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Abstract

Compressive Sensing for Multi-channel and Large-scale MIMO Networks

Sinh L. H. Nguyen, Ph.D.

Concordia University, 2013

Compressive sensing (CS) is a revolutionary theory that has important applications in

many engineering areas. Using CS, sparse or compressible signals can be recovered from

incoherent measurements with far fewer samples than the conventional Nyquist rate. In

wireless communication problems where the sparsity structure of the signals and the

channels can be explored and utilized, CS helps to significantly reduce the number of

transmissions required to have an efficient and reliable data communication. The objec-

tive of this thesis is to study new methods of CS, both from theoretical and application

perspectives, in various complex, multi-channel and large-scale wireless networks. Specif-

ically, we explore new sparse signal and channel structures, and develop low-complexity

CS-based algorithms to transmit and recover data over these networks more efficiently.

Starting from the theory of sparse vector approximation based on CS, a compressive

multiple-channel estimation (CMCE) method is developed to estimate multiple sparse

channels simultaneously. CMCE provides a reduction in the required overhead for the

estimation of multiple channels, and can be applied to estimate the composite channels of

two-way relay channels (TWRCs) with sparse intersymbol interference (ISI). To improve

end-to-end error performance of the networks, various iterative estimation and decoding

schemes based on CS for ISI-TWRC are proposed, for both modes of cooperative relaying:

Amplify-and-Forward (AF) and Decode-and-Forward (DF). Theoretical results including

the Restricted Isometry Property (RIP) and low-coherent condition of the discrete pilot

signaling matrix, the performance guarantees, and the convergence of the schemes are
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presented in this thesis. Numerical results suggest that the error performances of the sys-

tem is significantly improved by the proposed CS-based methods, thanks to the awareness

of the sparsity feature of the channels.

Low-rank matrix approximation, an extension of CS-based sparse vector recovery the-

ory, is then studied in this research to address the channel estimation problem of large-

scale (or massive) multiuser (MU) multiple-input multiple-output (MIMO) systems. A

low-rank channel matrix estimation method based on nuclear-norm regularization is for-

mulated and solved via a dual quadratic semi-definite programming (SDP) problem. An

explicit choice of the regularization parameter and useful upper bounds of the error are

presented to show the efficacy of the CS method in this case. After that, both the uplink

channel estimation and a downlink data precoding of massive MIMO in the interference-

limited multicell scenarios are considered, where a CS-based rank-q channel approximation

and multicell precoding method are proposed. The results in this work suggest that the

proposed method can mitigate the effects of the pilot contamination and intercell in-

terference, hence improves the achievable rates of the users in multicell massive MIMO

systems. Finally, various low-complexity greedy techniques are then presented to confirm

the efficacy and feasibility of the proposed approaches in practical applications.
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Chapter 1

Introduction

1.1 Compressive Sensing

In recent years, there has been a growing interest in reconstructing sparse signals from

a small number of incoherent linear measurements. This method, referred to in the

literature as compressive sensing (CS) or compressed sampling [1], [2], has proven, under

suitable conditions, to be superior to traditional signal reconstruction techniques. The

rationale behinds CS is that certain classes of sparse or compressible signals in some basis,

where most of their coefficients are zero or small and only a few are large, can be exactly

or sufficiently accurately reconstructed with high probability (w.h.p.). The measurement

process projects the signals onto a small set of vectors, or dictionary, which is incoherent

with the sparsity basis. The reconstruction of the entire signals is then done by using

some optimization algorithm or greedy-based techniques that, from these projections, find

the sparsest representation consistent with the acquired measurements.

CS was first proposed as a new low-rate image and signal acquisition method, which

operates at a rate significantly lower than the Shannon-Nyquist rate [3]. It is then de-

veloped as a novel and efficient tool to solve a class of more general under-determined

inverse problems. The main advantage of CS is that it potentially reduces the number of
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measurements required to acquire sparse or compressible signals, or accurately solve the

ill-posed, under-determined system of linear equations where the solution is sparse. This

has a huge impact and completely changes the way we capture and communicate sparse

signals, such as natural images or communication signals into a much more efficient way.

While its theory is being continually studied and developed by both mathematics and

engineering societies, CS has been successfully applied to many topics ranging from image

acquisition, machine learning, data communication, sampling physics, sensor networks and

computational biology. For instance, CS has found its way in astronomy as an effective

tool for enabling transmitting astronomical images with high accuracy [4]. The notion

here is that the size of astronomical data is huge and it needs to be transmitted in a

short period of time. CS theory helps in this regard by exploiting the sparsity in images,

resulting in compressing images/signals at low rates while being able to reconstruct them

at the receiver end with high accuracy. The same is true for medical imaging, with

emphasis on dynamic magnetic resonance imaging (MRI) imaging [5]. Along similar lines,

CS has proven effective in computational photography, which led to smaller, cheaper and

more effective digital cameras [6]. Another distinct field that benefited from CS is DNA

identification [7], whereby one can achieve accurate identification of large numbers of

genetic sequences in an environment. Furthermore, CS has been shown to be beneficial

for structure recovery in biological networks [8].

1.2 Compressive Sensing in Communications

More recently, albeit limited, CS has found its charm in the communications field as

well [9–12]. The premise here is that CS allows for accurate system parameter estimation

with less training, resulting in improved bandwidth efficiency and system performance.

One of the immediate applications of CS in communications is the pilot-assisted (PA)

sparse intersymbol interference (ISI) channel estimation, in which the channel impulse
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response has a long delay spread but with only a small number of dominant taps. This

type of channels occurs in many practical radio-frequency communication scenarios, such

as underwater acoustic communications (as shown in Fig. 1.1), or communications taking

place in rural areas. By exploring the sparsity models of the channels in the time or

frequency domain, one can reduce significantly the number of pilot symbols needed to

obtain a sufficiently accurate estimation, resulting in a throughput improvement of the

system.

Figure 1.1: Example of sparse UWA channel [GLINT’08 Experiment].

CS techniques can also be applied to multi-user communications with a sparse active

profile, i.e., when only a small subset of users actively communicate during any given

time slot. Applications in this direction can be found in many topics including sparse

event detection [13], reduced-dimensionality of multiuser detection (MUD) [14], cognitive

spectrum sensing [15] and smart power grid [16]. In [13], based on the fact that in large

wireless sensor networks, the events are relatively sparse compared with the number of

sources due to the deployment cost, limited number of sensor and energy constraints, the

authors formulate the sparse event detection as a CS problem. The CS-based detection

scheme is then proposed using a Bayesian method heuristically, significantly reducing

the sampling rate without sacrificing the system performance. A similar sparsity signal

modeling is used in [14] by exploiting the fact that the number of active users is typically

small relative to the total number of users in the system. Also, an analog CS algorithm

is proposed to decrease the number of required correlation branches at the receiver front-
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end, while still achieving performance similar to that of the conventional matched-filter

bank. In [15], the sparsity model is introduced by the narrow-band nature of transmit

power spectral densities relative to the broad swaths of usable spectrum and the sparsely

located active radios in the operational space. A distributed spectrum sensing based on

the least absolute shrinkage and selection operator (also called LASSO) algorithm [17] is

used to detect the unknown positions of transmitting cognitive radios, and reduce spatial

and frequency spectrum leakage by 15 dB relative to the least squares (LS) counterparts.

The sparsity model in [16] is based on the fact that the number of smart meters is large

and the data burst is sparse, i.e., only a small fraction of the smart meters report their

power loads at the same time. The authors then use a CS technique to solve the smart

wireless meter reading, allowing the active meters to be transmitted simultaneously using

a random sequence, and still achieve the privacy and integrity of the system.

Recently, some connections between error correcting codes and CS are also exploited

[18], where low-density parity check (LDPC) codes are used in the CS system, in which the

message passing (MP) decoding algorithm can be used as the reconstruction algorithm.

Specifically, the strictly-sparse signal reconstruction problem is formulated as a decoding

problem over large finite alphabets in the high-rate regime, with the oversampling ratio

of the codes is the number of measurements divided by the number of non-zero elements.

The LDPC coded CS-based system with MP decoding then can be analyzed using density

evolution (DE) analysis for the randomized reconstruction, or the stopping set analysis

for the uniform (in probability) reconstruction.

Other communication applications that have benefited from CS include wireless sensor

networks [19], UWA communications assuming orthogonal frequency division multiplexing

(OFDM) [20], radar communication/imaging [21], wideband cognitive radio [22] and ultra

wideband (UWB) communications [23].
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1.3 Research Motivation and Objectives

Motivated by the great potential of CS, this thesis aims to develop new techniques and ap-

plications of CS in wireless communications. Specifically, we invoke CS into more complex

multi-channel, cooperative and large-scale wireless communication networks, including the

multiple access channel (MAC), two-way relay channels (TWRCs) [24–26], and multiple

users and large multiple-input multiple-output (MIMO) systems [27, 28]. These wireless

networks are underlying models of many on-going research topics, and are expected to

play a major role towards achieving the target of high data rates that would be offered by

future communication networks. Especially as the demand for data rate transmission is

increasing, and the scarcity spectrum problem is becoming an important issue, the higher

data rates, better link reliability, and better spectral-energy efficiency tradeoff that the

considered systems bring are crucial.

There are many challenges for CS to be applied to the above communication prob-

lems. Firstly, different from the ones in traditional point-to-point scenarios, the problems

of channel learning and exchanging in multiple channels and cooperative networks are

more challenging, due to the large number of channel parameters resulting from the large

dimensions of the problem. The problem becomes even more difficult for the case of large

multiuser MIMO as the numbers of base station (BS) antennas and user terminals (UTs)

grow beyond a hundred. The challenge here is that we need to estimate the channels,

within a limited coherence time, with a minimum number of training signals to achieve the

desired latency, energy constraints, and bandwidth efficiencies. Secondly, also different

from most of the previous works on CS for point-to-point channels, it is hard to recognize

the implicit sparsity model, to prove conditions required for CS to be applicable, as well

as to derive the performance guarantee bounds for CS solutions. Thirdly, it not easy to

find the most suitable CS algorithm for each of the problems that are required not only

to provide good results but also to be done with affordable computational complexity.

Finally, when considering the channel learning/estimation along with the data decod-
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ing/detection for these channels using CS, we need to consider all of the complexity, error

performance of the estimator, decoder, and precoder in a unified framework, and look for

the overall improvement of the end-to-end performance.

The objective of this work is to directly address the above practical challenges. That

is, we explore the new signal and channel structures in these system and channel models

where CS can kick in. In several cases, we provide theoretical results of the sufficient

conditions for the measurement process and the performance guarantee bounds using CS

reconstruction methods. Furthermore, we propose new joint estimation and data detection

schemes and analyze the end-to-end error performance of the proposed schemes. We also

study various CS methods to find ones with modest computational complexities for each

of the considered problems. Overall, we aim to show that recognizing these problems and

finding good CS solutions is so important as in many cases it brings us favorable results,

making such proposed methods appealing to be realized in practice.

1.4 Thesis Contributions

The technical contributions of the thesis are summarized into two main themes as follows.

1.4.1 Compressive Sensing based Sparse Channel Vector Esti-

mation

a) We develop the theory of CS-based estimation to be able to estimate multiple sparse

channels simultaneously. This compressive multi-channel estimation (CMCE) provides a

reduction in the required overhead for the estimation of MAC as compared to the method

that performs the estimation of the channels individually. We show that the resulting

CMCE sensing matrix satisfies the Restricted Isometry Property (RIP) and low-coherent

condition, making the extension from compressive single-channel estimation (CSCE) to

CMCE possible. We then apply the result to the problem of estimation of sparse ISI-
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TWRC, where the estimation of the composite channels can be formulated as a CMCE

problem. We prove that for i.d.d. equally likely ±1 Bernoulli pilots, the two above

conditions for the sensing matrix hold for a CMCE method, and the improvement of the

proposed method also confirmed via performance guarantee bounds.

b) We then consider the problem of joint estimation and data detection of the sparse

ISI-TWRC under both modes of cooperative relaying: Amplify-and-Forward (AF) and

Decode-and-Forward (DF). In AF mode, based on the result of channel estimation for

composite channel using CMCE, we proposed a joint iterative compressive channel esti-

mation and data detection to improve the end-to-end MSE and BER performance of the

TWRC. In DF, where channel estimation and detection in the uplink is performed sepa-

rate from the one in downlink, we propose a sparsity-aware receiver, where the sparsity

feature of the channels is utilized not only in the estimation but also in the equalization

process, and the soft-input soft-output (SISO) equalization is performed via the MP al-

gorithm. Furthermore, an thresholding method to mitigate the error propagation due to

relaying is proposed to further improve the end-to-end error performance of ISI-TWRC.

1.4.2 Compressive Sensing based Low-rank Channel Matrix Ap-

proximation

a) We propose a CS-based approach to address the channel estimation problem of a MU-

MIMO system where both dimensions of the channel matrix grow large, with a physical

propagation channel model. The research is based on more recent results in CS, where

the idea of the sparsity model of the signal vector is generalized to the low-rank model of

the matrix variable. CS based low-rank approximation has also been applied in diverse

contexts in statistics and signal processing, but to the best of our knowledge, it has

not been investigated in MIMO channel matrix estimation. Our main results include

the formulation of the low-rank “massive” (or large-scale) MU-MIMO channel estimation

problem as a convex nuclear norm minimization (NNM) under noisy setting, whose dual
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problem can be represented as a quadratic semi-definite programming (SDP). By doing

this, the problem can be conveniently solved by a SDP solver (in polynomial time). We

also obtain an explicit choice of the regularization parameter and an useful upper bound

of the Frobenius norm of the error for the case of Bernoulli training matrix. Since prior

works in this bound have been done for continuous Gaussian ensembles, our results are

useful for the MU-MIMO channel matrix estimation due to the discrete nature of the

pilot signaling.

b) We then apply CS-based rank-q approximation to solve the pilot contamination

and intercell interference problems in multicell multiuser massive MIMO systems. We are

also interested in the end-to-end performance of the system including both uplink channel

estimation and downlink data precoding and detection. The notion here is that, instead

of estimating the global channel matrix, only the most dominant q singular subspaces

of the global channel matrix are estimated. Hence we refer to this technique as rank-q

channel approximation. We then use the estimate of the global channel matrix to design

an intercell-interference-aware (IA) zero-forcing (ZF) downlink precoding vectors with the

objective of mitigating both the intracell interference and intercell interference.

c) We derive a lower bound on the downlink achievable rate while assuming knowl-

edge of the exact rank-q global channel matrix approximation assumption. This bound

is used as a benchmark for the proposed techniques. Given the high computational com-

plexity of the common SDP-based method used in the estimation process, which becomes

prohibitively complex, we present two other low-complexity greedy techniques including

Iterative Hard Thresholding (IHT) and Matrix Factorization. We show that the proposed

techniques outperform the conventional method based on LS estimation and single-cell

precoding, for the same training sequence length.

8



1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 presents some relevant background on topics pertaining to our proposed

research. We begin with a brief review of CS techniques for sparse vector and low-rank

matrix approximations, where we give the problem settings, the required conditions of the

CS dictionaries, and major reconstruction algorithms along with guarantee performance

bounds. We then cover the topics of wireless communications where CS has potential

applications and will be studied in the following chapters. They include channel estima-

tion, joint iterative estimation and decoding for ISI channels, TWRCs, and estimation

and precoding for massive MIMO communications.

Chapter 3 studies the problem of CMCE. In this chapter, we extend the theory of

CS for single sparse ISI channel estimation to estimating multiple sparse ISI channels

simultaneously, leading to improvements in bandwidth efficiency due to savings in the

required training. We consider the CMCE problem for the general case when the sparse

channels do not necessary have the same support, where the channel observations are the

superposition of the outputs of the individual ISI channels. We then apply the CMCE

concept to the problem of channel estimation of a TWRC, which involves two source nodes

and one relay node operating analog network coding. We provide several theoretical

results on the RIP and low condition of the measurement matrix for both MAC and

TWRC, and demonstrate the efficacy of the CS-based schemes over existing ones.

Chapter 4 is concerned with the problem of joint compressive channel estimation and

data decoding for sparse ISI-TWRC, for both the AF and DF modes of relaying. In the

AF mode, we propose an iterative receiver based on the CMCE technique for TWRC

developed in Chapter 3, combined with a turbo decoding method. In the DF mode, we

improve the end-to-end bit-error rate (BER) performance of the system via an iterative

receiver that utilizes the sparsity of the channel structure in the channel estimation phase

and the equalization process. We further improve the system performance by proposing
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a thresholding method to mitigate the impact of the error propagation in the relaying

process.

Chapter 5 studies the problem of CS-based channel estimation for massive MIMO

systems via nuclear norm regularization. In this chapter, a new approach based on CS

for the channel matrix estimation problem for massive MU-MIMO systems is proposed.

The system model includes a BS equipped with a very large number of antennas commu-

nicating simultaneously with a large number of autonomous single-antenna UTs, over a

realistic physical channel with finite scattering model. Based on the idea that the degrees

of freedom of the channel matrix are smaller than its large number of free parameters,

a low-rank matrix approximation based on CS is proposed and solved via a SDP. Our

analysis and experimental results suggest that the proposed method outperforms the ex-

isting ones in terms of estimation error performance or training transmit power, without

requiring any knowledge about the statistical distribution or physical parameters of the

propagation channel.

Chapter 6 is concerned with the compressive rank-q channel sensing and precoding for

massive MIMO systems. In this chapter, we present a framework based on compressive

rank-q approximation for alleviating the impact of pilot contamination, as well as miti-

gating the intercell and intracell interference of the multicell massive MIMO. Specifically,

we propose in the uplink training a rank-q channel approximation method based on CS to

estimate the most dominant singular subspaces of the global multicell MIMO channel ma-

trix with a modest training length. Then, the estimate of the global channel information

is used to design an IA-ZF multicell precoding method in the downlink to mitigate not

only the intracell interference but also the intercell interference of the channel. We analyze

the achievable rate of the proposed method using the exact rank-q approximation, and

present various compressive rank-q approximation techniques. We compare the proposed

scheme with the conventional one using LS estimation and single-cell precoding, and we

demonstrate significant improvements achieved by the proposed scheme in the achievable
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rates for all users in the cells, particularly the cell-edge users.

Chapter 7 presents a summary of the thesis and suggests some potential problems for

future studies.

1.6 Notation

Throughout the thesis, we adopt the following notations.

• Boldface lowercase and uppercase letters denote vectors and matrices, respectively.

• In: n× n identity matrix.

• AT ,AH ,A†, Tr(A): transpose, conjugate transpose, Moore-Penrose pseudo-inverse,

and trace of matrix A, respectively.

• ak: the k-th column of matrix A.

• A(k,:): the k-th row of matrix A.

• 〈u,v〉: the inner product of two vectors u and v having the same dimension.

• [A](m,n) or Am,n : the (m,n)-th item of matrix A.

• ‖A‖F , ‖A‖∗, and ‖A‖op: denote the Frobenius norm, the nuclear norm, and the

operator norm of a matrix A, respectively.

• ‖x‖p: the �p-norm of vector x.

• (·)K takes the first K rows (entries) of the enclosed matrix (vector).

• Rn and Rm×n denote the space of n-dimensional real-valued vectors, and m × n

real-valued matrices, respectively.

• Cn and Cm×n denote the space of n-dimensional complex-valued vectors, and m×n

complex-valued matrices, respectively.
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• vec(A): vectoring operator, stacking the columns of A ∈ Cm×n to form a column

in Cmn.

• vec−1
m,n(·): the inverse operator of vec(·), converting the enclosed vector into a m×n

matrix, where the (i, j) entry of the matrix is the (i× j)-th entry of the vector.

• A(·) denotes a linear operator on the enclosed variable.

• E{·} denotes the expectation operator.

• P{·} denotes the probability of the enclosed event.

• 	{·} and 
{·}: the real and the imaginary parts of the enclosed, respectively.

• ⊗: Kronecker product.

• �: generalized matrix inequality with respect to the Hermitian positive-semidefinite

cone.
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Chapter 2

Background and Literature Review

As mentioned in Chapter 1, the thesis research topics span a number of areas in applied

mathematics, wireless communications and signal processing. In the following sections,

we give a brief description of those topics, and the relevant background.

2.1 Compressive Sensing based Sparse Vector Esti-

mation

2.1.1 Inverse Problems

Data acquisition and signal recovery are usually formulated as linear inverse problems. In

order that the entire data or signal be reconstructed without error (or with small error in

the noisy settings), the well-posed condition requires that the number of equations (i.e.,

the number of samples or observations) be at least as many as the number of unknowns.

In many practical situations, this condition does not always hold, due to the cost of

high sampling or the fact that the number of observations is limited. Observing that

it is common in nature that many signals are sparse or approximately sparse, in many

situations one can still recover the signal with an exact or sufficient accuracy using fewer

measurements, given that some specific conditions hold. This has been shown possible by
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using CS [1], [29], a novel and very efficient tool to reconstruct sparse signals. The CS

process involves employing linear projections and then reconstructing the entire signals

from these projections using a greedy technique or a convex optimization algorithm.

Suppose that we need to reconstruct an N -dimensional signal x ∈ RN from a lower-

dimensional signal y ∈ Rm (m < N) via a linear measurement Φ, i.e.,

y = Φx, (2.1)

where Φ ∈ Rm×N is a measurement matrix. A noisy version of (2.1) is

y = Φx+w, (2.2)

where w ∈ Rm is a vector of m additive white Gaussian noise (AWGN) samples.

We define x as a S-sparse signal if x has only S large coefficients (S  N) and its

other N − S coefficients are zeros or approximately zeros. The assumption is referred to

hard sparsity or soft sparsity if either exactly N − S out of N coefficients are zeros or

approximately zeros, respectively. (Note that if x is non-sparse in the considered basis,

but has the S-sparse representation s ∈ RN in some other basis Ψ ∈ RN×N , then the

following results are applied for a m×N measurement matrix Θ = ΦΨ). The CS theory

states that the entire S-sparse signal x can be reconstructed with a sufficient accuracy

with high probability from y if the measurement matrix Φ satisfies the so-called RIP [1].

In short, the theory fundamentally relies on two conditions: sparsity and RIP. The main

tasks require designing a stable measurement matrix Φ satisfying the RIP, and designing

an efficient reconstruction algorithm to reconstruct the signal from these measurements.

2.1.2 Sensing Dictionaries

From the RIP definition, the sensing/measurement matrixΦ is said to satisfy theRIP (S, δS)

if for any vector v sharing the same S non-zero elements as x, the two following inequal-
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ities hold for some δS > 0

1− δS ≤ ‖Φv‖2
‖v‖2

≤ 1 + δS. (2.3)

(Note that a less restrictive requirement for Φ, called Restricted Eigenvalue (RE) Condi-

tion [30], is also used in some works).

The RIP is related to the incoherence condition [2], which requires that the maximum

(in absolute) value of all inner products between two different columns in Φ is small (or

the measurement basis Φ and the representation basis Ψ are a low coherence pair in the

case that x has the S-sparse representation s the transformed basis Ψ, not the original

basis Φ). It is proven that random measurement matrices, whose elements are drawn from

an independent and identically distributed (i.i.d.) Gaussian distribution, have sufficiently

small coherence. In practice, other measurement matrices have been considered, such as

i.i.d. Bernoulli, random partial Fourier or scrambled block Hadamard ensembles, etc.,

again depending on the specific applications.

Another important property of Φ that makes it a suitable candidate for a CS dictio-

nary, closely related to the RIP, is the low-coherence between its columns. Defining the

mutual coherence of Φ as

μ � max
l �=j

|〈φj, φl〉| , (2.4)

which is the the largest off-diagonal entry (in the magnitude sense) of the Gram matrix

of Φ, G � Φ′Φ.

2.1.3 Reconstruction Algorithms

To reconstruct the signal x from the linear measurement y, an optimization solver is

run to find the solution of a regularized �0-minimization (�0-norm minimization) prob-

lem. �0-norm minimization is an NP-hard problem, and solving for the optimal solution

requires an exhaustive search of all
(
N
S

)
possible locations of the non-zero elements in x.

Fortunately, there are a variety of other reconstruction techniques that, provided hav-
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ing a good CS dictionary, can efficiently solve for x with exact accuracy w.h.p by only

m ≥ cS log(N/S) measurements in a noiseless setting or with sufficient accuracy w.h.p

with only m ≥ cS2 log(N/S) measurements in a noisy setting, for some c > 0 [2], [29].

Those techniques can be categorized into two main groups [31]: greedy-based methods

such as the IHT [32] and Orthogonal Matching Pursuit (OMP) [33]; and �p-based optimiza-

tion methods including the �p-constrained minimization, error-constrained �p minimiza-

tion, the relaxation version of �p-constrained minimization [34], and Danzig selector [17].

