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ABSTRACT

The average number of amicable pairs and aliquot cycles for a family of

elliptic curves

James Parks, Ph.D.

Concordia University, 2013

Let E be an elliptic curve over Q. Silverman and Stange defined the set (p1, . . . , pL)

of distinct primes to be an aliquot cycle of length L of E if each pi is a prime of good

reduction for E such that

#Ep1(Fp1) = p2, . . . ,#EpL−1
(FpL−1

) = pL,#EpL(FpL) = p1.

Let πE,L(X) denote the aliquot cycle counting function with p ≤ X. They conjectured

for elliptic curves without complex multiplication that πE,L(X) �
√
X/(logX)L. Jones

refined this conjecture to give an explicit constant, namely

πE,L ∼ CE,L

√
X

(logX)L
.

In this thesis we will show that the conjectured upper bound holds for πE,L(X) on average

over the family of all elliptic curves with a short length for the average.
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Chapter 1

Introduction

Let E be an elliptic curve over Q. Then E can be expressed by the equation

E : y2 = x3 + ax+ b, a, b ∈ Q

with discriminant ∆E = −16(4a3+27b2) 6= 0. For each prime p - ∆E, E reduces to a curve

over Fp with #E(Fp) = p+ 1− ap(E), where Ep(Fp) is the group of points on E over Fp

and |ap(E)| ≤ 2
√
p by the Hasse bound. There are several conjectures associated with the

reductions Ep as p varies over the primes p ≤ X, such as the Sato-Tate conjecture for the

distribution of the normalized traces

{
ap(E)

2
√
p

}
for p ≤ X, or the Lang-Trotter conjecture

[LaTr] for the number of primes p ≤ X such that ap(E) = t for a fixed integer t, or the

Koblitz conjecture [Kob] for the number of primes p ≤ X such that #E(Fp) = p+1−ap(E)

is prime. The Sato-Tate conjecture was recently proven for elliptic curves over totally real

fields which have multiplicative reduction at some prime by Harris, Shepherd-Barron and

Taylor [HSBT], but the other conjectures are completely open. For example, we do not

know if there exist infinitely many primes p ≤ X such that ap(E) = t for any elliptic

curve over Q, except when t = 0, which corresponds to the supersingular case. This was

considered by Elkies [Elk] who showed that every elliptic curve E over Q has infinitely

many supersingular primes. We discuss the above conjectures in greater detail in Chapter
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3.

In a recent paper, Silverman and Stange [SiSt2] suggested a new question related to

the distribution of the reductions of a global elliptic curve. For a positive integer L ≥ 2,

Silverman and Stange define an L-tuple (p1, . . . , pL) of distinct prime numbers to be an

aliquot cycle of length L of E if E has good reduction at each prime pi, where Epi denotes

the reduced curve, such that for 1 ≤ i ≤ L− 1,

#Epi(Fpi) = pi + 1− ap(Epi) = pi+1 and #EpL(FpL) = p1.

Aliquot cycles of length L = 2 are defined to be amicable pairs.

Remark 1.0.1. The definitions of aliquot cycles and amicable pairs arise as the elliptic

curve analogues to the classically defined aliquot cycles and amicable numbers. For an

integer n ≥ 2 we define

σ(n) :=
∑
d|n

d,

to be the sum of divisors function and we define s(n) := σ(n)−n to be the sum of proper

divisors function. Classically, aliquot cycles, also called sociable numbers, are a set of

integers (m1, . . . ,mn) satisfying

s(m1) = m2, . . . , s(mn−1) = mn, s(mn) = m1.

Aliquot cycles of length two are called amicable numbers, for example, (220, 284). Aliquot

cycles of length one, the case when s(n) = n, are called perfect numbers.

For an elliptic curve E/Q we say that an aliquot cycle (p1, . . . , pL) is normalized if

p1 = min{pi : 1 ≤ i ≤ L} and we define the aliquot cycle counting function as

πE,L(X) :=#{p1 ≤ X|(p1, . . . , pL) is a normalized aliquot cycle}

=#{(p1, . . . , pL) is a normalized aliquot cycle | p1 ≤ X}.

2



Throughout this thesis we will use the following standard notation.

Definition 1.0.2. We say that f(x) = O(g(x)) if and only if there exists a positive real

number C and a real number x0 such that

|f(x)| ≤ C|g(x)| for all x > x0,

and we say that f �n g if and only if f ∈ On(g), where the subscript n is used to denote

that the implicit constant is a function of n. We also say that f(x) � g(x) if and only if

there exist positive constants C1, C2 and a real number x0 such that

C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| for all x > x0,

and we say that f(x) ∼ g(x) if and only if

lim
x→∞

f(x)

g(x)
= 1.

The goal of this thesis is to study the behavior of the aliquot cycle counting function.

As in the case of other distributions questions, it is easy to predict the number of amicable

pairs and aliquot cycles with the following simple heuristic. Let L = 2 and let E be an

elliptic curve without complex multiplication, then we have that

πE,L(X) ≈
∑
p≤X

Prob(p+ 1− ap(E) := q is prime and q + 1− aq(E) = p).

3



If these events are independent then we have that

πE,L(X) ≈
∑
p≤X

Prob(p+ 1− ap(E) := q is prime) · Prob(q + 1− aq(E) = p)

≈
∑
p≤X

1

log p
· 1

4
√
p

≈
√
X

log2X
,

by the prime number theorem and the Hasse bound. Silverman and Stange [SiSt2] gen-

eralized this argument to give the following conjecture.

Conjecture 1.0.3. Let E/Q be an elliptic curve and let L ≥ 2. Assume that there are

infinitely many primes pi such that #Epi(Fpi) is prime. Then as X →∞ we have

πE,L(X) �
√
X

(logX)L
if E does not have complex multiplication,

∼AE
X

(logX)2
if E has complex multiplication and L = 2,

where the implied constants in � are both positive and depend only on E and L and AE

is a precise positive constant, although no formula for AE is given.

Using further heuristic arguments, Conjecture 1.0.3 was refined by Jones [Jon2] to

give an explicit constant, CE,L. We will explain the heuristic argument of Jones in more

detail in Chapter 3.

Remark 1.0.4. We may interpret the case L = 1 in Conjecture 1.0.3 as describing

primes p for which #Ep(Fp) = p. These primes are called anomalous primes and have

been considered previously by Mazur [Maz]. Anomalous primes are to be avoided in

cryptography because the elliptic curve discrete logarithm problem for anomalous primes

can be solved in linear time, [SiSt2] and in this case, Conjecture 1.0.3 is a special case of

a conjecture of Lang and Trotter [LaTr], with t = 1, see Conjecture 3.1.20.

To gain further evidence for the distribution conjectures mentioned above, it is natural
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to consider the average for these conjectures over some family of elliptic curves. Thus, to

gain insight into the number of amicable primes and aliquot cycles, we will consider the

average of πE,L(X) for a family of elliptic curves. Throughout this thesis, we define our

family of elliptic curves as

C := C(A,B) = {Ea,b : Y 2 = X3 + aX + b, a, b ∈ Z, |a| ≤ A, |b| ≤ B}

which is a two parameter family of elliptic curves with nonzero discriminant. Since the

number of elliptic curves that have complex multiplication is small with respect to the

size of the family of all elliptic curves, we hope to find on average over all curves that as

X →∞,

1

|C|
∑
E∈C

πE,L(X) ∼ CL

√
X

(logX)L
,

where CL is related to conjectural constants given by Jones [Jon2], which we discuss in

Chapter 3.

Note that in the L = 2 case we have that for an amicable pair (p, q), given a prime

p, the Hasse bound implies that q ∈ (p + 1 − 2
√
p, p + 1 + 2

√
p), and hence we will

be required to count the number of primes in this short interval, where not even the

Riemann Hypothesis guarantees the existence of a prime. Thus, we will need to assume

some conjectures about the distribution of primes in short intervals to get an average

result for πE,L(X). This is similar to another distribution question related to elliptic

curves that was considered by David and Smith [DaSm1], where the authors showed that

under a suitable hypothesis for the number of primes of size X in an interval of length

X
1
2
−ε for some ε > 0, the number of primes p such that #E(Fp) = p + 1 − ap(E) = N

for a fixed integer N has the expected asymptotic, on average over all elliptic curves in

the family described above. In that case, we also have that #E(Fp) = p+ 1− ap(E) = N

implies that p ∈ (N + 1− 2
√
N,N + 1 + 2

√
N).

We now state the two main goals of this thesis.

The first goal is to obtain the conjectured upper bound for the average number of

5



aliquot cycles for a family of elliptic curves. That is, we will show unconditionally for

L ≥ 2 that

1

|C|
∑
E∈C

πE,L(X)�L

√
X

(logX)L
,

with some bounds on A and B by using the fundamental lemma of the combinatorial sieve,

as given by Friedlander and Iwaniec [FrIw1]. These calculations are primarily performed

in Section 3.2 and Chapter 4.

The length of the average is of course an important feature of average results, and

there are several techniques that were developed to obtain short (and possibly optimal)

averages for the distribution questions associated with the reduction of a global curve. For

the Sato-Tate conjecture (when the size of the intervals varies with p, which is not covered

by the results of Harris, Shepherd-Barron and Taylor), and the Koblitz conjecture, it was

shown by Banks and Shparlinski [BanShp] and Balog-Cojocaru-David [BCD] respectively,

that the asymptotic over the family C(A,B) can be obtained as long as A,B > Xε and

AB > X1+ε for some ε > 0. The same technique was applied by Baier [Ba2] to the

Lang-Trotter conjecture, but in that case, it leads to an average of size A,B > Xε and

AB > X3/2+ε. This is caused by the fact that the set of elliptic curves over Fp with a

fixed trace ap(E) is far thinner (among all elliptic curves over Fp) than the set of elliptic

curves over Fp for which the group of points has prime order. We remark that for both

the case of the Lang-Trotter and Koblitz conjecture, the “trivial length of the average”

would be A,B > X1+ε.

The second goal of the thesis is to generalize the techniques used by Banks and Shpar-

linski [BanShp] and Balog, Cojocaru and David [BCD] to the context of aliquot cycles.

This leads to an average length A,B > Xε and AB > X
3L
2
+ε, for some ε > 0. We remark

that for the problem of aliquot cycles of length L the “trivial length of the average” is

A,B > XL+ε, as shown in Section 3.2. The short length of the average is obtained in

Chapter 5. As in [BCD], we use multiplicative characters to detect the isomorphism class

of the reduction of the elliptic curve E(a, b) modulo p, and then bounds on character
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sums and the large sieve to get a short average. Because we have L-tuples of primes

(p1, . . . , pL) for the case of aliquot cycles, we need to consider products of characters

modulo the primes pi, and the question of primitivity becomes more critical, as explained

in Chapter 5.

The first and second goal can be summarized in the following result.

Theorem 1.0.5. Let ε > 0, E/Q be an elliptic curve and let C be the family of elliptic

curves with

A,B > Xε, X
3L
2 (logX)6 < AB < eX

1
6−ε .

Then as X →∞ we have that

1

|C|
∑
E∈C

πE,L(X)�
√
X

(logX)L
,

where the implied constant depends on L only.

Note that the additional condition AB < eX
1
6−ε is not a limiting constraint since we

are mainly interested in averages for small values of A and B.

Average results can give strong evidence for the distribution conjectures, because they

also verify the conjectural constants which are obtained from heuristic arguments based

on local probabilities and the distribution of Frobenius elements in the field extensions

given by the `-torsion of elliptic curves. See Chapter 3.1 for more details of this process for

the case of several distribution conjectures, and for an explicit description of the constant

CE,L obtained by Jones with this heuristic.
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Chapter 2

Background

2.1 Elliptic curves

In this section we will give a basic introduction into the theory of elliptic curves. Many of

the necessary definitions and results are standard and given in Silverman [Sil1, Chapter

III].

Before we give the definition of an elliptic curve we recall the following two definitions

from algebraic geometry.

Definition 2.1.1. The genus of a connected, orientable surface is an integer representing

the maximum number of cuttings along non-intersecting closed simple curves without

rendering the resultant manifold disconnected. It is equal to the number of handles on it.

Remark 2.1.2. The sphere and disc both have genus zero and a torus has genus one.

Definition 2.1.3. Let K be a field. We define projective n-space, Pn as the set of all

(n+ 1)-tuples

{P = (x0, . . . , xn) : xi ∈ K, for 0 ≤ i ≤ n}

such that at least one xi is nonzero modulo the equivalence relation given by

(x0, . . . , xn) ∼ (y0, . . . , yn)

8



if there exists a λ ∈ K∗ with xi = λyi for 0 ≤ i ≤ n.

The formal definition of an elliptic curve is as follows.

Definition 2.1.4. Let K be a field. An elliptic curve E is defined to be a non-singular,

projective algebraic curve of genus one along with the point at infinity, O := [0 : 1 : 0] in

P2. If E is defined over K then E can be given by the Weierstrass equation,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, with a1, . . . , a6 ∈ K.

If char(K) 6= 2 then replacing y by
1

2
(y − a1x− a3) gives an equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6,

where

b2 = a21 + 4a2, b4 = 2a4 + a1a3 and b6 = a23 + 4a6.

We also define the quantities

b8 := a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

c4 := b22 − 24b4,

c6 := −b32 + 36b2b4 − 216b4,

∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6,

j :=
c34
∆
.

Definition 2.1.5. The quantity ∆ given above is called the discriminant of the Weier-

strass equation and j is called the j-invariant of an elliptic curve.

Furthermore, if char(K) 6= 2, 3 then replacing (x, y) by

(
x− 32b2

36
,
y

108

)
gives the

simpler equation

E : y2 = x3 − 27c4x− 54c6.

9



Remark 2.1.6. In this paper we are primarily interested in elliptic curves over the fields

K = Q or Fp where p is a prime greater than three. In these cases we can write a short

Weierstrass equation for our elliptic curve given by

EA,B : y2 = x3 + Ax+B, with A,B ∈ K. (2.1)

In this case we have that

∆ = −16(4A3 + 27B2), j =
−1728(4A)3

∆
.

In the definition of an elliptic curve above we required that the curve be non-singular.

We give the following criteria for a curve given by the Weierstrass equation to be singular.

This is given in Silverman [Sil1, Proposition 3.1.4].

Proposition 2.1.7. (a) The curve given by a Weierstrass equation can be classified as

follows.

(i) It is non-singular if and only if ∆ 6= 0.

(ii) It has a node if and only if ∆ = 0 and c4 6= 0.

(iii) It has a cusp if and only if ∆ = c4 = 0.

In cases (ii) and (iii) there is only one singular point.

(b)Two elliptic curves are isomorphic over K if and only if they have the same j-invariant.

Throughout this thesis we are mainly interested in considering elliptic curves defined

over Q given by the short Weierstrass equation

E : y2 = x3 + Ax+B, with A,B ∈ Z,

and then considering the same equation defined over finite fields Fp where p is a prime

greater than three and determining if the reduced equation also describes an elliptic curve

over Fp. This is equivalent to checking if ∆ 6≡ 0 (mod p).

10



Definition 2.1.8. Let E/Q be an elliptic curve. We say that E has good reduction at a

prime p if ∆ 6≡ 0 (mod p) and denote the reduced curve by Ep, and we say that E has

bad reduction otherwise.

Since we are interested in Weierstrass equations of elliptic curves that when reduced

modulo various primes have as good reduction as often as possible we give the following

definition.

Definition 2.1.9. Let E be an elliptic curve given by a Weierstrass equation. We say

that the Weierstrass equation is minimal at a prime p if the largest power of p dividing

∆ cannot be reduced by an admissible change of variables. Furthermore, we say that the

Weierstrass equation is a global minimal Weierstrass equation if it is minimal at every p.

Additionally, we have the further classification of reduction of an elliptic curve given

in Silverman [Sil1, VII.5].

Definition 2.1.10. Let E/K be an elliptic curve and let Ep be the reduced curve for a

minimal Weierstrass equation.

(a) E has good (or stable) reduction over K if Ep is non-singular.

(b) E has multiplicative (or semi-stable) reduction over K if Ep has a node.

(c) E has additive (or unstable) reduction over K if Ep has a cusp.

In cases (b) and (c) we say that E has bad reduction. If E has multiplicative reduction,

then the reduction is said to be split (respectively non-split) if the slopes of the tangent

lines at the node are in K (respectively not in K).

Remark 2.1.11. Let E be an elliptic curve given by a global minimal Weierstrass equa-

tion. Then we can associate an invariant called the conductor, NE of E related to the

discriminant ∆. The set of primes dividing ∆ coincides exactly with the set of primes

dividing the conductor. Except for the primes 2 and 3, the power of the prime p diving

NE is either 1 or 2, depending whether E has a node or a cusp (mod p) respectively. The

power of the primes 2 and 3 dividing the conductor can be determined by Tate’s algorithm

described in Silverman [Sil2, Chapter IV.9].

11



Remark 2.1.12. The points on an elliptic curve form an abelian group under the com-

position law for adding points on an elliptic curve. If E is defined over K then we let

E(K) denote the group of points on E and we have that

E(K) = {(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}

is a subgroup of E. The criterion for the composition law is given in Silverman [Sil1,

Proposition III.2.2].

We also have the following celebrated theorem of Mordell for the group of points on

the elliptic curve, E(K), in the special case K = Q given in Silverman [Sil1, Theorem

VIII.4.1].

Theorem 2.1.13. (Mordell-Weil Theorem for K = Q) Let E/Q be an elliptic curve

then the group E(Q) is a finitely generated abelian group. That is,

E(Q) ∼= Zr × Etors(Q),

where the torsion subgroup Etors(Q) is finite and the algebraic rank r of E(Q) is a non-

negative integer.

We now provide definitions and results about maps between elliptic curves.

Definition 2.1.14. Let E1, E2 be elliptic curves. We define a morphism φ : E1 → E2

to be a rational map which is regular at every point. If φ(O) = O then φ is called an

isogeny. We say that E1 and E2 are isogenous if there is an isogeny φ between them with

φ(E1) 6= {O}.

Definition 2.1.15. Let

Hom(E1, E2) := {isogenies φ : E1 → E2}.

If E1 = E2 then we define End(E):=Hom(E,E) to be the endomorphism ring.

12



We have the following classification of endomorphism rings given in Silverman [Sil1,

Corollary III.9.4].

Proposition 2.1.16. Let E/K be an elliptic curve. Then End(E) is either Z, an order in

a quadratic imaginary field or an order in a quaternion algebra. Moreover, if char(K) = 0,

only the first two cases occur.

Definition 2.1.17. Let E be an elliptic curve over a field K with char(K) = 0. We say

that E has complex multiplication if the endomorphism ring End(E) ) Z.

From the formulation of an elliptic curve in (2.1) we can determine the necessary and

sufficient conditions for two elliptic curves to be isomorphic.

Definition 2.1.18. Let E = Ea,b and E ′ = Ea′,b′ be elliptic curves defined over a field K

with discriminants ∆ and ∆′ respectively. An isomorphism E → E ′ is defined to be an

element u in K∗ for which a′ = u4a, b′ = u6b and ∆′ = u12∆. An automorphism of E is

defined to be an isomorphism E → E and we use the symbol E to denote a representative

from an isomorphism class of E.

