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ABSTRACT 

A New Approach to CNC Programming of Plunge Milling 

Sherif Abdelkhalek, PhD. 

Concordia University, 2013. 

In current industrial applications many engineering parts are made of hard materials 

including dies, mold cavities and aerospace parts. Manufacturing these types of parts is 

classified as pocket milling. By using the regular machining methods, pocket milling takes 

a long time accompanied by high cost. Plunge milling, is a new machining strategy that 

has proven to have an excellent performance in the rough machining of hard materials. In 

plunge milling, the cutter is fed in the direction of the spindle axis, with the highest 

structural rigidity which showed a very interesting performance in removing the excess 

material rapidly in the rough operations. Mainly, according to the previous researchers, 

two directions are adopted to improve the efficiency of the plunge milling process. First, 

to reduce the cutting forces and increase chatter stability which attracts the majority of the 

researchers. Second, to optimize the tool path planning which has less attention.  

Therefore, in the first part of the research, a new practical approach is established in 

optimized procedures to generate the tool paths for plunge milling of pockets, even for 

these with free-form boundaries and islands. This innovative approach is proposed as 

follows: (1) fill a pocket with minimum number of specified radii circles which are tangent 

to each other and/or the pocket boundary without overlapping by building an algorithm 

using the maximum hole degree (MHD) theory for solving the circle packing problem. (2) 

cover the areas left between the non-overlapped circles by the same used specified radii. 

Finally, solve the travelling sales man problem (TSP) for the circles with the same radii by 
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using the simulated annealing algorithm. According to the results, this approach 

significantly advances the tool path planning technique for pockets plunge milling. 

In the second part of the research, a new algorithm is proposed to calculate the global 

solution for constraint polynomial functions by using subtractive clustering which makes 

the results more accurate and faster to be obtained. This part is extremely useful to calculate 

the depth of cut for each plunging place in case of having a polynomial surface as a bottom 

of the machined pocket with high accuracy, and less calculation time to avoid gauging 

between the tool and the bottom surface.  

The polynomial function can be classified according to the number of variables. In 

the proposed research, the functions with one and two variables have more importance 

because they graphically represent curves and surfaces which are the cases under study. 

Since the polynomial function under study can be represented graphically according to the 

number of the variables, the change in the function’s shape can be detected by the feature 

recognition. The feature recognition is done for the function’s shape by calculating the 

surface or curve curvature at the data points. The main procedure is; (1) identifying the 

entire features of the objective function which are classified according to the curvature as 

convex, concave, plane, and hyperbolic, (2) applying the sub-clustering technique for 

convex and concave regions to find the approximated centers of these regions, and 

eventually, (3) the clusters’ centers are calculated and used as initial points for local 

optimization technique which gives the local critical point for each region. The local 

minima are calculated, the global minimum is the minimum of the local minima. 
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Chapter 1 

1.1 Introduction 

CNC machining is considered as the core of manufacturing technology. The 

machining operation is generally divided into two main processes which are distinguished 

by the purpose and the cutting conditions; (1) roughing cuts, and (2) finishing cuts. 

Roughing cuts are used to remove large amounts of material from the starting work piece 

as rapidly as possible. This is done in order to produce a shape close to the desired form 

while leaving some extra material on the work piece for a subsequent finishing operation. 

Finishing cuts are used to complete the part and achieve the final dimension, tolerances, 

and surface finish. Roughing cuts are done at high feeds and cutting depths with low cutting 

speeds while finishing cuts are carried out at low feeds and cutting depths with high cutting 

speeds.  

For several decades, researchers dedicated great attention to improve the finishing 

cuts seeking an increase in the machining efficiency while maintaining high machining 

quality. According to many studies and researches, roughing cuts, (rough machining) could 

take more than 60% of the total machining time, which attracted much academic and 

industrial attention.  To increase the efficiency of rough machining, especially for hard 

materials, the emerging cutting strategy (plunge milling) was proposed as an effective 

solution. Pockets are great examples for the parts with the higher amount of material to be 

removed in the roughing step, which are widely used in the industry recently. 

Optimization is the main tool to the improvement. Therefore the optimization will 

have an important role in our research. The optimization is used to decrease the total 
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machining time, also our own optimization technique will be used to improve the efficiency 

of the plunge milling process by calculating the accurate depth of cut. 