A) Greedy Methods

The class of greedy techniques have been widely used for sparse approximation thanks to

theirs simplicity and efficiency. The idea behind the algorithms is to choose the columns

of the dictionary in a greedy fashion. For example, the typical greedy-based algorithm,

OMP, works as follows. At each iteration, the algorithm picks up the column that is most

correlated with the residual, which is the remaining part of the observation after being

subtracted by the contribution of the column in the previous iteration. In other words, the

OMP greedily chooses the best columns of the dictionary representing the signal. Using

Theorem 4 of [35], the performance guarantee for OMP in terms of the mean-squared

error (MSE) is given as

MSEOMP ≤ 8(1 + α)Sσ2 logN, (2.5)

with probability exceeding 1 −
(
Nα
√
π(1 + α) logN

)−1

for some α > 0, under the con-

dition

|hmin| − (2S − 1)μ|hmin| ≥ 2σ
√

2(1 + α) logN. (2.6)

The major weakness of the OMP is that the above performance guarantee only holds

under (2.6), meaning that the magnitudes of all S non-zero coefficients of h are required

somewhat to be above the noise level. If some of them are smaller than the noise level,

the OMP, which is a greedy version of the LS method, may incorrectly define the support
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set of h making its performance very poor.

B) �p-based Optimization Methods

Reconstruction from CS measurements using �p-based optimization methods are achieved

by solving one of the three following minimization problems. The �p-constrained mini-

mization problem, which is constrained by the sparsity budget S of the signal, reads

min
x

1

2
‖y −Φx‖22 s.t. ‖x‖p ≤ S. (2.7)

The error-constrained �p minimization, which is based on the 2-norm error budget ε, reads

min
x

‖x‖p s.t.
1

2
‖y −Φx‖22 ≤ ε. (2.8)

The relaxation version of (2.8) reads

min
x

1

2
‖y −Φx‖22 + γ ‖x‖p , (2.9)

where γ is the turning parameter.

∞

Figure 2.1: p-norm minimization methods.

When p ≥ 1, (�p-norm), the three �p-based optimization problems mentioned above

are convex, and can be exchangeable, i.e., the solution of one can be achieved by the

other by choosing the suitable regularization parameters or constraints [36]. This is not

correct when 0 < p < 1 (�p quasi-norm) as these problems become nonconvex. The
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trade-off here is that, while the convex problems (p > 1) have efficient algorithms to

solve and it is guaranteed that the local optimal is also the global one, it does not yield

the sparsest solution as the nonconvex ones (0 < p < 1). This motivates us to usually

choose p = 1 as �1-based optimization problems give the sparsest solution in the convex

class. Furthermore, the �1-penalty version of Basic Pursuit Denoising (also called BPDN

or LASSO) in (2.9) when p = 1,

min
x

1

2
‖y −Φx‖22 + γ ‖x‖1 , (2.10)

is often more efficient to solve algorithmically [37]- [38]. Also, the BPDN does not need

the error and sparsity constraints, and only need the sparsity condition of the signal.

When γ in (2.10) is typically chosen as

γ =
√
8σ2(1 + α) log(N − S), (2.11)

the BPDN has the performance guarantee (Theorem 3 of [35])

MSEBPDN ≤
(√

3 + 3
√

2(1 + α) log(N − S)
)2

Sσ2, (2.12)

with probability exceeding

(
1− 1

(N − S)α

)(
1− exp

(
−S

7

))
(2.13)

for some α > 0, under the condition that S ≤ 1/(3μ).
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2.2 Compressive Sensing based Low-rank Matrix Ap-

proximation

Recall that in “classical” CS [1], [29], one takes the sparsity of the sparse signal vector

into account and solves the relaxation version of cardinality minimization problem, which

is the �1-norm minimization, subjected to a linear constraint. When we consider low-rank

matrix approximation problems, we apply duality concepts between vector cardinality

minimization and matrix rank minimization in Table 2.1 [39]. The CS-based low-rank

approximation technique leverages the idea from “classical” CS by taking the low-rank

feature of a matrix variable into account. It solves the relaxation version of the rank

minimization problem, which is the minimization of the nuclear norm (i.e., the sum of

the matrix singular values), subject to a linear or affine transformation of the matrix

variable [39], [40] (recall that the nuclear norm is the tightest convex hull of the set of the

matrix rank).

Table 2.1: Duality concepts of vector cardinality and matrix rank minimization.
Parsimony concept vector cardinality matrix rank
Hilbert space norm Euclidean Frobenius

Sparsity inducing norm �1-norm nuclear norm
Dual norm �∞-norm opertor norm

Convex relaxation linear programming semi-definite programming

For a matrix variable X ∈ Cm×n with a linear transformation A(X) = b, where

A : Cm×n → Cd is a linear operator, b ∈ Cd, d = mn is the sample size, the NNM

problem reads

minimize
X

‖X‖∗

subject to A(X) = b,

where ‖X‖∗ denotes the nuclear norm of X. Its noisy version is the nuclear norm regu-

larization problem

minimize
X

1

2
‖b−A(X)‖22 + γ‖X‖∗ (2.14)
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where γ is a regularization parameter.

For the noiseless setting, it is derived in [39] that the dual problem can be represented

in a linear SDP as

minimize
z

b∗z

subject to

⎡
⎢⎣ Im A∗(z)

[A∗(z)]H In

⎤
⎥⎦ � 0,

where A∗ is the adjoint of A, � denotes the generalized matrix inequality with respect to

the Hermitian positive-semidefinite cone [41].

Similar to the RIP of measurement matrix for sparse vector recovery, there are RIP [39]

and its milder version named Restricted Strong Convexity (RSC) [40] for low-rank matrix

approximation. Those conditions establish error bounds for the low-rank matrix recovery

guarantees (2.14) is strictly convex over a restricted set C.

2.3 Joint Channel Estimation and Data Detection

2.3.1 Channel Estimation

In the communication between terminals in either point-to-point or multi-user scenarios,

channel estimation is a crucial task since the reliable detection of data is based on the

knowledge of channel state information (CSI). In practice, this task is accomplished by

sending from the transmitters a training sequence (pilot) before the actual data to probe

the channel, and then estimating the channel parameters at the receivers.

Consider the problem of estimation of a frequency-selective time-invariant channel of

length N between a transmitter X and a receiver Y , in a single-carrier system. Assuming

that the channel has the impulse response denoted by h = [h1 h2 . . . hN ]
T . The trans-

mitter needs to send a random but known pilot sequence of length T = K0 + N − 1,

denoted by a = [a1 a2 . . . aT ]
T prior to its actual data transmission. We further assume

that the modulation format of the information symbols sent the transmitter is binary
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phase-shift keying (BPSK), and the pilot sequence is i.i.d. equally likely ±1. Since single-

carrier signaling is assumed, ISI occurs, and the received signal at the receiver is the linear

convolution of the input and the channel impulse response, plus AWGN. Equivalently, the

received signal can be written in a compact form as

y = Ah+ n, (2.15)

where A is the K0 ×N partial Toeplitz matrix formed from a,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

aN aN−1 · · · a2 a1

aN+1 aN · · · a3 a2
...

...
. . .

...
...

aN+K0−1 aN+K0−2 · · · aK0+1 aK0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.16)

y is a K0 × 1 vector of the received symbols; n is a K0 × 1 vector of AWGN samples,

with variance σ2/2 per dimension. Writing (2.15) using (2.16), we assume in our scheme

that there is no guard interval between the training and data blocks in one frame, neither

between consecutive frames, and only take the K0 interference-free received symbols at

the destination as useful observations for channel estimation purposes.

Assuming that the receiver does not have any knowledge about the sparsity or the

statistical distribution of the channels, then its sparsity-ignorant receiver simply employs

the conventional PA channel estimation using the LS method. To have a meaningful

estimation, we need to transmit a training symbol vector of length T ≥ 2N − 1, which

provides us with at least as many interference-free observations as there are unknowns in

(2.15). The LS solution for (2.15) is then given by [42]

hLS = (A)† y = (A′A)
−1

A′y.

21



The MSE of the LS method is

MSELS = σ2Tr
{
(A′A)

−1
}
, (2.17)

which results in the lower bound of σ2(N)/K0.

2.3.2 Iterative Channel Estimation and Data Detection

Consider signal and channel models for coded systems as shown in Fig. 2.2. Let b =

[b0 b1 . . . bKb−1]
T denote the Kb-length binary information vector transmitted. After

encoded by a convolutional encoder with rate R = Kb/Nc, the corresponding Nc-length

coded vector, denoted by c = [c0 c1 . . . cNc−1]
T is randomly interleaved and BPSK modu-

lated. The corresponding symbol vector to be transmitted over the ISI channel is denoted

by x = [x0 x1 . . . xNc−1]
T . To prevent the inter-block interference (IBI), consecutive

symbol blocks are separated by a guard interval of length (N − 1) before transmitted.

Figure 2.2: Signal and channel models for coded systems.

Denote the channel impulse response vector between the transmitter and receiver by

h. The n-th received signal at the receiver, denoted by yn, is given by

yn =
N−1∑
l=0

hlxn−l + en, (2.18)

where en is the n-th AWGN sample, for n = 0, 1, · · · , Nc − 1.

The optimal receiver requires a jointly optimal design between the channel estima-

tor, equalizer, and channel decoder, which is impractical to be implemented in practice

due to its high computational complexity. Below we describe the iterative receiver which
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performs channel estimation, turbo equalization and decoding using the a posteriori prob-

ability (APP) algorithm, in an iterative fashion, as depicted in Fig. 2.3.

Figure 2.3: Iterative Estimation and Decoding for ISI channel.

After the channel estimation process, the channel estimate vector ĥ and the received

signal vector y are passed to an equalizer to handle the ISI and then to the decoder to

get an estimate of the binary information vector. With the presence of the interleaver,

the jointly optimal equalization and decoding is also impractical. Turbo equalization

is a suboptimal solution to address this problem by preforming the soft a priori infor-

mation exchange between the maximum the posteriori (MAP)/APP equalizer and the

MAP/APP decoder in an iterative fashion [43]. The log-APP based equalizer computes

the a-posteriori log-likelihood ratio (LLR) of the coded symbols given the received signal

vector

L(xn|y) = ln
P (xn = 1|y)
P (xn = −1|y) (2.19)

= ln

∑
∀x:xn=1 p(y|x)

∏Nc−1
i=0 P (xi)∑

∀x:xn=−1 p(y|x)
∏Nc−1

i=0 P (xi)
(2.20)

= ln

∑
∀x:xn=1

∏Nc−1
i=0 pi(yi|x)

∏Nc−1
j=0,j �=n Pi(xi)∑

∀x:xn=−1

∏Nc−1
i=0 pi(yi|x)

∏Nc−1
j=0,j �=n P (xi)︸ ︷︷ ︸

+L(xn) (2.21)

= Le(xn|y) + L(xn), (2.22)

for every n ∈ {0, 1, ..., Nc − 1}, where Le(xn|y) is the extrinsic information of xn given y,

and L(xn) � ln Pn(xn=1)
Pn(xn=−1)

is the prior LLR value of xn provided from the channel decoder.
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With the long channel spread and for large constellation sizes, the above APP-based

equalizer again is very complex preventing it from reaching real applications. There is

a variety of alternative methods that approximate (2.22) with linear complexity using a

soft-input soft-output (SISO) equalizer [43, 44].

These soft values are randomly interleaved and then delivered to the channel decoder.

The LLR values of the coded symbols output at the APP decoder are then fed back to

the estimator and the equalizer as shown in Fig. 2.3 for the next iteration to refine the

results. The APP-decoder also computes the LLR values of b to make hard-decision at

the final iteration, when the stopping criterion is satisfied.

2.4 Two-way Relay Communications

TWRC is the combination of two-way channel [45] and the one-way relay channel. There-

fore, TWRC takes advantage from both including bandwidth efficiency and spatial di-

versity, and has attracted many research works recently. Furthermore, it is one of the

underlying channels where network coding can be efficiently employed. TWRC consist of

two nodes transmit information to each other through a relay node that employs cooper-

ative relay based on network coding [24,25,46].

The two most popular protocols for TWRC with network coding are three-phase and

two-phase protocols. In the three-phase protocol, as shown in Fig. 2.4, the two source

nodes transmit their signal in the broadcast stage (phase I and phase II); and then the

relay transmits the network-coded signal in the cooperation stage (phase III). It can be

seen that if the relay R is to cooperate with two terminals T1 and T2 individually (i.e.,

without network coding) the relay would then be transmitting the signal from T1 and

T2 in one phase (or one channel), and vice versa over another phase (another channel).

Network coding in this case helps to achieve communication with one time slot less.

If the two-phase relaying protocol is used, as shown in Fig. 2.5, in the broadcast stage,
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⊕

Figure 2.4: Three-phase two-way relaying protocol.

Figure 2.5: Two-phase two-way relaying protocol.

the two source nodes send their data simultaneously to the relay, hence they only need

one time slot. Of course, the two-phase protocol can reduce another time slot for the data

exchange between two source nodes, but in the broadcast stage, the channel is MAC,

making the channel estimation and data detection at the relay more difficult.

Early works on cooperative relaying for TWRC suggested two modes of relaying op-

eration [47]: AF and DF. In the AF mode, the relay does not need to decode the signals

sent from the source nodes but just amplifies it (subject to a power constraint) and for-

wards it to the sources. This mode is also referred to as analog network coding in the

literature. In DF, the relay needs to detect and demodulate the signals sent from two

sources, and then transmitting the exclusive-or (XOR) of the decoded bits to the two

sources (after re-modulating it). While DF is prone to error propagation due to decod-

ing errors, AF requires the source nodes to have CSI of the composite channels. A few

other relaying protocols have been proposed recently. Those protocols include estimate-

and-forward [48], [49] (or EF, an estimate of the transmitted symbol is forwarded to the

destination), and compress-and-forward [50] (or CF, the estimates are source-coded to
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exploit possible correlation between channel fades and the source data, then forwarded to

the destination). Such protocols were shown to improve the end-to-end performance (in

terms of capacity [48], received SNR [51], or bit-error rate (BER)).

Also in terms of the end-to-end performance, it has been demonstrated that the BER

performance significantly depends on the detection reliability at the relay nodes [52]. In

the ideal situation where detection at the relays is perfect, the diversity of the system

is maintained, that is, as if the relay node is collocated with the transmitting source

node [47], [53, 54]. However, with imperfect detection, the diversity degrades because of

the error propagation. The severity of this degradation depends on the detection reliability

level at the relay nodes. Some efforts have been directed towards finding remedies for this

problem, especially for DF relaying. The authors in [55–58] (for uncoded networks,i.e., no

channel coding used) and [59, 60] (for channel-coded networks) propose to calculate the

LLRs of the received bits at the relay , then if the LLR of a bit falls below a predetermined

threshold the relay blocks this bit and does not forward it to the destination. Such a

technique proved successful in improving the end-to-end BER performance, albeit not

achieving full diversity because of blocking correct bits by the threshold.

2.5 Massive MU-MIMO

MIMO is a technology that employs multiple antennas at both transmitter and re-

ceiver [61]. Thank to the spatial diversity, MIMO systems can send multiple indepen-

dent data streams simultaneously, without the need of increasing the bandwidth. This

brings many advantages of MIMO links over conventional point-to-point ones such as

higher data rates, better reliability, higher bandwidth efficiency, and robustness to inter-

ferences. The challenges of MIMO communications come from hardware implementation,

i.e., the cost of expensive high power transceivers, the number of radio frequency (RF)

chains, or the size of the transmitter and receiver, where multiple antennas are employed.
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MIMO wireless communication technology has been supported in cellular networks in-

cluding the third generation partnership program (3GPP) long term evolution (LTE),

ultra-mobile broadband (UMB), high speed downlink packet access (HSDPA) and IEEE

802.16e (WiMAX).

To scale up the data rate ranges to meet the increasing demands for future networks,

i.e., beyond 4G networks, massive (or large-scale) MIMO has been proposed [27, 28] as

a promising technology. Such technology is based on the same concepts of conventional

MIMO but extended to a much larger scale in terms of the number of antennas at both

the transmitter and receiver sides. Massive MIMO systems consist of large arrays of tiny

active antenna units, each operating at an extremely low power. As a result, not only

the data rate can be increased, but also the expensive high power transceivers can be

replaced by many low-cost low-power ones. Compared to the classical MIMO, massive

MIMO provides many advantages such as higher data rates, better link reliability, and

better spectral-energy efficiency tradeoff. One current proposed system for massive MIMO

technology is the massive MU-MIMO [28] a shown in Fig. 2.6, where a BS with a very

large antenna array serves a multiplicity of distant or well-separated single-(or just a

few)-antenna UTs simultaneously.

Figure 2.6: Massive MU-MIMO systems of M BS antennas serving K UTs.

Recent studies have shown that massive MIMO brings both opportunities and chal-

lenges. On the optimistic side, under some favorable assumptions, as mentioned before,
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massive MIMO provides many advantages as compared to conventional MIMO. As an

example, theoretical results suggest that adding more antennas at the BS in a massive

MU-MIMO system [28] always helps to increase the throughput or reduce the transmit

power; and all these promising results can be obtained using some linear-complexity esti-

mation and detection algorithms. The challenging side is that, to obtain those promising

results, many optimistic assumptions that do not generally hold in practice are made,

including the favorable and rich scattering, the availability of perfect CSI at all UTs and

at the BS, and zero inter-cell interference [62]. Particularly, the main limitations of mas-

sive MIMO is the uplink channel estimation error and the intercell interference in the

downlink, which we present below.

2.5.1 Uplink Channel Estimation in Massive MIMO

In TDD systems, the CSI is estimated in the uplink, and used to perform the precod-

ing/beamforming in the downlink. The conventional and standard way of estimating the

CSI is to send from each user a training sequence of length T ≥ K in the training phase

of each coherence interval. The channel estimate is then computed by correlating the

received signal with the known training sequence using LS or minimum mean-squared

error (MMSE) (if the distribution of the channel is available for the latter method). This

approach has the advantage that the length of the training sequence scales linearly with

the number of users, not with the number of BS antennas [27].

However, when we consider the massive MIMO in the multicell interference-limited

scenarios, there exits the crucial limitation of the so-called pilot contamination effect.

That is, the quality of the channel information estimated by a cell is affected by the

interference from the pilots sent by the users in other cells [62]. If we assume a multicell

massive MIMO with L cells, each cell has a BS employed with M antennas serving K

users. Then the local CSI estimate in cell l, 1 ≤ l ≤ L, is contaminated by the pilots

sent from UTs in the other (L − 1) cells, due to the non-orthogonality of the LK T -
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length pilot sequences (T < LK). This fundamental issue exists due to the small T

in a limited coherence time interval and the large dimension LK, making the training

sequences across all the cells not long enough to achieve the orthogonality. This effect

results in a significant reduction in the achievable rates of UTs. The problem becomes

more critical when the number of users in each cell grows large, and/or the intercell gains

between users in a cell to the BS in another cell are relatively strong as compared to the

direct link gains.

2.5.2 Precoding in Massive MIMO

In the downlink data transmission, each BS l (1 ≤ l ≤ L) at first precodes the signal

vector xl including the data sent to K users in cell l, by multiplying it with a precoding

matrix Wl = [wl1 wl2 . . . wlK ]. Then the broadcast signal vector is sl =
√
λlWlxl =

√
λl

∑K
n=1 wlnxln, where λl is a normalization parameter. Using ZF precoding, the pre-

coding vector at BS j satisfies

W ZF
j = (ĤT

jj)
†

= Ĥ∗
jj(Ĥ

T
jjĤ

∗
jj)

−1,

where Ĥjj is the estimate of the channel from K users in cell j to BS j. When K grows

large, the computational complexity of (ĤT
jj)

† is high, on the order O(K3) due to the

inversion of the K ×K matrix. By observing that with large M , 1
M
ĤT

jjĤ
∗
jj tends to the

identity matrix [28], hence the simpler MF precoding method can be used, WMF
j = Ĥ∗

jj.

More discussion on precoding methods is given details in [63]. It is proven that when the

number of BS antennas grows large, the intracell interference vanishes, but the system

performances including the achievable rates are still affected by the intercell interference

from the other cells [64]. When the effect of the channel estimation error and the pilot

contamination are combined, the achievable rates using this method is affected by both the
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intracell and intercell interferences, and hence the overall achievable sum-rate is degraded.

In particular, the individual achievable rates of the cell-edge UTs are degraded the most,

due to their larger cross-gains as compared to the other UTs [65].

2.6 Concluding Remarks

This chapter has presented the background of CS and various topics that will be further

studied in this thesis. We have presented two models of sparse vector and low-rank

matrix, where CS can be applied and make important improvements, as well as popular

CS algorithms for reconstructing sparse or low-rank channels. We have also covered the

backgrounds of joint channel estimation and data decoding methods for point-to-point

channels, as well as discussed about TWRC and massive MU-MIMO channels. They are

the underlying systems where we will develop CS methods to improve system performances

or address the existing challenges, in the next chapters.
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Chapter 3

Compressive Multi-channel

Estimation

3.1 Introduction

This chapter is concerned with the problem of CMCE. In particular, we develop the theory

of CS-based estimation to be able to estimate multiple sparse channels simultaneously in-

stead of performing the estimation of the channels individually. The advantage of doing so

is a reduction in the required overhead and/or an improvement in the estimation accuracy.

The CMCE problem has been considered in [11], [12] and some references therein, where

the common theme there is to reconstruct multiple signals having the same sparsity sup-

port. The authors in [11] propose a compressive estimator to simultaneously reconstruct

several jointly sparse doubly selective channels in multi-carrier MIMO-OFDM systems.

In [12], a finite rate of innovation (FRI) sampling and reconstruction scheme is proposed

to reconstruct a set of signals in the sparse common-support scenario (SCS-FRI), where its

performance achieves the Cramér-Rao bound (CRB) starting from lower signal-to-noise

ratio compared to that of the classical single-channel SCS-FRI reconstruction techniques.

In this chapter, however, we consider the CMCE problem when the sparse channels do not
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necessary have the same support, where the channel observations are the superposition

of the outputs of the ISI channels. That is the case when one generally needs to per-

form channel estimation in multipath MIMO channels, multipath interference channels,

or MAC in single-carrier systems. Therefore, our results are useful for multiuser single-

carrier transmission techniques, which have regained interest recently in scenarios where

low peak-to-average power ratio is expected. In addition, while single-carrier schemes

usually require more complex equalization compared to the OFDM-based ones [10], [11],

the scheme considered in this chapter does not use any guard interval between data and

training blocks in one frame, or between consecutive frames (which is necessary for the

OFDM-based ones in terms of cyclic prefixes). This is an advantage of the single-carrier

scheme in terms of training sequence length, especially when the sparse channels have

very long impulse responses. However, we do not make any claim here that the scheme

considered in this chapter outperforms the OFDM-based one.

As another application, we then apply the CMCE concept to a network-coded two-

way relay channel, which comprises two sources and one relay node. In the first time

slot, the two sources transmit their training sequences that are known a prior to the relay

node. In the second time slot, the relay applies analog network coding to the sum of the

received signals and broadcasts the result to the two sources. Each source then uses the

CMCE method described above to estimate the composite channel (i.e., two hops). This

estimate is needed for coherent data detection (channel equalization and decoding) of

the two-way relay channel. The underlying channels are assumed to be sparse multipath

fading channels. For the rest of the chapter, we refer to this channel as a ISI-TWRC.
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The contributions of this chapter are summarized as follows.

• We extend the CS-based channel estimation technique from single-channel to multi-

channel scenarios (MAC). We first form the CMCE sensing matrix by cascading

partial Toeplitz matrices whose entries are independent and identical distributed

(i.i.d), and equally likely ±1 Bernoulli random variables (r.v.s). We then show that

the resulting CMCE sensing matrix satisfies the RIP and low-coherent condition,

making the extension from CSCE to CMCE possible.

• We then apply the above result to the problem of estimating the sparse ISI-TWRC,

where the estimation of the composite channels can be formulated as a CMCE

problem. We prove that for i.i.d. equally likely ±1 Bernoulli pilots, the two above

conditions for the sensing matrix hold for a CMCE method.

• From both theoretical and empirical results, we conclude that CMCE outperforms

its CSCE counterpart in term of MSE, for both the MAC and TWRC estimation

problems.

