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Abstract

Generalized Linear Models for a Dependent Aggregate Claims Model

Juliana Schulz

Key words: Aggregate Claims Model, Frequency, Severity, Loss Cost, Dependence,

Exponential Dispersion Family, Generalized Linear Models, Correlated Responses,

Conditional Model, Marginal Model

This thesis develops an alternative approach to modelling the expected loss cost of

an insurance portfolio that allows for dependence between the frequency and sever-

ity components of the aggregate claims process. The traditionally used independent

aggregate claims model is extended to define a dependent model, thus allowing for a

correlation between the claim counts and claim amounts. A Generalized Linear Model

framework is developed for the aggregate claims model in the dependent setting using

a conditional severity model and marginal frequency model. We find that the pure

premium in the dependent aggregate claims model is the product of a marginal mean

frequency, a modified marginal mean severity and a correction term. This depen-

dent modelling approach is then compared with the independent aggregate claims

model GLM structure. It is shown that the expected total loss amount derived in the

independent model is in fact a special case of the dependent model.
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Introduction

A primary objective of property casualty insurers is to adequately price the risk in-

herent in their portfolio by estimating the expected value of all future costs associated

with the insurance protection provided. The standard approach in the industry is to

study both the frequency (the number of claims) and severity (the claim amounts)

separately. The product of the expected claim frequency and severity then yields the

expected loss cost (or pure premium), which represents the total cost of all claims.

In recent years, several insurers have adopted the use of Generalized Linear Models

(GLMs) for modelling both the frequency and the severity of the claims process.

The GLM approach allows for the mean of the response variable to be expressed

in terms of a linear combination of covariates via a link function (McCullagh and

Nelder 1989). This method requires that the response variable distribution be a

member of the Exponential Family (EF). The EF distribution structure results in

a particular mean-variance relation that allows to further characterize the response

variable. Specifically, under the EF, the variance is a function of the mean.

The standard approach in the insurance industry is to develop a GLM for the claim

frequency separately from the GLM fitted to the claim severity, and then calculate

the pure premium as the product of the expected frequency and the expected average

severity. This approach inherently assumes independence between the frequency and

the severity of the claims process, an assumption that is unrealistic: Both GLMs

share common explanatory variables and are fitted to the same portfolio data. An

alternative approach is to model the total loss cost directly by means of the Tweedie

distribution, which models the aggregate claims as a Compound Poisson-gamma sum.

However, this method also assumes independence between the claim counts and claim
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sizes.

In order to address the dependence between the frequency and the severity in

the collective risk model, a multivariate modelling approach for correlated data must

be used. Fahrmeir and Tutz (2001) provide an overview of various techniques that

can be used within the multivariate modelling framework for dealing with dependent

response variables; namely conditional models, marginal models and random effects

models (Neuhaus, Hauck and Kalbfleish 1991; Agresti 1993; and Diggle, Liang and

Zeger 1994). Each of these approaches presents different methods for dealing with the

dependence between the responses, in our case frequency and severity, and entails dif-

ferent inference techniques. Song (2007) also describes several multivariate modelling

techniques for correlated responses, namely, quasi-likelihood modelling, conditional

modelling and joint modelling approaches.

In the aggregate claims model, the compound sum provides a particular mean

structure within the GLM framework that allows a different approach to modelling

the frequency and severity components under the assumption of dependence between

the two processes. Specifically, this thesis develops a multivariate modelling approach

via a modified conditional GLM. Without any assumption of independence between

the frequency and severity components, it is shown that the expected loss cost can

be written in terms of the marginal mean claim frequency, a modified marginal mean

severity and a correction term. The structure obtained for the mean total claims cost

includes the independent model as a special case.

This research provides an alternative approach for establishing insurance premi-

ums which allows for dependence between the claim frequency and severity. The

structure obtained is simple to implement and allows for a straightforward compar-

ison of the dependent model with the traditionally used independent model. More-

over, this dependent GLM approach for correlated responses provides a more accurate

representation of the insurance data and ultimately leads to more precise insurance

premiums.

This thesis is organized as follows: Chapter 1 provides an introduction to the

independent aggregate claims model and then extends the assumptions to define

2



a dependent aggregate claims model that allows for correlation between the claim

amounts and the claim counts. In Chapter 2, an overview of dispersion models, and in

particular the sub-class of the exponential dispersion family, is provided. Generalized

linear models as well as their application to insurance data are discussed in depth in

Chapter 3. Chapter 4 then goes into detail on the GLM approach for the aggregate

claims model in the independent setting while Chapter 5 extends this framework

to the dependent model. Finally, Chapter 6 provides an application of the GLM

structure for the dependent aggregate claims model using car insurance data and

compares these results to the independent model approach.
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Chapter 1

The Aggregate Claims Model

The aggregate losses incurred by an insurer represent the total claim amount paid out

over a fixed time period. The aggregate claims models can be defined as the random

sum

S =
N∑
i=1

Yi ,

where N represents the number of claims incurred, or the claim frequency, and the Y ′
i s

represent the individual claim amounts, or claim severities. Both of the components

of the aggregate claims, namely the frequency process and the severity process, are

random. Thus we have that the aggregate claims random variable S is defined in

terms of the random vector (N, Y1, ..., YN).

Consider the aggregate claims S on the individual level, that is, the total claim

cost for an individual policyholder. It is a reasonable assumption that for a given

policyholder, the individual claim severities, Yi, will be independent and identically

distributed. Often, for simplicity, it is further assumed that the claim counts, N , and

the individual claim amounts, Yi, are also independent, thus yielding the independent

aggregate claims model. However, this simplifying assumption is unrealistic and does

not provide an accurate representation of the total loss amount as the claim severities

are likely to be dependent on the claim counts. For example, a policyholder that

submits several claims might only generate small claim amounts while an insured

who makes only one claim might in fact submit a higher-than-average claim amount.
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Such associations between claim frequency and severity are not accounted for in the

independent aggregate claims model. Accordingly, there is a need to extend the

aggregate loss model to the dependent case.

The goal of an insurer is to charge an adequate premium for the insurance cov-

erage provided to policyholders. Consequently, an insurer is interested in estimating

the expected value of the aggregate claims amount for each individual, as well as

the variance of the loss cost so as to quantify the risk ensued by the policyholder.

Obviously, premiums will differ according to the assumptions made in the model as

well as the modelling techniques used for the estimation. As previously mentioned,

typically, the estimated expected loss cost is derived under the assumption that the

frequency and severity components are independent. Under these assumptions, we

have what we will refer to as the independent aggregate claims model. This chapter

will begin by defining the aggregate claims model under independence and then ex-

tend this definition to a dependent model by allowing the individual claim amounts

to be dependent on the claim counts.

1.1 Aggregate Claims Under Independence

Under the assumption of independence in the aggregate claims model, the components

of the random vector (N, Y1, ..., YN) are assumed to be mutually independent. Here

we will use the model formulation as defined in Klugman, Panjer, and Willmot (2008).

More formally, suppose that the following assumptions hold:

1. Given the claim count, the claim severities are conditionally i.i.d.; that is, con-

ditional on N = n, the random variables Y1, ..., Yn are i.i.d.

2. The claim severities are independent of the claim frequency. Thus, conditional

on N = n, the random claim amounts Y1, ..., Yn will not depend on N and,

moreover, the distribution of N does not depend on the values of the claim

amounts Y1, ..., YN .
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Under the above independence assumption on the frequency and severity compo-

nents of the aggregate claims model, the random variable S is simply a compound sum.

This compound sum is defined in terms of a counting process and a jump process. In

the insurance setting, the standard approach to modelling the aggregate losses is to

model the claim frequency as a Poisson random variable and the claim severities by

a gamma distribution. In the particular case where N ∼ Poisson and Yi ∼ gamma,

we have that S follows a Compound Poisson-gamma (CPG) distribution.

In the independence setting, the distribution of the aggregate loss random variable

S can be obtained directly from the marginals, that is, from the marginal distribution

of N and the marginal distribution of the Y ′
i s. Once a separate model has been

developed for both the frequency and severity components, the distribution of the

aggregate losses can be derived by conditioning on N . It follows from the assumptions

of mutual independence that the cumulative distribution function of S is:

FS(s) = P(S ≤ s) =
∞∑
n=0

P(S ≤ s | N = n)× P(N = n), s ≥ 0,

where the probability P(S ≤ s | N = n) is often simplified for certain choices of

distribution for Yi. If we return to the CPG case, we have that conditional on N = n,

S is the sum of n i.i.d. gamma random variables so that conditionally, S is also

gamma distributed.

Similarly, under the assumption of mutual independence and i.i.d. claim severities,

the probability generating function of S can be derived as follows:

PS(t) = E[tS] = E

[
t
∑N

i=1 Yi

]
= E

[
E

[
t
∑N

i=1 Yi |N
]]

= E
[
E
[
tY1 · · · tYN |N]] = E

[
N∏
i=1

E
[
tYi |N]

]
= E

[[
E[tY |N ]

]N]

= E

[[
E[tY ]

]N]
= E

[
[PY (t)]

N
]
= PN (PY (t)) ,

for t ∈ R such that tS has finite expectation.

In the same way, it follows that the moment generating function of S is:

MS(t) = MN [lnMY (t)],

6



wherever MY (t) exists.

Using the moment generating function, we can derive the first and second moments

of the aggregate claims random variable:

E(S) =
d

dt
MS(t)

∣∣
t=0

=
d

dt
{MN [lnMY (t)]}

∣∣
t=0

=

{
M ′

N [lnMY (t)]× M ′
Y (t)

MY (t)

} ∣∣∣
t=0

= M ′
N [lnMY (0)]× M ′

Y (0)

MY (0)
= M ′

N [ln(1))]×
M ′

Y (t)

1
= M ′

N(0)×M ′
Y (0)

= E(N) E(Y )

and

E(S2) =
d2

dt2
MS(t)

∣∣
t=0

=
d2

dt2
{MN [lnMY (t)]}

∣∣
t=0

=
d

dt

{
M ′

N [lnMY (t)]× M ′
Y (t)

MY (t)

} ∣∣∣
t=0

=
{
M ′′

N [lnMY (t)]×
[
M ′

Y (t)

MY (t)

]2
+M ′

N [lnMY (t)]

×M ′′
Y (t)MY (t)− [M ′

Y (t)]
2

[MY (t)]2
}∣∣∣

t=0

= M ′′
N [lnMY (0)]×

[
M ′

Y (0)

MY (0)

]2
+M ′

N [lnMY (0)]

×M ′′
Y (0)MY (0)− [M ′

Y (0)]
2

[MY (0)]2

= M ′′
N [ln(1)]×

[
E(Y )

1

]2
+M ′

N [ln(1))]×
E(Y 2)× 1− [E(Y )]2

12

= E(N2)× E(Y )2 + E(N)× [E(Y 2)− [E(Y )]2]

= E(N2)E(Y )2 + E(N)Var(Y ),

which implies that

Var(S) = E(S2)− [E(S)]2 = E(N2)E(Y )2 + E(N)Var(Y )− [E(N) E(Y )]2

= E(Y )2[E(N2)− (E(N))2] + E(N)Var(Y )

= [E(Y )2]Var(N) + E(N)Var(Y ).

Thus, we have that the first two moments of S are determined by the first two

moments of the frequency and severity respectively.
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Example 1.1.1. Compound Poisson-gamma

Return to the case where the aggregate losses follow a Compound Poisson gamma with

N ∼ Poisson(λ) and Yi ∼ gamma(α, β). Conditional on N = n, S is the sum of n

i.i.d. gamma distributed random variables and so it is distributed as a gamma(nα, β).

Thus, we have the following results for the aggregate loss random variable:

i) the cumulative distribution function of S is given by

FS(s) =
∞∑
n=0

∫ s

0

βαn

yΓ(αn)
yαne−yβ × λne−λ

n!
dy, s > 0

and

FS(0) = P(N = 0) = e−λ.

ii) the moment generating function of S is given by

MS(t) = MN [lnMY (t)],

where MN(t) = exp(λ(et − 1)), and MY (t) =

(
1− t

β

)−α

for t < β; thus

MS(t) = exp[λ{(1− t/β)−α − 1}], t < β.

iii) the first and second moments of S are

E(S) = E(N) E(Y ) = λ
α

β
,

and

E(S2) = E(N2)E(Y )2 + E(N)Var(Y ) = (λ+ λ2)×
(
α

β

)2

+ λ

(
α

β2

)
,

implying that the variance is

Var(S) = [E(Y )2]Var(N) + E(N)Var(Y ) = λ

(
α + α2

β2

)
.

The simplified expressions obtained for the first two moments of the random vari-

able S in the independent model make the estimation of the expected loss cost for

insurance purposes more straightforward. A model for the claim counts and claim

8



amounts can be developed separately to ultimately obtain estimates for E[N ] and

E[Yi], respectively. Then, under the assumption of the independent aggregate claims

model, the pure premium is simply E[S] = E[N ]E[Yi]. Obviously, the simplicity of

this model makes it appealing and practical to implement.

Nonetheless, this model fails to account for the potential correlation between the

severities Yi and the frequency N . Extending the independent model to a dependent

model will allow to better quantify the risk involved in the aggregate claims model,

thus allowing to obtain a more accurate estimation of the expected loss cost, as well

as its variance.

1.2 Aggregate Claims Under Dependence

Let us now define the aggregate claims model under dependence, thus relaxing the

assumption of independence between the claim sizes and claim counts. We will con-

tinue to assume that the individual claim amounts Y1, ..., YN are conditionally i.i.d.

given N , however, now these individual severities are assumed to be dependent on

the claim count N .

Note that while modelling the claim frequency and severity separately, as done in

the independent model, allows for greater insight into each of these processes, this

approach ignores the possible association between the two components. In cases where

there is a dependence between the claim counts and amounts, the independent model

approach can lead to inaccurate results. Without any assumptions of independence

between the frequency and severity, the first and second moments of the aggregate

claims cannot simply be written in terms of the marginal moments of the claim counts

and claim amounts.

Allowing for dependence complicates the model in the sense that knowing the

marginal distributions of the claim frequency and severity is no longer sufficient to

define the distribution of the aggregate losses. Since S is defined in terms of the ran-

dom vector (N, Y1, ..., YN), a model for S can be defined through the joint distribution

of the frequency and severity components such that the joint density integrates to

9



the appropriate marginal models.

The aggregate claims size can be regarded as a bivariate random vector S = (N, Y )

where N represents the claim frequency and Y , the claim severity. In modelling the

aggregate losses, we are then assuming that the observations are realizations of the

bivariate random vector S ∼ p(s;θ). As discussed in Song (2007), the modelling

objective is then to find estimates of the parameter vector θ. In the dependence

setting, the parameter vector θ must include a correlation structure to characterize

the dependence between the components.

Note that for the multivariate normal distribution, the joint density is fully defined

in terms of the first and second moments, i.e. a mean vector μ and a covariance

matrix Σ. As Song (2007) points out, for non-normal correlated random variables,

which is the case for insurance data, it is generally not possible to determine the joint

distribution based on only the first and second moments.

As mentioned in the introduction, there are several approaches that can be taken

in developing the aggregate loss cost in the dependent model, both in the assumptions

that define the model as well as in the actual modelling techniques used. In this thesis,

we will assume that the claim amounts Yi are again conditionally i.i.d., however, now

we will assume that they are dependent on the claim count N .

In modelling the expected aggregate claims size, the focus is on obtaining an

estimate of the mean rather than defining a multivariate probability density for the

aggregate amount. Thus, rather than defining a joint density, we can instead use

an inference approach that will allow for modelling the mean while incorporating a

dependence structure between the marginal components. This will be accomplished

through a generalized linear modelling framework. More specifically, we will construct

a particular GLM structure for the mean loss cost in the dependent aggregate claims

model involving conditional and marginal means along with a correction term that

encompasses the dependence.
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Chapter 2

Dispersion Models

The family of dispersion models (DM) is an important class of probability distribu-

tions that encompasses many commonly used random variables, including the Normal

distribution. The structure of the DM density function is flexible and implies many

nice properties. The exponential dispersion models are an important subclass of the

DM family that is of particular importance for modelling insurance data. This chapter

will provide an introduction to dispersion models as well as the subclass of exponen-

tial dispersion models and some important properties of these models, as defined by

Jørgensen (1997). Note that Song (2007) also provides a good overview of dispersion

models.

Let us first consider the normal distribution: the density of Y ∼ N (μ, σ2) is

fY (y;μ, σ
2) =

1√
2πσ2

exp

{
− 1

2σ2
(y − μ)2

}
, y ∈ R. (2.1)

Notice that the quantity (y−μ)2 essentially measures the distance of the observation

y from its mean μ. Moreover, the quantity
1√
2πσ2

does not depend on the mean μ.

Building on this particular structure, Jørgensen extends the discrepancy (y − μ)2 to

a more general deviance function d(y;μ) as to define a broader class of distributions

known as Dispersion Models (DM). The class of DM includes several distributions,

both discrete and continuous, including the Poisson, binomial and negative binomial

as well as the gamma, inverse Gaussian, and normal distributions, to name a few.

This family of distributions is of particular importance in the generalized linear model
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framework, as will be shown in Chapter 3.

2.1 Definitions

Definition 2.1.1. The (reproductive) dispersion model DM(μ, σ2) is a family of

distributions with probability density functions defined as

fY (y;μ, σ
2) = a(y; σ2) exp

{
− 1

2σ2
d(y, μ)

}
, y ∈ C, (2.2)

where

μ ∈ Ω is called the location parameter,

σ2 > 0 is called the dispersion parameter,

a(y; σ2) is a normalizing term, and

d(y, μ) is called the deviance function.