 
1.1.1 Plunge milling 

The plunge milling method is also known as the z-axis milling. In the plunge 

milling process, the feed movement of the cutter is along the axial direction and provides 

a combination between drilling and milling by using the bottom edge of the cutter [1], as 

shown in Fig. (1.1); where ae is the radial cutting depth, and S is each step’s distance along 

the side direction. 

      

Figure (1. 1). Plunge milling. 

                     

There are three main types of the plunge milling process with different types of 

plungers depending on the process configuration; (1) hole making, (2) hole enlarging, and 

(3) intermittent plunge milling, as shown in Fig. (1.2) 
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(a) Hole making, (b) hole enlarging, and (c) intermittent. 

Figure (1. 2). Plunge milling processes. 
 

Compared to side milling, plunge milling has the following advantages: (1) high axial 

rigidity for super alloy processing, (2) low requirement for radial force, reducing possibility 

for work piece distortion, and producing better surface smoothness, (3) protecting cutters 

from breaking, and (4) relatively stable, and small cutting force and vibrations. Because of 

the mentioned advantages, plunge milling is perfectly suitable for roughing the high metal 

removal rate parts like die mold cavities and, and parts related to aerospace industries. With 

the lower radial cutting forces, this process is perfect for thin wall roughing. Dies, molds 

cavities, thin wall parts … etc. are considered as pockets. Compared with side milling [2] 

the axial cutting force of plunge milling is larger, but the radial cutting force is smaller. 

Namely, the bearing capacity of the axial force is superior to the radial force of the cutter. 

This makes use of the anisotropic characteristics of the force bearded by the cutter. As for 

conditions of the large allowance removal for the materials that are difficult to cut as well 

as the large length of the cutter, a larger cutting feed parameter can be given in plunge 

milling which is suitable for machining pockets. 
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1.1.2 Pocket milling 

Pocket milling is one of the most common operations in machining metal parts. 

Pocket milling is defined as removing all the material inside some arbitrary closed 

boundary of a work piece to a certain depth. Such a shape is frequently called a generalized 

pocket, as shown in Fig. (1.3). Pockets are classified among the parts which have the 

property of a large amount of the material has to be removed during the machining process. 

Dies, molds cavities, and thin wall parts can be considered as pockets with a sculptured 

bottom surface. As I will illustrate later in the literature review, the Plunge milling is 

noticed to be better for pocket roughing in comparison to side milling.  

 

Figure (1. 3). Generalized pocket illustration. 
 

1.1.3 Ploynomial functions global optimization 

By definition, polynomial is an expression consisting of a finite length which is 

composed of variables and constants. The polynomial function may contain one or more 

variables. It can also be of a single degree which is specified as linear, or more (quadratic, 

cubic… nth) degree. The remarkable ability of the polynomial functions in modeling, attract 

the attention of the optimization researchers. The industry is one of the important fields 
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which is affected by the polynomial functions’ ability in modeling, specially modeling the 

surfaces and curves. 

 Because of the nature of the polynomial functions the global optimization is 

considered as one of the interesting challenges. Calculating the global optimal solution for 

a polynomial function is one of the great challenges in the optimization field. There are 

many methods for calculating the global optimum like the deterministic methods (Branch 

and bound, Cutting plane), the stochastic methods (Simulated annealing), the heuristics, 

and metaheuristics methods (Genetic algorithm, practical swarm optimization, and ant 

colony optimization). All of these methods have advantages and disadvantages; the main 

disadvantages are the long computational time, and the low accuracy of the results. So our 

objective is to establish a new approach to increase the accuracy and reduce the 

computational time.   

 

1.2 Problem statement 

The pocket machining operations aim to remove all the material inside a pre-

defined boundary between two surfaces using minimal machining time. The only constraint 

specified by the part geometry is the boundary of the pocket. As all of the machining 

operations, the pocket machining is divided mainly into two steps, the rough machining 

step and the finish machining step. The rough machining of a pocket may take more than 

60% of the machining time which is a considerable amount. In addition, if the part material 

is very hard or the pocket has a high depth, the roughing time will increase to more than 

60% of the time. From the review, most of the authors adopted the plunge milling as the 
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most suitable process for the rough pocket machining because it has a high metal removal 

rate. 

