RE-Google

IDA Pro plugin developed by Felix Leder [9]. We draw inspiration from this project for develop-

ing the online analysis module of RE-Source. In contrast to the other project, RE-Source performs

both online and offline analysis on the disassembly. RE-Google, written in Python, relies on the
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IDA API and the Google Code Search API [7]. It takes the disassembled binary code as input and

creates a query for submitting to Google Code Search based on the constants, strings, and function

names. The response from the search engine is the potential source excerpt that contains similar

features. Although it supports a limited set of features to create a query, RE-Google may confine

the search to certain languages. Additionally, it can be configured to search for a specific function

within the disassembly, skip certain functions, or perform a search for all available functions. Also,

the interval between two subsequent searches can be defined. Optionally, user credentials could be

supplied as part of the query to the code search engine. Furthermore, there is an option for restrict-

ing certain string patterns in the result. A constant filter function checks the immediate values and

removes flags and small values from the query if they are not relevant for the search. The response

from the search engine is parsed by the Google API and the top results are added to the code as

comments. RE-Google was designed on top of the GData framework and Google Code Search

APIs [7], which were officially deprecated in 2010. The GData framework provides a REST-based

interface for communicating and exchanging information over the web. Our framework provides a

functionality similar to RE-Google in online analysis and introduces new ones for offline analysis.

Besides, it does not rely on GData as it has built support for query processing and parsing.

1.3 Objectives

The main objective of the thesis is to elaborate a practical framework for assembly to source code

matching that will significantly reduce the required time and effort for static analysis and enhance

the reverse engineering process. More explicitly, the thesis objectives are:
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• Devise an expandable online analysis mechanism for identifying the shared and open source

components and standard algorithms based on extracted features from the disassembled

code. The analysis process must not rely on direct code search engine APIs such as GData

or similar frameworks.

• Design and implement the main components and building blocks of a scalable and language-

independent framework for assembly to source code matching.

• Elaborate the framework through an offline analysis mechanism for providing insights into

the potential functionality of assembly functions and their interaction with the operating

system.

• Apply the methodology and the framework in real-world reverse engineering scenarios.

With the principle of code reuse in mind, the framework should exploit some features that exist

at both the source and the assembly file levels. Also, it should be able to trigger queries based on

these features on certain repositories used by the developers’ community. Besides, the framework

should take into account a large panel of search engines for the online analysis. Likewise, an

offline analysis module must be designed for providing information regarding the functionality of

a portion of the assembly file even if the online analysis results were not available. The offline

analyzer module should report on function stack frame, prototype, arguments, local variables and

low-level system calls. Moreover, it should contain a built-in dictionary of user-level and kernel-

level API functions that are commonly used by malware to interact with the Windows operating

system for performing tasks such as file I/O, network communications, registry modification, and

service manipulation.
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1.4 Approach Overview

Open source libraries are being used in many applications. Recently, an upwards trend has been

seen in the use of open source cryptographic and network-related libraries in well-known mal-

ware [46]. Therefore, it is desirable that such components be identified quickly before the process

of reverse engineering is initiated [40]. The RE-Source framework is a solution for the online

matching of assembly with open source code [47], which takes into account the idea of code reuse

and highlights the common open source components in binary files. The system examines each

assembly-level function in two phases of online and offline analysis. The key steps of the frame-

work are as follows: (1) Extraction of interesting features, (2) feature-based query encoding, (3)

query refinement for online code search engines, (4) request/response processing, (5) data extrac-

tion and parsing, (6) reporting results and updating comments, (7) feature-based offline analysis.

Different set of features are considered for online and offline analysis. It can be shown that a con-

sistency is observed among the online and offline results of malware analysis when the malicious

code makes use of user/kernel-level Windows API functions1. As an expansion to the frame-

work, a new module for offline analysis is introduced that improves the accuracy of matching by

incremental learning of the mappings between assembly-level and source-level feature vectors.

Figure 2 shows an overview of the RE-Source framework components. To evaluate the solution,

the RE-Source framework is used in several real-world reverse engineering scenarios.

The system consists of several modules for interacting with the disassembly and code reposito-

ries. The Src table stores the extracted source level features and the Bin table contains the assembly

information. A pattern matching technique scans the index of joint feature vectors for classification

1The framework was tested on the Windows platform.
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Figure 2: Overview of the RE-Source System Architecture.

and assigning functionality tags. Furthermore, an incremental learning module has been employed

as an offline analysis extension to the framework for improving the accuracy of the results through

an active learning mechanism.

1.5 Contributions

The major contributions of this thesis can be summarized as follows:

1. Elaboration of the RE-Source framework along with the algorithms, components and method-

ology for online matching of assembly with open source code. This framework has been

implemented as a GUI IDA Pro Python plug-in. It can be used for finding references to

open source code which shares certain features with the disassembly under analysis. It also
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generates a dataset for based on the assembly level features.

2. Definition, design and implementation of an Offline Analysis Module for assembly function

analysis based on functionality tags for common malware behavior. The tagging module has

been integrated with the main GUI and the results are immediately applied to the IDA Pro’s

function window of the disassembly. Also, the matched references are added as function

comments to the disassembly. Moreover, this module provides informative statements about

assembly functions to the reverse engineer.

3. Elaboration of the data-mining extension for the offline module through incremental learning

and function semantics for malware analysis. Using a machine learning and data-mining

Python package, the system is able to learn functionality patterns from the analyzed malware

disassemblies. The learning module improves the precision of the function classification

process. This module is shown to be effective in detection of crypto-related functions based

on constants and the sequence of function calls.

4. Design and development of a customized local code repository for parsing the source code,

feature extraction, and automated dataset generation. The local repository stores the source

code which are used in the matching process. Besides, the search process can be customized

based on specific file extensions. The current prototype support parsing standard C/C++

source files for extracting source level features. The process then generates datasets for

the matching process. Each row in the assembly dataset corresponds to a function in the

disassembly and contains all the extracted features. Similarly, the source dataset stores the

class level information.
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5. Leveraging the developed tools and the proposed clone-based methodology in several reverse

engineering scenarios such as the infamous Citadel malware. RE-Source is able to reveal

additional malware functionalities such as video capturing and key-logging by tagging the

functions with the relevant labels. Furthermore, it allows us to quantify the similarities

between different variants of the malware.

Our first proposal seems to share a common goal with a research trend, which is bottom-

up analysis of assembly, i.e., decompiler. Yet, we do not propose a decompiler but a tool to

match assembly with existing open source. To our knowledge, only one discontinued solution was

similar to our approach, RE-Google. We presented our methodology in [47]. In order to enhance

the process of matching assembly with source, we go beyond the online analysis and propose an

offline one with data-mining techniques. Without demonstrating the applicability of the approach

in real world scenarios, the research potential cannot be unveiled. For this, we have applied the

methodology on the infamous Citadel malware.

1.6 Organization

This thesis is organized as follows. The background and related work are introduced in Chap-

ter 2. The proposed approach for the elaboration, design and implementation of the RE-Source

framework is discussed in Chapter 3. The learning algorithms, elaboration details, and platform

extensions are presented in Chapter 4. A comprehensive reverse engineering case study is reported

in Chapter 5 and finally, the concluding remarks about this research are formulated in Chapter 6.
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Summary

This chapter introduced the research area by discussing the problem statement, motivation and

objectives. It also presented an overview of the proposed approach and enumerated the main

contributions of the thesis. In the next chapter, the background and related work will be presented

for setting the study context.
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Chapter 2

Background and Related Work

This chapter sets the research context by introducing the related work and highlighting the back-

ground. This work can be classified in the overlapping area of reverse engineering, malware anal-

ysis, and clone detection. The proposed methodologies in the following chapters assume basic

familiarity with these topics. For this reason, the relevant tools and techniques are discussed for

assembly to source code matching, recognizing libraries and program elements, measuring the

code similarities, pertinent malware analysis and detection techniques, and reverse engineering

reports on the Citadel malware.

This chapter is organized as follows. An overview of the malware reverse engineering tech-

niques is given in Section 2.1 followed by the introduction of the related work and the Citadel

malware analysis. Section 2.2 presents the binary and source clone-detection approaches and the

tools used in deep analysis of binary files.
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2.1 Reverse Engineering Malware

Reverse engineering is a term given to the process of discovering the design specifications and

implementation details with little or no knowledge about the production procedure of a subject

system. It can be done for many reasons such as security auditing, interfacing with other sys-

tems, vulnerability analysis and bug fixing. From a software engineering point of view, reverse

engineering is similar to black-box testing. In malware reverse engineering context, three types

of analysis namely static, dynamic, and memory are performed on a malware binary in order to

discover its functionality and behavior. Dissecting the malware is a required step for mitigating

malware threats.

2.1.1 Malware Analysis Techniques

Three common types of forensic analysis techniques namely functional, relational, and temporal

are utilized in malware investigations [32]. These techniques are applied for gaining a deeper un-

derstanding of the potential capabilities and actual behavior of a malware. The aim of functional

analysis is to monitor the dynamic behavior of a piece of malware in a controlled analysis environ-

ment. The process of dynamic analysis might not always be straightforward. Advanced malware

could possess anti-reversing (anti-static, anti-dynamic, and anti-virtual machine) mechanisms for

evading static and dynamic analysis and hindering the process [41, 44]. The malicious code can

sense whether it is being debugged and analyzed in a virtual environment. The work in [22] stud-

ies malware analysis in such scenarios and proposes a transparent mechanism for preventing the
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malware from spotting the API hooking. They also present techniques for malware library call de-

tection. The purpose of relational analysis is to study the internal components of the malware and

the interactions with the external environment. Furthermore, the temporal information is captured

by temporal analysis. A combination of static and dynamic analysis techniques should be used for

handling packed malware, code de-obfuscation, and data decryption.

Static analysis is performed for understating the inner-workings of the malware. In this anal-

ysis, the binary is transformed into assembly instructions such as x86, x64, and ARM. Each of

these platforms have a different set of assembly instructions. Expertise in assembly instructions

are essential in static analysis. The x86 architecture can be abstracted into three modules of CPU,

I/O, and RAM. Four types of registers are used by the CPU, namely general, segment, flags, and

instruction pointers. The flags or status registers are important in malware analysis as they can

change the execution path of the program. The program memory is divided into four sections

namely stack, heap, code, and data. The stack is where the local variables and function parameters

are stored and the heap is used for dynamic memory.

The most important aspect of static analysis is to correctly recognize the high level code con-

structs. Global and local variables are represented differently in the assembly. The global variables

are referenced by memory addresses whereas local variables are placed on the stack. Control struc-

tures and conditional statements can be recognized by different forms of jump instructions. Also,

grouping the instructions into categories of initialization, comparison, and stepping is helpful in

finding the loop blocks. The other important aspects of the analysis are function calling convention,

recognition of structs, arrays, and linked lists, finding class constructors, destructors, and special

data structures such as virtual function tables.
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Dynamic analysis is performed to understand the behavioral aspects of the malware. Low

level debuggers such as OllyDbg, Immunity Debugger, WinDbg, and IDA Pro are common in

practice [41, 44]. Debuggers are used to view and change the values of registers and memory

data. Particular instructions can be patched in live memory of the malware in order to change

the behavior or explore other malware functionalities. Several breakpoints are set on important

assembly instructions and the debugging process is paused when the breakpoints are hit. Two

types of software and hardware breakpoints are commonly used during the debug. The software

breakpoint is equal to the INT3 or the 0xCC instruction. Upon the execution of this instruction,

the operating system throws an exception and transfers the control to the debugger. Hardware

breakpoints are implemented through dedicated hardware registers and are more robust in dealing

with anti-debugging techniques used in malware. Debugging is an essential step for unpacking and

deobfuscation. It is also important in generating network signatures for the malware. The detailed

process of Citadel dynamic analysis will be presented in Section 5.4.

Memory forensics is another dimension in the malware reverse engineering process. The two

steps involved in the process are memory acquisition and memory analysis. An image is captured

from the malware process memory for extracting certain artifacts or values such as encryption

keys, initialization seeds, and loaded modules. Dynamic memory can be dumped into executable

file images and analyzed statically. For instance, the Volatility framework [63] is an effective tool

for this purpose. It is able to generate executable versions of the running processes and search in

them according to user-specified criterion. Section 5.4.2 elaborates on Citadel memory forensics

and provides examples of the data that are obtained from physical memory.
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2.1.2 Malware Detection Approaches

The most common malware detection techniques rely on hash-based signatures. This scheme can

be easily bypassed by malware through slight modifications in byte level information. Polymorphic

malware can generate several variants based on a similar core. Therefore, detection techniques,

which depend on constant features of malware are more reliable. One such feature is the sequence

and type of API calls in a malware. API monitoring can be done in both the static and dynamic

analysis scenarios. By considering the semantics behind the system and API calls, the investigator

would be able to gain more insights into the intent and inner workings of malware components. As

opposed to signature-based approaches, heuristic-based techniques are shown to be more robust

and promising in detecting previously unknown malware samples [39, 40]. The study in [38] uti-

lizes data mining techniques on different opcode sequences that are extracted from both malicious

and benign binaries. Also, they perform feature frequency analysis based on weighted terms for

selecting pertinent information. The work then uses standard Weka classifiers [27] and reports

training and testing time of several classifiers such as K-Nearest Neighbor, Decision Tree, Naive

Bayes and Support Vector Machines. Anomaly and change detection are two approaches that are

applied for increasing the chance of detecting unknown malware.