3.2 System Model

Consider the problem of simultaneous communications from J sources, denoted by {Tj}Jj=1,

to a destination denoted by D in a single-carrier system as shown in Fig. 3.1. The un-

derlying channel is MAC because the communications among all pairs Tj −D share the

same time, bandwidth and code. We further assume that each channel between Tj and

D, denoted by hj = [hj,1 hj,2 . . . hj,N ]
T , is a time-invariant frequency-selective channel

having Sj-sparse N -length impulse response. This means that out of the channel length

N (for the Tj − D link) only Sj coefficients are non-zero, which are further assumed to

be i.i.d. Rayleigh distributed. We note here that if each channel has a different length

Nj, then we can assume that all the coefficients of hj from Nj + 1 to N are zero, where
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Figure 3.1: J-user MAC channel

N = max(N1, N2, ..., NJ). To simultaneously sense/estimate all channel impulse responses

{hj}Jj=1 at the destination, we need to send from each Tj a random, but known, pilot se-

quence of length T = K0 +N − 1, denoted by aj = [aj,1 aj,2 . . . aj,T ]
T prior to its actual

information data transmission. The modulation format of the information symbols sent

by all sources is assumed to be BPSK, and the pilots are random sequences of i.i.d equally

likely ±1. Since single-carrier is employed, ISI occurs, and the received signal at D is the

superposition of all individual outputs of the channels, plus AWGN. Consequently, the

signal received at D can be written in matrix form as

y =
J∑

j=1

Ajhj + n, (3.1)

where Aj is the K0 ×N partial Toeplitz matrix formed from aj,

Aj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

aj,N aj,N−1 · · · aj,2 aj,1

aj,N+1 aj,N · · · aj,3 aj,2
...

...
. . .

...
...

aj,N+K0−1 aj,N+K0−2 · · · aj,K0+1 aj,K0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
; (3.2)

y is a K0×1 vector of the received symbols; n is a K0×1 vector of AWGN samples, with

variance σ2/2 per dimension. We assume in our scheme that there is no guard interval

between the training and data blocks in one frame, neither between consecutive frames,
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and only the K0 interference-free received symbols are considered at the destination as

useful observations for channel estimation purposes. Here we use the term “interference”

to indicate the unknown data symbols contained in the observations. Comparing to the

scheme where guard intervals are used, this scheme needs shorter training sequences and

resembles more closely the CS problem, where the number of observations is far fewer

than the number of unknowns [66].

To cast the problem of channel estimation using the PA method, we stack all vectors

{hj}Jj=1 in (3.1) into a single JN × 1 vector, denoted by h =
[
hT

1 hT
2 . . . hT

J

]T
. Then

(3.1) can be re-written as

y = Ah+ n, (3.3)

where A =

[
A1 A2 · · · AJ

]
. The problem now is how to estimate the SΣ-sparse

(SΣ =
∑J

j=1 Sj) JN -length unknown vector h given the observation vector y andK0×JN

sensing matrix A, which is a cascade of partial Toeplitz matrices Aj, under the presence

of random noise vector n.

3.3 Sparsity-Ignorant Estimator

Assuming that D does not have any knowledge about the sparsity or the statistical distri-

bution of the channels, then its sparsity-ignorant receiver simply employs the conventional

PA channel estimation using the LS method. To have a meaningful estimation, we need

to transmit a training symbol vector of length T ≥ (J +1)N − 1, which provides us with

at least as many interference-free observations as there are unknowns in (3.3). The LS

solution for (3.3) is then given by [42]

hLS = (A)† y

= (A′A)
−1

A′y.
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The MSE of the LS method is

MSELS = σ2Tr
{
(A′A)

−1
}
,

which results in the lower bound σ2(JN)/K0.

3.4 Sparsity-Aware Estimator

In CS-based channel estimation, by taking the sparsity feature of the channels into ac-

count, we can significantly shorten T while maintaining sufficient accuracy, or achieving

better accuracy compared to the LS method using the same pilot length (or probing time

needed), as long as the two following conditions hold. First, the channel has to have

SΣ-sparsity, meaning that only SΣ out of JN coefficients are non-zero (SΣ ≤ JN) (the

remaining ones are zero or approximately zero). Second, the sensing matrix A must sat-

isfy the RIP condition, or has a small mutual coherence, i.e., small correlation between

its columns, which is also closely related to the RIP [2]. Next, we show that matrix A in

(3.3) satisfies the RIP and has a small mutual coherence under reasonable conditions.

3.4.1 Compressive Sensing Dictionary

From the RIP definition, the sensing matrix A is said to satisfy the RIP (SΣ, δSΣ
) if for

any vector v having SΣ non-zero entries as h, the two following inequalities hold for some

δSΣ
> 0

1− δSΣ
≤ ‖Av‖2

‖v‖2
≤ 1 + δSΣ

.

If A is chosen as in the discussion in the previous section, then we have the following

result.

Theorem 3.1. (RIP for the J-user MAC)

Let {aj,l}N+K0−1
l=1 in (3.2) be a sequence of equally likely ±1/

√
K0 i.i.d Bernoulli r.v.s.

36



Then, A satisfies the RIP(SΣ, δSΣ
) with probability exceeding 1− exp (−c1K0/S

2
Σ) for any

c1 ≤ δ2SΣ
/32 when K0 ≥ c2S

2
Σ log(JN), assuming that JN ≥ 3, where it suffices to choose

c2 ≥ 96/
(
δ2SΣ

− 32c1
)
.

Proof. For this proof, we follow the same approach used in [66], where we use the Hoeffd-

ing’s standard concentration inequalities [Appendix B] and Geršgorin’s Disc Theorem [67]

as follows. Consider the JN × JN Gram matrix of A, i.e.,

G � A′A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1,1 G1,2 · · · G1,J

G2,1 G2,2 · · · G2,J

...
...

. . .
...

GJ,1 GJ,2 · · · GJ,J

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3.4)

where Gj,j is the N × N Gram matrix of Aj, and Gj,l = A′
jAl, for j, l = 1, 2, ..., J and

l �= j. As in [66], using the Hoeffding’s standard concentration inequalities, each diagonal

entry of Gj,j satisfies

Pr (|Gj,j(m,m)− 1| ≥ δd) ≤ 2 exp
(
−2K0δ

2
d

)
,

for m = 1, ..., N and j = 1, ..., J ; and each off-diagonal entry of Gj,j satisfies

Pr

(
|Gj,j(m,n)| ≥ δo

SΣ

)
≤ 4 exp

(
−K0δ

2
o

8S2
Σ

)
,

for m,n = 1, 2, ..., N and n �= m.

Each entry (either diagonal or off-diagonal) of Gj,l, given by Gj,l(m,n) = a′
j,mal,n, is

the inner product of the l-th column of Aj and n-th column of Al. Since the entries of

these vectors are i.i.d, Gj,l(m,n) has zero mean and satisfies

Pr

(
|Gj,l(m,n)| ≥ δo

SΣ

)
≤ 2 exp

(
−K0δ

2
o

2S2
Σ

)
.
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The diagonal entries of G include the diagonal entries of each Gj,j, which satisfy (3.5).

Applying the union bound, we have

Pr

(
JN⋃
m=1

{|G(m,m)− 1| ≥ δd}
)

= Pr

(
J⋃

j=1

N⋃
m=1

{|Gj,j(m,m)− 1| ≥ δd}
)

≤ 2JN exp
(
−2K0δ

2
d

)
. (3.5)

The off-diagonal entries of G include the off-diagonal entries of each Gj,j, and all entries

of each Gj,l. Since G is symmetric and Gj,l = G′
l,j (note that Gj,l is not symmetric

itself), the number of unique off-diagonal entries of G is equal to the number of entries of

all Gj,l, j > l, which is J(J − 1)N2/2, plus the number of unique off-diagonal entries of

all Gj,j, which is J(N2−N)/2. Applying the union bound, and assume J ≥ 2, we obtain

Pr

(
J⋃

m=1

J⋃
n=1,n�=m

{
|G(m,n)| ≥ δo

S

})
≤ 2

J(J − 1)N2

2
exp

(
−K0δ

2
o

2S2
Σ

)

+ 4
J(N2 −N)

2
exp

(
−K0δ

2
o

8S2
Σ

)

≤ 2J2N2 exp

(
−K0δ

2
o

8S2
Σ

)
. (3.6)

From (3.5) and (3.6) and applying the Geršgorin’s theorem [66], [67], we obtain

Pr (X does not satisfy RIP(SΣ, δSΣ
)) ≤ 2JN exp

(
−2K0δ

2
d

)
+ 2J2N2 exp

(
−K0δ

2
o

8S2
Σ

)
.

If we choose δd = δo = δSΣ
/2, and assuming N ≥ 2, we have

Pr (X satisfies RIP(SΣ, δSΣ
)) ≥ 1−

(
2J2 + J

)
N2 exp

(
−K0δ

2
SΣ

32S2
Σ

)

≥ 1− 3J2N2 exp

(
−K0δ

2
SΣ

32S2
Σ

)
.
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For any c1 ≤ δ2SΣ
/32, we obtain the following lower bound of the RIP satisfying probability

Pr (X satisfies RIP(SΣ, δSΣ
)) ≥ 1− exp

(
−c1K0

S2
Σ

)
(3.7)

for any K0 satisfies

K0 ≥
32

δ2SΣ
− 32c1

S2
Σ log

(
3J2N2

)
. (3.8)

Assuming that JN ≥ 3, then (3.7) occurs for any K0 ≥ c2S
2
Σ log (JN), where it suffices

to choose

c2 ≥ 96/
(
δ2SΣ

− 32c1
)
. (3.9)

Next, we prove that A has small mutual coherence, making it suitable for a CS dic-

tionary. As the definition, the mutual coherence of A is computed as

μ � max
l �=j

|〈aj, al〉| , (3.10)

we have the following lemma.

Theorem 3.2. (Mutual Coherence of A)

The mutual coherence of A is statistically upper bounded by

μ ≤ 4
√
K−1

0 log (J2N2/δ), (3.11)

with probability exceeding 1− δ2, for some δ > 0.

Proof. As defined in (3.10), the mutual coherence of A is the largest off-diagonal entry
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(in the absolute value sense) of G. Using the union bound, we obtain the upper bound

Pr(μ ≥ ε) = Pr

(
max
m �=n

|G(m,n)| ≥ ε

)

< Pr

(
J⋃

m=1

J⋃
n=1,n�=m

{|G(m,n)| ≥ ε}
)
.

Using the result from (3.6), we have

Pr(μ ≥ ε) < 2J2N2 exp

(
−K0ε

2

8

)
. (3.12)

If we choose ε = 4
√

K−1
0 log (J2N2/δ), then (3.12) becomes

Pr

(
μ ≥ 4

√
K−1

0 log (J2N2/δ)

)
< δ2,

which completes the proof.

It is interesting to observe that when J = 1, (3.11) becomes an upper bound on the

mutual coherence for the single-user case, which is identical to the bound obtained in [42],

even though we use a different (and much simpler) proof.

By proving the RIP and the small mutual coherence constant of the measurement

matrix A for estimating the total channel vector h in (3.3), we show the suitability of

A as a sensing operator1, and that there exist a CS technique to efficiently estimate the

sparse vector h. The small mutual coherence constant also quantifies the RIP order of

the measurement matrix, as the smaller μ allows to establish a smaller RIP constant and

a recovery guarantee for a sparse vector with larger sparse ratio [35, 71].

Remark 3.1. We only consider the case of random i.i.d. Bernoulli pilot sequences,

where the pilot symbols are BPSK (or 2-QAM) modulated, for simplicity. The RIP and

1It should be noticed that RIP is only a necessary condition for a recovery guarantee, and there are
other cases where RIP-less guarantees also support a special type of measurement matrices [68–70].
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incoherence of the measurement matrix using QAM or other modulation formats can be

verified using a similar approach.

Taking the 4-QAM as an example, the normalized sensing matrix A has i.i.d. random

elements obeying

ai,j ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2K0

(1 + j) with probability 1/4

− 1√
2K0

(1 + j) with probability 1/4

1√
2K0

(1− j) with probability 1/4

− 1√
2K0

(1− j) with probability 1/4

.

Since the entries of A also have zero mean and are bounded (in absolute value), the above

derivation for BPSK pilot symbols using Hoeffding’s standard concentration inequalities

and Geršgorin’s Disc Theorem can also applied for QAM. Indeed, the RIP and incoherence

conditions can be verified for partial Toeplitz measurement matrices whose entries belong

to a more general class of i.i.d. zero-mean sub-Gaussian random variables. In term of

the estimation performance, however, we do not make any claim that m-QAM (m > 2)

outperforms BPSK or the other way around. It is true that dense QAM constellations

provide higher spectral efficiency as compared to BPSK. However, the channel estimation

task would be more difficult since it requires estimating the amplitude variations in the

channel in addition to having knowledge of the phase variations. Extending CMCE to

other modulation formats would be an interesting topic to tackle.

3.4.2 CS Reconstruction Technique

Given that the measurement matrix A satisfies the RIP and has low mutual coherence,

there are a variety of CS reconstruction techniques that can efficiently solve the problem

given in (3.3). They include greedy-based methods such as the IHT [32], (OMP) [33];
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and convex optimization-based methods such as the BPDN and Danzig selector [17], as

described in Chapter 2. The major weakness of the greedy-based techniques is that their

performance guarantee holds only if the magnitudes of all SΣ non-zero coefficients of h

are somewhat above the noise level [35]. If some of them are smaller than the noise

level, then the solver may incorrectly define the support set of h, making its performance

very poor. This can happen in our case especially since the channels are random. The

three �1-based convex optimization methods mentioned above are exchangeable under

suitable regularization parameters or constraints [36], and they all require only the sparsity

condition. Throughout this chapter, we use the �1-penalty version of the BPDN method

for the CS reconstruction technique, which is defined for (3.3) as

min
h

1

2
‖y −Ah‖22 + γ ‖h‖1 ,

where γ is the turning parameter. When γ is typically chosen as

γ =
√

8σ2(1 + α) log(JN − SΣ),

the BPDN has the following performance guarantee (Theorem 3 of [35]).

MSEBPDN ≤
(√

3 + 3
√

2(1 + α) log(JN − SΣ)
)2

SΣσ
2,

with probability exceeding (1− (JN − SΣ)
−α) (1− exp (−SΣ/7)), for some α > 0, under

the condition that SΣ ≤ 1/(3μ).

We will demonstrate in Section 3.6 via simulations the efficacy of using this CMCE

over its CSCE counterpart.
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3.5 Channel Estimation for Two-way Relay Sparse

ISI Channel

In this section, we show that the estimation of composite channels in the sparse ISI-

TWRC case employing analog network coding can be formulated as a CMCE problem,

and can be performed efficiently using the CS approach introduced above.

3.5.1 System Model

We consider the system model in Fig. 3.2a, where two sources T1 and T2 exchange their

information via relay R, in a single-carrier based system. Denote the two uplink channels

between Tj and R (for j = 1, 2) by hj = {hj,l}Lu

l=1. Each channel is assumed to be Sj-

sparse Lu-length frequency-selective channel. This means that out of Lu there are only Sj

dominant coefficients, and the rest are (nearly) zero. We note here that if each channel

has a different length Lj, then we can assume that the coefficients of the shorter channel

from its end to Lu are zero, where Lu = max(L1, L2). The similar notations are used

for the downlink channels between R and Tj, as denoted by h3 and h4 with length Ld,

and the sparsities S3 and S4, respectively. The channels’ coefficients are i.i.d. Rayleigh

distributed, and vary from one block to another.

Figure 3.2: Two-phase two-way relaying protocol.

Let pj = [pj,1 pj,2 . . . pj,T ]
T denote the random symmetric Bernoulli ±1 pilot sequence
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of length T at Tj, known by both sources, where T = K0 + Lh − 1 (Lh = Lu + Ld − 1).

In Phase I, two sources send their pilots simultaneously to the relay. Since ISI occurs,

the received signal at R, is

yR = H1p1 +H2p2 + nR,

where Hj is the K0 ×K0 Toeplitz matrix,

Hj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hj,Lu
· · · hj,1 0 · · · 0

0 · · · hj,2 hj,1 · · · 0

...
. . .

...
...

. . .
...

0 · · · hj,Lu
hj,Lu−1 · · · hj,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
; (3.13)

nR is a K0 × 1 vector of complex AWGN samples at R, with variance σ2. As in the

previous section, here we only take the interference-free and collision-free received symbols

as useful observations for the channel estimation purpose. Since our protocol applies

analog network coding at the relay, the relay does not need to estimate the channels but

amplifies yR by factor [72]

β =

√
ER

E1E{|h1|2}+ E2E{|h2|2}+ σ2
,

where E1, E2, ER are the transmit power constraints at T1 and T2 and R, respectively.

The transmitted signal by the relay to the two sources in Phase II is pR = βyR. In Phase

II, the received signal at T1 is (an analogous process is performed at T2)

y1 = H3pR + n1

= βH3 (H1p1 +H2p2 + nR) + n1, (3.14)

where n1 is a K × 1 AWGN vector at T1 with variance σ2. Denote H̃1 = βH3H1,
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H̃2 = βH3H2, ñ1 = βH3nR + n1, then (3.14) is re-written as

y1 = H̃1p1 + H̃2p2 + ñ1 (3.15a)

= P1h̃1 + P2h̃2 + ñ1 (3.15b)

=

[
P1 P2

]⎡⎢⎣ h̃1

h̃2

⎤
⎥⎦+ ñ1

= PRh̃+ ñ1, (3.15c)

where PR =

[
P1 P2

]
in which Pj is K0×Lh partial Toeplitz matrix formed by column

pj as

Pj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pj,Lh
pj,Lh−1 · · · pj,1

pj,Lh+1 pj,Lh
· · · pj,2

...
...

. . .
...

pj,Lh+K0−1 pj,Lh+K0−2 · · · pj,K0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

h̃ =
[
h̃1; h̃2

]
is the effective channel to be estimated at T1 with total length Leff = 2Lh: h̃1

is the composite T1−R−T1 channel, h̃2 is the composite T2−R−T1 channel; and in (3.15b)

we apply the commutative property of the convolution operator. Note that the proposed

protocol has the advantage that the channel estimation is performed at the sources not

at the relay, and only the composite channels are needed for data detection [72]. We can

easily prove that the convolution of S1-sparse Lu-length channel and S3-sparse Ld-length

channel results in the Lh-length channel with a sparsity of at most S1S3. Therefore, the

number of dominant taps of h̃, denoted by SΣ, is at most S1S3 + S2S3, and h̃ needed to

be estimated at T1 is sparse if we have SΣ  Leff = 2(Lu + Ld − 1), which is usually the

case when S1, S2  Lu and S3  Ld.
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3.5.2 Sparsity-Ignorant Receiver: Least Square Based

The sparsity-ignorant receiver at Tj simply employs the conventional PA channel estima-

tion using the LS method given that a training symbol vector of length T ≥ Leff+Ld−1 =

2Lu + 3Ld − 3 is used. The channel estimate of h̃, denoted by h̃LS, is given by

h̃ = (PR)
†
y1

= (P ′
RPR)

−1
P ′

Ry1.

The MSE for the LS receiver is given by,

MSELS = σ2Tr
{
(P ′

RPR)
−1
}
,

which results in the lower bound σ2Leff/K0.

3.5.3 Sparsity-Aware Receivers: Compressive-Sensing Based

The sparsity-aware receivers perform a CS-based estimation technique such as BPDN, as

described in the previous chapter. The implication here is that the sensing matrix for

TWRC estimation also satisfies RIP and has low mutual coherence, which can be proven

in the following results.

Corollary 3.1. The sensing matrix for estimating h̃ in (3.15c) satisfies the RIP(SΣ, δSΣ
)

with probability exceeding 1−exp (−c1K0/S
2
Σ) for any c1 ≤ δ2SΣ

/32 when K0 ≥ c2S
2
Σ logLeff,

given that Leff ≥ 3, where it suffices to choose c2 ≥ 96/
(
δ2SΣ

− 32c1
)
.

Proof. By scaling the sensing matrix PR so that its column has unit norm, then it exactly

has the form of A in Theorem 3.1. Therefore, the result is directly obtained.

Corollary 3.2. The mutual coherence of the sensing matrix PR for estimating h̃ is upper

bounded by 4
√
(K0)−1 log (Leff/δ) with probability exceeding 1− δ2, for some δ > 0.
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Proof. Using the result from Theorem 3.2 and the same argument used in the proof of

Corollary 3.1, we can prove Corollary 3.2.

For comparison purposes, we also consider a channel estimation scheme based on an

Oracle (ORC), which provides us the support set of the indices of the non-zero coefficients

of the channel impulse response, which is denoted by supp(h̃) = {i : h̃i �= 0}. This

performance serves as the CRB for all the unbiased estimators considered. The solution

of the ORC-based channel estimation is

h̃ORC = P
†
ORCy1

= (P ′
ORCPORC)

−1
P ′

ORCy1,

where PORC is formed by retaining all the columns of PR with indices in supp(h̃).

The bound of the MSE performance for the ORC-based receiver is given by

MSEORC = σ2Tr
{
(P ′

ORCPORC)
−1
}
,

which results in the lower bound of SΣσ
2/K0.

3.6 Simulation Results

3.6.1 Compressive Multi-channel Estimation

In this section, we present numerical results to show the performance improvement of

using CMCE methods described above. We first examine the improvement in terms of

the MSE that the CMCE method provides over its CSCE counterpart, when both use

the same CS-based BPDN technique to estimate multiple sparse channels. Here we define

the single-channel estimation method as the one estimating each channel of each user-

destination pair individually (by sending J training sequences at J orthogonal time slots
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for the J-user case). Assume that we need to estimate three sparse channels {hj}3j=1,

with the same length N = 16, and same sparsity S = 4 (this assumption does not affect

the generality of the results). We further assume that the support set of the channels

are: supp(h1) = {1, 4, 9, 16}, supp(h2) = {1, 3, 10, 16}, supp(h3) = {1, 5, 8, 16}. All

non-zero coefficients of each channel are assumed to be independent r.v.s and follow

Rayleigh distribution. The total power of each channel is normalized to unity. We run

the simulation for 5000 random channel realizations.

K0

Figure 3.3: MSE comparison between BPDN-based CMCE and CSCE methods with
different training lengths, at different SNR, N = 16, S = 4.

In the CSCE method, if estimating each channel needs a training of K0+N−1 known

i.i.d equally likely Bernoulli ±1, where K0 is the interference-free observations, then the

total training length for estimating all three channels is 3(K0+N−1). Fig. 3.3 shows that

by using the same total training length, the CMCE method provide significant improve-

ments in term of MSE between the total channel h and its estimates, at different SNR

= Es/N0 of 10, 20 and 30 dB, where SNR is defined as the ratio between symbol power

and noise power. It is equivalent to saying that we can shorten the total training length

(or probing time) needed by using the CMCE method to achieve the same performance
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target. Obviously the CMCE scheme provides a better bandwidth efficiency/performance

trade-off as compared to the CSCE scheme.

In the second experiment, we repeat the experiment for the case when SNR = 10 dB,

and this time the locations of the non-zero channel coefficients are randomly generated.

The final results are averaged over 1000 random support sets. We also present the MSE

results when the channel length N of each link is increased to 32, but the ratio S/N is

kept at 1/4. The results in Fig. 3.4 also show that CMCE outperforms CSCE for both

cases N = 16 and N = 32 in term of MSE. Furthermore, comparing Figs. 3.3 and 3.4

for the case N = 16, S = 4, we see that the results do not depend on the locations of

non-zero coefficients. The performance for the randomly generated support sets in Fig.

3.4 is the same as that of the fixed one used in Fig. 3.3.

K0

Figure 3.4: MSE comparison between BPDN-based CMCE and CSCE methods with
different training lengths, at SNR = 10 dB.

Finally, we present the MSE results using the CMCE approach for different sparsity

levels (i.e. S/N ratios) for the case N = 32: S = 4, 8, 12. Fig. 3.5 shows that we can

estimate the total channel h̃ more accurately for smaller values of S (i.e., more sparsity).
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Since the LS method does not consider the sparsity of channels, its performance is almost

the same at different S, and is much less accurate as compared to the CS method.

K0

Figure 3.5: MSE comparison between the LS-based and BPDN-based methods using the
CMCE approach with different training lengths, at SNR = 10 dB.

3.6.2 Channel Estimation for Sparse ISI-TWRC

Given that the CMCE method outperforms its CSCE counterpart, we next present the

performance improvements achieved by using the CMCE method over the traditional

LS-based method (also in a multi-channel estimation framework) for the estimation of

the sparse ISI-TWRC with analog network coding, as described in Section 3.5. In the

simulation, we assume that the sparse ISI-TWRC is symmetric, i.e., the two reciprocical

source-relay channels h1 and h2 in Fig. 3.2 have the same sparse impulse response with

the support sets {1, 4, 9, 16}. Again, this assumption is just for simplicity, and does not

affect the generality of the simulation, since the results does not depend on the locations

of the non-zero coefficients, as seen in the previous section. A known i.i.d. equally likely

±1 Bernoulli training sequence of length T = K0 + Ld − 1 is embedded prior to each

coded symbol block, with K0 being the interference-free and collision-free observations.

By operating the two-phase transmission scheme as described in Fig. 3.5, at the end of
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the second phase, each terminal’s receiver performs the multi-channel estimation using

CMCE. The number of random channel realizations is also set to 5000. Since this is a

symmetric TWRC, only the MSE results at one terminal are presented.

Figure 3.6: MSE comparison of different multi-channel estimation methods for sparse
ISI-TWRC with T = 60 (under-determined setting).