Definition 2.1.19. Let E be an elliptic curve defined over Fp for some prime p. We

define the Frobenius automorphism to be the map

φp :E → E

(x, y) 7→ (xp, yp),

O 7→ O,

and the characteristic polynomial of φp is given by

fE(T ) = T 2 − ap(E)T + p

where ap(E) is defined to be the trace of the Frobenius.

13



The trace of the Frobenius provides a way to precisely determine the size of the group

of points on an elliptic curve over Fp. For an elliptic curve E with conductor NE, if p - NE

then

ap(E) = p+ 1−#E(Fp).

The definition of ap(E) is extended to the set of all primes by setting

ap(E) :=


1 if E has split multiplicative reduction at p,

−1 if E has non-split multiplicative reduction at p,

0 if E has additive reduction at p.

We now state the general form of Hasse’s Theorem given in Silverman [Sil1, Theorem

5.1.1], although throughout this thesis we will be primarily concerned with the case when

q is prime.

Theorem 2.1.20. (Hasse’s Theorem) Let E/K be an elliptic defined over the field

with q elements. Then

|#E(K)− q − 1| ≤ 2
√
q.

The following theorem gives a classification of the possible automorphism groups of E

described in detail in Silverman [Sil1, Theorem III.10.1].

Theorem 2.1.21. Let E/K be an elliptic curve. Then its automorphism group Aut(E)

is a finite group of order given by

#Aut(E) =



2 if j(E) 6= 0, 1728,

4 if j(E) = 1728 and char(K) 6= 2, 3,

6 if j(E) = 0 and char(K) 6= 2, 3,

12 if j(E) = 0 = 1728 and char(K) = 3,

24 if j(E) = 0 = 1728 and char(K) = 2.

14



For elliptic curves over Fp this can be stated more succinctly as follows.

Corollary 2.1.22. Let E/Fp be an elliptic curve with p > 3 given by

E : y2 = x3 + ax+ b.

Then its automorphism group Aut(E) is given by

#Aut(E) =


6 if a = 0 and p ≡ 1 (mod 3),

4 if b = 0 and p ≡ 1 (mod 4),

2 otherwise.

We now consider the number of elliptic curves over Fp. This is given in Lenstra [Len].

Proposition 2.1.23. Let E/Fp be an elliptic curve with p a prime greater than three

given by

E : y2 = x3 + ax+ b

and let E denote a representative of an isomorphism class of E. Then

∑
E∈Fp

1 = (p− 1)
∑
E∈Fp

1

#Aut(E)
= p2 − p.

With the goal of proving a result of Deuring [Deu], we consider the following definitions.

Definition 2.1.24. Let D be a negative integer. We define a positive definite integral

binary quadratic form to be a homogeneous polynomial of the form Q(X, Y ) = aX2 +

bXY + cY 2 with a, b, c ∈ Z, a > 0 satisfying D = b2 − 4ac < 0, where D is defined to be

the discriminant of Q(X, Y ). A discriminant D is called a fundamental discriminant if

D = 1 or D is the discriminant of a quadratic field.

We have the following conditions for fundamental discriminants. Specifically, D is

a fundamental discriminant if and only if either D ≡ 1 (mod 4) and is square-free or
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D = 4m where m ≡ 2, 3 (mod 4) and m is square-free. The following definition relates

discriminants to the class numbers of the ring of integers of imaginary quadratic fields.

Definition 2.1.25. LetN be a non-negative integer, the Hurwitz-Kronecker class number,

H(N), is defined when N = 0 or N ≡ 1, 2 (mod 4) as

H(N) :=


−1
12

if N = 0,

0 if N ≡ 1, 2 (mod 4).

Otherwise, H(N) is the number of classes of not necessarily primitive, positive definite

quadratic forms of discriminant −N ; except that the classes which have a representative

that is a multiple of the form x2 + y2 should be counted with weight
1

2
and the classes

which have a representative that is a multiple of the form x2 + xy+ y2 should be counted

with weight
1

3
.

We can relate the Hurwitz-Kronecker class number to the usual class number as follows,

Lenstra [Len].

Remark 2.1.26. Given a (not necessarily fundamental) discriminantD < 0, the Hurwitz-

Kronecker class number of discriminant D is defined by

H(D) =
∑
f2|D

D
f2
≡0,1 (mod 4)

h
(
D
f2

)
w
(
D
f2

) , (2.2)

where h(d) denotes the usual class number of the unique imaginary quadratic order of

discriminant d < 0 and w(d) denotes the size of its unit group.

We now state the important result of Deuring [Deu] which will be of great use in the

following chapters.

Theorem 2.1.27. (Deuring’s Theorem) Let E/Q be an elliptic curve, let E denote a

representative of an isomorphism class of E, let p > 3 be a prime and let t be an integer
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such that t2 − 4p < 0. Then

∑
E∈Fp
ap(E)=t

1

#Aut(E)
= H(t2 − 4p),

where the sum is over the Fp isomorphism classes of elliptic curves.

2.2 Dirichlet characters and analytic number theory

In this section we will provide the basic definitions of arithmetic functions and Dirichlet

characters. We also include important results in analytic number theory and sieve meth-

ods that will be necessary in the following chapters. In this section and throughout the

thesis, for integers m and n, we let (m,n) denote the greatest common divisor of m and

n and we let [m,n] denote the least common multiple of m and n.

Definition 2.2.1. An arithmetic function is a real or complex valued function f(n)

defined on the set of natural numbers. We say that f(n) is additive if f(mn) = f(m)+f(n)

if (m,n) = 1 and completely additive when f(mn) = f(m) + f(n) for all m,n ∈ N. We

say that f(n) is multiplicative if f(mn) = f(m)f(n) when (m,n) = 1 and completely

multiplicative if f(mn) = f(m)f(n) for all m,n ∈ N.

Example 2.2.2. Let p be a prime, then we define νp(n) to be the highest power of the

prime p that divides n. That is, if p | n then n = pνp(n)k where (p, k) = 1. We have that

νp(n) is an additive arithmetic function.

Example 2.2.3. We define ϕ(n), the Euler totient function to be the number of positive

integers not greater than n that are coprime to n. We have that

ϕ(n) = n
∏
p|n

(
1− 1

p

)
,
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and ϕ(n) is a multiplicative function, where for a non-negative integer k we have that

ϕ(pk) =


pk−1(p− 1) if k ≥ 1,

1 if k = 0.

We have the following useful properties of the Euler ϕ-function.

Proposition 2.2.4. Let m,n be integers then we have that

1. ϕ(mn) = ϕ(m)ϕ(n) (m,n)
ϕ((m,n))

.

2. ϕ([m,n]) = ϕ(m)ϕ(n)
ϕ((m,n))

.

We also have the following bounds for arithmetic functions that we make use of in

the following chapters. The first is a bound for the Euler ϕ-function given in [BacSha,

Theorem 8.8.7].

Theorem 2.2.5. We have that

ϕ(x) ≤ x� ϕ(x) log log x.

We also have the more general result on bounds for multiplicative functions, given in

[Te, Theorem 1.11].

Theorem 2.2.6. Let f be a multiplicative function. If there exist constants A,B such

that ∑
p≤x

f(p) log p ≤ Ax (x ≥ 1), and
∑
p prime
v≥2

f(pv) log(pv)

pv
≤ B,

then for x ≥ 2 we have that

∑
n≤x

f(n) ≤ (A+B + 1)eB
x

log x

∏
p≤x

(
1 +

f(p)

p

)
.

We have that two arithmetic functions can be related in the following way.
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Definition 2.2.7. Let f, g be arithmetic functions. We define the Dirichlet convolution

of f and g, by

(f ∗ g)(n) :=
∑
d|n

f(d)g
(n
d

)
.

We also require the following definition for arithmetic functions.

Definition 2.2.8. Let f be an arithmetic function, then we denote the formal Dirichlet

series attached to f as

L(s, f) :=
∞∑
n=1

f(n)

ns
.

If f is a multiplicative function then

L(s, f) =
∏
p

(
∞∑
v=0

f(pv)

pvs

)
.

Example 2.2.9. If f(n) = 1 then ζ(s) := L(s, 1) is the Riemann zeta function which is

absolutely convergent for Re(s) > 1.

Remark 2.2.10. The definition of multiplicative functions can be extended to multivari-

ate functions as well. We say that f(n1, . . . , nk) is multiplicative if ni = n′in
′′
i for 1 ≤ i ≤ k

with (n′1 · · ·n′k, n′′1 · · ·n′′k) = 1 then f(n1, . . . , nk) = f(n′1, . . . , n
′
k)f(n′′1, . . . , n

′′
k). Combining

this with the definition of a formal Dirichlet series gives

∞∑
n1=1

· · ·
∞∑

nk=1

f(n1, . . . , nk) =
∏
p

(
∞∑
v1=0

· · ·
∞∑
vk=0

f(pv1 , . . . , pvk)

)
.

For the remainder of this section we focus on the theory of Dirichlet characters, which

are completely multiplicative functions. Many of the necessary definitions and results are

given in Davenport [Dav, Chapter 4,5].

Definition 2.2.11. A Dirichlet character of modulus q is defined to be any function

χ : Z→ C,
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which has the following properties.

1. There exists a positive integer q such that χ(n) = χ(n+ q) for all n.

2. If (n, q) > 1 then χ(n) = 0, if (n, q) = 1 then χ(n) 6= 0, is a root of unity.

3. χ(mn) = χ(m)χ(n) for all m,n ∈ Z.

That is, χ is a completely multiplicative function that is periodic with period q.

Definition 2.2.12. Fix an integer q ∈ N. The character

χ0(n) :=


1 if (n, q) = 1,

0 otherwise,

is called the trivial or principal character to the modulus q.

Definition 2.2.13. Let χ(n) be any character to the modulus q other than the principal

character. If (n, q) = 1 and χ(n) has period less than q then we say that χ is imprimitive

and otherwise primitive.

The following propositions are given in Davenport [Dav, Chapter 4, 5].

Proposition 2.2.14. Let χ be an imprimitive character to the modulus q. Then there

exists a proper factor q1 of q and a primitive character χ1 (mod q1) such that

χ(n) :=


χ1(n) if (n, q) = 1,

0 if (n, q) > 1.

Remark 2.2.15. We say that χ has conductor q1 if χ is imprimitive and if χ is primitive

then χ has conductor q = q1. We also have for any Dirichlet character (mod q) that there

are ϕ(q) characters.

We also have the following orthogonality relations for Dirichlet characters.
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Proposition 2.2.16. Let χ be a Dirichlet character to the modulus q. Then we have that

q∑
n=1

χ(n) =


ϕ(q) if χ = χ0,

0 otherwise,

∑
χ (mod q)

χ(n) =


ϕ(q) if n ≡ 1 (mod q),

0 otherwise,

where the summation in the second sum is over all the ϕ(q) characters.

We can use the previous result to construct a linear combination of the characters

which selects those integers n which fall in a given reduced residue class (mod q).

Theorem 2.2.17. Let χ be a Dirichlet character to the modulus q and let χ denote its

complex conjugate. If (a, q) = 1 then

1

ϕ(q)

∑
χ (mod q)

χ(a)χ(n) =


1 if n ≡ a (mod q),

0 otherwise.

We now focus on the specific case of real Dirichlet characters. We begin by giving the

following definitions of the Legendre and Kronecker symbol.

Definition 2.2.18. Let a, n be integers. If there exists an integer x such that x2 ≡ a

(mod n) then a is called a quadratic residue (mod n) and otherwise, a quadratic non-

residue (mod n). If p is an odd prime then the Legendre symbol is an arithmetic function

of a and p that is defined as follows:

(
a

p

)
:=


1 if a is a quadratic residue (mod p) and a 6≡ 0 (mod p),

−1 if a is a quadratic non− residue (mod p),

0 if a ≡ 0 (mod p).
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Remark 2.2.19. The Legendre symbol has the following two important properties.

1. The Legendre symbol

(
·
p

)
is a completely multiplicative Dirichlet character (mod q).

2. Let p and q be odd primes. The law of quadratic reciprocity can be stated as

(
q

p

)
=

(
p

q

)
(−1)

p−1
2

q−1
2 .

Definition 2.2.20. Let n = pα1
1 · · · p

αk
k be a positive integer where (p1, . . . , pk) are odd

primes. Let a be any integer then the Jacobi symbol is defined as

(a
n

)
:=

(
a

p1

)α1

· · ·
(
a

pk

)αk
,

where
(
a
pi

)
is the Legendre symbol. The Kronecker symbol,

(
a
n

)
is the extension of the

Jacobi symbol to all integers by the following definitions.

(a
2

)
:=


0 if a ≡ 0 (mod 2),

1 if a ≡ ±1 (mod 8),

−1 if a ≡ ±3 (mod 8),

(
a

−1

)
:=


−1 if a < 0,

1 if a ≥ 0,

(a
0

)
:=


1 if a = ±1,

0 otherwise.

We have the following classification of real primitive characters given in Davenport

[Dav, Chapter 5].

Theorem 2.2.21. Let
(
d
n

)
be the Kronecker symbol. Then the real primitive characters

χ(n) are precisely the χ(n) =
(
d
n

)
where d is a fundamental discriminant and d can be
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expressed as a product of relatively prime factors of the form

−4, 8, −8, (−1)
p−1
2 p (p > 2),

and χ(n) is a real primitive character to the modulus |d|.

The real non-principal characters are also called quadratic characters. We now state

the large sieve inequality for Dirichlet characters which is discussed in Davenport [Dav,

Chapter 27].

Theorem 2.2.22. (The large sieve inequality) Let M,N,Q be positive integers and

let {an}n be a sequence of complex numbers. For a fixed q ≤ Q, we let χ be a Dirichlet

character modulo q. Then

∑
q≤Q

q

φ(q)

∑
χ (mod q)
χ primitive

∣∣∣∣∣ ∑
M<n≤M+N

anχ(n)

∣∣∣∣∣
2

≤ (N + 3Q2)
∑

M<n≤M+N

|an|2.

We now define an L-function for a Dirichlet character.

Definition 2.2.23. Let χ(n) be a Dirichlet character to the modulus q. We define the

Dirichlet L-function associated to χ

L(s, χ) :=
∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1
for Re(s) > 1.

Remark 2.2.24. By analytic continuation this function can be continued to a meromor-

phic function on the complex plane. Dirichlet showed that L(s, χ) 6= 0 for s = 1 + it and

if χ = χ0 then

L(s, χ0) = ζ(s)
∏
p|q

(1− p−s),

which has a simple pole at s = 1.

Using the notion of the Hurwitz-Kronecker class number discussed in the previous
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section we have the following relationship between a quadratic Dirichlet L-function and

the class number, which is discussed in Davenport [Dav, Chapter 6] .

Theorem 2.2.25. (Analytic class number formula) Let D = df 2 where d is a

negative fundamental discriminant and let χD =

(
D

n

)
be the Kronecker symbol. Then χD

is a Dirichlet character and we have that

h(d)

w(d)
=

√
−D
2π

L(1, χD), where L(s, χD) =
∞∑
n=1

χD(n)

ns
for s ∈ C,Re(s) > 0,

and w(d) is the number of roots of unity in Q(
√
d).

We wish to bound the L(1, χD) by a short Euler product but first we will give the very

useful result of Merten.

Theorem 2.2.26. (Mertens’ Theorem) Let z ≥ 2 and let γ denote the

Euler-Mascheroni constant then

∏
p≤z

(
1− 1

p

)
=

e−γ

log z

(
1 +O

(
1

log z

))
,

where

γ := lim
n→∞

(
n∑
k=1

1

k
− log n

)
.

Let s ∈ C with Re(s) > 1, y ≥ 1 and χ a Dirichlet character, we define the following

notation

L(s, χ; y) :=
∏
p≤y

(
1− χ(p)

p

)−1
.

Then we have the following result given by Granville and Soundararajan [GrSo] essentially

due to Elliot.

Lemma 2.2.27. (Granville, Soundararajan, [GrSo]) Let α ≥ 1 and Q ≥ 3. There is a

set Eα(Q) ⊂ [1, Q] of at most Q
2
α integers such that if χ is a Dirichlet quadratic character
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modulo some q ≤ Q of conductor not in Eα(Q), then

L(1, χ) =
∏

p≤(logQ)8α2

(
1− χ(p)

p

)−1(
1 +Oα

(
1

(logQ)α

))
.

This result will be used to bound the error terms in our calculations in Chapter 4.

Now, let P+(n) denote the largest prime dividing n and let P−(n) denote the smallest

prime dividing n. We now state a result which is known as the fundamental lemma of

sieve methods which will allow us to give an upper bound for a sum over primes in terms

of a sum over integers. This will be a key tool to give the correct upper bound for the

average number of aliquot cycles. The version we will use is a direct consequence of

[FrIw1, Lemma 5].

Lemma 2.2.28. (Fundamental Lemma)

Let y ≥ 2, D = yu with u ≥ 2. There exists two arithmetic functions λ± : N → [−1, 1],

supported in the set {d ∈ N : P+(d) ≤ y, d ≤ D}, for which


(λ− ∗ 1)(n) = (λ+ ∗ 1)(n) = 1 if P−(n) > y,

(λ− ∗ 1)(n) ≤ 0 ≤ (λ+ ∗ 1)(n) otherwise.

Moreover, if g : N→ R is a multiplicative function with 0 ≤ g(p) ≤ min{2, p− 1} for all

primes p ≤ y then

∑
d

λ±(d)g(d)

d
=
∏
p≤y

(
1− g(p)

p

)
(1 +O(e−u)).

Finally, we conclude this section by stating the following useful bound for Dirichlet

L-functions given by Friedlander and Iwaniec [FrIw2], which we will make use of in our

calculation of the short length of the average in Chapter 5.

Theorem 2.2.29. (The fourth power moment of Dirichlet characters) Let q,N

be positive integers. Let χ denote a Dirichlet character modulo q, with χ0 denoting the
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principal character. Then

∑
χ 6=χ0

∣∣∣∣∣∑
n≤N

χ(n)

∣∣∣∣∣
4

� N2q log6 q.
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Chapter 3

Amicable pairs and aliquot cycles

3.1 Background

In this chapter we give an introduction to the theory of amicable pairs and aliquot cycles

for elliptic curves. We first review the previous results of Silverman and Stange [SiSt2]

and Jones [Jon2] and in the following section we give an outline of the steps required to

obtain an average for the number of aliquot cycles for a family of elliptic curves.

We begin this section by recalling the definition of aliquot cycles and amicable pairs

for an elliptic curve over Q.

Definition 3.1.1. Let E/Q be an elliptic curve. We define an L-tuple (p1, . . . , pL) of

distinct prime numbers to be an aliquot cycle of length L of E if E has good reduction at

each prime pi, and for 1 ≤ i ≤ L− 1, we have that

#Epi(Fpi) = pi + 1− api(Epi) = pi+1 and #EpL(FpL) = p1.