2.1.3 Citadel Malware Analysis

The Citadel malware has been chosen as a case study in this work and the reverse engineering

process is discussed in Chapter 5. In this section, the related work regarding Citadel malware

analysis is presented.
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AnhLab has provided a comprehensive static analysis of the Citadel malware [51]. To the au-

thor’s knowledge, this report is the most complete analysis of Citadel malware, which has been

released so far. The process of infection, the structure of the malware binary, and malware’s main

functionalities and features are explained in detail in this technical report. The report gives valu-

able insights on the malware and its capabilities, however, the methodology and steps that were

taken for reaching the outcomes were not discussed. Also, although it is mentioned in the report

that Citadel is remarkably similar to Zeus, the precise quantification of their similarity is not pro-

vided. Only approximate resemblance percentages are given without any details. To compare our

analysis to this work, we provide a new methodology for reverse engineering malware by adopting

clone-based analysis. Following our methodology, we concisely explain the steps that are taken in

reverse engineering Citadel and insights that have been obtained through our study. Additionally,

by leveraging the tools developed in our security lab, we precisely quantify the similarity between

Zeus and Citadel malware.

SophosLabs [52], provided a brief report on Citadel malware. The major enhancements oc-

curred in Citadel comparing to Zeus is explained in high-level and very briefly in this report. No

explanation is provided about the process of reverse engineering the malware and how the au-

thors gained those insights. Indeed, this report gives a decent overview about the Citadel malware

without digging into the details. CERT Polska [53], also provided a technical report on Citadel

malware. Similar to the previously mentioned report, this report is high-level and goes through the

main features of Citadel without providing details. The reports mainly provided statistics focusing

on the impact of the malware and its geographical distribution. The statistics were gathered based

on the traffic to the sinkhole server after the domain take-down. The report by Dell [57] provides
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an overview of the Citadel features and provides a lists of Citadel DNS filter domains related to

Citadel’s DNS poisoning attack.

2.2 Clone-based Analysis

Clone-based analysis is a new approach, which has been recently adopted in malware analysis sce-

narios. Two types of clone-detection techniques are related to the current work. The first approach

is known as binary clone detection, which focuses on comparing two assembly files for finding po-

tential assembly clones [49]. The second approach is called source to binary clone detection [47].

Regardless of the search method, a similarity metric should be utilized for computing the distance

between the clones. For this purpose, representative assembly and source feature vectors are gen-

erated, indexed, and compared against each other. The clone-based analysis is able to find the

previously analyzed code in the disassembly using a repository of source or assembly code. The

following sections present the tools and techniques of this analysis.

2.2.1 Source and Binary Code Similarity

Source-to-source similarity can be measured from different perspectives. The research on source

code clone detection investigates string-based, token-based, structure-based, and semantic-based

approaches for finding similar code [21, 31, 33]. Some techniques are based on direct source code

comparison and others are based on indirect methods [35]. One important application of source

code comparison is in plagiarism detection [34]. In that context, an accurate plagiarism detec-

tion system should be robust to code transformations such as variable and parameter renaming,
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reordering of class attributes and methods, and slight changes in control flow and loop structures.

Generating an intermediary representation of the program code is an important and common step

among most of the approaches. We attain this representation by defining feature vectors similar to

structure-based techniques for online analysis in RE-Source.

Assembly clone detection techniques measure the similarity between two binary files. These

approaches use several layers of pre-processing on assembly mnemonics and operands for gener-

alizing the instructions and registers. Similar to the source clone detection techniques, different

types of clones (Types I, II, III, IV) are defined [17, 23, 49]. Type I clones are know as exact clones

and they may differ in whitespace. In type II clones, the syntactic structure is often preserved

and the variation is related to identifiers, layout, comments, and types. In Type III clones, certain

statements are added or removed from the fragments to further modify the clones. Type IV clones

are know as semantic clones. The detection techniques could be based on text search of identical

byte sequences or token based analysis of n-grams and hash-based fingerprints. Other approaches

consider distance metrics, structural similarity, control flow analysis, memory and window-based

assembly analysis. Besides, hybrid approaches for the definition, extraction, and processing of

clone matching features are also common. The work by Farhadi [48] presents a tool called RE-

Clone for binary clone detection. As it will be discussed in Chapter 5, this tool is used during the

Citadel malware analysis for comparing Citadel versus Zeus. BinDiff [61] is a similar tool which

is used for finding assembly code similarities. HBGary Fingerprint tool [64] is a binay analysis

tool for comparing two executable files. It aims to cluster similar binary files into groups based

on file attributes and development environment. Besides, new fingerprints can be defined for file

classification purposes. Even though most of the features are not at assembly level, it can be used
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as a tool for grouping similar binaries prior to the low-level analysis.

2.2.2 Recognizing Libraries and Program Elements

It is desirable that certain malware components such as standard libraries and function calls be

identified during the initial phases of malware analysis. Many studies have been carried out on de-

tecting library functions in binary files [24, 30]. Some approaches employ byte-sequence signature

matching of function code. Function patterns could be defined as simple as the first n bytes of a

function code [24] or in a more abstract format based on data and control flow analysis [19]. The

intermediary and semantic program representations are best suited for generating patterns that are

used for recognizing program elements. Also, selecting the appropriate features for pattern defi-

nition will have a direct impact on the results of the pattern matching process. It should be noted

that low-level binary code is machine-dependent whereas high-level code is language-dependent.

Thus, generating program patterns based on the intermediate representation is a reasonable ap-

proach, since the essential information can be captured and conveyed for effective pattern recog-

nition. Exact and approximate pattern matching techniques are common for this purpose. Even

though exact pattern matching methods are accurate, they are ineffective in case of slight byte level

discrepancies. On the contrary, inexact or approximate techniques are more robust for finding im-

perfect and rough matches. The problem of library fingerprinting was investigated in [30] and a

method based on semantic descriptors was utilized to identify indirect invocation of system calls

using an inexact pattern matching technique. System calls can be considered as interaction points

with the operating system and could provide significant information on a binary’s behavior. In the

malware context, system calls are typically wrapped by other functions hierarchically in order to
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hide the underlying functionality. Adopting approximate pattern matching methods is the key for

identifying function calls from standard and open source libraries. IDAscope [62] is an excellent

tool for identification of assembly level features such as standard constants used in cryptographic

algorithms. The search can be customized based on user-defined parameters. Furthermore, it pro-

vides hints on the Windows API calls used in assembly functions. This tool uses a Python script

developed by A. Hanel [60] for classifying functions in groups of API calls. We draw inspiration

from this tool and design an extended version, which not only reports on system calls, but also

provides insights into the malware functionalities.

Summary

Malware reverse engineering process consists of static, dynamic, and memory analysis steps and

many tools and techniques are available for supporting the process at each step. This chapter briefly

discussed the process and presented the research related to the main components of the RE-Source

framework. In the following chapter, the elaboration as well as the design and implementation

details of the framework are introduced.
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Chapter 3

The RE-Source Framework

This chapter introduces the foundations of the RE-Source framework and describe the design and

implementation processes. Software reverse engineering is a fastidious task demanding a strong

expertise in assembly coding. Various existing tools may help analyze the functionality of a binary

file without executing it and an interesting step would naturally be the search for the original

source files. The RE-Source framework considers the extraction of features in the assembly code

so that queries can be triggered to a source repository in a reliable way: either (1) the result is a

set of references to the original project files provided they are hosted on the repository or (2) at

least some functionalities of the binary file are unleashed. Such an approach is very promising

given its proved performances in real assembly code applications. The chapter is structured as

follows: In Section 3.2, we present our methodology followed by details of the underlying design

and implementation. Two experimental scenarios are described in details in Section 3.3 followed

by the conclusion.
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3.1 Introduction

Software reverse engineering consists of studying and understanding the process by which a machine-

generated assembly-language program has been created by working backwards [3]. If manually

writing assembly (ASM) code involves specific programming skills, a compiler automatically con-

verts a high level language such as C into a machine code. The ASM analysis becomes extremely

challenging especially if the compiler adds certain optimizations by rearranging the computations,

changing or replacing some operations.

Common reverse engineering practices suggest two approaches, namely dynamic and static,

with the binary file as the starting point. By dynamic approach (e.g., [10]), we mean isolating

the binary file in an application specific environment to model its behavior by execution. Since

this does not necessarily reveal all execution flows, debugging tools (e.g., WinDbg [16], Gdb [5],

Valgrind [15]) are often associated with this method. As long as only the functionality is targeted,

the dynamic approach is acceptable. In other situations, static analysis yields better results and

does not compromise the security requirements of the analysis environment.

The first step of the static analysis of a binary file is the disassembly phase. The disassembler

(e.g., objdump [6] in Linux) is a program considered of invaluable help since it generates the

ASM code of the binary file. At this level, mastering the ASM program representation seldom

leads to fully understanding the program functionalities. More advanced disassemblers such as

IDA Pro [59] are meant to simplify the analysis by offering a rich GUI with the program divided

in blocks and a program flow graph (PFG). A challenging step further is then to obtain a correct

higher level program representation, i.e., the source files. A decompiler (e.g., Hex-Rays [12] or
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TyDec [14]) could help a lot but since there is not always a one-to-one correlation between the

ASM and the source objects, the automatically generated sources may be difficult to follow. For

example, it is not simple to detect the definition of object structures in ASM.

3.2 Design Methodology

The input to our process is an ASM file resulted from disassembling the target binary via IDA Pro.

The specific representation of the ASM, together with its PFG program flow graph, allow us to

consider the partitioning of the ASM code in blocks, each corresponding to begin proc / end proc

where proc stands for procedure. Here is an example of a simple code in C.

int sum(int a, int b){
return a + b;
}

The corresponding ASM code contains a procedure that we can easily identify by its name “sum"

(IDA Pro encloses it with the begin proc and end proc keywords):

sum:

push %ebp
mov %esp,%ebp
mov 0xc(%ebp),%eax
add 0x8(%ebp),%eax
pop %ebp
ret

We thus consider an ASM file as a set of procedures that are to be individually analyzed by

our framework. Each procedure may contain some interesting features (see Section 3.2.2) that our

tool is able to extract and exploit in order to submit queries to a source repository. The result is (1)

either a set of links to pertaining source files referencing the same features, links that we insert as

comments in the original ASM file, or (2) the insertion of a comment about the functionality of the

current procedure after its local offline analysis (cf. Section 3.2.2).
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Figure 3: Algorithm Decomposition.

3.2.1 Modules and Algorithms

We adopt a B-Method like notation [1] to abstract and describe the algorithm implemented by our

RE-Source framework. Fig. 3 captures the RE-Source algorithm decomposition in B-like compo-

nents. Thus we have identified five modules: (1) ASM_Process root machine, which interfaces the

user. It imports the (2) Procedure_Process machine responsible with processing each ASM pro-

cedure: it calls the operations of the (3) Query module in order to submit queries to a set of code

repositories, the operations of the (4) Offline_Analysis module, which is in charge of a local anal-

ysis to extract the program functionality and also the operations of the (5) Commenting module,

which adds the pertaining comments to the original file.

ASM_Process Module

Any ASM file is a SET of PROCEDURES. As we can easily depict from Fig. 4, we take as input

to our algorithm the ASM_Original_file. It is of type PROCEDURES and remains CONSTANT:

these assumptions are captured by the CONSTANT and PROPERTIES clauses. The only variable

we introduce is a set of SOME_PROCEDURES among those presented by IDA Pro that the user
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MACHINE ASM_Process
IMPORTS Procedure_Process
SETS

PROCEDURES

CONSTANTS
ASM_Original_file

PROPERTIES
ASM_Original_file ∈ �(PROCEDURES)

VARIABLES
Some_Procedures

INVARIANTS
Some_Procedures ⊆ ASM_Original_file

INITIALISATION
Some_Procedures := ∅

OPERATIONS
try_read_procedures(procs) = PRE procs �= ∅ ∧ procs ⊆ ASM_Original_file

THEN Some_Procedures := procs

END;

process = PRE Some_Procedures �= ∅ THEN
VAR F1, F2, p IN

WHILE Some_Procedures �= ∅ DO
ANY p WHERE p ∈ Some_Procedures THEN

F1, F2 ← read_features(p); /*from Procedure_Process*/
query(F1); /*op. in Procedure_Process*/
analyse_locally(F2); /*op. in Procedure_Process*/
update(p); /*op. in Procedure_Process*/
Some_Procedures := Some_Procedures \ {p};

END
END

END
END

END/*ASM_Process*/

Figure 4: ASM_Process Module

chooses to analyze. This variable may be modified by the OPERATIONS, which must always

satisfy the INVARIANT. Here, the INVARIANT states that the procedures to be analyzed are part

of the original ASM file. In Fig. 3.2, F1 and F2 correspond to features for online and offline

analysis respectively.
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Procedure_Process Module

For each procedure, there is a phase of ASM features extraction, followed by submitting queries

to source repositories and by performing a local analysis.

Figure 5: Procedure_Process Module

We identify these steps in the process operation of Fig. 4. The Procedure_Process module uses

the services of the Query and respectively the Offline_Analysis modules for the specific query and

analyse_locally operations (Fig. 5). These operations are to be carefully implemented since their
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abstract representation cannot contain too many details. The module states only the permitted order

in which these operations are called via the PRE-condition clause.

The process operation of Fig. 4 considers a last phase of updating: the ASM original file

remains the same, i.e., constant, except for the ASM comments part, which gathers the query

results and the local analysis. Therefore, the result of the entire process is the original file updated

with comments as we shall see in Section 3.2.2.