The two composite source-relay-destination channels that need to be estimated in the

multi-channel estimation framework has a total length of Leff = 2Lh = 2(Lu+Ld−1) = 62,

meaning that the length of the training sequence T has to be at least 62 + Ld − 1 = 77

for the LS method to work. We show below two simulation results for two settings:

one is under-determined where T = 60 < 77, and another is over-determined where

T = 90 > 77. Figs. 3.6 and Fig. 3.7, we show the MSEs between the effective channel

h̃ and its estimates versus SNR at one terminal for different methods when T = 60 and

T = 90, respectively. For comparison purposes, we also show the MSE of the ORC

method, and the case when perfect CSI is assumed at the terminal. As expected for the

under-determined case (T = 60), we can see a huge improvement of using CS-based BPDN

method over the LS one. In this under-determined case, while the LS method has very
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poor performances both in MSE, the CS method has the MSE performance approaching

that of the ORC-based method at high SNR.

When we increase the length of T to 90, the MSE performance of the BPDN method

closely approaches that of the ORC-based and perfect CSI based methods. In this case,

these error performances of the LS method are still far way from the CS-based method

and the lower bounds based on ORC and perfect CSI ones.

Figure 3.7: MSE comparison of different multi-channel estimation methods for sparse
ISI-TWRC with T = 90 (over-determined setting).

3.7 Concluding Remarks

This chapter has addressed the problem of simultaneous estimation of multiple sparse

ISI channels that do not necessarily have a common sparsity support, and applied it to

the compressive estimation of sparse ISI-TWRC employing analog network coding. Both

theoretical and empirical results suggested that the CS-based CMCE method significantly

outperforms the traditional LS-based one, which ignores the sparsity feature of the un-

derlying channels.
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Chapter 4

Joint Compressive Estimation and

Decoding for Sparse ISI-TWRC

4.1 Introduction

In Chapter 3, we have shown that the estimation of the sparse ISI-TWRC can be formu-

lated and efficiently estimated using the CMCE method. In this chapter, we further study

the problem of joint channel estimation and data decoding for the sparse ISI-TWRC, op-

erating in both AF and DF modes. This is different from most of the previous works

in the literature on compressive channel sensing that only consider the performance of

channel estimation [66,73].

For AF, we first apply the method of multiple-channel estimation developed in the

previous chapter for sparse ISI-TWRC and propose an iterative receiver that performs

channel estimation and data decoding jointly. We prove that the condition required for

CS holds with stronger convergence, and the method provides the better MSE and BER

performance as compared to the ones that do not take the sparsity of the channel into

account. In DF, we utilize the prior information of the sparsity of the channel into both the

estimation and channel equalization processes to improve these end-to-end performances.
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Finally, we develop a thresholding technique which mitigate the error propagation of

TWRC operating in DF to further improve the end-to-end system performances.

4.2 Amplify-and-Forward TWRC

4.2.1 Signal and Channel Models

The system model is the same as the one in Chapter 3, where two sources T1 and T2

exchange their information via relay R, in a single-carrier based system. Since we consider

both channel estimation and the data decoding, we describe the signal model as follows

(Fig. 4.1).

Figure 4.1: Signal and channel models for each Tj-R link.

Let bj = {bj,nb
}Nb

nb=1 denote the Nb-length binary information vector transmitted by

Tj in one period of data exchange. After having been encoded by each convolutional

encoder with rate Rc = Nb/Nc, each corresponding M -length coded vector, denoted by

cj = {cj,n}Nc

n=1 is randomly interleaved and BPSK modulated, resulting in the coded

symbol vector xj = {xj,m}Nc

m=1. The transmitted symbol vector at Tj in Phase I is denoted

by sj = [pT
j xT

j ]
T , where pj = {pj,n}Tn=1 is a random symmetric Bernoulli±1 pilot sequence

of length T at Tj, known by both sources, where T = K0 + Ld − 1.

Each channel hj is assumed to be Sj-sparse N -length as in Chapter 3. In Phase I, the

two sources send their data simultaneously to the relay. Since ISI occurs, the received

signal at R, is

yR =
2∑

j=1

Hjsj + nR, (4.1)
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where Hj is the (K0 +Nc)× (K0 +Nc) Toeplitz matrix,

Hj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hj,Lu
· · · hj,1 0 · · · 0

0 · · · hj,2 hj,1 · · · 0

...
. . .

...
...

. . .
...

0 · · · hj,Lu
hj,Lu−1 · · · hj,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
; (4.2)

nR is a (K0 + Nc) × 1 vector of complex AWGN samples at R, with variance σ2. By

(4.2), we also discard the observations at R in the collision interval between the uplink in

Phase I and the downlink in Phase II. Since our protocol applies analog network coding

at the relay, the relay does not need to estimate the channels or decode x1 and x2, but it

amplifies its yR by a factor β [72]. The transmitted signal by the relay to the two sources

in phase II is sR = βyR.

In Phase II, the received signal at T1 is (an analogous process is performed at T2)

y1 = H3sR + n1

= βH3 (H1s1 +H2s2 + nR) + n1, (4.3)

where n1 is a (K0+Nc)×1 AWGN vector at T1 with variance σ2. Denote H̃1 = βH3H1,

H̃2 = βH3H2, ñ1 = βH3nR + n1, then (4.3) is re-written as

y1 = H̃1s1 + H̃2s2 + ñ1 (4.4a)

= S1h̃1 + S2h̃2 + ñ1 (4.4b)

= SRh̃+ ñ1, (4.4c)

where SR =

[
S1 S2

]
in which Sj is (K0 + Nc) × Lh (Lh = Lu + Ld as defined in
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Chapter 3) partial Toeplitz matrix formed by column sj as

Sj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sj,Lh
sj,Lh−1 · · · sj,1

sj,Lh+1 sj,Lh
· · · sj,2

...
...

. . .
...

sj,Lh+K0+Nc−1 sj,Lh+K0+Nc−2 · · · sj,K0+Nc
.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4.2.2 Proposed Iterative Scheme

We first describe our proposed joint iterative estimation and decoding scheme at T1 as

depicted in Fig. 4.2 (an analogous process is performed at T2). At the initial stage, an

estimate of h̃ is obtained from the first K0 observations in (4.4c) with the known measure-

ment matrix A(1) = (SR)K0
, by using some estimation technique. This estimate will then

be used to perform ISI cancellation by a SISO equalizer and then decoding by a SISO

decoder to get the first estimates x̃
(1)
2 of x2, after we subtract the self-interference H̃1s1

(see (4.4a)). Here we adopt a SISO receiver based on the Soft-Cancellation Minimum

Mean Square Error (SC/MMSE) method [74]. We denote L(x2,m), Le(x2,m) in Fig. 4.2

as the a-posteriori LLR and the extrinsic LLR of the m-th coded symbol of x2, respec-

tively [74]; and Le(x2,m|p) = L(x2,m)− Le(x2,m). Similar definitions are used for L(c2,m),

Le(c2,m), Le(c2,m|p), and L(b2,m).

After the initial stage, the hard decision of x̃2 will be fed back to the channel estimator

to improve the system performance in the next iteration. Here and in the sequel, the

number of iterations refers to the number of times we feed back the symbol estimates

from the decoder to the estimator, not the number of “inner” iterations between the

equalizer and the decoder, which is set to one in this chapter. At the i-th iteration

(i ≥ 2), the updated measurement matrix is A(i) = S̃
(i)
R , which is formed by the pilots,

x1, and the i-th estimates x̃
(i)
2 .

If the sources do not have any knowledge about the sparsity or the statistical distri-
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Figure 4.2: Join iterative estimation and decoding for ISI-TWRC at T1.

bution of the channels, their receivers simply employ the conventional LS-based channel

estimation method (the decoding process is the same as above), which provides the esti-

mate of h̃ at the i-th iteration, h̃
(i)
LS, as

h̃
(i)
LS =

(
A

(i)
LS

)†
y
(i)
1

=

{(
A

(i)
LS

)′
A

(i)
LS

}−1 (
A

(i)
LS

)′
y
(i)
1 ,

where y
(i)
1 = (y1)K0

, and y
(i)
1 = y1 for i ≥ 2.

The MSE for the LS receiver at the i-th iteration is given as

MSE
(i)
LS = σ2Tr

{{(
A

(i)
LS

)′
A

(i)
LS

}−1
}
,

which results in the lower bound σ2Leff/K0 at the first iteration and (asymptotically)

σ2Leff/(K0 + Nc) at the final iteration, with the assumption that the coded symbols fed

back to the channel estimator at the final iteration are all correct.

Estimating and decoding sparse ISI-TWRC under the condition SΣ  Leff can be

more efficiently solved by a CS-based technique, provided that the measurement matrix

satisfies the RIP [1, 29]; and the performance is further improved if it is done in an

iterative fashion as shown below. The implication here is that, after each iteration, the

measurement matrix satisfies the RIP with higher accuracy, and more observations are
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available which lead to further performance improvements. In this chapter, we also use

the convex optimization-based �1-penalty version of BPDN method as it is claimed to be

stable under noisy setting, and requires only the sparsity condition. The estimate of h̃ in

the i-th iteration using BDPN is

h̃
(i)
BPDN = argmin

h̃

{
1

2

∥∥∥y(i)
1 −A

(i)
BPDNh̃

∥∥∥2
2
+ γ

∥∥∥h̃∥∥∥
1

}
,

where γ is the turning parameter, typically chosen as γ =
√

8σ2(1 + α) log(Leff − SΣ) for

a fairly small α [35], A
(i)
BPDN is the measurement matrix at the i-th iteration using BDPN.

In light of the above, we have the following result.

Theorem 4.1. At the final iteration when the iterative scheme converges, the normal-

ized measurement matrix for estimating h̃ in (4.4c) satisfies the RIP(SΣ, δSΣ
) with prob-

ability exceeding 1 − exp (−c1(K0 +Nc)/S
2
Σ) for any c1 ≤ δ2SΣ

/32 when K0 + Nc ≥

c2S
2
Σ logLeff, given that Leff ≥ 3, where it suffices to choose c2 ≥ 96/

(
δ2SΣ

− 32c1
)
. Fur-

thermore, upon convergence the MSE performance of the BPDN method is upper bounded

by SΣσ
2 log(Leff)/(K0 +Nc) within a constant factor.

Proof. The RIP of the measurement matrix in (4.4a) for the first iteration is proved in

Chapter 3. Here we provide the RIP of the updated measurement matrix in the subsequent

iterations; plus the convergence of the scheme.

From the second iteration, the number of effective observations used for channel es-

timation is increased from K0 to K0 + Nc thanks to the iterative process. Practically,

considering a small number of incorrectly decoded symbols, say N
(i)
E  Nc at the i-th

iteration are fed back to the channel estimator, then the measurement matrix at the i-th

iteration is A(i) = SR + E(i), where E(i) is the error matrix whose most of entries are

zero and the non-zero entries (+1/− 1) are caused by incorrectly decoded symbols. It is

equivalent to saying that the channel estimation algorithm applies for the (K0+Nc)×Leff

measurement matrix SR and for an increasing noise ñ
(i)
1,E = ñ1 − E(i)h̃ with variance

58



σ2
E
(i)
.

Since we feed back the randomly interleaved BPSK estimates of coded symbols, all the

unique entries of the measurement matrix SR are supposed to be symmetric ±1 Bernoulli

distributed (assuming that the information data is i.i.d. binary with equally likely 0’s and

1’s). As proven above, SR satisfies the RIP with the size (K0 + Nc) × Leff. Given that

the MSE of the channel estimation error using an CS-based algorithm is proportional to

the noise variance and inversely proportional to the number of observations used, feeding

back the decoded symbols for channel estimation purposes provides some iterative gains,

as the increase in the number of observations (from K0 to K0 + Nc) is generally faster

than the increase of the variance noise (from σ2 to σ2
E
(i)
), at high SNR and when the

codeword length is large.

With the assumption that the smaller MSE of the estimation error of the estimator

the lower the BER of the decoder, then N
(i+1)
E < N

(i)
E leading to σ2

E
(i+1)

< σ2
E
(i)
. Over the

iterative process, N
(i)
E approaches zero, and σ2

E
(i)

approach σ2. The algorithm converges,

an the results of Theorem 4.1 follows if in the result of Corollary 3.1 in Chapter 3 we

replace K0 by K0 +Nc.

Given that the better the MSE performance of the estimator, better BER performance

of the decoder is expected. Furthermore, the above performance guarantee, in fact, is an

upper bound, and more practical useful numerical results are given in Section 4.4. Finally,

we consider the scheme based on Oracle (ORC), which provides us the locations of the

non-zero taps of h̃. The ORC estimator performs the LS method with a measurement

matrix comprising only the columns corresponding to the non-zero locations of h̃ [34]. Its

performance serves as the Cramér-Rao bound for the above estimators.
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4.3 Decode-and-Forward TWRC

4.3.1 Transmission and Relaying Protocols

We assume an ISI-TWRC similar to the one used in the previous section, where a three-

phase relaying protocol is used, as shown in Fig. 4.3. The difference here is that the relay

operates in the DF mode, and there exist the direct links between two sources. All the

channels are assumed to be sparse, each has an arbitrary sparsity. In the first two time

slots (phases), each source uses one slot to broadcast its respective signal. We express the

received signals at both sources and at the relay as

yTiR = HTiRsi + nTiR, (4.5)

yTiTj
= HTiTj

si + nTiTj
, (4.6)

where yTiR is the received signal at the relay from Ti, and yTiTj
is the signal received at

Tj from Ti, for i, j ∈ {1, 2} , i �= j; si = [pT
i xT

i ]
T denotes the signal vector transmitted

by Ti, including the training sequence (the channel coded vector xi is obtained from

encoding binary vector bi, as in the previous section). All the above channel matrices

are in Toeplitz forms, formed from their corresponding channel vector. Finally, nTiR and

nTiTj
are complex AWGN samples with variance σ2, for the source-relay link and the

inter-source links, respectively. For the rest of the chapter, we assume BPSK modulation

throughout.

⊕

Figure 4.3: Three-phase relaying protocol with network coding, DF mode.
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At the end of the broadcast stage (2 phases), the relay performs the single-channel

estimation to get the channel estimates, and iterative SISO-type equalization and decoding

is performed to get their binary information estimates b̂1 and b̂2. Next, the relay physically

network encodes them by using bit-wise exclusive-or (XOR) addition as

bR = b̂1 ⊕ b̂2.

The resulting binary vector, denoted by bR is then convolutionally channel re-encoded,

randomly interleaved, and BPSKmodulated to get the transmitted symbol vector in Phase

III, denoted by xR. The transmitted signal by the relay to the two sources in Phase III

is sR = [pT
R xT

R]
T , where pR is the pilot sequence sent by the relay, pR = p1 ⊕ p2. At the

end of phase III, the received signal at the terminal Ti, denoted by yi, is given by

yi = HRTi
sR + nRTi

. (4.7)

4.3.2 Sparsity-Aware Iterative Receiver

Different from the AF model, where the estimation, equalization and decoding processes

are performed at each source based on the estimated composite channels, in the DF mode,

they are performed based on the individual channels, first at the relay and then at each

source. The SC/MMSE receiver that performs SISO equalization and decoding like the

one in the previous section can be used in each phase of the protocol. However, the

SC/MMSE ignores the sparsity feature of the ISI channels in the equalization process.

In this section, we present another SISO-type receiver that utilizes the prior information

of the sparsity of the channels into the channel estimation phase and the equalization

process, iteratively. That is, in every iteration, the equalizer directly approximates the

a-posteriori LLR value of the coded bits, based on a MP algorithm over a factor graph.

We note here that this method is not suitable in general for the AF case, since for the
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composite channels, the “effective” sparsity may be not small enough for the method

below to be feasible.

As explained in Chapter 2, computing the exact a-posteriori LLR is impractical for

general ISI channels due to the large number of channel taps, and hence the high com-

putational complexity. For the case of sparse channels, however, we show below an al-

ternative solution to directly approximating that value for each coded bit. The similar

approach based on factor graph has also been investigated for multiuser detection based

on Gaussian approximation [75], joint channel estimation, interference mitigating and

decoding [76], joint channel estimation and decoding of bit-interleaved coded OFDM

(BICM-OFDM) [77].

Sparse ISI Channel Equalization based on Factor Graph

We present an algorithm for a general S-sparse N -length ISI channel having the impulse

response h, the Nb-length binary input vector b and the Nc-length coded symbol vector

x = [x0 x1 · · · xNc−1]. An example of ISI channel with the sparse impulse response

h = [h0 0 0 h3 0 0 0 h7] is illustrated in Fig. 4.4.

The n-th received signal at the receiver, denoted by yn, is given by

yn =
N−1∑
l=0

hlxn−l + en, (4.8)

where en is the n-th AWGN sample, for n = 0, 1, · · · , Nc − 1.

Figure 4.4: Example of factor graph for sparse ISI channel with impulse response h =
[h0 0 0 h3 0 0 0 h7].
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The log-APP based equalizer computes the a-posteriori LLR of the coded symbols,

given the received signal vector as

L(xn|y) = ln
P (xn = 1|y)
P (xn = −1|y)

= ln

∑
∀x:xn=1

∏Nc−1
i=0 pi(yi|x)

∏Nc−1
j=0,j �=n Pi(xi)∑

∀x:xn=−1

∏Nc−1
i=0 pi(yi|x)

∏Nc−1
j=0,j �=n P (xi)︸ ︷︷ ︸

+L(xn)

= Le(xn|y) + L(xn),

for every n ∈ {0, 1, ..., Nc − 1}, where Le(xn|y) is the extrinsic information of xn given y,

and L(xn) � ln Pn(xn=1)
Pn(xn=−1)

is aprior LLR value of xn provided from the channel decoder.

Below we describe how these soft values can be computed efficiently using factor graph.

Consider the joint probability distribution over the symbol variables x = [x0, x2, ..., xNc−1]
T ,

conditioning on the received vector y, with the factorization as follows.

P (x|y) = Z−1

Nc−1∏
i=0

Pi (yi|x)
Nc−1∏
j=0

Pj (xj)
Nc−1∏
a=0

δ{ya=(Hx)a} (4.9)

∝
Nc−1∏
i=0

Pi (yi|xi)
∏

j∈N (yi)

Pj (xj), (4.10)

where Z is a distribution normalization, δ{ya=(Hx)a} denotes a Dirac distribution on the

hyperplane ya = (Hx)a, symbol ∝ indicates proportionality to within a normalization

constant. N (yi) denotes the set of all indices of the symbol nodes connecting to channel

node yi, and xi = {xi}i∈N (yi). This yields a well-defined measure that captures both the

probabilistic modeling and “behavioral” modeling [78] of the ISI channel. Applying the

sum-product algorithm (as shown in Fig. 4.5), the message sent from symbol node xn to

channel node ym is given by

λ(t)
n→m(xn) ∝ Pn(xn)

∏
k∈N (n),k �=m

γ
(t)
k→n(xn), (4.11)
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where Pn(xn) is the aprior probability of symbol xn which is fed back from the channel

decoder, and acts as the “local function” at symbol node xn. The message sent from

channel node ym to symbol node xn is given by

γ(t+1)
m→n(xn) ∝

∑
xm:xn

Pm (ym|xm)
∏

j∈M(m),j �=n

λ
(t)
j→m(xj), (4.12)

where Pm (ym|xm) is the “local function” at channel node ym, and is computed by

Pm (ym|xm) =

(
1

πσ2

)
exp

⎧⎪⎨
⎪⎩
−
∥∥∥ym −∑N−1

l=0,(m−l)∈M(m) hlxm−l

∥∥∥2
σ2

⎫⎪⎬
⎪⎭ . (4.13)

At the marginalization step, we have

λ
(t)

n (xn) = Pn(xn)
∏

k∈N (n)

γ
(t)
k→n(xn). (4.14)

Because the factor graph is not cycle-free in general, messages have to be passed multiple

times on a given edge iteratively before the marginalization step, as t is the iteration

index in (4.11), (4.12) and (4.14). Here the “flooding schedule” is used to perform the MP

algorithm as described in [78]. Generally, the above method does not provide an exact

result like the MAP algorithm but can still achieve a good approximation, for the case of

sparse channels, with a complexity of O(2Nc+S). This is much lower than the complexity

of the MAP algorithm for general channels, which is in the order of of O(2Nc+N), since

we assume that h is sparse, i.e., S  N .

Since the communication with the channel decoder is done through LLR values, which

is simpler to compute and more stable, we need to represent the probabilities λ
(t)
n→m(xn)

for xn ∈ {1,−1} in (4.11) by a single LLR value, denoted by Λ
(t)
n→m(xn) � ln λ

(t)
n→m(xn=1)

λ
(t)
n→m(xn=−1)

as

Λ(t)
n→m(xn) = L(xn) +

∑
k∈N (m),k �=m

Γ
(t)
k→n(xn). (4.15)
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→γ

→λ

→λ

→γ

Figure 4.5: Sum-product algorithm: a) message sent from symbol node xn to channel
node yn and b) message sent from channel node yn to symbol node xn.

Similarly, the probabilities γ
(t+1)
m→n(xn) for xn ∈ {1,−1} in (4.12) are represented by

Γ
(t+1)
m→n(xn) � ln γ

(t+1)
m→n(xn=1)

γ
(t+1)
m→n(xn=−1)

.

In addition, in (4.12) the probability λ
(t)
j→m(xj) is related to the LLR value Λ

(t)
j→m(xj)

by

λ
(t)
j→m(xj) =

1 + xjtanh
[
1
2
Λ

(t)
j→m(xj)

]
2

, (4.16)

where (4.16) comes from the fact that xj ∈ {1,−1}. As a result, from (4.12) we have

Γ(t+1)
m→n(xn) = ln

∑
xm:xn=1 Pm (ym|xm)

∏
j∈M(m),j �=n

1

2

{
1 + xjtanh

[
1

2
Λ

(t)
j→m(xj)

]}
∑

xm:xn=−1 Pm (ym|xm)
∏

j∈M(m),j �=n

1

2

{
1 + xjtanh

[
1

2
Λ

(t)
j→m(xj)

]} . (4.17)

The process of equalization using MP algorithm over factor graph is described as follow.
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Message Passing-based Equalization Algorithm over Factor Graph

1: procedure MP(N (n), M(n), Le(cn|p) for all n, imax)

2: Initialization: t = 0, Λ
(0)
n→m(xn) = interleaved and mapped value of Le(cn|p)

3: for all n and all m ∈ M(n).

4: Compute Γ
(1)
m→n(xn) via (4.17).

5: for t = 1, t ≤ tmax do
6: Compute Λ

(t)
n→m(xn) via (4.15)

7: Compute Γ
(t+1)
m→n(xn) via (4.17)

8: t ← t+ 1
9: end for

10: return L(t+1)(xn|y) = L(xn) +
∑

k∈N (n)

Γ
(t+1)
k→n (xn)

11: end procedure

In the above MP algorithm, the inputs include the LLR values of the coded symbol

provided by the channel decoder, Le(cn|p). At stage t = 0, we initialize Λ
(0)
n→m(xn) as the

interleaved and mapped version of Le(cn|p) for all n and all m ∈ M(n). The maximum

number of MP is set to be tmax. At the final stage, we output the LLR value L(t)(xn|y) �

ln λ
(t)
n (xn=1)

λ
(t)
n (xn=−1)

which is then delivered to the log-APP decoder (computed from (4.14)).

These soft values are randomly interleaved and then delivered to the channel decoder.

The LLR values of the coded symbols output at the APP decoder are then fed back to the

estimator and the equalizer for the next iteration to refine the results. The APP-decoder

also computes the LLR values of b to make hard-decisions at the final iteration, when the

stopping criterion is satisfied.

Decoding at the two sources

At T1, we detect the symbols sent from T2 from two received signals, from the direct link

and the relay link. In each decoding process, in the first iteration, we first estimate the

sparse channel from the first T symbols of y1 in (4.7) given the known training vector pR,

using the �1-based (or BPDN) sparse channel estimation algorithm. Then the receiver at

T1 runs the sparse ISI channel equalization based on the factor graph described above to

66



get an estimated binary vectors b̂2 (from the direct link) and b̂R (from the relaying link).

Next, the bit-wise XOR operator between b̂R with b1 is performed to obtain a another

estimated copy of binary vector of b2 at T1. Finally, the final estimated symbols sent from

T2 will be obtained by maximum ratio combining (MRC). A similar process is performed

at T2 to obtain an estimated binary vector of b1.

4.3.3 Error Propagation Mitigation

One of the drawbacks of the DF protocol in TWRC is that the error propagation at the

relay degrades the performance of the system. To combat that effect, it has been suggested

to implement a reliability threshold at the relay to control error propagation [57–60].