Aliquot cycles of length L = 2 are defined to be amicable pairs. We say that an aliquot

cycle (p1, . . . , pL) is normalized if p1 = min{pi : 1 ≤ i ≤ L} and we define the aliquot
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cycle counting function as

πE,L(X) := #{p1 ≤ X | (p1, . . . , pL) is a normalized aliquot cycle}.

Silverman and Stange [SiSt1] were motivated to study aliquot cycles and amicable pairs

for elliptic curves upon discovering that these invariants occurred in a natural fashion

when they were generalizing to elliptic divisibility sequences Smyth’s [Smy] results on

index divisibility of Lucas sequences.

From the conjecture on the number of aliquot cycles of Silverman and Stange in

Conjecture 1.0.3, we expect that for an elliptic curve E defined over Q that πE,L(X) will

exhibit different behavior depending on whether or not E has complex multiplication.

This is demonstrated in the following two examples.

Example 3.1.2. Consider the following two elliptic curves without complex multiplica-

tion given by

E1 : y2 + y = x3 − x and E2 : y2 + y = x3 + x2.

We have that πE1,2(107) = 1 where that amicable pair is (1622311, 1622471), and

πE2,2(107) = 4, the smallest of which is (853, 883).

Example 3.1.3. Consider the elliptic curve with complex multiplication given by

E3 : y2 = x3 + 2.

In this case we have that πE3,2(106) > 800 where the first four amicable pairs are

(13, 19), (139, 163), (541, 571), (613, 661).

There are also examples of elliptic curves having aliquot cycles of length L ≥ 3.

Example 3.1.4. The elliptic curve y2 = x3 − 25x − 8 has the aliquot triple (89, 79, 73)
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and the elliptic curve

E : y2 = x3 + 176209333661915432764478x

+ 60625229794681596832262

has an aliquot cycle

(23, 31, 41, 47, 59, 67, 73, 79, 71, 61, 53, 43, 37, 29)

of length 14.

In fact, Silverman and Stange [SiSt2, Theorem 5.1] proved the following result.

Theorem 3.1.5. (Silverman, Stange) For every L ≥ 1 there exists an elliptic curve

E/Q that has an aliquot cycle of length L. More generally, for any positive integers

L1, . . . , Lr, there exists an elliptic curve E/Q that has distinct aliquot cycles of lengths

L1, . . . , Lr.

Their proof of this result is similar to the proof of [Kow, Proposition 4.9], in which

Kowalski constructs elliptic curves such that #Ep(Fp) is constant for all p in a given Hasse

interval.

Remark 3.1.6. It is also possible to produce elliptic curves having no nontrivial aliquot

cycles. If E(Q)tors 6= {O}, then #Ep(Fp) will be composite for all but finitely many p,

since E(Q)tors ↪→ Ep(Fp) for all p - 2∆E/Q. For example, the elliptic curves y2 = x3 + x

and y2 = x3 + 1 do not have any aliquot cycles.

Silverman and Stange [SiSt2, Corollary 6.2, Proposition 8.1] gave the following results

in the complex multiplication case.

Theorem 3.1.7. (Silverman, Stange) Let E/Q be an elliptic curve with complex multi-

plication and j-invariant, jE.
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1. If jE 6= 0 then there are no aliquot cycles of length L ≥ 3 consisting of primes p ≥ 5.

2. If jE = 0 then E has no normalized aliquot triple (p, q, r) with p > 7.

Remark 3.1.8. From Theorem 3.1.7 we see that elliptic curves with complex multiplica-

tion such that jE = 0, cannot have aliquot cycles of length L = 3. However, it is unknown

if elliptic curves with complex multiplication such that jE = 0 have any aliquot cycles of

length greater than three.

Theorem 3.1.7 is a corollary of the more specific result of Silverman and Stange [SiSt2,

Theorem 6.1].

Theorem 3.1.9. (Silverman and Stange, [SiSt2, Theorem 6.1]) Let E/Q be an elliptic

curve and assume that:

(1) E has complex multiplication by an order OK in an imaginary quadratic field K =

Q(
√
−D).

(2) p and q are primes of good reduction for E with p ≥ 5 and q = #Ep(Fp).

(3) jE 6= 0, or equivalently OK 6= Z
[
1+
√
−3

2

]
.

Then D ≡ 3 (mod 4), and either

#Eq(Fq) = p or #Eq(Fq) = 2q + 2− p.

In the conjecture of Silverman and Stange [SiSt2], Conjecture 1.0.3 on the number of

aliquot cylces for a given elliptic curve we make the assumption that there are infinitely

many primes p such that #Ep(Fp) is prime. Therefore, if an elliptic curve E/Q is to have

any aliquot cycles, then it is clearly necessary that there exist primes p such that Ep(Fp)

is prime. This is considered in the Koblitz Conjecture, given in [Kob] and modified by

Zywina [Zyw], see Conjecture 3.1.22.

Then Silverman and Stange use Theorem 3.1.9 to give a heuristic justification for the

following conjecture [SiSt2, Conjecture 6.9].

Conjecture 3.1.10. (Silverman and Stange, [SiSt2]) Let E/Q be an elliptic curve with
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complex multiplication, define

πtwin
E (X) := {p ≤ X|#Ep(Fp) is prime}

and assume that jE 6= 0. Then either πtwin
E (X) is bounded, or else

lim
X→∞

πE,2(X)

πtwin
E (X)

=
1

4
.

Remark 3.1.11. From [SiSt2, Remark 6.10], we have that if E/Q has complex multipli-

cation, then

πtwin
E (X)� X

log2X
,

which yields the same upper bound for πE,2(X). Hence, we have an upper bound of

the right order of magnitude in Conjecture 1.0.3 for the number of amicable pairs in the

complex multiplication case.

We will now discuss the work of Jones [Jon2]. He refined Conjecture 1.0.3 in the

non-complex multiplication case as follows, [Jon2, Conjecture 1.3].

Conjecture 3.1.12. Let E/Q be an elliptic curve without complex multiplication and

fix an integer L ≥ 2. Then there is a non-negative real constant CE,L ≥ 0 such that as

X →∞ we have that

πE,L(X) ∼ CE,L

∫ X

2

1

2
√
t(log t)L

dt.

Remark 3.1.13. It is possible for the constant CE,L to be zero, in which case as X →∞

we have that πE,L(X) is finite. In particular, let E/Q be the elliptic curve given by

E : y2 = x3− 3x+ 4. Then Jones [Jon2] has shown that πE,2(1012) = 0 and assuming the

Koblitz Conjecture then CE,2 = 0.

Remark 3.1.14. By integration by parts, we have that

∫ X

2

1

2
√
t(log t)L

dt =

√
X

logLX
+O

( √
X

(log x)L+1

)
.
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Thus, Conjecture 3.1.12 is consistent with Conjecture 1.0.3.

The conjectural constant CE,L of Jones [Jon2] is obtained from a probabilistic model

which adjusts the local probabilities at each prime `, similar to the twin prime constant

appearing in the twin prime conjecture given below.

Conjecture 3.1.15. (Twin Prime Conjecture)

# {p ≤ x | p+ 2 is prime} ∼ S
x

log2 x
,

where

S = 2
∏
`6=2

`(`− 2)

(`− 1)2
.

There is a simple heuristic used to derive the constant S given as follows. For a

random integer n, and prime ` > 2, we have that

Prob(` - n(n+ 2)) =
`− 2

`
,

whereas

Prob(` - n)Prob(` - (n+ 2)) =

(
`− 1

`

)2

.

Hence,

S =
Prob(2 - n(n+ 2))

Prob(2 - n)Prob(2 - (n+ 2))

∏
`6=2

Prob(` - n(n+ 2))

Prob(` - n)Prob(` - (n+ 2))

=2
∏
6̀=2

`(`− 2)

(`− 1)2
≈ 1.32.

In order to obtain the constant for the distribution conjectures associated with elliptic

curves, we need a model for the following local probabilities. We need to determine

Prob(` - p+ 1− ap(E)) in the Koblitz Conjecture, Prob((ap(E) ≡ t (mod `)) in the Lang-

Trotter Conjecture, and Prob
(
p+ 1−ap(E) ≡ q (mod `) and q+ 1−aq(E) ≡ p (mod `)

)
in the Amicable Pairs Conjecture.
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We consider the n-th division field Q(E[n]), of E, obtained by adjoining to Q the x

and y-coordinates of the n-torsion E[n] of a given Weierstrass model of E. Since

E[n] ' Z/nZ× Z/nZ,

we have that

Gal(Q(E[n])/Q) ⊆ GL2(Z/nZ).

By the following theorem of Serre [Se1], we know that for all but a finite number of

primes ` (depending on the elliptic curve E), the Galois groups Gal(Q(E[`])/Q) are as

big as possible.

Theorem 3.1.16. (Serre, [Se1]) Let E/Q be an elliptic curve without complex multipli-

cation. Then, for all but a finite number of primes `, we have that

Gal(Q(E[`])/Q) ' GL2(Z/`Z).

In order to give probabilities at the remaining primes ` (which are not necessarily

independent from each other), we need a stronger version of Theorem 3.1.16, about the

size of the Galois group of the field obtained by adjoining all the torsion points of E to

Q.

For any positive integer n, let ρE,n denote the injective group homomorphism

ρE,n : Gal (Q (E[n]) /Q)→ GL2 (Z/nZ) ,

and let GE(n) denote the image of ρE,n inside GL2(Z/nZ). Taking the inverse limit of

the ρE,n over positive integers n (with a chosen compatible basis), we obtain a continuous

group homomorphism

ρE : GQ → GL2(Ẑ),

where Ẑ = lim←−Z/nZ, and GQ = Gal(Q/Q).
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Theorem 3.1.17. (Serre, [Se2]) Let E/Q be an elliptic curve without complex multipli-

cation. Then we have that

[GL2(Ẑ) : ρE(GQ)] <∞.

From Theorem 3.1.17, we have that there exist positive integers m such that, if

π : GL2(Ẑ) −→ GL2 (Z/mZ)

is the natural projection, then we have that

ρE (GQ) = π−1 (GE(m)) . (3.1)

That is, ρE (GQ) is the full inverse image of GE(m).

Remark 3.1.18. Let E/Q be an elliptic curve without complex multiplication. We define

ME to be the smallest positive integer m such that (3.1) holds. Then it follows from (3.1)

that ME has the following three properties:

1. If (n,ME) = 1, then GE(n) = GL2(Z/nZ),

2. If (n,ME) = (n,m) = 1, then GE(mn) ' GE(m)×GE(n),

3. If ME | m, then GE(m) ⊆ GL2(Z/mZ) is the full inverse image of

GE(ME) ⊆ GL2(Z/MEZ) under the projection map.

Thus, the probabilities will be independent for a prime ` -ME and at ME by the three

properties above.

The following proposition given in Serre [Se1, IV-4,IV-5] allows us to interpret the size

of the group of points on the elliptic curve over Fp in terms of the Frobenius automor-

phisms, which we denote by σp in Gal(Q(E[n])/Q) for an unramified prime p. We have

that σp is the element of the Galois group which projects to the generator of the local

Galois group at p.

Proposition 3.1.19. (Serre, [Se1, IV-4,IV-5]) Let n be a positive integer and assume
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that p is a prime of good reduction which does not divide n. Then p is unramified in

Q(E[n]) and for any Frobenius automorphism σp ∈ Gal(Q(E[n])/Q) we have that

tr(σp) ≡ ap(E) (mod n) and det(σp) ≡ p (mod n).

This gives us a model for the local probabilities since the Frobenius elements are

equidistributed in conjugacy classes of the Galois group by the Cebotarev Density Theo-

rem.

Hence, for the Lang-Trotter conjecture, for a prime ` -ME we have that

Prob (ap(E) ≡ t (mod `)) =
# {g ∈ GL2(F`) | tr(g) ≡ t (mod `)}

#GL2(F`)

=


`2−`−1

(`−1)2(`+1)
if ` - t,

`
`2−1 if ` | t.

This leads to the following conjecture.

Conjecture 3.1.20. (Lang-Trotter) Let E/Q be an elliptic curve without complex mul-

tiplication. Then we have that

πLT
E,t(X) = #{p ≤ X : ap(E) = t} ∼ CLT

E,t

√
X

logX

where

CLT
E,t =

2

π

ME|C(ME)|
|GE(ME)|

∏
`-ME

`|t

(
1− 1

`2

)−1 ∏
`-ME

`-t

`(`2 − `− 1)

(`− 1)(`2 − 1)
,

and

C(ME) = {g ∈ GE(ME) | tr(g) ≡ t (mod ME)} .

We note that the factor
2

π
in the Lang-Trotter Conjecture comes from the Sato-Tate

distribution appearing in the following conjecture, recently proven for elliptic curves over

totally real fields which have multiplicative reduction at some prime by Harris, Shepherd-
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Barron and Taylor [HSBT].

Conjecture 3.1.21. (Sato-Tate Conjecture) Let E/Q be an elliptic curve without

complex multiplication and let θp be a solution to the equation

p+ 1−#Ep(Fp) = 2
√
p cos θ + p (0 ≤ θp ≤ π).

Then for every two real numbers α, β for which 0 ≤ α < β ≤ π as X →∞ we have that

#{p ≤ X : α ≤ θp ≤ β}
#{p ≤ X}

∼ 2

π

∫ β

α

sin2 θdθ.

Let

C := C(A,B) = {Ea,b : Y 2 = X3 + aX + b, a, b ∈ Z, |a| ≤ A, |b| ≤ B},

It was proven by Fouvry and Murty [FoMu] (for t = 0) and David and Pappalardi [DaPa]

(for any integer t) that the Lang-Trotter conjecture holds on average, with the predicted

constant, namely that

1

4AB

∑
E∈C

πLT
E(a,b),t ∼ CLT

t

√
X

logX
,

where

CLT
t =

2

π

∏
`|t

(
1− 1

`2

)−1∏
`-t

`(`2 − `− 1)

(`− 1)(`2 − 1)

is the average of the Lang-Trotter constants of Conjecture 3.1.20 as proven by Jones

in [Jon1]. This holds for A,B big enough, and the “trivial length of the average” is

A,B > X1+ε for some ε > 0 in this case. The shorter length A,B > X
1
2
+ε, AB > X

3
2
+ε

obtained by Fouvry and Murty was improved to

A,B > (logX)60+ε and X
3
2 (logX)10+ε < AB < eX

1
8−ε

by Baier [Ba2]. The additional condition AB < eX
1
8−ε is not a limiting constraint since
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we are mainly interested in averages for small values of A and B.

For the Koblitz conjecture, for a prime ` -ME we have that

Prob (` - p+ 1− ap(E)) =
# {g ∈ GL2(F`) | ` - det(g) + 1− tr(g)}

#GL2(F`)

=
`4 − 2`3 − `2 + 3`

`(`− 1)2(`+ 1)
,

which leads to the following conjecture of Koblitz [Kob], as modified by Zywina [Zyw].

Conjecture 3.1.22. (Koblitz conjecture) Let E/Q be an elliptic curve without complex

multiplication and let ME be the smallest positive integer m such that (3.1) holds. Then,

πtwin
E (X) =#{p ≤ X : #E(Fp) = p+ 1− ap(E) is prime}

∼Ctwin
E

X

log2X
,

where

Ctwin
E =

ME|C(ME)|
ϕ(ME)|GE(ME)|

∏
`-ME

`(`3 − 2`2 − `+ 3)

(`− 1)3(`+ 1)
,

and

C(ME) = {g ∈ GE(ME) | (det(g) + 1− tr(g),ME) = 1} .

Balog, Cojocaru and David [BCD] proved that the Koblitz Conjecture is true on

average with A,B ≥ Xε and AB ≥ X1+ε, with the predicted constant, namely that

1

|C|
∑
E∈C

πtwin
E (X) ∼ Ctwin

√
X

logX
,

where

Ctwin =
∏
`

`4 − 2`3 − `2 + 3`

(`− 1)3(`+ 1)
.

We now return to the question of amicable pairs and aliquot cycles. In the amicable

pairs case we need to consider Prob(p+ 1− ap(E) = q and q + 1− aq(E) = p), so we will

use the direct product GL2(Z/`Z)×GL2(Z/`Z). Then as suggested by Proposition 3.1.19
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for a prime ` -ME, we have the model

Prob (p+ 1− ap(E) ≡ q (mod `) and q + 1− aq(E) ≡ p (mod `))

=
1

|GL2(Z/`Z)2|
·#

{
(g1, g2) ∈ GL2(Z/`Z)2 | det(g1) + 1− tr(g1) ≡ det(g2) (mod `)

and det(g2) + 1− tr(g2) ≡ det(g2) (mod `)

}

=
`4 − 2`3 − 2`2 + 3`+ 3

(`2 − 1)2(`− 1)2
,

as computed by Jones [Jon2]. Let φ(x) = 2
π

√
1− x2 be the Sato-Tate measure, which is

the density function of the random variable

L∑
i=1

api(E)

2
√
pi
,

coming from the Sato-Tate Conjecture, Conjecture 3.1.21. Now we denote by φL(x) :=

φ ∗ φ ∗ · · · ∗ φ the L-fold convolution of φ with itself.

Conjecture 3.1.23. (Jones, [Jon2]) Let E/Q be an elliptic curve without complex mul-

tiplication. Then,

πE,2(X) ∼ CE,2

√
X

log2X
,

where

CE,2 =
8

3π2

M2
E|C(ME)|
|GE(ME)2|

∏
`-ME

`2(`4 − 2`3 − 2`2 + 3`+ 3)

(`2 − 1)2(`− 1)2

and

C(ME) =

{
(g1, g2) ∈ GE(ME)2 | det(g1) + 1− tr(g1) ≡ det(g2) (mod ME),

det(g2) + 1− tr(g2) ≡ det(g1) (mod ME)

}
.

Finally, we state the general conjecture of Jones [Jon2] for πE,L(X), for any integer

38



L ≥ 2. We first set some notation. For any integer L ≥ 2 and any subgroup

G ⊆ GL2(Z/nZ), we define

GL
ali−cycle := {(g1, . . . , gL) ∈ GL | det(gi+1) = det(gi) + 1− tr(gi) for 1 ≤ i ≤ L}.

Then we have that Proposition 3.1.19 suggests that, for (n,ME) = 1, we have that

Prob
(

For all i ∈ Z/LZ, det(gi+1) ≡ det(gi) + 1− tr(gi) (mod n)
)

=
GE(n)Lali−cycle
GE(n)L

,

where we recall that GE(n) is the image of Gal(Q(E[n])/Q) in Gal2(Z/nZ). Hence, we

have the general conjecture of Jones [Jon2] for πE,L(X).

Conjecture 3.1.24. (Jones, [Jon2]) Let E/Q be an elliptic curve without complex mul-

tiplication. Then,

πE,L(X) ∼ CE,L

√
X

logLX
,

where

CE,L =
φL(0)

L

ML
E |GE(ME)Lali−cycle|
|GE(ME)L|

∏
`-ME

`L|GL2(Z/`Z)Lali−cycle|
|GL2(Z/`Z)L|

.