Note that the normalizing term a(y; σ2) is independent of μ, thus allowing for

inference on μ to be carried out separately from that on σ2. This follows from the

orthogonality of the likelihood, that is, the Fisher Information matrix for the pa-

rameters (μ, σ2) is diagonal. This property will greatly facilitate the estimation of

parameters for members of the DM family.

Each distribution that belongs to the DM family is uniquely determined by the

deviance function d(y;μ) and is fully parametrized by the location parameter, μ,

and the dispersion parameter, σ2. Many commonly used distributions can be re-

parametrized as a DM.

The deviance function d(·; ·) on (y, μ) ∈ C × Ω is referred to as a unit deviance

function if:

i) d(y; y) = 0, ∀y ∈ Ω;

ii) d(y;μ) > 0, ∀y 	= μ.

12



The unit deviance function is regular if it is twice continuously differentiable with

respect to (y, μ) on C × Ω and

∂2

∂μ2
d(y; y) =

∂2

∂μ2
d(y;μ)|μ=y > 0, ∀y ∈ C.

The unit variance function V : Ω −→ (0,∞) for a regular unit deviance function

d(y;μ) is defined as

V (μ) =
2

∂2

∂μ2
d(y;μ)

∣∣
y=μ

, ∀μ ∈ Ω.

Example 2.1.1. Normal

For Y ∼ N (μ, σ2), we have that the unit deviance is d(y;μ) = (y−μ)2 for y ∈ R and

μ ∈ R. It is easy to verify that the unit deviance is regular. The unit deviance is then

V (μ) =
2

2
= 1.

As previously mentioned, the dispersion models have many nice properties. The

following propositions present a few of them.

Proposition 2.1.1. If d is a regular unit deviance function, then

∂2

∂y2
d(μ;μ) =

∂2

∂μ2
d(μ;μ) = − ∂2

∂y∂μ
d(μ;μ), ∀μ ∈ Ω.

Proposition 2.1.2. Saddlepoint Approximation As σ2 → 0, the density of a

regular DM can be approximated by:

fY (y;μ, σ
2) � {2πσ2V (y)

}−1
2 exp

{
− 1

2σ2
d(y;μ)

}
.

Table 2.1 provides details on some members of the Dispersion Models family.

2.2 Exponential Dispersion Models

The exponential dispersion (ED) family of models are an important subclass of the

DM family of distributions. It includes both continuous and discrete distributions,

such as the gamma and Poisson distributions. The ED models are a special case of

13



Table 2.1: Examples of Dispersion Models

Distribution d(y;μ) V (μ) C Ω

Normal (y − μ)2 1 (−∞,∞) (−∞,∞)

Poisson 2

(
y ln

y

μ
− y + μ

)
μ {0, 1, ...} (0,∞)

Binomial 2

{
y ln

y

μ
+ (n− y) ln

n− y

n− μ

}
μ(1− μ) {0, 1, ..., n} (0, 1)

Negative Binomial 2

{
y ln

y

μ
+ (1− y) ln

1− y

1− μ

}
μ(1 + μ) {0, 1, ...} (0,∞)

Gamma 2

(
y

μ
− ln

y

μ
− 1

)
μ2 (0,∞) (0,∞)

Inverse Gaussian
(y − μ)2

yμ2
μ3 (0,∞) (0,∞)

the DM, where the probability density function takes on a certain form. As previ-

ously mentioned, the exponential dispersion models are of particular importance for

studying insurance data. Both count data, taking on positive integer values, and

loss data, taking on values on the positive real line, can be written in terms of a ED

model. Furthermore, the structure of the ED density allows for data to be modelled

in the more flexible framework of generalized linear models (GLMs), which will be

discussed in detail in the next chapter.

The framework of GLMs, as defined by McCullagh and Nelder (1989), is based on

the assumption that the response variable Y is a member of the exponential family.

They define the pdf of the response variable Y as follows:

Definition 2.2.1. A response variable Y ∼ ED(θ, φ) has density

fY (y; θ, φ) = exp

[
yθ − κ(θ)

a(φ)
+ C(y, φ)

]
, y ∈ C, (2.3)

for specific functions κ, a, C where:

θ is called the canonical parameter,

φ is called the dispersion parameter with φ > 0,

κ(θ) is called the cumulant function.
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When φ is known, this distribution is a member of the exponential family while

when φ is unknown it is part of the exponential dispersion (ED) family.

It can be shown that for a certain unit deviance function d(y, μ) and normalizing

term C(y, φ), the ED density can be rewritten in the same form of the DM as in

definition (2.1.1). Let λ =
1

a(φ)
, then the ED density can be rewritten as:

fY (y; θ, λ) = c(y;λ) exp[λ{θy − κ(θ)}], y ∈ C, (2.4)

where the function c(y;λ) is a normalizing term and the parameter λ is referred to

as the index parameter with index set Λ = {λ > 0}.
For Y ∼ ED, there is a relationship between the mean and variance of Y . Let

l(θ, φ; y) = ln fY (y; θ, φ) denote the log likelihood function. Under standard condi-

tions, we have that:

i) EY

[
∂

∂θ
l(θ, φ; y)

]
= EY [l̇(θ, φ; y)] = 0,

ii) EY

[
∂2

∂θ2
l(θ, φ; y)

]
= EY [l̈(θ, φ; y)] = −EY [l̇(θ, φ; y)

2].

Thus, for the exponential family we have that:

l(θ, φ; y) =
yθ − κ(θ)

a(φ)
+ C(y, φ),

l̇(θ, φ; y) =
y − κ̇(θ)

a(φ)
,

l̈(θ, φ; y) =
−κ̈(θ)

a(φ)
.

It then follows from i) that:

EY

[
l̇(θ, φ; y)

]
= EY

[
Y − κ̇(θ)

a(φ)

]
=

E(Y )− κ̇(θ)

a(φ)
= 0,

which implies that

E(Y ) = κ̇(θ).
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In the same way, from ii) we have that:

EY

[
l̈(θ, φ; y)

]
+ EY

[
l̇(θ, φ; y)2

]
= EY

[−κ̈(θ)

a(φ)

]
+ EY

[(
Y − κ̇(θ)

a(φ)

)2
]

=
−κ̈(θ)

a(φ)
+ EY

[(
Y − E(Y )

a(φ)

)2
]

=
−κ̈(θ)

a(φ)
+

Var(Y )

a(φ)2
= 0,

which implies that

Var(Y ) = a(φ)κ̈(θ).

We refer to τ(θ) = κ̇(θ) = E(Y ) = μ as the mean function. Notice that the

variance is a function of the canonical parameter θ, and thus it is also a function of

the mean μ. It follows that we can write Var(Y ) = a(φ)V (μ) where V (μ) = κ̈(θ)

is referred to as the variance function, which coincides with the variance function

previously discussed.

Note that the mean mapping τ(θ) = κ̇(θ) = μ is strictly increasing since the

variance Var(Y ) = λκ̈(θ) = λτ̇(θ) > 0 and thus τ̇(θ) > 0. Consequently, the inverse

of the mean mapping exists and so we can write the canonical parameter θ in terms

of the mean μ as θ = τ−1(μ). The ED density can then be re-parametrized in terms

of the parameters (μ, σ2) for μ = τ(θ) and σ2 =
1

λ
as follows:

fY (y;μ, σ
2) = c(y; σ2) exp

[
1

σ2
{yτ−1(μ)− κ(τ−1(μ))}

]
, y ∈ C. (2.5)

We also have that for the ED family, the unit variance function can be written in

terms of the mean mapping function:

V (μ) = τ̇(τ−1(μ)), μ ∈ Ω.

2.2.1 Reproductive and Additive ED Models

The form of the ED in (2.5) is referred to as the reproductive exponential dispersion

model, denoted ED(μ, σ2). Another form of the ED family is the additive exponential

dispersion model, denoted ED∗(θ, λ) with density taking the form:

f ∗
Z(z; θ, λ) = c∗(z;λ) exp{θz − λκ(θ)}, y ∈ C. (2.6)
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These two representations of the ED family are essentially equivalent. The duality

transformation links the ED(μ, σ2) model to the ED∗(θ, λ):

Z ∼ ED∗(θ, λ) ⇒ Y = Z/λ ∼ ED(μ, σ2)

for μ = τ(θ), σ2 = 1/λ, and

Y ∼ ED(μ, σ2) ⇒ Z = Y/σ2 ∼ ED∗(θ, λ)

for θ = τ−1(μ), λ = 1/σ2. Thus we have that the mean and variance of the additive

exponential dispersion family are given by:

E[Z] = μ∗ = λτ(θ),

Var[Z] = λV (μ∗/λ).

2.2.2 Properties of the ED models

Convolution

A nice property of the ED family is that it is closed under convolutions.

Proposition 2.2.1. For the additive exponential dispersion family, if Z1, ..., Zn are

independent with Zi ∼ ED∗(θ, λi) then

Z+ = Z1 + · · ·+ Zn ∼ ED∗(θ, λ1 + · · ·+ λn).

Proposition 2.2.2. For the reproductive exponential dispersion family, if Y1, ..., Yn

are mutually independent with Yi ∼ ED

(
μ,

σ2

wi

)
where the wi are positive weights,

then
1

w+

n∑
i=1

wiYi ∼ ED

(
μ,

σ2

w+

)
,

where w+ = w1 + · · ·+ wn.

Furthermore, we have the following proposition concerning the deconvolution of

the additive exponential dispersion models.
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Proposition 2.2.3. The family of additive exponential dispersion models is infinitely

divisible if and only if the index parameter set Λ = (0,∞). So for Z ∼ ED∗(θ, λ) we

have that there exists i.i.d. random variables Z1, ..., Zn such that Z
d
=Z1 + · · · + Zn,

where each Zi ∼ ED∗(θ, λ/n).

Moment Generating Function

For a random variable Y , we denote the moment generating function as MY (t) =

E[etY ] and the cumulant generating function as KY (t) = logMY (t). For the family

of natural exponential models (i.e. exponential dispersion model with λ known) with

density of the form

fY (y; θ) = c(y) exp{θy − κ(θ)}, y ∈ C,

the cumulant generating function can be found through the cumulant function κ(θ)

as:

KY (t; θ) = κ(θ + t)− κ(θ).

It then follows that the moment generating function is:

MY (t; θ) = exp{Kθ(t)} = exp{κ(θ + t)− κ(θ)}.

Recall that for the additive exponential family, the exponent of the pdf has the

form exp{θz − λκ(θ)}, thus corresponding to a cumulant function λκ(θ). It then

follows that for the ED∗(θ, λ) family, the cumulant generating function is

K∗(t; θ, λ) = λ{κ(θ + t)− κ(θ)}

and the moment generating function is then

M∗(t; θ, λ) = exp[K∗(t; θ, λ] = exp[λ{κ(θ + t)− κ(θ)}].

Then, for the reproductive exponential family, by the duality transformation we have

that Y = Z/λ ∼ ED(μ, σ2) and so the cumulant generating function of Y is then

K(t; θ, λ) = λ{κ(θ + t/λ)− κ(θ)}
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and the moment generating function is

M(t; θ, λ) = exp[K(t; θ, λ)] = exp[λ{κ(θ + t/λ)− κ(θ)}].

Note that the domain of the generating functions KY (t; θ) and MY (t; θ) is the set

{t ∈ R : E[etY ] < ∞}. If the expectation E[etY ] is not finite, then KY (t; θ) and

MY (t; θ) are defined as infinity.

We can see that the mgf is a function of both the canonical parameter θ and the

dispersion parameter λ. Since the mean μ can be written in terms of the canonical

parameter θ via the mean mapping τ , the moment generating function of the ED

family is also a function of the mean. It follows that the moment generating function

for the ED family can be obtained directly from the cumulant function κ. This allows

to define higher moments in terms of the mean.

Example 2.2.1. Poisson

Y ∼ Poisson(μ) has pdf:

fY (y;μ) =
e−μμy

y!
=

1

y!
exp {y ln(μ)− μ} , y ∈ N.

Hence the Poisson distribution is a member of the natural exponential family with

known dispersion parameter λ = 1, where:

θ = ln(μ) is the canonical parameter,

κ(θ) = μ = eθ is the cumulant function,

d(y;μ) = 2

{
y ln

(
y

μ

)
− y + μ

}
is the unit deviance,

V (μ) =
2

∂2

∂μ2
d(y;μ)

∣∣
μ=y

=
2

2/μ
= μ is the unit variance function.

The pdf can be rewritten in terms of the canonical parameter θ as

fY (y; θ) =
1

y!
exp

{
yθ − eθ

}
, y ∈ N.

The mean and variance can be derived through the cumulant function:
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E(Y ) = κ̇(θ) = eθ = μ,

Var(Y ) = a(φ)κ̈(θ) = eθ = μ,

implying that V (μ) = μ is the variance function, as derived above.

Since Y is a member of the natural exponential family, the cumulant generating

function can be derived through the cumulant function as:

K(t; θ) = κ(θ + t)− κ(θ) = exp(θ + t)− exp(θ)

= exp(θ){exp(t)− 1}, t ∈ R,

which in terms of μ = eθ is K(t;μ) = μ{exp(t)−1}. The moment generating function

is thus

M(t; θ) = exp {K(t; θ)} = exp
{
exp(θ){exp(t)− 1}}, t ∈ R

or, in terms of μ,

M(t;μ) = exp
{
μ{exp(t)− 1}}, t ∈ R.

Note that the Poisson distribution is also a member of the family of additive expo-

nential dispersion models.

Example 2.2.2. Gamma

Y ∼ gamma(α, β), has pdf:

fY (y;α, β) =
βα

Γ(α)
yα−1e−βy = exp

{
(α− 1) ln y − βy + α ln(β)− ln Γ(α)

}
, y > 0.

Consider the following re-parametrization: λ = α, μ = α
β
, then the probability density

function can be written as:

fY (y;μ, λ) =
1

Γ(λ)

(
λ

μ

)λ

yλ−1 exp

(
−λy

μ

)
, y > 0.

For σ2 =
1

λ
, the density can again be rewritten in terms of the parameters μ and σ2

as follows:

fY (y;μ, σ
2) = a(y; σ2) exp

{
− 1

σ2

(
y

μ
− ln

y

μ
− 1

)}
, y > 0,
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where the function

a(y; σ2) = a(y; 1/λ) =
λλe−λ

yΓ(λ)
, y > 0,

which shows that the gamma distribution is a member of the reproductive exponential

dispersion family with:

θ = − 1

μ
is the canonical parameter,

κ(θ) = − ln

(
1

μ

)
= − ln(−θ) is the cumulant function,

d(y;μ) = 2

(
y

μ
− ln

y

μ
− 1

)
is the unit deviance,

V (μ) =
2

∂2

∂μ2
d(y;μ)

∣∣
μ=y

=
2

2/μ2
= μ2 is the unit variance function.

The mean and variance can be derived through the cumulant function:

E(Y ) = κ̇(θ) = (−1)
−1

−θ
=

−1

θ
= μ =

α

β
,

Var(Y ) = a(φ)κ̈(θ) =
1

ν

1

θ2
=

1

α
μ2 =

α

β2
,

implying that V (μ) = μ2 is the variance function, as shown further above.

Since Y is a member of the reproductive exponential dispersion family, the cumu-

lant generating function is derived through the cumulant function as:

K(t; θ, λ) = λ {κ(θ + t/λ)− κ(θ)} = λ
{− ln(−(θ + t/λ))− (− ln(−θ)

)}
= −λ {ln(−(θ + t/λ))− ln(−θ)} = −λ ln

(−(θ + t/λ)

−θ

)

= −λ ln

(
λθ + t

λθ

)
= ln

{(
λθ + t

λθ

)−λ
}

= ln

{(
1 +

t

λθ

)−λ
}
, t > −λθ.

The moment generating function is then

M(t; θ, λ) = expK(t; θ, λ) =

(
1 +

t

λθ

)−λ

, t > −λθ.

Tables 2.2 and 2.3 list some continuous and discrete members of the exponential

dispersion models family.
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Table 2.2: Some Continuous Exponential Dispersion Models

Distribution c(y;λ) κ(θ) τ (θ) V (μ)

Normal N (μ, σ2)

√
λ

2π
e
−λy2

2
θ2

2
θ 1

Gamma Ga(μ, σ2)
λλyλ−1

Γ(λ)
− ln(−θ)

−1

θ
μ2

Table 2.3: Some Discrete Exponential Dispersion Models

Distribution c∗(y;λ) κ(θ) τ (θ) V (μ)

Poisson Po(eθ)
1

z!
eθ eθ μ

Binomial Bi(λ, μ)
(
λ
z

)
ln(1 + eθ)

eθ

1 + eθ
μ(1− μ)

Negative Binomial Nb(p, λ)
(
λ+z−1

z

) − ln(1− eθ)
eθ

1− eθ
μ(1 + μ)

2.2.3 Tweedie Models

The Tweedie model is a subclass of the exponential dispersion family characterized as

being closed under scale transformations. The Tweedie family, denoted by Twp(μ, σ
2)

in terms of the reproductive exponential dispersion model, has unit variance function

defined as:

Vp(μ) = μp, μ ∈ Ωp,

where the parameter p is referred to as the shape parameter. It follows that for

Y ∼ Twp(μ, σ
2), Y has mean μ and variance Var(Y ) = σ2μp. Jørgensen (1997) shows

that there exists exponential dispersion models with unit variance functions defined

as the power function V (μ) = μp for all p ∈ R except 0 < p < 1.

The following theorem from Jørgensen characterizes the Tweedie class of distri-

butions.