Query module

Based on the extracted features in a procedure, its role is to construct and submit queries to a set of

source repositories, which are previously known. We could use an instantiated SET of repositories

to capture this detail but for the sake of simplicity, we choose to identify each source repository

with a natural number in the set 1..� where � is the number of repositories as depicted in Fig. 6.

Moreover, we also express the following requirement: a real source repository may not be

queried too frequently and consequently there should be a mechanism to launch the query to a

different queryable repository so that the process does not stop. The straightforward way is to in-

troduce a CONSTANT function SEQ_REPS, which gives the next source repository to query. Im-

plementing this is based on the observation of some query interval slots for each real repository and

by defining thus an order of passing from one repository to another. Then Queryable_Reps(�)

= true means that the � repository can accept a query. This variable is modified in the imple-

mentation of the submit_query operation.

We do not give the B notation of the Offline_Analysis and Commenting modules because their
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MACHINE Query
CONSTANTS

n, SEQ_REPS

DEFINITIONS
Repositories == 1..n

PROPERTIES
n ∈�AT1 ∧ SEQ_REPS ∈ Repositories → Repositories

VARIABLES
Queryable_Reps

INVARIANTS
Queryable_Reps ∈ Repositories → BOOL

INITIALISATION
ran(Queryables_Reps) := true

/* all repositories should be queryable at the beginning*/
OPERATIONS

submit_query(F) = ANY r WHERE Queryable_Reps(r) = true THEN
/*submit query*/
Queryable_Reps(SEQ_REPS(r)) := true;

END
END/*Query*/

Figure 6: Query Module

operations proved to be more challenging to implement at low level. The append_to_log() opera-

tion is meant to save the execution steps in a log file at runtime.

3.2.2 Implementation Details

If a B-like specification is useful to examine the possible flows and to define the operations pre-

conditions and the invariants they have to meet, the validity of the low level implementation is

generally asserted using normal techniques such as testing and peer code reviewing.

Thus RE-Source program implements the algorithm as a Python IDA Pro plug-in. It is worth

mentioning that, unlike the RE-Google plugin [9], our extended version does not rely on the Gdata

framework [8], nor does it utilize Google Code [7] as the only search engine for accessing code

repositories. Instead, it possesses a built-in query processing engine and parsing mechanism for
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handling request/response messages. Furthermore, it supports multiple search engines and it pro-

vides a framework for adding new code repositories with only a few lines of code. Also, the

program makes use of an interleaving time optimization technique for managing multiple search

engines. Despite the large number of request/response messages, it honors the required time delays

between consequent messages without prolonging the processing time.

In terms of extracted interesting features from the ASM code, RE-Google considers only three

features, namely constants, strings, and function imports. In contrast, RE-Source is able to extract

four types of features for online analysis and query building: (1) immediate values of operands,

(2) imported libraries and function calls, (3) exported functions in DLLs, and (4) strings values.

Besides, it considers eight features for offline analysis. For each function, we extract information

about its stack frame: (1) number of instructions; (2) size and number of local variables; (3) size

and number of arguments; (4) size of saved registers; (5) function flags; (6) function addresses (be-

gin, end, return); (7) function prototype (type of input and output and calling convention); (8) calls

to low level system functions (malware dictionary). Moreover, variable scopes (local/stack-based

or global/memory-based) and simple data structures (single variables or structs) are highlighted

for the reverse engineer as well.

Moreover, the program adds better result-handling techniques than RE-Google and an offline

functionality analysis engine. In many situations, online results may not be available due to the

lack of extracted features, obfuscated or hard-coded procedure, use of complex and non-standard

algorithms, etc. Therefore, the offline analyzer is of great benefit for revealing the overall func-

tionality of a portion of assembly code. It has an expandable dictionary of common functions in

Windows API along with a programmer-friendly description of each function.
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Figure 7: Program Execution Flow

Program Execution Flow

As illustrated in Fig. 7, there are five main modules in the Python program for handling tasks

related to features, queries, repositories, parsing and commenting. Except for the Code Search

Engine (3), these modules have a counterpart in the algorithm blocks of Fig. 3. The RE-Source

program interacts with IDA Pro API for getting a list of available procedures in the disassembly,

getting function addresses and names, as well as adding comments to the file.

The execution flow starts in the main function of the script where the initialization of variables

and execution-time calculation is done (Initialize(RESrc_Vars)). Then, the script checks a variable

(flag) to determine whether the search should be performed on a specific function or on all the

extracted functions from the disassembly (RESrc(asm_function_list)). In the first case, the user

highlights a specific function for search and in the second case all the functions are taken into

account. In the next step, the RESrc function counts the total number of available procedures
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and prepares a loop for analyzing each item. Then, a function will be called for extracting four

types of features namely: constants, imported libraries, exported libraries and string values from

the disassembly. The output of the Extract_QFeatures() function is a potential list of features that

could be used for building a general query. This list will be refined in several layers before building

a specific query. Next, the features for offline analysis are extracted using Extract_OAFeatures()

function.

feature_qlist ← Extract_QFeatures( asm_function )
feature_oalist ← Extract_OAFeatures( asm_function)

// OA for Offline Analysis
feature_listfunc_i = [ fi1, fi2, ..., fin ]

refined_qlist ← Refine_GQuery( feature_qlist )

The initial purpose of the Offline Analysis (O.A.) module was to compare a function with a list

of known Windows API functions in order to get a simple statement about the functionality and

prototype of the procedure under analysis. In Chapter 4, we show how to extend this mechanism

for providing an advanced mapping. Also, this module assists the reverse engineer by highlighting

the variables and their scope.

The purpose of the Refine_GQuery() function in the refining process is to filter out certain

characters from the feature list to prevent problems with search engines queries. For instance, the

search engines may not allow characters such as “%”, “,”, “’” as part of query string to prevent

SQL injection. Therefore, the output query is safe for submission to code search engines. How-

ever, the user can define what characters are blacklisted by adding ‘badkey’: ‘value’ pairs into the

“BlackDict” dictionary. For instance, the keys in the following dictionary are simply replaced with

the ‘’ character, which is equivalent to removing them from the search string.

BlackDict = {‘%d’:‘’, ‘%s’:‘’, ‘\\’:‘’, ‘%1’:‘’, ...}
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Also, this function encodes and prepares the list for the next steps of specific query building:

base_query ← Generate_Query( refined_qlist )

At this step, we have a base query that can be further encoded for particular search engines.

Search engine-specific prefix and suffix will be added to each base query to build a standard query.

The following functions are examples of query building functions for three major code search

engines.

final_queryKoders ← Build_Koders_Query( base_query )
final_queryGCS ← Build_GCS_Query( base_query )

final_queryKrugle ← Build_Krugle_Query( base_query )

The next step is to submit the query and get the response for each respective search engine.

The order of query submission and response extraction is important for time optimization. Usually

there must be a time delay between two subsequent requests to a search engine (SE). The program

uses an interleaving technique for managing the query submission and for saving processing time

(an example is hown in Fig. 8).

Figure 8: Search Engine Time Interleaving.

For each query, a request is made and the response page is received in HTML format.

html_pagej ← Fetch_Response( final_queryj )
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After getting the page, a call to the local parsing function will be made to extract relevant informa-

tion based on a predefined regular expression statement for each search engine. Then, the matching

filenames and URLs are extracted and stored in a dictionary. The Parse_Page() function re-

ceives a web page that contains tabular information about matched projects and files. Then, it

searches the page for instances of data which match the regular expression and return the values as

output.

dictionary_list ← Refine_Results( Parse_Page( html_page ) )

The results are processed and duplicate results are removed from the list. Also, based on the

search engine rankings, the best matches are selected and given priority. Lastly, the comments are

updated to reflect the online search results.

function_comment ← Update_Commentfunction_k(refined_dictionary_list)

In the next section, we present a practical application of the RE-Source framework in analyzing

an open source software.

3.3 Experimental Results

We have adopted the PreciseCalc Project [11] given that both the sources and binary files are

available on SourceForge and Koders (http://www.koders.com) as a code search engine. As an

input to our RE-Source IDA Pro plugin, we use the assembly file resulted from disassembling

the PreciseCalc binary. There are 533 assembly procedures and we choose to analyze the total

disassembly.
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Figure 9: Feature Extraction (excerpt from the log file).

The Extract_QFeatures() function is able to extract features from 67 procedures. If

there are at least two elements in the Imports list, or the joint set of Constants and String List

is non-empty, then the script would try to find an exact match by concatenating all the elements.

This is an ideal situation where the query would be expressive enough in terms of number, and the

type of elements. If no exact match is found then the search would be based on the strings inside

the binary. If the length of String List is larger than one, then the search query will be built by

concatenating the String elements. Finally, if there is at least one element in the Constants List

but the results set is empty, the script will perform the search by building a query based on the
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Func. no. Function ID @ Address Source Code Link Match
70 [sub_406800] @ [0x406800] complex.cpp 100%

146 [sub_409620] @ [0x409620] lang.cpp 100%

159 [sub_40A1E0] @ [0x40a1e0] matrix.cpp 100%

261 [sub_4119B0] @ [0x4119b0] parser.cpp 100%

334 [sub_417B20] @ [0x417b20] preccalc.cpp 100%

Table 1: Identified Source Codes.

concatenation of constant elements.

The conditional rules for defining each case can be altered based on the application under

analysis and the number of available elements in the extracted lists. Generally, there are more

elements in each list when the application makes use of standard Windows libraries.

Fig. 9 shows four examples of interesting features extracted by the Extract_

QFeatures() function. In the first case, the search is merely performed based on the constants.

Example 2 shows a situation in which only string information is available. No import lists are

detected for the first two cases. Conversely, in examples 3 and 4, sets of imported function names

are included in the search. The original PreciseCalc project can be accurately identified by submit-

ting a query containing portions of the strings in example 3. Even if an exact match is not found,

RE-Source will try to find a close or a rough match based on a combination of features. New rules

can be defined for combing the extracted features, depending on the analysis scenario.

RE-Source was able to detect several references to each source file in the original project.

The PreciseCalc application includes functions that handle text editing, GUI processing, timing

and registry modification, alongside the arithmetic, statistical, geometrical and other math-related

functions.

Table 1 shows sample results of the identified C++ source code. The identified links and filenames
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are inserted directly in the assembly file. There are several references to the main “preccalc.cpp”

file. For instance, the functions at addresses: 0x417b20, 0x41b2d0, 0x4190c0, 0x419ab0,

0x41a2b0, 0x41b4a0, 0x41be70 and 0x41c1f0 were referencing the main C++ file in

the project. Fig. 10 shows one of these references. Besides, it has detected several math-related

functions in the disassembly. The script has generated a comprehensive execution log that is self-

explanatory and describes the analysis process. Even though the initial version of RE-Source did

not include heuristic query processing techniques, it was able to detect more than 70% of the

original source files with an accuracy of 100%. We had access to the original source code of the

project. Therefore we were able to validate the accuracy of the results manually. Also, the script

is useful for gaining insight into the functionality of the assembly file.

Figure 10: Identified “precalc.cpp" File @ 0x41B2D0.

Concerning the offline analysis module, the current implementation includes a dictionary of

common Windows APIs, which includes a brief description of each function. This dictionary

was built with malware analysis in mind. Therefore, it includes about 200 of the most common
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kernel and user level functions known to be used by existing malware [41]. The offline analysis

comments are appended automatically based on the type and classification of system calls in the

each assembly function.

(a) Routine involving file I/O

(b) References to some networking services

Figure 11: Examples of the Comments for File I/O and Network.

In our second scenario, we run RE-Source on several malware disassemblies. The offline ana-

lyzer helps the reverse engineers to understand network connectivity and data gathering function-

alities of malware by adding relevant comments. In Fig. 11, there are several routines of malware

performing file I/O operations and communication with a remote command and control server.

In cases where RE-Source returns results from both the online code repositories and the offline

analyzer, an emergent consistency is observed. As an example, Fig. 3.12(c) depicts a portion of

assembly code that is capturing the screen and saves it to a file to be remotely transmitted. As can

be seen, RE-Source gives reliable information in both offline and online comment sections.
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(a) Offline analysis only

(b) References to system services

(c) Routine revealing screen capture functionality

Figure 12: Examples of the Final Outcome.

Discussion

A side by side comparison between outputs of RE-Google and RE-Source was not possible because

the underlying search framework of RE-Google had been deprecated. In other words, RE-Google

is not functional anymore. RE-Source takes an intra-procedural approach to extract features and

builds queries. It could be argued that an inter-procedural approach could improve the accuracy of
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the online analysis. However, the search engines provide limited commands for executing logic-

based queries and some of them do not provide direct APIs to their repositories. Adopting a

heuristic query building algorithm that tries different elements in the query string and selects the

best match could improve the accuracy of the identified online projects. As to the accuracy of

the offline analysis, it clearly depends on the number and selection of the functions defined in

the dictionary. In a situation where we have results from both the online and offline analyzers,

the reverse engineer would have the maximum information. This happens when programs make

use of standard libraries such as VCL or MFC. In other cases, there might be no results from

the online module, this happens when malware authors use non-standard components or they use

certain wrappers around standard system calls. Also, they might use non-standard low-level kernel

functions for performing simple I/O operations.