This concludes the section on previous work in the study of amicable pairs and aliquot

cycles of elliptic curves.

3.2 The average number of aliquot cycles

In this section we will consider the average of πE,L(X) for a family of elliptic curves. We

begin by finding the trivial upper bound and trivial length of the average as an initial

goal. We then obtain the conjectured upper bound for the average number of aliquot

cycles using technical results that we will prove in Chapter 4 and 5.

The family we will consider will be the set

C := C(A,B) = {Ea,b : y2 = X3 + aX + b, a, b ∈ Z, |a| ≤ A, |b| ≤ B}
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which is a two parameter family of elliptic curves with nonzero discriminant. We have

that the size of the family is

|C| =
∑
|a|≤A
|b|≤B

1 = 4AB +O(A+B + 1).

For a prime pi and an elliptic curve E ∈ C, we will denote the number of points on the

elliptic curve over Fpi as #Ea,b(Fpi).

To ease notation we give the following notational conventions. We define P :=

(p1, . . . , pL) to be a vector of L distinct primes and we define the smallest prime in the

vector to be p := pL+1 := p1. For 1 ≤ i ≤ L − 1, from Theorem 2.1.20, we denote the

limits of the Hasse interval as

p−i := pi + 1− 2
√
pi < #Epi(Fpi) < p+i := pi + 1 + 2

√
pi.

For fixed a, b we define the following indicator function which determines if P is a nor-

malized aliquot cycle of length L as follows

w(P ) :=


1 if #Ea,b(Fpi) = pi+1 for 1 ≤ i ≤ L,

0 otherwise.

We define the vectors S := (s1, . . . , sL) and T := (t1, . . . , tL) for si, ti ∈ Fpi with 1 ≤ i ≤ L,

which leads to the following similar indicator function

w(P, S, T ) :=


1 if #Esi,ti(Fpi) = pi+1 for 1 ≤ i ≤ L,

0 otherwise.

(3.2)

We also define the following products of finite fields

F(P ) := Fp1 × · · · × FpL and F(P )∗ := F∗p1 × · · · × F∗pL ,

40



so that

∑
S,T∈F(P )

1 =
∑

1≤s1≤p1
1≤t1≤p1

· · ·
∑

1≤sL≤pL
1≤tL≤pL

1 and
∑

S,T∈F(P )∗

1 =
∑

1≤s1<p1
1≤t1<p1

· · ·
∑

1≤sL<pL
1≤tL<pL

1.

Finally, for positive integers m and n we define

D(m,n) := (m+ 1− n)2 − 4m = (n+ 1−m)2 − 4n = D(n,m).

We have that

1

|C|
∑
E∈C

πE,L(X)

=
1

|C|
∑
E∈C

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

w(P ) =
1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
E∈C

w(P ) (3.3)

=
1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )

w(P, S, T )
∑

|a|≤A,|b|≤B
a≡si (mod pi)
b≡ti (mod pi)

1≤i≤L

1.

=
1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )

w(P, S, T )

(
2A

p1 · · · pL
+O(1)

)(
2B

p1 · · · pL
+O(1)

)

=
4AB

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )

w(P, S, T )

p21 · · · p2L
+O

(
(B + A)

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )

w(P, S, T )

p1 · · · pL

+
1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )

w(P, S, T )

)
, (3.4)

where ∑
S,T∈F(P )

w(P, S, T ) =
∑

1≤s1,t1≤p1
#Es1,t1 (Fp1 )=p2

· · ·
∑

1≤sL,tL≤pL
#EsL,tL (FpL )=p1

1. (3.5)

For 1 ≤ i ≤ L the sums in (3.5) over si and ti can be changed to a sum over isomorphism
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classes which we denote by Esi,ti and we have that

∑
1≤si,ti≤pi

#Esi,ti (Fpi )=pi+1

1 =
∑

Esi,ti∈Fpi
pi+1−api (Esi,ti )=pi+1

pi − 1

#Aut(Esi,ti(Fpi))

= (pi − 1)H(D((pi + 1− pi+1)
2 − 4pi)), (3.6)

by Deuring’s Theorem, Theorem 2.1.27. Using the bounds for a Dirichlet character, χ

of modulus d that L(1, χd) � log d and by the analytic class number formula, Theorem

2.2.25 for 1 ≤ i ≤ L, we deduce that

H(D(pi, pi+1)) =
∑

f2|D(pi,pi+1)
D(pi,pi+1)

f2
≡0,1 (mod 4)

√
D(pi, pi+1)

2πf
L

(
1,

(
D(pi, pi+1)/f

2

·

))

�
√
D(pi, pi+1) log(pi)

∑
f |D(pi,pi+1)

1

f
� √pi log pi(log logD(pi, pi+1))

� √p log p log log p, (3.7)

since pi = p+O(
√
p).

Thus, from (3.6) and (3.7) we have that the main term in (3.4) is bounded by

�L
AB

|C|
∑
p≤X

1

pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1))

�L

(
1 +O

(
1

A
+

1

B
+

1

AB

))∑
p≤X

1

pL
p
L−1
2

(log p)L−1
p
L
2 (log p)L(log log p)L

�L

∑
p≤X

log p(log log p)L
√
p

�L

√
X(log logX)L. (3.8)
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Similarly, the error term in (3.4) becomes

�L

(
1

A
+

1

B

)∑
p≤X

pL−
1
2 log p(log log p)L +

1

AB

∑
p≤X

p2L−
1
2 log p(log log p)L

�L

(
1

A
+

1

B

)
XL+ 1

2 (log logX)L +
X2L+ 1

2 (log logX)L

AB
. (3.9)

Hence, from (3.9) to obtain the correct upper bound for the average we will need

A,B > XL(logX)L(log logX)L and AB > X2L(logX)L(log logX)L,

whereas πE,L only considers primes of size at most X. Also, we see that using the trivial

bound for H(D(pi, pi+1)) in (3.4) does not give the correct order of magnitude for the main

term in (3.8). Therefore, we will need other techniques which we develop in Chapter 4.

We now rewrite (3.3) as a sum over isomrphism classes and from Proposition 2.1.23

and the definition of an isomorphism of an elliptic curve we have that

1

|C|
∑
E∈C

πE,L(X) =
1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )

#Aut(Es1,t1) · · ·#Aut(EsL,tL)

(p1 − 1) · · · (pL − 1)

×w(P, S, T )R(P, S, T ), (3.10)

where R(P, S, T ) is the number of integers |a| ≤ A, |b| ≤ B such that there exist U :=

(u1, . . . , uL) ∈ F(P )∗ satisfying

a ≡ siu
4
i (mod pi), b ≡ tiu

6
i (mod pi) for 1 ≤ i ≤ L.

Since we are summing over more congruence classes in (3.10) than in (3.4) we are able

to take A,B to be much smaller and we obtain the following theorem.

Theorem 3.2.1. Fix an integer L ≥ 2, let E/Q be an elliptic curve, let ε > 0 and let k
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be any positive integer. Then for our family of elliptic curves C we have that

1

|C|
∑
E∈C

πE,L(X) =


∑
p≤X

1

pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1))


(

1 +O

(
1

Xε

))
(3.11)

Proof. From Corollary 2.1.22 we have a criterion for determining the size of Aut(Esi,ti)

so we split up the sum in (3.10) into two cases, siti 6≡ 0 (mod pi) and siti ≡ 0 (mod pi).

Then we have that (3.10) becomes

1

|C|
∑
E∈C

πE,L(X) =
2L

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )∗

w(P, S, T )R(P, S, T )

(p1 − 1) · · · (pL − 1)

+
1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )

siti≡0 (mod pi)

#Aut(Es1,t1) · · ·#Aut(EsL,tL)

(p1 − 1) · · · (pL − 1)

×w(P, S, T )R(P, S, T ). (3.12)

We first consider the first sum in (3.12), which we express as

2L

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )∗

w(P, S, T )R(P, S, T )

(p1 − 1) · · · (pL − 1)

=
4AB

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

L∏
j=1

1

pj(pj − 1)

∑
S,T∈F(P )∗

w(P, S, T )

+
2L

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

L∏
j=1

1

(pj − 1)

∑
S,T∈F(P )∗

w(P, S, T )

(
R(P, S, T )− 4AB

2Lp1 · · · pL

)
. (3.13)

The first term in (3.13) contributes to the main term, but we will need the following

technical lemma to bound the second term in (3.13), which we prove in Chapter 5.

Lemma 3.2.2. Fix an integer L ≥ 2, let E/Q be an elliptic curve, let A,B > 0 then for
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any positive integer k, we have that as X →∞,

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )

(
R(P, S, T )− AB

2L−2p1 · · · pL

)

�k,LABX
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k AB

+(A
√
B +B

√
A)X

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L +
√
ABX

3L+2
4 (logX)3−L.

Thus, from Lemma 3.2.2 we have that for any positive integer k, the second sum in

(3.13) becomes

2L

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

(p1 − 1) · · · (pL − 1)

∑
S,T∈F(P )∗

w(P, S, T )

(
R(P, S, T )− 4AB

2Lp1 · · · pL

)

�L
1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )

(
R(P, S, T )− 4AB

2Lp1 · · · pL

)

�L,kX
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k AB +

1√
AB

X
3L+2

4 (logX)3−L

+

(
1√
B

+
1√
A

)
X

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L. (3.14)

We now consider the first term in (3.13),

4AB

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

L∏
j=1

1

pj(pj − 1)

∑
S,T∈F(P )∗

w(P, S, T )

=
4AB

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p21 · · · p2L

∑
S,T∈F(P )∗

w(P, S, T )

(
1 +O

(
1

p

))
. (3.15)
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As in the trivial case we first consider the sum

∑
S,T∈F(P )∗

w(P, S, T ) =
∑

1≤s1,t1<p1
#Es1,t1 (Fp1 )=p2

· · ·
∑

1≤sL,tL<pL
#EsL,tL (FpL )=p1

1. (3.16)

For 1 ≤ i ≤ L the sums in (3.16) over si and ti can be changed to a sum over isomorphism

classes and we have that

∑
1≤si,ti<pi

#Esi,ti (Fpi )=pi+1

1 =
∑

1≤si,ti≤pi
#Esi,ti (Fpi )=pi+1

1−
∑

1≤si≤pi
#Esi,0(Fpi )=pi+1

1−
∑

1≤ti≤pi
#E0,ti

(Fpi )=pi+1

1

=
∑

Esi,ti∈Fpi
pi+1−api (Esi,ti )=pi+1

pi − 1

#Aut(Esi,ti(Fpi))
+O(pi)

= (pi − 1)H(D((pi + 1− pi+1)
2 − 4pi)) +O(p), (3.17)

by Deuring’s Theorem, Theorem 2.1.27 and since pi = p+O(
√
p).

Hence, from (3.7) and (3.17) we have that

∑
S,T∈F(P )∗

w(P, S, T ) =
L∏
i=1

((pi − 1)H(D(pi, pi+1)) +O(pi))

=pL
L∏
i=1

H(D(pi, pi+1)) +O
(
p

3L−1
2 (log p)L(log log p)L

)
, (3.18)
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and therefore from (3.18) we have that

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p21 · · · p2L

∑
S,T∈F(P )∗

w(P, S, T )

=
∑
p≤X

(
1

p2L
+O

(
1

p2L+
1
2

))(
pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1))

+O

(
p

3L−1
2 (log p)L(log log p)L · p

L−1
2

(log p)L−1

))

=
∑
p≤X

1

pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1)) +O
(
(logX)(log logX)L+1

)
. (3.19)

Combining (3.15) and (3.19) gives

4AB

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p21 · · · p2L

∑
S,T∈F(P )∗

w(P, S, T )

(
1 +O

(
1

p

))

=
4AB

|C|
∑
p≤X

1

pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1)) +OL

(
AB

|C|
logX(log logX)L+1

)

=
∑
p≤X

1

pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1)) +OL

((
1

A
+

1

B
+

1

AB

)

×
∑
p≤X

1

pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1)) + logX(log logX)L+1

)
. (3.20)

Note that in (3.20) we can write the main term as

∑
p≤X

1

pL

L−2∏
i=1

 ∑
p−i <pi+1<p

+
i

H(D(pi, pi+1))

 ∑
p−L−1≤pL≤p

+
L−1

H(D(pL, p))H(D(pL, pL−1)),
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and thus we need to find upper bounds for the sums

∑
p−L−1≤pL≤p

+
L−1

H(D(pL, p))H(D(pL, pL−1))

and ∑
p−i ≤pi+1≤p+i

H(D(pi, pi+1))

in (3.19). We state the following technical propostions to bound the sums above, which

is the primary focus of Chapter 4.

Proposition 3.2.3. Fix primes p, r > 3 not necessarily distinct and let q be a prime in

the range p− ≤ q ≤ p+. Then we have that

∑
p−<q<p+

H(D(p, q))H(D(r, q))� p
3
2

log(p)
.

Proposition 3.2.4. Let p, q be distinct primes in the range p− < q < p+. Then we have

that ∑
p−<q<p+

H(D(p, q))� p

log(p)
.

We see that the first term in (3.20) gives the main term in (3.11) and by Proposition

3.2.3 and Proposition 3.2.4 we have that the error term in (3.20) is bounded by

�L

(∑
p≤X

1

pL
pL−2

(log p)L−2
p

3
2

log p

)(
1

A
+

1

B
+

1

AB

)
+ logX(log logX)L+1

�L

(
1

A
+

1

B
+

1

AB

)∑
p≤X

1
√
p(log p)L−1

�L

(
1

A
+

1

B
+

1

AB

) √
X

logX
,

which is smaller than the third and fourth terms in the error terms in (3.14).

Thus, it remains to consider the second term in (3.12). Similarly to the treatment of
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the average of the Lang-Trotter Conjecture by Baier [Ba2, Theorem 2.1] we have that

1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
S,T∈F(P )

siti≡0 (mod pi)
1≤i≤L

#Aut(Es1,t1) · · ·#Aut(EsL,tL)

(p1 − 1) · · · (pL − 1)
w(P, S, T )

∑
|a|≤A,|b|≤B
U∈F(P )∗

a≡siu4i (mod pi)

b≡tiu6i (mod pi)
1≤i≤L

1

�L
1

|C|
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

∑
|a|≤A,|b|≤B

ab≡0 (mod p1) or
ab≡0 (mod pi)

for 2≤i≤L

w(P ). (3.21)

If ab ≡ 0 (mod pj) then fixing pj completely determines the other pi for 1 ≤ i 6= j ≤ L

from w(P ). Hence, without loss of generality we can assume that ab ≡ 0 (mod p1) and

we have that (3.21) is bounded by

�L
1

|C|
∑
|a|≤A
|b|≤B

∑
p≤X
p|ab

w(P )

�L
1

|C|
∑

|a|≤A,|b|≤B

τ(ab)�L
1

|C|
∑
n≤AB

τ 2(n)�L log3(AB),

by Theorem 2.2.6. Thus we have that

1

|C|
∑
E∈C

πE,L(X) =
∑
p≤x

1

pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1)) +OL,k

(
log3(AB)

+X
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k AB +

1√
AB

X
3L+2

4 (logX)3−L

+

(
1√
B

+
1√
A

)
X

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L

)
, (3.22)

which completes the proof.

From the results of Theorem 3.2.1, Proposition 3.2.3 and Proposition 3.2.4 we can

now obtain the following theorem for the upper bound for the average number of aliquot

cycles for a family of elliptic curves with a short length for the average.
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Theorem 3.2.5. Fix an integer L ≥ 2 and let εL > 0, let E/Q be an elliptic curve and

let C be the family of elliptic curves defined above with

A,B > XεL and X
3L
2 (logX)6 < AB < eX

1
6 log

−L
3 X ,

then

1

|C|
∑
E∈C

πE,L(X)�L

√
X

(logX)L
.

Proof. We recall (3.22) below

1

|C|
∑
E∈C

πE,L(X) =
∑
p≤x

1

pL

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1)) +OL,k

(
log3(AB)

+X
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k AB +

1√
AB

X
3L+2

4 (logX)3−L

+

(
1√
B

+
1√
A

)
X

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L

)
. (3.23)

From Proposition 3.2.3 and Proposition 3.2.4 we have by partial summation that the

main term in (3.23) is

∑
p≤X

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1))�L

∑
p≤X

1
√
p(log p)L−1

�L

√
X

(logX)L
.

Now the first term in the error term of (3.23) is smaller than the main term if

AB < eX
1
6 log

−L
3 X .

The second term in the error term of (3.23) is smaller than the main term for any k ≥ 1.

The third term in the error term of (3.23) is smaller than the main term if

AB > X
3L
2 (logX)6.
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The fourth term in the error term of (3.23) is smaller than the main term if

A,B > X
3L−1
2k (logX)

k2+L−1
k

+2L(log logX)2L,

since for every εL > 0 we can find a positive integer k such that

εL >
3L− 1

2k
,

which gives the result.
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Chapter 4

Bounds on sums of class numbers

4.1 Upper bounds on sums of class numbers

In the previous chapter we were led to consider the sum of class numbers over primes in

a short interval of the form

∑
p−L−1<pL<p

+
L−1

H(D(pL, p))H(D(pL, pL−1)) (4.1)

and ∑
p−i <pi+1<p

+
i

H(D(pi, pi+1)), (4.2)

for 1 ≤ i ≤ L− 1. The goal of this chapter is to obtain upper bounds for the sum of class

numbers in (4.1) and (4.2) to prove Proposition 3.2.3 and Proposition 3.2.4.

Remark 4.1.1. Recently, David and Smith [DaSm1] have considered the average of the

function

ME(N) := #{p : #E(Fp) = N},

for a family of elliptic curves where they show the upper bound

1

|C|
∑
E∈C

ME(N)� log logN

logN
,
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for

A,B ≥
√
N logN and AB ≥ N

3
2
+ε

for some ε > 0. This result was improved by Chandee, David, Koukoulopolous and Smith

[CDKS] to give the upper bound

1

|C|
∑
E∈C

ME(N)� N

ϕ(N) logN
,

using the fundamental lemma of the combinatorial sieve. Their question is similar to ours,

however in their proof, they are led to consider a sum of class numbers, whereas in our

case we consider a sum of a product of class numbers.

Proposition 4.1.2. Fix primes p, r > 3 not necessarily distinct and let q be a prime in

the range p− ≤ q ≤ p+. Then we have that

∑
p−<q<p+

H(D(p, q))H(D(r, q))� p
3
2

log(p)
. (4.3)

Proof. As in the proof of [CDKS, Proposition 4.1] we will require the use of the funda-

mental lemma of the combinatorial sieve, Lemma 2.2.28. We begin by using the analytic

class number formula in Theorem 2.2.25 to relate the class number H(D) to a quadratic

Dirichlet L-function evaluated at one. So we have that

H(D) =
∑
f2|D

D
f2
≡0,1 (mod 4)

√
D

2πf
L

(
1,

(
D/f 2

·

))
.

