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Abstract

Secure Virtual Machine Migration in Cloud Data Centers

Arash Eghtesadi

While elasticity represents a valuable asset in cloud computing environments, it may bring critical

security issues. In the cloud, virtual machines (VMs) are dynamically and frequently migrated

across data centers from one host to another. This frequent modification in the topology requires

constant reconfiguration of security mechanisms particularly as we consider, in terms of firewalls,

intrusion detection/prevention as well as IPsec policies. However, managing manually complex

security rules is time-consuming and error-prone. Furthermore, scale and complexity of data cen-

ters are continually increasing, which makes it difficult to rely on the cloud provider administrators

to update and validate the security mechanisms.

In this thesis, we propose a security verification framework with a particular interest in the

abovementioned security mechanisms to address the issue of security policy preservation in a

highly dynamic context of cloud computing. This framework enables us to verify that the global

security policy after the migration is consistently preserved with respect to the initial one. Thus, we

propose a systematic procedure to verify security compliance of firewall policies, intrusion detec-

tion/prevention, and IPsec configurations after VM migration. First, we develop a process algebra

called cloud calculus, which allows specifying network topology and security configurations. It

also enables specifying the virtual machines migration along with their security policies.
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Then, the distributed firewall configurations in the involved data centers are defined according

to the network topology expressed using cloud calculus. We show how our verification problem

can be reduced to a constraint satisfaction problem that once solved allows reasoning about firewall

traffic filtering preservation. Similarly, we present our approach to the verification of intrusion

detection monitoring preservation as well as IPsec traffic protection preservation using constraint

satisfaction problem.

We derive a set of constraints that compare security configurations before and after migration.

The obtained constraints are formulated as constraint satisfaction problems and then submitted

to a SAT solver, namely Sugar [102], in order to verify security preservation properties and to

pinpoint the configuration errors, if any, before the actual migration of the security context and the

virtual machine. In addition, we present case studies for the given security mechanisms in order

to show the applicability and usefulness of our framework, and demonstrate the scalability of our

approach.
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Chapter 1

Introduction

Recent developments in virtualization have made cloud computing an increasingly important re-

search area. There are many IT infrastructures who are migrating into the cloud in order to benefit

from this new way of delivering computing resources. Elasticity and rapid resource provision-

ing and scalability allow growth of resources in an on-demand and pay-as-you-go manner. These

features are beneficial and attractive to businesses from small size to governmental organizations.

Cloud computing service model has a layer service model [35]. These services are categorized

into Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service

(SaaS) [35]. IaaS refers to infrastructure such as physical servers, virtual machines and so on.

Example of IaaS provider are Amazon EC2 [8] and Rackspace Cloud [86]. PaaS on the other

hand, refers to operating systems that provide hosting and enable deployment of applications. An

example of PaaS is Google App Engine [42]. In addition, SaaS refers to the applications that run

on top of the other service layers for example Microsoft Office 365 [70].
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1.1 Motivation and Problem Statement

In spite of its drastic advantages, cloud computing has also specific security challenges [39]. Vir-

tualization enables a dynamic computing infrastructure supporting the elastic nature of service

provisioning and de-provisioning as requested by users while maintaining high levels of relia-

bility and security [65]. In this setting, Virtual Machines (VMs) are software implementations

created within a virtualization layer and their capability to be easily moved, copied, and reassigned

between host servers is a key-enabler technology that enhances load balancing, scheduled mainte-

nance, as well as power management. However, VM migration creates new security challenges in

data centers. VMs are protected using various security mechanisms including firewalls, intrusion

detection/prevention systems, etc. Specifically, firewalls are used to allow only authorized traffic

to reach the protected VMs. While VMs migrate around, not only the memory and the states on

the hypervisor need to be migrated, but also the network states including firewall rules. Failing to

do so, may expose the running services on the migrated VM to security problems. These problems

are particularly important when a VM changes data center or it changes its access points. In this

latter case, there is need for modifying access rules for the firewalls. An illustrative example of this

case is firewall access control list (ACL). Assume that a VM migrates to a new location under a

different firewall configuration. On one hand, if the ACLs at the new location are more permissive

than those at the original location, some packets that should be blocked might be allowed. This

may open up several security vulnerabilities to the VM. On the other hand, if they are less permis-

sive, some packets that should be allowed might be blocked. Furthermore, some virtual machine’s

running services might require specific filtering rules.
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In order to ensure a secure cloud computing environment, firewalls should not be the only

line of defense. Cloud providers have to offer adequate intrusion detection/prevention systems

(IDPS) in order to monitor and alert on attacks targeting either cloud providers’ infrastructure or

the hosted VMs. Unlike in traditional data centers, IDPS systems deployed in the physical network

cannot inspect VM-to-VM traffic that does not leave the physical server. Various approaches are

being proposed by research initiatives [38] and standardization bodies [7] to inspect the VM-to-

VM traffic. One of the proposed approaches is to rely on a virtual security appliance within the

virtualized layer. Other VM-centric approaches propose the deployment of IDS functionalities

within each VM. Some other initiatives propose a dedicated security VM to be deployed at each

physical server with specific privileged access to the hypervisors’ APIs that plays the role of IDPS.

In this thesis, we consider an IDS architecture where a virtual appliance dedicated for intrusion

monitoring, called security monitor (SM), is attached to the hypervisors of the hosts. In addition,

we assume having a hardware-based IDS connected to the host through a network interface. In

addition to IDPS, tenants can ask for the deployment of a secure Virtual Private Network (VPN)

between their corporation networks and their networked VMs running in the cloud. This is to

enable protecting information in transit over insecure networks or leveraging the cloud services as

an extension of their corporate data centers.

Elasticity of cloud computing implies mobility, or even addition and removal (a.k.a scale up

and scale down respectively) of VMs and consequently, requires reconfiguration of network nodes

with respect to the new architecture, including security appliances. Some research initiatives have

proposed solutions to address the implementation of dynamic reconfiguration in the cloud. For in-

stance, an approach to automate the reconfiguration of VPN endpoints to support WAN migration

3



of VMs is proposed in [112]. In [95], a framework to control network flows is proposed in order to

guarantee that network packets are being inspected by some security devices. However, dynamic

reconfiguration is error-prone, and if not properly performed may cause security configurations in-

consistencies, thus exposing the VMs as well as the whole infrastructure to serious security threats.

Manually managing complex security rules can be time-consuming and error-prone. Furthermore,

scale and complexity of data centers are continually increasing, which makes it difficult to rely

on the administrators to update and validate the security mechanisms. Therefore, a verification

framework at the cloud management layer to verify and validate security policies in different en-

forcement points is essential as it allows the cloud provider to make sure that the same policy is

enforced after VMs migration.

1.2 Scope

In this thesis, we are mainly concerned with security issues in cloud IaaS that arise during the

migration of virtual machines, which may cause inconsistency in firewall, intrusion detection and

IPsec configurations. Migration of virtual machines, the process of transitioning VMs between

distinct physical machines, has opened new opportunities in computing. VM migration can help

in many ways such as high-availability of services, data center maintenance, transparent mobil-

ity, consolidated management, and workload balancing. While virtualization and VM migration

provide important benefits, their combination may introduce new security challenges. In addition,

given the large number of security rules in modern complex networks, it is very difficult to make

sure that those rules are complying with determined security policies without the help of formal
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verification. In this thesis, we propose a verification approach for checking the consistency of se-

curity configurations, specifically related to firewalls, intrusion detection/prevention systems and

IPsec VPNs. Our framework is based on comparing the security policy before migration with the

one that is deployed after migration. The main goal is to detect security problems, and to provide

a useful feedback to correct them before the actual migration takes place. The verification spans

both source and destination data centers in case of cross data centers migration.

1.3 Contributions

In this thesis, we concentrate on the security issues raising due to elastic nature of cloud computing,

to be specific virtual machines migration in the cloud. The main contributions of this work are as

follows:

• We develop a formal framework called cloud calculus, which is a process algebra that en-

ables us to formally specify network topologies as well as security appliances location and

configurations. It also enables specifying the virtual machines migration along with their

security policies.

• We define the concept of firewall filtering preservation in dynamic cloud computing envi-

ronment, which includes firewall filtering preservation in source data center, destination data

center as well as the migrating virtual machine.

• We define the concepts of intrusion monitoring preservation as well as IPsec VPN traffic

protection preservations in cloud data centers. The intrusion monitoring preservation in-

cludes source and destination hosts as well as migrating virtual machine. In case of IPsec
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VPN protection preservation, we cover both data centers, migrating virtual machine as well

as customer network configurations.

• We elaborate a systematic verification approach based on Constraint Satisfaction Problem

(CSP), a well-established mathematical framework, to prove security preservation after mi-

gration for both the migrating VM, and other VMs in the involved data centers. Secu-

rity preservation includes firewall filtering, intrusion monitoring, and IPsec VPN protection

preservations.

• We derive a set of formulas, which verification enables us to conclude on security preserva-

tion, and develop a framework that describes these security preservation problems in terms

of constraint satisfaction problems based on Sugar, a SAT-based constraint solver. This ap-

proach enables cloud providers to automatically verify that each time migration takes palce,

security level of the hosted VMs (including the migrating VM) is preserved. It also helps in

detecting and correcting the configuration errors if the verified properties are violated.

1.4 Thesis Organizations

The rest of the thesis is organized as follows: Chapter 2 provides the background information

regarding cloud computing, security mechanisms, as well as formal verification and constraint

satisfaction. Chapter 3 provides a detailed literature review of the main areas of research that are

related to our work. Chapter 4 is dedicated to present the cloud calculus, which is a process calculus

that aims at specifying cloud topology and expressing virtual machine migration. In Chapter 5,

we detail the idea of firewall composition and we elaborate on reducing firewall configuration to

6



constraint satisfaction problems. Therein, we also present our approach to verify firewall filtering

preservation and apply our approach on a case study to show the applicability of our approach.

Chapter 6 is dedicated to reducing IDS and IPsec configurations to constraint satisfaction problems,

and verifying intrusion monitoring preservation, as well as IPsec protection preservation. There is

also a case study to illustrate the migration of a VM in cloud data centers secured through IPsec

tunnel, and monitored using IDS. Finally, Chapter 7 concludes the thesis and gives some directions

for future research.

7



Chapter 2

Background

In this chapter, we present the background information required for understanding the remainder

of this thesis. The explanation of cloud computing given in Chapter 1 will be extended with more

technical details and clarifications. Virtualization that plays a fundamental role in cloud computing,

will be explained from a technical perspective. Then, we will discuss the security mechanisms

that are used by infrastructure providers in order to make more secure cloud infrastructure and

resources. More specifically, we will discuss firewalls, intrusion detection and preventions, and

IPsec VPN. Finally, we will present some background about formal methods specifically bounded

model checking and constraint satisfaction problem. Based on them, we developed our approach

for verification of security preservation regarding configurations of security mechanisms.
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2.1 Cloud Computing

This section presents a general overview of cloud computing, including its definition and compar-

ison with related concepts and technologies.

In this thesis, we adopt the definition of cloud computing provided by the National Institute

of Standards and Technology (NIST) [76]: "Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction". This cloud model is composed

of essential characteristics, service models, and deployment models that we will explain further

in this Chapter. Cloud computing is enabled through virtualization technology. Virtualization is a

technology that abstracts away the details of physical hardware, and provides virtualized resources

for high-level applications. A virtualized server is commonly called a virtual machine (VM).

Virtualization plays a fundamental role in cloud computing, as it provides the capability of pooling

computing resources from clusters of servers, and dynamically assigning or reassigning virtual

resources to applications on-demand.

Cloud computing shares certain aspects with some other technologies such as grid comput-

ing, and utility computing. Grid computing is a distributed computing paradigm that coordinates

networked resources to achieve a common computational objective. The motivation behind the de-

velopment of grid computing was basically scientific applications which are usually computation-

intensive. Cloud computing is similar to grid computing in that it also employs distributed re-

sources to achieve application-level objectives. However, cloud computing takes one step further
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by leveraging virtualization technologies at multiple levels (hardware and application platform)

to realize resource sharing and dynamic resource provisioning. Utility computing represents the

model of providing resources on-demand and pricing model, which is based on usage rather than

a flat rate. Cloud computing can be understood as a realization of utility computing. It adopts a

utility-based pricing scheme entirely for economic reasons. With on-demand resource provision-

ing and utility-based pricing, service providers can maximize resource utilization and minimize

their operating costs.

2.1.1 Characteristics of Cloud Computing

Cloud computing is increasingly gaining ground among a variety of users including enterprises,

service providers, as well as governmental and educational entities. Cloud computing platform al-

lows hosting of multiple services on a globally shared resource pool where resources are allocated

to services on demand. Recent advances in the server virtualization technologies have improved

flexibility and versatility of resource provisioning. A crucial technique that has recently emerged

for data centers and cluster systems is the live migration of virtual machines. It is basically mov-

ing a virtual machine from one physical server to another, while keeping the VM’s active network

connections such as TCP and higher layer’s sessions. This migration enables operators and admin-

istrators of the cloud to perform load balancing, workload isolation, performance, and resource

management as well as non-disruptive low-level system maintenance with no perceivable effect to

the end user. VM live migration primarily happens within the same data center but virtual machine

migration between data denters might be also required.

Besides virtual machine mobility, cloud computing provides several interesting features [66]
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that make it attractive to business owners such as:

• Multitenancy: Unlike previous computing models in which resources are dedicated to a

single user, cloud computing is based on a shared resources business model meaning that

multiple customers use the same resources at the network, host, and application levels. In

a cloud environment, different services and resources belong to multiple providers can be

located in the same data center. At the same time, responsibilities are also devided among

service providers.

• Shared resource pools: There is a pool of storage and computing resources offered by in-

frastructure providers that can be assigned to cloud customers on demand. This dynamic ca-

pability enables infrastructure providers to manage their resource usage and operating costs.

For example, an IaaS provider can take advantege of VM migration technology to get a high

degree of server consolidation, while maximizing resource utilization, and minimizing cost

in terms of power consumption and cooling.

• Service-orientation: Cloud computing utilizes a service-oriented approach with emphasis

on service management. In the cloud environment, the services from IaaS, PaaS, or SaaS

are offered according to the Service Level Agreement (SLA) that the provider and customer

have agreed upon.

• Dynamic resource provisioning: In cloud computing, resources can be granted and released

on demand. Such dynamic resource assignment is called resource provisioning. It enables

customers to use as much resources as their actual needs are and pay just for the resources

they use. When their usage drop down, then they easily release resources and pay less.
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• Scalability: Cloud computing provides the ability to scale to thousands of systems, as well

as the ability to massively scale bandwidth and storage space. In such architecture, users are

not limited to the specific number of systems as in traditional architectures.

• Elasticity: This capability allows users to scale up and down (increase and decrease) their

computing resources as required. In cloud computing, users benefit very much from such

scheme as they scale up and down based on their usage and requirement over the course of

time.

• Pay-as-you-go: In cloud computing, the pricing scheme varies from service to service. No

matter which pricing scheme the providers take, users pay only for resources they actually

use and only for the time period they need them.

2.1.2 Cloud Computing Service Models

Cloud computing services are divided into three categories, according to the abstraction level of

the capability provided and the service model of providers, which are: (1) Infrastructure as a Ser-

vice (IaaS), (2) Platform as a Service (PaaS), and (3) Software as a Service (SaaS) [21]. One can

view these abstraction levels as a layered architecture. IaaS provides resources (such as storage,

computation, etc.), and resource provisioning on demand. In PaaS, developers are given the possi-

bility to build their own applications on top of the provided platforms. Developers do not need to

be concerned about the memory usage and the processing unit their applications are using. SaaS

provides the services through web portals to the end users. These online software services are

more attractive than those installed on local computers and provide the same functionalities. This
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model of delivery facilitates the process of software maintenance for customers, and testing and

development process for developers.

2.1.3 Cloud Computing Deployment Models

Cloud deployment model consists of public, private, community, and hybrid clouds. Public clouds

are those cloud environments which are publicly available to multiple tenants, while private clouds

are dedicated virtualized resources for particular organizations. In the same way, community

clouds are made for a specific groups of customers. In the case of public cloud, a cloud provider

makes resources available and offers them as pay per use model to the tenants. On the other hand,

private cloud is more secure since the control is within the organization rather than being in the

cloud provider side. However, there is downside to this setting because the organization who owns

the cloud is responsible for managing all the resources instead of passing the responsibility to a

cloud provider. A hybrid cloud consists of at least one priviate and one public cloud. It is usually

in form of a partnership. For instance, a public cloud provider forms a partnership with a company

that owns a private cloud. Therefore, an organization can use the private cloud for storing confi-

dential customer data, while it can benefit from an external public cloud to perform computations.