The other problem we will discuss in our research is to find the global optimization 

of the polynomial functions in accurate manner with less computational time. Our focus 

will be on the polynomial functions with one and two variables. These types of polynomial 

functions have many utilities in the industrial field since they can represent curves, and 

surfaces. Finding the accurate global optimum solution of the polynomial function will be 

very beneficial to improve the pocket plunge milling process. 

In the approach, optimization of the tool path planning for the pocket plunge milling 

is adopted. Taking into consideration, more than one plunger with different standard sizes 

will be used, and different types of pocket boundary shapes will be applied. This work will 

be for pockets with polygon boundary, pockets with polygon boundary with island, and 

pockets with Free-form boundary.  

Moreover, by solving the global optimization problem of the polynomial functions, 

the pockets with sculptured bottom surface represented by polynomial functions will be 

considered by calculating the proper depth of cut at each plunging place. This problem can 

be formulated as covering a 2D pocket area by specified overlapped circles, and calculating 

the accurate depth of cut for each plunging place to avoid gauging the bottom surface. 

The problems can be listed as: 

1. Using different sizes of standard plungers.  

2. Filling the pocket area with the standard plungers in a decreasing order. 

3. Plunging the pockets with Free-form boundary and island. 
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4. Calculating the accurate depth of cut at each plunging place to avoid gauging with 

sculptured bottom surface. 

 

1.3 Research objectives 

The main objective of this research is to establish two new approaches. The first 

approach is to generate the tool paths for plunge milling of pockets with free-form 

boundaries and islands, and the second approach is a global optimization technique to find 

the global solution of the polynomial functions with one, and two variables. The pockets 

with sculptured bottom surfaces represented by polynomial functions will be considered 

by integrating the two approaches. This research covers algorithms development, related 

theorems establishment, computer program implement, and empirical verification. The 

main features of the innovative integrated approach are (1) gouge-free plunging of pockets 

with free-form boundaries, islands and sculptured bottom surface, and (2) optimized tool 

paths for standard plungers that are available.  This approach includes the following five 

algorithms: 

1. Fill a pocket with minimum number of specified radii circles which are tangent to 

each other and/or the pocket boundary without causing any overlap by building an 

algorithm using the maximum hole degree (MHD) theory for solving the circle 

packing problem. 

2. Cover the areas left between the non-overlapped circles by the same used specified 

radii through building an algorithm to solve the minimal enclosing circle problem. 

3. Solve the travelling sales man problem (TSP) for the centers of the circles with the 

same radii.  
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4. Obtain the optimum tool path planning for the plunge milling of pockets with island 

and free-form boundary. 

5. Optimize the depth of cut for each plunging place in case of sculptured bottom 

surface with polynomial function. 

As a result, the final algorithm will be able to find the optimum plunging tool path for 

pockets with free form boundaries and islands as well as the ability of using any number 

of preselected tools with standard or modified diameters due to the re-sharpening process. 

In addition, it has the ability to calculate the accurate depth of cut at each plunging place 

for pockets with sculptured bottom surfaces represented by polynomial functions.   

 

1.4 Dissertation organization 

The remaining sections of this dissertation are organized as follows. Chapter 2 

reviews the research that has been done on the plunge milling process, and the plunge 

milling tool path planning, in addition to a review on the circle packing technique used in 

our plunge milling approach. Furthermore, a discussion on the optimization techniques 

used for the constrained polynomial functions. Finally the chapter will be ended by 

highlighting the subtractive clustering method involved in our optimization technique.  

Chapter 3 presents in details our approach for the polynomial function global 

optimization by using the subtractive clustering technique. Several case studies are used to 

verify the proposed approach, with a comparison between our approach and one of the 

famous global optimization techniques, the particle swarm optimization (PSO) technique. 