3.4 Summary

Software reverse engineering is a complex task. Applications like, malware analysis can benefit

from a framework that is able to provide information about the matching between open source and

assembly code. In this chapter, we established a framework to develop such a tool that exploits

features existing at both the source and the assembly file levels. Based on these features, queries

are triggered on certain online repositories used by the developers’ community. If there is no query

result, the tool is still able to provide some information about the functionality of a portion of the

assembly file by a local offline analysis. The reverse engineer’s task is thus greatly simplified. In

the next chapter, we provide an elaborate discussion on the extension of offline analysis.
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Chapter 4

Design Methodology for RE-Source

Extensions

A design methodology is presented to enhance the process of assembly to source code mapping

based on incremental learning of feature vectors. Using a semantically consistent path in a cus-

tomized code repository, reference functionality patterns are generated, which are later used for

classifier training. Unforeseen feature vectors are extracted from all functions in malware disas-

semblies and compared against the base classes. The result of the comparison is either a function-

ality tag or a suggestion for manual review. In situations where a classification decision cannot be

reached, the reverse engineer’s feedback is treated as a new learning sample. Over time, the per-

formance of the system is improved through an active learning mechanism. The proposed method-

ology has been implemented as an extension to the offline analyzer of the RE-Source framework.

In the previous chapter, we introduced the RE-Source framework. The proposed methodology

to extend the framework is presented in Section 4.2. In Section 4.3, we discuss the experiments
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and report the results. Finally, conclusions are made in Section 4.4.

4.1 Introduction
Malware analysis is a critical area in computer security, which has gained unprecedented atten-

tion due to global malware threats. The complexity of malware attacks has increased rapidly and

smarter solutions are required to keep up with the emerging threats. Many studies have focused on

malware detection techniques and different approaches have been proposed to address the problem

[26, 39]. As opposed to traditional signature-based detection methods, data mining techniques and

tools have been shown to be effective for the detection and classification of new malware [38, 40].

In malware analysis scenarios, tagging a suspicious binary as malicious or benign is insufficient.

More specific information is required on the real intent and inner workings of the malware in a

timely manner.

During the initial phases of a malware analysis process, efforts are made for gaining essential

information about the potential capabilities and purpose of the malware sample. These information

will help in recognizing the target of suspicious code and guide the mitigation process of infected

systems [32]. The investigation process entails a series of static code analysis steps followed by

dynamic monitoring of malware for dissecting the local and network-related behavior. Although

static and dynamic analysis tools are widely available, an in-depth and time-consuming process of

reverse engineering must be followed before any conclusions can be drawn on the potential func-

tionality of a malware. Thus, advanced techniques and tools that accelerate the reverse engineering

process are needed.

The primary objective of this chapter is to present a methodology together with the underlying
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techniques that can be used to obtain the malware analysis results faster and more accurately. Its

output is in the form of human-readable statements and can be used in investigation reports. The

present work is an extension to our RE-Source framework [47]. We contribute by extending the

offline analyzer module for active/incremental learning of code functionality based on reference

patterns. A local code repository is introduced, which organizes source code based on a set of

functionality topics related to common building blocks of malware components. Each category of

malware functionality is referenced hierarchically by a path in the repository, which is semantically

related to the main topic of the path. The source programs that are referenced in each path share the

domain and context of the topic’s functionality and have some features in common. Feature vectors

are then generated for representing source level information and the corresponding programs are

built in order to generate the binary version of source level features. Furthermore, by having

access to source level and binary-level features of the same functionality, a mapping is formed and

learned by a classifier. Once a new binary-level feature vector is encountered, the system is able to

find the closest class of functionality based on the recognized reference patterns. This process is

applied incrementally on every function of a malware in its disassembly form. The outcome of the

classification phase is either one or more class tags associated with the potential functionality of

the code, or a message that suggests a manual review by a reverse engineer. Following the manual

review, the system will use the feedback from the reverse engineer along with the representative

feature vectors of the function under analysis as a new learning pattern, and will use it to improve

the accuracy of the supervised learning process. Over time, the system will improve the mapping

between reference patterns and the semantic functionality classes.

In our malware analysis approach, we utilize data mining and machine learning techniques
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for a different purpose. Rather than using them for classifying files as malicious or benign, we

apply them for gaining insights into function semantics, i.e., for getting a high-level picture of the

malware code functionality by incrementally learning joint feature vectors and functionality tags.

Also, we integrate an active learning paradigm which is meant for improving the mapping between

representative features of source and assembly by getting feedback from the reverse engineer in

malware analysis scenarios.

4.2 Methodology
In this section, we present the proposed methodology and formalize each step of the process using

set theory notation. The algorithm comprises two parts: (1) Algorithm 1 summarizes the process

of feature extraction, program generation and classifier training for the base reference classes,

and (2) Algorithm 2 describes the process of matching an unforseen binary feature vector against

reference classes. The classification decision is reached by testing the classifiers with extracted

features from the target file.

4.2.1 Approach Overview

In our approach, we focus on creating functionality-oriented reference patterns for source code

and their corresponding assembly format. In the initial phase, we utilize a number of standard

libraries and open source code repositories for building a searchable index of exported function

prototypes. For each indexed function, we generate a source-level signature based on the function

name, typing information, arguments list, return values, and domain information. These signatures

are maintained for extended library recognition.
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In the second phase, the following steps are performed in an incremental fashion: First, we

define reference base classes of code functionality from the perspective of operating system inter-

action. Each class encapsulates relevant system calls and data structures. This step is then followed

by a compilation phase of a small program that imports and calls functions from the reference class.

The output program is dependent on user-specified configurations and compilation settings. Sub-

sequently, a binary file and the resultant disassembly of the program are built and stored locally.

Secondly, an intermediary representation of joint feature vectors is synthesized, which takes into

account information from high-level source code, signatures, and the low-level disassembly.

The aim of the third phase is to generate an API-based functionality dataset using the crafted

feature vectors and the class tags. Each data entry in the dataset corresponds to attributes of a

specific program that implements representative methods of the reference class. The dataset is used

in a supervised learning process in which different classifiers are trained with correlational data of

reference tags and feature vectors. Furthermore, the training data are eventually updated according

to the feedback received from a reverse engineer, as an active learning process. The outcome of

this phase is a classifier capable of recognizing new code based on its potential functionality.

After preparing the dataset and training the classifiers, a new feature vector can be categorized

into one of the predefined classes. This step is done by measuring the similarity between the new

program instance and the existing patterns. The new feature vector characterizes the extracted

features from a program, or a subset of the program in assembly format. The new analyzed sample

will be added to the training set later. As an optional step in the algorithm, a reverse engineer could

provide feedback on the quality of the classification after analyzing the subroutines manually.

This feedback would be used to adjust the classification output for future samples and could be
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considered as reinforcement feedback.

4.2.2 Building a Customized Local Code Repository

Many code repositories group source files by project. Each project contains different source files in

several levels that together form the building blocks of a software application. A makefile config-

uration can be defined for a project path to guide the compilation, linkage, and binary generation.

We take an alternative approach for building a local code repository. Instead of storing files

by project, the files are grouped into logical fragments according to the code functionality. The

reason behind this decision is to generate a collective feature vector for each representative group

and train a classifier in later steps. The intuition is that fragments with a mutual purpose have some

features in common. The similarity could be due to the domain/context information in program

identifiers/comments, structural similarity in data type definitions, function calls from standard or

common libraries, control or data flow information, or other lexical attributes of a programming

language [34, 35]. For instance, consider having a group of code written in C++ that points to the

socket network connections for creating multi-threaded TCP servers, cf. Figure 13. Essentially,

this group will have common features for structures, callbacks and system calls of socket APIs.

Likewise, cryptographic algorithms that perform the same type of encryption or decryption have

some features in common. The similarity could be related to the constants for key definition and

initialization or to the implementation building blocks.

The code classification process can be done in several ways such as supervised, conducted by

a reverse engineer, or unsupervised clustering based on frequency-based attribute rankings [25].

This process could be thought of as a dataset generation procedure. A local code repository with
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Figure 13: Sample Structure for the Code Repository.

indexing capabilities is designed for storing the initial files and it is incrementally updated through-

out the execution of our system. A formal description of the repository is presented in the following

sections. The used notation come from set theory and the required operators are defined in Table 2

in which x and y are variables, s, t, u and v are sets, while q and r are relations [1]. For instance, r

∈ s ↔ t.

4.2.3 Source-Level Feature Vectors

Let S be a source code repository structured by a finite set of n topics. The topics can be considered

as labels (tags) for different categories of program files, i.e., Tn = {Γ1 , . . ., Γn}. Each item Γi is
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Operator Definition Condition
↔ � (s × t)
r−1 {y, x | (y,x) ∈ t × s ∧ (x,y) ∈ r } r ∈ s ↔ t

dom(r) {x | x ∈ s ∧ ∃ y . (y ∈ t ∧ (x,y) ∈ r)} r ∈ s ↔ t
ran(r) dom(r−1) r ∈ s ↔ t

q;r {x,z | (x,z) ∈ s × u ∧ ∃ y . (y ∈ t ∧ (x,y) ∈ q ∧ (y,z) ∈ r)} q ∈ s ↔ t, r ∈ t ↔ u
id(s) {x,y | (x,y) ∈ s × s ∧ x = y}

u � r id(u);r r ∈ s ↔ t, u ⊆ s
r[v] ran(v � r) r ∈ s ↔ t, v ⊆ s

s � t {r | r ∈ s ↔ t ∧ (r−1;r) ⊆ id(t)}
s → t {f | f ∈ s � t ∧ dom(f ) = s}

x �→ y x, y

Table 2: Basic Operator Definitions (B-Method)

defined to be a set of nested subtopic hierarchy of depth d in the form of τ i1 ⊂ τ i2 . . . ⊂ τ id such that

τ i1 represents the most specific, and τ id denotes the most generic topic. Moreover, the repository

comprises a set of paths called P = {ρ1, . . ., ρk}, which jointly addresses the total logical storage

space in S. The code repository hosts a set of source files, SF (the folders are also files). Each level

in the hierarchy corresponds to a logical location in the repository. We denote each file as fL<i, ρ,

τ>, where L shows the language (e.g., C++), i is a unique index, ρ is the file path (such that ρ ∈ SF

↔ SF and ρ ∩ ρ−1 = ∅) and τ is a topic tag, given to the file. The language L is made of a set of

keywords that is denoted as
∑

L = {ω1, . . ., ωn} and a set of user-defined identifiers. Each program

can be considered as a representation of concepts, which are stated in lexical terms using language

keywords and identifiers. Also, we assume that the path ρ is addressed by a given namespace, Nρ.

If SN is the set of all namespaces (e.g., Sys, Net, TCPSrv, are members of SN), then Nρ ∈ SN

↔ SN (with Nρ ∩ Nρ
−1 = ∅). For instance, Nρ = {(System �→Net),(Net�→Sockets)} captures the

System::Net::Sockets C++ namespace. To simplify the notations, we denote: {(α1 �→α2),

(α2 �→α3), . . ., (αm−1 �→αm)} in a more compact way as [α1.α2. . .αm]. We also introduce a function
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ls, which takes a path and returns the set of files, which are included in that path, i.e ls[{ρ}] ∈�(SF)

where � stands for the power set.

We call a path ρ to be semantically consistent with regards to the topic τ , if there is an agree-

ment (consistency) between the topics of files, and topics (labels) of the namespace. In other

words, the file topics and path topics come from the same domain. We assume that this condition

is true for all files and levels in the namespace. We denote such path as ρψ. Implicitly, this path

forms a concept hierarchy.

Source files written in one language, which are grouped under the same topic and path, are

considered to have a semantic connection. In other words, given a semantically consistent path ρψ,

a representative feature vector
−→
V ρψ can be generated for capturing pertinent source-level features

associated with domain ρψ such as classes, structs, interfaces, enumeration, delegates, attributes,

methods and properties.

We define λ ∈ ls[{ρψ}] → −→
V ρψ as a feature selection function which takes the set of files

under a semantically consistent path as input and builds a set of n-dimensional feature vectors

−→
V ρψ = <v1v2. . .vn> in which merely the n most significant attributes are retained with regards

to the topic. Latent semantic analysis (LSA) is a technique for extracting a set of concepts from

documents and finding the associations between the terms in a domain [25]. Latent analysis models

can be used for clustering related concepts together and for reducing the size of data. In this

context, LSA can help with the identification of significant attributes of a topic based on the term

frequencies of the domain. The above defined λ utilizes a ranking functionality based on LSA and

a parsing mechanism T ∈ SF � Tn as a partial function for generating the representative feature

vector for a given file.
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4.2.4 Source-Level Function Signatures

We define FP ∈ argt ↔ rett to be a function prototype that describes the input and output parameters

and types of each function. In this notation, argt is the list of input arguments and their types t.

Similarly, rett is defined as the list of return values and their corresponding types. Each item in the

list is represented using a key/value pair.

The parsing function Par ∈ ls[{ρψ}] � FP is defined to take as input the source files in path

ρψ and generate a list of function prototypes for them. This list contains symbol names and it is

used for generating a unique signature by applying two hash functions h1 and h2 on prototypes and

symbolic elements referenced in the body of each function. Signatures are compiled for all items

in the path by calling a signature maker function Sig ∈ FP → sig (where sig is a set of signatures).

This process is applicable for generating signatures from shared libraries.