2.1.4 Network Security Challenges in Cloud Computing

Virtualization enables a dynamic computing infrastructure supporting the elastic nature of service

provisioning and de-provisioning as requested by users while maintaining high levels of reliability

and security [65]. In this setting, virtual machines (VMs) are software implementations created

within a virtualization layer and their capacity to be easily moved, copied, and reassigned between
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host servers is a key-enabler technology that enhances load balancing, scheduled maintenance,

as well as power management. However, VM migration creates new security challenges in data

centers. It is desirable to assign a permanent IP address to the VM so that when it migrates, still

keeps its IP address [73]. In addition, it is suggested that the VM migration be transparent to the

running applications. The migration of VMs not only takes place within a single data center, but

also in some cases it happens that the VMs should be moved from one data center to another.

According to [45], there are cases in which it becomes expensive to extend a particular data center.

As a result, sometimes there is need to use computing and storage resources of multiple data

centers to support a single service. For instance, there is a cloud operational strategy called follow-

the-sun [35] that shifts processing around geographicaly dispersed data centers to balance demand

proximity with low energy costs. In such cases, it is possible that at the beginning, VMs are

created in a single data center. After a while, the overhead on the physical servers in that data

center increases. Even for some reasons (e.g., hardware failure), a physical server is switched off.

As a consequence, all the VMs in that machine have to be migrated to another physical server that

could possibly be located at another data center. Here the migration between data centers becomes

a need.

VMs are protected using various security mechanisms including firewalls, intrusion detection

and prevention, IPsec VPN, etc. While VMs migrate around, not only the memory and the states

on the hypervisor need to be migrated, but also the network states including security policy. Fail-

ing to do so, may expose the running services on the migrated VM to security problems. A simple

example of this case is firewall access control lists (ACLs). Assume that a VM migrates to a new

location under a different firewall configuration. On one hand, if the ACLs at the new location
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are more permissive than those at the original location, some packets that should be blocked may

be allowed. This may open up several security vulnerabilities to the VM. On the other hand, if

they are less permissive, some packets that should be allowed may be blocked. Furthermore, some

virtual machines running services might require specific filtering rules. As virtual machines are dy-

namically and frequently moved between hosts, manually managing the complex firewall rules can

be time-consuming and error-prone. The similar issue arise when dealing with intrusion detection

and preventions configurations as well as IPsec VPN settings. Furthermore, scale and complexity

of data centers are continually increasing, which makes it difficult to rely on the administrators to

update and validate the security mechanisms.

2.1.5 Physical vs. Virtual Security Appliances

Hypervisor is a small software application that runs either directly on top of the physical machine

hardware, or on top of a guest operating system. The first architecture is called bare metal virtual-

ization while the later one is called hosted virtualization. The hypervisor enables virtual machines

to run on any architecture, and is responsible for isolation among them and also it manages VMs

access to hardware (e.g. CPU, memory, etc.). There are several implementations of hypervisors by

different vendors such as: Xen [113] that is the open source standard for virtualization, ESX from

VMware [111], and KVM [62] which is a linux virtualization system.

Traditional hardware security appliances such as firewalls, intrusion detection and prevention

systems are fundamental to provide the security and access control for the cloud infrastructure.

However, these appliances no longer need to be a physical piece of hardware. In addition, the

traffic that is between co-located VMs normally remains at the virtual level and passes through
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virtual switches, which makes the hardware appliance blind to this type of traffic. A virtual firewall

for example, can perform the same functionality as a physical firewall, but has been virtualized to

work with the hypervisor. Cisco, for example, provides a virtual firewall and security gateway

that secures host computers containing virtual machines [26]. Similarly, a virtualized intrusion

detection and prevention system can monitor traffic on the virtual level and has better visibility

over the VM-to-VM traffic.

Virtualized data centers rely on a hypervisor, which isolates the virtual machines from the

physical network. This creates a virtual network within the hypervisor that connects the VMs and

enables them to communicate with each other without the traffic crossing the physical network. As

a result, security threats are isolated from the traditional network security tools such as intrusion

detection and prevention. Co-located VMs can communicate across the virtual switch without

having the traffic pass through physical network where the security tools reside. As a consequence,

if any virtual machine is compromised, other VMs running at the same physical server will be at

risk without the security tools at the physical network have any visibility on them. In addition,

when it comes to the VM migration, if the migrating VM has been compromised or contains

malicious code, and this malicious activity has not been detected at the source location, when the

VM is migrated to another host, the destination location is at risk and could be compromised as

well. For all these reasons, the recent trend in industry as well as research communities, is to

provide different security mechanisms at the virtual level being the level of the hypervisor.
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2.2 Security Mechanisms

In this Section, we provide some background about the security mechanisms namely firewalls,

intrusion detection and prevention, and IPsec VPN. We consider in this thesis, that these security

mechanisms have been deployed by cloud IaaS providers to protect and secure the cloud resources

from attacks at the network level.

2.2.1 Firewalls

Firewalls are security mechanisms that impose restrictions on network services in such a way

that only authorized traffic are allowed access, while unauthorized traffic are blocked. Firewalls

are normally considered as perimeter defence because they are first line of defence in the network

architecture. Different types of firewall technologies are available. The most basic firewall technol-

ogy is packet filtering (a.k.a stateless firewall). It uses only transport layer information, and makes

the decision based on the five tupples being source IP address, destination IP address, source port,

destination port, and the protocol. It can perform traffic filtering with incoming or outgoing inter-

faces, which are called ingress and egress filtering respectively. Packet filtering does not examine

higher layer context for example matching return packets with outgoing flow. On the other hand,

stateful firewalls address this need.

Stateful frewall not only examines packet information in transport layer, but also offers ad-

vanced inspection for application layer such as the packet that initializes a connection. If the in-

spected packet matches an existing firewall rule that allows it, the packet is accepted and an entry

is added to the state table. From that moment on, since the packets in that specific communication
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session match an already existing state table entry, they are allowed access without any more in-

spection in the application layer. Those packets only need to have their IP address and TCP/UDP

port number verified against the information stored in the state table to confirm that they are indeed

part of the current exchange. This method will increase firewall performance because only new

packets that initiate a connection need to be unencapsulated the whole way to the application layer.

A newer technology in stateful firewalling is the addition of a stateful protocol analysis capabil-

ity, sometimes called deep packet inspection (DPI) [78]. Stateful protocol analysis improves upon

standard stateful inspection by adding basic intrusion detection technology. This allows a firewall

to accept or deny access based on how an application is running over the network. For example,

an application firewall can detect if a type of attachment in an email message is not permitted by

the organization such as files with .exe extentions, or if instant messaging (IM) is being used

over port 80, which is reserved typically for HTTP. It can also be used to allow or deny web pages

that contain particular types of active content, such as ActiveX. There are also other types of ad-

vanced firewalls including application proxy gateway, which provides a trasparent communication

between two parties however, they are actually not connected directly to each other. There is also

dedicated proxy servers that usually act as application-specific firewall such as HTTP proxy.

2.2.2 Intrusion Detection and Prevention Systems

An intrusion detection system (IDS) is a system to detect intrusive activities, which normally

exploit vulnerabilities. Intrusion detection is an important security component in network security

architecture. It monitors computer and network systems in order to detect possible attacks and
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trigger alarms at the occurrence of malicious activities. They can be categorized as signature-

based intrusion detection, and anomaly-based intrusion detection. Moreover, one can classify them

as host-based intrusion detection and network-based intrusion detection systems. Signature-based

IDSs detect intrusions that match the signature of known attacks. This type of IDS is unable to

detect unknown attacks (a.k.a zero-day attacks) for which no signature is determined yet. However,

they are very effective in detecting known attacks and have low false positive rate.

On the other hand, anomaly-based IDS builds a model for normal behaviour and any violation

of that behaviour would be considered as an attack. This kind of IDS is able to detect zero-day

attacks but, it has higher false positive rate. Artificial intelligence and neural networks play impor-

tant role in the development of these types of IDS. Network-based IDSs are located at important

points in the network to monitor the network traffic while, host-based IDSs run on a single host.

Intrusion detection and prevention systems (IDPS) are network security appliances that monitor

networks with intention to not only detect malicious activities and log information about them, but

also to stop those activities in order to prevent the attack. IDPS are considered extensions of in-

trusion detection systems because they have intrusion detection functionality as well as additional

prevention mechanisms such as sending an alarm, dropping the malicious packets, resetting the

connection, and blocking the traffic from the malicious IP address. In this thesis, we use the term

IDS to represent a typical intrusion detection and prevention system.

2.2.3 IPSec VPN

IP security (IPsec) is a suite of protocols developed by IETF to implement security at the IP

layer [77]. IPsec is often used in order to implement Virtual Private networks (VPNs). A VPN
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is a network that uses a public telecommunication infrastructure, such as the Internet, in order to

provide secure access for users or remote offices to their organization’s network. VPN relies on

IPsec to create a tunnel between the two endpoints. The traffic within the VPN tunnel is encrypted

to protect from other users of the public Internet who may intercept the communications. IPsec

provides three security functionality namely authentication, confidentiality, and key management.

It can be used for instance to secure connections from a branch office to the Internet user. In this

thesis, it could be connectivity between the corporation network and VMs deployed in the public

cloud, which enables a secure remote access. In terms of traffic encryption for the confidentiality,

IPsec supports two modes: transport and tunnel. Transport mode encrypts only the data portion

being the payload of the packets. Transport mode is usually used to secure end-to-end communica-

tion between two hosts. On the other hand, tunnel mode encrypts both the header and the payload.

Tunnel mode is used between two security gateways, such as firewalls or routers that implements

IPsec. At the reciever side, there will be an IPSec-compliant device, which decrypts every packet.

For IPsec to work, the sending and receiving devices must share a public key. This is accomplished

through a protocol known as Internet Key Exchange (IKE).

2.3 Formal methods

In the broad range of formal methods techniques for specification, and verification of software

and hardware systems, we are interested in model checking. Model checking [27] refers to the

algorithms that exhaustively explore the state space of a transition system in order to address the

following problem: Having a model of the system and a given property, whether the model meets
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that property.

Among model checking techniques, we focus on Symbolic Model Checking [19, 68], which

was introduced around 1990, and Bounded Model Checking [14] introduced in 1999. In symbolic

model checking, Bibary Decision Diagrams (BDDs) [17] are traditionally used to form a sym-

bolic representation of a system. BDDs enable a breadth first search of the sate space, which is

effective specifically when the number of system states grows [27], but they are limited to handle

systems with hundreds of state variables. However, for larger systems there is possibility for space

explosion problem [14].

On the other hand, another type of model checking techniques is called bounded model check-

ing, that combines model checking with satisfiability solving. Comparing to symbolic model

checking with BDDs, it does not have space explosion problem, and can handle problems with

thousands of variables [14]. Satisfiability (often written as SAT) addresses the following problem:

Given a Boolean formula, determine if variables of that formula can be assigned in a way that

make the formula evaluate to TRUE. In that case we could say the formula is satisfiable. If there is

no such assignment, the formula is evaluated to FALSE for every variable assignments. Therefore,

the formula is said to be unsatisfiable. There are algorithms called SAT solvers, that can efficiently

solve a large subset of SAT instances.

In the following, we will present some background about bounded model checking and con-

straint satisfaction problem, based on that we develop our approach for verification of security

preservation regarding configurations of security mechanisms.
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2.3.1 Bounded Model Checking

Bounded Model Checking (BMC), was first introduced by Biere et al. in 1999 [14]. As exper-

iments have shown, it can solve many cases that cannot be solved by techniques that are based

on BDDs. What BMC does, is basically to search for a counterexample execution whose length

is bounded by a natural number n, and only tries to find counter examples (paths) that consist of

no more than n transitions. In bounded model checking, a Boolean formula is constructed that

is satisfiable if and only if there is a finite sequence of state transitions that reaches certain states

of interest. It has been shown in [13] that if the bound n is small enough (less than 80 cycles),

the SAT solver outperforms BBD-based techniquess. In fact there are classes of problems that al-

though considered hard for BDDs, in most of the cases can be solved with SAT-based techniques.

Bounded model checking consists of two phases [27]. In the first phase, the sequential behavior

of a transition system over a finite interval is encoded as a propositional formula. In the second

phase, a propositional decision procedure, i.e., a satisfiability solver is used to process that formula

in order to either obtain a satisfying assignment, or to prove that there is no such assignment. Each

satisfying assignment that is found can be decoded into a state sequence, which reaches states of

interest. The BMC problem can be efficiently reduced to a propositional satisfiability problem, and

therefore can be solved by SAT methods rather than BDDs [13].

A propositonal formmula is a logical expression defined over boolean variables [31]. An as-

signment to a set V of Boolean variables is a map σ ∶ V → {0,1}. Note that a map is an association

of an element in the range with each element in the domain. A satisfying assignment for F is

a truth assignment σ such that F evaluates to 1 under σ. We will be interested in propositional

formulas in a certain special form: F is in conjunctive normal form (CNF) if it is a conjunction (∧)
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of clauses, where each clause is a disjunction (∨) of literals, and each literal is either a variable or

its negation (¬). For example, F = (a ∨ ¬ b) ∧ (c ∨ d) is a CNF formula with four variables

and two clauses. The Boolean Satisfiability Problem (SAT) is the following: Given a CNF formula

F , does F have a satisfying assignment? All practical satisfiability algorithms, known as SAT

solvers, do produce such an assignment if it exists. Unlike BBD-based methods, SAT algorithms

do not suffer from the space explosion problem. Recently there has been a great advancement in

the performance of SAT solvers [31]. In fact, modern SAT solvers are able to handle propositional

satisfiability problems with hundreds of thousands of variables or even more [13].

2.3.2 Constraint Satisfaction Problem

Constraint satisfaction is the process of finding a solution to a propositional reasoning problem that

is specified using a vector of variables that must satisfy a set of constraints. A solution is therefore

a vector of values that satisfies all constraints. Many problems including those of scheduling, test

generation, and verification can be encoded in CSP. Constraint satisfaction problems are typically

identified with problems based on constraints on a finite domain. More formally, a CSP is defined

by a set of variables {xi}1≤ i≤ n and a set of constraints {Cj}1≤ j≤ m. Each variable xi is defined

within a domain Di of possible values. Each constraint Cj involves all or a subset of the variables

and specifies the acceptable combinations of values for these variables. A state of the problem is

defined by an assignment of values to some or all of the variables. A consistent or legal assignment

is one that does not violate any constraint. A complete assignment is one in which all variables

are assigned values. A solution to a CSP is a complete assignment that satisfies all the constraints.

There exist programs that solve CSP problems and are called constraint’s solvers. We use Sugar
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CSP solver [102], a SAT-based constraint solver based on a new SAT-encoding method named

”order encoding”. Sugar accepts Lisp-like expressions. For instance, the constraint C1 ∧ C2 is

equivalent to the expression (and C1 C2) in Sugar syntax. The complete language accepted by

Sugar can be found in [101]. After submitting a problem to Sugar, two possible conclusion are

output: either satisfiable (denoted hereafter as SAT), if all constraints are satisfied or unsatisfiable

(denoted hereafter as UNSAT), otherwise. For instance, for a conjunction of constraints c1∧⋯∧cn,

a SAT conclusion allows to infer that {ci}1≤i≤n are not disjoint whereas UNSAT conclusion asserts

that they are indeed disjoint.