Specifically, the relay calculates LLR values of the received coded bits sent from each

source and compares them with some thresholds to decide as to whether to combine and

relay these bits or not. In the event that the reliability of one received bit is below the

set threshold, the relay stays silent and transmits nothing (for that bit). That is

xR,n =

⎧⎪⎨
⎪⎩
− (x̂1,nx̂2,n) , if |L(x1,n)| > T1, |L(x2,n)| > T2

0, otherwise,

(4.18)

where Ti is the preset threshold for bits sent from Ti.

For the case of uncoded flat-fading channel without channel coding, the optimal values

of T1 and T2 are derived in closed forms in [59]. For the case of sparse ISI channels,

the optimization problem is no longer well-defined, and there is no closed form for the

optimum values of the thresholds. It is suggested in [59] that the thresholds should

be linearly proportional to average channel power of the source-channel links, or the

approximated BER for a specific channel coding method. The approximation of the

BER for each convolutional code with a SISO equalizer/decoder can be performed using

prediction mechanisms as in [79], which are based on the LLR values obtained from the

SISO decoder.
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Assume that at R we can estimate the BER for the channel link Tj − R, denoted by

P
(e)
j . Then by sorting the absolute values of LLR of decoded bits x̂j,n (n = 1, ..., Nc)

in an increasing order from Tj,1 to Tj,Nc
, we set Tj in the thresholding formula (4.18) as

T
j,P

(e)
j Nc

. The other symbols that have the absolute of the LLR value smaller than Tj are

set to zero before performing the network coding operation (bit-wise XOR) and sending

the resulting symbols to the two terminals at the broadcasting phase.

4.4 Numerical Simulations

4.4.1 Amplify-and-Forward TWRC

In the AF mode, we assume that the sparse ISI-TWRC is symmetric, and the four channels

{hj}4j=1 are the same, each has length Lu = Ld = 16, sparsity Sj = 4 with the index set

of non-zero taps {1, 4, 9, 16}. This symmetric assumption is just for simplicity and does

not affect the generality of our method. Averaged channel powers and transmission power

at all terminals are normalized to unity. The simulation is run for 5000 random channel

realizations. In each data exchange period, each source sends an i.i.d. binary block (with

equally likely 0’s and 1’s) of length Nb = 512. A convolutional code (5, 7)8 is employed at

each source with code rate Rc = 1/2. The SISO equalizer based on the SC/MMSE [74] is

used to handle the ISI. The log-APP algorithm is applied for the channel decoders. The

number of iterations is set to five, at which the performance is well converged.

In this specific setting, h̃ has a total length of Leff = 62 and sparsity SΣ = 18. For a

meaningful estimation using the LS method, T has to be at least Leff+Ld−1 = 77. First

we set T = 60 (6% approximately in length of each coded block) so that the setting is

under-determined at the first iteration. In Figs. 4.6 and 4.7, we show the MSEs between

h̃ and its estimates, and the BERs versus the SNR at T1, respectively, using different

methods (similar results for T2 due to symmetry). For comparison purposes, we also show

the MSE and BER of the ORC method, and the BERs of ORC and of the case when CSI
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is assumed at the terminals.

Figure 4.6: MSE comparison of different methods with T = 60.

Figure 4.7: BER comparison of different methods with T = 60.

69



As expected, the CS-based BPDN scheme significantly outperforms the LS scheme at

the initial stage (no iteration), and the improvements are bigger at the final iteration. In

this stage, while the LS method has very poor performances both in MSE and BER, the

BPDN method has the MSE performance approaching that of the ORC method at high

SNR, and has far better BER performance than the LS method. It is expected that when

T is increased, the error performances including MSE and BER of the BPDN method to

more closely approach that of the ORC-based and perfect CSI based methods.

Next, we we increase the length of T to 90 (9% approximately in length of each coded

block) so that the setting is over-determined at the first iteration. We can see from Figs.

4.8 and 4.9 that the error performances including MSE and BER of the BPDN method

closely approaches that of the ORC-based and perfect CSI based methods. In this case,

these error performances of the LS method are still far way from CS-based method and

the lower bounds based on ORC and perfect CSI ones.

Figure 4.8: MSE comparison of different methods with T = 90.
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Es/N0 (dB)

Figure 4.9: MSE comparison of different methods with T = 90.

4.4.2 Decode-and-Forward TWRC

In the TWRC operating DF considered section 4.3, we also assume that all the channels

are sparse ISI as in the AF mode. The length of each data block is Nb = 150. The

convolutional code (5, 7)8 is employed at the transmitter, with code rate Rc = 1/2. The

number of iterations for MP for the equalizer is five, at which the equalization process

is well converged. The log-APP algorithm is employed at the channel decoder. Figs.

4.10 and 4.11 show the MSE and BER performance at T1 for different receiver types.

The results show that the performance in terms of MSE and BER of each receiver is

improved over the iterative process (as we set the number of turbo iteration is five).

Among the channel estimators, the sparsity-aware channel estimator based on compressive

sensing method (BPDN or �1-norm) outperforms the LS. Among the channel equalizers,

the sparsity-aware equalizer based on MP over factor graph outperforms the SC/MMSE.

Therefore, the performance of the �1-message passing (or BPDN-MP) receiver has the best
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performance. The MSE and BER are further improved when we apply the thresholding

technique at the relay to mitigate the error propagation, as expected.

SNR (dB)

Figure 4.10: MSE comparison of different methods with T = 32.

SNR (dB)

Figure 4.11: BER comparison of different methods with T = 32.
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4.5 Conclusions

In this chapter, iterative compressive channel estimation and decoding schemes for network-

channel-coded sparse ISI-TWRC have been presented, for both AF and DF relaying. The

efficacy of the proposed schemes when taking the sparsity of the channel into account

into the channel estimator and/or the equalizer was evaluated and confirmed through

numerical examples. It was also suggested that the thresholding technique at the relay

helps to improve the system performance as it mitigates the error propagation during the

relaying process.
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Chapter 5

Compressive Sensing-based Channel

Estimation for Massive MIMO

Systems via Nuclear Norm

Regularization

5.1 Introduction

The tremendous demand for reliable high-speed broadband wireless links is expected to

continue growing in the future due to the foreseen rapidly increase in the number of users,

amount of data traffic and number of applications. To meet such demands, it is expected

that future networks, i.e., beyond 4G networks, will be scaled up to reach the gigabit

data rates range over the next 10 years [80]. One of the recent proposed technologies for

beyond 4G is massive (or large-scale) MIMO [63], [28]. Such technology is based on the

same concept of conventional MIMO but extended to a much larger scale in terms of the

number of antennas at both the transmitter and receiver sides. Compared to classical

MIMO, massive MIMO provides many advantages such as higher data rates, better link
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reliability, and better spectral-energy efficiency tradeoff.

One current proposed system for massive MIMO technology is the massive multiuser

MIMO (MU-MIMO) [28], where a BS with a very large antenna array serves a multiplicity

of distant or well-separated single-(or just a few)-antenna UTs simultaneously. Previous

results show that for a system in which the number of BS antennas M greatly exceeds the

number of UTs K (M � K) , under the most favorable assumption of the propagation

channel, and with the perfect CSI available at all UTs and at the BS, the thermal noise

and interference vanish, and the required transmit powers are reduced as M increases

[28]. This also means that adding more antennas at the BS always helps to increase the

throughput or reduce the transmit powers; and all these results can be obtained using

some linear-complexity estimation and detection algorithms.

The above information-theoretic results for massive MU-MIMO, however, are based on

optimistic assumptions, and there are still many practical issues that need to be addressed.

For example, the most favorable propagation channel assumption requires a very rich

scattering environment, which does not generally hold in practice. Furthermore, requiring

a very large number of antennas at the BS and zero antenna correlation at the same time

is almost impossible. In addition, the perfect CSI assumption at all UTs and the BS is

not realistic, because such high dimensional channel matrix needs to be estimated within

a coherence time interval.

In this chapter, we propose a CS based approach to address the channel estimation

problem of a MU-MIMO system where both dimensions of the channel matrix grow large,

while adopting a realistic propagation channel model. The large-dimensional channel es-

timation problem occurs in massive MIMO systems with a large number of autonomous

users in a single-cell case. It also occurs when we estimate not only the channel parameters

of desired links in a given cell, but also those of the interference links from adjacent cells

for interference coordination purposes in multi-cell scenarios. In this work, we consider

the practical physical finite scattering channel model proposed in [28,81–83]. When both
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dimensions of the channel matrix grow large, the channel estimation problem becomes

particularly challenging due to the large number of matrix entries to be estimated. Our

proposed method is based on CS and aims to improve the system performance by relying

on two key ideas. The first is that, with the finite scattering channel having a limited num-

ber of (dominant) directions, the degrees of freedom (DoF) of the channel matrix is much

smaller than its large number of free parameters, making low-rank matrix approximation

based on CS robust. The second comes from the fact that for the large-scale MU-MIMO

channel estimation problem, all the favorable results established by CS methods become

stable (the accurate reconstruction occurs with an overwhelming probability).

The related works on massive MIMO channel estimation include [28, 62, 63, 82, 83],

where LS or MMSE (when the second-order statistics of the channel is available for the

latter) is performed within TDD systems. Channel estimation based on CS methods has

been considered in [20, 84], and references therein, where the sparse channel vector is

reconstructed by a small number of random incoherent projections. Unlike these prior

works, our work is based on more recent results in CS, where the idea of the sparsity model

of the signal vector is generalized to the low-rank model of the matrix variable [39, 40].

CS-based low-rank approximation has also been applied in diverse contexts in statistics

and signal processing, but to the best of our knowledge, it has not been investigated in

MIMO channel matrix estimation. Our main results include the formulation of the mas-

sive MU-MIMO channel estimation problem as a convex low-rank matrix approximation

optimization under noisy setting, whose dual problem can be represented as a quadratic

SDP. By doing this, the problem can be conveniently solved by a SDP solver (in polyno-

mial time). We also obtain an explicit choice of the regularization parameter and a useful

upper bound of the Frobenius norm of the error for the case of Bernoulli training matrix.

Since prior works in this topic have been done for continuous Gaussian ensembles, our

results are useful for the MU-MIMO channel matrix estimation due to the discrete nature

of the pilot signaling.
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The rest of the chapter proceeds as follows. We first describe the system and chan-

nel models in Section 5.2, and then review the LS-based MU-MIMO channel estimation

method in TDD systems in Section 5.3. In Section 5.4, we propose the CS-based MU-

MIMO channel estimation method via nuclear norm regularization problem and discuss

the choice of regularization parameter. Numerical experiments are presented in Section

5.5. Section 5.6 concludes the chapter.

5.2 System and Channel Models

5.2.1 Large-scale MU-MIMO System Model

In this section, we shall describe the system model adopted in this chapter. Consider

a MU-MIMO system operating in TDD with a BS equipped with an array of a large

number of antennas M . In the uplink (i.e. reverse link), the BS receives signals sent from

K autonomous single-antenna UTs (assuming that K is large but K ≤ M). At time t,

the received baseband signal at the BS, denoted by y(t) ∈ CM , is given by

y(t) = Hx(t) + n(t), (5.1)

where H ∈ CM×K is the flat-fading quasi-static MU-MIMO complex-valued channel ma-

trix, x = [x1(t) x2(t) . . . xK(t)]
T ∈ CK is the transmit signal vector of K users; and

n(t) ∈ CM is complex-valued AWGN vector at the BS, whose entries are i.i.d. N (0, σ2
n)C,

i.e., zero-mean σ2
n/2-variance per dimension random variables. The above generic model

characterizes both single-cell scenario withK UTs as well as multi-cell interference-limited

scenarios where K is the sum of all numbers of desired UTs in the considered cell and the

other interference coming from other UTs in adjacent cells. For the latter case, the M×K

channel matrix is H = [H1 H2 . . . HJ ], where H1 denotes the M ×K1 desired channel

matrix in the considered cell with K1 desired UTs and Hj (j �= 1) denotes the M ×Kj
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interference channel matrix from j-th adjacent cell with Kj interfering UTs (assuming

there are J − 1 interference cells, and K = K1 +K2 + · · ·+KJ).

5.2.2 Physical Finite Scattering Channel Model

We are interested in the realistic finite-dimensional channel model recently studied for

massive MU-MIMO [28, 82, 83], where the angular domain is partitioned into a finite

number of directions (i.e. number of active scatterers). Assuming that there are P i.i.d

paths originating from each user k to the BS, each has M×1 steering vector [81], we have

a(φp) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

exp
(
−j2πD0

λ
cos(φp)

)
...

exp
(
−j2π (M−1)D0

λ
cos(φp)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.2)

where φp ∈ [−π/2, π/2] is a random AoA corresponding to path p ∈ {1, 2, ..., P} with

respect to user k direction, D0 is the antenna spacing at the BS, and λ is the signal

wavelength. The number of paths P is independent from the number of BS antennas M

or number of UTs K, and is dependent on the physical propagation environment only.

The M × 1 channel vector from UT k to the BS is given by

hk =
1√
P

P∑
p=1

gkpa(φp),

where gkp is the random propagation gain from user k to the BS associated with path

p, including fast fading, path loss and shadowing [28]. The path loss and shadowing

coefficient for all users is assumed to be the same and normalized to unity. This is also

assumed for the multi-cell case, where cross gains from interference UTs in other cells are

as strong as direct gains [82]–the scenario where we need to estimate CSI of all links for

coordination interference purposes. At a result, gkp is assumed to have zero-mean and
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unit-variance, and independent from the path direction p.

With the above notation, the M ×K MU-MIMO channel matrix H between K UTs

and the BS can be collectively written in a compact form as

H = AG, (5.3)

where A = [a(φ1) a(φ2) . . . a(φP )] is a M × P full-rank matrix containing P steering

vectors, and G is the P ×K path gain channel matrix, [G]p,k denotes the path gain from

user k to the BS associated with path p.

Remark 5.1. The physical finite scattering channel model (5.3) has a DoF r(M+K−r),

where r is the rank of H, r = min{M,K,P}.

For the massive MU-MIMO system considered in this chapter, we are interested in the

regime where bothM andK are large (M ≥ K), and P is small relative toM andK. This

model characterizes the poor scattering propagation environment, where the number of

physical objects is limited. It also describes the propagation channel where the scatterers

appear in groups (called clusters) with similar delays, AoAs, angle-of-departures (AoDs),

making the effective number of active directions limited, even the number of physical

objects is large [28]. As a result, the actual DoF of the channel matrix is P (M +K −P ),

not its number of free parameters MK.

5.3 LS-based Channel Estimation

In TDD systems, the CSI is estimated in the uplink, and used to perform the precod-

ing/beamforming or multiuser scheduling (with interference coordination in the multi-cell

case) in the downlink using the notion of reciprocity. The conventional way of estimat-

ing H in (5.1) is by sending at each user a training sequence of length T ≥ K in the

training phase of each coherence interval. Assume that the modulation format of the
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training symbols sent by all UTs is BPSK, and the pilots are sequences of ±√
ρ, ρ is

the transmit symbol power. Let φ(l) denote the K × 1 training signal vector sent by K

UTs at channel use l, and Φ = [φ(1) φ(2) . . . φ(T )] denotes the K × T total training

matrix comprised of K T -length training sequences, fulfilling the total power constraint

‖Φ‖2F = Tr(ΦHΦ) = P = KT ρ. The M ×T received signal matrix at the BS is given by

Y = HΦ+N , (5.4)

where N is the M × T noise matrix with i.i.d. N (0, σ2
n)C entries.

Since no statistical knowledge or steering matrix A of the propagation channel matrix

H is assumed to be available, the realization of H can be estimated from the known pilot

matrix Φ and the received matrix Y using LS as

ĤLS = Y Φ†

= Y ΦH
(
ΦΦH

)−1
.

Since all users send the training pilots using the same time-frequency resource, they use

orthogonal pilots to avoid the interference at the BS. The optimal estimation error in

terms of the Frobenius norm is given by [85]

min
H

E{‖H − ĤLS‖2F} =
K2M

(P/σ2
n)

=
KM

T (ρ/σ2
n)
. (5.5)
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5.4 CS-based Channel Estimation

5.4.1 Nuclear Norm Regularized Least Squares via Quadratic

SDP

In this section, we show that estimating the above described large MU-MIMO channel

can be more efficiently solved by a new CS-based low-rank approximation technique via a

quadratic SDP. Recall that for a matrix variable X ∈ Cm×n with a linear transformation

A(X) = b, where A : Cm×n → Cd is a linear operator, b ∈ Cd, d is the sample size, the

NNM problem reads

minimize
X

‖X‖∗

subject to A(X) = b,

where ‖X‖∗ denotes the nuclear norm of X. Its noisy version is the nuclear norm regu-

larization problem

minimize
X

1

2
‖b−A(X)‖22 + γ‖X‖∗

where γ is a regularization parameter.

By expressing the two sides of (5.4) in vector form and applying the fact that vec(ABC) =

(CT ⊗A)vec(B), ⊗ denoting Kronecker product, we can rewrite (5.4) as

vec(Y ) = Ψvec(H) + vec(N ),

where Ψ = ΦT ⊗ IM . Then the nuclear norm regularization for our channel estimation

problem is

minimize
H

1

2
‖vec(Y )−Ψvec(H)‖22 + γ‖H‖∗. (5.6)
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To construct a dual problem of (5.6), we introduce a new vector variable r = vec(Y ) −

Ψvec(H), and represent (5.6) as a constrained convex optimization problem as

minimize
H,r

1

2
‖r‖22 + γ‖H‖∗

subject to r = vec(Y )−Ψvec(H).

(5.7)

For dealing with complex-valued vectors, noticing that those MT equalities in the com-

plex domain are equivalent to 2MT in the real domain, the Lagrange multiplier vector

associated with this equality constraint, denoted by z is also complex. The well-posed

(real-valued) Lagrangian function of (5.7) is given by

L(H , r, z) =
1

2
‖r‖22 + γ‖H‖∗ + 	

{
zH [vec(Y )−Ψvec(H)− r]

}
,

in which we apply 	{u}T	{v} + 
{u}T
{v} = 	{uHv}, for any two complex vectors

u and v having the same dimension; 	{·} and 
{·} denote the real and the imaginary

parts of the enclosed, respectively. The dual function is

g(z) = inf
H,r

L(H , r, z)

= 	
{
[vec(Y )]Hz

}
+ inf

r

{
1

2
‖r‖22 −	

{
zHr

}}
+ inf

H

{
−	

{
zHΨvec(H)

}
+ γ ‖H‖∗

}
= 	

{
[vec(Y )]Hz

}
− 1

2
zHz − sup

H

{	{〈z,Ψvec(H)〉} − γ ‖H‖∗} , (5.8)

where (5.8) holds when r = z.

Using the fact that 〈z,Ψvec(H)〉 =
〈
ΨHz, vec(H)

〉
=
〈
vec−1

M,K

(
ΨHz

)
,H

〉
, vec−1

M,K(·)
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converts a vector into a M ×K matrix, we have

−sup
H

{	{〈z,Ψvec(H)〉} − γ ‖H‖∗} = −sup
H

{
	
{〈

vec−1
M,K

(
ΨHz

)
,H

〉}
− γ ‖H‖∗

}
= −γf ∗

0

(
1

γ
vec−1

M,K

(
ΨHz

))
(5.9)

=

⎧⎪⎨
⎪⎩
0

∥∥vec−1
M,K

(
ΨHz

)∥∥
op

≤ γ

−∞ otherwise,

(5.10)

where we use in (5.9) the definition of the conjugate function f ∗
0 (·) of f0(H) � ‖H‖∗

(for complex matrices), and in (5.10) the theorem of the conjugate function of the dual

norm [41]

f ∗
0 (V ) =

⎧⎪⎨
⎪⎩
0, ‖V ‖∗ ≤ 1

∞ otherwise,

(5.11)

for operator norm function f0(V ) = ‖V ‖op; (‖·‖∗ is the dual norm of the operator norm,

denoted by ‖·‖op).

In light of the above, we can write the dual function as

g(z) = −1

2
zHz + 	

{
[vec(Y )]Hz

}
.

Finally, the dual problem of (5.7) is

minimize
z

1

2
zHz −	

{
[vec(Y )]Hz

}
subject to

∥∥vec−1
M,K

(
ΨHz

)∥∥
op

≤ γ,

which can be represented as a quadratic SDP as

minimize
z

1

2
zHz −	

{
[vec(Y )]Hz

}

subject to

⎡
⎢⎣ γIM vec−1

M,K

(
ΨHz

)
[
vec−1

M,K

(
ΨHz

)]H
γIK

⎤
⎥⎦ � 0,

(5.12)
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where � denotes the generalized matrix inequality with respect to the Hermitian positive-

semidefinite cone [41]. (For the noiseless setting, it is derived in [39] that the dual problem

can be represented in a linear SDP).

Let z∗ be the solution to (5.12), then the result of (5.6), that is the estimate of channel

matrix using our CS approach, is

ĤCS = vec−1
M,K

{
Ψ† (vec(Y )− z∗)

}
.

5.4.2 On the Choice of γ and the Performance Guarantee

As mentioned in Chapter 2, the two elements required for the above method are that the

linear operator A has to satisfy certain conditions, and the regularization parameter γ

has to be chosen carefully to control the error. There are some popular conditions on

A, including RIP [39, 86] and RSC [40]. It has been proved in [86] and discussed in [39]

that many matrices with i.i.d. random elements including Gaussian, Bernoulli, “zeros in

two-thirds”, zero-mean and finite fourth moments obey RIP with high probability when

the sample size is large enough. The most popular matrix is the one with i.i.d. Gaussian

ensemble having the (i, j)− th element satisfying

ai,j ∼ N
(
0,

1

d

)
,

where d is the sample size. Matrix with i.i.d. Bernoulli ensemble has the (i, j)−th element

obeying

ai,j ∼

⎧⎪⎪⎨
⎪⎪⎩

1√
d

with probability 1/2

− 1√
d

with probability 1/2

.
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Matrix with i.i.d. “zeros in two-thirds” ensemble has the (i, j)− th element as

ai,j ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3√
d

with probability 1/6

0 with probability 2/3

− 3√
d

with probability 1/6

.

In [86], it is proved that for a matrix variable of size m× n with rank r ≤ min{m,n}, a

linear measurement with i.i.d. Gaussian ensemble with sample d > Cmax{m,n}r satisfies

RIP with overwhelming probability for some constant C > 0. The larger the size of the

sample, the higher the probability that the measurement matrix satisfies RIP, and the

probability approaches one (almost surely occurs) as the sample size tends to infinity [86].

In this chapter we control the error of the proposed method with Bernoulli ensemble via

RSC, which is milder than RIP. We present RSC for our channel estimation problem as

follows.

Definition 5.1 (Restricted Strong Convexity [40]). The linear operator A : CM×K → CN

is called to satisfy the Restricted Strong Convexity (RSC) over a restricted set C ∈ CM×K

if

1

2N
‖A(Δ)‖22 ≥ κ(A)‖Δ‖2F for all Δ ∈ C,

for some κ(A) > 0, N = MT is the sample size, C is the cone of matrices in CM×K

having rank at most r.

This condition to establish error bounds for the low-rank matrix recovery guarantees

that the quadratic loss function in (5.6) is strictly convex over a restricted set C. Next, we

need to choose the parameter γ carefully in order to obtain a sufficiently accurate result,

and that parameter should be dependent on the noise level and the size of the sample.

With the above notation, if we choose γ in (5.6) such that γ ≥ 2‖A∗(vec(N ))‖op, A∗ is

the adjoint of A, then the optimal solution ĤCS has an estimation error, in Frobenius
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norm, upper bounded as (see Theorem 1 of [40] for details)

‖H − ĤCS‖F ≤ 32γ
√
P

Nκ(A)
. (5.13)

This is a deterministic result that generally guarantees for any linear operator A with

RSC κ(A) and γ ≥ 2‖A∗(vec(N ))‖op. For our MU-MIMO channel estimation problem

where the pilot sequences are symmetric random Bernoulli, we obtain the more useful

following result.

Proposition 5.1 (Error bound for random Bernoulli training matrix). If we choose in

(5.6) the regularization parameter γ =
√
2(M +K)T ρσ2

n, then the CS-based channel

estimator has an error upper bounded in squared Frobenius norm

‖H − ĤCS‖2F ≤ c
(M +K)P

T (ρ/σ2
n)

, (5.14)

with probability at least 1 − c1exp(−c2(M
2 + K2)1/2) when T > K(1 − c0/ logK)−1 for

some constants c, c0, c1, c2 > 0.

Proof. Using our notations, we have A(Δ) = Ψvec(Δ) = ΔΦ.

1

2N
‖A(Δ)‖22 =

1

2N
‖ΔΦ‖2F

=
1

2N

MT∑
j=1

∥∥∥ΦT
(
ΔT
)
j

∥∥∥2
2

≥ 1

2N

MT∑
j=1

smin(ΦΦT )
∥∥∥(ΔT

)
j

∥∥∥2
2

=
smin(ΦΦT )

2N
‖Δ‖2F .