Theorem 2.2.1. Let ED(μ, σ2) denote a reproductive ED model such that 1 ∈ Ω and
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and V (1) = 1. If the model is closed with respect to scale transformations, such that

there exists a function f : R+ × Λ−1 → Λ−1 for which

c× ED(μ, σ2) = ED{cμ, f(c, σ2)}, ∀c > 0,

then:

1. ED(μ, σ2) is a Tweedie model for some p ∈ R,

2. f(c, σ2) = c2−pσ2,

3. The mean domain is Ω = R for p = 0 and Ω = R+ for p 	= 0,

4. The model is infinitely divisible.

Table 2.4 provides a summary of the distributions that belong to the Tweedie

subclass of exponential dispersion models.

The Tweedie ED models are of particular interest for the analysis of the aggregate

loss cost in the independent model as described in Chapter 1. For N ∼ Poisson and

Yi ∼ gamma the aggregate claims S is a Compound Poisson-gamma and follows a

Tweedie distribution with 1 < p < 2.
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Table 2.4: Tweedie Exponential Dispersion Models

Distribution p Support Ω Mean Θ Canonical

Domain Parameter Domain

Extreme stable p < 0 R R+ R0

Normal p = 0 R R R

N/A 0 < p < 1 - R+ R0

Poisson p = 1 N0 R+ R

Compound Poisson 1 < p < 2 R0 R+ R−

Gamma p = 2 R+ R+ R−

Positive stable 2 < p < 3 R+ R+ −R0

Inverse Gaussian p = 3 R+ R+ −R0

Positive stable p > 3 R+ R+ −R0

Extreme stable p = ∞ R R R−

Note: −R0 = (−∞, 0]
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Chapter 3

Generalized Linear Models

Classical linear models attempt to fit a model to the mean response of some observed

variable Y in the form of a linear predictor. Generalized linear models (GLMs) are

an extension to this approach. The GLM framework allows for greater flexibility in

modelling observations in several ways. Firstly, rather than writing the mean as a

simple linear function of covariates and regression parameters, GLMs allow for a non-

linear function of the mean to be modelled in terms of a linear predictor. Secondly,

classical linear regression assumes that the error terms are normally distributed with

mean zero and constant variance. Generalized linear models relax this assumption by

allowing the error distribution to be a member of the exponential dispersion family,

thus greatly broadening the set of distributions that can be fit to the data. Moreover,

classical linear models treat the mean and variance structure of the response variable

separately. Generalized linear models, on the other hand, allow for a mean-variance

relation which is inherent in the exponential dispersion models density structure.

Thus, in modelling the mean through a GLM, we are also indirectly modelling the

variance.

GLMs are of particular importance for insurance data as this framework allows to

model non-normal observations. For instance, in the aggregate claims model, both the

frequency and severity components do not follow a normal distribution: claim counts

are positive integer valued random quantities (e.g. Poisson distributed observations)

and claim amounts can take on positive, continuous, right-skewed values (e.g. gamma
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distributed observations).

Recall the representation in McCullagh and Nelder (1989) of the exponential dis-

persion family given in Chapter 2:

fY (y; θ, φ) = exp

[
yθ − κ(θ)

a(φ)
+ C(y, φ)

]
.

The GLM framework assumes that the response variable Y is a member of the

ED(μ, φ) family. In both the classical linear model and the generalized linear model,

the goal is to model the mean response, conditional on a given set of covariates. That

is, for a p × 1 vector of known covariates X = (x1, ..., xp)
�, the model will define

E[Y |X] in terms of a linear predictor η such that:

η = X�β =

p∑
k=1

xkβk,

where β is a p× 1 vector of unknown regression parameters.

As previously mentioned, the classical linear model assumes normal observations

and models the mean response as E[Y |X] = μ = η = X�β. GLMs no longer restrict

the responses to be linearly associated to the predictor η, but rather allow for a

function of the mean to be modelled in terms of the linear predictor. For a link

function g, the GLM formulation is g {E[Y |X]} = g{μ} = η = X�β. This added

flexibility allows GLMs to fit a variety of data, particularly insurance data.

3.1 The Model

The GLM framework, as discussed in McCullagh and Nelder(1989), assumes that the

observations y1, ..., yn are independent and that Yi ∼ ED(μi, φ), so the mean varies

with each observation, while the dispersion is assumed the same for all observations,

but unknown. The model expresses the conditional mean of the response Y , given

the corresponding vector of covariates X via a known link function g as:

g {E[Y | X]} = g{μ} = η = X�β =

p∑
k=1

xkβk,
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where the link g is any monotonic differentiable function. Thus, the mean is a function

of the linear predictor:

μ = E[Y | X] = g−1(η) = g−1(X�β).

The goal of the GLM approach is to estimate the regression parameters β to ulti-

mately predict the response variable Y .

3.1.1 Maximum Likelihood Estimation for the ED Family

Following the notation of McCullagh and Nelder (1989) for the exponential dispersion

family, we have that for independent observations (yi,xi); for i = 1, ..., n, where the

yi are independent realizations of Yi ∼ ED(μi, φ), the likelihood function for the

canonical parameter vector θ = (θ1, ..., θn)
� and the dispersion parameter φ is given

as:

L(θ, φ; y) =
n∏

i=1

fY (yi; θi, φ) =
n∏

i=1

exp

[
yiθi − κ(θi)

ai(φ)
+ C(yi, φ)

]
.

It then follows that the log-likelihood function is

�(θ, φ; y) = lnL(θ, φ; y) =
n∑

i=1

fY (yi; θi, φ) =
n∑

i=1

[
yiθi − κ(θi)

ai(φ)
+ C(yi, φ)

]

=
n∑

i=1

{
yiθi − κ(θi)

ai(φ)

}
+

n∑
i=1

C(yi, φ).

As mentioned in Chapter 2, in taking derivatives of �(θ, φ; y) with respect to the θ′is,

the dispersion term φ factors out for some ai(φ) functions so that the estimation of

the canonical parameters θi can be carried out separately from that for the parameter

φ.

The score functions are then defined as the system of partial derivatives of the

log-likelihood:

s(θ; y) =
∂

∂θ
�(θ, φ; y).

The maximum likelihood estimate θ̂ is then found as the solution to the system of

equations s(θ; y) = 0.

For a given observation yi, write θi = θ. Then the canonical parameter θ is related

to the mean μ through the mean mapping τ(θ) = κ̇(θ) = μ. Thus, by the invariance
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property of maximum likelihood estimators, the MLE θ̂ will also give the MLE for

the mean as μ̂ = τ(θ̂).

The goal of the GLM is to find the maximum likelihood estimates for the regression

parameters β. The model framework relates the mean μ to the linear predictor

η = X�β through the link function. Thus we have the following relation:

μ = τ(θ) = g−1(η) = g−1{X�β},

which implies that

θ = τ−1(μ) = τ−1 [g−1(η)] = τ−1
[
g−1(X�β)

]
, and

κ(θ) = κ
{
τ−1

[
g−1(X�β)

]}
.

The log-likelihood function in terms of the regression parameters then becomes:

�(β;φ,y) =
n∑

i=1

{yiθi − κ(θi)}
ai(φ)

+
n∑

i=1

C(yi, φ)

=
n∑

i=1

{yiτ−1 [g−1(xiβ)]− κ(τ−1 [g−1(xiβ)])}
ai(φ)

+
n∑

i=1

C(yi, φ).

Then the MLE for regression parameter βj associated with the covariate xij is the

solution to the score equation:

∂

∂βj

�(β;φ,y) = 0.

The GLM with link function g sets g(μi) = g (κ̇(θi)) = ηi = xiβ. Recall from

Chapter 2 that μi = τ(θi) ⇔ θi = τ−1(μi). It follows that
∂

∂θi
τ(θi) =

∂μi

∂θi
so that

∂μi

∂θi
= τ̇(θi) = τ̇(τ−1(μi)). We also showed in Chapter 2 that V (μi) = κ̈(θi) = τ̇(θi)

so that V (μi) = τ̇(τ−1(μi)) which is also equal to V (μi) =
∂μi

∂θi
. Thus we have that:

∂g(μi)

∂βj

=
∂g(μi)

∂μi

∂μi

∂θi

∂θi
∂βj

= ġ(μi)V (μi)
∂θi
∂βj

,

which implies that

∂θi
∂βj

=
1

ġ(μi)V (μi)

∂g(μi)

∂βj

=
1

ġ(μi)V (μi)

∂ηi
∂βj

=
xij

ġ(μi)V (μi)
.
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The resulting score equation for parameter βj can then be simplified:

s(βj;φ,y) =
∂

∂βj

�(β;y) =
∂

∂βj

[
n∑

i=1

1

ai(φ)
{yiθi − κ(θi)}+

n∑
i=1

C(yi, φ)

]

=
n∑

i=1

1

ai(φ)

(
yi
∂θi
∂βj

− ∂κ(θi)

∂βj

)
=

n∑
i=1

1

ai(φ)

(
yi − ∂κ(θi)

∂θi

)
∂θi
∂βj

=
n∑

i=1

1

ai(φ)
(yi − κ̇(θi))

xij

ġ(μi)V (μi)

=
n∑

i=1

(yi − μi)

ai(φ)V (μi)

xij

ġ(μi)
. (3.1)

The MLE for the regression parameters is then found as the solution to

s(βj;φ,y) =
n∑

i=1

(yi − μi)

a(φi)V (μi)

xij

ġ(μi)
= 0, j = 1, ..., p.

If we now suppose that the observations y = (y1, ..., yn)
� have known prior weights

w1, ..., wn such that the function ai(φ) has the form ai(φ) = φ/wi, then the score

function can be further simplified:

s(βj;φ,y) =
n∑

i=1

wi(yi − μi)

φV (μi)

xij

ġ(μi)
= 0.

The dispersion parameter φ now factors out so that the equation becomes:

s(βj;y) =
n∑

i=1

wi(yi − μi)

V (μi)

xij

ġ(μi)
= 0. (3.2)

Thus, β̂j is such that s(βj;y) = 0, and β̂ is the solution to the p × 1 system of

equations s(β;φ,y) = 0.

3.1.2 Link Function

In the classical linear regression model, the link function is the identity and hence

μ = η. That is, the mean is a linear function of the regression parameters and

covariates. The linear predictor η can lie anywhere on the real line, i.e. −∞ < η < ∞.

Consequently, in classical linear regression, the mean model can map μ anywhere in

the interval (−∞,∞). GLMs provide an improved modelling framework to that
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of the linear model in the sense that the range of μ is not necessarily the interval

(−∞,∞). The link function essentially allows to define how the expected response

will be mapped from the linear predictor scale to the mean scale through its inverse:

g−1 : η → μ. Consequently, for a particular choice of link function, one can ensure

that the mean is mapped to the proper mean range Ω. For example, if the response

variable is assumed to follow a gamma distribution, Y has support (0,∞) and so

the mean E[Y ] must also fall in (0,∞). Clearly, the choice of link function used

for modelling gamma responses must ensure that g−1 : (−∞,∞) → (0,∞). It then

follows that the identity link is not an appropriate choice whereas the log link, with

inverse being exponential, would properly map the mean.

Canonical Link

A convenient choice of link function is such that the linear predictor is set equal to

the canonical parameter, so that η = θ. This choice of link function is referred to as

the canonical link function. Recall that in the GLM framework the response variable

is a member of the exponential dispersion family with parameters (θ, φ), where the

mean function τ(θ) = κ̇(θ) = μ relates the mean to the canonical parameter. Thus,

using the canonical link function, gc, in the GLM gives:

gc{E[Y | X]} = gc{μ} = η = θ = τ−1(μ),

which implies that

μ = g−1
c (η) = τ(η).

Some examples of common EF models and their canonical link functions are provided

in Table 3.1.

Using the canonical link function simplifies the estimation of the regression pa-

rameters β since the log-likelihood function then becomes a simplified function in
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Table 3.1: Canonical Link Function of Some Common ED Models

Distribution Canonical Canonical Link

Parameter Link Function Name

Normal θ = μ μ = η identity

Poisson θ = ln{μ} ln{μ} = η log

Binomial θ = ln

(
μ

1− μ

)
ln

(
μ

1− μ

)
= η logit

Gamma θ =
−1

μ

−1

μ
= η reciprocal

Inverse Gaussian θ =
−1

2μ2

−1

2μ2
= η inverse squared

terms of β:

�(β;φ,y) =
n∑

i=1

1

ai(φ)
{yiθi − κ(θi)}+

n∑
i=1

C(yi, φ)

=
n∑

i=1

1

ai(φ)
{yiηi − κ(ηi)}+

n∑
i=1

C(yi, φ)

=
n∑

i=1

1

ai(φ)
{yix�

i β − κ(x�
i β)}+

n∑
i=1

C(yi, φ).

The score function is then:

s(β;φ,y) =
∂

∂β
�(β;φ,y) =

n∑
i=1

1

ai(φ)
{yixi − κ̇(x�

i β)} = 0.

The maximum likelihood estimates for the regression parameters are found as the

solution to the score equation. Thus, the MLE for the regression parameter associated

with covariate xij is β̂j and is the solution to the score equation:

s(βj;φ,y) =
∂

∂βj

�(β;φ,y) =
∂

∂βj

{ n∑
i=1

1

ai(φ)
{yi
(
x�
i β
)− κ(x�

i β)}+
n∑

i=1

C(yi, φ)
}

=
n∑

i=1

1

ai(φ)

{
yixij − κ̇(x�

i β)xij

}
=

n∑
i=1

1

ai(φ)
xij

{
yi − κ̇(x�

i β)
}
.

Note that κ̇(x�
i β) = κ̇(ηi) = κ̇(θi) = τ(θi) = μi. Thus we have:

s(βj;φ,y) =
n∑

i=1

1

ai(φ)
xij {yi − μi} = 0.
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If we write ai(φ) = φ/wi, as before, for weights w1, ..., wn, then we have:

s(βj;φ,y) =
n∑

i=1

1

φ/wi

xij {yi − μi} =
n∑

i=1

1

φ
wi(yi − μi)xij.

The dispersion parameter φ can then be factored out so that the score equation is:

s(βj;y) =
n∑

i=1

wi(yi − μi)xij,

and the maximum likelihood estimates are then the solution to s(βj;y) = 0 for

j = 1, ..., p.

Example 3.1.1. Poisson

Consider a GLM with Poisson responses Yi ∼ Poisson(μi) and weights wi = 1. Then

using the canonical link (log link) we have that:

The likelihood is:

L(β;y) =
n∏

i=1

e−μiμyi
i

yi!
.

The log-likelihood is:

�(β;y) =
n∑

i=1

{−μi + yi ln(μi)}+
n∑

i=1

− ln(yi!).

The score equation for β1, ..., βp is:

s(βj;y) =
∂

∂βj

�(β;y)

=
n∑

i=1

{−∂

∂βj

μi +
∂

∂βj

yi ln(μi)

}
=

n∑
i=1

{−∂

∂βj

μi +
yi
μi

∂

∂βj

μi

}

=
n∑

i=1

{−∂

∂βj

exp(x�
i β) +

yi
μi

∂

∂βj

exp(x�
i β)

}

=
n∑

i=1

{
−xij exp(x

�
i β) +

yi
μi

xij exp(x
�
i β)

}

=
n∑

i=1

{
−xijμi +

yi
μi

xijμi

}
=

n∑
i=1

{−xijμi + yixij}

=
n∑

i=1

xij{μi − yi} = 0.
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3.1.3 Asymptotic Results for MLEs

Suppose that the data y are generated from the true distribution with p × 1 vector

of canonical parameters θ0, denoted fY (yi; θ0i). As mentioned in Chapter 2, we have

that:

EY [�̇(θ0;Y)] = EY [s(θ0;Y)] = 0.

Furthermore, we have the relation:

EY [s(θ0;Y)s(θ0;Y)�] = −E[Ψ(θ0;Y)], (3.3)

where Ψ(θ0;Y) is the matrix of first derivatives of the score equation, or, equivalently,

the matrix of second derivatives of the log-likelihood function, with (j, k)th element

equal to:
∂2�(θ0;Y)

∂θj∂θk
, j, k = 1, ..., p.

The p × p matrix defined by equation (3.3), denoted I(θ0), is referred to as the

Fisher Information. Under certain regularity conditions, this matrix is symmetric

and positive definite.

For a maximum likelihood estimate based on n observations, denoted θ̂, we have

the following key results:

i) Consistency: As n → ∞, θ̂
p→ θ0.

ii) Asymptotic Normality:

� As n → ∞,
√
n(θ̂ − θ0)

d→N (0, {I(θ0)}−1),

� As n → ∞, 1√
n
�̇(θ0;y)

d→N (0, I(θ0)).

iii) Score Test: as n → ∞, �̇(θ0;y)
�{I(θ0)}�̇(θ0;y) ∼ χ2

p.

iv) Observed Information: It is often necessary to find an estimate for the Fisher

Information I(θ0). We can estimate I(θ0) by În, where the quantity În is referred

to as the observed information. Some estimates for I(θ0) include :

� În = I(θ̂),
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� În =
1

n

∑n
i=1 s(θ̂; yi)s(θ̂; yi)

�,

� În = − 1

n

∑n
i=1 Ψ(θ̂; yi).

3.1.4 Goodness of Fit

The goal of modelling data is to obtain fitted values, μ̂, for the mean of the response

values y. Generally, the fitted values will not exactly coincide with the actual data

values. The significance of the discrepancy between the actual values y and the

estimated expected values μ̂ can be measured and analysed through the deviance.

Denote μ̂i = μ̂0 as the fitted values obtained in the null model, i.e. the simplest

model that contains only an intercept, and let θ̄ be the estimated canonical parameter

associated with the null model estimates. Let μ̂i = yi denote the fitted values under

the full model, i.e. the most complex model, and θ̃ denote the resulting canonical

parameter. Note that the full model is fully saturated so that the fitted values are

exactly equal to the data values. Finally, denote the intermediate model fitted values

by μ̂i = μ(X;β) and the estimated canonical parameters by θ̂. The discrepancy

between the fitted values and the data values can then be measured as twice the

difference between the log-likelihood under the full and intermediate, or fitted, models.