An example of firewall rules encoding in Sugar syntax is shown in Figure 1. The firewall rules

are encoded using five tupples, which are protocol (pr), source and destination IP address (sip and

dip respectively), source port (ps) and destination port (pd). Since we assume the default action

is ”deny” then all the rules have ”allow” action. Therefore, we did not encode the field action in

Sugar. However, in case when we do not consider that assumption, we can easily encode the action

field in Sugar similarly.
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(int pr 0 255)

(int sip1 0 255) (int sip2 0 255) (int sip3 0 255) (int sip4 0 255)

(int dip1 0 255) (int dip2 0 255) (int dip3 0 255) (int dip4 0 255)

(int ps 0 65535)

(int pd 0 65535)

(or

; rule 1

( and (= pr 6) (and(>= sip1 0) (<= sip1 255)) (and(>= sip2 0) (<= sip2

255))

(and(>= sip3 0) (<= sip3 255)) (and(>= sip4 0) (<= sip4 255))

(= dip1 192) (= dip2 168) (= dip3 10) (= dip4 15)

(>= ps 0) (<= ps 65535) (= pd 80))

( and (= pr 6) (and(>= sip1 0) (<= sip1 255)) (and(>= sip2 0) (<= sip2

255))

(and(>= sip3 0) (<= sip3 255)) (and(>= sip4 0) (<= sip4 255))

(= dip1 192) (= dip2 168) (= dip3 10) (= dip4 16)

(>= ps 0) (<= ps 65535) (= pd 80))

( and (= pr 6) (and(>= sip1 0) (<= sip1 255)) (and(>= sip2 0) (<= sip2

255))

(and(>= sip3 0) (<= sip3 255)) (and(>= sip4 0) (<= sip4 255))

(= dip1 192) (= dip2 168) (= dip3 10) (= dip4 17)

(>= ps 0) (<= ps 65535) (= pd 80))

; rule 2

( and (= pr 6) (= sip1 190) (= sip2 160)

(and(>= sip3 0) (<= sip3 255)) (and(>= sip4 0) (<= sip4 255))

(= dip1 192) (= dip2 168) (= dip3 10) (= dip4 15)

(>= ps 0) (<= ps 65535) (= pd 22))

( and (= pr 6) (= sip1 190) (= sip2 160)

(and(>= sip3 0) (<= sip3 255)) (and(>= sip4 0) (<= sip4 255))

(= dip1 192) (= dip2 168) (= dip3 10) (= dip4 16)

(>= ps 0) (<= ps 65535) (= pd 22))

; end

)

Figure 1: Firewall Encoding in Sugar
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Chapter 3

Literature Review

In this section, we present the literature review with respect to three main axes of research that can

be connected to our work: Network security in cloud computing, analysis of security policy con-

sistency, and verification of security policy compliance with respect to security requirements. On

one hand, policy consistency analysis initiatives focus mainly on detecting and resolving anoma-

lies and conflicts within a given security policy configuration. On the other hand, approaches on

the verification of policy compliance target the assessment of a security policy implementation

with respect to security requirements specified by the network administrator. In addition, we have

identified relevant research that discuss network security issues in cloud computing and presented

them briefly. In the following, we will present some of the most relevant contributions in all three

research areas, but we will mainly focus on proposals aiming at security policies compliance veri-

fication, which are in the same axis as our work.
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3.1 Network Security in the Cloud

In spite of the benefits elasticity brings to the cloud computing model, it may cause critical security

issues to arise particularly after VMs migration. The security challenges in dynamic cloud envi-

ronment are emphasised in [39]. The work of Subashini and Kavitha [100] presents the various

security issues of cloud computing with special attention to its service delivery models. Moreover,

co-residency of VMs in a single physical machine brings new security challenges. Research has

shown that a malicious VM can take advantage of shared access to hardware, and extract valuable

information from other VMs, which are residing in the same machine as the attacker.

In this regards, Zhang et al. [118] discuss side channel attacks when a malicious virtual ma-

chine extract information from other co-located VMs. Prior to that, Zhang et al. [117] introduced

HomeAlone, which is a system that checks for a specific tenant whether its virtual machines are

isolated from the ones of other tenants. Vaquero et al. [107] present an analysis of security issues

related to multitenancy attribute of cloud computing. They present some of the threats and solu-

tions to address these issuses provided by the literature. Jasti et al. [58] also attend to the security

issues concerning multitenancy for example scenarios when a malicious user controls a VM, and

try to gain access to other VM’s resources or try to steal the data of other users located on the same

physical machine by compromising hypervisor. In these research contributions, migration of vir-

tual machines and preservation of security is not considered as it is our primary concern. However,

similar to our work they consider security challenges in the dynamic cloud environment.

In a given data center, multiple network security mechanisms including packet filters, stateful

firewalls, IPsec and IPS/IDS are deployed in order to protect the data center resources as well as
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all the hosted VMs. As virtual machines are dynamically and frequently moved between hosts,

manually managing complex security configurations can be time consuming and error-prone. Fur-

thermore, scale and complexity of data centers are continually increasing, which makes it diffi-

cult to rely on the administrators to update and validate security configurations. Research initia-

tives [49, 103, 109, 114] supported by industry acknowledged the challenge and the importance

of security context migration as part of cloud elasticity mechanism. Additionally, other contri-

butions [56, 85] claim the need for automated security management tools to maintain, for in-

stance, firewall protection with dynamic virtual server migrations. Furthermore, many Internet

drafts [46, 47, 81, 110] have been published by the IETF Network Working Group in order to

investigate potential solutions for security state (context) migration. However, while these secu-

rity context migration mechanisms are needed, it is of a paramount importance to ensure that they

achieve the intended outcome. At the moment they lack the verification for preservation of security

as we consider in this thesis.

Matthews et al. [67] propose virtual machine contracts for automating the communication and

management of VM requirements including access to a particular network segment or storage sys-

tem. Hajjat et al. [48] tackle the challenges in migrating enterprise services into hybrid cloud-based

deployments. They address the complexity of enterprise applications, and then focus on transaction

delays, wide-area communication, and cost resulted from migration. They also consider the ACL

migration and the reachability policies, and provide an algorithm for ACL migration. Although

these works draw attention to virtual machine migrations, but their focus is mainly performance

rather than security. Thus, they do not provide any formal proof for the security policy preserva-

tion.
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Some other works such as [80] draw attention to the security issues that are related to the

migration process and possibility of man-in-the-middle attacks. Huan Liu [63] presents a Denial

of Service Attack (DoS) in a cloud infrastructure and demonstrates how an attacker is able to shut

down a subnet in the cloud data center, and provides a method to avoid such attack using dynamic

provisioning capability of the cloud.

With respect to intrusion detection/prevention mechanism, a number of initiatives focused

mainly on proposing a solution to handle inspection specifically designed to the cloud. For in-

stance, [38] proposes a novel architecture for virtual machines introspection. A trade-off solution

for the deployment location of the IDS (either within the host or in the network) is proposed. Modi

et al. [71] present a survey on various intrusion detection techniques in the cloud. Roschke et

al. [91] discuss the requirements for an IDS in the cloud. They propose an IDS management archi-

tecture for distributed IDS solutions that aims at integrating and handling different types of sensors,

which collect and synthesize alerts generated from multiple hosts. In [72], another architecture for

dynamic security monitoring and enforcement targeting cloud computing is proposed. This work

is implemented using finite-state machines to increase the performance.

Azmandian et al. [9] present an approach that relies on the hypervisor-level data for detection

of intrusive activities in the virtual machine using data mining algorithms. In [105], security issues

related to the virtualization technology are reviewed, and a comparison between traditional and

modern monitoring techniques is presented along with the weaknesses as well as protection and

assurance levels. Dhage et al. [30] propose an IDS architecture to be deployed in a distributed

cloud computing environment, where separate instances are installed for each user and a single

controller is proposed to manage them.
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Amani S. Ibrahim et al. [57] present CloudSec, which is a monitoring module based on virtu-

alization technologies that performs security monitoring for virtual machines in the cloud infras-

tructure. In [6], an Intrusion Detection System as a Service (IDSaaS) is proposed. The latter is a

network and signature-based IDS for the cloud that monitors and logs network activities between

virtual machines within a pre-defined Amazon Virtual Private Cloud (VPC). These research works

particularly propose new architectures and techniques for intrusion monitoring in the cloud while

do not consider security issues in terms of inconsistencies generated after migration of virtual

machines, which we tackle in this thesis.

3.2 Security Policy Consistency Analysis

An important body of research work focuses mainly on the classification of policy anomalies and

conflicts as well as on the detection of these issues [1,3,5,22,24,25,32,33,41,50,54,87,89,90,108].

However, they mainly focus on packet filtering stateless firewalls. Very few works considered the

analysis of stateful firewalls policies conflicts (e.g. [20, 29, 43]).

Al-Shaer et al. [3] proposed a classification of policy anomalies and conflicts for both central-

ized and distributed firewalls architectures. Hamed and Al-Shaer [50] present a classification of

security policy conflicts occurring in stateless firewalls and IPsec devices in enterprise networks.

In [32], an algorithm to automatically resolve conflicts between network devices is presented.

Villemaire and Halle [108] show that anomalies are spatio-temporal properties of rule-based filters

that can be expressed using the spatio-temporal language RL and then verified using RL model-

checking for anomalies detection. Capretta et al. [22] present a conflict detection algorithm proved
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to be correct using Coq proof system.

In [5], mechanisms to discover and resolve anomalies in a network protected by both firewalls

and intrusion detection systems are proposed. In [89, 90], Rezvani and Aryan propose a formal

language to specify security policy for firewalls for the detection of anomalies. In [54], a rule-based

segmentation technique is adopted to convert a list of rules into a set of disjoint network packet

spaces to detect anomalies. They extend this work in [55], by following a technique based on rule

segmentation, to detect policy anomalies and extract resolutions for the identified anomalies. Chen

et al. [25] present an approach based on set theory for detection of anomalies in packet filtering

rule sets. Other approaches (e.g. [1, 41, 87]) propose the use of data mining techniques on log

files in order to detect firewall anomalies. In [37], a management tool implemented as a web

service, named MIRAGE, is developed for the analysis and deployment of configuration policies

over network security components including stateless firewalls, intrusion detection systems, and

VPN routers. Some other works [74, 82] propose the use of process algebra and more specifically

mobile ambient [23] for the analysis and the specification of network security policies for conflict

detection and analysis in single and distributed stateless firewalls.

As far as stateful firewall is concerned, only few initiatives studied the security policy consis-

tency problem of a single or distributed stateful firewalls. Unlike packet filters, the decision in a

stateful firewall on whether a packet should be allowed or blocked does not only depends on the

rules, but also on a state table that allows specific traffic to be temporarily accepted as it is related

to some previously initiated authorized connections. Gouda and liu [43] propose a model of state-

ful firewalls that allows analyzing properties of stateful firewalls including conforming, grounded,

and proper. These are mainly used to verify that a stateful firewall is ”truly stateful”. The work
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of Cuppens et al. [29] is dedicated to anomalies and conflicts in stateful firewalls. The innovative

approach in this work is determining new configuration anomalies specific to stateful firewalls that

are called intra-state rule anomalies. Algorithms to detect and resolve these anomalies were imple-

mented as part of their tool MIRAGE [37]. However, only a single stateful firewall is considered.

In [20] a technique for modeling a state as a subset of the firewall rule-set is presented. The authors

employed static analysis techniques and BDDs for detecting misconfigurations in firewalls.

As for IPsec policy analysis and conflicts detection, to best of our knowledge, there are very few

research initiatives done towards these objectives. There is a belief that VPN tunnels are created

on demand and therefore there could not be any erroneous IPSec configurations. But this is not the

case in the cloud when VMs move around. Anomalies in IPsec policy are first studied in [34], and

a methodology is proposed to detect and resolve security policy conflicts in both intra-domain and

inter-domain environments. Furthermore, security requirements for IPsec are formally specified in

a high-level language. Satisfaction of all of these requirements implies the correctness of the IPsec

policy. Hamed et al. [51] model IPsec policy using ordered binary decision diagrams (OBDDs),

then intra-policy conflicts (anomalies in a single IPsec device) as well as inter-policy conflicts

(anomalies between multiple IPsec devices) are classified. Niksefat and Sabaei [75] extend [51]

and propose an algorithm for detecting and resolving conflicts in IPsec policy. In this work, binary

decision diagrams (BDDs) are used for representing IPsec policy and rules evaluations. In [60], a

data flow-oriented model for detecting security conflicts in IPsec is proposed. In order to automate

the conflicts detection analysis, the model is specified in hierarchical colored Petri nets.

As we observed through studying the state of the art, important bodies of research work pro-

pose efficient approaches for detecting and resolving anomalies and inconsistencies in security
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policies of stateless firewalls, whereas only few works handle stateful firewalls as well as IPsec

and intrusion detection/prevention. However, detecting and resolving anomalies are not enough to

ensure compliance of the security implementation with the specified policy. In fact, our work is

different from the above mentioned body of research in the way that we want to make sure that

there is no inconsistency in the security policy of every virtual machines including those that stay

at the source location, due to VM migration. Moreover, in the case of an elastic cloud computing

environment, we are dealing with VMs migrating from one host to another, or even one data center

to another, and there is a huge potential for security policy misconfiguration, which can easily go

to a large scale. Therefore, relying on manual methods to check and identify possible errors is out

of question, and having an automated verification approach is essential.

3.3 Formal Verification of Security

In this section, first we describe research contributions on the formal verification of stateless fire-

walls. A test case generation approach is proposed by Brucker et al. [16] for testing firewall

configuration based on a formal model of firewall policies expressed in higher-order logic. Equiv-

alence checking have been investigated in [52,53,69] to verify the compliance between high-level

security policy and a firewall access control rules. In [52], high-level security policy is represented

as Access Control Matrix (ACM) based on which all possible communication paths are extracted.

ACM is then encoded to binary format and low-level firewall rules are encoded as boolean ex-

pressions. The verification consists in the evaluation of the resulting boolean expressions. Hassan

and Hudec [53] propose to extend the latter approach using Role-Based Network Security (RBNS)
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as an intermediary model to generate low-level rules from high-level policy. Mejri et al. [69]

elaborated a formal language for stateless firewall configuration specification endowed with a de-

notational semantics. A congruence relation on firewall configurations, expressed in the proposed

language, is defined that allows to formally reason about firewall configuration’s compliance with

respect to a global security policy. This is performed by formally proving the soundness and the

completeness of firewall configuration with respect to a security policy. The defined congruence

relation is mainly used to detect inconsistencies.

Other research proposals rely on model-checking to solve the verification problem. Al-Shaer

et al. [4] propose symbolic model checking, implemented within ConfigChecker tool, to verify

both network reachability and security requirements expressed as Computation Tree Logic (CTL)

properties. The network model specified as a state machine and the semantics of access control

policies are encoded as BDDs. Kotenko and Polubelova [61] propose to use SPIN model checker

for detection and resolution of filtering anomalies in the specification of security policy, where

anomalies are expressed as LTL formulas. Gouda et al. [44] propose to verify the correctness

of configurations regarding a network of stateless firewalls with tree topologies using their own

defined formal model of firewall networks, namely firewall decision diagram.

Acharya and Gouda [2] demonstrated the equivalence of firewall verification and firewall re-

dundancy checking problems for stateless firewalls and showed that any algorithm that can be used

to solve either problem can be also used to solve the other problem with the same time and space

complexities. Gawanmeh and Tahar [40] proposed an approach based on domain restriction imple-

mented in Event-B and used invariant checking to verify the consistency of firewall configurations.
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Reitblatt et al. [88] consider the issue of network configuration inconsistencies due to config-

uration changes, and propose a verification approach that guarantees preservation of well-defined

behaviors when transitioning between configurations. Security policies are expressed in CTL, and

verified using model checking. In addition, Bleikertz et al. [15] address security-related challenges

encountered in virtualized infrastructures such as: zone isolation, secure migration, and absence of

single point of failure, and demonstrate how these problems can be analyzed using model check-

ing technique. When they address the issue of secure migration, they consider whether an intruder

who has enough privileges could migrate the VM through an insecure network, or to a physical

machine under his control. On the other hand, in this thesis, we consider that migration of the

VM is legitimately done, and we would like to make sure that the migration does not introduce

misconfiguration in different security mechanisms.

Satisfiability verification are also investigated and proposed in some proposals [10–12, 59, 83,

115]. Jeffrey and Samak [59] use bounded model checking based on a SAT solver for the analysis

of reachability and cyclicity in a network of stateless firewall policy configurations. Reachability

means that each rule of the policy can be fired by at least one packet, whereas cyclicity means

there is a packet that causes the firewall to enter an infinite loop, without accepting or rejecting the

packet. Ben Youssef et al. [10] propose an automated approach for verification of the conformance

of a distributed firewall configuration to a predefined security policy based on Satisfiability Modulo

Theories (SMT) technique. Their approach detects conflicts within the security policy, and returns

key elements for the correction of flawed firewall configurations.

Finally, few works [83,115] consider constraint satisfaction problems (CSP) to solve the prob-

lem of stateless firewall rules compliance with a security policy. Both works consider translating
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the security policy and the firewall rules into CSPs in order to detect compliance or violation of

pre-defined security requirements. In contrast to these works, we do not compare a security im-

plementation with a security policy, but we compare the current security configuration with the

last known secure configuration, which will be shown to be well-suited for frequently changing

environments. Both [83, 115] consider a single stateless firewall rules, whereas we support a more

complicated case with distributed stateless firewalls. Zhang et al. [116] propose a technique based

on Booleans satisfiability in order to compare two firewall configurations, and verify whether they

are equal or one is included in the other. They present a method for firewall synthesis using

Quantified Boolean Formula (QBF) solver. In this work, the case of having stateful firewall is

not considered. Bera et al. [12] propose a framework based on Quantified Boolean Satisfiability

Checking (QSAT) problem in order to verify the enforcement of security policy in terms of ACL

rules that are distributed across network interfaces.

With respect to intrusion detection/prevention, few works [94, 104] propose model checking

techniques to model and analyze IDS configurations. Ben Tekaya et al. [104] employed a formal

verification technique based on model checking of temporal logic formulas to verify the correctness

of the intrusion detection system using the SMV model checker. The properties are either verified

if the behavior is normal, or violated if the behavior is intrusive. In [94] a model checking verifica-

tion approach is presented to detect specification errors in attack signatures of intrusion detection.