Therefore, the RSC holds for κ(A) = smin(ΦΦT )/(2N), where smin(ΦΦT ) is the minimum

eigenvalue of (ΦΦT ).

Let Φ =
√
ρW , where W is the K × T matrix whose entries are i.i.d. ±1 symmetric
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Bernoulli random variables. It is proved in [87] that for T > K(1− c/ logK)−1,

P{smin(WW T ) ≤ cλT } ≤ exp(−cT ), (5.15)

for some constants c, cλ depending on λ = K/T . Thus, the RSC holds for κ(A) =

cλρT /2M with high probability when T is large enough.

Note that (5.13) occurs if we choose γ ≥ 2‖A∗(vec(N ))‖op = 2‖NΦT‖op = 2
√
ρ‖NW T‖op.

Let Z = NW T ∈ CM×K , we show next that the entries of Z are i.i.d. sub-Gaussian

random variables. This is to obtain an upper bound tail for ‖Z‖op later.

Definition 5.2 (Generalized version of real-valued sub-Gaussian random variable [88]).

A complex-valued random variable X is called complex sub-Gaussian with a constant c,

denoted as X ∼ Sub(c2)C, if 	{X} and 
{X} are independent real-valued sub-Gaussian

random variables with the same sub-Gaussian constant c, denoted as 	{X} ∼ Sub(c2),


{X} ∼ Sub(c2). This means that there exists a constant c > 0 such that

E {exp (	{X}t)} ≤ exp
(
c2t2/2

)
, (5.16)

E {exp (
{X}t)} ≤ exp
(
c2t2/2

)
, (5.17)

for all t ∈ R. Furthermore, we call X strictly complex sub-Gaussian with variance σ2,

denoted X ∼ SSub(σ2)C where σ2 = E (	{X}2) = E (
{X}2), if the above inequalities

hold with c2 = σ2, which also requires that 	{X} and 
{X} are independent SSub(σ2)

random variables.

Corollary 5.1. A complex-valued random variable X is complex sub-Gaussian if there

exists a constant c > 0 such that

E {exp (	{Xt̄})} ≤ exp
(
c2|t|2/2

)
, (5.18)
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for all t ∈ C.

Proof. Using the fact that 	{Xt̄} = 	{X}	{t}+ 
{X}
{t}, we have

E {exp (	{Xt̄})} = E {exp (	{X}	{t}+ 
{X}
{t})} (5.19a)

= E {exp(	{X}	{t})}E {exp(
{X}
{t})}

≤ exp
(
c2	{t}2/2

)
exp

(
c2
{t}2/2

)
(5.19b)

= exp
(
c2|t|2/2

)
,

where in (5.19a) we apply the assumption that 	{X} and 
{X} are independent random

variables, and (5.19b) holds as per Definition 5.2.

Lemma 5.1. The entries of M ×K matrix Z = NW T are i.i.d. Sub(T σ2
n/2)C.

Proof. The (m, k)-th entry of Z is Zm,k =
∑T

l=1Wk,lNm,l, where Wk,l is symmetric

Bernoulli ±1 random variable, and Nm,l is SSub(σ
2
n)C. We have Zm,k t̄ =

∑T
l=1 Wk,lNm,lt̄.

Therefore,

E {exp (	{Zm,k t̄})} = E

{
exp

(
	
{ T∑

l=1

Wk,lNm,l

}
	{t}+ 


{ T∑
l=1

Wk,lNm,l

}

{t}

)}

=
T∏
l=1

E {exp (	{Nm,l}	{Wk,lt})}
T∏
l=1

E {exp (
{Nm,l}
{Wk,lt})}

≤
T∏
l=1

exp
(
σ2
n/2	{Wk,lt}2/2

) T∏
l=1

exp
(
σ2
n/2
{Wk,lt}2/2

)
(5.20)

≤ exp(T σ2
n/2|t|2/2), (5.21)

where (5.20) holds by definition for SSub(σ2
n/2) of 	{Nm,l} and 
{Nm,l}, and in (5.21)

we apply the fact that |Wk,l| = 1. Therefore, the result of Lemma 5.1 follows by Corollary

5.1.

Since the entries of Z are independent copies of Sub(T σ2
n/2)C, applying Corollary
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2.3.5 of [89],1 we obtain the upper tail bound for the operator norm of the normalized

matrix 1√
T σ2

n

Z, which is given by

P{ 1√
Lσ2

n

‖Z‖op ≥ q
√
M} ≤ Cexp(−cqM), (5.22)

for q ≥ C, where C, c are some absolute constants. If we choose in (5.22)

q =
√

(M +K)/2M ≥ 1/
√
2, for C ≤ 1/

√
2,

we have

P{‖Z‖op ≥
√
(M +K)Lσ2

n/2} ≤ Cexp(−c
√
(M +K)M/2).

With K ≤ M , ‖Z‖op ≤
√
(M +K)T σ2

n/2 with probability at least 1 − Cexp(−c(M2 +

K2)1/2), for some (slightly different) constant c. Replacing γ = 2
√
ρ
√
(M +K)T σ2

n/2

and κ(A) = cλρT /2N into (5.13), the result of Proposition 5.1 follows.

As M and K grow large, with an overwhelming probability, this error upper bound

decreases at a rate within a constant of (M + K)P/(T ρ/σ2
n), which is faster than the

lower bound of the LS’s error rate, MK/(T ρ/σ2
n). This means that the CS method helps

to reduce the pilot power or length used by each UT, which is important since the UTs

are usually required to operate in a low-power regime. We also note that the above

performance guarantee, in fact, is an (asymptotic) upper bound for the estimation error,

which almost surely holds in the large-scale problems considered in this chapter. How

large the training length required or how much the CS-based method is better than the

LS-based in different scales is quite conservative in practice. More useful and practical

numerical results are given in Section 5.5 showing that this method outperforms the LS

in a variety of settings. The above polynomial-time quadratic SDP has higher complexity

1The result of Corollary 2.3.5 in [89] applies for the i.i.d. ensembles of independent, zero-mean and
uniformly bounded random variables, and it also holds for the ensemble of i.i.d. complex sub-Gaussian
random variables that are “usually bounded” (see the discussions on p. 18 and p. 130 of [89])
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compared to LS, as the dual problem has MT variables and one (M + K) × (M + K)

semidefinite constraint, but this can be justified as this estimation task is done at the

BS, which has powerful processing capability. Modern SDP solver can afford the problem

with matrix variables having each size up to a hundred [39].

5.5 Numerical Results

In this section, we compare the channel error performance of our proposed CS method

with the conventional LS numerically. In the first experiment, we simulate a MU-MIMO

system with M = 60, K = 40 UTs (corresponding the 40-user single-cell scenario or 4-cell

scenario with 10 UTs per cell). The number of paths P = 20, and the steering vector has

D0/λ = 0.3, AoA φp = −π/2 + (p− 1)π/P , p = 1, 2, ..., P as in [63, 82]. The modulation

format for pilot symbols is BPSK. We use the following normalized squared Frobenius

norm error to evaluate the performance of each estimator.

Err = 10 log10

(
1

MK
‖H − Ĥ‖2F

)
,

where Ĥ is the channel estimate using LS or CS method. For the CS estimator, we choose

γ =
√
2(M +K)T ρσ2

n as in Proposition 5.1. Since no additional knowledge about the

channel statistics or physical propagation parameters is required for both methods, this

is a fair comparison.

In Fig. 5.1, we display the normalized error versus the total training power to noise

ratio SNR = P/σ2
n with different T ∈ {45, 50, 55}, for both the LS and our proposed CS

methods. It can be seen from Fig. 5.1 that when T increases, the normalized error of both

methods decreases, but the CS-based method achieves significantly better performance,

as expected from the analysis.
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Proposed CS method: T = 45, 50, 55

LS method: T = 45, 50, 55

Figure 5.1: Comparison of normalized estimation error versus SNR between LS and CS
methods for M = 60, K = 40, T ∈ {45, 50, 55}.

Next, we fix M = 60, and change M to 30 and 50, respectively. The simulation results

of both methods using T = 55 displayed in Fig. 5.2 show that the normalized estimation

error of both increases when we increase the number of UTs K. Again, the proposed

CS method outperforms the LS in terms of error performance, and the performance loss

from K = 30 to K = 50 of CS is less than that of the LS. It is because the error of the

CS-based method grows with the DoF of the channel matrix, not its ambient dimensions

(sizes).
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Figure 5.2: Comparison of normalized estimation error versus SNR between LS and CS
methods for M = 60, K ∈ {30, 50}, T = 55.

Finally, we repeat the first experiment with M = 80, and the results obtained are

shown in Fig. 5.3. Comparing Figs. 1 and 3, the normalized error performances are

almost the same for two cases M = 60 and M = 80. This can be explained for the LS

method in a TDD system, as in (5.5) the estimation error after normalized is linearly

proportional to the number of UTs K, inversely proportional to the pilot length T , and

independent on the number of BS antennaM . The proposed CS-based method also shares

these advantageous features, but achieves better performance, thanks to the imposing of

the rank (or nuclear norm) constraint on the channel matrix.
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SNR (dB)

LS method: T = 45, 50, 55

Proposed CS method: T = 45, 50, 55

Figure 5.3: Comparison of normalized estimation error versus SNR between LS and CS
methods for M = 80, K = 40, T ∈ {45, 50, 55}.

5.6 Concluding Remarks

We have proposed in this chapter a new approach to estimate the massive MU-MIMO

channel matrix based on CS. Analysis and experimental results show that the proposed

method has a substantial improvement over the traditional LS for a realistic physical finite

scattering channel model, when both dimensions of the MU-MIMO channel matrix to be

estimated grow large. Furthermore, the improvement obtained by the proposed method

does not require any additional knowledge about the statistical distribution or physical

parameters of the propagation channel.
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Chapter 6

Compressive rank-q Channel Sensing

and Precoding for Multicell Massive

MIMO Systems

6.1 Introduction

In Chapter 5, we have shown that estimating the massive MIMO channel with realistic

propagation model can be efficiently solved by using CS. This chapter is concerned with

both of the problems of uplink channel estimation and downlink precoding in the multicell

massive MIMO systems based on CS.

6.1.1 Problem Statement and Objectives

Massive MIMO is expected to play a major role towards achieving the target of gigabit

data rates that would be offered by the future cellular networks [80]. Recent studies

have shown that massive MIMO brings both opportunities and challenges [28, 65]. On

the optimistic side, compared to the classical MIMO, under some favorable assumptions,

massive MIMO provides many advantages such as higher data rates, better link reliability,
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and better spectral-energy efficiency tradeoff. The challenging side is that, to obtain those

promising results, many optimistic assumptions that do not generally hold in practice are

made. Indeed, the asymptotically optimal results are derived with the assumptions of

favorable and rich scattering channel [28], the availability of perfect CSI at all UTs and at

the BS, and zero intercell interference [62]. More recent works on massive MIMO studied

more realistic settings including the correlated channel with finite scattering model and

imperfect CSI acquisition, and in interference-limited multicell scenarios [63], [82]. It is

shown that, when taking all the above practical conditions into account, there exist some

fundamental problems, and the overall performance of the massive MIMO system is still

far away from the theoretical limits.

One of the main limitations of massive MIMO is the pilot contamination effect in

the uplink training under the multicell scenario. In single-cell systems operating in TDD

mode, the channel estimation is performed via the uplink (the reverse link) training, and

then the estimates are used to design ZF based precoding vectors for the downlink (the

forward link) using the notion of reciprocity. As a result, the training overhead linearly

scales with the number of UTs, not the number of BS antennas, making TDD viable for

massive MIMO. In multicell systems, however, pilot contamination occurs, that is, the

quality of the channel information estimated by a cell is affected by the interference from

the pilots sent by the users in other cells [62]. This is due to the fact that the training

sequences across all the cells can not be long enough (due to the short coherence time)

to be orthogonal for accurate estimation. The problem becomes more critical when the

number of users in each cell grows large, and/or the intercell gains between users in a cell

to the BS in another cell are relatively strong as compared to the direct link gains. Since

we do not have the estimate of the global channel, the existing methods have focused on

nulling out the intracell interference only. Strong intercell gains not only severely degrade

the quality of the uplink channel estimation, but also limit the effectiveness of downlink

precoding due to the intercell interference. When those effects are added up, the achievable
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rate of the overall system performance is significantly reduced. Recent works have showed

that the degradation of the achievable rate due to pilot contamination and the downlink

intercell interference are also present for realistic correlated finite dimensional massive

MIMO channels [82].

In this chapter, we propose a new estimation and precoding method to mitigate both

of the above-mentioned effects of pilot contamination and the strong intercell interference

in a realistic finite dimensional channel model. Specifically, given a certain length of pilot

sequences, we propose in the uplink a CS based rank-q channel matrix approximation

approach to estimate as many dominant singular subspaces of the global multicell massive

MIMO channel matrix as possible. Then, an intercell-interference-aware (IA) precoding

method based on the estimated global channel information is performed in the downlink

to mitigate not only the intracell interference but also the intercell interference of the

channel. Our proposed scheme aims to help the estimation and precoding processes at

each BS, resulting in improvements in the achievable rates of all users in the system.

Prior work on the estimation of correlated massive MIMO channels includes [63], [28],

[82]- [83], where LS or MMSE is performed with the assumption that TDD is used. Our

proposed framework, however, is based on more recent developments in CS where the

sparsity model of the signal vector is generalized to the low-rank model of the matrix

variable [39, 40]. The feasibility of invoking CS for the underlying channel model is at-

tributed to the sparsity inherent in the highly correlated massive MIMO channel (i.e.,

small number of physical direction), or in cases where only a small number of UTs in

neighbouring cells are active (i.e., have strong intercell gains), which makes the global

CSI matrix rank-deficient. In such cases, for short training sequences, the global channel

estimation problem becomes an under-determined problem, rendering classical estima-

tion techniques inapplicable. The importance of using CS for such channels becomes even

greater as the channel matrix dimensions grow large. Furthermore, another feature that

distinguishes our proposed estimation framework is that it does not require any knowledge
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about the statistical distribution or physical parameters of the propagation channel. As

for the proposed zero-forcing-based precoding method, it is different from previous works

since it considers the multicell system as a “big” channel, and uses the approximation of

the most dominant singular subspace of the global channel CSI in hand to design the ZF

precoding vectors.

6.1.2 Contributions

The technical contributions of this chapter are as follows.

• We use CS to solve the pilot contamination and intercell interference problems in

multicell multiuser massive MIMO systems. The notion here is that, instead of

estimating the global channel matrix, only the most dominant q singular subspaces

of the global channel matrix are estimated. Hence we refer to this technique as

rank-q channel approximation. We show that with modest values of q (compared

to the actual rank of the global matrix), only little performance degradation is

experienced.

• Given the high computational complexity of the common SDP-based method used

in the estimation process, which becomes prohibitively complex, we present two

other low-complexity greedy techniques including IHT and Matrix Factorization.

We show that the proposed techniques outperform the existing method based on

LS, for the same training sequence length.

• We use the estimate of the global channel matrix to design IA-ZF downlink precod-

ing vectors with the objective of mitigating both the intracell interference caused by

UTs in a cell and the intercell interference coming from UTs in neighboring cells.

• We derive a lower bound on the downlink achievable rate while assuming knowledge

of the exact rank-q global channel matrix approximation assumption. This bound
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is used as a benchmark for the proposed techniques. We show that the achievable

rate is dependent on q where, as expected, the rate is higher with larger q since the

approximation error becomes smaller.

6.1.3 Chapter Organization

The rest of the chapter is organized as follows. We describe the system and channel

models in Section 6.2. In Section 6.3, we review single-cell downlink precoding and chan-

nel estimation methods in TDD systems, where the two drawbacks of this scheme are

pointed out in the multicell scenarios with strong intercell gains. Section 6.4 describes

our proposed intercell-interference-aware precoding method based on the uplink best rank-

q global channel approximation. In Section 6.5, we analyze the achievable rate with the

exact rank-q channel approximation assumption. Section 6.6 presents various CS-based

techniques for rank-q channel matrix estimation, including SDP, IHT and Matrix Fac-

torization methods, along with their pros and cons. Numerical results are presented in

Section 6.7. Section 6.8 concludes the chapter.

6.2 System and Channel Models

6.2.1 Multicell Massive MU-MIMO System Model

In this section, we describe the system model adopted in this chapter. Consider a MU-

MIMO system in a multi-cell interference-limited system as shown in Fig. 6.1, which

operates in TDD with L cells [63], [28]. Each cell has one BS equipped with an array

of a large number of antennas M , serving K single-antenna UTs simultaneously. In the

uplink, at time t, the received signal vector at the BS of cell j, denoted by yj ∈ CM , is

given by

yul
j (t) =

√
ρul

L∑
l=1

Hjlx
ul
l (t) + nul

j (t), (6.1)
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where ρul denotes the uplink signal-to-noise ratio (SNR), Hjl = [hjl1 hjl2 . . . hjlK ] ∈

CM×K is the flat-fading quasi-static MU-MIMO complex-valued channel matrix from cell

l to BS j, where [Hjl](m,k) is the channel gain from user k in cell l to antenna m of BS j;

xul
j (t) =

[
xul
j1(t) x

ul
j2(t) . . . xul

jK(t)
]T ∈ CK is the transmit signal vector of K users in cell

l; and nul
j (t) =

[
nul
j1(t) n

ul
j2(t) . . . nul

jM(t)
]T ∈ CM is the complex-valued additive white

Gaussian noise (AWGN) vector at BS j, whose entries are independent and identically

distributed (i.i.d.) N (0, 1)
C
, i.e., zero-mean, 1/2-variance per dimension random vari-

ables. With ρul being the uplink SNR, the transmit signal vector xul
j (t) has the unity

power constraint, i.e,

E{xul
j (t)(x

ul
j (t))

H} = 1.

Figure 6.1: Multi-cell MU-MIMO system model.

For the downlink, i.e., the forward link, the channel coefficients are the transpose of

the corresponding uplink ones, and the received signal at UT k in cell j at time t is given

by

ydljk(t) =
√
ρdl

L∑
l=1

hT
ljksl(t) + ndl

jk(t), (6.2)

where ρdl denotes the downlink SNR, sl(t) ∈ CM is the precoded transmit vector from

BS l, and ndl
k (t) ∼ N (0, 1)

C
is the noise at user k.
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6.2.2 Physical Finite Scattering Correlated Channel Model

We are interested in the realistic finite-dimensional channel model, which was recently

studied for massive MU-MIMO [28], [82], [83]. In this model, the angular domain is

partitioned into a finite number of directions (i.e., number of active scatterers). Assuming

that there are in total P i.i.d paths originating from each user k in cell j, each path has

an M × 1 steering vector [81]

a(φp) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

exp
(
−j2πD0

λ
cos(φp)

)
...

exp
(
−j2π (M−1)D0

λ
cos(φp)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6.3)

where φp ∈ [−π/2, π/2] is a random angle of arrival (AoA) corresponding to path p ∈

{1, 2, ..., P} with respect to user k direction, D0 is the antenna spacing at the BS, and λ

is the signal wavelength. The channel vector from user k in cell l to BS j is given by

hjlk =
1√
P

P∑
p=1

gjlkpa(φp),

where gjlkp ∼ N
(
0, δ2jlk

)
C
is the random propagation gain from user k in cell l to BS

j. The variance δjlk is the channel’s average attenuation including the path loss and

shadowing effects [28], [83].

To account for the effect of the user’s random location in term of the direct- and

cross-gains in a multi-cell setting, our model makes use of three different values of δ2jlk as

follows. For the direct link, δ2llk is normalized to unity for all K UTs in each cell l. For

a set of links from users k ∈ Kjl with a cardinality Kc < K in cell l located near the

edge between two adjacent cells l and j, δ2jlk = δ2c ≤ 1 (j �= l), for all k ∈ Kjl. For the

other cross-links from each user k /∈ Kjl in cell l to BS j (j �= l), δ2jlk = δ2d ≤ δ2c . Those

assignments are simple but allow for classifying three different types of user locations
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to describe the direct- and cross-links in multi-cell systems. Extension to more general

distance-based power-law decaying path-loss distributions is straightforward.

With the above model, the M ×K MU-MIMO channel matrix Hjl between K UTs

in cell l and BS j can be collectively written in a compact form as

Hjl =
1√
P
AGjl,

where A = [a(φ1) a(φ2) . . . a(φP )] is a M × P full-rank matrix containing P steering

vectors, and Gjl is the P ×K path gain channel matrix, [Gjl](p,k) denotes the path gain

from user k in cell l to BS j associated with path p.

Remark 6.1. In the correlated MIMO channel with the physical finite scattering model

described above, the global channel matrix from all UTs in all cells to the BS j, denoted

by Hj = [Hj1 Hj2 . . . HjL] ∈ CM×LK, has a DoF r(M + LK − r), where r is the rank

of Hj, r ≤ min{M,LK,P}.

Indeed, the global channel Hj at BS j can be written as

Hj =
1√
P
A [Gj1 Gj2 . . . GjL]

=
1√
P
AGj, (6.4)

whereGj = [Gj1 Gj2 . . . GjL] ∈ CP×LK . Since the rank ofA is smaller than min{M,P},

and the rank ofGj is smaller than min{P,LK}, then the rank ofHj is at most min{M,LK,P}.

For the massive MU-MIMO system considered in this chapter, we consider the scenario

when both M and K are large (M � LK), and P = βPM(0 < βP ≤ 1), i.e, P is

proportional to M [63]. If we further assume that K < P < LK < M , then the local

channel matrixHjj has a full column-rank ofK, but the global channelHj is not full rank

(the maximum rank of Hj is P ). This highly correlated MU-MIMO model characterizes

the poor scattering propagation environment, where the number of physical objects is
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limited. It also describes the propagation channel where the scatterers appear in groups

(called clusters) with similar delays, AoAs and angle-of-departures (AoDs), making the

effective number of active directions limited, even when the number of physical objects is

large [28]. In this case, the rank of Hj is P , and the actual DoF of the channel matrix is

P (M + LK − P ), not its number of free parameters MLK.

For the case P > LK, and when the average power of the cross links δ2d is small relative

to δ2c (i.e. only Kc users in each neighbouring cell are active), we show later that the global

channel matrix Hj can be well approximated by a matrix with rank K + (L− 1)Kc.

6.3 Single-cell Precoding: Pilot Contamination and

Intercell Interference Effects

6.3.1 LS Channel Estimation

In TDD systems, the CSI is estimated in the uplink, and used to perform the precod-

ing/beamforming in the downlink. The conventional and standard way of estimating the

CSI is to send from each user a training sequence of length T ≥ K in the training phase

of each coherence interval. Denote
√
ρtrθjk =

√
ρtr [θjk(1) θjk(2) . . . θjk(T )] as the 1×T

training signal vector sent by UT k in cell j, which is orthogonal with respect to
√
ρtrθjn

(that of UT n in cell j), and fulfills the total training power constraint ρtr. That means,

θjkθ
H
jn = 1 if n = k and 0 otherwise. Let Θj =

[
θT
j1 θT

j2 . . . θT
jK

]T
be the K × T total

training matrix comprised from K T -length training sequences in cell j. The M × T

received signal matrix at BS j is given by

Yj =
√
T ρtr

L∑
l=1

HjlΘl +Nj

=
√
T ρtrHjΘ+Nj, (6.5)
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where Θ =
[
ΘT

1 ΘT
2 . . . ΘT

L

]T ∈ CLK×T , Nj is the M × T noise matrix with i.i.d.

N (0, 1)C entries.

Here we assume that there is no statistical knowledge or steering matrix A of the

propagation channel matrix Hjl available at each BS j1. As such, the channel realizations

are estimated using the LS method by correlating the received matrix Yj in (6.5) with

the known training matrix. If only the “local” CSI Hjj needs to be estimated at BS j,

then the LS estimate of hjjk is given by

ĥLS
jjk =

1√
ρtr

Yjθ
H
jk

=
L∑
l=1

[hjl1 hjl2 . . . hjlK ]
[
θT
l1 θT

l2 . . . θT
lK

]T
θH
jk +

1√
ρtr

Njθ
H
jk

= hjjk +
∑
l �=j

hjlk + ñtr
jk, (6.6)

where ñtr
jk = 1√

ρtr
Njθ

H
jk ∼ N

(
0, ρ−1

tr σ
2
nIM

)
C
, and in the above we assume that the same

set of orthogonal pilot sequences is reused in every cell [62].

From (6.6), we can see that the local CSI estimate in cell j is contaminated by the pilots

sent from UTs in the other (L−1) cells, due to the non-orthogonality of the LK T -length

pilot sequences (T < LK). This fundamental issue exists in massive multicell MU-MIMO

system due to the small T in a limited coherent time interval and the large dimension

LK, resulting in a significant reduction in the achievable rates of UTs, especially the ones

in the cell-edge area, as we will show in the next section.