If we again suppose that ai(φ) = φ/wi, then we have that:

2{�(θ̃;φ,y)− �(θ̂;φ,y)} =
n∑

i=1

wi

φ

{
yi(θ̃i − θ̂i)−

(
b(θ̃i)− b(θ̂i)

)}

=
D(y, μ̂)

φ
= D∗(y, μ̂). (3.4)

where D(y, μ̂) is referred to as the deviance for the intermediate model defined by μ̂

and D∗(y, μ̂) is the scaled deviance.

The deviance measures the discrepancy in the model fit between the full model and

the fitted model. Suppose that the fitted model has p parameters. Then, according

to the likelihood ratio theorem, we have that

D(y, μ̂)

φ
= 2{�(θ̃;φ,y)− �(θ̂;φ,y)} ∼ χ2

n−p.

Thus, in expectation, we have that E

[
D(y, μ̂)

φ

]
= n− p.
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Table 3.2: Deviances of Some Common ED Models

Distribution Deviance D(y, μ̂)

Normal
∑n

i=1(yi − μ̂i)

Poisson 2
∑n

i=1 {yi ln(yi/μ̂i)− (yi − μ̂i)}

Binomial 2
∑n

i=1 {yi ln(yi/μ̂i) + (m− yi) ln [(m− yi)/(m− μ̂i)]}

Gamma 2
∑n

i=1 {− ln(yi/μ̂i) + (yi − μ̂i)/μ̂i}

Inverse Gaussian 2
∑n

i=1(yi − μ̂i)
2/(μ̂2

i yi)

The deviance can also be used to compare nested models. Supposed we have that

model A with pA parameters is nested in model B with pB parameters, with pB > pA,

so that model A can be obtained from model B by applying some equality constraints,

i.e. in fixing pB − pA parameters of model B we retrieve model A. Then if we wish

to test whether model A is an adequate simplification of model B, we can use the

difference of the scaled deviances from these models as the test statistic:

D(y, μ̂A)−D(y, μ̂B)

φ
=

2{�(B)(θ̃B;φ,y)− �(A)(θ̃A;φ,y)}
φ

∼ χ2
pB−pA

.

To then test the hypothesis that these pB − pA parameters of model B should be

zero, we can compare the above test statistic to, say, the 95th percentile of the Chi-

Square distribution with degrees of freedom equal to pB − pA. If the test statistic is

larger than the percentile, we can then conclude that model A is not an adequate

simplification of the more complex model B, that is, we reject the hypothesis that

the parameters should be set to zero.

Note that the analysis of deviance, as described above, relies on the χ2 approxima-

tion for the difference of deviances of nested models. McCullagh and Nelder (1989)

point out that these approximations are, in general, not very good, even as n → ∞.

Nonetheless, the analysis of deviances provides a good approach for selecting the best

model to explain the data under question.
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3.1.5 Residuals

Residuals provide another way to assess the adequacy of a model. In the classical

linear regression model, we define the residual vector as y− μ̂. Plotting the residuals

versus the fitted values μ̂ should produce a band around zero. These residuals are

used to assess the local fit of the model. In the case of generalized linear models, the

definition of residuals must be extended as we must now assume a non-Gaussian prob-

ability model. There are several forms of generalized residuals, namely the Pearson

residual, Anscombe residual and deviance residual. Each provide different advantages

in assessing the adequacy of a model fit.

The Pearson residual is defined as:

rP =
y − μ̂√
V (μ̂)

.

These residuals will have mean zero and unit variance if the model is correct, so that

rP is standardized. Note that while the Pearson residual is standardized, it is not

normalized. Although this form of residual has zero-mean, the distribution of rP itself

may be highly skewed for non-normal distributions.

The Anscombe residual addresses the issue of skewness by considering a trans-

formation of the data A(y). That is, by choosing a function A(·) such that A(Y )

is approximately normally distributed, the skewness will essentially be removed. It

can be shown that for a member of the exponential dispersion family, the optimal

transformation is defined as

A(t) =

∫ t

−∞

1

V 1/3(s)
ds,

where V (·) is the variance function of Y as defined in Chapter 2. The variance of A(Y )

can be approximated as Var (A(Y )) ≈ {Ȧ(μ)}2V (μ). The Anscombe residual is

then defined as:

rA =
A(y)− A(μ̂)√
Ȧ(μ̂)}2V (μ̂)

,

where rA is standardized and the skewness is removed.
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Finally, we can define a third type of residual based on the model deviance. Recall

the definition of deviance for the GLM; for ai(φ) = φ/wi we have that:

D(y, μ̂)

φ
= 2{�(θ̃;φ,y)− �(θ̂;φ,y)}

=
2

φ

n∑
i=1

wi

{
yi(θ̃i − θ̂i)−

(
b(θ̃i)− b(θ̂i)

)}

=
1

φ

n∑
i=1

Di,

where Di = 2wi

{
yi(θ̃i − θ̂i)−

(
b(θ̃i)− b(θ̂i)

)}
. The quantity Di essentially measures

the discrepancy contribution of datum i. We can then define the deviance residual

as follows:

rD = sign(yi − μ̂i)
√
Di.

For more detail on the GLM residuals, see McCullagh and Nelder (1989) and the

references therein.

3.2 GLMs for Insurance Data

Generalized linear models have become an important modelling tool for the insurance

industry as the flexibility of the GLM framework and use of exponential dispersion

models allow for a better representation of insurance data. As previously mentioned,

an insurer must set premiums in accordance with the expected total claim cost. In

Chapter 2, we showed that both the frequency and severity components could be mod-

elled in terms of an ED model. Moreover, in the special case of a Compound Poisson

model assumption, the total loss follows a Tweedie distribution, S ∼ Twp(μ, σ
2),

which is also a member of the ED family. Thus, GLMs can be used to model the

marginal means of the claim counts and claim amounts respectively, or even to di-

rectly model the expected loss cost using a Tweedie distribution. Note that both of

the approaches mentioned here allude to the aggregate claims model under the inde-

pendence assumption. As we will see in Chapter 5, this modelling approach needs to

be modified in order to allow for dependence between the claim frequency and claim

severity.
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In the analysis of insurance data, covariates are often referred to as rating variables

and are used to characterize the risk ensued by the insured individual. For car

insurance data, covariates are characteristics related to both the driver and vehicle,

and may include the driver’s age and gender, the distance driven, marital status,

vehicle model, etc. For home insurance, common rating variables include location,

construction year, amount of insurance, etc.

It is common practice when modelling the mean response in an insurance setting

to use a log-link in the GLM. This is done as it yields a multiplicative rating structure.

That is, if

ln(μ) =

p∑
i=1

xiβi

then, on the mean scale, we have that

μ =
n∏

i=1

exp(xiβi) =
n∏

i=1

ψi.

These multiplicative factors associated with each rating variable, i.e. ψi, are referred

to as differentials or relativities. It follows that the expected loss cost for a poli-

cyholder can then be determined by multiplying the base rate (i.e. the intercept

exp(β0) = ψ0) by the differentials that correspond to the individual’s rating variable

levels.
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Chapter 4

GLMs for Aggregate Claims Under

Independence

The common approach to estimating premiums in the property and casualty insur-

ance industry is to consider the aggregate claims cost in the independent setting on

the individual level. For more detail see, for example, Anderson et al. (2007). In

finding an estimate for the individual’s expected loss cost, we are essentially esti-

mating the pure premium for that policyholder. As we have seen in the previous

chapters, assuming that the claim frequency and severity are independent allows for

simplified results and makes the estimation of the expected loss cost more accessible.

We now look in detail at the generalized linear model framework for modelling the

pure premium in the independent aggregate claims model.

4.1 The Independent Model

Consider the aggregate claims on the individual level. For policyholder i, we have

that the loss cost is

Si =

Ni∑
j=1

Yij (4.1)

where

(1) Ni is the claim count,

39



(2) Yij, j = 1, ..., Ni are the individual claim amounts,

(3) Yij, j = 1, ..., Ni are conditionally i.i.d., given Ni.

Let Ȳi =
1

Ni

∑Ni

j=1 Yij be the average claim size, or severity, with Ȳi = 0 when

Ni = 0. This average severity clearly depends on Ni. Then the aggregate claims can

be rewritten as:

Si =

Ni∑
j=1

Yij =
1

Ni

Ni∑
j=1

Yij = Ni Ȳi. (4.2)

Thus we have that the aggregate loss cost is the product of the claim frequency and

severity.

If it is further assumed that the claim frequency is independent of the individual

claim amounts, a restrictive assumption, then the GLM structure for the aggregate

claims is simplified. In this setting, we have that Ni is independent of Ȳi. If we

assumed that at the individual policyholder level, the claim amounts Yij are i.i.d.

with Yij
d
=Yi, then we can write the mean aggregate claim amount as:

E[Si] = E[E(Si | Ni)] = E

[
E

(
Ni∑
j=1

Yij | Ni

)]

= E

[
Ni∑
j=1

E (Yij | Ni)

]
= E

[
Ni∑
j=1

E(Yij)

]

= E [NiE(Yi)] = E(Ni)E(Yi). (4.3)

Equivalently, in terms of the average claim severity Ȳi, we have that the mean

aggregate claim cost can be written as:

E[Si] = E[E(Si | Ni)] = E

[
E

(
Ni∑
j=1

Yij | Ni

)]

= E
[
E
(
Ni × Ȳi | Ni

)]
= E[Ni × E(Ȳi)] = E[Ni]E[Ȳi]. (4.4)

Since the mean claim cost is the product of the mean frequency and mean severity

in the independent model, then in a GLM framework, the model for Si is simply the

product of the marginal GLMs for Ni and Ȳi respectively.

In Chapter 2, it was shown that the gamma distribution is a member of the

reproductive exponential dispersion family. Then by the convolution property (see

40



Proposition 2.2.2), for independent claim sizes Yij ∼ ED

(
μi,

σ2

wij

)
with equal weights

wij = 1 we have that

E[Ȳi] = E

[
1

Ni

Ni∑
j=1

Yij

]
= μi.

It follows that modelling the means of the individual claim amounts Yij is equivalent

to modelling the mean of the average severity Ȳi.

Denote μi1 as the mean frequency given the covariates Xi E[Ni|Xi], and μi2 as

the mean severity given the covariate Xi E[Ȳi|Xi]. For a p × 1 vector of covariates

Xi = (Xi1, ..., Xip)
� and link functions g1, g2, we have that the marginal GLMs are

defined as:

(i) g1 (E[Ni|Xi]) = g1(μi1) = ηi1 = X�
i1β1 ⇔ μi1 = g−1

1 (X�
i1β1),

(ii) g2
(
E[Ȳi|Xi]

)
= g2(μi2) = ηi2 = X�

i2β2 ⇔ μi2 = g−1
2 (X�

i2β2),

where both Xi1 and Xi2 are subsets of the covariate vector Xi and β1 and β2 are

vectors of unknown regression parameters derived from the frequency and severity

GLM, respectively.

It follows that the expected aggregate claim cost in the GLM framework for the

independent models is simply:

E[Si|Xi] = μI
i = μi1 × μi2 = g−1

1 (X�
i1β1)× g−1

2 (X�
i2β2). (4.5)

We will refer to this GLM for Si as the independent model, or Model I, denoted μI
i .

In the particular case where both marginal GLMs use a log-link, we have the

following simplifications:

ln(μi1) = X�
i1β1 ⇔ μi1 = exp(X�

i1β1),

ln(μi2) = X�
i2β2 ⇔ μi2 = exp(X�

i2β2),

which then gives the expected total claims costs as:

μI
i = exp(X�

i1β1)× exp(X�
i2β2) = exp

{
X�

i1β1 +X�
i2β2

}
.
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Note that using a log-link in the GLM provides many advantages. Firstly, it

ensures that both the mean frequency and mean severity are positive. Often, the

claim frequency is assumed to follow a Poisson distribution, for which the log-link

is in fact the canonical link. Moreover, the log-link yields a non-linear but simple

rating structure with multiplication factors associated with each covariate (or rating

variable), as discussed in Chapter 3.

4.1.1 Higher Moments in the Independent Model

Variance

As outlined in Chapter 1, when the frequency and severity are considered to be

mutually independent, the variance of the aggregate claims can easily be obtained.

Using the marginal means derived by the GLM and the properties of the ED models,

it follows that the variance for the aggregate losses at the individual level is:

Var(Si|Xi) = [E(Yi|Xi)]
2
Var(Ni|Xi) + Var(Yi|Xi)E(Ni|Xi)

= μ2
i2φ1V1(μ1) + φ2V2(μi2)μi1, (4.6)

where the individual claims Yij are i.i.d. with Yij
d∼Yi.

In the particular case where Si follows a Compound-Poisson-gamma, the variance

can be further simplified to:

Var(Si|Xi) = μ2
i2μi1 + φμ2

i2μi1 = μi1μ
2
i2(φ+ 1). (4.7)

Recall that the individual claim amounts are such that Yij ∼ gamma(μi2, φ),

and thus by the reproductive exponential dispersion model convolution property the

mean severity is such that Ȳi ∼ gamma

(
μi2,

φ

Ni

)
. Then, using the mean severity,

an alternative way to arrive at the variance in the independent model setting is as
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follows:

Var(Si|Xi) = Var(NiȲi|Xi) = Var
[
E[NiȲi|Ni,Xi]|Xi

]
+ E

[
Var[NiȲi|Ni,Xi]|Xi

]
= Var

[
NiE[Ȳi|Xi]|Xi

]
+ E

[
N2

i Var[Ȳi|Xi]|Xi

]
= Var [Niμi2|Xi] + E

[
N2

i

(
φ

Ni

)
V (μi2)

∣∣Xi

]

= μ2
i2Var[Ni|Xi] + E[Niφμ

2
i2|Xi]

= μ2
i2Var[Ni|Xi] + φμ2

i2E[Ni|Xi]

= μ2
i2μi1 + φμ2

i2μi1

= μi1μ
2
i2(φ+ 1),

which is the same as the equation (4.7).

Moment Generating Function

Recall from Chapter 1, the moment generating function for Si in the independent

model is:

MSi
(t) = MNi

[
lnMYij

(t)
]
.

Thus, for the Compound-Poisson-gamma model, we have:

MSi
(t) = MNi

⎡
⎢⎣ln(1− tφμi2)

−
1

φ

⎤
⎥⎦ = MNi

[
−1

φ
ln(1− tφμi2)

]

= exp

⎧⎪⎪⎨
⎪⎪⎩μi1(e

ln(1−tφμi2)

−
1

φ − 1)

⎫⎪⎪⎬
⎪⎪⎭

= exp

⎧⎪⎨
⎪⎩μi1

⎛
⎜⎝(1− tφμi2)

−
1

φ − 1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , t < (1/φμi2).

This allows to find higher moments for the aggregate claims Si and allows to further

characterize the aggregate claims distribution.
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4.2 MLEs in the Independent Model

In the independent model, the frequency and severity components are considered

separately. That is, a GLM is developed for Ni separately from that for Ȳi and

consequently inference for β1 and β2 are done separately.

As previously mentioned, by the convolution properties of the exponential disper-

sion models, modelling Ȳi is equivalent to modelling Yij. Here, we will consider the

maximum likelihood estimation on the individual claim amounts data yij.

In Chapter 3 equation (3.1), we derived the score equations for the regression

parameters in the GLM structure and found the simplified expression:

s(βj;φ,y) =
n∑

i=1

(yi − μi)

ai(φ)V (μi)

xij

ġ(μi)
= 0. (4.8)

Thus, the score equations for the regression parameters β1 and β2 are as follows:

i) s(β1k;φ1,n) =
∑m

i=1

(ni − μi1)

ai(φ1)V (μi1)

xi1k

ġ1(μi1)
= 0 for k = 1, ..., p1,

ii) s(β2k;φ2,y) =
∑m

i=1

∑ni

j=1

(yij − μi2)

ai(φ2)V (μi2)

xi2k

ġ2(μi2)
= 0 for k = 1, ..., p2.

If we return to the Compound-Poisson-gamma case, as is the usual distribution

assumptions for the aggregate claims model in the insurance industry, we have that

Ni ∼ Poisson(μi1) and Yij ∼ gamma(μi2, φ). In Chapter 2, both the Poisson and

gamma models were studied in detail. It was shown that for Poisson responses Ni, the

dispersion is ai(φ) = 1 and the variance function is V (μi1) = μi1; while for gamma

responses Yij, aij(φ) =
φ

wij

, for weights wi1, ..., wini
, and the variance function is

V (μi2) = μ2
i2. Using equation (4.8), we then have that for a portfolio of m policy-

holders, the score equations for the frequency and severity parameters, β1 and β2

respectively, are as follows:

i) s(β1k;n) =
∑m

i=1

(ni − μi1)

μi1

xi1k

ġ1(μi1)
= 0 for k = 1, ..., p1,

ii) s(β2k;φ,y) =
∑m

i=1

∑ni

j=1

(yij − μi2)

φ/wijμ2
i2

xi2k

ġ2(μi2)
= 0 for k = 1, ..., p2.

Using log-link functions for both the frequency and severity models, the framework

of Model I gives the following:
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� g1(μi1) = ln(μi1) ⇒ ġ1(μi1) =
1

μi1

,

� g2(μi2) = ln(μi2) ⇒ ġ2(μi2) =
1

μi2

.