Since D
f2
6≡ 0 (mod 4) for p, q > 3 and D

f2
≡ 1 (mod 4) if and only if f is odd we have
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that

∑
p−<q<p+

H(D(p, q))H(D(r, q)) =
∑

p−<q<p+

∑
f21 |D(p,q)
(f1,2)=1

√
|D(p, q)|
2πf1

L

(
1,

(
D(p, q)/f 2

1

·

))

×
∑

f22 |D(r,q)
(f2,2)=1

√
|D(r, q)|
2πf2

L

(
1,

(
D(r, q)/f 2

2

·

))
.

Since q, r = p+ O(
√
p) we have that D(p, q), D(r, q)� p. With the goal of obtaining an

upper bound we define the sum

S1 :=
∑

p−<q<p+

∑
f21 |D(p,q)

f22 |D(r,q)
(f1f2,2)=1

L
(

1,
(
D(p,q)/f21

·

))
L
(

1,
(
D(r,q)/f22

·

))
f1f2

. (4.4)

For any quadratic Dirichlet character χ and any prime ` we have that

(
1 +

1

`

)−1
≤
(

1− χ(`)

`

)−1
≤
(

1− 1

`

)−1
,

for a prime `. From the properties of the Euler ϕ-function, Proposition 2.2.4 we have that

L

(
1,

(
D(p, q)/f 2

1

·

))
=
∏
`

(
1−

(
D(p, q)/f 2

1

`

)
1

`

)−1

≤
∏
`-2f1

1−

(
D(p,q)
`

)
`

−1 ∏
`|2f1

(
1− 1

`

)−1

=
2f1

ϕ(2f1)

∏
`-2f1

(
1−

(
D(p, q)

`

)
1

`

)−1

≤ 2f1
ϕ(f1)

∏
`-2f1

1−

(
(2f1)2D(p,q)

`

)
`

−1

� f1
ϕ(f1)

L

(
1,

(
(2f1)

2D(p, q)

·

))
, (4.5)
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and similarly,

L

(
1,

(
D(r, q)/f 2

2

·

))
� f2

ϕ(f2)
L

(
1,

(
(2f2)

2D(r, q)

·

))
.

To ease notation for the remainder of this section we denote

χ1 :=

(
(2f1)

2D(p, q)

·

)
and χ2 :=

(
(2f2)

2D(r, q)

·

)
.

Now we have that

S1 �
∑

p−<q<p+

∑
f21 |D(p,q)

f22 |D(r,q)
(f1f2,2)=1

L (1, χ1)L (1, χ2)

ϕ(f1)ϕ(f2)

�
∑

p−<q<p+

∑
f1|D(p,q)
f2|D(r,q)
(f1f2,2)=1

L (1, χ1)L (1, χ2)

ϕ(f1)ϕ(f2)
, (4.6)

since the sum on the RHS in (4.6) is longer than the sum in (4.4).

Since ∑
p−<q<p+

H(D(p, q))H(D(r, q))� pS1,

the remainder of the proof is now reduced to showing the upper bound

S2 :=
∑

p−<q<p+

∑
f1|D(p,q)
f2|D(r,q)
(f1f2,2)=1

L (1, χ1)L (1, χ2)

ϕ(f1)ϕ(f2)
�
√
p

log p
. (4.7)

Let S ′2 denote the same sum on the LHS of (4.7) but with L
(

1, χi; z
8α2
)

in place of

L (1, χi) for i = 1, 2, where we define z := log(p) for convenience and α is some parameter

≥ 10. We estimate the error term R := S2 − S ′2 by applying the result of Granville

and Soundararajan, Lemma 2.2.27 with Q = 4p or 4r for i = 1, 2 respectively. Then

we have that 0 ≤ −D(p, q) ≤ 4p and 0 ≤ −D(r, q) ≤ 4r for q ∈ (p−, p+). So, if the
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conductor of χi, which is the discriminant of Q(
√
D(p, q)), does not belong to Eα(4p) or if

the conductor of χ2, which is the discriminant of Q(
√
D(r, q)), does not belong to Eα(4r),

we can approximate L (1, χi) very well by L
(

1, χi; z
8α2
)
�α log z by Mertens’ Theorem,

Theorem 2.2.26; else, we use the trivial bound L (1, χi) � z for i = 1, 2 and bound the

number of exceptions. This yields the estimate

R�α

(
(log z)2

zα
+

log2 z

z2α

) ∑
p−<q<p+

disc(Q(
√
D(p,q))) 6∈E(4p)

disc(Q(
√
D(r,q))) 6∈E(4r)

∑
f1|D(p,q)
f2|D(r,q)
(f1f2,2)=1

1

ϕ(f1)ϕ(f2)

+

(
z log z +

log z

zα−1

)( ∑
p−<q<p+

disc(Q(
√
D(p,q)))∈E(4p)

disc(Q(
√
D(r,q))) 6∈E(4r)

∑
f1|D(p,q)
f2|D(r,q)
(f1f2,2)=1

1

ϕ(f1)ϕ(f2)

+
∑

p−<q<p+

disc(Q(
√
D(p,q))) 6∈E(4p)

disc(Q(
√
D(r,q)))∈E(4r)

∑
f1|D(p,q)
f2|D(r,q)
(f1f2,2)=1

1

ϕ(f1)ϕ(f2)

)

+ z2
∑

p−<q<p+

disc(Q(
√
D(p,q)))∈E(4p)

disc(Q(
√
D(r,q)))∈E(4r)

∑
f1|D(p,q)
f2|D(r,q)
(f1f2,2)=1

1

ϕ(f1)ϕ(f2)
.

For q ∈ (p−, p+) such that ∆ := disc(Q(
√
D(p, q))) ∈ E(4p) we have that D(p, q) = ∆m2

for some m ∈ N or, equivalently (p + 1 − q)2 −∆m2 = 4p. So for each fixed ∆ ∈ E(4p),

there are at most τ(4p) = 6 admissible values of q. Thus,

#{p− < q < p+ : disc(Q(
√
D(p, q))) ∈ E(4p)} ≤ #E(4p)τ(4p)� p

1
5 ,

since α ≥ 10. Similarly, we have that

#{p− < q < p+ : disc(Q(
√
D(r, q))) ∈ E(4r)} ≤ #E(4r)τ(4r)� r

1
5 � p

1
5
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and

#
{
p− < q < p+ : disc(Q(

√
D(p, q))) ∈ E(4p) and disc(Q(

√
D(r, q))) ∈ E(4r)

}
≤ min{#E(4p)τ(4p),#E(4r)τ(4r)} � p

1
5 .

From the bounds of the Euler ϕ-function in Theorem 2.2.5 and since f1 ≤ D(p, q) we

have that

log log(f1) ≤ log log(D(p, q))� log log p = log z.

Thus

∑
f1|D(p,q)
(f1,2)=1

1

ϕ(f1)
� log z

∑
f1|D(p,q)
(f1,2)=1

1

f1
= log z

∏
`|D(p,q)
`6=2

(
1− 1

`

)−1

≤ log z
D(p, q)

ϕ(D(p, q))
� (log z)2.

The result is analogous for D(r, q) and thus combining the above estimates gives

R�α

√
p(log z)6

z1+α
+

√
p(log z)6

z1+2α
+ p

1
5 (z log5 z + z1−α log5 z + z2 log4 z)

and hence the remainder term is smaller than the main term in (4.7) (since α ≥ 10.)

Now we bound S ′2, that is, we show that

S ′2 :=
∑

p−<q<p+

∑
f1|D(p,q)
f2|D(r,q)
(f1f2,2)=1

L
(

1, χ1; z
8α2
)
L
(

1, χ2; z
8α2
)

ϕ(f1)ϕ(f2)
�
√
p

log p
.

First we find an upper bound for L
(

1, χi; z
8α2
)

. From Mertens’ Theorem, Theorem
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2.2.26, we have that

L(1, χ1; z
8α2

) =
∏
`≤
√
z

(
1− χ1(`)

`

)−1 ∏
√
z≤`≤z8α2

(
1− χ1(`)

`

)−1

≤
∏
`≤
√
z

`-2f1f2

1−

(
D(p,q)
`

)
`

−1 ∏
√
z≤`≤z8α2

(
1− 1

`

)−1

�
∏
`≤
√
z

1−

(
D(p,q)
`

)
`

−1 ∏
`≤
√
z

`|2f1f2

1−

(
D(p,q)
`

)
`

 . (4.8)

We consider the two products in (4.8) and find that

∏
`≤
√
z

1−

(
D(p,q)
`

)
`

−1 =
∏
`≤
√
z

1 +

(
D(p,q)
`

)
`


1 +

∞∑
v=1


(
D(p,q)
`

)
`

2v


�
∏
`≤
√
z

1 +

(
D(p,q)
`

)
`

 , (4.9)

and ∏
`≤
√
z

`|2f1f2

1−

(
D(p,q)
`

)
`

� f1f2
ϕ(f1)ϕ(f2)

. (4.10)

Combining (4.8), (4.9) and (4.10) gives

L(1, χ1; z
8α2

)� f1f2
ϕ(f1)ϕ(f2)

∏
`≤
√
z

1 +

(
D(p,q)
`

)
`

 , (4.11)

and similarly,

L(1, χ2; z
8α2

)� f1f2
ϕ(f1)ϕ(f2)

∏
`≤
√
z

1 +

(
D(r,q)
`

)
`

 . (4.12)

Now since the products on the RHS of (4.11) and (4.12) no longer depend on f1 and f2
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we swap the sum and product to obtain the upper bound

S ′2 �
∑

p−<q<p+

∏
`≤
√
z

1 +

(
D(p,q)
`

)
`

1 +

(
D(r,q)
`

)
`


×

∑
f1|D(p,q)
(f1,2)=1

f 2
1

ϕ3(f1)

∑
f2|D(r,q)
(f2,2)=1

f 2
2

ϕ3(f2)
. (4.13)

We need f1 and f2 to be coprime and square-free, so we first consider the sum over

f1. Since
f 2
1

ϕ3(f1)
is multiplicative we have that

∑
f1|D(p,q)
(f1,2)=1

f 2
1

ϕ3(f1)
=

∏
`|D(p,q)
6̀=2

(
1 +

`3

(`− 1)4

)

=
∏

`|D(p,q)
6̀=2

(
1 +

1

`

)(
1 +

`4 − (`− 1)4

(`− 1)4(`+ 1)

)

�
∏

`|D(p,q)
`-2f2

(
1 +

1

`

) ∏
`|(D(p,q),f2)

`6=2

(
1 +

1

`

)

≤
∏

`|D(p,q)
`-2f2

(
1 +

1

`

) ∏
`|(D(p,q),f2)

`6=2

(
1− 1

`

)−1

� f2
ϕ(f2)

∏
`|D(p,q)
`-2f2

(
1 +

1

`

)

=
f2

ϕ(f2)

∏
`|D(p,q)
`-2f2
`≤zα

(
1 +

1

`

)
(1 +O(z−α+1))

� f2
ϕ(f2)

∏
`|D(p,q)
`-2f2
`≤
√
z

(
1 +

1

`

)
=

f2
ϕ(f2)

∑
f1|D(p,q)
(f1,2f2)=1
P+(f1)≤

√
z

µ2(f1)

f1
, (4.14)
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by Mertens’ Theorem, Theorem 2.2.26 and similarly,

∑
f2|D(r,q)
(f2,2f1)=1

f 3
2

ϕ4(f2)
=

∏
`|D(r,q)
(`,2f1)=1

(
1 +

`4

(`− 1)5

)
�

∑
f2|D(r,q)
(f2,2f1)=1
P+(f2)≤

√
z

µ2(f2)

f2
. (4.15)

Combining (4.13), (4.14) and (4.15) we have that

S ′2 �
∑

p−<q<p+

∏
`≤
√
z

1 +

(
D(p,q)
`

)
`

1 +

(
D(r,q)
`

)
`


×

∑
f1|D(p,q)
(f1,2)=1

P+(f1)≤
√
z

µ2(f1)

f1

∑
f2|D(r,q)
(f2,2f1)=1
P+(f2)≤

√
z

µ2(f2)

f2
. (4.16)

Now we require that f1 and f2 are coprime in the product in (4.16). From (4.10) we have

that

∏
`≤
√
z

1 +

(
D(p,q)
`

)
`

 =
∏
`≤
√
z

`-2f1f2

1 +

(
D(p,q)
`

)
`

 ∏
`≤
√
z

`|2f1f2

1 +

(
D(p,q)
`

)
`



� f1f2
ϕ(f1)ϕ(f2)

∏
`≤
√
z

`-2f1f2

1 +

(
D(p,q)
`

)
`

 , (4.17)

and similarly,

∏
`≤
√
z

1 +

(
D(r,q)
`

)
`

� f1f2
ϕ(f1)ϕ(f2)

∏
`≤
√
z

`-2f1f2

1 +

(
D(r,q)
`

)
`

 . (4.18)

Combining (4.16), (4.17) and (4.18) gives
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S ′2 �
∑

p−<q<p+

∑
f1|D(p,q)
(f1,2)=1

P+(f1)≤
√
z

µ2(f1)f1
ϕ2(f1)

∑
f2|D(r,q)
(f2,2f1)=1
P+(f2)≤

√
z

µ2(f2)f2
ϕ2(f2)

×
∏
`≤
√
z

`-2f1f2

1 +

(
D(p,q)
`

)
`

1 +

(
D(r,q)
`

)
`



=
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
p−<q<p+

f1|D(p,q)
f2|D(r,q)

∏
`≤
√
z

`-2f1f2

1 +

(
D(p,q)
`

)
`

1 +

(
D(r,q)
`

)
`

 .

(4.19)

We have that

∏
`≤
√
z

`-2f1f2

1 +

(
D(p,q)
`

)
`

 =
∑

P+(n1)≤
√
z

(n1,2f1f2)=1

µ2(n1)

n1

(
D(p, q)

n1

)
, (4.20)

and likewise we have that

∏
`≤
√
z

`-2f1f2

1 +

(
D(r,q)
`

)
`

 =
∑

P+(n2)≤
√
z

(n2,2f1f2)=1

µ2(n2)

n2

(
D(r, q)

n2

)
. (4.21)
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We require q coprime to 2f1f2n1n2 so we have that the RHS of (4.19) becomes

∑
P+(f1),P+(f2)≤

√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

×
∑

p−<q<p+

f1|D(p,q)
f2|D(r,q)

(q,2f1f2n1n2)=1

(
D(p, q)

n1

)(
D(r, q)

n2

)

+
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

×
∑

p−<q<p+

f1|D(p,q)
f2|D(r,q)

q|2f1f2n1n2

(
D(p, q)

n1

)(
D(r, q)

n2

)
(4.22)

We have that the second sum in (4.22) is bounded by

�
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2τ(f1)τ(f2)

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)τ(n1n2)

n1n2

.

(4.23)

Then for some ε > 0 the inner sum in (4.23) becomes

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)τ(n1n2)

n1n2

�
∑

P+(n1)≤
√
z

(n1,2f1f2)=1

nε−11

∑
P+(n2)≤

√
z

(n2,2f1f2)=1

nε−12 � zε log2 z

by partial summation and for i = 1, 2 we have that

∑
P+(fi)≤

√
z

(fi,2)=1

µ2(fi)fiτ(fi)

ϕ2(fi)
�

∑
P+(fi)≤

√
z

(fi,2)=1

(log log fi)
2

f 1−ε
i

� zε log z(log log z)2.
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Hence, the second term in (4.22) is smaller than the main term and we have that

S ′2 �
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

×
∑

p−<q<p+

f1|D(p,q)
f2|D(r,q)

(q,2f1f2n1n2)=1

(
D(p, q)

n1

)(
D(r, q)

n2

)
(4.24)

We will now use the fundamental lemma for the combinatorial sieve, Lemma 2.2.28

with y = p
1
4 and D = y2 to bound the innermost sum of (4.19). So we extend the

summation from primes q to integers m with no prime factors ≤ y.

Consequently, we have that (4.24) is less than or equal to the same sum with a weight,

that is,

S ′2 �
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

×
∑

p−<q<p+

f1|D(p,q)
f2|D(r,q)

(q,2f1f2n1n2)=1

(
D(p, q)

n1

)(
D(r, q)

n2

)

≤
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

×
∑

p−≤m≤p+
f1|D(p,m)
f2|D(r,m)

(m,2f1f2n1n2)=1

(λ+ ∗ 1)(m)

(
D(p,m)

n1

)(
D(r,m)

n2

)
:= S3, (4.25)

by the positivity of the Euler product in (4.20) and (4.21).
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Then we have that the RHS of (4.25) becomes

S3 =
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

×
∑
a≤D

(a,2f1f2n1n2)=1

λ+(a)
∑

p−<m<p+

f1|D(p,m)
f2|D(r,m)

a|m

(
D(p,m)

n1

)(
D(r,m)

n2

)
, (4.26)

since λ+ is supported on integers, a | m, a ≤ D, (m, 2f1f2n1n2) = 1.

Now we will split the integers in the interval m ∈ (p−, p+) according to the congruence

class of D(p,m) (mod n1) and D(r,m) (mod n2) and we have that (4.26) becomes

S3 =
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

×
∑
a≤D

(a,2f1f2n1n2)=1

λ+(a)
∑

b1∈Z/n1Z
b2∈Z/n2Z

(
b1
n1

)(
b2
n2

)
S(a, f1, f2, n1, n2, b1, b2),

where we define

S(a, f1, f2, n1, n2, b1, b2) := #


p− < m < p+ m ≡ 0 (mod a)

D(p,m) ≡ 0 (mod f1) D(r,m) ≡ 0 (mod f2)

D(p,m) ≡ b1 (mod n1) D(r,m) ≡ b2 (mod n2)

 .

Let ∆1(m) := D(p,m),∆2(m) := D(r,m). Then we have that

S(a, f1, f2, n1, n2, b1, b2) =

(
4
√
p

af1f2[n1, n2]

)
#T (a, f1, f2, n1, n2, b1, b2)

+O(#T (a, f1, f2, n1, n2, b1, b2)), (4.27)
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where

T (a, f1, f2, n1, n2, b1, b2) :=



∆1(m) ≡ 0 (mod f1)

∆2(m) ≡ 0 (mod f2)

m ∈ Z/af1f2[n1, n2]Z : ∆1(m) ≡ b1 (mod n1)

∆2(m) ≡ b2 (mod n2)

m ≡ 0 (mod a)


,

since a, f1, f2, [n1, n2] are all coprime. Therefore, we have from (4.27) that (4.26) becomes

S3 =4
√
p

∑
P+(f1),P+(f2)≤

√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2[n1, n2]

×
∑
a≤D

(a,2f1f2n1n2)=1

λ+(a)

a

∑
b1∈Z/n1Z
b2∈Z/n2Z

(
b1
n1

)(
b2
n2

)
#T (a, f1, f2, n1, n2, b1, b2)

+O

( ∑
P+(f1),P+(f2)≤

√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

×
∑
a≤D

(a,2f1f2n1n2)=1

|λ+(a)|
∑

b1∈Z/n1Z
b2∈Z/n2Z

#T (a, f1, f2, n1, n2, b1, b2)

)
. (4.28)

Since both sums in (4.28) are over square-free numbers, by the Chinese remainder

theorem we have that

#T (a, f1, f2, n1, n2, b1, b2) = h1(f1, 0)h2(f2, 0)
∏

`|[n1,n2]

#T (`)(n1, n2, b1, b2)

where we define

hi(u, v) := #{m ∈ Z/uZ : ∆i(m) ≡ v (mod u)}, (4.29)
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and

T (`)(n1, n2, b1, b2) :=

{
m ∈ Z/`ν`([n1,n2])Z :∆1(m) ≡ b1 (mod `ν`(n1))

and ∆2(m) ≡ b2 (mod `ν`(n2))

}
. (4.30)

Note that hi(u, v) is multiplicative in u and if u is square-free then we have that

hi(u, v) =
∏
`|u

#{m ∈ Z/`Z : (p+ 1−m)2 ≡ 4p+ v (mod `)}

=
∏
`|u

(
1 +

(
4p+ v

`

))
. (4.31)

Thus, |hi(u, v)| ≤ τ(u) for all square-free integers u. Now define

c(n1, n2) :=
∑

b1∈Z/n1Z
b2∈Z/n2Z

(
b1
n1

)(
b2
n2

) ∏
`|[n1,n2]

#T (`)(n1, n2, b1, b2).