Chapter 4 illustrates the pocket plunge milling tool path optimization algorithms, 

and different examples to different types of pockets with the results of applying our 
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approach. A comparison is made between our approach, and two other plunge milling 

methods. A comprehensive example at the end of the chapter to show the results of 

applying our both approach on a pocket with island both have free form boundary, and the 

pocket bottom surface following a polynomial function. Chapter 5 contains the summary 

of this work with the main points for the future work.  
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Chapter 2  

Literature review 

This chapter reviews three main concepts used in this integrated approach; first, the 

concept of plunge milling, then the concept of circle packing, and finally the global 

optimization of polynomial functions using the sub-clustering technique which is also 

reviewed at the end of this chapter 

  

2.1 Plunge milling 

Despite the importance of the plunge milling process, it has less attention given by 

the researchers in which a limited literature is found. Li, et al, (2000, [1]) developed an 

analytical cutting force model to predicted the resultant cutting forces during cutting the 

cylindrical parts by using multi-blade plungers. Their method depended mainly on the 

relationship between the instantaneous chip area and the local cutting forces at each 

individual blade of the plunger. Wakaoka, (2002, [2]) improved the accuracy and surface 

roughness of the deep vertical wall machining by using the plunge cutting instead of using 

the side milling and by using a long end mill. Eventually, they proved that the plunge 

cutting, (1) gave higher metal removal rate comparing to the side milling, (2) enabled using 

high cutting speeds with different materials like cast iron, and plain carbon steel, (3) 

increased the tool life. Ko, and Altintas, (2007, [3]) studied the dynamics and stability of 

the plunge milling operations by building models to predict the cutting forces, torque, 

kinematics of chip generation, and chatter stability in both time, and frequency domain 
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which enable them to find a map of chatter-free cutting conditions for the plunge milling 

process, this had an important role in the process planning.  

Another time domain simulation model was developed by Damir and Elbestawi, 

(2010, [4]) to study the dynamics of the plunge milling process for the systems with rigid 

and flexible work piece. Their model predicted the cutting forces and system vibration as 

a function of work piece and tool dynamics, tool setting error, and tool kinematics and 

geometry. Al-Ahmad, et al, (2007, [5]) specified the characteristics of plunge milling 

operation and made a comparison between plunge and conventional milling based on the 

accuracy and efficiency point of views by taking into consideration the geometrical 

configuration, cutting strategy, cutting edge trajectory, power, and cutting force. By 

applying both operations on a simple deep cavity, they found that the plunge milling had 

higher metal removal rate and shorter cutting time with higher power consumption as 

shown in Fig. (2.1). 

 

(a) Metal removal rate   (b) Cutting power. 
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  (c) Cutting time. 
 

Figure (2. 1). Comparison between conventional and plunge milling [5]. 
 

Ren, et al, (2009, [6]) introduced the four axis plunge slot rough milling with high 

efficiency and low machining cost as the most efficient way for producing the open blisk’s 

tunnels. They determined the rough milling region of open blisk’s tunnel by generating the 

ruled enveloping surface of the blade’s offset surface, and gave the algorithm of the tool 

path for four axis plunge milling. They used the ruled surface to approach the freeform 

surface. Their experiment showed that compared to the traditional side slot milling, the 

cutting force of four axis plunge milling was reduced by 60% as shown in Fig. (2.2), and 

the efficiency was increased to more than double. 
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Figure (2. 2). Comparison of cutting forces between plunge milling and side milling 

under the condition of the same material cutting efficiency [6]. 

 

All the above mentioned researchers were interested in the cutting forces. Elmidany 

and Elkeran, (2006, [7]) were from the pioneers who were interested in the tool path 

planning of the plunge milling process. They proposed a new method called overlapped 

circles filling (Ocfill) as shown in Fig. (2.3), for optimizing the selection of plungers and 

toolpoint path generation. They fill a 2D area with a number of overlapped circles. The 2D 

area was expressed as the feature to be cut, and the circles were the plunging holes. Their 

results showed that the rough machining time was significantly reduced by value up to 28% 

when compared with the convintional methods existing in the commertial CAM softwares 

(MasterCAM). They used Voudouris’ algorithm (GFLS) for optimizing Ocfill toolpoint 

path. The optimum path saved about 50% of the path length.  
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Figure (2. 3). Generation of Ocfill grid [7]. 