It follows that the score equations can be further simplified:

i) s(β1k;n) =
∑m

i=1

(ni − μi1)

μi1

xi1kμi1 =
∑m

i=1 xi1k(ni − μi1) = 0 for k = 1, ..., p1,

ii) s(β2k;φ,y) =
∑m

i=1

∑ni

j=1

(yij − μi2)

φ/wijμ2
i2

xi2kμi2 =
∑m

i=1

∑ni

j=1

wij

φ

xi2k

μi2

(yij − μi2) = 0

for k = 1, ..., p2.

Note, that while the individual claim severities are Yij ∼ gamma(μi, φ), j =

1, ..., Ni, the average claim severity is Ȳi ∼ gamma

(
μi,

φ

Ni

)
. The score equations

derived for the regression parameters β2 are equivalent whether we consider the in-

dividual claim amounts data yij or the averaged claim amounts ȳi. If we take the

weights to be wij = 1 for all i, j, then we have:

s(β2k;φ,y) =
m∑
i=1

ni∑
j=1

wij

φ

xi2k

μi2

(yij − μi2) =
m∑
i=1

ni∑
j=1

1

φ

xi2k

μi2

(yij − μi2)

=
m∑
i=1

1

φ

xi2k

μi2

ni∑
j=1

(yij − μi2) =
m∑
i=1

1

φ

xi2k

μi2

ni(ȳi − μi2).

Similarly, if we consider the score equations directly for Ȳi ∼ gamma

(
μi2,

φ

Ni

)
, the

dispersion function is ai(φ) =
φ

Ni

so that the weights used in the model are wi = ni,

for i = 1, ...,m. Then based on equation (4.8) we have:

s(β2k;φ,y) =
m∑
i=1

ni

φ

xi2k

μi2

(ȳi − μi2).

Therefore, the two approaches produce the same score equations.

As mentioned in Chapter 3, by the asymptotic results for maximum likelihood

estimates, we have that the MLE based on m observations, θ̂m, is asymptotically

normally distributed with
√
m(θ̂m − θ0) ∼ N (0, {I(θ0)}−1). Here, we can estimate

the Fisher Information matrix I(θ0) by the observed information Îm = I(θ̂m), where

I(θ̂m) = −E[Ψ(θ̂m;Y)]
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and Ψ(θ̂m;Y) is a matrix of second partial derivatives of the log-likelihood.

In the Compound Poisson-gamma case, we have:

i) � ∂2

∂β2
1k

�(β1;n) =
∂

∂β1k

s(β1k;n) =
∑m

i=1 −xi1k
∂μi1

∂β1k

=
∑m

i=1 −x2
i1kμi1

⇒ −E[
∂2

∂β2
1k

�(β1;n)] =
∑m

i=1 x
2
i1kμi1,

� ∂2

∂β1k∂β1l

�(β1;n) =
∑m

i=1 −xi1kxi1lμi1

⇒ −E[
∂2

∂β1k∂β1l

�(β1;n)] =
∑m

i=1 xi1kxi1lμi1.

ii) � ∂2

∂β2
2k

�(β2;y) =
∑m

i=1

∑ni

j=1

∂2

∂β2
2k

1

φ
xi2k

(
yij
μi2

− 1

)

=
∑m

i=1

∑ni

j=1

1

φ
xi2k − yij

μ2
i2

∂μi2

∂β2k

=
∑m

i=1

∑ni

j=1

1

φ
x2
i2k −

yij
μi2

⇒ −E[
∂2

∂β2
2k

�(β2;y)] =
∑m

i=1

∑ni

j=1

1

φ
x2
i2k,

� ∂2

∂β2k∂β2l

�(β2;y) =
∑m

i=1

∑ni

j=1

1

φ
xi2kxi2l − yij

μi2

⇒ −E[
∂2

∂β2k∂β2l

�(β2;y)] =
∑m

i=1

∑ni

j=1

1

φ
xi2kxi2l.

The observed information matrices then become:

i) I(β̂1)p1,p1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑m
i=1 x

2
i11μ̂i1

∑m
i=1 xi11xi12μ̂i1 · · · ∑m

i=1 xi11xi1p1μ̂i1∑m
i=1 xi12xi11μ̂i1

∑m
i=1 x

2
i12μ̂i1 · · · ∑m

i=1 xi12xi1p1μ̂i1

...
...

. . .
...∑m

i=1 xi1p1xi11μ̂i1

∑m
i=1 xi1p1xi12μ̂i1 · · · ∑m

i=1 x
2
i1p1

μ̂i1

⎞
⎟⎟⎟⎟⎟⎟⎠

ii) I(β̂2)p2,p2 =
1

φ

⎛
⎜⎜⎜⎜⎜⎜⎝

∑m
i=1 x

2
i21

∑m
i=1 xi21xi22 · · · ∑m

i=1 xi21xi2p2∑m
i=1 xi22xi21

∑m
i=1 x

2
i22 · · · ∑m

i=1 xi22xi2p2

...
...

. . .
...∑m

i=1 xi2p2xi21

∑m
i=1 xi2p2xi22 · · · ∑m

i=1 x
2
i2p2

⎞
⎟⎟⎟⎟⎟⎟⎠

Note that in the matrix I(β̂2)p2,p2 , the dispersion parameter φ is generally unknown

and must be estimated. For example, we can use the estimate

φ̂p2 =
1

m− p2

m∑
i=1

(
ȳi − μ̂i2

μ̂i2

)2

.
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Therefore, we have that the MLE’s are asymptotically normally distributed with
√
m(β̂1−β1) ∼ N (0, {I(β1)}−1) and

√
m(β̂2−β2) ∼ N (0, {I(β2)}−1) where I(β1)

and I(β2) can be estimated by I(β̂1) and I(β̂2), respectively.

4.3 Tweedie Modelling

An alternative approach to modelling the marginal means of the frequency and sever-

ity components is to directly model the claims cost as a Tweedie distribution. As

previously mentioned, the Tweedie distribution corresponds to a compound Poisson

process. In the case of insurance data, the model assumptions are that the claim

counts follow a Poisson distribution while the jumps, which represent the claim sizes,

follow a gamma distribution. Since the Tweedie model is a member of the Expo-

nential Dispersion models family, it can also be modelled in the Generalized Linear

Model framework. Jørgensen provides details on using the Tweedie distribution for

modelling claims; see Jørgensen and De Souzaa (1994) for details. Jørgensen and

Smyth (2002) also revisit the problem to include a dispersion component to the model

framework.
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Chapter 5

GLMs for Aggregate Claims Under

Dependence

Several approaches can be taken to address the dependence between the frequency

and severity components in the aggregate claims model. Gschlößl and Czado (2007),

in particular, investigate this problem using a fully Bayesian approach and estimate

parameters using Markov Chain Monte Carlo under a slightly different model spec-

ification than what we present here. Sarabia and Guillén (2008) consider the joint

distribution of (S,N) using the conditional distributions S given N and of N given S.

Jørgensen (2011) provides yet another approach to this problem. Although not specif-

ically addressing the issue of dependency in the aggregate claims model, Jørgensen

extends the univariate dispersion models definition to a multivariate model. In partic-

ular, he introduces a construction of multivariate exponential dispersion models and

also briefly introduces the concept of multivariate generalized linear models. Simi-

larly, Iwasaki and Tsubaki (2005) construct a bivariate distribution in the natural

exponential family, which could be used to define the bivariate distribution of the

frequency and severity components of the aggregate claims.

This thesis will provide an alternative framework by allowing for the dependence

between the severity and frequency components through a conditional GLM. The

goal of this approach is to allow for dependence between the claim amounts Yij and

the claim counts Ni, at the individual level, by assuming that the conditional mean
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severity E[Ȳi|Ni] (which is equivalent to E[Yij|Ni]) is a function of the claim count

Ni. This is achieved by including the claim count as a covariate in the conditional

mean severity GLM for E[Ȳi|Ni]. This chapter provides the details of this model

formulation.

5.1 The Dependent Model

Now let us relax the assumption that the claim frequency and claim severity are

independent. Then the mean aggregate loss cost is no longer simply the product of

the marginal means for the frequency and severity components respectively. In this

model we have that:

E[Si|Xi] = E[NiȲi|Xi] = E
[
E[NiȲi|Xi, Ni]

∣∣Xi

]
= E

[
NiE[Ȳi|Xi, Ni]

∣∣Xi

]
	= E[Ni|Xi] E[Ȳi|Xi].

We will refer to this GLM for Si as the dependent model, or Model D and denote

its mean by μD
i .

Here E[Ȳi|Xi, Ni] is a function of both Ni and Xi, which can be defined through

a conditional marginal GLM as:

g{E[Ȳi|Xi, Ni]} = g{μD
i2} = X̃

�
i2β̃2 +NiβN . (5.1)

Note that the regression parameters here, β̃2, are different than the regression

parameters in Model I, β2, since the presence of Ni as a covariate in this GLM affects

the regression parameters and their estimates. Similarly, the covariates used in the

marginal severity GLM could be different in Model D as compared to Model I, thus

we have that the covariates X̃i2 are not necessarily the same as Xi2.

Using a log-link in the GLM for E[Ȳi|Xi, Ni] gives:

ln
{
E[Ȳi|Xi, Ni]

}
= ln(μD

i2) = X̃�
i2β̃2 +NiβN ,

which implies that the conditional mean severity is given by

E[Ȳi|Xi, Ni] = exp(X̃
�
i2β̃2 +NiβN) = exp(X̃

�
i2β̃2) exp(NiβN) = μ̃i2 exp(NiβN).
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It follows that the mean aggregate loss cost becomes:

μD
i = E[Si|Xi] = E

[
NiE

(
Ȳi|Xi, Ni

) ∣∣Xi

]
= E

[
Niμ̃i2 exp(NiβN)

∣∣Xi

]
= μ̃i2E

[
Ni exp(NiβN)

∣∣Xi

]
= μ̃i2E

[
∂

∂βN

exp(NiβN)
∣∣Xi

]

= μ̃i2
∂

∂βN

E
[
exp(NiβN)

∣∣Xi

]
= μ̃i2

∂

∂βN

MNi|Xi
(βn), (5.2)

where MNi|Xi
(·) is the conditional moment generating function of Ni given the vector

of covariates Xi.

The frequency, Ni, is also modelled through a GLM. Since we are modelling

E[Ni|Xi] as was done in the independent model, it follows that the marginal GLM

for the claim frequency in Model D is equivalent to that in Model I. Thus we have:

g1{E[Ni|Xi]} = g1{μi1} = ηi1 = X�
i1β1

⇔ μi1 = g−1
1 (X�

i1β1).

By the distributional structure of the Exponential Dispersion models, the moment

generating function of the response variable is a function of the canonical parameter,

and thus a function of the mean, as well as a function of the dispersion parameter.

Hence, assuming that the dispersion parameter is known, the GLM on μi1 allows to

define the moment generating function of Ni through the cumulant function κ(θ), as

shown in Chapter 2.

Thus from (5.2) we have:

μD
i = E[Si|Xi] = μ̃i2

∂

∂βN

MNi|Xi
(βn) = μ̃i2

∂

∂βN

h(βN ;μi1, φ1),

where MNi|Xi
(βn) is a function of the mean μi1 and the dispersion parameter φ1 as

defined by the frequency response distribution.

In the case where Ni is assumed to follow a Poisson distribution, then using the

log-link, which is also the canonical link function for the Poisson model, the marginal

GLM for the frequency is the same as that in the independent model:

μi1 = exp(X�
i1β1).
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For Poisson responses, the dispersion is φ1 = 1 and the moment generating function

is MNi|Xi
(t) = exp {μi1(e

t − 1)} , for t ∈ R.

Returning to equation (5.2), for a Poisson distributed marginal frequency, the

expected total loss cost can be further simplified to:

μD
i = E[Si|Xi] = μ̃i2

∂

∂βN

MNi|Xi
(βn)

= μ̃i2
∂

∂βN

exp
{
μi1(e

βN − 1)
}

= μ̃i2 exp
{
μi1(e

βN − 1)
}
μi1 exp(βN)

= μ̃i2μi1 exp
{
μi1(e

βN − 1) + βN

}
. (5.3)

Notice that this final formulation of μD
i makes no distributional assumptions for

the severity Ȳi. The only restriction is that Ȳi be a member of the Exponential

Dispersion family so that the mean can be modelled via a GLM. There is, however, a

restriction on the choice of link function since this formulation relies on the use of the

log link in the conditional mean severity GLM. The model assumption made for the

severity component Ȳi will only affect the estimation of the regression parameters β̃2

since the distribution will define the score function used in the maximum likelihood

estimation.

Note that when βN = 0 we retrieve the independent case. The marginal mean

frequency μi1 remains the same in both the dependent and independent cases. If βN =

0, then the regression parameters in the marginal GLM for severity will be identical

under the dependence and independence assumptions since both means E[Ȳi|Xi] and

E[Ȳi|Xi, Ni] will be modelled using the same covariates. That is, if βN = 0, then X̃i2 =

Xi2, and since the data will then be modelled using the same covariate in both models,

this in turn implies that β̃2 = β2 and so μi2 = exp(X�
i2β2) = μ̃i2 = exp(X̃

�
i2β̃2). The

remaining correction term in the equation, exp
{
μi1(e

βN − 1) + βN

}
, is equal to 1 if

βN = 0. Thus, for βN = 0 we have that

μD
i = exp(X�

i2β2) exp(X
�
i1β1) = μi2μi1 = μI

i .

Hence, the expected loss costs under Model I and Model D are identical for βN = 0.
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Although the model formulation is straightforward, the interpretation of the effect

of the dependence between Ni and Ȳi is not so clear. First consider the model for the

modified marginal mean severity μ̃i2 = exp(X̃
�
i2β̃2). If βN is a significant regression

parameter in the conditional severity GLM, we can conclude that the severity Ȳi

is indeed significantly influenced by the frequency Ni. However, the impact on the

modified mean severity μ̃i2 is not so obvious since including Ni as an extra covariate

in the model will change the remaining regression parameters β̃2 and their estimates.

That is, the influence of the remaining covariates X̃i2 on the modified mean severity

μ̃i2 will be different if Ni is included as an additional covariate in the GLM. In

Model D, the GLM on E[Ȳi|Xi, Ni] is a function of both Ni and X̃i2. Thus, even if

βN > 0 (βN < 0) leads to a factor exp(NiβN) > 1 (exp(NiβN) < 1), the mean severity

μD
i2 = μ̃i2 exp{NβN} might not necessarily increase (decrease) since this effect might

be offset by the change in the remaining regression parameters from β2 in Model I to

β̃2 in Model D. This ambiguity is also inherent in the interpretation of the effect of

dependency between Ni and Ȳi on the expected loss cost E[Si|Xi].

5.1.1 Higher Moments for the Dependent Model

Variance

As was the case for the first moment of the total loss cost, E[Si|Xi], the variance of

the aggregate claims in the dependent model can no longer be written in terms of the

marginal moments of the frequency and severity. Recall that under the assumptions

and GLM results of Model D, Ni ∼ Poisson(μi1) and conditional on Ni the average

claim severity Ȳi ∼ gamma

(
μD
i2,

φ

Ni

)
. The variance can then be derived as follows:

Var[Si|Xi] = Var
[
E[Si|Xi, Ni]

∣∣Xi

]
+ E

[
Var[Si|Xi, Ni]

∣∣Xi

]
= Var

[
E[NiȲi|Xi, Ni]

∣∣Xi

]
+ E

[
Var[NiȲi|Xi, Ni]

∣∣Xi

]
= Var

[
NiE[Ȳi|Xi, Ni]

∣∣Xi

]
+ E

[
N2

i Var[Ȳi|Xi, Ni]
∣∣Xi

]
.

Recall that for members of the ED family with Zi ∼ ED(μi, φ), the variance is

Var(Zi) = ai(φ)V (μi). In particular, for gamma responses Ȳi, we have that condi-
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tional on Ni, ai(φ) =
φ

Ni

and V (μi) = μ2
i . It follows from the conditional severity

GLM results that

E[Ȳi|Xi, Ni] = μD
i2,

and

Var[Ȳi|Xi, Ni] =

(
φ

Ni

)
V (μD

i2) =

(
φ

Ni

)
(μi2)

2.

Thus, we can further simplify the expression:

Var[Si|Xi] = Var
[
Niμ

D
i2

∣∣Xi

]
+ E

[
N2

i

(
φ

Ni

)
V (μD

i2)
∣∣Xi

]
= Var

[
Niμ

D
i2

∣∣Xi

]
+ E

[
φNi(μ

D
i2)

2
∣∣Xi

]
.

Finally, we can use the results from the severity GLM: Conditional on Ni, the severity

mean is μD
i2 = exp{X̃�

i2β̃2 +NiβN}. Thus we have:

Var[Si|Xi] = Var[Ni exp{X̃�
i2β̃2 +NiβN}|Xi] + E[φNi exp{2X̃�

i2β̃2 + 2NiβN}|Xi]

= exp{2X̃�
i2β̃2}Var[Ni exp{NiβN}|Xi]

+ φ exp{2X̃�
i2β̃2}E[Ni exp{2NiβN}|Xi]

= (μ̃i2)
2
Var[Ni exp{NiβN}|Xi] + φ(μ̃i2)

2
E[Ni exp{2NiβN}|Xi]. (5.4)

We can then further simplify the above expressions using the following results:

(i) E[Ni exp(NiβN)|Xi] = E

[
∂

∂βN

exp(NiβN)|Xi

]
=

∂

∂βN

E [exp(NiβN)|Xi]

=
∂

∂βN

MNi|Xi
(βN) =

∂

∂βN

exp
{
μi1(e

βN − 1)
}

= exp
{
μi1(e

βN − 1)
}
μi1e

βN

= μi1 exp
{
μi1(e

βN − 1) + βN

}
.