4.2.5 Making Programs with Chosen Components

Let CL be a compiler that generates a set of programs Prg from the set Src of source files in a

development environment Dev. We denote such mapping by CLDev ∈ Src → Prg, which abstracts

object generation and linkage as well. Also, let DC be a disassembler that maps Prg to an interme-

diary set of files ASrc, which is a different representation of the original Src files. We present this

function as DC ∈ Prg → ASrc. The mapping relation mCL between ASrc and Src (mCL ∈ ASrc ↔

Src) depends on the compilation settings, development environment, and configurations. By tak-

ing a reverse engineering approach and observing mCL for n selected programs {Prg1, Prg2, . . .,

Prgn} with chosen internal components from
−→
V ρψ and function prototypes FP, one would be able

to unleash the fingerprints of the CL and gain information about development settings of Dev. If
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Table 3: Portion of the Assembly Feature Vector.

the programs Prgi are expressive enough in terms of representative
−→
V ρψ features, they can be used

for creating reference patterns of semantic program functionality in ASrc form. Even though there

are virtually unlimited number of programs that can be written to perform a similar task, they can

be considered similar up to some level of abstraction. A properly generalized reference pattern can

capture a high-level picture of the code.

4.2.6 Binary-Level Function Patterns

Analyzing functions in assembly format is a challenging task. Marking the correct boundary,

scope and range of each assembly routine is usually the first problem to solve. Also, distinguishing

between the code and data is equally important. It is assumed that these steps are handled by the

disassembler using a robust heuristic technique. Thus, we focus on generating patterns from the

disassembly. It is important that library and standard functions be separated from non-standard

ones during the analysis. Several types of binary-level signatures are considered for matching

source-level information with a binary file. First, a byte pattern signature Bsign = (b0b1. . .bn−1) is

defined as a sequence of bytes of length n in the binary format. This pattern is mostly used for

identifying an exact match related to crypto signatures. An example in hex format follows:

BSHA256−PKCS
= \x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65

\x03\x04\x02\x01\x05\x00\x04\x20
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Figure 14: CFG of an AES-based Encryption Function.

In case of an obfuscated code, byte patterns might not be effective due to the lack of static

features but the system can set a flag for the obfuscated section. Secondly, a binary feature vector

−→
V Bf

= <v0v1. . .vn−1> is created by fingerprinting each function in the assembly form. Table 3

shows parts of the features that are used for building
−→
V Bf

when analyzing the functions in the

disassembly form. Each feature vi can hold values such as constants, strings, library imports,

function names, calls from/to, API and library calls, basic block information, flags, arguments,

and stack frame information. Also, the features are grouped together by their categories labeled

as types t. Thirdly, region vectors
−→
V BR

are also generated by marking the regions in assembly,

which contain a distinctive property according to an entropy-based analysis [20]. For instance, if

the ratio of arithmetic/logical operations is higher than a predefined threshold, the region is marked

as potential crypto operations.

Likewise, a flag is set for identified packed code according to PE section sizes by comparing
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the ratio of virtual size to the size of the raw data. Fourthly, for detecting APIs and system calls,

a recursive traversal through wrapper functions might be necessary to spot the target call. This is

achieved by identifying the potential wrappers and storing only the final API as a feature. There

could be correlational patterns between some features in the assembly vector. For instance, Fig-

ure 14 shows the control flow graph (CFG) of a function, which calls an AES encryption function

from the OpenSSL library [36] to encrypt data before transmitting it over a socket connection. In

this case, prior to the encryption operations, a call is made to set the buffer memory along with

the encryption key. An analogous scenario holds true for the decryption case. Therefore, an emer-

gent pattern can be observed, which includes similar values for vector elements. In this case, a

frequent sequential pattern is formed that can be used to identify calls to crypto-related functions.

Finding such patterns are important in classification steps for recognizing general classes of code

functionality.

4.2.7 Function Classification Based on Assembly Vectors

Following the generation of
−→
V Bf

for all functions in assembly form, a classification can be made

according to the similar features which could be an indication of potential code functionality.

Figure 15 is an example of feature extraction from a piece of assembly. Initially, a dataset ds is built

using the set of
−→
V Bf

binary vectors and the features are then refined using a normalization phase.

This process is used for validating feature values and it filters out illegal characters according to

a predefined blacklist. The result is a normalized version of the dataset ds. Besides, this function

generalizes certain features of the assembly associated with memory addresses, registers and data

values. At this point, the dataset can be queried based on user-specified attributes.
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A matrix structure is created by function B ∈ ds → [mij]
vn based on a particular feature vn or

for all selected features. For instance, in the following data matrix, Ai indicates the API call labels

and f i represents functions in the disassembly. The letters a, b, c, d, . . ., indicate the number of

occurrences of each API call. The numbers are used for term frequency analysis. Depending on

the analysis scenario, a different set of features can also be used in place of each Ai.

[mij]
An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 · · · An

f1 a · · · b

...
...

. . .
...

fm c · · · d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A similar structure with binary values is also used for bitmap indexing for a quick search in

vectors. The bitwise structure is beneficial for dimension reduction and for replacing string values

with single bits, which leads to computational savings. A similar matrix can be formed for other

features with the purpose of function classification and for grouping the functions based on similar

classes of API calls.

The idea is to learn the mappings between the representative feature vectors of source, namely

−→
V ρψ and assembly level vector

−→
V Bf

for the files in each semantically consistent path ρψ. This will

help for grouping the representative functions into the right clusters according to a higher level

semantic functionality. Despite the fact that the exact lexical elements of a program Prgi can be

re-arranged to form a new program, the inherent information about the program’s domain, which

is expressed through the path ρψ helps classify the program into the correct group of functionality.
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Figure 15: Assembly Feature Extraction.

For instance, it can be seen that for many crypto-related functions, certain features such as I/O

operations, file stream manipulation, buffer flushing, calls to encryption or decryption functions,

and permission attributes are in common, regardless of the way the program is organized.

4.2.8 Matching Binary-to-Source Patterns

A data matching process involves several key steps [18]. The primary step is to refine the attribute

and value pairs of two vectors to ensure integrity and consistency. Due to the high computational

complexity of data matching, an indexing step is required for efficient data handling. The index is

then used in a pairwise comparison step for finding the potential matches. The final outcome of

this process is a tag from the result set of Res = {M, N, P, Z} where the elements stand for match,

non-match, potential-match and no-decision respectively.

1) Mapping Rules and Search Based on Language Structures

Assuming that the language L was used to create Prgi under the development environment Dev, a
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set of mapping rules Mi is predefined for describing the relationship between the multiset of struc-

tures in program’s assembly and structures associated with keywords ωi from the set of language

keywords
∑

L = {ω1, . . ., ωn}. For instance, for a binary program Prgc written in C++, the rules

M can help correlate assembly-level to source-level features such as the primitive and composite

data-types, structures, arrays, methods, constructors, destructors, virtual and non-virtual functions,

and other language specific features such as name mangling, method overloading, inheritance, etc.

Once the mapping rules Mi have been defined, a search in S can be done by supplying pairs in

the form of term:structure similarly to the online analysis [47]. This searching scheme is useful

for finding source-level features such as class methods, constructors, destructors, attributes, type

declarations, interfaces, objects and fields.

2) Incremental / Active Learning Process

The process of incremental learning is initiated using the normalized ds dataset, which contains the

instances of reference base classes. Each sample in this dataset specifies a class tag C and the joint

feature vectors of assembly and source in form of C:{Ssrc1 , Basm
1 , . . ., Ssrcn , Basm

n } where the values

of Si and Bi (standing for source and binary feature vectors) are obtained from generalization of

features in ρψ,
−→
V B according to the mapping rules Mi. The initial classifier training is completed

with reference patterns in ds. For previously unseen vectors with classification results of P (po-

tential match) or Z (no-decision), a manual review is performed and the corresponding tags and

feature vectors are used as active learning samples for improving the accuracy of the supervised

learning process. There are several learning models that are suitable in this scenario.

3) Multi-Class Support Vector Machine Classifer
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Algorithm 1: Feature Extraction and Training for Reference Classes

/* (I) Building a Customized Local Code Repository */
Input : P = {ρ1, . . ., ρk}, Tn = {Γ1 , . . ., Γn}, SF1

Output: local_repository with tagged files, i.e., fL<i, ρ, τ>2

1 RepositoryBuilding =3

foreach ρ in P do4

foreach fL in path ρ do5

assign (fL, τ , i);6

end7

/* (II) Generating Programs */
Input : Dev, CL, Src ⊆ SF8

Output: CLDev, DC, sig set of known signatures9

2 ProgramGeneration =10

Prg, CLDev, ASrc, DC := ∅, ∅, ∅, ∅;11

foreach src ∈ Src do12

prg ← compile (src);13

Prg, CLDev := Prg ∪ {prg}, CLDev ∪ {src �→ prg};14

foreach prg ∈ Prg do15

asrc ← disassemble (prg);16

ASrc, DC := ASrc ∪ {asrc}, DC ∪ {prg �→ asrc};17

foreach asrc ∈ ASrc do18 −→
V BF

,
−→
V BR

← extractFeatures (asrc);19

Bsign ← matchSignature (asrc, sig);20

end21

/* (III) Extracting Source Level Features */
Input : ls, parsing mechanism T22

Output: Par, Sig, λ23

3 SrcLevelFeatureExtraction =24

Par, Sig, λ := ∅, ∅, ∅;25

foreach ρψ do26

foreach file in ls[{ρψ}] do27

proto ← extractPrototype (file);28

sign ← genSignature (proto); //generate signatures29 −→
V ρψ ← applyMechanismT (file, proto, sign);30

// generate representative feature vector31

Par, Sig, λ := Par ∪ {file �→ proto}, Sig ∪ {proto �→ sign}, λ ∪32

{file �→ −→
V ρψ};

end33
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Algorithm 2: Matching Decision for Target Files

/* (I) ASM to Source Matching */
Input : the set of target_file functions, set of Mi mapping rules1

Output:
−→
V BF

,
−→
V BR

for the target file and on-line analysis results2

1 ASMToSrcMatching =3 −→
V BF

,
−→
V BR

← extractFeatures (target_file);4

refine (
−→
V BF

); //based on a dictionary of black list characters5

foreach function in target_file do6

onLineAnalysis (function, local_repository);7

end8

/* (II) Classifying each Function of the Target File */
Input : the set of target_file functions and Res = {M, N, P, Z}9

Output: classification tag for each function10

2 FunctionClassification =11

foreach function in target_file do12

res ← classify (function);13

if res ∈ {P,Z} then14

manualReview (function);15

updateTrainingSet (function);16

incrementalLearning (res,
−→
V BF

,
−→
V BR

);17

displayClassificationResults ();18

end19

We utilize Support Vector Machine (SVM) as our classifier in the experiments. SVM is a promis-

ing supervised learning model for classification (SVC) and prediction (SVR) that can be applied

on linear and non-linear data [28]. It works by transforming the initial dataset into a higher di-

mensional space in which it searches for one or more hyperplane decision boundaries. During

the training phase, the SVM tries to maximize the marginal hyperplane for separating the classes.

Several approaches are taken for dealing with a multi-class problem. One solution is to treat the

problem as multiple binary classification problems for separating one class against all others. Al-

ternatively, a pairwise classification method is used so that one SVM is employed for each pair

of classes. The final classification label is determined by the classifier which scores the highest
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value or by a voting heuristic. For an n-class problem, n(n− 1)/2 classifiers are trained in the one

against one approach and n classifiers in the one against all scenario.

Support vector classification solves the problem of minw,b,ξ(
1
2
)wTw + C

∑n
i=1 ξi subject to

yi(w
Tϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n where xi ∈ Rp, i = 1, . . . , n is the two-class

training vector and y ∈ Rn is a vector such that yi ∈ {1,−1}. The model is also denoted as

minα
1
2
αTQα − eT subject to yTα = 0, 0 ≤ α ≤ C, i = 1, . . . , l where e is an all one vector,

Q is an n × n matrix, Qij ≡ K(xi, xj) and ϕ(xi)
Tϕ(x) is the kernel. The function ϕ maps the

training vectors into a higher dimensional space. Lastly, the classification decision is made using

the sgn(
∑n

i=1yiαiK(xi, x) + ρ) function [37].

4.3 Experimental Results

We have conducted two sets of experiments to evaluate the proposed methodology. The first ex-

periment demonstrates the performance of the system in identifying four functionality classes of

cryptography, file processing, service manipulation, and networking using only the assembly level

features as input. The second scenario demonstrates function classification in malware binaries

with regards to the same four base classes.

4.3.1 Classifier Training with Reference Functionality Classes

Malware functionality can be analyzed from different perspectives and the proposed methodology

can be implemented based on the scenario. In this experiment, we are interested in identifying the

potential malware functionalities that are related to data encryption and decryption, processing of
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Class Tag Number of Attributes
Src Reduced ASM Reduced Joint Final

1 Crypto 3674 14 1392 29 43 31

2 File 237 9 1061 24 33 31

3 Service 50 5 974 15 20 21

4 Network 281 5 1158 24 29 21

Table 4: Initial Numbers of Features for the Base Classes.

files, manipulation of system services, and network connectivity. Therefore, we define a set of four

functionality class labels of F = {C, F, S, N} respectively.

1) Data Pre-Processing and Feature Groups

The training data are processed in several steps according to the methodology before they are used

for classifier training. During these steps, the number, structure, types, and values of the attributes

are verified and inconsistencies are resolved. Also, during the feature selection process, an effort

is made for retaining the most informative attributes. We have used 40 source files for each func-

tionality class from the corresponding path in the repository and generated the reference patterns.