The attack signatures are transformed to PROMELA [84], and the model-checker SPIN [98] is

used for the verification. Uribe et al. [106] propose an approach for modeling and reasoning about

the configurations of a combination of network intrusion detection systems (NIDS) and firewalls.

They employed constraint logic programming to model the network as well as NIDS and firewall
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configurations. The approach can be applied to generate NIDS configurations from event specifi-

cations, and to detect multi-step attacks. A tool is implemented that is able to process Cisco PIX

firewall rules, and analyze abstract NIDS configurations to determine whether a detection policy is

enforced or not.

Song et al. [97] propose a formal framework for the analysis of intrusion detection systems

that employs declarative rules for attack recognition. The main goal of this framework is to reason

about the effectiveness of an IDS, therefore to prove that a given IDS can detect all attacks that

would violate security requirements of a given system. Couture et al. [28] present an intrusion

detection technique based on temporal logics. The proposed logic can express timing, safety, and

repetition properties useful to address stateful intrusion detection. Stakhanova et al. [99] present

a framework for the analysis of host-based and network-based intrusion detection systems for the

purpose of conflict detection in the rule-sets. In [92] a framework based on Event Calculus (EC) for

formal analysis of intrusion detection systems is presented. This framework checks that security

requirements are preserved at run-time by monitoring the satisfaction of the corresponding EC

formulas. This is done by observing the network at run-time, and checking observations against

specified network behavior.

To the best of our knowledge, there is no work tackling the verification of stateful firewalls, as

well as IPsec VPN configuration. In addition, most of the existing proposals addressing compliance

verification of security policies, successfully compare a given security configuration implementa-

tion against a set of security requirements. However, in a scenario where VMs have to migrate

frequently and promptly, such an approach can become a real bottleneck if not appropriately tai-

lored to such a fast changing environment. For instance, applying such an approach means that
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any time a migration occurs, one has to consider each single security requirement of the co-located

VMs in the updated data centers in addition to the requirements of the migrating VM. In contrast

to these methodologies, we propose to divide the problem into two main sub-problems: verifica-

tion of security of the migrating VM, and verification of security of the non-migrating VMs all

together. Therefore, we can verify the security of all non-migrating VMs at once, which acceler-

ate the process. To this end, we propose to compare the new security configuration with the "last

known secure configuration" deployed in the source data center.
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Chapter 4

Cloud Calculus

In this chapter, we aim at providing a formal framework to express and verify the VM deployment

and migration process in the cloud from the security point of view. More precisely, we propose a

framework that allows expressing the deployment and migration of VMs along with their related

security policies, and then verifying the preservation of the security after migration. This thesis

is the first initiative that employs a process algebraic approach for this matter. The majority of

existing research initiatives mainly focus on performance evaluation, downtime, and cost analysis

of virtual machines migration process.

Cloud calculus is a process algebra that aims at specifying cloud topology, and expressing

virtual machines migration within the same as well as across data centers along with their corre-

sponding security policies. Cloud calculus is built upon a subset of the Mobile Ambients (MA) [23]

and the Non-interfering Boxed Ambients [18], and extends them with new constructs. These con-

structs allow expressing specific sort of ambients, such as security ambient and packet ambient,

in addition to security policies at specific locations in the network, the selection of those policies
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that need to be migrated with their corresponding VMs, and the update of the destination location

with the new policies. The choice of the ambient concept as a foundation for the cloud calculus is

justified as it was successfully used by other researchers to represent a network as a graph of nested

nodes (e.g. [79]). Ambients allow representing any type of resources including firewalls, switches,

routers, gateways, physical hosts, and VMs. Particularly, MA calculus is based on the concepts of

hierarchy and grouping, which allows to fully represent the topology of a network. Furthermore,

ambients have capabilities of moving around and communicating with other ambients.

4.0.1 Syntax

The cloud calculus comprises six syntactic categories: terms T , processes P , capabilities M , fire-

wall policies G, ambient names A, and locations η. In the following, we briefly explain each

construct. Ambient names can be a fixed name n or a variable u. Locations η are used to indicate

where the communications take place: either locally within the same ambient, or across ambient

boundaries (between a parent and a child). The location �means towards the parent, the location A

means towards the sub-ambient named A, and↭ (generally omitted) means local communication.

Terms enable us to specify the type of data that can be communicated between ambients. A term

T can be a capability M , an ambient A, a security policy G, or a variable x. The syntax of cloud

calculus is provided in Figure 2 and Figure 3. In the following we detail the constructs related to

processes, capabilities, and security policies.

A process can be defined using the following constructors:

• The process 0 represents the inactive process, that does nothing.
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Terms
T ∶ ∶= M capability

∣ A ambient
∣ G rules
∣ x variable
∣ f(


→
T ) function application

Locations
η ∶ ∶= A child

∣ � parent
∣ ↭ local

Processes
P,Q ∶ ∶= 0 inactivity

∣ (νn)P restriction
∣ P | Q composition
∣ !P replication
∣ M.P capability
∣ A[P ] ambient
∣ h▷A[P ] packet ambient
∣ G ∶∶ A[P ] security ambient
∣ (x)η.P input
∣ ⟨T ⟩

η
.P output

Capabilities
M,N ∶ ∶= ε empty path

∣ x variable
∣ in A enter A
∣ out A exit A
∣ M.N path
∣ ↓ (x,A,A′) export rules
∣ ↑ (G) import rules

Ambients Names
A ∶ ∶= u variable

∣ n name

Figure 2: Syntax of the Cloud Calculus - Part1
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Packet Header
h ∶ ∶= ⟨prot, A, val, A, val⟩
Firewall Rules
G ∶ ∶= nop ∣ (c↦ d).G
c ∶ ∶= ⟨prot, add, port, add, port⟩
d ∶ ∶= Allow ∣ Deny
prot ∶ ∶= tcp ∣ udp ∣ icmp ∣ *
add ∶ ∶= * ∣ subnet ∣ ip
port ∶ ∶= * ∣ pval ∣ pval .. pval
ip ∶ ∶= val.val.val.val
subnet ∶ ∶= ip/cidr
val ∈ [0,255]
pval ∈ [0,65535]

Figure 3: Syntax of the Cloud Calculus - Part 2

• The process (νn)P denotes the restriction operator that creates a new (unique) name n

within the scope P . It can be used to name ambients and operate on ambients by name.

• The process P | Q: denotes the parallel composition of two processes P and Q.

• !P : represents the unbounded replication of the process P that allows defining iteration and

recursion.

• G ∶∶ A[P ]: denotes an (security) ambient named A containing a running process P , and

protected by a security policy defined in G.

• h▷A[P ]: is the packet ambient named A that possesses a header h, and contains a running

process P . The entity h denotes a five tuple consisting of protocol, source ambient, source

port, destination ambient, and destination port.

• M.P : is the process that executes a capability M , and then continues as P .
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• (x)η.P : is the anonymous polyadic input of values that is a binder of the variable x with

continuation P .

• ⟨T ⟩
η
.P : is the anonymous polyadic output of T .

Capabilities are obtained from names or variables. They can be described as follows:

• x: denotes a capability variable.

• in A: is the capability to enter into an ambient A,

• out A: is the capability to exit an ambient A,

• M.N : is a composition of capabilities forming a path,

• ε: denotes the empty path,

• ↓ (x,A,A′): allows exporting security policies of the enclosing ambient that specifically

concerns the ambient A and bound it into the variable x. The ambient A′ represents the

destination security ambient.

• ↑ (G): allows importing security policies G into the enclosing ambient.

A security policy denoted by G represents a sequence of rules defining constrains on the mo-

bility of ambients and on the communication between them. Security policies can be expressed as

follows:

• nop: denotes the empty security policy.
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• (c↦ d).G denotes a sequence of access control rules. A given access control rule is defined

by the tuple c and the decision d (either allow or deny). The tuple c is formed by the pro-

tocol prot, the source ambient represented by an IP value or a range add, the source port

represented by a port number value or a range port, the destination ambient add, and the

destination port port. Note that, in practice, the name of an ambient corresponds to an IP

address.

The free names and free variables, noted fn() and fv() respectively, have standard definitions,

and will not be detailed here. The notation P [T /x] denotes the free substitution defined only if T

and x are of the same arity. A closed process contains no free variable. We also omit the inactivity

0 in process expression such as P ∣ 0 and M.0.

4.0.2 Operational Semantics

The operational semantics is defined in terms of reduction and structural congruence. The struc-

tural congruence, noted ≡, is the least congruence that satisfies the laws in Figure 4.

Before presenting the cloud reduction rules, we present two auxiliary sub-reductions, namely

→ev and →exp. First one is needed for evaluation of the security policy G while having a packet

ambient with a header h trying to move from a source to a destination. The second sub-reduction is

needed for determining the rules to be exported to the new destination ambient given the name of

the migrating ambient A and the destination ambient A′. Given a sequence of firewall rules G, we

define the auxiliary function ev that evaluates G in the sequential order. We define ⟦c⟧(h) as the

evaluation of the tuple c of a specific rule (c ↦ d) against the values in the tuple h. The function

⟦c⟧(h) returns true if the header h matches c, and returns false otherwise. Figure 5 illustrates

44



MONOID

P ∣0 ≡ P
P ∣Q ≡ Q∣P
P ∣(Q∣R) ≡ (P ∣Q)∣R
REPL

!P ≡ P |!P
RES INACT

(νn)0 ≡ 0
RES RES

(νn)(νm)P ≡ (νm)(νn)P n ≠m
RES PAR

(νn)(P |Q) ≡ P |(νn)Q n ∉ fn(P )
PATH ASSOC

(M.N).P ≡M.(N.P )
RES AMB

(νn)m[P ] ≡m[(νn)P ] n ≠m
RES SEC AMB

(νn)G ∶∶m[P ] ≡ G ∶∶m[(νn)P ] n ≠m
RES PCKT AMB

(νn)h▷m[P ] ≡ h▷m[(νn)P ] n ≠m
SEC AMB

nop ∶∶ n[P ] ≡ n[P ]

Figure 4: Structural Congruence

the reduction rules for →ev. Rule SEQ allows to evaluate the firewall rules in the sequential order.

Rule MATCH is used when the currently evaluated firewall rule matches with h and has a decision

d. Rule NEXT is used when the currently evaluated firewall rule doesn’t match with h. Finally, rule

NONE is used when we reach the end of the firewall rules sequence with no match. We denote by

⇓ev the reduction to normal form of the expression h ⊩ ev(G).

In order to select the firewall rules corresponding to a migrating ambient A, we define an

auxiliary function exp that processes each firewall rule and decides either to completely move

(Rule MOVE) the rule, to copy (Rule COPY) the rule, or to do nothing (Rule NEXT). Rule SEQ and

LAST are used to process the security rules in sequential order, and to evaluate the last firewall rule
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SEQ h ⊩ ev((c↦ d).G) →ev ev((c↦ d)).G
MATCH h ⊩ ev((c↦ d)).G →ev d

if ⟦c⟧(h) = true
NEXT h ⊩ ev((c↦ d)).G →ev ev(G)

if ⟦c⟧(h) = false
NONE h ⊩ ev(nop) →ev Deny

Figure 5: Reduction Rules for Firewall Rules Evaluation

respectively. Note that we have to copy a firewall rule when the rule concerns more than one VM

such that c integrates c′ and c′′, written c = c′ + c′′. We define a set of five projection functions,

denoted by π5
i , that takes a tuple c and returns the ith element of the tuple. The function Sub(n,n’)

returns true if n is a sub-ambient of n′ and false otherwise. Figure 6 provides the reduction rules

for→exp. We denote by ⇓exp the reduction to normal form of the expression A′,A ⊩ �exp(G), nop�,

where A is the migrating ambient, and A′ is the destination firewall. The normal form is of the

form �G,G′�, where G′ are the rules to be migrated and G are the rules that remain within the

enclosing ambient.

SEQ A′,A ⊩ �exp((c↦ d).G), G� →exp �exp((c↦ d)).G, G�
MOVE A′,A ⊩ �exp((c↦ d)).G, G� →exp �exp(G), (c↦ d).G�

if (π2(c) = A and Sub(π4(c),A′) ) or (π4(c) = A and Sub(π2(c),A′))
COPY A′,A ⊩ �exp((c↦ d)).G, G� →exp �(c′′ ↦ d).exp(G), (c′ ↦ d).G�

if [d = Allow and ( (π2(c) = A and !Sub(π4(c),A′) ) or

(π4(c) = A and !Sub(π2(c),A′) ) or (A ⊂ π2(c) ∪ π4(c)))] where c′ + c′′ = c
NEXT A′,A ⊩ �exp((c↦ d)).G, G� →exp �(c↦ d).exp(G),G�

if (A ⊈ π2(c) and A ⊈ π4(c)) or

(d =Deny and (A ⊂ π2(c) or A ⊂ π4(c)) or

(d =Deny and A = π2(c) and !Sub(π4(c),A′) ) or

(d =Deny and A = π4(c) and !Sub(π2(c),A′) ))

LAST A′,A ⊩ �G.exp(nop), G� →exp �G,G�

Figure 6: Reduction Rules for Firewall Rules Export

The cloud calculus reduction relation uses the two aforementioned sub-reductions and it is
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defined by the rules for mobility, communication, firewall rules manipulation, and structural rules

given in Figure 7. Therein, contexts are processes with one hole defined as follows:

C[⋅] ∶ ∶= [⋅] ∣ P ∣C[⋅] ∣ (νn)C[⋅] ∣ G ∶∶ A[C[⋅]] ∣ h▷A[C[⋅]]

The reduction relation →∗ denotes the reflexive and transitive closure of →. In the following, we

explain the reduction rules:

• Rule (ENTER) allows a (non-packet) ambient n containing the process in m.P to enter a

sibling ambient m. If no sibling m exists, the operation blocks until a time when such a

sibling exists. If more than one m sibling exists, any one of them can be chosen.

• Rules (ENTER ALLOW) and (ENTER DENY) are used with a packet ambient p containing a

process in m.P that is willing to enter m, a sibling security ambient containing the firewall

rules Gm. The first rule applies if there is a firewall rule with decision allow that matches

with h, which results in the packet p entering the ambient m. The second rule applies if there

is either a matching security rule with decision deny or no matching rule at all, which results

in dropping the packet ambient p.

• Rule (EXIT) is used to allow a (non-packet) ambient n containing the process out m.P to

exit a parent ambient m. If the parent ambient is not named m, the operation blocks until

such a condition holds.

• Rule (EXIT ALLOW) and (EXIT DENY) are used with a packet ambient p containing a process

out m.P that is willing to exit m, a parent security ambient containing the firewall rules Gm.

The first rule applies if there is a firewall rule with decision allow that matches with h, which
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results in the packet p exiting the ambient m. The second rule applies if there is either

a matching security rule with decision deny, or no matching rule at all, which results in

dropping the packet ambient p.

• Rule (LOCAL) allows a local communication between a local input of x and a local output T

within the same ambient to take place. This results in the substitution of all occurrences of

variable x in P with the value T .

• Rule (INPUT n) allows a communication between a parent and its child by an output of T

from a child ambient n, and an input of x from its parent ambient.

• Rule (OUTPUT n) allows a communication between a parent and its child by an output of T

from a parent ambient, and an input of x from its child ambient n.

• Rule (IMPORT) defines an import operation (dual of export) of a sequence of firewall rules

G′ to a security ambient n. We define an auxiliary function Merge that allows to merge two

sequences of firewall rules such that G′n=Merge(Gn,G′) represents the new firewall rules

sequence of n.