1Our approach is different from the MMSE estimators in which either statistical distribution [63], [62]
or both statistical distribution and physical steering matrix A [82] of the channels are assumed to be
available at all BSs. In fact, this assumption is more reasonable for the intercell-interference-aware
methods, because the availability of all those parameters of all channels at each BS is not realistic.
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6.3.2 Singe-cell Precoding

In the downlink, the received signal at UT k in cell j in (6.2) can be re-written as

ydljk =
√
ρdlλjh

T
jjkwjkx

dl
jk +

√
ρdlλj

∑
n �=k

hT
jjkwjnx

dl
jn︸ ︷︷ ︸

intracell interference

+
√
ρdl
∑
l �=j

√
λl

K∑
n=1

hT
ljkwlnx

ul
ln︸ ︷︷ ︸

intercell interference

+ndl
jk,

where we use sl =
√
λlWlxl =

√
λl

∑K
n=1 wlnxln, Wl = [wl1 wl2 . . . wlK ] is the precoding

matrix at BS l, and λl is a normalization parameter, given by

λl =

(
E

{
1

K
tr{WlW

H
l }
})−1

. (6.7)

Using ZF precoding, the precoding vector at BS j satisfies2

⎧⎪⎨
⎪⎩
ĥT

jjkw
ZF
jk = 1

ĥT
jjkw

ZF
jn = 0, n �= k.

(6.8)

In matrix form, ZF requires

ĤT
jjW

ZF
j = IK ,

or (assuming that ĤT
jj has a full rank of K), we have

W ZF
j = (ĤT

jj)
†

= Ĥ∗
jj(Ĥ

T
jjĤ

∗
jj)

−1.

Using the worst-case independent Gaussian noise analysis [62, Theorem 1], the ergodic

achievable downlink rate of user k in cell j is computed as

Rdl
jk = log2(1 + γdl

jk), (6.9)

2We use ĥ for the estimate of h without specifying any estimation method, and will use the superscript
LS, CS, and q to differentiate the LS, CS or exact rank-q channel estimators, respectively.
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where γdl
jk denotes the associated signal-to-noise-plus-interference ratio (SNIR) with ZF

precoding3. Assuming that UT k in cell j does not know the instantaneous hjjk, but

knows its average, then γdl
jk is given by

γdl-ZF
jk =

λj

∣∣E{hT
jjkwjk

}∣∣2
ρ−1
dl + λjvar

{
hT

jjkwjk

}
+
∑

n �=k λjE

{∣∣hT
jjkwjn

∣∣2}+
∑

l �=j

∑K
n=1 λlE

{∣∣hT
ljkwln

∣∣2} ,
(6.10)

where the expectation is taken over all channel realizations [62,63]. In short, the argument

in [62] bases on the fact that the information rate of this channel with uncorrelated additive

noise (not independent neither Gaussian) is always larger than that of the point-to-point

channel with independent Gaussian noise of same variance, which has the information

rate given by (6.9). The ergodic achievable downlink sum-rate of all users in cell j (i.e.,

the lower bound on sum capacity or total system throughput in cell j [62]) is

Rdl
j =

K∑
k=1

Rdl
jk. (6.11)

If we assume that the local CSI is perfectly known at each BS j, the SNIR of UT k in

cell j in this case, denoted by γdl-ZF-CSI
jk , is given by

γdl-ZF-CSI
jk =

λj

ρ−1
dl +

∑
l �=j

∑K
n=1 λlE

{∣∣hT
ljkwln

∣∣2} . (6.12)

With the above perfect CSI assumption, the intracell interference vanishes, but the SNIR

is still affected by the intercell interference from the other cells. When the effect of channel

estimation error and the pilot contamination are combined, we see from (6.12) that the

SNIR using this method is affected by both intracell and intercell interferences, and hence

the overall achievable sum-rate is degraded. In particular, the individual achievable rates

of the cell-edge UTs are degraded the most, due to their larger cross-gains as compared

3We denote by γdl-IA-ZF, γdl-IA-ZF-CSI and γdl-IA-ZF-q the SINR with IA-ZF, IA-ZF-CSI, IA-ZF-q
schemes, respectively. Similar notations are used for the precoding vector w.
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to the other UTs.

6.4 Intercell-interference-aware Precoding with Rank-

q Channel Approximation

Single-cell precoding assumes that the BS in each cell has an estimate of its local CSI only.

If it has an estimate of the global CSI, i.e., the channel information not only from the

users in its cell but also from the users in other cells, then an intercell-interference-aware

ZF (IA-ZF) precoding method can be used to improve the system performance. To this

end, we propose in the next section a IA-ZF precoding method that aims at mitigating the

intercell and intracell interference, with an assumption that we have an estimate of Hj at

each BS. We then elaborate on the advantages and disadvantages of the proposed method

with this assumption, and propose a way to overcome the challenges facing implementing

it.

6.4.1 Intercell-interference-aware ZF Precoding

IA-ZF precoding at BS j aims at suppressing the interference to a user not only from its

BS but also from BSs in other cells. The precoding matrix at each BS j is designed to

satisfy ⎧⎪⎨
⎪⎩
ĤT

jjW
IA-ZF
j = IK , j = 1, 2, ..., L

ĤT
jlW

IA-ZF
j = 0K , l �= j,
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where ĤT
jl is an estimate of the M ×K channel matrix from UTs in cell l to BS j. In a

collective form, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĤT
j1

...

ĤT
jj

...

ĤT
jK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
LK×M

[
wIA-ZF

j1 wIA-ZF
j2 . . . wIA-ZF

jK

]
︸ ︷︷ ︸

M×K

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0K

...

IK

...

0K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (6.13)

In order for (6.13) with LK2 equations and MK unknowns to have a solution, we must

have MK > LK2 or M > LK, which is usually the case in massive MU-MIMO systems.

For each UT k in cell j, the precoding vector wjk satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ĥT
jjkwjk = 1

H̃T
jjkwjk = 0

ĤT
jlwjk = 0, l �= j.

(6.14)

where H̃jjk =
[
ĥjj1 . . . ĥjj(k−1) ĥjj(k+1) . . . ĥjjK

]
∈ CM×(K−1). In (6.14), the first con-

dition makes sure that the SNR is the same at each user, the second condition guarantees

zero intracell interference, and the third constraint guarantees zero intercell interference.

Consequently, (6.14) can be rewritten as

ĤT
j wjk = bjk, (6.15)

where bjk = [0, ...0︸ ︷︷ ︸
cell 1

, ..., 0...1...0︸ ︷︷ ︸
cell j

, ..., 0, ...0︸ ︷︷ ︸
cell L

]T .
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Assume that Ĥj has the following singular value decomposition (SVD).

Ĥj = ÛjΣ̂jV̂
H
j

=
[
Û

q
j Û 0

j

]⎡⎢⎣Σ̂q
j 0

0 Σ̂0
j

⎤
⎥⎦[V̂ q

j V̂ 0
j

]H
,

where Ûj and V̂j are M × Qj and LK × Qj unitary matrices, respectively. Σj =

diag{σj1, σj2, ..., σjQj
} ∈ CQj×Qj is the Qj × Qj diagonal matrix containing Qj (Qj ≤

min{LK,M}) non-zero singular values of Hj: σj1 ≥ σj2 ≥ ...σjQj
> 0. The “economic”

SVD solution of (6.15) is given by

wIA-ZF
jk = Ûj(Σ̂j)

+(V̂j)
Hbjk, (6.16)

where (Σ̂j)
+ is the diagonal matrix, (Σ̂j)

+
ii =

1
σji

for 1 ≤ i ≤ Qj.

If we assume perfect global CSI knowledge at each BS j, since there is no interference

in this case, the SNR at UT k in cell j is

γdl-IA-ZF-CSI
jk = ρdlλj, (6.17)

which is significantly greater than the SNIR in (6.12) when using the intercell-interference-

ignorant precoding method.

6.4.2 Best Rank-q Global Channel Approximation

As analyzed above, to perform IA-ZF, we need the global channel estimate Ĥj of Hj.

However, obtaining a good estimate ofHj is almost impossible due to the large dimensions

of Hj and the limited time dedicated for the training phase. A more feasible assumption

is that we can only obtain a rank-q approximation of Hj (we present CS-based methods to

obtain this estimate later). Assume that by some low-rank matrix approximation method,
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we obtain the best rank-q approximation ofHj (in terms of 2-norm error), denoted byH
q
j ,

q < Qj [90]. This means that Hq
j is the solution to the following optimization problem

minimize
X

‖A(Hj)− z‖22

subject to rank(X) ≤ q,

(6.18)

where A : CM×LK → CMT is some linear measurement operator, and z ∈ CMT is the

measured data. Expressing both sides of (6.5) in vector form and applying the fact that

vec(ABC) = (CT ⊗A)vec(B), ⊗ denoting Kronecker product, we have

vec(Yj) = Ψvec(Hj) + vec(Nj),

where Ψ = ΘT ⊗ IM . Then we have A(·) = Ψvec(·), and z = vec(Yj). It is proved that

the solution of (6.18) is Hq
j = (Uj)qdiag{σj1, ..., σjq}(Vj)

H
q , where (Uj)q and (Vj)q are the

matrices formed from the first q columns of Uj and Vj, respectively. The approximation

error is then given as

‖Hj −H
q
j ‖2F =

Qj∑
i=q+1

σ2
ji.

If we assume that not all intercell links are as strong as the intracell ones, and the links

are highly correlated, this will lead to many singular values of Hj that are small or close

to zero. Then the “true” rank of Hj is smaller than Qj. Since the largest singular values

correspond to the most important singular subspaces of Hj, nulling the other smaller

singular values will make the channel estimation task easier, while not sacrificing the

overall system performance by much. If the “true” rank of Hj is q, then the above

errors should be small as all the eigenvalues σji are small for i = q + 1, ..., Qj ; and the

estimate obtained should be good enough to perform ZF-IA precoding. Assuming that

H
q
j has SVD H

q
j = U

q
j Σ

q
j(V

q
j )

H , then the corresponding precoding vector using IA-ZF
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is computed as

w
IA-ZF-q
jk = U

q
j (Σ

q
j)

+(V q
j )

Hbjk.

6.5 Achievable Rate Performance Analysis

In this section, we present the performance analysis of the capacity lower bound of the

proposed IA-ZF precoding method, while assuming each BS j has the exact rank-q ap-

proximation of the global channel Hj. This can be done by firstly analyzing the SINR of

each user k in cell j and then applying the relations (6.9) and (6.11).

Looking at the multicell MU-MIMO as a one “big” MIMO channel, the LK×1 vector

of the signals received by all LK users in all L cells, denoted by ydl, is given by

ydl =
√
ρdlλjH

T
j Wjx

dl
j +

√
ρdl
∑
l �=j

√
λlH

T
l Wlx

dl
l + ndl

=
√
ρdlλjH

T
j (Ĥ

T
j )

†
K∑
k=1

bjkx
dl
jk +

√
ρdl
∑
l �=j

√
λlH

T
l (Ĥ

T
l )

†
K∑
k=1

blkx
dl
lk + ndl, (6.19)

where ndl =
[
ndl
1 ndl

2 . . . ndl
LK

]T
, and H̃T

j = HT
j − ĤT

j is the channel estimation error for

the case of the exact rank-q approximation. Taking the jk-th element of ydl in (6.19), the

received signal of UT k in cell j is computed as

ydljk =
√

ρdlλj

[
Hj

]
((j−1)K+k,(j−1)K+k)

xdl
jk +

√
ρdlλj

∑
n �=k

[
Hj

]
((j−1)K+k,(j−1)K+n)

xdl
jn

+
√
ρdl
∑
l �=j

√
λl

K∑
n=1

[
H l

]
((j−1)K+n,(j−1)K+n)

xdl
ln + ndl

jk, (6.20)

where Hj � HT
j (Ĥ

T
j )

†. Using the same argument as the one in [62], the SNIR for user

k in cell j using IA-ZF is given by

γdl-IA-ZF
jk =

term 1

ρ−1
dl + term 2 + term 3

, (6.21)
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where

term 1 = λj

∣∣∣E{[Hj

]
((j−1)K+k,(j−1)K+k)

}∣∣∣2 ,
term 2 = λjvar

{[
Hj

]
((j−1)K+k,(j−1)K+k)

}
,

term 3 =
∑

(l,k)�=(j,n)

λlE

{∣∣∣[H l

]
((j−1)K+k,(j−1)K+n)

∣∣∣2} .

From (6.21) we can see that if the global channel Hj is full column-rank (i.e. P > LK

and Hj is invertible), and with perfect global CSI available as the BS j, then Hj = ILK .

Consequently, we can completely null out both the intracell and intercell interference.

When K < P < LK, since the global channel is rank-deficient and is no longer invertible,

the intracell and intercell interference is not completely nulled out. In the following, we

present a capacity lower bound for the case in which the exact rank-q approximation of

the global channel is available at each BS j.

For exact rank-q (q < Q) channel approximation ĤT
j = H

q
j , we have

Hj = HT
j (H

q
j )

†

=
[
V

q
j V

Q−q
j

]∗ ⎡⎢⎣Σ̂q
j 0

0 Σ̂Q−q
j

⎤
⎥⎦[U q

j U
Q−q
j

]T
×
(
U

q
j

)∗ (
Σq

j

)† (
V

q
j

)T

=
(
V

q
j

)∗ (
V

q
j

)T
. (6.18)

Therefore, [
Hj

]
((j−1)K+k,(j−1)K+k)

=

∥∥∥∥V q
j
((j−1)K+k,:)

∥∥∥∥2
2

. (6.19)

[
H l

]
((j−1)K+k,(j−1)K+n)

= (V q
l )

∗
((j−1)K+k,:)

(V q
l )

T

((j−1)K+n,:)
. (6.20)

From (6.21) to (20), the SNIR of UT k in cell j for the case of exact rank-q channel
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approximation is computed as

γdl-IA-ZF-q
jk =

term 4

ρ−1
dl + term 5 + term 6

, (6.21)

where

term 4 = λj

∣∣∣∣∣E
{∥∥∥∥V q

j
((j−1)K+k,:)

∥∥∥∥2
2

}∣∣∣∣∣
2

,

term 5 = λjvar

{∥∥∥∥V q
j
((j−1)K+k,:)

∥∥∥∥2
2

}
,

term 6 =
∑

(l,k)�=(j,n)

λlE

{∣∣∣(V q
l )

∗
((j−1)K+k,:)

(V q
l )

T

((j−1)K+n,:)

∣∣∣2} .

As we can see from (6.21), the SNIR (and hence the capacity lower bound) for the case

of exact rank-q channel approximation depends on how much we truncate in the SVD

of the global channel at each BS. If the channel is low-rank, or if we can accurately

estimate the global channel Hj at each BS j with a high enough q, then both the intracell

interference and intercell interference are significantly mitigated. Obviously this method

allows us to treat the multi-cell scenario as a “big” single-cell one where each BS j has

an estimate of the global channel Hj, then with the IA-ZF precoding method, there is

almost no difference in the achievable rate performance between the cell-edge users and

the other ones in a cell. We remark here that the above analysis is based on the idealistic

assumption that we can have an exact rank-q channel approximation of the global channel

at each BS and the channel itself has only a small number of dominant singular subspace.

We use this result as a benchmark for proposed methods. More practical and useful

numerical results with actual rank-q channel approximation based on CS-based low-rank

matrix approximation are presented in the next section.
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6.6 CS-based Rank-q Channel Approximation

6.6.1 SDP-based Method

The problem in (6.18) is NP-hard, which is due to the non-convex nature of the rank

constraint [39]. Some relaxation versions to obtain a convex problem in noiseless settings

have been proposed in [39] and solved via semi-definite programming (SDP). SDP has also

been applied and proved to work with the low-rank MIMO channel estimation problem

(with the presence of additive Gaussian noise) [90]. Below, we summarize how CS can

invoke SDP for solving the low-rank channel estimation problem. To this end, we express

the nuclear norm regularization for our channel estimation problem as

minimize
Hj

1

2
‖vec(Yj)−Ψvec(Hj)‖22 + γ‖Hj‖∗, (6.22)

which can be represented as a quadratic SDP as

minimize
z

1

2
zHz −	

{
[vec(Y )]Hz

}

subject to

⎡
⎢⎣ γIM vec−1

M,K

(
ΨHz

)
[
vec−1

M,K

(
ΨHz

)]H
γIK

⎤
⎥⎦ � 0.

(6.23)

Let z∗ be the solution to (6.23), then the result of (6.22), which is the estimate of channel

matrix using our CS approach, is

ĤCS = vec−1
M,K

{
Ψ† (vec(Y )− z∗)

}
.

It has been shown in [90] that, for the discrete Bernoulli pilot sequence, if we choose in

(6.22) the regularization parameter γ =
√
2(M + LK)T ρtr, then the CS-based channel

113



estimator has an error that is upper bounded in squared Frobenius norm as

‖Hj − Ĥj‖2F ≤ c
(M + LK)q

T ρtr
+ c′

Qj∑
i=q+1

σ2
ji,

with a probability of at least 1−c1exp(−c2(M
2+(LK)2)1/2) for some constants c, c′c0, c1, c2 >

0.

This result with the proof is similar to the one in [90], but the difference here is that we

add another term in the left-hand side of (6.24), which accounts for the SVD truncation

error. As M and LK grow large, with an overwhelming probability, this error upper

bound decreases at a rate within a constant of (M +LK)q/(T Kρtr), which is faster than

the lower bound of the LS’s error rate, MLK/(T ρtr). This means that the proposed CS

method helps to reduce the pilot power or length used by each UT, which is important

since the UTs are usually required to operate in a low-power regime and the coherence

time needs to be short.

The above SDP algorithm provides good results with performance guarantee but has

high complexity [39], [90], as the dual problem hasML variables and one (M+LK)×(M+

LK) semidefinite constraint. Particularly, for this specific SDP problem, the theoretical

analysis estimates that the complexity is O((#variables)2 × (size of SDP constraint)2.5),

which is O ((ML)2(M + LK)2.5) [41,91]. If we use some general-purpose SDP solver such

as SeDuMi [92,93], the complexity could be higher [94]. Therefore, the modern SDP solver

can only accommodate problems with matrix variables having each size up to a hundred,

and this SDP approach suits for systems with number of BS antennas and number of UTs

lower than a 100.

6.6.2 Iterative Hard Thresholding based Method

As mentioned above, the SDP method is still computationally inefficient and can not be

used for the very-large MIMO channel, especially when the dimensions grow larger than
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a hundred. To overcome this problem, some greedy methods have been recently devel-

oped as solutions with modest computational complexity, including compressive sampling

matching pursuit (CoSaMP), singular value projection (SVP) or IHT [95], and Matrix

Factorization [96]. Some previous works have shown that the IHT provides performance

bound similar to that of SDP with overwhelming probability when the matrix dimensions

are large [95]. We describe below the IHT algorithm after being adapted to our channel

estimation problem.

IHT-based Low-rank Channel Estimation for Hj

1: procedure IHT(M,L,K, q, μ0,Θ,Yj)

2: Initialization: Ĥ
q
j = 0,Ψ = ΘT ⊗ IM , i = 0

3: while Stopping criterion does not satisfy do

4: Ĥ
q
j ← Ĥ

q
j + μ0vec

−1
M,LK

(
ΨHvec(Yj − Ĥ

q
jΘ)

)
5: [Û q

j , Ŝ
q
j , V̂

q
j ] = svds(Ĥq

j , q)

6: Ĥ
q
j ← Û

q
j Ŝ

q
j (V̂

q
j )

H

7: i ← i+ 1
8: end while
9: return Ĥ

q
j

10: end procedure

In line 1, q is the desired rank of the estimated global channel Ĥj, and μ0 is the step

size (for instance, μ0 = 0.5). In line 4, we apply the conjugate of the operator A, denoted

by A∗ : CMT ×1 → CM×LK , A∗(z) = vec−1
M,LK(Ψ

Hz), vec−1
M,LK(·) converts a vector into a

M×LK matrix. In line 6, the svds(X, q) function performs the hard thresholding operator

that computes the top q singular values of X along with the right and left singular vectors.

The stopping criterion for the IHT-based method can be that when the preset maximum

number of iterations is achieved, or when the estimation error stops improving.

The IHT method described above facilitates fast computation (low complexity) as at

each iteration, only a rank-q SVD computation for aM×LK matrix is required, which has

a complexity of O(Mq2) (at each iteration) [97]. The matrix-vector multiplication in line

4 has a complexity of O (2(MLK)(MT )). The total complexity of this IHT algorithm is

115



O (Mq2 + (MLK)(MT )), which is much lower than that of the SDP algorithm described

above.

Assuming that the resulting Ĥ
q
j has the SVD Ĥ

q
j = Û

q
j Σ̂

q
j(V̂

q
j )

H , then the corre-

sponding precoding vector using the IA-ZF method is efficiently computed as

ŵ
IA-ZF-q
jk = Û

q
j (Σ̂

q
j)

+(V̂ q
j )

Hbjk.

6.6.3 Matrix Factorization based Method

The performance of the IHT-based method depends on the step size μ, which needs to be

chosen carefully [32]. In this subsection, we present an alternative rank-q approximation

method based on linear matrix factorization [96] that does not require any additional

parameters. Assuming that every M × LK channel matrix Hj can be factorized as (a

similar approach is used for estimating other Hj, l �= j)

Hj = HaHb, (6.24)

where Hja ∈ CM×q, Hjb ∈ Cq×LK . Our rank-q channel approximation problem is to find

Ha and Hb that minimize the 2-norm of the estimation error. That is,

minimize
Hja∈CM×q ,Hjb∈Cq×LK

‖A(HaHb)− vec(Yj)‖22. (6.25)

From the linear channel measurement A(Hj) = (ΘT ⊗ IM)vec(Hj), we have

A(HjaHjb) = (ΘT ⊗ IM)vec(HjaHjb)

= (ΘT ⊗Hja)vec(Hjb)

= (ΘTHjb ⊗ IM)vec(Hja).
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As a result, we can express the linear operator A on variable Hj by a linear operator on

each variable Hja or Hjb as

A(HjaHjb) = AHja
(Hjb) = AHjb

(Hja), (6.26)

where

AHja
(·) = (ΘT ⊗Hja)vec(·),

and

AHjb
(·) = (ΘTHjb ⊗ IM)vec(·).

The incremental-rank power factorization [96] based low-rank channel estimation method

alternatingly optimizesHja andHjb using (6.25) with one variable at a time while treating

the other as a constant. Next, we describe the incremental-rank PF algorithm after being

adapted to our channel estimation problem.
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IRPF-based Low-rank Channel Estimation for Hj

1: procedure IRPF(M,L,K,Θ,Yj , imax, ε)
2: Initialization: r = 1
3: while Stopping criterion 1 does not satisfy do
4: Initialization: Hja = H

(0)
ja ∈ CM×r, Ĥjb = Ĥ

(0)
jb ∈ Cr×LK , i = 0

5: while Stopping criterion 2 not satisfy do
6: With H

(i)
jb fixed:

H
(i+1)
ja = arg min

Hja

‖A
H

(i)
jb

(Hja)− vec(Yj)‖22

7: With H
(i+1)
ja fixed:

H
(i+1)
jb = arg min

Hjb

‖A
H

(i+1)
ja

(Hjb)− vec(Yj)‖22

8: i ← i+ 1
9: end while

10: r ← r + 1
11: end while
12: return Ĥ

q
j = H

(i+1)
ja H

(i+1)
jb

13: end procedure

The stopping criterion 3 in line 2 is either that r reaches the preset desired rank q,

or that the relative estimation error ‖A(HaHb)− vec(Yj)‖22/‖vec(Yj)‖22 is smaller than a

predefined threshold ε. The stopping criterion 2 in line 5 is either that i reaches the preset

number of iteration imax, or that that the relative estimation error is smaller than ε. It is

suggested that the algorithm starts with small r (r = 1) and then increases r gradually

until it converges. At each r, we solve the linear least-squares (LLS) optimization problems

in line 6 and 7 using the Conjugate Gradient method. We also need to choose the number

of iterations imax at each r large enough to have an accurate result.

At each iteration, the main computational complexity of the IRPF algorithm is for

solving the LLS, and is the order of O ((MT )(Mq)2 + (MT )(qLK)2), which is again

much lower than that of SDP algorithm. As compared to IHT, the IRPF generally has a

higher complexity, but it has an advantage that no knowledge about the “true” rank of

the matrix variable or extra parameter “μ0” is needed, and the algorithm is guaranteed
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to converge [96].

6.6.4 On choosing q

The complexity and estimation error of the above methods depend on the selection of q and

the pilot length T . Choosing q too small results in large estimation error, whereas choosing

q too large results in very high computational cost. From our system model, we observe

that if in the global channel Hj, there are only K + (L− 1)Kc directions corresponding

to the K + (L− 1)Kc strongest links that are significant, and the rest are small and can

be neglected, then finding the best rank-q (q = K + (L− 1)KC) approximation of Hj is

good enough to design a precoding method that would null both the intracell interference

and intercell interference. Furthermore, since the rank of Hj < min{M,P, LK}, than we

should choose q < min{P,K + (L− 1)Kc}.