The crypto class C has been defined based on all functions in the OpenSSL library [36] and crypto-

related Windows API functions. Table 4 shows the number of features during different steps of

data pre-processing for each class. The initial features included 3,485 functions from OpenSSL

and 189 from Windows API crypto and hashing functions. To reduce the number of features, we

have applied a feature selection and generalization phase to retain 14 general crypto classes instead

of the specific function names before training the classifiers. Introducing this layer of abstraction

helped with the categorization of functions according to the algorithms of: (1) Windows crypt (2)

Windows cert (3) symmetric ciphers (4) public key cryptography (5) certificates (6) hash functions
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(7) data encoding (8) internal functions (9) SSL session (10) SSL connection (11) SSL cypher (12)

SSL context (13) SSL method (14) other function. To generate the assembly from a number of pro-

grams that were built with crypto components, we used IDA Pro [29] and utilized our customized

signature file for OpenSSL libraries.

The file class F contained features from Windows API for general file operations, registry ma-

nipulation and file search. By applying a similar abstraction for function grouping, we identified

9 features for the reduced vector related to file operations of: (1) Creation (2) deletion (3) copy

(4) move (5) compression (6) modification (7) search (8) registry key manipulation and (9) re-

placement. Each functionality class may include several operations. For instance, all operations

such as opening, closing, searching, updating and deleting a key in the registry are considered in

the registry key manipulation. An analogous approach was taken for categorizing the features of

classes S and N into 5 groups with respect to service status and network connections.

2) Training Phase and Classification Decisions

The SVM classifier was set to use the linear, polynomial, and RBF kernels in two experiments.

Due to the nonlinear nature of data values, RBF kernel was more suited for the scenario. We have

split the training set into two parts of training and testing and during the first training round, we

performed a pairwise strategy in which one classifier was built for every two classes. Then, we

implemented the one against all strategy with 10-fold cross validation. The classifiers were then

asked to decide on new generalized feature vectors and the classification was generated in form of

a binary vector representing the predicted class. At this point, the training model was ready and it

had learnt the mapping between assembly-level and source-level features of the reference classes.

3) Classifier Integration with RE-Source
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We have integrated the learning models with the offline analyzer of the RE-Source framework and

evaluated its performance in identifying crypto, file, service, and network functionalities. The of-

fline analyzer is equipped with a module for dealing with assembly features such as API names and

function signatures [47]. The output of this module is a statement about the potential functionality

of the code and it is inserted as function comments in the assembly file. The purpose of integrating

the learning models with the offline analyzer is to enhance the code context recognition and to

improve the analysis comments. This enhancement is achieved by inserting a class label before the

functionality statement for each assembly function. The feature vectors which are extracted by the

offline analyzer from assembly are compared against the reference classes which are formed using

joint vectors. Thus, there are several unknown attribute values in each vector and the classifier is

expected to find the closest class tag. Certain features should be generalized before the assembly

level feature vector is created. The reason behind this generalization is that the learning model

knows how to map source to assembly features from a higher level of abstraction. For instance, an

API function such as HttpSendRequestA is not recognized by the model as the network class.

Instead, an abstracted value as HTP should be replaced before the matching is initiated. Following

this step, a prediction can be made on the assembly level vector.

4.3.2 Classification Results and Performance

It is important to recall that the classifiers have been trained with non-malware features. In other

words, it might be expected, that the system performance would be better when non-malware files

are analyzed. Although this could be true for packed and obfuscated code, as long as the binary

files are generated in similar environments and programming languages, the system is able to give
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Figure 16: Entropy-based Analysis (first scenario).

meaningful hints about the function semantics. This is due to the generalization steps which had

transformed the code into higher units of abstraction. Besides, the learning model had merely

learnt the generalized patterns.

In the first part of the experiment, we have tested the offline analyzer on a small set of programs

that were formerly used to generate assembly features from the training binaries. In this case, the

function class tags were already known and an evaluation could be made on the classification

performance. The system precision is calculated as pre = TP/(TP + FP) and the system recall

is defined as rec = TP/(TP + FN) for each class. TP, FP and FN stand for true positive, false

positive and false negative, respectively. In the first scenario, the precision was 1.0 for the crypto

class, 0.88 for file and service classes, and 0.93 for the network class. The overall accuracy was

also 0.93 based on 198 classifications. Similarly, the recall of classes were 0.71, 0.98, 0.88 and

0.92 respectively. The highest error rate was associated with network related functions that were

tagged as service followed by crypto related functions which were tagged as file class. Figure 16
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Figure 17: SVM with Pairwise Decision Boundaries for Network and File Classes.

M Sub Method Crypto File Service Net Total

1 378
API 0 39 11 48 98

API + SVM 0 45 16 52 113

2 107
API 0 7 0 2 9

API + SVM 5 11 0 4 20

3 179
API 0 15 2 5 22

API + SVM 0 17 3 5 25

Table 5: Number of Jointly Identified Functionalities.

shows the entropy of 9 regions of a malware binary. It can be seen that the regions A and H have

the highest entropy. Based on a predefined threshold of 6, the graph suggests potential crypto-

related functionality in those regions. In this example, the malware is using AES encryption,

CRC32 hashing and it embeds an image of another encrypted executable file. Blocks with higher

entropy could lead us to encrypted chunks and crypto algorithms. In the second scenario, we

have tested the system on three malware samples M with (1) trojan (2) ransom and (3) dropper

functionalities. The unpacking step was done before testing the malware with the offline analyzer.

Based on compiler fingerprinting, the malware binaries were built with VC++ 2008. A combined
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decision from the classifier and API module have revealed more about function semantics. In the

first sample, the classifiers have unleashed the functionality of 6 more file processing subroutines as

well as 5 more service and 4 more network functions. In the ransomware, it has revealed the crypto

functionality of 5 OpenSSL and 2 network functions. In the dropper sample, it has helped with the

identification of 2 more file and one more service functions. Figure 17 depicts how an SVM model

with radial, polynomial and linear kernel partitions the space into decision boundaries. The black

and white dots represent data points of significant features in a higher dimension. The marginal

data points are associated with functions that have more than one functionality. In the assembly

level, these functions may call several APIs from different classes. As it will be discussed in the

next chapter, the functions are tagged and renamed using class label prefixes. The prefix SRV points

to the service class. Similarly, NET, HTP and WNT prefixes show the Windows API networking

functions. Likewise, FIL, DIR and REG reference the file class. As can be seen in Table 5, a

10% improvement has been achieved as the result of the learning module. This enhancement is

evaluated for the first learning iteration. Over time, the mapping quality will incrementally improve

based on the received feedback.

4.4 Summary

We have presented the design methodology for an extension to the RE-Source framework. We

take an alternative approach for building a semantically consistent local code repository. In this

approach, a representative source level feature vector is built that is used as building blocks of

a program. The program is then transformed into assembly followed by several normalization
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steps. Then, a representative assembly level feature vector is generated that is used for learning

the mapping between source and assembly vectors. A classifier is trained to learn the mapping

of different program components. Once a new assembly level feature vector is extracted from

malware functions, the system is able to reveal the closest functionality class. The methodology has

been applied to several malware analysis scenarios. The results show that the approach is able to

enhance the matching results even after a single iteration. Over time, the performance will improve

by receiving reinforcement feedback from the reverse engineer as active learning. Adopting other

multi-class learning models could be the subject of future research extension. Also, the experiment

can be done by learning functionalities from malicious code instead of reference patterns. The

next chapter introduces a case study on the Citadel malware and confirms the applicability and

usefulness of RE-Source in real-world malware analysis scenarios.

z
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Chapter 5

Case Study: Citadel Malware Analysis

Citadel is an advanced information stealing malware, which conducts targeted attacks against fi-

nancial information. This malware poses a real threat against the confidentiality and integrity of

personal and business data. Recently, a joint operation was performed by FBI and Microsoft Digi-

tal Crimes Unit in order to take down Citadel command-and-control servers. The operation caused

some disruption in the botnet but has not stopped it completely. Due to the complex structure and

advanced anti-reverse engineering techniques, the Citadel malware analysis process is challenging

and time-consuming. This allows cyber criminals to carry on with their attacks while the analysis

is still in progress. In this chapter, we present the results of the Citadel reverse engineering and

provide additional insights into the functionality, inner workings, and open source components of

the malware. In order to accelerate the reverse engineering process, we propose a clone-based

analysis methodology. Citadel is an offspring of the previously analyzed Zeus malware. Thus,

using the former as a reference, we can measure and quantify the similarities and differences of

the new variant. Two types of code analysis techniques are provided in the methodology namely

69



assembly to source code, and binary clone detection. The analysis results prove that the approach

is promising in Citadel malware analysis. Besides, the same approach can be applied to other

malware analysis scenarios.

This chapter is organized as follows. Section 5.3, is dedicated to explaining our methodology

in studying the malware. Section 5.4 details the dynamic analysis of the malware. It starts by

revealing the process of infection, followed by explaining the debugging process and memory

forensic approaches used for dynamically analyzing the malware. The main features of the Citadel

malware is also described in this section. Section 5.5 presents the static analysis of the malware

and the steps led to the actual de-obfuscation of the malware binary. Section 5.6 presents our clone-

based analysis of the malware where RE-Source is proved extremely useful. The threat mitigation

is briefly presented in Section 5.7. Finally, the conclusion is given in Section 5.8.

5.1 Introduction

One of the offspring of Zeus which has been making headlines in recent months (March 2013 -

July 2013) is called Citadel. The cyber criminals behind the Citadel malware have stolen more

than 500 million dollars from online bank accounts [55]. Zeus was a prolific information stealing

Trojan that has been around since 2007. In 2011, its source code was leaked on the internet and

became available to the underground community. Since then, many different malware were gener-

ated basing their core on the Zeus code. Similarly, Citadel has been employed by botnet operators

to steal banking credentials and personal information. In addition, Citadel has features that extend

beyond targeting financial institutions. Spying capabilities such as video capture is an example of
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such features that literally enables criminals to collect anything from a victim’s machine. The mal-

ware also provides ransomware and scareware in attempts to extort money directly from victims.

Reverse engineering is often considered as the primary step taken to gain an in-depth understand-

ing of a piece of malware. However, it is a challenging and time-consuming process especially in

the case of sophisticated malware such as Citadel which is an evolved variant of Zeus.

The major objectives of this chapter are to reverse engineer the Citadel malware and gain more

insights into its structure and functionality using, among other tools, our RE-Source framework. In

particular, the objectives can be summarized as follows:

1. Quantify the similarity between the Citadel malware and the Zeus malware.

2. Get additional insights into the Citadel open source components.

3. Accelerate the process of Citadel reverse engineering.

To enhance and speed up the process, a new approach is employed in this study, which is called

clone-based analysis. Indeed, we illustrate the usefulness of the proposed approach in the analysis

of new variants of a malware family.

The main contributions of this chapter are three folds. First, a new methodology for reverse

engineering malware is proposed. This methodology significantly decreases malware analysts’

efforts and saves time. Second, the similarity between the Citadel malware and the Zeus malware

is precisely quantified. Also, additional insights are provided into the open-source components

used in the Citadel malware. Third, a detailed reverse engineering analysis of the Citadel malware

is presented and its main features are described.

This case study has been chosen for a number of reasons. First, Citadel and Zeus are the real

threats against confidentiality, integrity and availability of information systems. Cyber criminals
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are constantly enhancing their tools for gaining access to personal and financial data. The prof-

itability of such crimeware tools in the underground market depends on the timeliness and support

for new vulnerabilities. Therefore, malicious developers often reuse all or parts of an existing piece

of software component during their incremental development process in order to save time. This

leads to leaving fingerprints of previously analyzed malcode on the new releases. Clone-based

analysis comes in handy in such situations due to its potential for producing quick results. In-

tegrating a clone-based analysis in the reverse engineering cycles could significantly reduce the

overall analysis time. The second benefit of this case study is that it allows us to leverage our

developed tools such as RE-Source [47] and RE-Clone [49] in reverse engineering sophisticated

malware and gain invaluable insights into ways of progressing them further. The lessons learned

during the analysis would bring new opportunities for the future extensions of our tools developed

in our lab. Third, the analysis provides us with practical solutions for mitigating future threats in a

timely manner. Once the analysis is performed on Zeus and Citadel, any new malware with shared

components can be analyzed quickly. Besides, this process will be automated and it provides useful

information to the reverse engineer in an effort to reduce the manual work.

5.2 Clone-based Analysis

Clone-based malware analysis can be applied for complementing the process of reverse engineer-

ing. Particularly, it could be helpful in reducing required time for the static analysis phase. In

this context, two techniques are taken into account for quantifying the similarities between Citadel

and Zeus samples. The first approach focuses on assembly to source code matching i.e., applying
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RE-Source in order to reveal the open-source building blocks of the malware. Likewise, a second

approach is utilized for performing the assembly to assembly code matching.

5.3 Methodology

As already mentioned in Chapter 2, static analysis and dynamic analysis are the two main ap-

proaches used in studying malware [41, 45]. Static analysis describes the process of analyzing the

code of a malware to determine its structure and functionality without executing it. In contrast,

dynamic analysis is the process of monitoring the malware behaviors on a victim machine as it is

executed or after the machine is infected. In general, the process of reverse engineering malware

is a combination of these two approaches which is time-consuming and costly. The success of

these approaches are tightly coupled with the functionalities of the tools and skills of the reverse

engineer [43, 44].

To enhance and accelerate the process in analyzing the Citadel malware another dimension is

considered in our study as shown in Figure 1. This new dimension is called clone-based analysis.

In few words, the clone-based analysis identifies the pieces of code in Citadel malware that are

originated from other malware and open-source applications. This step is performed automatically

by leveraging the tools that are designed and developed in our security lab [47, 49]. There are two

main advantages in considering this extra dimension into the static analysis. First, to avoid dealing

with low-level assembly code in situations when its corresponding high-level code is available.