• Rule (EXPORT) defines an export operation of a sequence of firewall rules G′ that are related

to a migrating virtual machine m, and having as destination a security ambient m′. This

results in the substitution of all occurrences of variable x in P with the value G′.
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Mobility:
(ENTER) Gn ∶∶ n[in m.P ∣ Q] ∣ Gm ∶∶m[R] → Gm ∶∶m[Gn ∶∶ n[P ∣ Q] ∣ R]

(ENTER ALLOW)
h ⊩ ev(Gm) ⇓ev Allow

h▷ p[in m.P ] ∣ Gm ∶∶m[Q] 
→ Gm ∶∶m[h▷ p[P ] ∣ Q]

(ENTER DENY)
h ⊩ ev(Gm) ⇓ev Deny

h▷ p[in m.P ] ∣ Gm ∶∶m[Q] 
→ Gm ∶∶m[Q]

(EXIT) Gn ∶∶ n[Gm ∶∶m[out n.P ∣ Q] ∣ R] → Gm ∶∶m[P ∣ Q] ∣ Gn ∶∶ n[R]

(EXIT ALLOW)
h ⊩ ev(Gm) ⇓ev Allow

Gm ∶∶m[h▷ p[in m.P ] ∣∣ Q] 
→ h▷ p[in m.P ] ∣Gm ∶∶m[Q]

(EXIT DENY)
h ⊩ ev(Gm) ⇓ev Deny

Gm ∶∶m[h▷ p[in m.P ] ∣ Q] 
→ Gm ∶∶m[Q]

Communication:
(LOCAL) (x).P | ⟨T ⟩ .Q → P{T /x} | Q
(INPUT n) (x)n.P | Gn ∶∶ n[⟨T ⟩

�
.Q ∣ R] → P{T /x} | Gn ∶∶ n[Q ∣ R]

(OUTPUT n) ⟨T ⟩
n
.P | Gn ∶∶ n[(x)�.Q ∣ R] → P | Gn ∶∶ n[Q{T /x} ∣ R]

Firewall Rules:

(IMPORT)
G′n =Merge(Gn,G′)

Gn ∶∶ n[↑ (G′).P ] → G′n ∶∶ n[P ]

(EXPORT)
m′,m ⊩ �exp(Gn), G� ⇓exp �G′n, G

′�

Gn ∶∶ n[↓ (x,m,m′).P ] → G′n ∶∶ n[P{G
′/x}]

Structural and Context:

(STRUCT)
P ≡ P ′ P ′ 
→ Q′ Q′ ≡ Q

P 
→ Q
(CTX) P 
→ Q ⇒ C[P ] 
→ C[Q]

Figure 7: Cloud Calculus Reduction Rules
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4.1 Security Mechanisms Syntax

In this section, we present the cloud calculus syntax regarding stateless firewall, IDS, and IPsec

security mechanisms.

4.1.1 Stateless Firewall Syntax

The syntax of a firewall configuration language in BNF is presented in Figure 8.

Firewall Configuration Rule Predicate
F ∶ ∶= {m ∶ L,⋯, m ∶ L} multiple ACL p ∶ ∶= sip � add source addr
L ∶ ∶= nop empty ∣ ps � port source port

∣ (p ↦ d).L sequence ∣ dip � add destination addr
d ∶ ∶= allow allow decision ∣ pd � port destination port

∣ deny deny decision ∣ pr = prot protocol
∣ Jump m link to ACL m ∣ p ∧ p conjunction

ip ∶ ∶= val.val.val.val add ∶ ∶= *
subnet ∶ ∶= ip/cidr ∣ subnet
val ∈ [0,255] ∣ ip
pval ∈ [0,65535] port ∶ ∶= *
prot ∶ ∶= tcp ∣ udp ∣ * ∣ pval
� ∈ {=,⊂} ∣ pval .. pval

Figure 8: Firewall Syntax

The symbol *, depending on its position, denotes the range of possible values in terms of IP,

port, or protocol. A firewall configuration F can be composed of a number of ACLs L. For a given

category of firewalls, the configuration language, rules’ organization, and the interaction between

multiple ACLs are the main variation factors between firewalls from different vendors. An ACL,

denoted by L, is associated with a name m. The latter allows naming ACLs in order to link an

ACL to another using the construct Jump m. The firewall rules in a given ACL are organized in
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sequential order. Let fi be a single firewall rule, denoted by pi ↦ di where pi is a predicate repre-

senting the filtering condition of the rule, and di is the corresponding decision. The predicate pi is

the conjunction of the set of predicates on the proceeded packet’s attributes. The commonly used

attributes in the packet header are the protocol, the source IP address, the destination IP address,

the source port number, and the destination port number. For instance, the topology of the data

center DC1 depicted in Figure 9 can be expressed using cloud calculus as follows:

D1 = F1 ∶∶ G1[ F2 ∶∶ S1[ S3[ PS1[PWEB1] ] ] ∣ P ]

where P = F3 ∶∶ S2[ S3 ∣ S4[ PS2[PAP1] ] ] and PWEB1 = VM5 ∣ VM6 ∣ VM7

The topology of the data center DC2 can be expressed as follows:

D2 = F4 ∶∶ G2[ F5 ∶∶ S5[ S6[ PS3[PDB1] ∣ PS4[VM1 ∣ VM2 ∣ VM3 ∣ VM4]] ]]

The cloud calculus operational semantics is defined in terms of reduction rules and structural con-

gruence. Firewall rules migration can be described using the cloud calculus reduction rules.

4.1.2 IDS Syntax

IDS rules differ from one intrusion detection system to another. In our case, we consider Snort [96]

intrusion detection system, which is an open source IDS that is widely deployed in many networks.

The syntax of an intrusion detection configuration language in BNF is presented in Figure 10.

The proposed syntax allows us to express IDS in cloud calculus. The bit-length of the allocated

network prefix is denoted by cidr, which represents Classless Inter-Domain Routing (CIDR) that is

a method for specifying IP addresses and their associated routing prefix. The symbol *, depending

on its position, denotes the range of possible values in terms of IP, port, or protocol. An intrusion

detection configuration I is composed of a sequence of rules. A given rule is of the form prd ↦ act
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Figure 9: Cloud Network Model
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where prd is a predicate over packets attributes (i.e. protocol, source and destination address,

source and destination port), and the direction of the communication denoted by dr, and the Snort

rule’s option opt which represents the content identifying the signature of the attack.

IDS Configuration Rule Predicate
I ∶ ∶= nop empty prd ∶ ∶= pr = prot protocol

∣ (prd ↦ act).I sequence ∣ sip � add source addr
act ∶ ∶= alert alert ∣ ps � port source port

∣ log log ∣ dr = dir direction
∣ pass pass ∣ dip � add destination addr

∣ pd � port destination port
∣ opt = option rule options
∣ prd ∧ prd conjunction

ip ∶ ∶= val.val.val.val add ∶ ∶= *
subnet ∶ ∶= ip/cidr ∣ subnet
val ∈ [0,255] ∣ ip
pval ∈ [0,65535] port ∶ ∶= *
prot ∶ ∶= tcp ∣ udp ∣ icmp ∣ ip ∣ * ∣ pval
dir ∈ {→,↔} ∣ pval .. pval
� ∈ {=,⊂}

Figure 10: IDS Syntax

4.1.3 IPsec Syntax

The syntax related to IPsec VPN configurations is illustrated in Figure 11. An IPsec configuration,

denoted by E, is a sequence of ACL rules p ↦ dp so that dp represents the action and encryp-

tion parameters for the protected traffic. The predicate p is the condition on the packet’s header

attributes, and it mainly includes source and destination IP addresses with source and destination

ports as well as the protocol. Three actions dp are possible: deny, bypass, or protect. In the case of

action ”protect”, specific transforms are specified to be applied on the traffic matching p. An IPsec
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transform te is any cryptographic service that can be used to protect network traffic. A transform is

composed of a security service sec_prot, that is either IPsec AH and ESP protocols and operating

either in transport or tunnel mode denoted by mode along with the cryptographic algorithm and

the necessary cryptographic parameters specified by param.

IPsec Configuration
E ∶ ∶= nop empty

∣ (p ↦ dp).E sequence
dp ∶ ∶= protect te secure

∣ bypass insecure
∣ discard drop traffic

te ∶ ∶= (sec_prot,mode, param)
sec_prot ∶ ∶= AH

∣ ESP
mode ∶ ∶= Transport

∣ Tunnel ip
param ∈ {3DES,⋯}

Figure 11: IPsec Syntax
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Chapter 5

Stateless Firewalls Filtering Preservation

In this chapter, first we present distributed firewalls composition which enable us to consider archi-

tecture with more than one firewalls. Then, we show how we encode a single firewall as well as a

distributed firewalls configuration in constraint satisfaction problem (CSP). After that, we present

our verification approach for firewall filtering preservation in dynamic cloud computing environ-

ment. We present firewall filtering preservation concept, and then we formally define firewall

filtering preservation in source and destination data centers as well as for the migrating VM. After-

ward, we elaborate on the CSP constrains which satisfiabilities allow verifying the defined firewall

filtering preservation. Finally, we describe the proposed verification procedure, and explain the

interpretation of the outcome of Sugar solver by demonstrating a case study.
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5.1 Firewall Composition

In the case of a well-engineered network with distributed firewalls, multiple paths may exist to

reach a given destination, and dynamic routing is used in order to improve performance and relia-

bility. Packets crossing different paths may be processed by different firewalls rules. Consequently,

a packet could traverse different ACL at different times. In this section, we define a language to

express distributed firewalls composition, denoted by T . Two firewalls may be either composed in

serial or in parallel. The syntax of T is provided in BNF as follows:

T ∶ ∶= F ∣ T ⊙ T ∣ T ⊕ T

where F is a single firewall configuration, T1 ⊙ T2 denotes serial composition of T1 and T2, and

T1 ⊕T2 is the parallel composition of two firewall configurations T1 and T2. In serial composition,

T1 ⊙ T2 means that a packet that survives filtering of rules of T1 is then necessarily filtered by

T2. The operator ⊙ is associative and distributive over ⊕. With respect to parallel composition,

T1 ⊕ T2 means that a packet is either filtered by T1 or by T2. The operator ⊕ is commutative and

associative. The parallel firewalling operation is useful for better high availability. In this case if

one of the links goes down, the second is used to carry the traffic to the destination.

Given a cloud calculus term expressing the topology of a cloud data center, one can define a

function that parses the expression in order to infer the resulting firewalls composition expressed

in the above syntax. Thus, we denote by P such a function that takes as input a cloud calculus term

and an ambient name A and returns the firewall composition expression.
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5.2 Encoding Firewall Configuration in CSP

In the following, we present how we encode a single firewall, and then a distributed firewall con-

figuration in CSP. The CSP variables are the set of integer variables V needed to encode the

condition filters of a given firewall rule. In order to represent an IP address, 4 integer variables

within the range of [0,255] are used. A source (resp. destination) IP address is represented by

{sipi}1≤i≤4 (resp. {dipi}1≤i≤4). The integer variable pr ∈ [0,255] represents the protocol num-

ber. We also define two integer variables to encode the source and destination port numbers,

respectively ps and pd within the range of values [0,65535]. Thus, the set of integer variables is

V = {pr, sip1, sip2, sip3, sip4, ps, dip1, dip2, dip3, dip4, pd}.

In the syntax of CSP for Sugar constraint solver, declaring an integer variable for instance

pr within the range [0,255] is denoted by (int pr 0 255). Each single firewall rule predicate p

is encoded as a CSP constraint. It is a conjunctive logical formula over the variables in V . The

corresponding CSP constraint is written as: pr = v1 ∧ sip1 = v2 ∧ sip2 = v3 ⋯ ∧ dip4 =

v10 ∧ pd = v11 where vi is to be replaced by the actual value in the corresponding firewall rule.

The firewall ACL is encoded as a constraint C built as a disjunctive logical formula over all firewall

rules formulas. Thus, the ordered sequence of firewall rules (pn → dn).(pn−1 → dn−1). ⋯ .nop are

encoded as the logical formula p1 ∨p2 ∨⋯∨pn. In Sugar syntax, this is denoted by (or p1 . . . pn ).

Since we consider that all rules have ”allow” decisions, this constraint represents the set of

packets accepted by the firewall configuration. Sugar parses C and returns satisfiable with a com-

plete assignment solution of the problem, which is a packet that matches one of the firewall rules

predicate. A !C represents the set of packets denied by the firewall configuration. With respect to
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distributed firewalls, we consider each possible path to the migrating VM in source and destination

data centers. Given the cloud calculus term, one can infer the firewall composition of the data

center topology expressed in the syntax defined in Section 5.1. Therein, paths are composed using

the ⊕ operator, i.e. P1⊕⋯⊕Pn, where Pi consists of the serial composition of k firewalls, denoted

by F1 ⊙⋯⊙ Fk.

5.3 Approach

In this section, we present our approach to verify firewall filtering preservation in dynamic cloud

computing environment. First, we present firewall filtering preservation concept and summarize

our assumptions. Then, we formally define firewall filtering preservation in source and destination

data centers as well as for a migrating VM. Afterward, we elaborate on the CSP constrains, which

satisfiabilities allow verifying the defined firewall filtering preservation. Finally, we describe the

proposed verification procedure, and explain the interpretation of the outcome of Sugar constraint

solver.

In dynamic cloud computing environment, a virtual machine may leave a data center D1, called

source data center, to be relocated in another data center D2, called destination data center. During

migration, the security enforcement rules located initially in D1 should follow the VM. Thus, they

have to be removed from the source data center, and then reinforced at the destination data center.

Thus, it is very important to ensure each time, that the migrating VM firewall filtering requirements

have not been compromised. Furthermore, as this involves modification of firewall filtering rules in

both source and destination data centers, we also have to ensure that firewall filtering requirements
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of the non-migrating virtual machines located therein have not been compromised. We suppose

that all firewalls are anomaly-free, and decisions of all the rules are of type ”allow” and the default

one is a ”deny” rule. Although, in case of existence of both deny and allow rules, one can use

the algorithm defined in [64], which computes the effective representation of the firewall rules

consisting of the equivalent allow rules. Furthermore, we assume the initial configurations before

migration in both data centers are compliant with the pre-defined security policy.

5.3.1 Firewall Filtering Preservation

In the following, we formally define firewall filtering preservation in dynamic cloud computing

environment. Let Ab
src, A

a
src, Av be the accepted traffic in the source data center before migration,

the accepted traffic in the source data center after migration, and the accepted traffic destined to the

migrating VM v, respectively. Intuitively, firewall filtering is preserved in the source data center if

the only difference between traffic accepted before and after migration is the one destined to the

migrating VM v. This is defined formally as follows:

Definition 5.3.1. Firewall Filtering Preservation in Source Data Center

Firewall filtering is preserved in source data center if and only if for any path, we have Aa
src =

Ab
src ∖Av and Av ≠ ∅.

Note here that we require Av ≠ ∅ otherwise, this will be a trivial case where no rule is migrated.

In the destination data center, firewall filtering preservation is defined as follows:

Definition 5.3.2. Firewall Filtering Preservation in Destination Data Center

Firewall filtering is preserved in destination data center if and only if for any path, we have Ab
dst =
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Aa
dst ∖Av and Av ≠ ∅.

Since we are assuming that firewall filtering requirements of the migrating VM are met in

the source data center, its firewall filtering is preserved if the traffic accepted to that VM in the

destination data center after migration and the source data center before migration are equal.

Definition 5.3.3. Firewall Filtering Preservation for the Migrating VM

Firewall filtering is preserved for the migrated VM if and only if for any path in the destination

data center Aa
dst ∖A

b
dst = A

b
src ∖A

a
src.

5.3.2 Mapping Firewall Filtering Preservation into CSP

In order to verify firewall filtering preservation in both data centers and for the migrating VM, we

encode all firewall rules in both data centers as explained in Section 5.2 and use the aforementioned

definitions in order to infer the corresponding equivalent constraint satisfiability problem.

Let Cbsrc(Pi) (resp. Cbdst(Pj)) be the constraint that encodes the filtering conditions of the fire-

wall at the source (resp. destination) data center before migration on path Pi (resp. Pj). The

constraints Cbsrc(Pi) and Cbdst(Pj) represent the encoding in CSP of Ab
src and Ab

dst, respectively. Let

Casrc(Pi) (resp. Cadst(Pj)) be the constraint that encodes the filtering conditions of the firewall at

the source (resp. destination) data center after migration. The constraints Casrc(Pi) and Cadst(Pj)

represent the encoding in CSP of Aa
src and Aa

dst, respectively. Let Cv be the constraint that specifies

the packets that are destined to the migrating VM v. According to the set theory, two sets A and B

are equal, denoted A = B, if and only if A ⊆ B and B ⊆ A. We use this concept in order to prove

firewall filtering preservation as defined in Definition 5.3.1, Definition 5.3.2, and Definition 5.3.3
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using CSP framework. From Definition 5.3.1, Aa
src = Ab

src ∖ Av if and only if Aa
src ⊆ Ab

src ∖ Av

and Ab
src ∖Av ⊆ Aa

src. This condition holds if the following CSP problems are unsatisfiable for all

paths:

Casrc(Pi)∧!(C
b
src(Pi)∧!Cv) (1)

Cbsrc(Pi)∧!Cv∧!C
a
src(Pi) (2)

Equation (1) is equivalent to (Casrc(Pi)∧!Cbsrc(Pi)) ∨ (Casrc(Pi) ∧ Cv).

The condition Av ≠ ∅ is verified if Cbsrc(Pi)∧!Casrc(Pi) is satisfiable. Therefore, proving firewall

filtering preservation in source data center is equivalent to prove for all paths that:

• C1 = Cbsrc(Pi)∧!Casrc(Pi) is satisfiable

• C2 = Casrc(Pi)∧!Cbsrc(Pi) is unsatisfiable

• C3 = Casrc(Pi) ∧ Cv is unsatisfiable

• C4 = Cbsrc(Pi)∧!Cv∧!Casrc(Pi) is unsatisfiable

From Definition 5.3.2, Ab
dst = A

a
dst ∖Av if and only if Ab

dst ⊆ A
a
dst ∖Av and Aa

dst ∖Av ⊆ Ab
dst.