(ii) E[Ni exp(2NiβN)|Xi] = E

[
1

2

∂

∂βN

exp(2NiβN)|Xi

]
=

1

2

∂

∂βN

MNi|Xi
(2βN)

= μi1 exp
{
μi1(e

2βN − 1) + 2βN

}
.
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(iii) Var[Ni exp{NiβN}|Xi] = E
[
[Ni exp(NiβN)− E[Ni exp(NiβN)|Xi]]

2 |Xi

]
= E

[
N2

i exp(2NiβN)|Xi

]− [E[Ni exp(NiβN)|Xi]
]2

= E

[
1

4

∂2

∂β2
N

exp(NiβN)|Xi

]

− μ2
i1 exp

{
2μi1(e

βN − 1) + 2βN

}
=

1

4

∂2

∂β2
N

E [exp(NiβN)|Xi]

− μ2
i1 exp

{
2μi1(e

βN − 1) + 2βN

}
=

1

4

∂2

∂β2
N

MNi|Xi
(2βN)

− μ2
i1 exp

{
2μi1(e

βN − 1) + 2βN

}
=

1

4

∂2

∂β2
N

exp
{
μi1(e

2βN − 1)
}

− μ2
i1 exp

{
2μi1(e

βN − 1) + 2βN

}
= μ2

i1 exp
{
μi1(e

2βN − 1) + 4βN

}
+ μi1 exp

{
μi1(e

2βN − 1) + 2βN

}
− μ2

i1 exp
{
μi1(e

2βN − 1) + 2βN

}
.

Going back to equation (5.4) then gives:

Var[Si|Xi] = (μ̃i2)
2
[
μ2
i1 exp

{
μi1(e

2βN − 1) + 4βN

}
+ μi1 exp

{
μi1(e

2βN − 1) + 2βN

}
− μ2

i1 exp
{
μi1(e

βN − 1) + 2βN

} ]
+ φ(μ̃i2)

2μi1 exp
{
μi1(e

2βN − 1) + 2βN

}
= μi1(μ̃i2)

2
[
μi1 exp

{
μi1(e

2βN − 1) + 4βN

}
+ (φ+ 1) exp

{
μi1(e

2βN − 1) + 2βN

}
− μi1 exp

{
μi1(e

βN − 1) + 2βN

} ]
. (5.5)

Note that if βN = 0 then this reduces to

Var[Si|Xi] = μi1μ
2
i2[μi1 exp(0) + (φ+ 1) exp(0)− μi1 exp(0)] = μi1μ

2
i2(φ+ 1),
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which is the same variance equation obtained in the independent model (see equation

(4.7)). Thus again, βN = 0 recovers the independent case.

Moment Generating Function

In the dependent model, the moment generating function is more complicated. We

have that:

MSi|Xi
(t) = E

[
eSit|Xi

]
= E

[
eNiȲit

∣∣Xi

]
= E

[
E[eNiȲit|Ni,Xi]

∣∣Xi

]
= E

[
MȲi|Ni,Xi

(Nit)|Xi

]
.

If we return to the Compound Poisson gamma case, we have that conditionally on

Ni and Xi, Ȳi is gamma

(
μD
i2,

φ

Ni

)
and so MȲi|Ni,Xi

(t) =

(
1− φ

Ni

μD
i2t

)−Ni/φ

. Thus,

we have that

MSi|Xi
(t) = E

[
MȲi|Ni,Xi

(Nit)
∣∣Xi

]
= E

[(
1− φ

Ni

μD
i2Nit

)−Ni/φ ∣∣Xi

]

= E

[(
1− φμD

i2t
)−Ni/φ

∣∣Xi

]
= E

[(
1− φ exp{X̃�

i2β̃2} exp{NiβN}t
)−Ni/φ |Xi

]

= E

[(
1− φμ̃i2 exp{NiβN}t

)−Ni/φ|Xi

]
=

∞∑
n=0

(1− φμ̃i2 exp{nβN}t)−n/φ e−μi1μn
i1

n!
.

Unlike in the independent case, this moment generating function has no closed form.

5.2 MLEs in the Dependent Model

Consider the joint distribution of the frequency and severity components of the ag-

gregate losses in Model D:

fȲ ,N(y, n) = fȲ |N(y|n)fN(n).

Assuming the dispersion parameter φ is known, the marginal means obtained from

the GLM for E[N ] = μ1 and E[Ȳ |N ] = μD
2 allow to fully parametrize the distributions

fȲ |N and fN , respectively.
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As discussed in Chapter 2, both the additive and reproductive forms of the ex-

ponential dispersion models are closed under convolution. Thus, for individual claim

amounts Yij with means μi, we have that Ȳi also has mean μi. More precisely, if

the individual severities belong to the additive ED family with Yij given Ni being

ED∗(θi, λ) then the distribution of the sum
∑Ni

j=1 Yij = Ni × Ȳi, conditional on Ni,

is also a member of the additive ED models with NiȲi given Ni being ED∗(θi, Niλ).

If we choose the severity to belong to the reproductive ED family, then we have that

Yij given Ni is ED(μi, σ
2) and so Ȳi given Ni is ED

(
μi,

σ2

Ni

)
.

In the GLM formulation, the marginal means of the frequency and severity com-

ponents are a function of the regression parameters β = (β1,β2, βN). We are thus

interested in obtaining maximum likelihood estimates for these parameters as it will

allow ultimately to estimate the expected loss cost. The MLEs for the regression pa-

rameters can be found through the joint likelihood of N and Ȳ . For m policyholders,

we have that the joint likelihood function is:

L(β1,β2, βN ;y,n) =
m∏
i=1

fȲ ,N(yi, ni) =
m∏
i=1

fȲ |N(yi|ni)fN(ni),

and the joint log-likelihood is:

�(β1,β2, βN ;y,n) = lnL(β1,β2, βN ;y,n),

where fȲ |N is a function of the parameters (μD
i2, φ2) and fN is a function of (μi1, φ1).

Recall from Chapter 3 that the likelihood and log-likelihood functions for the

exponential dispersion models could be written in terms of the canonical parameters

θi as:

L(θ, φ; y) =
m∏
i=1

exp

[
yiθi − κ(θi)

ai(φ)
+ C(yi, φ)

]

= exp

[
m∑
i=1

{
yiθi − κ(θi)

ai(φ)

}]
×

m∏
i=1

exp {C(yi, φ)} ,

and

�(θ, φ; y) = lnL(θ, φ; y) =
m∑
i=1

{
yiθi − κ(θi)

ai(φ)

}
+

m∑
i=1

C(yi, φ).
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Thus, we can write the joint likelihood of (Ȳ , N) in terms of the canonical parameter

θ = (θ1, θ2) as follows:

L(θ,φ;y,n) = exp

{
m∑
i=1

{
yiθi2 − κ2(θi2)

ai2(φ2)

}}
×

m∏
i=1

exp {C(yi, φ2)}

× exp

{
m∑
i=1

{
niθi1 − κ1(θi1)

ai1(φ1)

}}
×

m∏
i=1

exp {C(ni, φ1)} ,

and the log-likelihood as:

�(θ,φ;y,n) =
m∑
i=1

{
yiθi2 − κ2(θi2)

ai2(φ2)

}
+

m∑
i=1

C(yi, φ2)

+
m∑
i=1

{
niθi1 − κ1(θi1)

ai1(φ1)

}
+

m∑
i=1

C(ni, φ1).

By the GLM structure used in Model D with log-link functions, we have that

the mean mapping function is μ = τ(θ) = exp(θ) for both the frequency and

severity components. Thus, we have that μD
i2 = τ2(θi2) = exp(X̃

�
i2β̃2 + NiβN) and

μi1 = τ1(θi1) = exp(X�
i1β1). It follows that all of the information for the regression

parameter vector β1 is contained in the portion of the likelihood contributed by the

marginal probability density function fN while the information for (β̃2, βN) is in the

portion from the conditional density fȲ |N . We can then write the log-likelihood as:

�(θ;y,n) = �Ȳ |N(β̃2, βN ;y|n) + �N(β1;n). (5.6)

It follows that the information for β1 is contained in the marginal log-likelihood

�N(β1;n) while the information for (β̃2, βN) is contained in the conditional log-

likelihood �Ȳ |N(β̃2, βN ;y|n). Due to the separable nature of the likelihood, we have

that (β̃2, βN) and β1 are orthogonal parameters, that is, the Fisher Information ma-

trix is diagonal. Thus, we can consider inference on (β̃2, βN) and β1 separately.

By the assumptions of Model D, we have that

μi1 = exp(X�
i1β1) where β1 is a p1 × 1 vector of parameters

μD
i2 = exp(X̃�

i2β̃2 +NiβN) where β2 is a p2 × 1 vector of parameters.

We then have that:
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� ∂μi1

∂β1k

= xi1kμi1,
∂μD

i2

∂β1k

= 0 for k = 1, ..., p1,

� ∂μD
i2

∂β2t

= x̃i2tμ
D
i2,

∂μi1

∂β2t

= 0, for t = 1, ..., p2,

� ∂μD
i2

∂βN

= Niμ
D
i2,

∂μi1

∂βN

= 0.

The score equations for the regression parameters β1,β2, βN are thus:

(i) s(β1k;y,n) =
∂

∂β1k

�(β1, β̃2, βN ;y,n)

=
∂

∂β1k

{
�Ȳ |N(β̃2, βN ;y|n) + �N(β1;n)

}
=

∂

∂β1k

�N(β1;n)

= s(β1k;n), k = 1, ..., p1. (5.7)

(ii) s(β̃2t;y,n) =
∂

∂β̃2t

�(β1, β̃2, βN ;y,n)

=
∂

∂β̃2t

{
�Ȳ |N(β̃2, βN ;y|n) + �N(β1;n)

}

=
∂

∂β̃2t

�Ȳ |N(β̃2, βN ;y|n)

= s(β̃2t;y|n), t = 1, ..., p2. (5.8)

(iii) s(βN ;y,n) =
∂

∂βN

�(β1, β̃2, βN ;y,n)

=
∂

∂βN

{
�Ȳ |N(β̃2, βN ;y|n) + �N(β1;n)

}
=

∂

∂βN

�Ȳ |N(β̃2, βN ;y|n)

= s(βN ;y|n). (5.9)

In the particular case where the frequency distribution is Poisson and the severity
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distribution is gamma, the score equations can be simplified as follows:

(i) s(β1k;y,n) = s(β1k;n)

=
m∑
i=1

[
ni

1

μi1

∂μi1

∂β1k

− ∂μi1

∂β1k

]
=

m∑
i=1

[
ni

μi1xi1kμi1 − xi1kμi1

]

=
m∑
i=1

xi1k(ni − μi1) = 0, k = 1, ..., p1. (5.10)

(ii) s(β̃2t;y,n) = s(β̃2t;y|n)

=
∂

∂β̃2t

m∑
i=1

ni

φ

[−yi
μD
i2

+ ln

(
1

μD
i2

)]
=

∂

∂β̃2t

m∑
i=1

ni

φ

[−yi
μD
i2

− ln(μD
i2)

]

=
m∑
i=1

ni

φ

[
−yi

−1

(μD
i2)

2

∂μD
i2

∂β̃2t

− 1

μD
i2

∂μD
i2

∂β̃2t

]

=
m∑
i=1

ni

φ

[
yi
μD
i2

x̃i2tμ
D
i2 −

1

μD
i2

x̃i2tμ
D
i2

]
=

m∑
i=1

ni

φ
x̃i2t

[
yi
μD
i2

− 1

]

=
m∑
i=1

ni

φ

x̃i2t

μD
i2

(yi − μD
i2) = 0, t = 1, ..., p2. (5.11)

(iii) s(βN ;y,n) = s(βN ;y|n)

=
∂

∂βN

m∑
i=1

ni

φ

[−yi
μD
i2

+ ln

(
1

μD
i2

)]
=

∂

∂βN

m∑
i=1

ni

φ

[−yi
μD
i2

− ln(μD
i2)

]

=
m∑
i=1

ni

φ

[
−yi

−1

(μD
i2)

2

∂μD
i2

∂βN

− 1

μD
i2

∂μD
i2

∂βN

]

=
m∑
i=1

ni

φ

[
yi
μD
i2

niμ
D
i2 −

1

μD
i2

niμ
D
i2

]
=

m∑
i=1

ni

φ
ni

[
yi
μD
i2

− 1

]

=
m∑
i=1

ni

φ

ni

μD
i2

(yi − μD
i2) = 0. (5.12)

Note that the score equation for the regression parameters associated with the

marginal frequency GLM, e.g. s(β1k;n) for k = 1, ..., p1, is identical to that obtained

under the assumption of independence as in the Model I. Thus, the regular max-

imum likelihood properties hold and so β̂1 is asymptotically normally distributed

with
√
m(β̂1 − β1) ∼ N (0, {I(β1)}−1), where I(β1) can be estimated by I(β̂1).
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The maximum likelihood estimates for the severity parameters β̂N and β̂21, ..., β̂2p2

are not based on a regular likelihood equation but rather on a conditional likelihood.

It follows that these estimates are conditional maximum-likelihood estimates. An-

dersen (1970) discusses the asymptotic properties of conditional maximum likelihood

estimators (CMLE) and shows that, under some regularity assumptions, the CMLE

θ̂ is consistent and is asymptotically normally distributed, with mean equal to the

true parameter value θ0 and asymptotic variance equal to

m∑
i=1

EY

[{
∂ ln fȲ |N(yi|θ, ni)

∂θ

}2
]
= −

m∑
i=1

EY

[
∂2 ln fȲ |N(yi|θ, ni)

∂θ2

]
.

It follows from equations (5.11) and (5.12) that:

�
∂2

∂β2
2k

�Ȳ |N(β̃2, βN ;y|n) =
m∑
i=1

ni

φ
x̃i2k

(
− yi
(μD

i2)
2

∂μD
i2

∂β̃2k

)

=
m∑
i=1

ni

φ
x̃i2k

(
− yi
(μD

i2)
2
x̃i2kμ

D
i2

)

=
m∑
i=1

ni

φ
x̃2
i2k

(
− yi
μD
i2

)
,

�
∂2

∂β̃2kβ̃2l

�Ȳ |N(β̃2, βN ;y|n) =
m∑
i=1

ni

φ
x̃i2kx̃i2l

(
− yi
μD
i2

)
,

�
∂2

∂β2
N

�Ȳ |N(β̃2, βN ;y|n) =
m∑
i=1

ni

φ
ni

(
− yi
(μD

i2)
2

∂μD
i2

∂β̃N

)

=
m∑
i=1

n2
i

φ
ni

(
− yi
μD
i2

)

=
m∑
i=1

n3
i

φ

(
− yi
μD
i2

)
,

�
∂2

∂βN β̃2k

�Ȳ |N(β̃2, βN ;y|n) =
m∑
i=1

n2
i

φ
x̃i2kx̃i2l

(
− yi
μD
i2

)
.
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In expectation, the above second partial derivatives are:

� EȲ |N
[ ∂2

∂β̃2
2k

�Ȳ |N(β̃2, βN ;y|n)
]
= −

m∑
i=1

ni

φ
x̃2
i2k,

� EȲ |N
[ ∂2

∂β̃2kβ̃2l

�Ȳ |N(β̃2, βN ;y|n)
]
= −

m∑
i=1

ni

φ
x̃i2kx̃i2l,

� EȲ |N
[ ∂2

∂βN

�Ȳ |N(β̃2, βN ;y|n)
]
= −

m∑
i=1

n3
i

φ
,

� EȲ |N
[ ∂2

∂β̃2kβN

�Ȳ |N(β̃2, βN ;y|n)
]
= −

m∑
i=1

n2
i

φ
x̃i2k.

It follows that the observed information matrix is then:

I(β̂2, β̂N)p2+1,p2+1 =
1

φ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
i=1 nix̃

2
i21

∑m
i=1 nix̃i21x̃i22 · · · · · ·∑m

i=1 nix̃i22x̃i21

∑m
i=1 nix̃

2
i22 · · · · · ·

...
...

. . .
...∑m

i=1 nix̃i2p2 x̃i21

∑m
i=1 nix̃i2p2 x̃i22 · · · · · ·∑m

i=1 n
2
i x̃i21

∑m
i=1 n

2
i x̃i22 · · · ∑m

i=1 n
3
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It follows that the MLE (β̂2, β̂N) is asymptotically normally distributed with

√
m((β̂2, β̂N)− (β2, βN)) ∼ N (

0, {I(β2, βN)}−1
)
,

where I(β2, βN) can be estimated by I(β̂2, β̂N).
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Chapter 6

Example

We will now apply the GLM models for the aggregate claims in both the independent

and dependent cases, as developed in Chapters 4 and 5. Both of these models will

be tested using insurance data and then compared in order to quantify the effect of

dependence in the aggregate claims models.

6.1 Data Description

The dataset consists of automobile insurance policies in Canada. The model was

fit to the collision claims experience for the years 2003 through 2005. Note that

the claims experience for years 2006 through 2008 was used as a hold out dataset for

cross-validation and to further test the fit of the models derived from the first dataset.

As mentioned above, the models were fit to the claims categorized under the

collision insurance coverage. The collision coverage, in particular, reimburses the

policyholder for car damages caused by an accident with another vehicle or object.

The claim payment will only cover damages caused from an actual car collision and

does not include damages due to theft, vandalism, weather, etc.

From the original dataset, only those policies with at least two weeks of exposure

were kept as to avoid spurious observations. The final dataset for the frequency model

was comprised of 799, 877 observations. The data used to fit the severity models,

which is the subset of the frequency dataset with positive claim counts, consisted of
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18, 895 observations.

As expected in a car insurance portfolio, very few policies made any claims. The

claim counts ranged from 0 to a maximum of 3 claims. The distribution of the claim

counts is given in Table 6.1.