We have that c(n1, n2) is multiplicative in n1 and n2, that is if n1 = n′1n
′′
1, n2 =

n′2n
′′
2 and (n′1n

′
2, n

′′
1n
′′
2) = 1 then c(n1, n2) = c(n′1, n

′
2)c(n

′′
1, n

′′
2). If (n′1n

′
2, n

′′
1n
′′
2) = 1 then

[n′1n
′′
1, n

′
2n
′′
2] = [n′1, n

′
2][n

′′
1, n

′′
2] and we have by the Chinese remainder theorem that

c(n′1n
′′
1, n

′
2n
′′
2) =

∑
b1∈Z/n′1n′′1Z
b2∈Z/n′2n′′2Z

(
b1
n′1n

′′
1

)(
b2
n′2n

′′
2

) ∏
`|[n′1n′′1 ,n′2n′′2 ]

#T (`)(n′1n
′′
1, n

′
2n
′′
2, b1, b2)

=
∑

b′1∈Z/n′1Z
b′2∈Z/n′2Z

(
b′1
n′1

)(
b′2
n′2

) ∏
`|[n′1,n′2]

#T (`)(n′1, n
′
2, b
′
1, b
′
2)

×
∑

b′′1∈Z/n′′1Z
b′′2∈Z/n′′2Z

(
b′′1
n′′1

)(
b′′2
n′′2

) ∏
`|[n′′1 ,n′′2 ]

#T (`)(n′′1, n
′′
2, b
′′
1, b
′′
2)

= c(n′1, n
′
2)c(n

′′
1, n

′′
2).

Since n1, n2 runs over square-free integers with (n1n2, 2f1f2) = 1 it is enough to
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calculate c(n1, n2) for primes ` - 2f1f2 and we have three cases to consider, since c(1, 1) =

1, namely, c(`, 1), c(1, `) and c(`, `).

The cases c(`, 1) and c(1, `) are completely similar and we have from (4.30) and (4.31)

that

c(`, 1) =
∑

b1∈Z/`Z

(
b1
`

)
h1(`, b1)

=
∑

b1∈Z/`Z

(
b1
`

)(
1 +

(
4p+ b1

`

))
=

∑
b1∈Z/`Z

(
b1
`

)(
4p+ b1

`

)

=
∑

b1∈Z/`Z

(
b21 + 4pb1

`

)
= c(1, `).

From [Ste, Exercise 1.1.9] we have for a 6≡ 0 (mod `) that

∑
t (mod `)

(
at2 + bt+ c

`

)
=


(
a
`

)
(`− 1) if b2 − 4ac ≡ 0 (mod `),

−
(
a
`

)
if b2 − 4ac 6≡ 0 (mod `).

Thus,

c(`, 1) =

 `− 1 if 16p2 ≡ 0 (mod `),

−1 if 16p2 6≡ 0 (mod `).

However, ` - 2 so if 16p2 ≡ 0 (mod `) then ` = p. Since P+(n1) ≤
√
z =
√

log p < p, we

have that c(`, 1) = c(1, `) = −1.

In the c(`, `) case we have that

c(`, `) :=
∑

b1,b2∈Z/`Z

(
b1b2
`

)
#T (`)(`, `, b1, b2),

where

T (`)(`, `, b1, b2) = {m ∈ Z/`Z : ∆1(m) ≡ b1 (mod `) and ∆2(m) ≡ b2 (mod `)}.

We remark that there are at most two solutions to the equation ∆1(m) ≡ b1 (mod `)
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since ∆1(m) is a quadratic polynomial in m. Let m0 be one such solution. If ∆2(m0) 6≡ b2

(mod `) then the two equations are not compatible. If ∆2(m0) ≡ b2 (mod `) then since

the trace of ∆2(m) is fixed there will be at most 2 values of b2 that satisfy this equation.

Hence,

|c(`, `)| ≤
∑

b1∈Z/`Z

2 = 2`.

Combining the three cases, we conclude

|c(n1, n2)| ≤
∏

`|(n1,n2)

|c(`, `)| ≤
∏

`|(n1,n2)

2` = 2ω((n1,n2))(n1, n2).

We now place our bounds for hi(fi, 0) and c(n1, n2) into (4.28) and we have that

S3 �
√
p

∑
P+(f1),P+(f2)≤

√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)τ(f1)τ(f2)

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)(n1, n2)

2

(n1n2)2−ε

×

∣∣∣∣∣∣∣∣
∑
a≤D

(a,2f1f2n1n2)=1

λ+(a)

a

∣∣∣∣∣∣∣∣+D
∑

P+(f1),P+(f2)≤
√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)f1f2τ(f1)τ(f2)

ϕ2(f1)ϕ2(f2)

×
∑

P+(n1),P+(n2)≤
√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

∑
b1∈Z/n1Z
b2∈Z/n2Z

∏
`|[n1,n2]

#T (`)(n1, n2, b1, b2). (4.32)

We first consider the second sum in (4.32). Similarly to the function c(n1, n2) defined

above, we define the function

k(n1, n2) :=
∑

b1∈Z/n1Z
b2∈Z/n2Z

∏
`|[n1,n2]

#T (`)(n1, n2, b1, b2),

which is also multiplicative in n1 and n2. We have k(1, 1) = 1,

k(`, 1) =
∑

b1∈Z/`Z

(
1 +

(
4p+ b1

`

))
= ` = k(1, `)
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and as in the case c(`, `) above, we have that |k(`, `)| ≤
∑

b1∈Z/`Z 2 = 2`. Thus,

|k(n1, n2)| ≤
∏

`|[n1,n2]

|k(`, 1)k(1, `)k(`, `)| ≤
∏

`|[n1,n2]

2`3 = 2ω([n1,n2])[n1, n2]
3.

By Mertens’ Theorem, Theorem 2.2.26 and Theorem 2.2.6 for i = 1, 2 we have that

∑
P+(fi)≤

√
z

(fi,2)=1

µ2(fi)τ(fi)fi
ϕ2(fi)

�
√
z

log z

∏
p≤
√
z

(
1 +

2

(p− 1)2

)
�
√
z

log z

and we have that

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)

n1n2

2ω([n1,n2])[n1, n2]
3 � z3+ε,

for some ε > 0 and hence, the second term in (4.32) is � Dz4+ε. Then from Lemma

2.2.28 we have that (4.32) becomes

S3 �
√
p

∑
P+(f1),P+(f2)≤

√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)τ(f1)τ(f2)

ϕ2(f1)ϕ2(f2)

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)(n1, n2)

2

n2−ε
1 n2−ε

2

×
∏
`≤y

`-2f1f2n1n2

(
1− 1

`

)
+Dz4+ε. (4.33)

By Mertens’ Theorem, Theorem 2.2.26 we have that

∏
`≤y

`-2f1f2n1n2

(
1− 1

`

)
� f1f2n1n2

ϕ(f1)ϕ(f2)ϕ(n1)ϕ(n2) log y
,
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which gives that (4.33) becomes

S3 �
√
p

log(y)

∑
P+(f1),P+(f2)≤

√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)τ(f1)τ(f2)f1f2
ϕ3(f1)ϕ3(f2)

×
∑

P+(n1),P+(n2)≤
√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)(n1, n2)

2

ϕ(n1)ϕ(n2)(n1n2)1−ε
+Dz4+ε.

We have that

∑
P+(n1),P+(n2)≤

√
z

(n1n2,2f1f2)=1

µ2(n1)µ
2(n2)(n1, n2)

2

ϕ(n1)ϕ(n2)(n1n2)1−ε

�
∑

P+(d)≤
√
z

(d,2f1f2)=1

µ2(d)

d2−2ε

∑
P+(m1),P+(m2)≤

√
z
d

n1=dm1,n2=dm2

(d,m1m2)=1
(m1m2,2f1f2)=1

µ2(m1)µ
2(m2)(log log dm1)(log log dm2)

(m1m2)2−ε
� 1,

and

∑
P+(f1),P+(f2)≤

√
z

(f1,2)=(f2,2f1)=1

µ2(f1)µ
2(f2)τ(f1)τ(f2)f1f2
ϕ3(f1)ϕ3(f2)

�
∑

P+(f1)≤
√
z

(f1,2)=1

µ2(f1)τ(f1)(log log f1)
3

f 2
1

∑
P+(f2)≤

√
z

(f2,2f1)=1

µ2(f2)τ(f2)(log log f2)
3

f 2
2

� 1.

Thus, we conclude that

S2 � S ′2 � S3 �
√
p

log y
+D(log p)4+ε �

√
p

log p
,

for y = p
1
6 , D = (p

1
6 )2 = p

1
3 , which completes the proof.

We now give an upper bound for the sum in (4.2).

Proposition 4.1.3. Let p, q be distinct primes in the range p− < q < p+. Then we have
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that ∑
p−<q<p+

H(D(p, q))� p

log(p)
. (4.34)

Proof. The proof of Proposition 4.1.3 follows analogously to the steps taken in Proposition

4.1.2 and is essentially a special case of Chandee, David, Koukoulopoulos and Smith

[CDKS, Proposition 4.1]. From the analytic class number formula we have that

∑
p−<q<p+

q prime

H(D(p, q)) =
∑

p−<q<p+

∑
f2|D(p,q)
(f,2)=1

√
D(p, q)

2πf
L

(
1,

(
D(p, q)/f 2

·

))
.

With the goal of obtaining an upper bound, we define as before

S1 :=
∑

p−<q<p+

∑
f2|D(p,q)
(f,2)=1

L

(
1,

(
D(p, q)/f 2

·

))
1

f
. (4.35)

Analogously to the bound in (4.5), if ` is a prime dividing f , then ` | D(p, q) and we have

that

L

(
1,

(
D(p, q)/f 2

·

))
=
∏
`

(
1−

(
D(p, q)/f 2

`

)
1

`

)−1
≤ 2f

ϕ(f)
L

(
1,

(
(2f)2D(p, q)

·

))
.

To ease notation we define χ :=
(

(2f)2D(p,q)
·

)
and thus

S1 �
∑

p−<q<p+

∑
f2|D(p,q)
(f,2)=1

L (1, χ)

ϕ(f)
≤

∑
p−<q<p+

∑
f |D(p,q)
(f,2)=1

L (1, χ)

ϕ(f)
, (4.36)

since the sum on the RHS in (4.36) is longer than the sum in (4.35). Since

∑
p−<q<p+

H(D(p, q))� √pS1,

71



we have as in the previous case the remainder of the proof is reduced to showing the

following upper bound

S2 :=
∑

p−<q<p+

∑
f |D(p,q)
(f,2)=1

L (1, χ)

ϕ(f)
�
√
p

log p
. (4.37)

Now let S ′2 denote the same sum on the LHS of (4.37) but with L
(

1, χ; z8α
2
)

in place

of L (1, χ), where we define z := log(p) for convenience as in the previous case and α

is some parameter ≥ 10. We estimate the error term R := S2 − S ′2 by applying Lemma

2.2.27 with Q = 4p. Similarly to the approach in the previous case this yields the estimate

R�α
(log z)

zα

∑
p−<q<p+

disc(Q(
√
D(p,q))) 6∈E(4p)

∑
f |D(p,q)
(f,2)=1

1

ϕ(f)

+
∑

p−<q<p+

disc(Q(
√
D(p,q)))∈E(4p)

∑
f |D(p,q)
(f,2)=1

z

ϕ(f)
.

For each q ∈ (p−, p+) if ∆ := disc(Q(
√
D(p, q))) ∈ E(4p) we have that D(p, q) = ∆m2 for

some m ∈ N, or equivalently (p+ 1− q)2−∆m2 = 4p. So, for each fixed ∆ ∈ E(4p) there

are at most τ(4p) = 6 admissible values of q. Thus,

#{p− < q < p+ : disc(Q(
√
D(p, q))) ∈ E(4p)} ≤ #E(4p)τ(4p)� p

1
5 ,

since α ≥ 10. From the properties of the Euler ϕ-function in Theorem 2.2.5 we have that

∑
f |D(p,q)
(f,2)=1

1

ϕ(f)
� log z

∑
f |D(p,q)
(f,2)=1

1

f
= log z

∏
`|D(p,q)
`6=2

(
1− 1

`

)−1

≤ log z
D(p, q)

ϕ(D(p, q))
� (log z)2.
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Combining the above estimates gives

R�α

√
p(log z)2

zα
+ p

1
5 z(log z)2

and hence the remainder term is smaller thant he main term in (4.37) (since α ≥ 10).

Now we bound S ′2 as before and from Mertens’ Theorem and following as in (4.8), (4.9)

and (4.10) we have that

L(1, χ; z8α
2

)� f

ϕ(f)

∏
`≤
√
z

1 +

(
D(p,q)
`

)
`

 . (4.38)

From (4.38) we have that

S ′2 �
∑

p−<q<p+

∏
`≤
√
z

1 +

(
D(p,q)
`

)
`

 ∑
f |D(p,q)
(f,2)=1

f

ϕ2(f)
, (4.39)

and similarly to the computation in (4.14) we have that

∑
f |D(p,q)
(f,2)=1

f

ϕ2(f)
=

∏
`|D(p,q)
` 6=2

(
1 +

`2

(`− 1)3

)
�

∑
f |D(p,q)
P+(f)≤

√
z

µ2(f)

f
. (4.40)

Now we swap the sum over f in (4.40) with the product over ` in (4.39) which gives

S ′2 �
∑

p−<q<p+

∑
f |D(p,q)
(f,2)=1

P+(f)≤
√
z

µ2(f)

f

∏
`≤
√
z

`-2f

1 +

(
D(p,q)
`

)
`



=
∑

P+(f)≤
√
z

(f,2)=1

µ2(f)

f

∑
p−<q<p+

f |D(p,q)

∏
`≤
√
z

`-2f

1 +

(
D(p,q)
`

)
`

 . (4.41)
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As in the previous case we have that

∏
`≤
√
z

`-2f

1 +

(
D(p,q)
`

)
`

 =
∑

P+(n)≤
√
z

(n,2f)=1

µ2(n)

n

(
D(p, q)

n

)
, (4.42)

and as in the previous case we require q coprime to 2fn so the RHS of (4.41) becomes

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)

f

∑
p−<q<p+

f |D(p,q)

∏
`≤
√
z

`-2f

1 +

(
D(p,q)
`

)
`


=

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n

∑
p−<q<p+

f |D(p,q)
(q,2fn)=1

(
D(p, q)

n

)

+
∑

P+(f)≤
√
z

(f,2)=1

µ2(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n

∑
p−<q<p+

f |D(p,q)
q|2fn

(
D(p, q)

n

)
. (4.43)

As in the previous case we have that the second term in (4.43) is bounded by

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n

∑
p−<q<p+

f |D(p,q)
q|2fn

(
D(p, q)

n

)

�
∑

P+(f)≤
√
z

(f,2)=1

µ2(f)τ(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)τ(n)

n
� zε log2 z

for some ε > 0, which is smaller than the main term. Hence,

S ′2 �
∑

P+(f)≤
√
z

(f,2)=1

µ2(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n

∑
p−<q<p+

f |D(p,q)
(q,2fn)=1

(
D(p, q)

n

)
. (4.44)

As in the previous case we use the fundamental lemma for the combinatorial sieve,

Lemma 2.2.28 with y = p
1
6 and D = y2 to bound the innermost sum of (4.41). So we

extend the summation from primes q to integers m with no prime factors ≤ y. Conse-

74



quently,

S ′2 ≤ S3 :=
∑

P+(f)≤
√
z

(f,2)=1

µ2(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n

∑
p−<m<p+

f |D(p,m)
(m,2fn)=1

(λ+ ∗ 1)(m)

(
D(p,m)

n

)
, (4.45)

by the positivity of the Euler product in (4.42).

Since λ+ is supported on integers a | m, a ≤ D, (m, 2fn) = 1, we have that (4.45)

becomes

S3 =
∑

P+(f)≤
√
z

(f,2)=1

µ2(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n

∑
a≤N

(a,2fn)=1

λ+(a)
∑

p−<m<p+

f |D(p,m),a|m

(
D(p,m)

n

)

=
∑

P+(f)≤
√
z

(f,2)=1

µ2(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n

∑
a≤D

(a,2fn)=1

λ+(a)
∑

b∈Z/nZ

(
b

n

)
S(a, f, n, b), (4.46)

by splitting the integers in the interval m ∈ (p−, p+) according to the congruence class of

D(p,m) (mod n), where

S(a, f, n, b) = #

 p− < m < p+ D(p,m) ≡ 0 (mod f)

m ≡ 0 (mod a) D(p,m) ≡ b (mod n)

 .

Let ∆(m) := D(p,m) then we have that

S(a, f, n, b) =

(
4
√
p

afn

)
T (a, f, n, b) +O(T (a, f, n, b)), (4.47)

where

T (a, f, n, b) = #


∆(m) ≡ 0 (mod f)

m ∈ Z/afnZ : ∆(m) ≡ b (mod n)

m ≡ 0 (mod a)

 .

Since a, f, n are all coprime and the sum in (4.47) is only over square-free numbers, by
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the Chinese remainder theorem, we have as in the previous case that

T (a, f, n, b) = h1(f, 0)h1(n, b)

where h1(u, v) is defined in (4.29). Combining (4.46) and (4.47) gives

S3 = 4
√
p

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)h1(f, 0)

f 2

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n2

∑
a≤D

(a,2fn)=1

λ+(a)

a

∑
b∈Z/nZ

(
b

n

)
h1(n, b)

+O

 ∑
P+(f)≤

√
z

(f,2)=1

µ2(f)τ(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)

n

∑
a≤D

(a,2fn)=1

∑
b∈Z/nZ

τ(n)

 . (4.48)

The second term on the RHS of (4.48) is bounded by

� D
∑

P+(f)≤
√
z

(f,2)=1

µ2(f)τ(f)

f

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)τ(n).