This condition holds if the following CSP problems are unsatisfiable for all paths:

Cbdst(Pj)∧!(C
a
dst(Pj)∧!Cv) (3)

Cadst(Pj)∧!Cv∧!C
b
dst(Pj) (4)

Equation (3) is equivalent to Cbdst(Pj)∧!Cadst(Pj) ∨ Cbdst(Pj) ∧ Cv. The unsatisfiability of formula
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Cbdst(Pj) ∧ Cv states that before migration none of the rules concern v. This trivially holds thus, we

do not consider it in the verification process. The condition Av ≠ ∅ is verified if Cadst(Pi)∧!Cbdst(Pi)

is satisfiable. Thus, proving firewall filtering preservation in the destination data center is equiva-

lent to prove for all paths that:

• C5 = Cadst(Pj)∧!Cbdst(Pj) is satisfiable.

• C6 = Cbdst(Pj)∧!Cadst(Pj) is unsatisfiable.

• C7 = Cadst(Pj)∧!Cv∧!Cbdst(Pj) is unsatisfiable.

For Definition 5.3.3, Aa
dst ∖A

b
dst = A

b
src ∖A

a
src hold if and only if Aa

dst ∖A
b
dst ⊆A

b
src ∖A

a
src and

Ab
src ∖A

a
src ⊆ A

a
dst ∖A

b
dst. This condition holds if the following CSP problems are unsatisfiable for

all paths Pj , with a reference path in the source data center Pref :

C8 = C
b
src(Pref)∧!C

a
src(Pref)∧!(C

a
dst(Pj)∧!C

b
dst(Pj)) (5)

C9 = C
a
dst(Pj)∧!C

b
dst(Pj)∧!(C

b
src(Pref)∧!C

a
src(Pref)) (6)

Thus, proving firewall filtering preservation for the migrating VM is equivalent to prove for all

paths in destination data center that both C8 and C9 are unsatisfiable. The satisfiability of any one

of them implies that there is discrepancy between the migrated rules from source data center and

the rules migrated into the destination data center for path Pj . Figures 12, 13, 14 illustrate the

verification approach, which consists of three steps: firewall filtering preservation in source data

center, firewall filtering preservation in destination data center, and then firewall filtering preser-

vation of the migrated VM. Note that the horizontal bar in this figure means that all conditions
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have to hold before concluding on the firewall filtering preservation. For instance, in Figure 12, C1

has to be satisfiable and C2, C3, and C4 have to be unsatisfiable in order to conclude on the firewall

filtering preservation in source data center.

Figure 12: Step 1 for a Path Pi in Source Data Center

Figure 13: Step 2 for a Path Pj in Destination Data Center

The evaluation of these constraints is interpreted relatively to a given path in source or destina-

tion data center. In the case of a constraint satisfiability, the CSP solver provides a solution that can
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Figure 14: Step 3 for a Path Pj in Destination Data Center

be used to identify the problematic rule(s). The interpretation of the undesired outputs as identified

in Figures 12, 13, 14 are summarized in Table 1.

Table 1: Interpretations of the Unexpected Constraints’ Satisfaction Values

e1 Ab
src ⊆ A

a
src

e2 Ab
src ⊂ A

a
src

e3 ∃p ∣ p ∈ Av and p ∈ Aa
src

e4 ∃p ∣ p ∈ Ab
src and p ∉ Av and p ∉ Aa

src

e5 Aa
dst ⊆ A

b
dst

e6 Aa
dst ⊂ A

b
dst

e7 ∃p ∣ p ∈ Aa
dst and p ∉ Av and p ∉ Ab

dst

e8 Av,dst ⊂ Av,src, some rules from source data center did not migrate

e9 Av,src ⊂ Av,dst, more rules than migrated in destination data center

5.4 Stateless Distributed Firewall Case Study

To better illustrate our approach, we present a case study consisting of two data centers DC1 and

DC2 with distributed firewall settings as depicted in Figure 15, inspired from Amazon Elastic

Compute Cloud (Amazon EC2) [8]. The service is built using a three-tier architecture: web,

application, and database.
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Figure 15: Stateless Distributed Firewall Case Study - Before Migration
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Figure 16: Stateless Distributed Firewall Case Study - After Migration
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Table 2 summarizes the firewall rules in both data centers before migration. The need for

virtual machine mobility across data centers, has been expressed by many providers as it serves

several reasons including data center infrastructure maintenance, disaster avoidance, or data center

expansion to address power, cooling, and space constraints. Even though the technology is not

widespread at the moment, but we believe it is coming in the near future. In this case study, we

suppose that VM1 that belongs to the database group has to be migrated from the physical server

PS4 in data center DC2 to PS1 in data center DC1. Therefore, traffic destined to application

group one in PS2 has to traverse FW1 and FW3, whereas traffic destined to web group one and

the recently created database group one containing VM1, can either traverse FW1 followed by

FW2, or FW1 followed by FW3. Thus, all firewall configurations along the paths to the desti-

nation physical server PS1 in data center DC1 have to be updated as the result of this migration.

This means that after VM1 migration, the port 3306 in FW1 that was previously blocked, has to

be opened to allow the traffic for database group one. In addition, all previously allowed traffic to

database group should be accepted through both FW2 and FW3. Moreover, the required updates

have to be done for the firewalls in the source being FW4 and FW5. In this case, there is no

change in FW4, but the rules concerning VM1 have to be removed from FW5. As it is shown in

Figure 16, after migration there is one database group in each data center, one contains VM1, and

the other contains VM2.

In order to demonstrate the applicability of our verification approach, we consider three sce-

narios:

Scenario 1 - Migration Error 1. The administrator correctly updated FW1, FW2, and FW5, but

omitted to add the rules to FW3. In such a scenario, FW3 rules after migration will be the same
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Table 2: Firewall Rules in Data Centers DC1 and DC2 - Before Migration

FW1

1. TCP *.*.*.* ANY *.*.*.* 80 Allow

2. TCP *.*.*.* ANY *.*.*.* 443 Allow

3. TCP *.*.*.* ANY *.*.*.* 22 Allow

4. TCP *.*.*.* ANY *.*.*.* 8000 Allow

FW2

1. TCP *.*.*.* ANY VM5,VM6,VM7 80 Allow

2. TCP *.*.*.* ANY VM5,VM6,VM7 443 Allow

3. TCP CorpIP ANY VM5,VM6,VM7 22 Allow

FW3

1. TCP *.*.*.* ANY VM5,VM6,VM7 80 Allow

2. TCP *.*.*.* ANY VM5,VM6,VM7 443 Allow

3. TCP CorpIP ANY VM5,VM6,VM7 22 Allow

4. TCP VM3,VM4,VM5,VM6,VM7 ANY AP1 8000 Allow

5. TCP CorpIP ANY AP1 22 Allow

FW4

1. TCP *.*.*.* ANY *.*.*.* 80 Allow

2. TCP *.*.*.* ANY *.*.*.* 443 Allow

3. TCP *.*.*.* ANY *.*.*.* 22 Allow

4. TCP *.*.*.* ANY *.*.*.* 3306 Allow

5. TCP *.*.*.* ANY *.*.*.* 8000 Allow

FW5

1. TCP *.*.*.* ANY VM3,VM4 80 Allow

2. TCP *.*.*.* ANY VM3,VM4 443 Allow

3. TCP CorpIP ANY VM1,VM2 22 Allow

4. TCP CorpIP ANY VM3,VM4 22 Allow

5. TCP CorpIP ANY AP2 22 Allow

6. TCP AP1 ANY VM1,VM2 3306 Allow

7. TCP AP2 ANY VM1,VM2 3306 Allow

8. TCP VM3,VM4,VM5,VM6,VM7 ANY AP2 8000 Allow

as before.

Scenario 2 - Migration Error 2. The administrator correctly updated the rules in FW1, FW2, and

FW5, but missed some rules in FW3.

Scenario 3 - Migration Error 3. The administrator correctly migrated the firewall rules to FW1,

FW2, and FW3, but forgot to update FW5.

Scenario 4 - Correct Migration. The firewall rules are correctly migrated on every path of the

network and are provided in Table 3. Note that FW4 do not need to be modified after migration.

In order to verify firewall filtering preservation, we translate the distributed firewall configura-

tion for each scenario into CSP, and use Sugar SAT-solver to verify the satisfiability of the CSP

constraints. The verification results for the four scenarios are summarized in Table 4. Therein, we
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Table 3: Updated Firewall Rules in Data Centers DC1 and DC2 - After Migration

FW1

1. TCP *.*.*.* ANY *.*.*.* 80 Allow

2. TCP *.*.*.* ANY *.*.*.* 443 Allow

3. TCP *.*.*.* ANY *.*.*.* 22 Allow

4. TCP *.*.*.* ANY *.*.*.* 8000 Allow

5. TCP *.*.*.* ANY *.*.*.* 3306 Allow
FW2

1. TCP *.*.*.* ANY VM5,VM6,VM7 80 Allow

2. TCP *.*.*.* ANY VM5,VM6,VM7 443 Allow

3. TCP CorpIP ANY VM5,VM6,VM7 22 Allow

4. TCP CorpIP ANY VM1 22 Allow

5. TCP AP1 ANY VM1 3306 Allow

6. TCP AP2 ANY VM1 3306 Allow

FW3

1. TCP *.*.*.* ANY VM5, VM6,VM7 80 Allow

2. TCP *.*.*.* ANY VM5, VM6,VM7 443 Allow

3. TCP CorpIP ANY VM5, VM6,VM7 22 Allow

4. TCP VM3,VM4,VM5,VM6,VM7 ANY AP1 8000 Allow

5. TCP CorpIP ANY AP1 22 Allow

6. TCP CorpIP ANY VM1 22 Allow

7. TCP AP1 ANY VM1 3306 Allow

8. TCP AP2 ANY VM1 3306 Allow

FW5

1. TCP *.*.*.* ANY VM3,VM4 80 Allow

2. TCP *.*.*.* ANY VM3,VM4 443 Allow

3. TCP CorpIP ANY VM2 22 Allow

4. TCP CorpIP ANY VM3,VM4 22 Allow

5. TCP CorpIP ANY AP2 22 Allow

6. TCP AP1 ANY VM2 3306 Allow

7. TCP AP2 ANY VM2 3306 Allow

8. TCP VM3,VM4,VM5,VM6,VM7 ANY AP2 8000 Allow
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show only the results for the path that has a firewall configuration error which are FW1 ⊙ FW3

for scenario one and scenarion two, and FW4 ⊙ FW5 for scenario four. Bold values in Table 4

show the constraints, which satisfactions are not as expected. When the solver returns satisfiable

for a constraint expected to be unsatisfiable, a solution is provided that pinpoints one of the rules

that makes security requirements fails. This indicates a possible error that should be investigated in

order to correct the firewall configuration. In order to have an assessment of the performance over-

Table 4: Sugar CSP Solver Results for the Three Scenarios

C1 C2 C3 C4 C5 C6 C7 C8 C9
Scen- 1 SAT UNSAT UNSAT UNSAT UNSAT UNSAT UNSAT SAT UNSAT
Scen- 2 SAT UNSAT UNSAT UNSAT SAT UNSAT UNSAT SAT UNSAT
Scen- 3 UNSAT UNSAT SAT UNSAT SAT UNSAT UNSAT UNSAT SAT
Scen- 4 SAT UNSAT UNSAT UNSAT SAT UNSAT UNSAT UNSAT UNSAT

head, we performed a set of experiments on an Intel Core i7 2.67 GHz processor with 12Gbytes of

RAM. The verification performance depends on the total number of firewall rules. Table 5 sum-

marizes the result in terms of CPU time for an increased number of rules, which is mostly due to

increasing the number of VMs. The result shows that the CPU time consumption increases ap-

proximately linearly, also confirmed by [31].

Table 5: Performance Evaluation for Stateless FW

Number of VMs Number of Rules CPU Time (seconds)

5 22 0.278

50 202 0.324

500 2002 0.340

5000 20002 0.762

10000 40002 2.150
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Chapter 6

IDS Monitoring and IPsec Protection

Preservation

In a dynamic cloud computing environment, a VM may leave a physical machine called source

host, to be relocated in another host, called destination host. During migration, the security rules

that are associated with the migrating VM should follow the VM. Therefore, they should be re-

moved from the source location, and applied at the destination location. Thus, it is very important

to ensure each time that security of the migrating VM as well as of the other co-located VMs has

not been compromised by the migration process. In this chapter, we consider two other security

mechanisms, namely intrusion detection and prevention, and IPsec, which play an important role

in the security of the cloud’s infrastructure, and its resources, and VMs. We suppose that all IDSs

and IPsec devices are correctly configured before migration, and that the initial configurations in

both hosts are compliant with the pre-defined security policies. In this thesis, we consider an IDS

architecture where a virtual appliance dedicated for intrusion monitoring, called security monitor
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(SM), is attached to the hypervisors of the hosts. In addition, we assume having hardware IDS

appliances connected to the hosts through network interfaces. It is the responsibility of the hy-

pervisor to determine the decision of which part of the traffic should be monitored by the virtual

appliance, and which one by its hardware counterpart. We also consider IPsec endpoints located at

the edges of the data centers and the customer network.

6.1 Encoding IDS and IPsec Configuration in CSP

As far as the input format of IDS configuration files is concerned, we consider Snort [96] intrusion

detection system, which is an open source IDS that is widely used in many networks. A Snort rule

consists of two sections, a rule header and some rule options. The rule header contains criteria for

matching a rule against data packets, and the action to be taken. The options part usually contains

an alert message as well as information about the parts of the packet that should be used to generate

the alert message. The options part may also contain additional criteria for matching a rule against

data inside the packets. There are three major action directives that Snort supports when a packet

matches a specified rule pattern: pass, log, or alert. Pass rules simply drop the packet. Log rules

write the full packet to the logging routine. Alert rules generate an event notification using the

user-specified method, and then log the full packet using the selected logging mechanism for later

analysis. In the following, we present how we encode IDS configurations in Sugar.

The CSP variables are the set of integer variables V needed to encode the monitoring attributes

of IDS rules. In order to represent an IP address, 4 integer variables within the range [0,255] are

used. A source (resp. destination) IP address is represented by {sipi}1≤i≤4 (resp. {dipi}1≤i≤4). The
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integer variable pr ∈ [0,255] represents the protocol number. We also define two other integer

variables to encode the source and destination port numbers, respectively ps and pd within the

range of values [0,65535]. We encode the direction (ingress, egress or bidirectional) using an

integer variable dr ∈ [0,1] so that 1 represents bidirectional traffic and 0 represents unidirectional

traffic such that we switch the IP addresses and the ports from source to destination and vice

versa to represent ingress or egress traffic. The action is encoded using a variable act ∈ [0,2]

so that 0 represents pass, 1 represents log, and 2 represents alert. To encode the rule options we

use a variable opt ∈ [0,40000] so that each value represents a unique option value. Note that

here we assume an IDS which is enabled to recognize the signatures of maximum 40000 attacks.

This number is only the maximum number that we are sure not to bypass in our case study. Our

experiments show that we can cover up to 5000 attack signatures for the moment. Since it is

possible to have more than one option, we encode them as a logical conjunction formula of all

options. The action in the rule header is invoked only when all criteria in the options are true.

In the case of IDS rules the set of integer variables in CSP is V = {act, pr, sip1, sip2, sip3, sip4,

ps, dr, dip1, dip2, dip3, dip4, pd, opt}. Each single IDS rule predicate p is encoded as a CSP con-

straint. The latter is a conjunctive logical formula over the variables in V with their corresponding

values specified in the IDS rule. More precisely, a CSP constraint is written as act = v1 ∧ pr =

v2 ∧ sip1 = v3 ⋯ ∧ dip4 = v12 ∧ pd = v13 ∧ opt = v14 where vi is to be replaced by the

actual value in the corresponding IDS rule. The IDS is then encoded as a constraint C built as

a disjunctive logical formula over all constraints of the IDS rules. Thus, the list of IDS rules

(pn → dn).(pn−1 → dn−1). ⋯ .nop are encoded as the logical formula p1 ∨ p2 ∨ ⋯ ∨ pn. In Sugar

syntax, this is denoted by (or p1 . . . pn).
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In order to encode IPsec configuration in Sugar, we use a subset of the aforementioned CSP

variables in order to encode the filtering attributes of IPsec rules. The representation of source (and

destination) IP address, source (and destination) port, and protocol number are exactly the same

as the presentation in IDS. For the IPsec protocols ESP and AH, we define a variable called ipsec

having the values 50 and 51, respectively. To encode the mode (transport or tunnel), we define

a variable md, which values are in {0,1} such that 0 encodes transport mode and 1 encodes the

tunnel mode. In terms of action field in IPsec, we use a variable act, which has values in {0,1,2}

such that 0 encodes discard, 1 encodes bypass, and 2 encodes protect. For the case of tunnel mode,

the destination gateway is encoded by a variable gw and its values are in {1,m} such that m is

the maximum number of gateways in the network. Also a variable param is defined to encode the

authentication or cryptographic algorithms being used such as 3DES, MD5 and so on. Its values

are in {1, n} such that n is the number of authentication and cryptographic parameters available

in the configuration. In the case of an empty gateway configuration, the corresponding constraint

will be the truth value FALSE.