Second, to prevent reverse engineering parts of the malware which has already been analyzed. This

approach is very promising, especially in the cases similar to Citadel which shares a significant
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portions of code with a previously reverse engineered malware like Zeus [46]. The process of

assembly to source code matching is performed using the RE-Source framework. Also, the binary

clone matching is done using RE-Clone.

Three concurrent processes are defined in the proposed methodology. The dynamic analysis

track focuses on web debugging, memory forensics, process injection and web injects. An im-

portant aspect in this process is the observation of malware’s behavior in response to controlled

inputs.

On the other hand, the static analysis process focuses on assembly-level functions. De-obfuscation

could occur in the overlapping area of these two methods. Unpacking and decryption are relevant

examples that fall in this area. It is assumed that a database of previously analyzed code is available

during the analysis. Code search engines provide an interface to online open source code reposito-

ries. Likewise, an offline code repository is maintained for storing the malware assembly code and

the results of previous analysis sessions. One advantage of the clone-based analysis is that it could

guide the dynamic and static steps. In other words, it highlights the important directions that the

other two processes should follow by eliminating the clones, distinguishing the library functions,

and providing additional comments. Therefore, the analysis focus is shifted to the different parts

of the new malware, resulting in a shorter analysis timeline.

Citadel and Zeus droppers binaries can be customized using the bot builder or third-party tools.

Therefore, there might exist several MD5 hashes which refer to the same dropper family. In this

analysis, two samples of Zeus and five samples of Citadel have been used. In the following sec-

tions, the main steps and results of the malware analysis are presented.
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5.4 Dynamic Analysis

The purpose of dynamic analysis process is to execute the malware and monitor its behavior in a

controlled environment. Many tools and techniques are available for debugging malware [42, 43].

Sandboxing is a common technique in dynamic analysis and it is used for running untrusted code in

a virtual setting. However, modern malware are well-equipped with anti-virtual machine protection

against popular tools such as Oracle VirtualBox and VMWare Workstation. The malware can easily

sense whether it is running on a virtual machine by checking certain artifacts in memory or on disk.

As a result, the malware might change its normal behavior by taking an alternative execution path

for hindering the analysis. Malware can even go one step further and try to exploit the virtual

machine vulnerabilities in order to gain access to the host operating system. Thus, successful

dynamic analysis may require caution and pre-processing steps. Debugging Citadel is challenging

due to the built-in anti-debugging and injection capabilities but they can be overcome by choosing

the right strategy. As it will be discussed in Section 5.6, RE-Source can provide informative tags

such as ADB, PSJ or AVM for functions that potentially contain anti-debugging, process injection,

or anti-virtual machine functionality.

5.4.1 The Infection Process

The Citadel bot operates in several modes. Upon the first execution, the Citadel dropper is in the

installation mode. First, it unpacks and decrypts itself into the memory. Then, it creates a copy

of the binary file and stores it in the %AppData% folder under a randomly generated sub-folder

and file name. The bot file is referred to as Random.exe in this context. As an example, the output
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Figure 18: Citadel Process Injection and Agent Mode

path could be similar to: ...\AppData\Roaming\Random\Random.exe. The bot also generates a

batch file for removing the installation code. Checking for the existence of this path is a way

of knowing whether a system has been infected by the malware. Once the Random.exe is run

from the new location, a sequence of similar steps are taken for unpacking and decrypting the bot.

Afterward, the bot switches to the injection mode and injects itself into the Explorer process and

its child processes. The injection step is dependent upon the privileges of the user who runs the

bot and the version of the operating system. Following the injection, the bot process is terminated

and the installation files are removed. Also, the bot updates the registry and adds an entity so

that it will execute each time the operating system boots up. The registry path would appear

as: HKU\...\Software\Microsoft\Windows\CurrentVersion\Run\Random. The Random.exe is almost

identical to the dropper except for the flag bytes located at the end of the file. This portion is

encrypted and is used for controlling the bot mode. Therefore, even though the two executables

are very similar, their behavior is totally different as the Random.exe operates in agent and injection

modes only. On each system startup, the bot performs the injection and initiates the intelligence

gathering process as it has been demonstrated in Figure 18.
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Figure 19: Decoded Citadel config File Name and Location

5.4.2 Debugging and Memory Forensics

After setting up the analysis environment and infecting it with the malware, the bot execution can

be monitored and controlled using a scriptable debugger [58, 59]. Several techniques are available

for hiding the debugging process from the bot and gaining more control over the debugger [42].

Besides, a web debugger or a network protocol analyzer is used for monitoring the HTTP network

communications of the malware. Citadel encrypts the command-and-control (C&C) network traffic

with RC4. Therefore, the crypto keys are required to decrypt the traffic and view the stolen data.

One way of finding the keys is through debugging and setting hardware breakpoints on func-

tions which precede network communication. As it will be discussed in Section 5.6, these functions

can be identified through the NET, WNT and CRY tags assigned by offline analysis in RE-Source.

Upon successful installation, the bot checks for Internet connectivity and tries to connect to

embedded C&C addresses in order to announce its availability. The bot sends requests such as
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POST /carfca/basket.php HTTP/1.1 or POST /carfca/file .php HTTP/1.1

to the server. The server then replies and sends the encrypted config file to the bot. One major

difference between Zeus and Citadel is in the way they handle the transmission of the configuration

file. It was possible to find the location of Zeus config file and download it with minimal effort.

Whereas in Citadel, it is more difficult to obtain the config file during the analysis. Citadel uses

dynamic APIs and it decrypts strings in memory during the execution. This can be considered

as an additional layer of protection for the bot internals. Besides, it prevents the config file from

being detected easily. Figure 19 shows one of the decrypted links to a Citadel C&C server which

hosts the encrypted “sport.doc” config file. During the debug, the bot allocates memory for new

segments and overwrites the memory space with decrypted code and data from the code segment.

The zero values in Figure 19 show the bytes that are yet to be overwritten by data. Blocking

the malware’s access to the requested C&C and modifying its timing mechanism, will force the

malware to enumerate the list of other embedded C&C servers.

Several tools and plug-ins are available for dumping memory, reconstructing import tables,

and fixing PE headers. OllyDump and ImpRec are examples of such tools for unpacking Citadel

[41, 43]. Volatility [63] was the most versatile and straightforward tool for memory forensics that

was used in this project. It automatically builds the import table and generates the executable

versions of the unpacked binary. Volatility was utilized for creating executable process dumps,

retrieving decrypted strings from the memory, and for complementing the static analysis. (See

Section 5.5.) Also, it should be mentioned that due to the anti-debugging techniques used in

Citadel, the debugging process was one of the complex steps in our study. To accomplish this step,

ESET R&D Center, Canada kindly collaborated on the de-obfuscation.
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5.4.3 Citadel Attack Configuration

The configuration file is where the bot options are set. This file contains two sections for static and

dynamic configurations as depicted in Figure 20. The bot builder tool reads this file and embeds

the settings in the generated bot.exe file. The bot encryption key is also defined in this file. The

static config section is where the options for the initial attack are set. Similarly, the settings for

web injects are defined in the dynamic config section. Web injects are used for tricking the users

into revealing confidential information such as additional passwords or PINs. Since the man-in-

the-middle attack (DLL hooking) occurs in the low-level network libraries such as wininet.dll or

nspr4.dll, the victim user might not be able to distinguish the injected data from the genuine page.

The result of injection could be in forms of extra fields, text boxes or warning messages.

In comparison to Zeus, Citadel has a few extra features such as the anti-virus and security soft-

ware evasion mechanism. Also, the DNS filter enables the bot to block the victim from accessing

security-related websites and downloading new updates and patches. Consequently, it makes the

machine more vulnerable to future attacks. A DNS redirection technique is used for implementing

this feature. Besides, the config file includes a list of blocked websites and the corresponding redi-

rected IP addresses. The report in [57] provides a lists of Citadel DNS filter domains. This type of

DNS poisoning attack does not modify the Windows Hosts file. It places the network API hooks at

a lower level. The settings related to the dynamic configuration can be updated by the C&C server

according to predefined rules set by the botmaster. For instance, new modules can be remotely

installed for country-specific web injects which target online banking accounts, automatic money

transfer, and ransom [53, 57]. The encrypted configuration file can be obtained by capturing the

bot traffic and replaying a crafted request in debugging.
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Figure 20: Structure of Citadel Configuration File

In Section 5.5, the process of config file decryption is discussed.

5.5 Static Analysis

In this section, we describe the main steps of the static analysis of the Citadel malware. The

static malware analysis process normally starts by disassembling the malware binary. However,

the initial disassembled code may not draw a complete picture of the original code due to different

layers of obfuscation. Disassembling the Citadel malware using IDA Pro [59] results in a packed

binary containing merely 13 functions, 11 imports, and 337 strings. The binary was compressed,

encrypted, and employed anti-reverse engineering techniques. Therefore, our static analysis started

by de-obfuscating the malware. The steps are described in detail in the following sub-sections.

5.5.1 Unpacking Step

Not surprisingly, the malware was packed with a non-standard packing scheme. Therefore, au-

tomatic unpacking tools such as UPX could not be used for unpacking the binary and manual

unpacking was required. To unpack the malware, a combination of static and dynamic techniques

was used. The packed binary was executed in Immunity debugger [58] until the unpacking stub
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Figure 21: Structure of the Encrypted Data

unpacked the binary in memory. Once the unpacking procedure was completed, the unpacking

stub transferred the execution to the original entry point of the binary by making a jump from

one segment to another segment. At this moment, Volatility [63] was used to dump the unpacked

version of the binary’s process out of memory and generate an executable unpacked version of

the binary. The generated binary contained about 800 functions, 386 imports, and more than 900

decrypted strings and enabled the static analysis to be progressed.

5.5.2 Code Decryption Step

After unpacking, there were still some encrypted portions in the binary code. One of the interesting

portions was located in the address of 0x0040336 in our sample. In-depth examination of the

function which cross-referenced this portion, revealed the structure of the encrypted data and its

decryption algorithm. As shown in Figure 21, the size of the structure is 8 bytes and consists of 4

chunks. Also, the key for string decryption is embedded in the binary file.

Algorithm 3, presents the decryption procedure used for decrypting the data. By writing the

Python script, more than 300 strings and 45 C&C commands were retrieved statically from the

binary code.
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Algorithm 3: String Decryption Algorithm

/* Python command for decrypting the embedded strings */
for j in range length do1

2

UNPACKED_DATA = join(char(PACKED_DATA[j]) ˆ j ˆ key)3

Figure 22: Communication Messages for Retrieving the Configuration File

5.5.3 Crypto Algorithms

Receiving an RC4 encrypted configuration file from a C&C server in response to a plain GET

request was a weaknesses of the Zeus malware. To overcome this, significant improvements have

been taken place concerning crypto algorithms in the Citadel malware. As shown in Figure 22,

unlike Zeus, the Citadel C&C server expects a specially crafted RC4 encrypted POST message to

return the configuration file. In addition, in order to provide a better security, the configuration file

is encrypted using AES CBC128.

The Citadel malware authors have used a composition of different ciphers. Figures 23 and 24

present the details of the crypto algorithms used in the Citadel. The RC4 encryption (Figure 23)

starts by a customized XOR operation, which is called Visual Encryption. In fact, this algorithm is
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Algorithm 4: Visual Encrypt Algorithm

void Crypt::VisualEncrypt(void *buffer, DWORD size) {1

for (DWORD i = 1; i < size; i++) do2

3

((LPBYTE)buffer)[i] ˆ = ((LPBYTE)buffer)[i − 1];4

}5

a form of encoding/obfuscation. The input to the algorithm is an encoded buffer. The code of the

Visual Encryption is provided in Algorithm 4. This function was used in Zeus for crypto purposes

as well. After the XOR operation, the non-standard RC4 initialization routine generates a 0x100

bytes key based on the static configuration data embedded in the binary. The output of the routine

is a new RC4 key that is used in RC4 encryption function along with the customized XOR-ed data.

Finally, performing an XOR on the RC4 output and the login key embedded in the binary, results

in the RC4 encrypted data. Given login_key=lkey and Visual_Enc=encode, the functionality can

be describes as: out = lkey XOR RC4rkey(encode(in)). Therefore, out=Enc(in).

Figure 24, describes the AES decryption of the Citadel malware. The Configuration Decryp-

tion routine, takes the static configuration data embedded in the binary as input, and outputs the

embedded RC4 key. Additionally, the login key is hashed using MD5 method. Afterward, the

hashed login key and the embedded RC4 key is fed to the RC4 routine. Next, performing an XOR

on the output of the RC4 routine with the login key results in the AES key. This key is fed to the

AES decryption method. As the last step, the Visual Decryption function takes the result of the

AES routine and generates the decrypted data. The pseudo-code of the Visual Decryption is pro-

vided in Algorithm 5. The process can be formulated as: AESkey = H(lkey) XOR RC4rkey. Given

Visual_Decrypt=decode, the output can be stated as: out = decode(AESAES_key(in)). The weakest

point in the whole encryption/decryption process is that it is based on static configuration data.
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Figure 23: Citadel RC4 Encryption Process

Figure 24: Citadel AES Decryption Process

Also, it demonstrates lack of competency in security algorithms by the malware authors.