We have by Mertens’ Theorem, Theorem 2.2.26 and Theorem 2.2.6 that

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)τ(n)�
√
z

log z

∏
p≤z

(
1 +

2

p

)
�
√
z log z,

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)τ(f)

f
�
√
z

log z

∏
p≤z

(
1 +

2

p2

)
�
√
z

log z
.

Therefore, the second term in (4.48) is � Dz. As in the previous case we set

c(n) :=
∑

b∈Z/nZ

(
b

n

)
h1(n, b),

then from Lemma 2.2.28 and Mertens’ Theorem, Theorem 2.2.26 we have that (4.48)
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becomes

S3 �
√
p

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)τ(f)

f 2

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)|c(n)|
n2

∏
`≤y
`-2fn

(
1− 1

`

)
+Dz.

�
√
p

log y

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)τ(f)

fϕ(f)

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)|c(n)|
nϕ(n)

+Dz. (4.49)

In the previous case we showed that c(n) is a multiplicative function and

c(`) =

 `− 1 if 16p2 ≡ 0 (mod `),

−1 if 16p2 6≡ 0 (mod `).

Since P+(n) ≤
√
z :=

√
log p < p we have that c(n) = −1 and thus,

∑
P+(n)≤

√
z

(n,2f)=1

µ2(n)|c(n)|
nϕ(n)

�
∑

P+(n)≤
√
z

(n,2f)=1

µ2(n)(log log n)2

n2
� 1,

and by the bounds on the Euler ϕ-function in Theorem 2.2.5 we have that

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)τ(f)

f 2
�

∑
P+(f)≤

√
z

(f,2)=1

µ2(f)τ(f) log log f

f 2
� 1.

Thus,

S2 � S ′2 � S3 �
√
p

log y
+D log2 p�

√
p

log p
,

for y = p
1
6 , D = (p

1
6 )2 = p

1
3 , which completes the proof.
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Chapter 5

Length of the average

5.1 A short length of the average

In this chapter we will show how the technique of multiplicative character sums used by

Baier, in [Ba1], Balog, Cojocaru and David in [BCD] and by Banks and Shparlinski in

[BanShp] generalizes to the case of aliquot cycles to give a short length for the average

given in Theorem 1.0.5.

As in Chapter 3 we define the following vectors of integers

P := (p1, . . . , pL), S := (s1, . . . , sL), T := (t1, . . . , tL), U := (u1, . . . , uL),

where (p1, . . . , pL) are distinct primes. We also recall the definitions

w(P, S, T ) =


1 if #Esi,ti(Fpi) = pi+1 for 1 ≤ i ≤ L,

0 otherwise,

and the sum R(P, S, T ), which is the number of integers |a| ≤ A, |b| ≤ B such that there

exist U ∈ F(P )∗ satisfying

a ≡ siu
4
i (mod pi), b ≡ tiu

6
i (mod pi) for 1 ≤ i ≤ L.
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The goal of this section is to prove Lemma 3.2.2, which we restate below.

Lemma 5.1.1. Fix an integer L ≥ 2, let E/Q be an elliptic curve, let A,B > 0 then for

any positive integer k, we have that as X →∞,

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )

(
R(P, S, T )− AB

2L−2p1 · · · pL

)

�k,LABX
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k AB

+(A
√
B +B

√
A)X

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L +
√
ABX

3L+2
4 (logX)3−L. (5.1)

Proof. Let χi, χ
′
i be Dirichlet characters modulo pi for 1 ≤ i ≤ L. Throughout this section

χ0 denotes the principal character modulo n for any integer n and χ denotes the complex

conjugate of χ. We also define the following sums of characters,

A(χ) :=
∑
|a|≤A

χ(a) and B(χ) :=
∑
|b|≤B

χ(b).

Let S, T, a, b be fixed. If there exists a ui (mod pi) such that a ≡ siu
4
i (mod pi) and

b ≡ tiu
6
i (mod pi) then there exists exactly two such ui, namely ±ui. To ease notation,

unless otherwise stated, we define

χ := χ1 · · ·χL and χ′ := χ′1 · · ·χ′L.
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Since Dirichlet characters are completely multiplicative we have that

R(P, S, T ) =
∑

|a|≤A,|b|≤B
U∈F(P )∗

a≡siu4i (mod pi),b≡tiu6i (mod pi)
1≤i≤L

1

=
1

2L

∑
|a|≤A
|b|≤B

∑
U∈F(P )∗

L∏
i=1

(
1

(pi − 1)2

∑
χi (mod pi)

χi(siu
4
i )χi(a)

∑
χ′i (mod pi)

χ′i(tiu
6
i )χ
′
i(b)

)

=
1

2L

L∏
i=1

(
1

(pi − 1)2

∑
χi (mod pi)
χ′i (mod pi)

χi(si)χ
′
i(ti)

∑
U∈F(P )∗

χi(u
4
i )χ
′
i(u

6
i )

)

×
∑
|a|≤A
|b|≤B

χ1 · · ·χL(a)χ′1 · · ·χ′L(b). (5.2)

By the orthogonality of Dirichlet characters, Theorem 2.2.17 we have that the sum over

U becomes

∑
U∈F(P )∗

χi(u
4
i )χ
′
i(u

6
i ) =

∑
u1∈F∗p1

χ4
1(u1)χ

′6
1 (u1) · · ·

∑
uL∈F∗pL

χ4
L(uL)χ′6L(uL)

=


∏L

i=1(pi − 1) if χ4
iχ
′6
i = χ0 (mod pi) for 1 ≤ i ≤ L,

0 otherwise.

(5.3)

Hence, we have from (5.2) and (5.3) that

R(P, S, T ) =
1

2L

L∏
i=1

 1

pi − 1

∑
χ4
iχ
′6
i =χ0 (mod pi)

χi(si)χ
′
i(ti)

A(χ)B(χ′)

=
1

2L

∑
χ1,...,χL
χ′i,...,χ

′
L

χ4
i (χ
′
i)

6=χ0 (mod pi)

L∏
i=1

(
1

pi − 1
χi(si)χ

′
i(ti)

)
A(χ)B(χ′). (5.4)
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We have that (5.4) can be broken up into four types of sums which we define below.



R1(P, S, T ) if χi = χ′i = χ0 (mod pi) for 1 ≤ i ≤ L,

R2(P, S, T ) if χi = χ0 (mod pi) for 1 ≤ i ≤ L and χ′i 6= χ0 (mod pi) for some i,

R3(P, S, T ) if χ′i = χ0 (mod pi) for 1 ≤ i ≤ L and χi 6= χ0 (mod pi) for some i,

R4(P, S, T ) otherwise.

Hence, we can express (5.4) as

R(P, S, T ) =
∑

1≤j≤4

Rj(P, S, T ). (5.5)

For j = 1 since χi = χ′i = χ0 (mod pi) is the trivial character for 1 ≤ i ≤ L, we have

that

A(χ) =
∑
|a|≤A

χ(a) =
∑
|a|≤A

χ0(a)

=
∑
|a|≤A
p1···pL-a

1 = 2A

(
1− 1

p1 · · · pL

)
+O(1)

and similarly,

B(χ′) = 2B

(
1− 1

p1 · · · pL

)
+O(1).

Thus, we have that the contribution to the RHS of (5.5) is

R1(P, S, T ) =
AB

2L−2p1 · · · pL
+OL

(
AB

pL+1
+
A+B + 1

pL

)
. (5.6)

Recall from (3.18) in Lemma 3.15 that

∑
S,T∈F(P )∗

w(P, S, T ) = pL
L∏
i=1

H(D(pi, pi+1)) +O
(
p

3L−1
2 (log p)L(log log p)L

)
. (5.7)
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Hence, we can plug (5.6) into the LHS of (5.1) and using the bound in (5.7) we have

that

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )S1(P, S, T )

=
AB

2L−2

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p21 · · · p2L

∑
S,T∈F(P )∗

w(P, S, T )

+OL

(∑
p≤X

(
AB

pL+1
+
A+B

pL

) ∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1))

)
. (5.8)

By partial summation, Proposition 3.2.3 and Proposition 3.2.4 we have for the error

term in (5.8) that

∑
p≤X

(
AB

pL+1
+
A+B

pL

) ∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1))

�L

∑
p≤X

(
AB

pL+1
+
A+B

pL

)
pL−

1
2

logL−1 p
�L AB +

(A+B)
√
X

logLX
. (5.9)

We have that (5.9) is smaller than that of the first two terms on the RHS in the error

term of (5.1) so it is a lower order error term.

For j = 2 we have to sum over all characters such that χi = χ0 (mod pi) for 1 ≤ i ≤ L

and there exists a j ∈ [1, L] such that χ′j 6= χ0 (mod pj), which we express as the following

sum

R2(P, S, T ) = 2A

(
1− 1

p1 · · · pL

)
1

2L

L∏
i=1

1

pi − 1

∑
(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

B(χ′)

� A

p1 · · · pL

∑
(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

|B(χ′)|,
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and similarly, for j = 3 we have that

R3(P, S, T )� B

p1 · · · pL

∑
χ4=χ0 (mod p1···pL)
χ 6=χ0 (mod p1···pL)

|A(χ)|.

These estimates are independent of S and T , so for 2 ≤ j ≤ 3 we can plug (5.6) into the

LHS of (5.1) and use the bound from (5.7) to obtain

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )

∣∣∣∣∣ ∑
2≤j≤3

Rj(P, S, T )

∣∣∣∣∣
�

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

L∏
j=1

H(D(pj, pj+1))

×

A ∑
(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

|B(χ′)|+B
∑

χ4=χ0 (mod p1···pL)
χ 6=χ0 (mod p1···pL)

|A(χ)|

 . (5.10)

For the sake of clarity, we will first give a bound for

A
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

L∏
j=1

H(D(pj, pj+1))
∑

(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

|B(χ′)|

in (5.10) in the L = 2 case such that χ′2 6= χ0 (mod p2). We then generalize the argument

to all L. In this case we have that the first sum in (5.10) can be expressed as

A
∑
p≤X

p−<q<p+

H(D(p, q))2

pq

∑
(χ′1χ

′
2)

6=χ0 (mod pq)
χ′1χ

′
2 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣ . (5.11)

We have two cases to consider. Either χ′1 6= χ0 (mod p), in which case χ′1χ
′
2 is primi-

tive, or χ′1 = χ0 (mod p), in which case χ′1χ
′
2 is imprimitive.
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We will consider the case when χ′1χ
′
2 is primitive first. In this case, the sum

∑∗

p≤X
p−<q<p+

χ′ 6=χ0 (mod pq)

denotes the sum over p, q and over characters χ′ = χ′1χ
′
2 where χ′1 6= χ0 (mod p) and

χ′2 6= χ0 (mod q). Since there are a bounded number of characters satisfying (χ′1χ
′
2)

6 = χ0

(mod pq), from Hölder’s inequality we have that the sum on the RHS of (5.11) becomes

A
∑
p≤X

p−<q<p+

H(D(p, q))2

pq

∑
(χ′1χ

′
2)

6=χ0 (mod pq)
χ′1χ

′
2 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣

�A


∑∗

p≤X
p−<q<p+

χ′ 6=χ0 (mod pq)

(
H(D(p, q))2

pq

) 2k
2k−1


1− 1

2k


∑∗

p≤X
p−<q<p+

χ′ 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′(b)

∣∣∣∣∣
2k


1
2k

. (5.12)

We recall that

H(D(pi, pi+1))�
√
p log p log log p,

from (3.7) and therefore the first product in (5.12) becomes


∑∗

p≤X
p−<q<p+

χ′ 6=χ0 (mod pq)

(
H(D(p, q))2

pq

) 2k
2k−1


1− 1

2k

�

 ∑
p≤X

p−<q<p+

(
(log p)2(log log p)2

p

) 2k
2k−1


1− 1

2k

�

(∑
p≤X

√
p

log p

(
(log p)2(log log p)2

p

) 2k
2k−1

)1− 1
2k

�X
1
2
− 3

4k (logX)
1
k (log logX)2. (5.13)
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We can rewrite ∣∣∣∣∣∑
b≤B

χ′(b)

∣∣∣∣∣
2k

=

∣∣∣∣∣∣
∑
b≤Bk

τk(b;B)χ′(b)

∣∣∣∣∣∣
2

, (5.14)

where τk(b;B) is the number of ways of writing b as the product of k positive integers at

most B. We extend the sum in the second product in (5.12) to a sum over all primitive

characters modulo d for all modulus d ≤ Q = X2, since pq � X2 and we use the large

sieve inequality, Theorem 2.2.22, which gives


∑∗

p≤X
p−<q<p+

χ′ 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′(b)

∣∣∣∣∣
2k


1
2k

�


∑∗

p≤X
p−<q<p+

χ′ 6=χ0 (mod pq)

∣∣∣∣∣∣
∑
b≤Bk

τk(b;B)χ′(b)

∣∣∣∣∣∣
2


1
2k

�


∑
d≤X2

χ (mod d)
χ primitive

∣∣∣∣∣∣
∑
b≤Bk

τk(b;B)χ(b)

∣∣∣∣∣∣
2


1
2k

�


∑
d≤X2

χ (mod d)
χ primitive

∣∣∣∣∣∣
∑
b≤Bk

τk(b)χ(b)

∣∣∣∣∣∣
2


1
2k

�

(Bk +X4)
∑
b≤Bk
|τk(b)|2

 1
2k

�
(

(Bk +X4)Bk logk
2−1(Bk)

) 1
2k
, (5.15)

where we used Theorem 2.2.6 to bound τk(b). Combining (5.12), (5.13) and (5.15) gives

A
∑
p≤X

p−<q<p+

H(D(p, q))2

pq

∑
(χ′1χ

′
2)

6=χ0 (mod pq)
χ′1χ

′
2 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣
�A

(
(Bk +X4)Bk logk

2−1(Bk)
) 1

2k
X

1
2
− 3

4k (logX)
1
k (log logX)2. (5.16)
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Suppose that Bk > X4 then we have that the RHS of (5.15) becomes

(
(Bk +X4)Bk logk

2−1(Bk)
) 1

2k �k B log
k2−1
2k B, (5.17)

for k ≥ 1. Then suppose that Bk ≤ X4 for all k ≥ 1. Then we can replace logB by logX

in (5.15), which gives

(
(Bk +X4)Bk logk

2−1(Bk)
) 1

2k �k

√
BX

2
k log

k2−1
2k (X). (5.18)

Since

(Bk +X4)
1
2k �k

√
B +X

2
k ,

combining (5.17) and (5.18) with (5.16) gives

A
∑
p≤X

p−<q<p+

H(D(p, q))2

pq

∑
(χ′1χ

′
2)

6=χ0 (mod pq)
χ′1χ

′
2 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣
�kA

(
(Bk +X4)Bk logk

2−1(Bk)
) 1

2k
X

1
2
− 3

4k (logX)
1
k (log logX)2

=ABX
1
2
− 3

4k (logX)
1
k (log logX)2 log

k2−1
2k B + A

√
BX

1
2
+ 5

4k (logX)
k2+1
2k (log logX)2.

(5.19)

We now consider the imprimitive case. Fix p ≤ X and χ′1 = χ0 (mod p), χ′2 6= χ0

(mod q). In this case, the sum ∑∗

p−<q<p+

χ′2 6=χ0 (mod q)

denotes the sum over q and over characters χ′2 where χ′2 6= χ0 (mod q). As in the primitive
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case, from Hölder’s inequality we have that (5.11) becomes

A
∑
p≤X

p−<q<p+

H(D(p, q))2

pq

∑
(χ′1χ

′
2)

6=χ0 (mod pq)
χ′1χ

′
2 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣

�A
∑
p≤X

 ∑∗

p−<q<p+

χ′2 6=χ0 (mod q)

(
H(D(p, q))2

pq

) 2k
2k−1


1− 1

2k
 ∑∗

p−<q<p+

χ′2 6=χ0 (mod q)

∣∣∣∣∣∣∣∣
∑
b≤B

(p,b)=1

χ′2(b)

∣∣∣∣∣∣∣∣
2k

1
2k

,

(5.20)

since in this case ∑
b≤B

χ′(b) =
∑
b≤B

χ′1χ
′
2(b) =

∑
b≤B

(p,b)=1

χ′2(b).

We have that the first product in (5.20) becomes

 ∑∗

p−<q<p+

χ′2 6=χ0 (mod q)

(
H(D(p, q))2

pq

) 2k
2k−1


1− 1

2k

�

 ∑
p−<q<p+

(
log2 p(log log p)2

p

) 2k
2k−1

1− 1
2k

�

( √
p

log p

(
log2 p(log log p)2

p

) 2k
2k−1

)1− 1
2k

�p−
1
2
− 1

4k (log p)1+
1
2k (log log p)2. (5.21)

As in the primitive case we extend the sum in the second product in (5.20) to a sum

over all primitive characters modulo d for all modulus d ≤ Q = X since q � X. Using the
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large sieve inequality, Theorem 2.2.22 we have that the second product in (5.20) becomes

 ∑∗

p−<q<p+

χ′2 6=χ0 (mod q)

∣∣∣∣∣∣∣∣
∑
b≤B

(p,b)=1

χ′2(b)

∣∣∣∣∣∣∣∣
2k

1
2k

�

 ∑∗

p−<q<p+

χ′2 6=χ0 (mod q)

∣∣∣∣∣∣∣∣
∑
b≤Bk
(p,b)=1

τk(b;B)χ′2(b)

∣∣∣∣∣∣∣∣
2

1
2k

�


∑
d≤X

χ (mod d)
χ primitive

∣∣∣∣∣∣∣∣
∑
b≤Bk
(p,b)=1

τk(b;B)χ(b)

∣∣∣∣∣∣∣∣
2


1
2k

�


∑
d≤X

χ (mod d)
χ primitive

∣∣∣∣∣∣∣∣
∑
b≤Bk
(p,b)=1

τk(b)χ(b)

∣∣∣∣∣∣∣∣
2


1
2k

�

(Bk +X2)
∑
b≤Bk
|τk(b)|2

 1
2k

�
(

(Bk +X2)Bk logk
2−1(Bk)

) 1
2k
. (5.22)

Combining (5.20), (5.21) and (5.22) gives

A
∑
p≤X

p−<q<p+

H(D(p, q))2

pq

∑
(χ′1χ

′
2)

6=χ0 (mod pq)
χ′1χ

′
2 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣
�A

(
(Bk +X2)Bk logk

2−1(Bk)
) 1

2k
∑
p≤X

p−
1
2
− 1

4k (log p)1+
1
2k (log log p)2

�AX
1
2
− 1

4k (logX)
1
2k (log logX)2

(
(Bk +X2)Bk logk

2−1(Bk)
) 1

2k
. (5.23)

Suppose that Bk > X2 then we have that the RHS of (5.22) becomes

(
(Bk +X2)Bk logk

2−1(Bk)
) 1

2k �k B log
k2−1
2k B, (5.24)

for k ≥ 1. Then suppose that Bk ≤ X2 for all k ≥ 1. Then we can replace logB by logX

88



in (5.22), which gives

(
(Bk +X2)Bk logk

2−1(Bk)
) 1

2k �k

√
BX

1
k log

k2−1
2k (X). (5.25)

Since

(Bk +X2)
1
2k �k

√
B +X

1
k ,

combining (5.24) and (5.25) with (5.23) gives

A
∑
p≤X

p−<q<p+

H(D(p, q))2

pq

∑
(χ′1χ

′
2)

6=χ0 (mod pq)
χ′1χ

′
2 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣
�kAX

1
2
− 1

4k (logX)
1
2k (log logX)2

(
(Bk +X2)Bk logk

2−1(Bk)
) 1

2k

=ABX
1
2
− 1

4k (logX)
1
2k (log logX)2 log

k2−1
2k B + A

√
BX

1
2
+ 3

4k (logX)
k
2 (log logX)2. (5.26)

Combining (5.19) and (5.26) gives that (5.11) becomes

A
∑
p≤X

p−<q<p+

H(D(p, q))2

pq

∑
(χ′1χ

′
2)

6=χ0 (mod pq)
χ′1χ

′
2 6=χ0 (mod pq)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣
�kABX

1
2
− 1

4k (logX)
1
2k (log logX)2 log

k2−1
2k B + A

√
BX

1
2
+ 5

4k (logX)
k2+1
2k (log logX)2.