 

Another new algorithm was also proposed by Elmidany, (2006, [8]) which was to 

increase the area to be covered of the pocket. He mentioned that according to the pocket 

shape, there exists an optimal inclination angle for the filling direction. He calculated the 

optimal inclination angle of filling the plunged area to improve the percentage of area 

covered by the circles. He then used the geometry of the 2D area of the shape to be cut to 

estimate the optimal inclination angle of filling. He finally found that, the optimal 

inclination angle for filling of the plunged area was in the same direction as the longest 

width of the equivalent convex polygon of the boundary contour. He showed that the 

residual volume was minimized by comparing the proposed algorithm with his previous 

ocfill method [7] as shown in Fig. (2.4). The main concepts of his new algorithm are to 
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construct the equivalent convex polygon of the boundary contour and calculate the 

direction of the longest width of the equivalent convex polygon. 

 

Figure (2. 4). Comparison of two methods (a) Modified Ocfill (b) Ocfill [8]. 

 

 Wenfeng, et al, (2010 [9]), presented a new method of tool path planning for 

plunge milling based on achieving a constant scallop height by determining the proper 

interval between two adjacent cutter contact (CC) points (∆L) as shown in Fig. (2.5). The 

results indicated that iso-scallop machining achieved the specified machining accuracy 

with fewer CL points than existed tool path generation approaches. Their proposed method 

offered an efficient solution for plunge milling tool path scheduling on pocket walls 

because the machining time was reduced while the quality of the machined surface was 

achieved properly.  
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(a) Flat surface (b) Concave surface (c) Convex surface. 
          

Figure (2. 5). The step distance according to different serfaces’ shapes [9].  
 

2.2 Circle packing 

Based on our approach procedure, we would like to add an extra part to the literature 

about the available solutions for the well-known circle packing problem. Circles packing 

are configurations of circles with a specified pattern of tangency. At the very beginning it 

was studied by E. M. Andreev and Paul Koebe, after a while, circles packing went long 

unnoticed until William Thurston reintroduced them in a talk over 20 years ago. Circle 

packing hierarchy starts with a single circle, then a tangent circle is added to form a tangent 

pair, and then by adding another circle, a triple with interstice is obtained. A set of more 

than three circles is called “flower” which has many petals. When the circles totally fill the 

required area, it is called “packing” as shown in Fig. (2.6). 
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Figure (2. 6). Circle Packing Hierarchy. 

 

The circle packing process has many applications in the industrial field; some of 

which are loading shipping containers with tubes, and cutting circular shapes out of 

rectangular metallic sheet [10]. Therefore, this attracted many researchers to find a proper 

way for packing circles in different shapes, based on the shape configuration and the type 

of application. To optimize the way for circle packing, several algorithms were applied by 

several groups, but most of the circle packing researchers applied what they called 

maximum hole degree (MHD) algorithm; especially those who work with packing unequal 

sized circles. Catillo, et al, (2005, [11]) represented several circle packing problems for the 

industrial applications, and some of the exact, and heuristic strategies are used to solve 
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these problems. They also presented illustrative numerical results through the use of 

generic global optimization software packages.  

 

Huang, et al, (2006, [12]) proposed two new heuristics to pack unequal circles into 

a two-dimensional circular container and rectangular container [13] as shown in Fig. (2.7). 

The first algorithm, denoted by A1.0, was a basic heuristic for selecting the next circle to 

be placed according to the MHD rule. The second algorithm, denoted by A1.5, used a self-

look ahead strategy to improve A1.0. Their experimental results showed that their approach 

had a good performance in terms of solution quality and computational time for packing 

unequal circles.  

 

Figure (2. 7). Unequal circle packing for circular and rectangular containers using MHD 
method [12, 13]. 

 

Lu, et al, (2008, [14]) used the principle of maximum cave degree (MCD) for 

corner-occupying actions as shown in Fig. (2.8), which is the same principle used by 

Huang, et al, [12, 13], to solve the problem of packing equal or unequal circles into a larger 

circular container. The basic idea of their approach was to evaluate the benefit of a partial 
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configuration (where some circles have been packed and others remained outside) using 

the principle of maximum cave degree, and the improved Pruned-Enriched Rosenbluth 

method (PERM) strategy. Their computational results showed that the proposed approach 

produced high quality solutions within reasonable computational times. 

 

 

Figure (2. 8). The corner occupying action (COA) for single circle [14]. 
 