5.6 Clone-based Analysis

Clone-based malware analysis can be applied for complementing the process of reverse engineer-

ing. Particularly, it could be helpful in reducing the required time for the static analysis phase. In

this context, two techniques are taken into account for quantifying the similarities between Citadel

and Zeus samples. The first approach uses RE-Source in order to reveal the open-source building
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Algorithm 5: Visual Decryption Algorithm

void Crypt::VisualDecrypt(void *buffer, DWORD size) {1

if size > 0 then2

for (DWORD i = size − 1; i > 0; i−−) do3

4

((LPBYTE)buffer)[i] ˆ= ((LPBYTE)buffer)[i − 1];5

}6

blocks of the malware. Likewise, a second approach is utilized for performing the assembly to

assembly code matching. The major steps in the clone-based methodology can be enumerated

as follows: (1) Identification of standard algorithms and open source library code in the malware

disassembly, (2) assigning meaningful labels to assembly-level functions based on API classifica-

tion, (3) commenting the assembly code based on a predefined dictionary of malware functions,

(4) applying a window-based search and comparison mechanism for finding the pre-analyzed code

components.

5.6.1 Assembly to Open-Source Code Matching

The RE-Source framework [47] was used for extracting assembly-level features from Citadel func-

tions. During the online analysis phase, RE-Source revealed the correlation between function-level

features of Citadel and several open-source projects. As can be seen in Figure 25, the video capture

capability of the malware was unleashed through the links to source files such as: MHRecordCon-

tol.h, stopRecord.c, trackerRecorder.h, signalRecorder.h, waitRecord.c, etc. This observation was

further supported by occurrences of strings such as “_startRecord16” during the dynamic API de-

obfuscation. Moreover, a “video_start” C&C command was also encountered in this process.

Even though screen capture is quite common in malware samples, live video capture capabilities
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Figure 25: Output of RE-Source Pointing to Video Capture Source Code

are mostly seen in progressive samples.

It should be noted that the online analysis results of RE-Source which suggested video-related

capability were the outcome of an approximate code matching process. Even though the matching

process was not perfect, it was accurate enough to reveal the functionality context in this case.

Similarly, RE-Source had commented the code with references to other open source projects such

as the ones listed in Figure 26. The number of matched projects in each category determines the

size of the pie slice in the chart.

Many Zeus-based malware variants have appeared online since the Zeus source code was re-

leased in 2011. Having access to Zeus source code enabled us to match Citadel binary against Zeus

source code. The pie chart in Figure 26 shows the general categories of open-source projects that
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are used in Citadel. Apart from the detached slices, Citadel and Zeus share a considerable amount

of code related to the core, VNC, crypto, proxy and math functionality. However, the difference

can be summarized in network communication code, new exploits and browser-specific code for

web injects.

Figure 26: Matched Features with Open-Source Projects

5.6.2 Offline Analysis and Functionality Tags

RE-Source can also be used for tagging assembly functions based on API calls and classifying

functions based on their potential functionality. When applied to the unpacked version of Citadel,

652 functionality tags were detected by the offline analyzer. A function is assigned several tags if

it contains more than one system call. Accurate functionality tags could convey meaningful hints

to the reverse engineer during the static analysis phase. In conjunction with the code and data

cross-referencing, functionality tags can enrich the disassembly by highlighting the final system

calls in a multi-level function call hierarchy. Since system calls serve as interaction points with the

operating system, having a high-level view of them could draw a more organized view of the code.

Functionality tags are not limited to simple system calls merely for file processing or registry
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Figure 27: Prefixing the Functions with Functionality Tags

TAG Functionality TAG Functionality TAG Functionality
ADB Anti-debugging REG Registry update CER Certificates

PSJ Process injection DIR Directory OSI OS Information

DLJ DLL injection MTX Mutex SRC Search

DRJ Direct injection PIP Pipe VIR Virtual memory

HKJ Hook injection HTP HTTP, Web CRT Critical section

ACJ APC injection URL URI links MOD Modification

AUJ APC userspace ENP Enumeration SRV Service

AKJ APC kernerlspace HAS Hashing LCH Launcher

WNT Win networking CRY Cryptography AVM Anti-VM

NET Low-level socks FIL File processing CSH Cache

Table 6: Functionality Tags for Offline Analysis
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modifications. They can be composed of compound operations related to common malware behav-

ior. Put another way, several patterns can be defined for highlighting common malicious code in

downloaders, launchers, reverse shells, remote calls and keyloggers based on the combination of

several simple system operations. In this context, process memory modification and code injection

points are of great interest in the analysis. For that, RE-Source includes category information such

as process injection, launcher, DLL injection, process replacement, hook injection, APC injection

and resource segment manipulation. Table 6 lists the available functionality tags in the current

prototype for conducting offline analysis.

An alternative practical usage of functionality tags is in disassembly comparison of two similar

malware variants. Instead of comparing the files by address, the code can be analyzed offline and

the generated tags can be used as association criteria. In this process, the functions are sorted based

on the assigned tags and the ones with similar tags are analyzed side by side. This technique was

specifically helpful in synchronizing the disassembly of Citadel versus Zeus.

Figure 28 depicts the detected functionality tags. The pie chart sectors are proportional to

the number of assembly functions categorized under the same functionality group. The NET tag

was assigned to 60 functions related to low-level network socks. Also, 41 functions were tagged

with CRT for critical section objects for mutual exclusion synchronization. Similarly, 36 FIL

tags were assigned to file manipulating functions. The other tags such as crypto, hashing, search

and code injection were also identified during the analysis. The CRY (crypto) and HSH (hashing)

tags provided an easy way of disassembly synchronization between Citadel and Zeus as the slight

differences between the assembly files had no effect on the overall functionality group.

Translated into quantifiable terms, Table 29 shows the output of RE-Source for Citadel vs. Zeus

89



Figure 28: Functionality Tags Assigned by Offline Analysis

Figure 29: RE-Source Analysis Results
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Figure 30: Code Analysis After Clone Elimination

comparison. The numbers are reported in accordance with occurrence of certain features such as

the number of assembly functions, API and functionality tags, common API in malware, number

of matched opens source components, imported function calls, and Unicode strings.

5.6.3 Binary Clone Analysis

The malware analysis process can be accelerated by identifying and removing the previously ana-

lyzed code fragments. The aim of binary clone analysis is to compare the assembly file of a new

binary sample with a repository of analyzed code. The result of this analysis is the set of matched

clones. Two important types of clones are considered in this context, namely exact and inexact

clones. Exact clones share the same mnemonics, operands and registers. The only difference is

in memory addresses. Whereas inexact clones can be regarded as equal up to certain levels of

abstraction. The analysis parameters such as search window size, normalization level and detec-

tion algorithm play a significant role on the analysis results. These parameters are set according

to each analysis scenario. After marking the detected code fragments as clones, the analysis focus

is shifted to non-analyzed and new code segments. For performing this experiment, the RE-Clone

binary clone detector tool was used [49].

The core components of the Zeus malware has been thoroughly studied in [46]. Also, the

source and binary files are available online. Therefore, a new Zeus variant can easily be compared
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Malware Bot.exe Functions Window Size Exact Clones Inexact Clones
Citadel 1.3.5.1 788

15 526 1876
Zeus 2.1.0.1 565

Table 7: Binary Clone Detection Results

against the existing files in order to measure the similarity and detect the potential exact and inexact

clones. This analysis is also applicable to finding the additional functions of the new malware

variant. Table 7 shows the results of the binary clone matching. According to the results, the

two samples share 526 exact binary clones with a window size of 15 instructions. In other words,

almost %93 of Zeus assembly code also appears in Citadel. These clones form approximately

%67 of the Citadel binary. This analysis highlights the remaining %33 of the Citadel assemblies

to be analyzed. Thus, a significant amount of time is saved by disregarding the clones. RE-Clone

shows the exact address and location of each clone in the disassembly. Furthermore, the remaining

functions could be examined in RE-Source before the manual analysis process is begun by the

reverse engineer. This approach is depicted in Figure 30. The 1876 inexact clones reported by the

tool include multiple combinations of regions which also contain the exact clones.

An interesting example of crypt-related clones is the detection of an inexact clone in the RC4

function which is used for encrypting the C&C network traffic. There are a few extra assembly

XOR instructions in the Citadel version of the RC4 function. This clone was found with a threshold

of 0.8 and a two-combination inexact clone search method. In this approach, each two-combination

of features are considered as a cluster. If more than %80 of regions appear in the same clusters,

then they are treated as inexact clones. The red segments in Figure 31 highlight these clones.
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Figure 31: Inexact Clone Detected in RC4 Function. (Citadel vs. Zeus)

5.7 Threat Mitigation by Sinkholing

In June 2013, Microsoft Digital Crimes Unit reported on an operation known as Operation b54, in

collaboration with FBI to shut down Citadel C&C servers [54]. As a result of this operation, 1400

Citadel botnets around the world were intercepted and redirected to sinkhole servers operated by

Microsoft. A comprehensive list of the domain names is available in [56]. Although, the action

significantly disrupts Citadel’s operation and helps victims from the threat, it has also affected the

honeypot systems which were used for identifying and locating the malware creators and distrib-

utors. Even though the threat counter-measurement has been successful, cyber criminals can still

operate by infecting new machines and operating their bots on alternative servers.

93



5.8 Summary

The Citadel malware targets confidential data and financial transactions. It is an emergent threat

against the online privacy and security. Citadel reverse engineering is challenging as it is equipped

with anti-reverse engineering techniques for hindering the malware analysis process. As the num-

ber of incidents entailing new malware attacks are increasing, agile approaches are required for

obtaining the analysis results in a timely fashion. The malware reverse engineering process con-

sists of two major stages of static and dynamic analysis. This process can be accelerated and

enhanced by adding a new dimension for clone analysis. Instead of initiating the process from

the scratch, a quick clone-based analysis can easily highlight the similarities and differences be-

tween two samples of the same family. The analysis focus is then shifted to the differing sections.

We have presented a methodology along with the tools and techniques for analyzing the Citadel

malware. Also, we have compared Citadel with its predecessor, Zeus. The similarities have been

quantified as the result of two code matching techniques namely assembly to source, and binary

code matching. The same methodology can be applied to other malware samples for providing

insights into the potential malware functionality. The results of the malware analysis process can

be added to a local code repository and used as a reference for measuring the similarities be-

tween future samples. They can also be used for improving the accuracy of the results. Overall,

the successful completion of our objectives has led to underline best practices for supporting the

real-world malware analysis in our laboratory.
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Chapter 6

Conclusion

In this research, a new methodology and framework were introduced which can be used for enhanc-

ing the process of reverse engineering. Clone-based malware analysis is important for a number

of reasons. First, it leads to a significant decrease in the amount of time and effort required during

the static analysis process. Put another way, shorter analysis cycles and faster incident responses

are the direct outcomes of the proposed approach. Second, the analysis results highlight the po-

tential difference between several variants of malware and provide a means for quantifying the

difference. Third, finding the references to source files and open source components of a malware

provide valuable insights into the potential functionality and behavior of the malware. Fourth, the

functionality tags provide a mechanism for classifying the assembly functions according to API

and system calls. Moreover, the tags can provide hints to the reverse engineer for finding the place

of specific byte sequences in the disassembly. The important features and aspects of our RE-Source

framework can be summarized as follows:

• The RE-Source framework has been deployed by major organizations for reverse engineering
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and malware analysis. It provides a practical, platform-independent, language-independent,

scalable, and user-friendly solution for assembly to source matching. It has a graphical

interface for setting the search options and analysis configurations.

• The framework provides the support for online and offline analysis. The online analysis mod-

ule interacts with the online open source code repositories and the offline analysis module

works with a local code repository.

• The output of the online analysis process is a list of project names and file names of the

matched source files. It has been observed that a consistency can be achieved amongst

the online and offline analysis results if the subject function makes use of standard system

libraries.

• The RE-Source framework has built-in support for source code parsing, query processing,

web scraping, recursive file search, and feature extraction.

• A comprehensive dictionary of common malware functions and their description has been

compiled and integrated into the offline analysis module.

• The framework generates datasets based on assembly and source level features. They are

saved according to the analysis time and using file and function units.

• The analysis process can be done in automatic and manual modes. The automatic process

is repeated for all the functions in the disassembly. In contrast, the manual mode allows

the reverse engineer to choose specific features and intervene in the process. Also, different

combinations of features can be tried.

96



• Functionality tags are assigned to function names and code references are added as function

comments in the disassembly.

The elaborated framework has been shown effective in reverse engineering and malware anal-

ysis. Moreover, the data-mining extension module has been added to the framework for improving

the classification results. RE-Source was used in several reverse engineering case studies such as

the infamous Citadel malware and the results were presented in Chapter 5. In summary, the pro-

posed clone-based methodology introduced a new dimension in reverse engineering and specifi-

cally in static analysis.

The limitations of the online analysis are related to the coverage of the local and online code

repositories. In other words, the quality of the analysis results depends on the availability of source

code with similar features to the assembly. The quality and accuracy of the results can be improved

by adding support for new code repositories which host a large number of open source projects.

Conversely, the offline analyzer does not solely rely on the source code. It operates based on

an incremental learning process and its performance is further improved if it is run on a large

collection of disassemblies.

This research can be further expanded in several directions. New support for programming

languages other than the C/C++ can be added by replacing the parser with an alternative parsing

module. Also, new data mining techniques can be utilized in the offline analysis module. The on-

line analysis module is expandable with heuristic search methods and query processing techniques

that take into account domain specific knowledge of the problem and temporal logic for a better

accuracy. As a result, the search can be directed to relevant code repositories which leads to better

accuracy and precision.
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