Table 6.1: Claim Count Distribution

Claim Count Frequency Percent

0 780,982 97.64%

1 18,584 2.32%

2 301 0.04%

3 10 0.00%

Total 799,877 100.00%

Given a claim had occurred, the average claim severity ranged from $5.65 to

$54, 998.75. Figure 6.1 provides the histogram of the average severity for positive

claim counts.

Figure 6.1: Average Severity Histogram
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We also have that the distribution of average claim severity by claim count is as

in Table 6.2.

Table 6.2: Average Claim Severity by Claim Count

Claim Count Average Claim Severity

0 –

1 $4,757.34

2 $4,120.52

3 $3,600.08

Overall $4,746.59

We can see that as the number of claims increases, the average claim amount de-

creases. This suggests that we can expect the regression parameter βN to be negative.

Note that when the claim count is zero, the aggregate claim amount is also zero

by definition. Thus, an average claim severity is only defined for policies with positive

claim counts and is otherwise set to zero. If we consider the dataset used for the fre-

quency model, that is, policies with both zero and positive claim counts, the following

correlation statistics were obtained between the frequency and severity components:

� Pearson’s: ρP
N,Ȳ

= 0.6814,

� Spearman’s: ρS
N,Ȳ

= 0.9999.

These correlation statistics suggest that the claim counts and amounts are strongly

positively correlated. This could be due to the fact that when there are no claims

the severity is set to zero and for this dataset in particular, 98% of observations are

at (Ni = 0, Ȳi = 0).

When we consider only the severity model subset of the data, that is, those policies

with positive claim counts, the correlations are significantly different:

� Pearson’s: ρP
N,Ȳ

= −0.0170,

� Spearman’s: ρS
N,Ȳ

= 0.0045.
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Note that similar correlation values were obtained when considering the entire

dataset over the years 2003 through 2008. The correlations for all policies is:

� Pearson’s: ρP
N,Ȳ

= 0.6882,

� Spearman’s: ρS
N,Ȳ

= 0.9999.

While the correlations for policies with positive claim counts is:

� Pearson’s: ρP
N,Ȳ

= −0.0151,

� Spearman’s: ρS
N,Ȳ

= 0.0046.

Here the correlations are essentially indicating no relation between the frequency

and severity components. However, we must bear in mind that in the severity sub-

dataset, 98% of the policies make only one claim. Perhaps there are not enough

observations at the higher claim counts to reflect the relation between the frequency

and severity components.

It is also important to note that the illustration done here is with one particular

coverage in auto insurance, namely collision. We can expect the relation between the

claim frequency and severity to be different for other car insurance coverages, as well

as for different lines of business, such as home insurance.

Several rating variables were included in the dataset, specifically, the deductible,

the driver’s age, gender, and marital status, the number of years the driver has been

licensed, the number of years the policy has been with the company, the vehicle type

and finally the vehicle age. The gender, marital status and vehicle type variables were

used as factor covariates in the model, while the others were considered continuous

covariates.

When using GLMs to model data, it is important to ensure that the columns of

the design matrix are orthogonal so that there are no issues of multicollinearity. If

we consider the continuous rating variables included in the collision car insurance

claims, we can check for multicollinearity by considering the correlation between

rating variables. Table 6.3 provides the correlation matrix of the continuous covariates
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included in the dataset, with X1 = deductible, X2 = age, X3 = number of years

licensed X4 = number years policy with company, and X5 = vehicle age.

Table 6.3: Continuous Covariates Correlation Matrix

X1 X2 X3 X4 X5

X1 1 -0.086 -0.077 -0.081 -0.160

X2 -0.086 1 0.842 0.338 0.071

X3 -0.077 0.842 1 0.384 0.040

X4 -0.081 0.338 0.384 1 0.087

X5 -0.160 0.071 0.040 0.087 1

Naturally, there is a high correlation between the number of years the driver is

licensed and the driver’s age. This correlation between explanatory variables could

cause multicollinearity and lead to inaccurate regression parameter estimates. We

can then consider the impact on the regression parameter estimates and standard

errors for correlated variables by comparing a model with both variables included

with a model that only includes one of the correlated rating variables. This issue will

be further investigated with the frequency and severity GLMs selected in both the

independent and dependent models.

6.2 Modelling the Data

The glm function in R was used to model and analyse the dataset. A Poisson model

was used for the marginal frequency GLM while gamma responses were assumed for

the severity models. For both the frequency and severity models, a log link function

was used. The analysis of deviance was used to determine the best model for both

the frequency and severity marginal models, as described in Chapter 3, by comparing

nested models. Only main effects models were analysed and interactions were not

considered so as to simplify the process and allow for a clearer interpretation of the

effect of dependence in the aggregate claims model. Given the limited rating variables
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included in the dataset in the first place, the goal here was not necessarily to find

the best possible model to describe the data but rather to compare the effects of

extending the independent model to the dependent setting.

When modelling the dataset, we had to ensure that all observations were treated

in a consistent manner by taking into account each individual’s exposure to risk. Since

not all policies were necessarily insured for a full year, we had to make adjustments

such that all observations were considered in a congruent way. This adjustment was

done by using an offset for the exposure variable in the frequency model, where the

exposure variable indicates what portion of the year the individual was insured for.

Thus, an exposure unit equal to 1 means that the policy was insured for a full year,

while an exposure unit of, say, 0.5 implies the individual was insured for only half

a year. Note that the claim counts Ni in the dataset represent the total number of

claims incurred over the insured time period. Here, we assume that the claim counts

follow a Poisson distribution. It then follows that as the exposure increases, the

expected claim count will increase proportionally. In using an offset in the GLM for

Ni, we are essentially including the exposure variable as a fixed effect with regression

coefficient equal to 1. If we denote the exposure variable by ti, then the GLM for Ni

with an exposure offset is as follows:

ln

(
μi1

ti

)
= X�

i1β1

⇒ ln(μi1) = ln(ti) +X�
i1β1,

where ln(ti) is the exposure offset term. Thus, on the mean scale we have:

μi1 = ti exp(X
�
i1β1),

so that we can interpret the term exp(X�
i1β1) as a yearly expected claim count.

Note that it was not necessary to use an offset for the severity models since we are

modelling Ȳi, that is, the average loss amount per claim occurrence. It follows that

the exposure variable will not effect the expected average claim severity in a fixed

proportional manner. Thus, there is no need to adjust the expected claim severity

for the exposure.
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The weights to be given to each observation in the frequency models were taken

to be 1. However, in the severity models, the claim counts were used as weights.

Recall from Chapters 4 and 5, when modelling the average claim amounts, we have

that Ȳi ∼ ED

(
μi2,

φ

Ni

)
. It follows that we have ai(φ) = φ/ni and thus the claim

counts ni must be used as weights in the GLM.

Note that using the standard residuals as defined in Chapter 3 to test the model

fit and adequacy was not straightforward in this analysis. The standard definitions

described in Chapter 3 are appropriate for response variables that are members of the

ED family, however, here the variable of interest is the aggregate losses Si. Although

both the frequency and severity components of the aggregate claims are assumed

to follow ED models, we cannot conclude the same for the total claims by only

analysing the first and second moments of Si. We could use any type of residual on

the marginal components, Ni and Ȳi, however the interpretation for the final model on

Si is not so clear. Moreover, in this analysis, the marginal frequency mean E[Ni|Xi]

and the marginal severity means in the independent model and dependent models,

E[Ȳi|Xi] and E[Ȳi|Xi, Ni] respectively, are only of secondary interest and are more

of an intermediate step. Consequently, the interpretation of the residuals on the

claim counts and average claim amounts is not so straightforward with respect to the

expected loss cost. It is also not clear how to define a standard residual directly for

the model on the mean aggregate claim amount.

We can, however, consider the simple response residual as the discrepancy between

the fitted value and the observation:

rRi = si − μ̂i.

We can also consider a modified Pearson residual with the denominator being the

variance of the response Var[Si] rather than the variance function V (μi) so that the

residual becomes:

r∗Pi =
si − μ̂i√
Var[Si]

.

Another alternative is to use a modified version of the deviance residual: rather than
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using the deviance Di, we can consider the scaled deviance D∗
i where

D∗ =
1

φ
D = 2{�(θ̃;φ,y)− �(θ̂;φ,y)}

= 2
{[

�Ȳ |N(θ̃2;φ2,y|n) + �N(θ̃2;φ1,n)
]
−
[
�Ȳ |N(θ̂2;φ2,y|n) + �N(θ̂1;φ1,n)

]}
=

[
�Ȳ |N(θ̃2;φ2,y|n)− �Ȳ |N(θ̂2;φ2,y|n)

]
+
[
�N(θ̃2;φ1,n)− �N(θ̂1;φ1,n)

]
= D∗̄

Y |N +D∗
N .

Then the scaled deviance residual can be defined as:

r∗Di = sign(si − μ̂i)
√

D∗
i = sign(si − μ̂i)

√
D∗̄

Y |N,i
+D∗

N,i.

Note that in the independent model, we will have D∗ = D∗̄
Y
+D∗

N and then the scaled

deviance residual is r∗Di
= sign(si − μ̂i)

√
D∗

i = sign(si − μ̂i)
√

D∗̄
Y ,i

+D∗
N,i.

The analysis of deviance, as described in Chapter 3, was used to establish the best

fitting models for the marginal frequency and severity models respectively. Recall

from equation (3.1.4):

D∗(y, μ̂) =
D(y, μ̂)

φ
∼ χ2

m−p.

This can be used to assess the significance of an individual model. We also have from

equation (3.1.4) that:

D(y, μ̂A)−D(y, μ̂B)

φ
∼ χ2

pB−pA
.

This equation allows to compare nested models and assess whether the simpler model

is an acceptable simplification of the more complex model. The deviance statistic

thus allowed us to assess the model adequacy and ultimately conclude which model

was most suitable for the data.

6.3 Independent Model

The independent model, as described in Chapter 4, was fit to the data assuming a

Poisson frequency distribution and a gamma severity distribution.

69



6.3.1 Frequency Model I

The full main effects model is as follows:

ln (E[Ni|Xi]) = ln(exposure) + deductible + age + gender + marital status

+ number of years licensed + number years policy with insurer

+ vehicle type + vehicle age,

where the term ln(exposure) is the exposure offset previously mentioned. All terms,

with the exception of gender, were found to be significant in the model at the 0.1%

level. The next model fit to the data dropped the gender term from the GLM. Since

this updated model is nested in the main effects model, we can use the analysis of

deviance to assess whether the simplified model is significant. The change in residual

deviance between the two models is -0.40623 and the difference in the degree of

freedom is 1. Comparing the difference in deviance with the 95th percentile of a Chi-

Square distribution with 1 degree of freedom, 3.841459, confirms that the simplified

model is indeed an adequate simplification. All terms in this model were found to

be significant at the 5% level and consequently dropping any additional terms would

not produce an adequate simplification to the model. Thus, we can conclude that the

best fitting model for the mean frequency is:

μ̂I
i1 = exp{β1,0 + β1,1 deductible+ β1,2 age+ β1,3 marital status

+ β1,4 number of years licensed+ β1,5 number years policy with insurer

+ β1,6 vehicle type+ β1,7 vehicle age}. (6.1)

Note that since we are assuming Poisson responses, the dispersion parameter

should be equal to 1. A rough estimate for the dispersion parameter can be taken as

D(y; μ̂i1)/m−p1 ≈ φ1 since E

[
D(y; μ̂i1)

φ1

]
= m−p1. However, for this GLM we have

D(y; μ̂i1)/m− p1 = 145568/799848 = 0.1819946. This is evidence of underdispersion

in the model. This could imply that the distribution assumption of Poisson responses

is perhaps inadequate. Since there is a substantial amount of policies with zero claim

count, a zero-inflated Poisson distribution assumption could potentially provide a

better fit.
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6.3.2 Severity Model I

Similarly, for the severity model in the independent case, a series of nested models

were fit until an adequate simplification was found. The following models were fit to

the data:

i) main effects model - I (full model)

ln
(
E[Ȳi|Xi]

)
= deductible coll + age + gender + marital status

+ number of years licensed + number years policy with insurer

+ vehicle type + vehicle age.

ii) model m1-I

ln
(
E[Ȳi|Xi]

)
= deductible coll + gender + marital status

+ number of years licensed + number years policy with insurer

+ vehicle type + vehicle age.

iii) model m2-I

ln
(
E[Ȳi|Xi]

)
= deductible coll + marital status + number of years licensed

+ number years policy with insurer + vehicle type + vehicle age.

iv) model m3-I

ln
(
E[Ȳi|Xi]

)
= deductible coll + marital status + number of years licensed

+ vehicle type + vehicle age.

v) model m4-I

ln
(
E[Ȳi|Xi]

)
= deductible coll + number of years licensed

+ vehicle type + vehicle age.

The analysis of scaled deviance was used to compare these nested models and also

to test the final model (item v) with the null model (which fits only an intercept).

Table 6.4 list the deviances obtained for each of the above mentioned models.
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Table 6.4: Model I - Severity GLMs

Model Deviance Degress of Freedom Dispersion

sev main effects-I 16161 18865 0.7982221

m1-I 16161 18866 0.7980804

m2-I 16162 18867 0.7981926

m3-I 16163 18868 0.7976447

m4-I 16168 18871 0.7976825

null model 17633 18894 1.092249

We can see that the differences in the deviance and dispersion between the nested

models are very small. This indicates that the simpler model is adequate. For exam-

ple, comparing models m3-I and m4-I, we have that the difference in scaled deviance

is roughly 6.27. Comparing this with the 95th percentile of the χ2 distribution with 3

degrees of freedom, 7.81, we can conclude that model m4-I is an adequate simplifica-

tion of m3-I. That is, setting the regression parameter for the marital status covariate

to zero is an acceptable hypothesis.

The remaining covariates in model m4-I were all found to be significant at the

0.1% level. It follows that the best fit for the severity component in the independent

model is m4-I:

μ̂I
i2 = exp

{
β2,0 + β2,1 deductible+ β2,2 number of years licensed

+ β2,3 vehicle type+ β2,4 vehicle age
}
. (6.2)

6.3.3 Aggregate Claims Model I

By the independence assumption in model I, it follows that the expected aggregate

claims is the product of the marginal mean frequency and mean severity so that:

E[Si|Xi] = E[Ȳi|Xi]× E[Ni|Xi] = μ̂I
i1 × μ̂I

i2 = μ̂I
i . (6.3)

72



6.4 Dependent Model

The dependent model, as described in Chapter 5, was fit to the same dataset used for

fitting the independent model. Again, we assumed a Poisson frequency distribution

and a gamma severity distribution.

6.4.1 Frequency Model D

In the dependent model, the marginal frequency GLM is modelled the same way as

in the independent model. Thus, the final model for μ̂D
i1 is taken as μ̂I

i1:

μ̂D
i1 = exp{β1,0 + β1,1 deductible+ β1,2 age+ β1,3 marital status

+ β1,4 number of years licensed+ β1,5 number years policy with insurer

+ β1,6 vehicle type+ β1,7 vehicle age}. (6.4)

6.4.2 Severity Model D

The procedure for determining the best fitting severity model in the dependent setting

is similar to that of the independent model, however, now an additional covariate is

included for the claim counts Ni. Again, a series of nested models were fit to the

data, as follows:

i) main effects model - D (full model)

ln
(
E[Ȳi|Xi, Ni]

)
= Ni + deductible coll + age + gender + marital status

+ number of years licensed + number years policy with insurer

+ vehicle type + vehicle age.

ii) m1-D

ln
(
E[Ȳi|Xi, Ni]

)
= Ni + deductible coll + gender + marital status

+ number of years licensed + number years policy with insurer

+ vehicle type + vehicle age.
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iii) m2-D

ln
(
E[Ȳi|Xi, Ni]

)
= Ni + deductible coll + marital status

+ number of years licensed + number years policy with insurer

+ vehicle type + vehicle age.

vi) m3-D

ln
(
E[Ȳi|Xi, Ni]

)
= Ni + deductible coll + marital status

+ number of years licensed + vehicle type + vehicle age.

v) m4-D

ln
(
E[Ȳi|Xi, Ni]

)
= Ni + deductible coll + number of years licensed

+ vehicle type + vehicle age.

Similarly to what was done in the independent model setting, the analysis of scaled

deviance was used to assess the model fit. Table 6.5 list the deviances obtained for

each of the above mentioned models.

Table 6.5: Model D - Severity GLMs

Model Deviance Degrees of Freedom Dispersion

main effects - D 16148 18864 0.7946048

m1-D 16149 18865 0.7944659

m2-D 16149 18866 0.7946156

m3-D 16151 18867 0.794058

m4-D 16155 18870 0.7940439

null model 17633 18894 1.092249

Similar to in the independent case, we have that the differences in the deviance and

dispersion between the nested models are small. Based on the results in Table 6.5, we

can conclude that model m4-D is the best fit for the severity model in the dependent
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case. Note that the covariates in model m4-D were all found to be significant at the

0.1% level. It follows that the conditional mean severity in the dependent model is:

μ̂D
i2 = exp

{
X̃

�
i2β̃2 +NiβN

}
,

and thus the modified marginal severity mean, μ̃i2 = exp
(
X̃�

i2β̃2

)
, is:

μ̃i2 = exp
{
β̃2,0 + β̃2,1 deductible+ β̃2,2 number of years licensed

+ β̃2,3 vehicle type+ β̃2,4 vehicle age
}
. (6.5)

and the correction term for the claim counts is:

exp
{
μi1

(
eβN − 1

)
+ βN

}
. (6.6)

6.4.3 Aggregate Claims Model D

It follows from the dependent model assumption that the expected aggregate claims

in Model D is then:

μ̂D
i = μ̂i1

ˆ̃μi2 exp
{
μ̂i1

(
eβ̂N − 1

)
+ β̂N

}
. (6.7)

6.5 Model Comparisons

The goal of this thesis was to assess the effect of extending the independent aggregate

claims model to the dependent case. In particular, we focused on the effect of depen-

dence between frequency and severity on the expected total loss cost. Thus, we are

interested in the effect of the model formulation on E[Si|Xi] = μi. In the independent

model, we have that the expected aggregate claims is the product of the marginal

frequency and severity means, as determined in a GLM framework:

μI
i = μi1 × μi2.