6.2 Approach

In this section, we present our approach to verify intrusion monitoring preservation and IPsec

protection preservation properties in dynamic cloud computing environment. First, we define the

meaning of intrusion monitoring preservation property and then derive the needed formulas to

verify this property in source and destination hosts as well as for the migrating VM. Second, we

present the concept of IPsec protection preservation, and then derive the corresponding formulas
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to verify this property in source and destination data center, in customer network, and for the

migrating virtual machine. Afterward, we elaborate on the CSP constraints, which satisfiabilities

allow verifying the defined security preservation properties. Finally, we describe the proposed

verification procedure, and explain the outcome of the Sugar solver. In dynamic cloud computing

environment, a VM may leave a physical machine called source host, to be relocated in another

host, called destination host. During migration, the security rules should follow the VM and thus,

should be removed from the source location and applied at the destination location. Thus, it is

very important to ensure each time that the security of the migrating VM as well as of the other

co-located VMs have not been compromised by the migration process. We suppose that all IDSs

and IPsec devices are correctly configured before migration, and that the initial configurations in

both hosts are compliant with the pre-defined security policies.

6.2.1 Intrusion Monitoring Preservation

In the following, we define the meaning of intrusion monitoring preservation in dynamic cloud

computing environment. Let M b
s and Ma

s be the monitoring rules in the source host before and

after migration, respectively. Let Mv be the monitoring rules with respect to the migrating VM v.

Intuitively, monitoring is preserved in the source host if the only difference between monitoring

policy before and after migration is the rules with regards to the migrating VM v. Note here that

we require Mv ≠ ∅ otherwise, this will be a trivial case where no rule is attached to the migrated

VM.

Definition 6.2.1. Intrusion Monitoring Preservation in Source Host

Intrusion monitoring is preserved in source host if and only if, we have Ma
s = M b

s ∖Mv and
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Mv ≠ ∅.

Similarly for the destination host, we would like to verify intrusion monitoring preservation

property.

Definition 6.2.2. Intrusion Monitoring Preservation in Destination Host

Intrusion monitoring is preserved in destination host if and only if, we have M b
d = M

a
d ∖Mv and

Mv ≠ ∅ and M b
s ⊆M

a
d .

Note that Definition 6.2.2 contains an extra condition (M b
s ⊆ Ma

d ) if compared to Definition

6.2.1. This condition is important as it is used to compare IDS capabilities of the two hosts in

order to ensure that the IDS signatures in destination are at least equal or more up-to-date than

those of the source host.

For the migrating VM, we need to ensure that the migrated VM is monitored at least at the same

level (or more) in the destination host after migration. Thus, intrusion monitoring is preserved for

the migrating VM if the monitoring policy for that VM in the destination host after migration is a

superset of those at the source host before migration. This is stated in the following definition.

Definition 6.2.3. Intrusion Monitoring Preservation for the Migrating VM

Intrusion monitoring is preserved for the migrated VM if and only if we have M b
s ∖M

a
s ⊆ M

a
d ∖

M b
d .

6.2.2 Mapping Intrusion Monitoring Preservation into CSP

In order to verify monitoring preservation in both hosts and for the migrating VM, we encode all

IDSs rules in both hosts as explained in Section 6.1, and use the aforementioned definitions in
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order to infer the corresponding equivalent constraint satisfaction problems.

Let Cbs (resp. Cbd) be the constraint that encodes the monitoring conditions of the IDS at the

source (resp. destination) host before migration by monitoring appliance (either physical or virtual

appliances). The constraints Cbs and Cbd represent the encoding in CSP of M b
s and M b

d , respectively.

Let Cas (resp. Cad ) be the constraint that encodes the monitoring conditions of the IDS at the source

(resp. destination) host after migration. The constraints Cas and Cad represent the encoding in CSP

of Ma
s and Ma

d , respectively. Let Cv be the constraint that specifies the monitoring policy regarding

to the migrating VM v. According to the set theory, two sets A and B are equal, denoted A = B,

if and only if A ⊆ B and B ⊆ A. We use this concept in order to prove monitoring preservation

as defined in Definition 6.2.1, Definition 6.2.2, and Definition 6.2.3 using CSP framework. From

Definition 6.2.1, Ma
s =M

b
s∖Mv if and only if Ma

s ⊆M
b
s∖Mv and M b

s∖Mv ⊆Ma
s . These conditions

hold if the following CSP problems are unsatisfiable:

Cas∧!(C
b
s∧!Cv) (7)

Cbs∧!Cv∧!C
a
s (8)

Equation (7) is equivalent to (Cas∧!C
b
s) ∨ (C

a
s ∧ Cv). The condition Mv ≠ ∅ is verified if Cbs∧!C

a
s is

satisfiable. Therefore, proving monitoring preservation in source host is equivalent to prove that:

• C1 = Cbs∧!C
a
s is satisfiable

• C2 = Cas∧!C
b
s is unsatisfiable

• C3 = Cas ∧ Cv is unsatisfiable
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• C4 = Cbs∧!Cv∧!C
a
s is unsatisfiable

From Definition 6.2.2, M b
d =M

a
d ∖Mv if and only if M b

d ⊆M
a
d ∖Mv and Ma

d ∖Mv ⊆M b
d . These

conditions hold if the following CSP problems are unsatisfiable:

Cbd∧!(C
a
d∧!Cv) (9)

Cad∧!Cv∧!C
b
d (10)

Equation (9) is equivalent to (Cbd∧!C
a
d)∨(C

b
d∧Cv). The unsatisfiability of formula Cbd∧Cv states that

before migration none of the rules concern v. This trivially holds therefore, we do not consider it

in the verification process. The condition Mv ≠ ∅ is verified if Cad∧!C
b
d is satisfiable. From the same

definition, condition M b
s ⊆M

a
d holds if the following CSP problem is unsatisfiable:

Cbs∧!C
a
d (11)

Thus, proving intrusion monitoring preservation in the destination host is equivalent to prove that:

• C5 = Cad∧!C
b
d is satisfiable.

• C6 = Cbd∧!C
a
d is unsatisfiable.

• C7 = Cad∧!Cv∧!C
b
d is unsatisfiable.

• C8 = Cbs∧!C
a
d is unsatisfiable.

From Definition 6.2.3, M b
s ∖M

a
s ⊆M

a
d ∖M

b
d hold if we have:
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• C9 = Cbs∧!C
a
s∧!(C

a
d∧!C

b
d) is unsatisfiable.

Thus, the unsatisfiability of C9 implies that the monitored traffic in source host targeting the

migrating VM is at least equal or included in the traffic monitored in destination host. More

precisely, this provides a proof that the IDS signatures at the destination are always equal or more

updated than those in the source.

Figures 17-19 illustrate our verification steps for IDS. Note that the horizontal bar in the figures

means that all conditions have to hold before concluding on the monitoring preservation. For

instance, in Figure 17, C1 has to be satisfiable and C2, C3, and C4 have to be unsatisfiable in order

to conclude on the monitoring preservation in source host.

Figure 17: Intrusion Monitoring Verification in Source Host

In the case of a constraint is satisfiable, the CSP solver provides a solution that can be used

to identify the problematic rule(s). The interpretation of the undesired satisfiability outputs as

identified in Figures 17-19 are summarized in Table 6, where r represents a monitoring rule.
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Figure 18: Intrusion Monitoring Verification in Destination Host

Figure 19: Intrusion Monitoring Verification for the Migrating VM

Table 6: Interpretations of the Unexpected Constraints’ Satisfaction Values for IDS

Error Interpretation

e1 M b
s ⊆M

a
s

e2 M b
s ⊂M

a
s

e3 Mv ∩Ma
s ≠ ∅

e4 ∃r ∣ r ∈M b
s and r ∉Mv and r ∉Ma

s

e5 Ma
d ⊆M

b
d

e6 Ma
d ⊂M

b
d

e7 ∃r ∣ r ∈Ma
d and r ∉Mv and r ∉M b

d

e8 Ma
d ⊂M

b
s , signatures at destination IDS less than the source

e9 Md
v ⊂M

s
v , some rules from source host are not at destination
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6.2.3 IPsec Protection Preservation

IPsec functions will be correctly executed only if the related policies are correctly specified and

configured at both sites establishing the tunnel. IPsec configuration spans multiple devices includ-

ing the VM and the servers on the corporate network for authentication, and on the gateways in

the source and destination data centers as well as at the customer side. Let Eb
l and Ea

l be the IPsec

protected traffic in the location l, l ∈ {s, d, cust} before and after migration, respectively, where s

is for source, d is for destination, and cust is for customer network. Let Et
v be the IPsec traffic con-

cerning the virtual machine v at t ∈ {a, b}. Let EGWd,v be the IPsec traffic between the destination

data center and the migrating VM v.

Non-Migrating Virtual Machines. With respect to IPsec protection in the data centers, we

should verify that the IPsec configurations of all non-migrating VMs in the source as well as in the

destination data centers have not been modified after the migration of v.

Definition 6.2.4. IPsec Protection Preservation in the Data Centers and Customer Network

In source data center, in destination data center, and in the customer network, IPsec protection is

preserved if we have respectively:

• Ea
s = E

b
s ∖E

b
v

• Eb
d = E

a
d ∖E

a
v

• Eb
cust ∖E

b
v = E

a
cust ∖E

a
v

Migrating Virtual Machine. With respect to the IPsec traffic of the migrating VM v, we

should verify that it is protected equally before and after migration. This implies that the verifi-

cation should be performed taking into account both the cloud providers and customer gateways.
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Intuitively, we need first to verify that the IPsec rules that were added to the destination data cen-

ter gateway after migration are exactly the same as the ones deleted from the source data center

gateway. This holds since no modification is required for the rules’ attributes that are on the side

of the cloud provider. Secondly, we need to verify at the customer side that the IPsec rules for v

have been correctly updated such that the cryptographic parameters have not been changed, and the

gateway’s IP at the destination data center has correctly replaced the gateway’s IP at the source data

center after migration. The following definition states formally the meaning of IPsec protection

preservation for the migrating VM.

Definition 6.2.5. IPsec Protection Preservation for the Migrating VM For the migrating VM,

IPsec protection is preserved if followings hold:

• Ea
d ∖E

b
d = E

b
s ∖E

a
s

• Independently of the gateways, we have Ea
cust ∖E

b
cust = ∅

• Considering the gateways, we have Ea
cust ∖E

b
cust ⊆ EGWd,v

6.2.4 Mapping IPsec Protection Preservation into CSP

In this section, we describe the constraints that we built in order to answer the verification problem.

Let CtE,l be the constraint that encodes the IPsec-enabled appliances configurations where t ∈ {a, b}

and l ∈ {s, d, cust}. Let Cv be the constraint encoding the condition that considered traffic corre-

sponds to the virtual machine v. Let C′tE,cust be the constraint that encodes the traffic protected

independently of the gateways IP involved in the IPsec tunnel at the customer side. Let CGWd,v be

82



the constraint for encoding the traffic between the destination data center gateway GWd and v. As

we are interested in disregarding all encrypted traffic concerning v, we can encode both Eb
v and Ea

v

as Cv.

According to Definition 6.2.4 and set theory for the source data center, IPsec protection is

preserved if we have Ea
s ⊆ Eb

s ∖ Eb
v and Eb

s ∖ Eb
v ⊆ Ea

s . This is equivalent to verify that the

following constraints are unsatisfiable:

CbE,s ∧ ¬C
a
E,s ∧ ¬Cv (12)

CaE,s ∧ ¬(C
b
E,s ∧ ¬Cv) =

[Ca
E,s ∧ ¬C

b
E,s] ∨ [C

a
E,s ∧ Cv] (13)

In addition to these conditions, we also add another constraint in order to ensure that there is

actually IPsec rules for the migrating VM such that Cb
E,s ∧ ¬C

a
E,s is satisfiable. In summary, the

constraints that should be verified to ensure IPsec protection preservation in source data center are

as follows:

• C10 = Cb
E,s ∧ ¬C

a
E,s is satisfiable

• C11 = Ca
E,s ∧ ¬C

b
E,s is unsatisfiable

• C12 = Ca
E,s ∧ Cv is unsatisfiable

• C13 = Cb
E,s ∧ ¬C

a
E,s ∧ ¬Cv is unsatisfiable

For the destination data center (Definition 6.2.4), IPsec protection is preserved if Eb
d ⊆ E

a
d ∖E

a
v and
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Ea
d ∖E

a
v ⊆ E

b
d. This is equivalent to verify that the following constraints are unsatisfiable:

CbE,d ∧ ¬(C
a
E,d ∧ ¬Cv) =

[Cb
E,d ∧ ¬C

a
E,d] ∨ [C

b
E,d ∧ Cv] (14)

CaE,d ∧ ¬C
b
E,d ∧ ¬Cv (15)

From Equation 14 the unsatisfiability of formula Cb
E,d ∧Cv states that in destination data center

before migration, none of the rules concern v. This trivially holds so we do not consider it in the

verification process. In addition to these conditions, we also add another constraint in order to

ensure that there is actually IPsec rules for the migrating VM at the destination data center such

that Ca
E,d ∧ ¬C

b
E,d is satisfiable. In summary, the constraints that should be verified to ensure IPsec

protection preservation in destination data center are as follows:

• C14 = Ca
E,d ∧ ¬C

b
E,d is satisfiable

• C15 = Cb
E,d ∧ ¬C

a
E,d is unsatisfiable

• C16 = Ca
E,d ∧ ¬C

b
E,d ∧ ¬Cv is unsatisfiable

For the customer network in Definition 6.2.4, we have to verify that Eb
cust∖E

b
v ⊆ E

a
cust∖E

a
v and

Ea
cust∖E

a
v ⊆ E

b
cust∖E

b
v. This is equivalent to verify that the following constraints are unsatisfiable:

CbE,cust ∧ ¬Cv ∧ ¬(C
a
E,cust ∧ ¬Cv) (16)

CaE,cust ∧ ¬Cv ∧ ¬(C
b
E,cust ∧ ¬Cv) (17)
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After expanding the above constraints using the same approach, we obtain the following:

• C17 = Cb
E,cust ∧ ¬Cv ∧ ¬C

a
E,cust is unsatisfiable

• C18 = Ca
E,cust ∧ ¬Cv ∧ ¬C

b
E,cust is unsatisfiable

We have to verify the satisfiability of the following constraints to make sure that there are

changes before and after migration, which means that the unsatisfiability of the above constraints

is not a trivial case:

• C19 = Cb
E,cust ∧ ¬C

a
E,cust is satisfiable

• C20 = Ca
E,cust ∧ ¬C

b
E,cust is satisfiable

For the migrating VM (Definition 6.2.5), three conditions have to be verified. The first one,

from equality Ea
d ∖E

b
d = E

b
s ∖E

a
s and set theory, is equivalent to verify that: Ea

d ∖E
b
d ⊆ E

b
s ∖E

a
s

and Eb
s ∖E

a
s ⊆ E

a
d ∖E

b
d. This is equivalent to verify that:

• C21 = Ca
E,d ∧ ¬C

b
E,d ∧ ¬(C

b
E,s ∧ ¬C

a
E,s) is unsatisfiable

• C22 = Cb
E,s ∧ ¬C

a
E,s ∧ ¬(C

a
E,d ∧ ¬C

b
E,d) is unsatisfiable

The second condition, from equality Ea
cust ∖ E

b
cust = ∅ and set theory, is equivalent to verify

that:

• C23 = C
′a
E,cust ∧ ¬C

′b
E,cust is unsatisfiable

Finally, from Ea
cust ∖E

b
cust ⊆ EGWd,v and set theory, we have:

CaE,cust ∧ ¬C
b
E,cust ∧ ¬CGWd,v (18)
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Unsatisfiability of above constraint is equivalent to:

• C24 = Ca
E,cust ∧ ¬C

b
E,cust is satisfiable

• C25 = Ca
E,cust ∧ ¬C

b
E,cust ∧ ¬CGWd,v is unsatisfiable

Figures 20-22 illustrates the verification steps for IPsec. In the case of a constraint satisfiability,

the CSP solver provides a solution that can be used to identify the problematic rule(s).