Note that dividing the sum above by 4AB gives the length of the average with A,B >

Xε as in the average of the Lang-Trotter Conjecture for any ε > 0. But we have considered

only R1, R2 and R3 and we still need to consider R4 to obtain the length of the average

for AB.

We now generalize these arguments for all L. Since pi = p + OL(p) for 1 ≤ i ≤ L

without loss of generality we can rearrange the primes (p1, . . . , pL) such that for 1 ≤ i ≤ s

we have that χ′i = χ0 (mod pi) and for s+1 ≤ i ≤ L we have that χ′i 6= χ0 (mod pi). It is

possible that s = 0 in which case χ′ := χ′1 · · ·χ′L is primitive and by assumption we have

that s < L. We have two cases to consider, either s = 0 in which case χ′ is primitive, or
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0 < s < L in which case χ′ is imprimitive.

We will consider the case when χ′ is primitive first for the sum

A
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

L∏
j=1

H(D(pj, pj+1))
∑

(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

|B(χ′)| (5.27)

in (5.10). In this case, the sum ∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤L−1

denotes the sum over p1, . . . , pL and over characters χ′ where χ′ 6= χ0 (mod p1 · · · pL).

Since there are a bounded number of characters depending on L satisfying (χ′)6 = χ0

(mod p1 · · · pL) from Hölder’s inequality we have that (5.27) becomes

A
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1))

pj

∑
(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣

�LA


∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

(
H(D(pj, pj+1))

pj

) 2k
2k−1


1− 1

2k


∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤L−1

∣∣∣∣∣∑
b≤B

χ′(b)

∣∣∣∣∣
2k



1
2k

. (5.28)
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We have that the first product in (5.28) becomes


∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

(
H(D(pj, pj+1))

pj

) 2k
2k−1


1− 1

2k

�L


∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

(
logL p(log log p)L

p
L
2

) 2k
2k−1


1− 1

2k

�L

∑
p≤X

p
L−1
2

(log p)L−1

(
logL p(log log p)L

p
L
2

) 2k
2k−1

1− 1
2k

�LX
1
2
−L+1

4k (logX)
L
2k (log logX)L. (5.29)

We extend the sum in the second product in (5.28) to a sum over all primitive charac-

ters modulo d for all modulus d ≤ Q = XL, since p1 · · · pL �L X
L. Using the large sieve
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inequality, Theorem 2.2.22, gives


∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤L−1

∣∣∣∣∣∑
b≤B

χ′(b)

∣∣∣∣∣
2k



1
2k

�L


∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤L−1

∣∣∣∣∣∣
∑
b≤Bk

τk(b;B)χ′(b)

∣∣∣∣∣∣
2



1
2k

�L


∑
d≤XL

χ (mod d)
χ primitive

∣∣∣∣∣∣
∑
b≤Bk

τk(b;B)χ(b)

∣∣∣∣∣∣
2


1
2k

�L


∑
d≤XL

χ (mod d)
χ primitive

∣∣∣∣∣∣
∑
b≤Bk

τk(b)χ(b)

∣∣∣∣∣∣
2


1
2k

�L

(Bk +X2L)
∑
b≤Bk
|τk(b)|2

 1
2k

�L

(
(Bk +X2L)Bk logk

2−1(Bk)
) 1

2k
. (5.30)

where we used Theorem 2.2.6 to bound the sum over b.

Combining (5.28), (5.29) and (5.30) gives

A
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

L∏
j=1

H(D(pj, pj+1))
∑

(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

|B(χ′)|

�LA
(

(Bk +X2L)Bk logk
2−1(Bk)

) 1
2k
X

1
2
−L+1

4k (logX)
L
2k (log logX)L. (5.31)

Suppose that Bk > X2L then we have that the RHS of (5.30) becomes

(
(Bk +X2L)Bk logk

2−1(Bk)
) 1

2k �k,L B log
k2−1
2k B, (5.32)

for k ≥ 1. Then suppose that Bk ≤ X2L for all k ≥ 1. Then we can replace logB by

92



logX in (5.30), which gives

(
(Bk +X2L)Bk logk

2−1(Bk)
) 1

2k �k,L

√
BX

L
k log

k2−1
2k (X). (5.33)

Since

(Bk +X2L)
1
2k �k,L

√
B +X

L
k ,

combining (5.32) and (5.33) with (5.31) gives

A
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

L∏
j=1

H(D(pj, pj+1))
∑

(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

|B(χ′)|

=ABX
1
2
−L+1

4k (logX)
L
2k (log logX)L log

k2−1
2k B + A

√
BX

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L.

(5.34)

We now consider the imprimitive case. Fix p1, . . . , ps such that for 1 ≤ i ≤ s we have

that χ′i = χ0 (mod pi) and for s+ 1 ≤ i ≤ L we have that χ′i 6= χ0 (mod pi). The sum

∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤s−1

denotes the sum over p1, . . . , ps where χ′i = χ0 (mod pi) for 1 ≤ i ≤ s and the sum

∑∗

p−i <pi+1<p
+
i

s+1≤i≤L

denotes the sum over ps+1, . . . , pL where χ′i 6= χ0 (mod pi) for s + 1 ≤ i ≤ L. As in the
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primitive case, from Hölder’s inequality we have that (5.27) becomes

A
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

L∏
j=1

H(D(pj, pj+1))

pj

∑
(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

∣∣∣∣∣∑
b≤B

χ′1χ
′
2(b)

∣∣∣∣∣

�LA
∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤s−1

 ∑∗

p−i <pi+1<p
+
i

s+1≤i≤L

L∏
j=1

(
H(D(pj, pj+1))

pj

) 2k
2k−1


1− 1

2k

×

 ∑∗

p−i <pi+1<p
+
i

s+1≤i≤L

∣∣∣∣∣∣∣∣
∑
b≤B

(p1···ps,b)=1

χ′s+1 · · ·χ′L(b)

∣∣∣∣∣∣∣∣
2k

1
2k

. (5.35)

We have that the first product in (5.35) becomes

 ∑∗

p−i <pi+1<p
+
i

s+1≤i≤L

L∏
j=1

(
H(D(pj, pj+1))

pj

) 2k
2k−1


1− 1

2k

�L

 ∑∗

p−i <pi+1<p
+
i

s+1≤i≤L

(
logL p(log log p)L

p
L
2

) 2k
2k−1


1− 1

2k

�L

 p
L−s
2

(log p)L−s

(
logL p(log log p)L

p
L
2

) 2k
2k−1

1− 1
2k

�Lp
− s

2
−L−s

4k (log p)s+
L−s
2k (log log p)L. (5.36)

As in the primitive case we extend the sum in the second product in (5.35) to a sum

over all primitive characters modulo d for all modulus d ≤ Q = XL−s since ps+1 · · · pL �L

XL−s. Using the large sieve inequality, Theorem 2.2.22 and following as in the primitive
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case we have that the second product in (5.35) becomes

 ∑∗

p−i <pi+1<p
+
i

s+1≤i≤L

∣∣∣∣∣∣∣∣
∑
b≤B

(p1···ps,b)=1

χ′s+1 · · ·χ′L(b)

∣∣∣∣∣∣∣∣
2k

1
2k

�L

 ∑∗

p−i <pi+1<p
+
i

s+1≤i≤L

∣∣∣∣∣∣∣∣
∑
b≤Bk

(p1···ps,b)=1

τk(b;B)χ′s+1 · · ·χ′L(b)

∣∣∣∣∣∣∣∣
2

1
2k

�L


∑

d≤XL−s

χ (mod d)
χ primitive

∣∣∣∣∣∣∣∣
∑
b≤Bk

(p1···ps,b)=1

τk(b;B)χ(b)

∣∣∣∣∣∣∣∣
2


1
2k

�L


∑

d≤XL−s

χ (mod d)
χ primitive

∣∣∣∣∣∣∣∣
∑
b≤Bk

(p1···ps,b)=1

τk(b)χ(b)

∣∣∣∣∣∣∣∣
2


1
2k

�L

(Bk +X2(L−s))
∑
b≤Bk
|τk(b)|2

 1
2k

�L

(
(Bk +X2(L−s))Bk logk

2−1(Bk)
) 1

2k
. (5.37)

Combining (5.35), (5.36) and (5.37) gives

A
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

L∏
j=1

H(D(pj, pj+1))
∑

(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

|B(χ′)|

�LA
(

(Bk +X2(L−s))Bk logk
2−1(Bk)

) 1
2k

∑∗

p≤X
p−i <pi+1<p

+
i

1≤i≤s−1

p−
s
2
−L−s

4k (log p)s+
L−s
2k (log log p)L

�LAX
1
2
−L−s

4k (logX)
L−s
2k (log logX)L

(
(Bk +X2(L−s))Bk logk

2−1(Bk)
) 1

2k
. (5.38)
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Suppose that Bk > X2(L−s) then we have that the RHS of (5.37) becomes

(
(Bk +X2(L−s))Bk logk

2−1(Bk)
) 1

2k �k,L B log
k2−1
2k B, (5.39)

for k ≥ 1. Then suppose that Bk ≤ X2(L−s) for all k ≥ 1. Then we can replace logB by

logX in (5.37), which gives

(
(Bk +X2(L−s))Bk logk

2−1(Bk)
) 1

2k �k,L

√
BX

(L−s)
2k log

k2−1
2k (X). (5.40)

Since

(Bk +X2(L−s))
1
2k �k,L

√
B +X

(L−s)
k ,

combining (5.39) and (5.40) with (5.38) gives

AX
1
2
−L−s

4k (logX)
L−s
2k (log logX)L

(
(Bk +X2(L−s))Bk logk

2−1(Bk)
) 1

2k

�L,kABX
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k B

+A
√
BX

1
2
+

3(L−1)
k (logX)

k2+L−2
2k (X)(log logX)L, (5.41)

since 1 ≤ L− s ≤ L− 1. Then combining (5.34) and (5.41) gives that (5.27) becomes
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A
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

L∏
j=1

H(D(pj, pj+1))
∑

(χ′)6=χ0 (mod p1···pL)
χ′ 6=χ0 (mod p1···pL)

|B(χ′)|

�L,kABX
1
2
−L+1

4k (logX)
L
2k (log logX)L log

k2−1
2k B

+A
√
BX

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L

+ABX
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k B

+A
√
BX

1
2
+

3(L−1)
k (logX)

k2+L−2
2k (X)(log logX)L

�L,kABX
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k B

+A
√
BX

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L. (5.42)

Similarly, we deduce

B
∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

L∏
j=1

H(D(pj, pj+1))
∑

(χ)4=χ0 (mod p1···pL)
χ 6=χ0 (mod p1···pL)

|A(χ)|

�L,kABX
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k A

+B
√
AX

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L. (5.43)

Thus, from (5.42) and (5.43) we have that (5.10) becomes

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )
∑

2≤j≤3

Sj(P, S, T )

�k,LABX
1
2
− 1

4k (logX)
L−1
2k (log logX)L log

k2−1
2k AB

+(A
√
B +B

√
A)X

1
2
+ 3L−1

4k (logX)
k2+L−1

2k (log logX)L. (5.44)
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We now consider the final case R4(P, S, T ) and define

W (P, χi, χ
′
i) =

∑
1≤si,ti<pi
1≤i≤L

w(P, S, T )χi(si)χ
′
i(ti).

Then we have that

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )R4(P, S, T )

=
1

2L

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

L∏
j=1

1

pj(pj − 1)

∑
χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

W (P, χi, χ
′
i)A(χ)B(χ′). (5.45)

We use Hölder’s inequality to obtain

∣∣∣∣ ∑
χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

W (P, χi, χ
′
i)A(χ)B(χ′)

∣∣∣∣
≤
∣∣∣∣ ∑
χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

|W (P, χi, χ
′
i)|

2

∣∣∣∣ 12

×

 ∑
χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

|A(χ)|4


1
4
 ∑

χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

∣∣B(χ′)
∣∣4


1
4

. (5.46)

Thus, from the fourth power moment of Dirichlet characters, Theorem 2.2.29, we have

that

 ∑
χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

|A(χ)|4


1
4
 ∑

χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

∣∣B(χ′)
∣∣4


1
4

�L

√
AB(p1 · · · pL)

1
2 log3(p1 · · · pL)�L

√
AB(p1 · · · pL)

1
2 (log3 p). (5.47)
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Now define

S ′ := (s′1, . . . , s
′
L) and T ′ := (t′1, . . . , t

′
L).

For a fixed character χ1 · · ·χL there are at most 6L characters χ′1 · · ·χ′L (or for any fixed

character χ′1 · · ·χ′L there are at most 4L characters χ1 · · ·χL) satisfying the condition

(χ1 · · ·χL)4(χ′1 · · ·χ′L)6 = χ0 (mod p1 · · · pL).

Then for the first character sum in (5.46), we extend the sum over all possible products

of characters modulo p1 · · · pL (including the trivial character) and we obtain

∑
χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

|W (P, χi, χ
′
i)|

2 ≤
∑
χi

1≤i≤L

∑
χ′i

1≤i≤L

|W (P, χi, χ
′
i)|

2

≤
∑

S,T∈F(P )∗

∑
S′,T ′∈F(P )∗

w(P, S, T )w(P, S ′, T ′)
∑
χi

χi(si)χi(s
′
i)
∑
χ′i

χ′i(ti)χ
′
i(t
′
i)

=
L∏
i=1

(pi − 1)2
∑

S,T∈F(P )∗

|w(P, S, T )|2

= p3L
L∏
i=1

H(D(pi, pi+1)) +OL

(
p

7L−1
2 logL p(log log p)L

)
(5.48)

by (5.7) since |w(P, S, T )|2 = w(P, S, T ). By combining (5.46), (5.47) and (5.48) we have

that

∣∣∣∣ ∑
χ4(χ′)6=χ0 (mod p1···pL)
χ 6=χ0,χ′ 6=χ0 (mod p1···pL)

W (P, χi, χ
′
i)A(χ)B(χ′)

∣∣∣∣�L

√
ABp2L(log3 p)

L∏
i=1

H2(D(pi, pi+1)),

(5.49)
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and then plugging (5.49) into (5.45) gives

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )R4(P, S, T )

�L

√
AB

∑
p≤X

log3 p
∑

p−i <pi+1<p
+
i

1≤i≤L−1

L∏
j=1

√
H(D(pj, pj+1)). (5.50)

To obtain a better error term, instead of using the bound from (3.7) for H(D(pj, pj+1)),

we use Cauchy-Schwarz, Proposition 3.2.3 and Proposition 3.2.4 to bound the inner sum

in (5.50) to obtain

∑
p−i <pi+1<p

+
i

1≤i≤L−1

L∏
j=1

√
H(D(pj, pj+1))

≤
L−2∏
i=1

 ∑
p−i <pi+1<p

+
i

H(D(pi, pi+1))
∑

p−i <pi+1<p
+
i

1

 1
2

×

 ∑
p−L−1<pL<p

+
L−1

H(D(pL−1, pL))H(D(pL, p))
∑

p−L−1<pL<p
+
L−1

1

 1
2

�L

L−2∏
i=1

(
pi

log pi
·
√
pi

log pi

) 1
2

(
p

3
2

log p
·
√
p

log p

) 1
2

�L

(
p

3
2

log2 p

)L−2
2

p

log p
=

p
3L−2

4

logL−1 p
. (5.51)

From (5.50) and (5.51) we have that

∑
p≤X

p−i <pi+1<p
+
i

1≤i≤L−1

1

p1 · · · pL

∑
S,T∈F(P )∗

w(P, S, T )R4(P, S, T )

�L

√
AB

∑
p≤X

p
3L−2

4

logL−4 p
�L

√
ABX

3L+2
4 (logX)3−L. (5.52)
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Combining (5.44) and (5.52) gives the result.
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Chapter 6

Future work

6.1 Short and long term goals

The immediate goal after the completion of this thesis is to find an asymptotic result for

the average number of amicable pairs to obtain a formula for the constant on average,

which will then be compared with the constant conjectured by Jones in the amicable pairs

case.

We conclude this thesis by discussing a few long range goals in the theory of amicable

pairs and aliquot cycles for elliptic curves as well as other questions about the number

of points on an elliptic curve defined over Q, reduced by various primes with certain

properties.

Nontrivial upper bounds not on average have been found for the Lang-Trotter conjec-

ture and the Koblitz conjecture and a long term goal is to find a nontrivial upper bound

for amicable pairs and aliquot cycles.

In the classical case of aliquot cycles, every integer n leads to a possibly non-repeating

aliquot sequence

(n, s(n), (s ◦ s)(n) := s2(n), s3(n), . . .),

and is an aliquot cycle if sk(n) = n for some k ≥ 2. A major open problem for aliquot
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sequences is whether there exist starting values for which the sequence is unbounded.

However, for elliptic curves, if we arrive at a prime p for which #Ep(Fp) is not prime then

the sequence can not be continued. In light of this feature, Silverman and Stange [SiSt2]

also gave the following generalization of aliquot cycles.

Definition 6.1.1. Let E/Q be an elliptic curve and let

L(s, E) =
∞∑
n=1

an
ns

be the associated L-function of E. Consider the function

FE : N→ N, FE(n) = n+ 1− an.

A type-L aliquot sequence for E/Q is defined by considering an integer n ∈ N and repeat-

edly applying FE. A type-L aliquot cycle is a type-L aliquot sequence that returns to its

starting value.

Another interesting question in this subject is the study of elliptic twins, which are two

distinct primes p, q such that #Ep(Fp) = #Eq(Fq). Elliptic twins were first considered

by Kowalski [Kow] where he explains why they are a natural analogue of classical twin

primes and he gave a conjecture for the number of elliptic twins with p ≤ X. A long term

goal is to study the distribution of type-L aliquot cycles and elliptic twins and to see if an

asymptotic can be given on average for these questions, and if so, to find a short length

of the average as well.
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