6.7 Numerical Results

In this section, we compare the achievable rates of our proposed scheme with those of the

existing ones numerically. Throughout our experiments, we use the following parameters.

The number of cells, L = 7; the ratio between the number of BS antennas and the

number of UTs (in one cell), M/K = 10; and the number of cell-edge UTs, Kc = �K/5�,

which linearly scales with K. Furthermore, the steering vector has D0/λ = 0.3, AoA

φp = −π/2 + (p− 1)π/P , p = 1, 2, ..., P as in [63].

In the first experiment, we chooseM = 100, and the number of paths P = �M/3�. The

intercell power gains are δ2c = 1/3, δ2d = 1/9, In Fig. 6.2, we illustrate the robustness of the

IA-ZF CS-based rank-q schemes over the traditional ZF schemes based on LS estimation,

where we choose q = min{K + (L − 1)Kc, P} = K + (L − 1)Kc = 22. We display the

achievable sum-rates versus the SNR for all schemes, with a training length T = 40. It can

be seen from Fig. 6.2 that our IA-ZF CS rank-q schemes outperform both ZF-LS and IA-
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ZF LS, and the CS IRPF method has a slightly better performance as compared to the CS

IHT one (in which we choose μ = 1). We also show the achievable sum-rate for the cases

that we assume to obtain an exact rank-q approximation using (6.21) and the perfect CSI

of the global channel at each BS, which serve as benchmarks for comparison purposes. We

can see that the IA-ZF method with the exact rank-q channel approximation has a better

performance even when compared to the case of perfect CSI with single-cell precoding.

This is in agreement with our analysis since both intercell and intracell interferences are

suppressed when the IA-ZF is used. Finally, since T = 40 < LK = 70, the system is

under-determined, and thus the IA-LS fails to estimate the global channel. That explains

why in the figure the IA-ZF-LS has a lower sum-rate as compared to ZF-LS (single-channel

estimation).

Figure 6.2: Achievable sum-rate versus SNR for different schemes, M = 100, P = �M/3�,
T = 40, δ2c = 1/3, δ2d = 1/9.

Next, we show in Fig. 6.3 the individual achievable rates of each “normal” UT in cell

1 using different schemes described as above (similar results obtained in other cells). We

also observe the robustness of the IA-ZF rank-q schemes as the achievable rate of each
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normal UT using these schemes outperforms the conventional ZF LS-based one. There is

an interesting observation here is that at low SNR, the ZF scheme slightly outperforms

the IA-ZF schemes with perfect or exact rank-q approximation of global CSI at the BS.

It is attributed to the fact that, in IA-ZF, we sacrifice some antennas for the intercell

interference nulling purpose, leading to a small decrease in the rates of the normal UTs.

But in return, as we can see in the next figure, we can significantly suppress the intercell

interference and hence increase the achievable rates of the cell-edge UTs.

Figure 6.3: Achievable rate of normal UTs versus SNR for different schemes, M = 100,
P = �M/3�, T = 40, δ2c = 1/3, δ2d = 1/9.

The individual achievable rates of each “cell-edge” UT in cell 1 using different schemes

are shown in Fig. 6.4. As expected from the analysis, due to both effects of pilot con-

tamination and intercell interference from the other cells, the achievable rate of each

cell-edge UT in a cell is very poor and much lower than that of the normal UT when

ZF is used, even when we have perfect local CSI at the BS. By using IA-ZF CS-based

rank-q global channel approximation, the achievable rate of each cell-edge UT is greatly

improved, almost equal to that of the normal UT.
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Figure 6.4: Achievable rate of cell-edge UTs versus SNR for different schemes, M = 100,
P = �M/3�, T = 40, δ2c = 1/3, δ2d = 1/9.

Armed with the above results, we can see that there was a gap between the method

using the actual rank-q channel approximation based on IHT and IRPF and the one using

the exact rank-q solution, when T = 40. In Fig. 6.5, we display the performance of the

described methods with different training lengths T ∈ {30, 50, 70}. (Since the complexity

of the IHT is much lower than that of the IRPF with a slightly lower accuracy, we only

use IHT from now on). As we increase T from 30 to 70, the performance gap between

the actual CS rank-q and the exact solution becomes smaller, and the gap approaches

zero when T = 70. We note here that in all cases, the proposed IA-ZF precoding based

on CS rank-q channel approximation outperforms the conventional LS based method, for

the same training length.
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T = 70, 50, 30 T = 70, 50, 30

Figure 6.5: Achievable sum-rate versus SNR for different training lengths T ∈ {30, 50, 70},
M = 100, P = �M/3�, δ2c = 1/3, δ2d = 1/9.

Next, we change the value of P from �M/3� to �M/5�, δ2c = 1. The results are plotted

in Fig. 6.6. We can see from the figure that since the global channel Hj has rank P ,

and we choose q = min{K + (L − 1)Kc, P} = P = 20, the exact rank-q computed using

(6.21) has the same performance as the case of perfect CSI. With δ2c = 1, the intercell

gains of the cell-edge UTs is as strong as the direct links, resulting in stronger intercell

interference as compared to the previous experiments. Therefore, the achievable sum-rate

of all schemes decreases. However, the IHT method still outperforms the LS one in this

case.
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Figure 6.6: Achievable sum-rate versus SNR for different schemes, M = 100, P = �M/5�,
T = 40, δ2c = 1, δ2d = 1/9.

We now change the value of P to M , δ2c = 1 (rich scattering propagation channel and

strong intercell interference), and repeat the same simulations, where q = min{K + (L−

1)Kc, P} = 22. The result is shown in Fig. 6.7. Even for this case, the IA-ZF IHT-based

rank-q approximation method still outperforms the ZF based on LS. Since P is large, the

achievable sum-rate of each scheme in this case is higher as compared to the previous

experiments.
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Figure 6.7: Achievable sum-rate versus SNR for different schemes, M = 100, P = M ,
T = 40, δ2c = 1, δ2d = 1/9.

Finally, we change the value of M from 100 to 150, and P = �M/5�. In order to see

the effect of the intercell interference to the achievable rate of each cell, we repeat the

simulations with T = 60, δ2d = 0.2, and vary δ2c . It can be shown from Fig. 6.8 that when

δ2c is increased (i.e., stronger intercell gains), the achievable sum-rate is decreased. In all

cases, the IA-ZF precoding method based on CS-based rank-q channel estimation always

provides a better performance as compared to the single-cell ZF precoding method based

on the LS channel estimate.
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δ

Figure 6.8: Achievable sum-rate versus δ2c , M = 150, P = �M/5�, T = 60, δ2d = 0.2.

6.8 Concluding Remarks

We have proposed in this chapter a new method based on compressive sensing that aims

at rank-q global channel approximations and ZF-based intercell-interference-aware pre-

coding method for multicell massive MIMO systems. The proposed schemes have been

shown to be effective in mitigating the effects of the channel training error and the in-

tercell interference, hence improving the achievable rates of the individual users as well

as the achievable sum-rate of each cell. In particular, the users that benefit the most

from the proposed techniques are the cell-edge users where their achievable rates are

comparable to those of the users that do not have strong intercell channel gains with

their neighboring BSs. We have also derived a lower bound on the achievable rate with

perfect knowledge of the rank-q global channel matrix. Furthermore, we have proposed

three CS-based estimation techniques, each with advantages and disadvantages. Through

numerical examples, we have shown that the proposed techniques, even with the least
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complex estimation algorithm, outperform the conventional scheme based on LS channel

estimation and single-cell precoding method, without requiring any knowledge about the

statistical distribution or physical parameters of the propagation channel.
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Chapter 7

Summary and Future Work

7.1 Summary

CS is a revolutionary theory that has important applications in many areas, including

wireless communications. Using CS, signals can be recovered by far fewer samples or

measurements much below the Nyquist rate, as long as they are sparse and the measure-

ment is incoherent. In wireless communication problems where the sparsity structure of

the signals can be explored, CS helps to reduce significantly the number of transmissions

or measurements required bust still can reconstruct them accurately. The impact of CS is

even more crucial as the wireless communications often deal with the large-scale problems

where many typical signals, channels or events contain sparsity models either implicitly

or explicitly.

This thesis has been concerned with the development of new techniques and appli-

cations of CS in many complex wireless communication channels and systems including

multi-channel multiuser, cooperative relaying, and large MIMO networks. Specifically,

we have presented various CS solutions for multiple-channel estimation, iterative estima-

tion and decoding for sparse ISI-TWRC, channel estimation and precoding for large-scale

multiuser MIMO systems. We have also provided theoretical results to confirm the ro-
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bustness of CS methods, and performance analysis to see the end-to-end performance

improvements of the proposed schemes.

In Chapter 3, we have addressed the problem of simultaneous estimation of multiple

sparse ISI channels and applied it to the compressive estimation of sparse ISI-TWRC

employing analog network coding. Both theoretical and empirical results suggested that

the �1-based CMCE method significantly outperforms the traditional one, which ignores

the sparsity feature of the channels. We then apply this concept to iterative channel

estimation and data decoding for the sparse ISI-TWRC for both cases of AF and DF

relaying protocols in Chapter 4. The proposed iterative schemes have shown significant

improvements in terms of end-to-end performances of the systems.

Chapter 5 has extended the theory of CS from sparse channel vector estimation to low-

rank channel matrix approximation, and applied it to the problem of channel estimation

for massive MU-MIMO channels. A SDP-based method has been proposed, in which the

performance guarantee bound of the solution has been provided.

Chapter 6 proposed a communication scheme base on compressive rank-q channel

approximation to solve the problems of uplink channel estimation and downlink precod-

ing for multicell massive MIMO. Several reduced-complexity algorithms have been also

presented in this chapter to facilitate the implementations of the proposed scheme, and

numerous numerical results have confirmed the improvement of it in terms of achievable

data rates of users in the interference-limited scenarios.

7.2 Future Work

As far as future work is concerned, we identify a few potential problems, as follows.

1. Sparse multipath multiple-channel estimation in OFDM-based systems: Our work

only deals with the channel estimation for sparse multipath multiple-channel as-

suming single-carrier transmission, and for massive MIMO systems, the channel is
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assumed to be flat fading. It is natural to consider the same cases in a multi-carrier

system, i.e, OFDM-based schemes, and compare the two. We would also consider

the problem of channel estimation and precoding for ODFM-based massive MIMO

systems over frequency-selective channels.

2. Deterministic CS dictionaries: Another issue of random probing for large-scale

sparse or low-rank channel estimation not being considered in this thesis is the large

memory to store the random pilots at the terminals. Quite recent results addressing

the design of the deterministic sensing matrix for sparse approximation [98] could

be used to co-design the deterministic or semi-deterministic pilots sent from the

terminals. This will save us a lot of memory required otherwise, and particularly

useful in the case of large numbers of users in cellular networks, or sensors in wireless

sensor networks.

3. Stochastic CS for communications applications: The CS-based methods for channel

vector estimation and low-rank matrix approximation developed in this thesis as-

sume no knowledge about the statistical distribution of the channel parameters. In

many wireless communication scenarios, the statistical distribution of the channel

is available at BSs or terminals. By utilizing this information along with the spar-

sity model of the channels, one can improve the performance of the estimator and

detection. Some works have recently considered this problem based on the Bayesian

approach for sparse vector [99] or low-rank matrix [100] in machine learning or

matrix completion problems. The methods when developed for communications

applications where the channels have specific statistical distributions should bring

more favorable results.

4. Reduced-complexity for channel estimation and precoding for massive multiuser MIMO

systems: As the numbers of BS antennas and UTs may continue growing in future

massive multiuser MIMO systems, the current estimation and precoding algorithms
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may not be simple enough to afford those large dimension problems. Therefore,

more lower complexity methods need to be developed to implement massive MIMO

systems in reality.
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Appendix A

Vector Norms, Matrix Norms, and

Their Dual Norms

A.1 Vector Norms

This appendix presents important vector norms that are frequently used in CS theory:

�0, �1, and �∞. In general, the �p-norm (p ≥ 1, p ∈ R) of a vector x = [x1, x2, · · · , xn],

denoted by ‖x‖p, is defined as

‖x‖p =
(

n∑
i=1

|xi|p
)1/p

.

Therefore, the ‖x‖1, ‖x‖2, ‖x‖∞ are formally defined as

‖x‖1 =
n∑

i=1

|xi|.

‖x‖2 =
√
|x1|2 + |x2|2 + · · ·+ |xn|2.

‖x‖∞ = max(|x1|, |x2|, · · · , |xn|).
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Definition A.1 (Dual norm of a vector norm [41]).

Let u,v ∈ R
n. For any given norm ‖ · ‖, there exists a dual norm, denoted by ‖ · ‖∗,

defined as

‖u‖∗ = sup
v

{
〈u,v〉 = uTv

∣∣‖v‖ ≤ 1
}
.

If ‖ · ‖p is the dual norm of ‖ · ‖q, then �p is isometrically isomorphic to �q, i.e.,

1/p+ 1/q = 1.

We also have that the dual norm of ‖ · ‖1 is ‖ · ‖∞. The dual norm of ‖ · ‖2 is itself.

A.2 Matrix norms

Matrix norms are natural generalizations of vector norm, hence inherit many appealing

properties from the vector case. For any two matrices X,Y ∈ R
m×n, the inner product

in space R
m×n is associated with the Frobenius norm, and is define as

〈X,Y 〉 = Tr(XTY )

=
m∑
i=1

n∑
j=1

X(i,j)Y(i,j)

Assume that σi(X) is the i-th largest singular value of matrix X,and r is the rank of X.

The Frobenius norm of X is also equal to the �2 of the vector of singular values, i.e.

‖X‖F =
√
Tr(XTX)

=

√√√√ m∑
i=1

n∑
j=1

X2
(i,j)

=

√√√√ r∑
i=1

n∑
j=1

σ2
i
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The operator norm of matrix X is equal to the largest singular value of it

‖X‖op = σ1(X).

The nuclear norm of matrix X is equal to the sum of its singular values (i.e., the �1-norm

of the vector of singular values)

‖X‖∗ =
r∑

i=1

σi(X).

Definition A.2 (Dual norm of a matrix norm [39]).

Let X,Y ∈ R
m×n. For any given norm ‖ · ‖, there exists a dual norm, denoted by ‖ · ‖∗,

defined as

‖X‖∗ = sup
Y

{
〈X,Y 〉 = Tr

(
XTY

) ∣∣‖Y ‖ ≤ 1
}
.

We have a parallel duality structure between vector norm and matrix norm. The

operator norm ‖ · ‖op (i.e., �∞-norm of the vector of singular values) is the dual norm of

the nuclear norm ‖ · ‖∗ (i.e., �1-norm of the vector of the singular values).
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Appendix B

Hoeffding’s Standard Concentration

Inequalities

Theorem B.1 (Hoeffding’s Inequality).

Suppose that X1, X2, · · · , Xn are independent real-valued bounded random variables, such

that for each i, ai ≤ Xi ≤ bi. Let Y =
∑n

i Xi, then the following inequality

P {|Y − E{Y }| ≥ t) ≤ 2 exp

(
− 2t2∑n

i R
2
i

}

holds for all t > 0, where Ri = bi − ai.

Theorem B.2 (Hoeffding’s Inequality for i.d.d. bounded random variables [66]).

Suppose that {Xi}ni=1 is a sequence of n i.d.d. random variables, such that for each i,

|Xi| ≤ a, with variance E{X2
i } = σ2. Then the following inequality

P

{∣∣∣∣∣
n∑

i=1

X2
i − nσ2

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

4na2

}

holds for all t > 0.
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Appendix C

Geršgorin’s Disc Theorem

Theorem C.1 (Geršgorin’s [67]).

Every eigenvalue λ of an n× n complex-valued matrix A satisfies

|λ−A(i,i)| ≤
∑
j �=i

A(i,j).

Definition C.1 (Geršgorin’s Disc).

Suppose A is a n × n complex-valued matrix whose (i, j)-th element is A(i,j). Let di =∑
j �=i A(i,j). The set

Di =
{
z ∈ C : |z −A(i,i)| ≤ di

}
is called the i-th Geršgorin disc of the matrix A. This disc is the interior plus the boundary

of a circle, which has a radius di and is centered at
(
	{A(i,i)},
{A(i,i)}

)
.

Theorem C.2. The eigenvalues of an n×n complex-valued matrix A all lie in the union

of n Geršgorin discs Di, i = 1, 2, · · · , n.

Corollary C.1 (Geršgorin in Respect to Columns).

Every eigenvalue of a matrix A must lie in a Geršgorin disc corresponding to the columns

of A.
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Appendix D

Sub-Gaussian Random Variables

Definition D.1 (Sub-Gaussian random variables).

A real-valued random variable X is said to be Sub-Gaussian if there exists some constant

c > 0 such that

E{exp(tX)} ≤ exp
(
ct2/2

)
When this condition is satisfied with a particular value of c > 0, we say that X is

Sub-Gaussian with parameter c, or X ∼ Sub(c2).

Remark D.1. If X is zero-mean Gaussian random variable with variance σ2, then X is

Sub-Gaussian with parameter σ.

Corollary D.1 (Sub-Gaussian zero-mean bounded random variable).

If X is a random variable with E{X} = 0, and |X| ≤ B (i.e., zero-mean bounded

random variable) for some constant B, then X is Sub-Gaussian with parameter B, or

X ∼ Sub(B2).
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Appendix E

Upper Tail Estimate for I.I.D.

Ensembles

Theorem E.1 (Upper tail estimate for i.i.d. ensembles [89]).

Suppose that the coefficients X(i,j) of a n×n matrix X are independent, have mean zero,

and uniformly bounded in magnitude by 1. Then there exists absolute constants C, c > 0

such that

P{‖X‖op > A
√
n} ≤ C exp (−cAn) .

for all A ≥ C. In particular, we have ‖X‖op = O(
√
n) with overwhelming probability.
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[67] R. S. Varga, Geršgorin and His Circles, ser. Springer Series in Computational Math-

ematics. Berlin, Germany: Springer-Verlag, 2004, no. 36.

[68] W. Xu and B. Hassibi, “Efficient compressive sensing with deterministic guarantees

using expander graphs,” in Proc. IEEE ITW, Tahoe City, CA, USA, Sep. 2007, pp.

414–419.

[69] X. Jiang, Y. Yao, and L. Guibas, “Stable identification of cliques with restricted

sensing,” in Proc. NIPS, Dec. 2009.

[70] F. Parvaresh and B. Hassibi, “Explicit measurements with almost optimal thresh-

olds for compressed sensing,” in Proc. IEEE ICASSP, Las Vegas, NV, USA,

Mar./Apr. 2008, pp. 3853–3856.

[71] R. A. DeVore, “Deterministic construction of compressed sensing matrices,” Journal

of Complexity, vol. 23, no. 4–6, pp. 918–925, Aug.–Dec. 2007.

[72] F. Gao, R. Zhang, and Y.-C. Liang, “Optimal channel estimation and training

design for two-way relay networks,” IEEE Trans. Commun., vol. 57, no. 10, pp.

3024–3033, Oct. 2009.

[73] G. Gui, Z. Chen, Q. Meng, Q. Wan, and F. Adachi, “Compressed channel estimation

for sparse multipath two-way relay networks,” International Journal of the Physical

Sciences, vol. 6, no. 12, pp. 2782–2788, Jun. 2011.

[74] T. Matsumoto, Iterative (Turbo) Signal Processing Techniques for MIMO Signal

Detection and Equalization. Smart Antenna, State-Of-the-Art, EURASIP Book

Series on Signal Processing and Communications, Hindawi, 2005.

147



[75] P. H. Tan and L. K. Rasmussen, “Asymptotically optimal nonlinear MMSE mul-

tiuser detection based on multivariate gaussian approximation,” IEEE Trans. Com-

mun., vol. 54, no. 8, pp. 1427–1438, Aug. 2006.

[76] Y. Zhu, D. Guo, and M. L. Honig, “A message-passing approach for joint channel es-

timation, interference mitigation, and decoding,” IEEE Trans. Wireless Commun.,

vol. 8, no. 12, pp. 6008–6018, Dec. 2009.

[77] P. Schniter, “A message-passing receiver for BICM-OFDM over unknown clustered-

sparse channels,” IEEE J. Select. Topics in Signal Process., vol. 5, no. 8, pp. 1462–

1474, Dec. 2011.

[78] F. R. Kschischang, B. J. Frey, , and H.-A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498–519, Feb.

2001.

[79] N. Letzepis and A. Grant, “Bit error rate estimation for turbo decoding,” IEEE

Trans. Commun., vol. 57, no. 3, pp. 585–590, Mar. 2009.

[80] B. Raaf, W. Zirwas, K.-J. Friederichs, E. Tiirola, M. Laitila, P. Marsch, and

R. Wichman, “Vision for beyond 4G broadband radio systems,” in Proc. IEEE

PIMRC, Toronto, Canada, Sep. 2011, pp. 2369–2373.

[81] J.-A. Tsai, R. M. Buehrer, and B. D. Woerner, “The impact of AOA energy dis-

tribution on the spatial fading correlation of linear antenna array,” in Proc. IEEE

VTC, May 2002, pp. 933–937.

[82] H. Q. Ngo, T. L. Marzetta, and E. G. Larsson, “Analysis of the pilot contamination

effect in very large multicell multiuser MIMO systems for physical channel models,”

in Proc. IEEE ICASSP, Prague, May 2011.

148



[83] H. Jin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to chan-

nel estimation in large-scale multiple-antenna systems,” IEEE J. Select. Areas in

Commun., vol. 31, no. 2, pp. 264–273, Feb. 2013.

[84] S. L. H. Nguyen, A. Ghrayeb, and M. Hasna, “Iterative compressive estimation

and decoding for network-channel-coded two-way relay sparse ISI channels,” IEEE

Commun. Letters, vol. 16, no. 12, pp. 1992–1995, Dec. 2012.

[85] M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a

study of estimator tradeoffs and optimal training signals,” IEEE Trans. Signal Pro-

cess., vol. 54, no. 3, pp. 884–893, Mar. 2006.

[86] E. J. Candes and Y. Plan, “Tight oracle inequalities for low-rank matrix recovery

from a minimal number of noisy random measurements,” IEEE Trans. Inform.

Theory, vol. 57, no. 4, pp. 2342–2359, Apr. 2011.

[87] M. Rudelson and R. Vershynin, “Smallest singular value of a random rectangular

matrix,” Communications on Pure and Applied Mathematics, vol. 62, no. 15, pp.

141–155, Dec. 2009.

[88] M. Davenport, “Sub-gaussian random variables,” Connexions:

http://cnx.org/content/m37185/1.6, Apr. 2011.

[89] T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics. AMS,

2012, vol. 132.

[90] S. L. H. Nguyen and A. Ghrayeb, “Compressive sensing-based channel estimation

for massive multisuer MIMO systems,” in Proc. IEEE WCNC, Shanghai, Apr. 2013,

pp. 3119–3124.

149



[91] T. D. Bie and N. Cristianini, “Fast SDP relaxations of graph cut clustering, trans-

duction, and other combinatorial problems,” Journal of Machine Learning Research,

vol. 7, pp. 1409–1436, Dec. 2006.

[92] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,

version 2.0 beta,” http://cvxr.com/cvx, Sep. 2012.

[93] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex pro-

grams,” in Recent Advances in Learning and Control, ser. Lecture Notes in

Control and Information Sciences. Springer-Verlag Limited, 2008, pp. 95–110,

http://stanford.edu/ boyd/graph dcp.html.

[94] T. Roh, “Interior-point algorithms for sum-of-squares optimization of multidimen-

sional trigonometric polynomials,” in Proc. IEEE ICASSP, 2007, pp. 905–908.

[95] P. Jain, R. Meka, and I. S. Dhillon, “Guaranteed rank minimization via singular

value projection,” in Proc. NIPS, Vancouver, Canada, Dec. 2010, pp. 937–945.

[96] J. P. Haldar and D. Hernando, “Rank-constrained solutions to linear matrix equa-

tions using powerfactorization,” IEEE Signal Process. Letters, vol. 16, no. 7, pp.

584–587, Jul. 2009.

[97] M. P. Holmes, A. G. Gray, and C. L. Isbell, “Fast SVD for large-scale matrices,” in

Workshop on Efficient Machine Learning at NIPS, 2007.

[98] K. Li, C. Ling, and L. Gan, “Deterministic compressed-sensing matrices: Where

Toeplitz meets Golay,” in Proc. ICASSP, Prague, Czech Republic, May 2011.

[99] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compressive sensing via

belief propagation,” IEEE Trans. Signal Process., vol. 58, no. 1, pp. 269–280, Jan.

2010.

150



[100] S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, “Sparse bayesian

methods for low-rank matrix estimation,” IEEE Trans. Signal Process., vol. 60,

no. 8, pp. 3964–3977, Aug. 2012.

151