In the dependent model, the expected total claims becomes the product of the

marginal frequency mean, a modified severity mean and a correction term:

μD
i = μi1 × μ̃i2 × exp

{
μi1

(
eβN − 1

)
+ βN

}
.
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Thus, any difference between μI
i and μD

i is generated by the change in the marginal

mean severity as well as the correction term. The difference between the mean severity

in the independent and dependent cases, μ̂I
i2 and μ̂D

i2 respectively, is caused by the

presence of the claim count Ni as a covariate in the GLM for model D. As discussed

in Chapter 5, the difference between the expected loss cost in the independent and

dependent models is not straightforward as βN > 0 (βn < 0) will cause the correction

term to be greater than 1 (less than 1), but this increase (decrease) could be offset

by the change in the marginal severity mean from μi2 to the modified μ̃i2.

In order to evaluate whether the dependent model is indeed significant, we can

compare it with the independent model. Note that testing whether βN = 0 can be

done by comparing the final severity models in the independent and dependent cases

respectively since the final independent severity model (m4-I) is nested in the final

dependent severity model (m4-D). That is, setting βN = 0 in the dependent model

m4-D will retrieve the independent model m4-I. We can then compare the change in

deviance with the χ2
1 distribution. Here, taking φ̂ ≈ 0.7940439, we have that:{

D(y, μ̂I
i2)−D(y, μ̂D

i2)
}

φ̂
=

(16168− 16155)

0.7940439
= 16.37189.

If we compare this with the 95th percentile of the χ2
1 distribution, we have that the

test statistic is much larger that the χ2 statistic: 16.37189 > 3.841459. Since the

change in deviance is significantly larger than the percentile, we can conclude that

the independent model is not an adequate simplification of the dependent model.

This is evidence that there is a need for a dependent model for the aggregate claims.

Similarly, if we consider the Wald test statistic for the null hypothesisH0 : β0,N = 0

we obtain:
β̂N − β0,N√
Var(β̂N)

=
−0.1397− 0

0.03377
= −4.136808.

We can thus conclude that the coefficient for the frequency covariate is strongly

significant in the model.

Table 6.6 shows the deviances obtained for the fitted models. Note that the loss

cost model deviance is the sum of the frequency and severity deviances. We can see

that the dependent model has a lower deviance than the independent model.

76



Table 6.6: Deviance Comparison

Model Deviance Scaled Deviance

Frequency Model 145, 567.60 145, 567.60

Severity Model I 16, 167.56 20, 361.04

Severity Model D 16, 154.62 20, 344.74

Loss Cost Model I 161, 735.16 165, 928.64

Loss Cost Model D 161, 722.22 165, 912.34

On average, the coefficients for the modified severity GLM, ˆ̃β2, were increased

by a mere 0.53% as compared to the independent marginal severity GLM regression

parameters β̂2. Some parameters were increased by as much as 5.38% and decreased

by as much as −4.91%.

The regression parameter generated from the presence of the claim count in the

modified severity GLM was estimated as β̂N ≈ −0.1396594. This implies that the

correction term will be less than 1 for all cases, and can be thought of as a discount

multiplicative factor that will be applied to all policies. It follows that the increase

seen for some of the regression parameters in the modified severity model could be

offset by the correction term, while those coefficients that produced a decrease will

be further decreased by the correction term.

Overall, the extent of the change in expectations between model I and model

D was minimal. The impact of extending the independent model to the dependent

model produced, on average, a 0.1037% increase in pure premiums, while the min-

imum percent difference was −1.622% and the maximum was 1.361%. (Note here

we are considering the percent difference as the dependent model fit divided by the

independent model fit). If we further analyse the extremes of the impact, we have

that the exposure with the 1.361% change is a 19 year old single female, with 1 year of

experience with the company, 1 year of driving experience, a $300 deductible, vehicle

type G and vehicle age 13. This policyholder in particular had experienced a claim

yielding a loss of $3242.73. At the other extreme, the exposure who experienced a

−1.622% change is a 69 year old married male with 14 years experience with the com-

77



pany, 51 years of driving experience, a $5000 deductible, vehicle type X and vehicle

age −1 (a new car). This insured, on the other hand, did not have any claims.

Apart from modelling pure premiums, we can also consider the effect of depen-

dence on the variance of the aggregate claim mount. On average, the variance of

the aggregate claims, Var[Si|Xi], decreased by −0.285% in the dependent model as

compared to the independent model. On the extremes, the variance was increased

by as much as 2.514% and decreased by as much as −3.417%. Although the im-

pact on the variance was small, we can nonetheless conclude that overall, extending

the model to the dependent case allowed for a more precise estimation of the aggre-

gate claims. It follows that the dependent aggregate claims models provides a more

accurate representation of the risk of the insurance portfolio.

It is important to note that for the collision coverage in particular, the association

between the frequency and severity components of the aggregate loss amount was

found to be negative. It follows that E[Ni] and E[Ȳi] somewhat counteract each other;

e.g. if a certain rating variable implies a discount for the expected claim frequency,

it might imply a surcharge for the expected claim severity. Thus, the overall impact

of dependence on the expected total loss cost, E[Si], could be relatively small when

the claim frequency and severity have a negative correlation. Nonetheless, Model D

allows for a more accurate representation of E[Si].

The dependent model framework introduced in this thesis could have a much

greater impact for other car insurance coverages or lines of business where there is

a positive association between the claim frequency and severity. In this case, in

considering the mean claim count and amount separately, the independent model

could be double counting the effects of certain rating variables. That is, Model I will

give a double discount for good risks and double penalize bad risks by considering the

effects of rating variables on E[Ni] and E[Ȳi] separately. The framework of Model D

will avoid this double counting effect by accurately reflecting the dependence between

Ni and Ȳi and adjusting the expected loss cost E[Si] accordingly.
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6.5.1 Residuals

In order to further assess the model fit, we considered the modified Pearson residuals,

as described in Section 6.2. The residual plots for both the independent and dependent

models showed a similar pattern, with most residuals centered around zero with the

exception of a few outliers. Figures 6.2, 6.3, 6.4, and 6.5 provide the residual plots

for both model I and model D.

Notice that as we narrow the range of the residuals (see Figures 6.4 and 6.5),

there seems to be a slight decreasing trend in the residuals. This could suggest that

perhaps a predictor variable is missing in the models. As previously mentioned, the

dataset only contains a few rating variables typically used in the property casualty

insurance industry. It follows that the models fit here are rather simple compared to

what is done in the industry. Potentially significant rating variables not available in

the dataset include annual distance driven, territory, driving record, etc.

Figure 6.2: Model I Modified Pearson Residuals
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Figure 6.3: Model D Modified Pearson Residuals

0 100 200 300 400

−1
0

−5
0

5
10

Model D − Modified Pearson Residuals

Fitted Values

M
od

ifi
ed

 P
ea

rs
on

 R
ed

is
ua

ls

Figure 6.4: Model I Modified Pearson Residuals (zoom)
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Figure 6.5: Model D Modified Pearson Residuals (zoom)
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We also plotted the scaled deviance residuals, as described in Section 6.2, for the

frequency model, the severity models and loss cost models; see Figures 6.6, 6.7, 6.8,

6.9, and 6.10. Notice that in the frequency model, there are two clouds of data points;

one above 2 and one around 0. Note that the residuals that are significantly above the

0 level correspond to those observations with claim count of 1 or greater. This residual

plot provides further evidence that the Poisson distribution assumption for the claim

counts is inadequate. Since there are so many observations at (Ni = 0, Ȳi = 0),

the model is unable to properly fit those policies with positive claim occurrences.

As previously mentioned, a zero-inflated Poisson model might provide a better fit.

This pattern of two bands of residual points is also apparent in the loss cost models

deviance residual plots.
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Figure 6.6: Frequency Model Deviance Residuals
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Figure 6.7: Severity Model I Deviance Residuals

2000 4000 6000 8000 10000 12000

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Severity Model I − Deviance Residuals

Fitted Values

D
ev

ia
nc

e 
R

es
id

ua
ls

82



Figure 6.8: Severity Model D Deviance Residuals

2000 4000 6000 8000 10000 14000

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Severity Model D − Deviance Residuals

Fitted Values

D
ev

ia
nc

e 
R

es
id

ua
ls

Figure 6.9: Loss Cost Model I Deviance Residuals
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Figure 6.10: Loss Cost Model D Deviance Residuals
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6.5.2 Multicollinearity

As mentioned at the beginning of this chapter, there is a strong correlation between

the driver’s age and the number of years the driver is licensed. In the final severity

models in both the independent and dependent case, only the rating variable number

of years licensed was present, thus there should not be any issues with multicollinear-

ity. However, in the final frequency model, both age and years licensed are present.

Using an analysis of deviance, the adequacy of removing both rating variables was

assessed. Comparing the final frequency model with a nested model where only the

age variable was removed caused a change in deviance of 118, thus indicating that we

cannot remove age from the model. Similarly, removing only number of years licensed

from the model caused a change in deviance of 542, thus again indicating that the

years licensed variable is significant. We can thus conclude that both age and years

licensed are needed in the frequency model.
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6.5.3 Hold Out Dataset

Note that the model was also tested on a hold out dataset, which consisted of the

collision claim experience from years 2006 through 2008. Similar conclusions were

drawn from the out of sample analysis. On average, the impact on the pure premium

from moving to the dependent setting was 0.1249 %, while the maximum percent

difference was 1.318 % and the minimum was -1.656 %. If we consider the variance

of the aggregate claim amount, the dependent model caused on average a -0.1886 %

change, while the maximum impact was 2.430 % and the minimum impact was -3.516

%.

Table 6.7 provides the deviances obtained for the frequency, severity and loss cost

models for the hold out dataset. Similar to the results obtained on the model dataset,

the dependent model deviance is lower than the independent model.

Table 6.7: Deviance Comparison - Hold Out Dataset

Model Deviance Scaled Deviance

Frequency Model 118, 625.40 118, 625.40

Severity Model I 12, 785.63 16, 101.92

Severity Model D 12, 778.85 16, 093.38

Loss Cost Model I 131, 411.03 134, 727.32

Loss Cost Model D 131, 404.25 134, 718.78

The residual plots for the hold out dataset were again similar to those from the

original dataset, as shown in Figures 6.11 through 6.19.
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Figure 6.11: Model I Modified Pearson Residuals Hold Out Dataset
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Figure 6.12: Model D Modified Pearson Residuals Hold Out Dataset
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Figure 6.13: Model I Modified Pearson Residuals Hold Out Dataset (zoom)
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Figure 6.14: Model D Modified Pearson Residuals Hold Out Dataset (zoom)
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Figure 6.15: Frequency Model Deviance Residuals Hold Out Dataset
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Figure 6.16: Severity Model I Deviance Residuals Hold Out Dataset
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Figure 6.17: Severity Model D Deviance Residuals Hold Out Dataset
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Figure 6.18: Loss Cost Model I Deviance Residuals Hold Out Dataset
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Figure 6.19: Loss Cost Model D Deviance Residuals Hold Out Dataset
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6.5.4 Regression Parameter Estimates

Tables 6.8, 6.9, and 6.10 provide the details on the estimated parameters and stan-

dard errors obtained for the frequency and severity GLMs in both the independent

and dependent cases. We can see that the standard errors for all of the parameter es-

timates are very low. In particular, in each of the final models, all of the explanatory

variables are significant at the 99.9 % level.

In comparing the independent and dependent severity models, we can see that

there are significant changes in the parameter estimates, while the standard errors

remain low in both cases. Note that although many of the estimates seem close to

zero, on the mean scale there will indeed be a considerable impact on the expected

value since we are using a log link function. For example, if we consider a continu-

ous covariate X with regression parameter estimates β̂, then on the mean scale the

multiplicative factor associated with that predictor variable becomes
(
exp{β̂}

)X
.

90



Table 6.8: Regression Parameter Estimates - Frequency Model

Regression Parameter Estimate Standard Error

Intercept -3.08E+00 8.50E-02

Deductible coll -4.98E-04 4.10E-05

Driver age 1.08E-02 9.76E-04

Driver marital status Divorced 7.29E-02 3.14E-02

Driver marital status Married -1.67E-01 1.83E-02

Driver marital status Widowed 2.03E-01 5.70E-02

Driver number years licensed -2.40E-02 9.98E-04

Number years policy here -1.32E-02 1.70E-03

Vehicle type A 3.12E-01 9.20E-02

Vehicle type B 2.63E-01 7.50E-02

Vehicle type C 2.71E-01 7.98E-02

Vehicle type D 3.01E-01 7.50E-02

Vehicle type E 2.66E-01 9.53E-02

Vehicle type F 3.63E-01 8.23E-02

Vehicle type G 1.66E-01 1.26E-01

Vehicle type H 3.76E-01 1.21E-01

Vehicle type I 3.32E-01 1.81E-01

Vehicle type J 3.67E-01 8.02E-02

Vehicle type K 2.98E-01 1.01E-01

Vehicle type L 2.74E-01 9.43E-02

Vehicle type M 1.67E-02 1.25E-01

Vehicle type N 1.18E-01 7.60E-02

Vehicle type O 8.81E-02 8.16E-02

Vehicle type P 2.28E-01 8.01E-02

Vehicle type Q 4.87E-02 1.20E-01

Vehicle type R 1.68E-01 9.26E-02

Vehicle type S -9.52E-02 8.77E-02

Vehicle type X -3.98E-01 3.83E-01

Vehicle age -4.18E-02 2.09E-03

91



Table 6.9: Regression Parameter Estimates - Severity Model I

Regression Parameter Estimate Standard Error

Intercept 8.67E+00 7.24E-02

Deductible 2.63E-04 3.67E-05

Driver number years licensed -2.92E-03 5.04E-04

Vehicle type A -3.08E-01 8.22E-02

Vehicle type B -1.02E-01 6.70E-02

Vehicle type C -8.13E-02 7.13E-02

Vehicle type D -4.49E-02 6.68E-02

Vehicle type E 8.69E-02 8.51E-02

Vehicle type F 2.68E-01 7.33E-02

Vehicle type G 2.01E-01 1.13E-01

Vehicle type H 3.22E-01 1.08E-01

Vehicle type I 5.71E-01 1.62E-01

Vehicle type J 5.17E-02 7.16E-02

Vehicle type K 1.92E-01 9.04E-02

Vehicle type L 8.45E-02 8.41E-02

Vehicle type M 4.90E-01 1.12E-01

Vehicle type N -7.44E-02 6.78E-02

Vehicle type O 1.08E-01 7.28E-02

Vehicle type P 1.42E-01 7.14E-02

Vehicle type Q 3.49E-01 1.07E-01

Vehicle type R 1.34E-01 8.28E-02

Vehicle type S 2.40E-01 7.84E-02

Vehicle type X -3.25E-01 3.44E-01

Vehicle age -6.45E-02 1.91E-03
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Table 6.10: Regression Parameter Estimates - Severity Model D

Regression Parameter Estimate Standard Error

Intercept 8.82E+00 8.05E-02

Claim Count (Ni) -1.40E-01 3.38E-02

Deductible 2.60E-04 3.66E-05

Driver number years licensed -3.01E-03 5.03E-04

Vehicle type A -3.09E-01 8.20E-02

Vehicle type B -1.01E-01 6.69E-02

Vehicle type C -7.73E-02 7.11E-02

Vehicle type D -4.34E-02 6.66E-02

Vehicle type E 8.81E-02 8.49E-02

Vehicle type F 2.71E-01 7.31E-02

Vehicle type G 2.09E-01 1.12E-01

Vehicle type H 3.25E-01 1.08E-01

Vehicle type I 5.70E-01 1.62E-01

Vehicle type J 5.45E-02 7.15E-02

Vehicle type K 1.97E-01 9.02E-02

Vehicle type L 8.43E-02 8.39E-02

Vehicle type M 4.90E-01 1.11E-01

Vehicle type N -7.38E-02 6.77E-02

Vehicle type O 1.09E-01 7.26E-02

Vehicle type P 1.43E-01 7.12E-02

Vehicle type Q 3.54E-01 1.07E-01

Vehicle type R 1.34E-01 8.26E-02

Vehicle type S 2.39E-01 7.82E-02

Vehicle type X -3.28E-01 3.43E-01

Vehicle age -6.45E-02 1.90E-03
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Conclusion

In the insurance industry, the common approach for modelling the aggregate claims

amount is to assume that the claim frequency and severity components are indepen-

dent. This independent model allows for a more simplistic representation of the total

loss amount and allows to analyse the frequency and severity processes separately.

Although this approach perhaps provides greater insight into the two separate pro-

cesses, it fundamentally ignores the dependence that may exist between the claim

frequency and claim severity. This thesis proposes a new model formulation that al-

lows for a correlation between the claim counts and claim amounts. In this particular

dependence setting, the independent model is nested inside the dependent model;

that is, the independent model is actually a special case of the dependent model.

The focus in this thesis is to provide a model for the expected total loss cost

on the individual level, as is done for insurance pricing. We found a closed form

formula for both the first and second moments of the aggregate claims while allowing

for dependence between the counting process and the jump process of the aggregate

claims.

Further work to be done on the subject includes the specification of higher mo-

ments as well as the specification of the joint probability density function for the

random vector (Ni, Ȳi).
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