Figure 20: IPsec Protection Verification in Source and Destination Data Centers

Figure 21: IPsec Protection Verification in Customer Network

The interpretation of the unexpected outputs as identified in Figures 20-22 are summarized in

Table 7, where p represents a packet.
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Figure 22: IPsec Protection Verification for the Migrating VM

Table 7: Interpretations of the Unexpected Constraints’ Satisfaction Values for IPsec

Error Interpretation

e10 Eb
s ⊆ E

a
s

e11 Eb
s ⊂ E

a
s

e12 ∃p ∣ p ∈ Ev and p ∈ Ea
s

e13 ∃p ∣ p ∈ Eb
s and p ∉ Ev and p ∉ Ea

s

e14 Ea
d ⊆ E

b
d

e15 Ea
d ⊂ E

b
d

e16 ∃p ∣ p ∈ Ea
d and p ∉ Ev and p ∉ Eb

d

e17 ∃p ∣ p ∈ Eb
cust and p ∉ Ev and p ∉ Ea

cust

e18 ∃p ∣ p ∈ Ea
cust and p ∉ Ev and p ∉ Eb

cust

e19 Eb
cust ⊆ E

a
cust

e20 Ea
cust ⊆ E

b
cust

e21 Ev,s ⊂ Ev,d, more rules than migrated in destination DC

e22 Ev,d ⊂ Ev,s, some rules from source DC did not migrate

e23 Eb
cust ⊂ E

a
cust, independent of the gateway

e24 similar to e20

e25 ∃p ∣ p ∈ Ea
cust and p ∉ EGWd,v

and p ∉ Eb
cust
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6.3 IDS and IPsec Case Study

In this section, we apply our approach on a case study to demonstrate the usefulness and appli-

cability of our approach. The case study consists of a cloud computing model with two physical

hosts H1 and H2 located in two different data centers, where IPsec gateways and IDS appliances

are deployed as depicted in Figure 23. Furthermore, we assume several virtual machines deployed

in these data centers.

Table 8 provides a subset of the IDS rules before migration. The IPSec policy before and

after migration are given in Table 10 and 11, respectively. We suppose that for the sake of load

balancing, VM4 has to be migrated from the H1 to H2. The traffic destined to VM4 after migration

will be monitored by the physical intrusion detection IDS2 and the virtual security monitor SM2

whereas, it was monitored by IDS1 and SM1 before migration. Thus, all IDSs configurations have

to be updated after migration.

We propose to provide migration scenarios where the IPsec and IDS configurations after migra-

tion are not correctly updated in various enforcement endpoints. With respect to IDS, we consider

the following scenarios:

Scenario 1 - Error 1. The administrator correctly updated SM2 but left SM1 same as before mi-

gration.

Scenario 2 - Error 2. The administrator correctly updated SM1 but missed some rules in the con-

figuration of SM2.

Scenario 3 - Correct Migration. The rules are correctly migrated for every intrusion detection of

the network and are provided in Table 9.
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Figure 23: IDS and IPsec Case Study
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Table 8: Sample IDS Rules in H1 and H2 - Before Migration

IDS1

1. alert TCP Ext ANY -> H1 [135:139,

445,1025]

(msg:"E2[rb] SHELLCODE x86 0x90

unicode NOOP"; content:"|90 90 90 90 90

90 90 90 90 90|"; ... ; rev:1;)

2. alert TCP Ext ANY -> H1 445 (msg: "E2[rb] NETBIOS SMB-

DS IPC$ unicode share access";

flow:established,to_server; ... ; sid:22466;

rev:7;)

3. alert TCP Ext !20 -> H1 ANY (msg:"E3[rb] BLEEDING-EDGE Mal-

ware Windows executable sent from re-

mote host"; content: "MZ"; ... ; rev:3;)

4. alert UDP H1 ANY -> Ext 69 (msg:"E3[rb] TFTP GET from external

source"; ... ; rev:1;)

SM1

1. alert TCP H1 ANY -> VM1,

VM2,

VM3,

VM4

[135:139,

445,1025]

(msg:"E2[rb] SHELLCODE x86 0x90

unicode NOOP"; content:"|90 90 90 90 90

90 90 90 90 90|"; ... ; rev:1;)

2. alert TCP H1 !20 -> VM1,

VM2,

VM3,

VM4

ANY (msg:"E3[rb] BLEEDING-EDGE Mal-

ware Windows executable sent from re-

mote host"; content: "MZ"; ... ; rev:3;)

IDS2

1. alert TCP Ext ANY -> H2 [135:139,

445,1025]

(msg:"E2[rb] SHELLCODE x86 0x90

unicode NOOP"; content:"|90 90 90 90 90

90 90 90 90 90|"; ... ; rev:1;)

2. alert TCP Ext ANY -> H2 445 (msg: "E2[rb] NETBIOS SMB-

DS IPC$ unicode share access";

flow:established,to_server; ... ; sid:22466;

rev:7;)

3. alert TCP Ext !20 -> H2 ANY (msg:"E3[rb] BLEEDING-EDGE Mal-

ware Windows executable sent from re-

mote host"; content: "MZ"; ... ; rev:3;)

SM2

1. alert TCP H2 ANY -> VM5,

VM6,

VM7

[135:139,

445,1025]

(msg:"E2[rb] SHELLCODE x86 0x90

unicode NOOP"; content:"|90 90 90 90 90

90 90 90 90 90|"; ... ; rev:1;)

2. alert TCP H2 !20 -> VM5,

VM6,

VM7

ANY (msg:"E3[rb] BLEEDING-EDGE Mal-

ware Windows executable sent from re-

mote host"; content: "MZ"; ... ; rev:3;)

90



Table 9: Updated IDS Rules in H1 and H2- After Migration

IDS1

1. alert TCP Ext ANY -> H1-VM4 [135:139,

445,1025]

(msg:"E2[rb] SHELLCODE x86 0x90

unicode NOOP"; content:"|90 90 90 90 90

90 90 90 90 90|"; ... ; rev:1;)

2. alert TCP Ext ANY -> H1-VM4 445 (msg: "E2[rb] NETBIOS SMB-

DS IPC$ unicode share access";

flow:established,to_server; ... ; sid:22466;

rev:7;)

3. alert TCP Ext !20 -> H1-VM4 ANY (msg:"E3[rb] BLEEDING-EDGE Mal-

ware Windows executable sent from re-

mote host"; content: "MZ"; ... ; rev:3;)

4. alert UDP H1-VM4 ANY -> Ext 69 (msg:"E3[rb] TFTP GET from external

source"; ... ; rev:1;)

SM1

1. alert TCP H1-VM4 ANY -> VM1,

VM2,

VM3

[135:139,

445,1025]

(msg:"E2[rb] SHELLCODE x86 0x90

unicode NOOP"; content:"|90 90 90 90 90

90 90 90 90 90|"; ... ; rev:1;)

2. alert TCP H1-VM4 !20 -> VM1,

VM2,

VM3

ANY (msg:"E3[rb] BLEEDING-EDGE Mal-

ware Windows executable sent from re-

mote host"; content: "MZ"; ... ; rev:3;)

IDS2

1. alert TCP Ext ANY -> H2+VM4 [135:139,

445,1025]

(msg:"E2[rb] SHELLCODE x86 0x90

unicode NOOP"; content:"|90 90 90 90 90

90 90 90 90 90|"; ... ; rev:1;)

2. alert TCP Ext ANY -> H2+VM4 445 (msg: "E2[rb] NETBIOS SMB-

DS IPC$ unicode share access";

flow:established,to_server; ... ; sid:22466;

rev:7;)

3. alert TCP Ext !20 -> H2+VM4 ANY (msg:"E3[rb] BLEEDING-EDGE Mal-

ware Windows executable sent from re-

mote host"; content: "MZ"; ... ; rev:3;)

SM2

1. alert TCP H2+VM4 ANY -> VM5,

VM6,

VM7,

VM4

[135:139,

445,1025]

(msg:"E2[rb] SHELLCODE x86 0x90

unicode NOOP"; content:"|90 90 90 90 90

90 90 90 90 90|"; ... ; rev:1;)

2. alert TCP H2+VM4 !20 -> VM5,

VM6,

VM7,

VM4

ANY (msg:"E3[rb] BLEEDING-EDGE Mal-

ware Windows executable sent from re-

mote host"; content: "MZ"; ... ; rev:3;)

Table 10: IPSec Policy Before Migration

GW1

1. TCP VM1, VM2, ANY CorpNet ANY ESP Tunnel

VM3, VM4 GW3 {3DES}

GW3

1. TCP CorpNet ANY VM1, VM2, ANY ESP Tunnel

VM3, VM4 GW1 {3DES}
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Table 11: IPSec Policy After Migration

GW1

1. TCP VM1, VM2, ANY CorpNet ANY ESP Tunnel

VM3 GW3 {3DES}

GW2

1. TCP VM4 ANY CorpNet ANY ESP Tunnel
GW3 {3DES}

GW3

1. TCP CorpNet ANY VM1, VM2, ANY ESP Tunnel

VM3 GW1 {3DES}

2. TCP CorpNet ANY VM4 ANY ESP Tunnel
GW2 {3DES}

The verification results for the IDS scenarios are summarized in Table 12. Values in bold

show the constraints, which satisfactions are not as expected. When the solver returns satisfiable

for a constraint expected to be unsatisfiable, a solution is provided that pinpoints one of the rules

that makes security requirements fails. This indicates a possible error that should be investigated

in order to correct the configuration error. For IDS scenario 1, C1 and C3 have the unexpected

satisfiability results of UNSAT and SAT, respectively. The satisfiability of the former can be

explained by the fact that every rule in the configuration before is necessarily in the configuration

after. The satisfiability of the latter is due to the fact that some rules concerning the migrating VM

v have not been removed from the source, which corroborate the former result. The fact that C3

is SAT, the SAT-solver returned a solution for this constraint, which consists of a vector of values

(a value per CSP variable) that represents one of the rules that have not been removed from the

source.

With respect to IPsec, we consider the following scenarios:

Scenario 1 - Error 1. The administrator correctly updated GW1, but omitted any change to GW2.

Scenario 2 - Error 2. The administrator correctly updated the IPSec configuration in GW1 and
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Table 12: Verification Results for the IDS Three Scenarios

C1 C2 C3 C4 C5 C6 C7 C8 C9
Scen- 1 UNSAT UNSAT SAT UNSAT UNSAT UNSAT UNSAT UNSAT UNSAT
Scen- 2 SAT UNSAT UNSAT UNSAT SAT UNSAT SAT SAT SAT
Scen- 3 SAT UNSAT UNSAT UNSAT SAT UNSAT UNSAT UNSAT UNSAT

GW2, but the customer gateway GW3 has not been updated.

Scenario 3 - Correct Migration. The IPSec configurations on all the gateways are correctly con-

figured, and the rules are provided in Table 11.

The verification results for the IPSec scenarios are summarized in Table 13 and Table 14.

Values in bold show the constraints, which satisfactions are not as expected. For IPsec scenario

1, C14 and C22 have the unexpected satisfiability results of UNSAT and SAT, respectively. The

satisfiability of the former can be explained by the fact that at the destination, every rule in the

configuration after migration is necessarily in the configuration before. The satisfiability of the

latter is due to the fact that some rules concerning the migrating VM v have not been migrated to

the destination, which corroborate the former result. The fact that C22 is SAT, the solver returned

a solution for this constraint, which consists of a vector of values (a value per CSP variable) that

represents one of the rules that have not been migrated from the source.

Table 13: Verification Results for the IPSec Scenarios: the Source DC, Destination DC

C10 C11 C12 C13 C14 C15 C16
Scen-1 SAT UNSAT UNSAT UNSAT UNSAT UNSAT UNSAT
Scen-2 SAT UNSAT UNSAT UNSAT SAT UNSAT UNSAT
Scen-3 SAT UNSAT UNSAT UNSAT SAT UNSAT UNSAT

In order to have an assessment of the performance overhead, we performed a set of experiments

on an Intel Core i7 2.67 GHz processor with 12Gbytes of RAM. The verification performance for
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Table 14: Verification Results for the IPSec Scenarios for the Customer Network and the Migrating

VM

C17 C18 C19 C20 C21 C22 C23 C24 C25
Scen- 1 UNSAT UNSAT SAT SAT UNSAT SAT UNSAT SAT UNSAT
Scen- 2 UNSAT UNSAT UNSAT UNSAT UNSAT UNSAT UNSAT UNSAT UNSAT
Scen- 3 UNSAT UNSAT SAT SAT UNSAT UNSAT UNSAT SAT UNSAT

the IDS depends on the total number of attack signatures and also total number of virtual machines.

Whereas, the verification performance for the IPsec depends on total number of virtual machines

which relatively determines the total number of rules to be configured in the IPsec gatweays. Ta-

bles 15 and 16 summarize the results in terms of CPU time for the IDS and IPsec, respectively.

Table 15: Performance Evaluation for IDS

Number of VMs Number of Attack Signatures Number of Rules CPU Time (sec)

3 10 30 0.186

3 50 150 0.232

3 100 300 0.325

3 500 1500 0.389

3 1000 3000 0.482

3 2000 6000 0.637

3 5000 15000 2.167

Table 16: Performance Evaluation for IPsec

Number of VMs Number of Rules CPU Time (sec)

10 10 0.154

100 100 0.247

1000 1000 0.279

4000 4000 0.403

8000 8000 0.622

10000 10000 0.917

12000 12000 1.058

14000 14000 1.292

16000 16000 1.589
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Chapter 7

Conclusion

In this chapter, we summarize the contributions of this thesis, and provide directions for future

work.

7.1 Summary of Contributions

In this thesis, we addressed the issue of security policy preservation in elastic cloud computing

environment with firewalls, intrusion detection and IPsec VPN as the principal security mecha-

nisms. We proposed a novel verification and validation approach based on the notion of security

policy preservation and the constraint satisfaction problems framework. First, the formal definition

of firewall filtering preservation in source and destination data center as well as for the migrating

VM was provided. Then, we elaborated a framework that describes these security preservation

problems in terms of constraint satisfaction problems. Later on, we demonstrated the feasibility

of our approach by verifying several cases using Sugar, a SAT-based constraint solver. In order
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to automate the encoding, we proposed to model cloud network topology using cloud calculus,

and to use an intermediate syntax in order to express serial and parallel composition of firewalls.

The proposed automated approach is helpful for practitioners to tackle the uprising issues of net-

work security in a highly dynamic cloud computing environment. In addition, we presented our

approach for verification of intrusion monitoring preservation as well as IPsec protection preser-

vation by solving a set of constraint satisfaction problems. Finally, we presented case studies for

the abovementioned security mechanisms namely intrusion detection and prevention, and IPsec in

order to show the applicability and usefulness of our approach. This approach is general in the way

that it covers multiple security mechanisms, and provides a solid framework for the verification of

security configurations in cloud infrastructure.

7.2 Future Work

For future work, we plan to advance in different directions. First of all, we consider to extend our

verification framework to cover security challenges presented in cloud related technologies. There

is a new trend (at the time of writing this thesis) called cloud networking pioneered by a European

funded project called SAIL [93] initiated in 2010. Cloud networking extends network virtualisation

beyond the data center by adding two features to cloud computing: the ability to connect the user

to services in the cloud, and the ability to interconnect services that are geographically distributed

across cloud infrastructures. In cloud computing there are two parties involved being service user

and cloud infrastructure provider. The service user (tenant) manually checks whether his/her se-

curity requirements are followed by the cloud provider, and only if it is the case he/she moves her

96



resources to the cloud operator’s infrastructure. Since in cloud networking virtual resources are

eventually moved from one cloud operator’s infrastructure to another, manually checking the con-

formance of security policy by the tenant is not any more feasible or even reasonable. Therefore,

security checks have to be done automatically to make sure that the infrastructure provider follows

the tenant’s security requirement. Fusenig and Sharma [36] present a security architecture that

enables a user of cloud networking to define security requirements, and enforce them in the cloud

networking infrastructure. However, this work lacks an auditing technique so that a service user

can verify if a security requirement is actually followed by the virtual infrastructure provider. In

this regard, we plan to extend our verification framework to the context of cloud networking, and

provide a verification framework that enables the tenants to make sure their security requirements

are met by virtual infrastructure provider.

Second, we consider to develop a more sophisticated framework for security policy orchestra-

tion. While studying the elasticity feature offered in the cloud, we believe that there are still several

issues that have to be addressed in the case of virtual machines migration. For example, when we

have multiple VMs migrating simultaneously, the posibility of having a security misconfiguration

is higher than the case of a single VM migration. Therefore, we can elaborate on this scenario,

and evaluate its impact on our approach. In this case, cloud infrastructure providers and also cloud

tenants would like to have independent migration with minimum interaction since those migrating

VMs may not necessarily belong to a single tenant.

Third, we plan to elaborate a framework that not only pinpoints security policy misconfigura-

tions in the cloud data centers, but also proposes comprehensive solutions to cloud administrators

in order to solve inconsistencies.
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