Kubach, et al, (2009, [15]) studied the strip packing problem (SPP) as well as the 

Knapsack Problem (KP). The SPP was used for the placement of a given finite set of circles 

of different sizes within a rectangular strip of fixed width which minimized the variable 

length of the strip. They solved the SPP problem by using MHD algorithm, and they 

applied in parallel manner a greedy algorithm to solve the KP problem for the initial 

configuration which enhanced the algorithms proposed by Huang, et al, [13]. The objective 

of Akeb, et al, (2009, [16]) was to solve some problems that were faced in the industry; 
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such as minimizing the holes which were used to pass the wires connecting the car’s 

sensors with the display board taking into consideration that the size must be big enough 

to allow all wires to pass, avoid weakness of the car body, and other problems alike. They 

used the principle of MHD as shown in Fig. (2.9) to obtain the minimum circle radius and 

modify the selection of the next circle’s radius by using the Beam Search (BS) algorithm.  

 

Figure (2. 9). Feasible distinct corner position of C5 [16]. 

 

Akeb, et al, (2011, [17]) discussed the circular open dimension problem (CODP) 

which is one of the circle packing family problems. They were given a strip of fixed width 

and unlimited length, as well as a finite set of n circular pieces of known radii. Their 

objective was to search for a global optimum length. They used the minimum local distance 

position (MLDP) algorithm for solving the CODP, which was equivalent to the MHD 

method as shown in Fig. (2.10). 
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Figure (2. 10). Feasible distinct corner positions of C3 in the strip [17]. 
 

2.3 Global optimization of polynomial functions 

Visweswaran, et al, (1991, [18]) proposed an algorithm to find the global optimum 

solution for one variable constrained and unconstrained polynomial function. Lasserre, 

(2001, [19]) transferred the real valued polynomial into a finite sequence of convex linear 

matrix inequality in order to find the global minimum of the unconstrained polynomial 

function. Hanzon, et al, (2003, [20]) worked on the general polynomial and they have built 

an approach to translate the original problem into a generalized eigenvalue problem to 

reach the global optimization solution. Nataraj, et al, (2007, [21]) presented an algorithm 

to calculate the global optimum solution for the unconstrained multivariate polynomial 

functions by applying a subdivision strategy. Also, Nataraj, et al, (2011, [22]) has proposed 

an algorithm to find the global optimum solution for constrained multivariable polynomial 

functions by using Bernstein coefficients approach.  
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2.4 Clustering techniques 

Most of the clustering algorithms required the number of clusters’ centers and their 

initial values. The Fuzzy C-Means and k-means algorithms are clear examples of these 

types of clustering algorithms. So the accuracy of the solution therefore depends mainly on 

the number of cluster centers and their initial values. The mountain method was presented 

by Yager, et al, (1994, [23]) as an efficient algorithm to solve the problem of finding the 

number of clusters through calculating the number and initial values of the cluster centers. 

This algorithm was initiated by gridding the data space and calculating a weight value for 

each grid point according to how close it is to the original data points. The grid point’s 

weight increases by increasing the number of the close original data points. The highest 

weight value grid point will be selected as the first cluster center. Consequently since the 

first cluster center is located, the weight values of all grid points are reassigned depending 

on how far they are from the cluster center. The closer grid points have lower weight. The 

second cluster center is then chosen at the grid point with the highest remaining weight 

value. This process continues till the weight value of all grid points retract under a 

threshold. In this method, the computing time increases exponentially with the dimension 

of the problem because the mountain function must be calculated at each grid point. 

Therefore, a development has been achieved by Chiu, (1994, [24]) to the mountain method; 

given the name of subtractive clustering method. By using the data points directly as the 

candidates for cluster centers, instead of the grid points used in mountain method, the 

computational problem would be solved. The computation time became proportional to the 

problem size instead of the problem dimension. Bataineh, et al, (2011, [25]) made a 

comparison study for different models generated by using subtractive clustering algorithm 
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and others generated by using fuzzy c-means algorithm and they found that the models 

generated from subtractive clustering are usually more accurate than those generated using 

FCM algorithm. An algorithm is needed to generate accurate models using FCM while is 

not needed in the use of subtractive clustering. Also, they mentioned that FCM gives 

different results for different runs. Finally, there conclusion was that the subtractive 

algorithm produces consistent results. 
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Chapter 3 

Polynomial function global optimization by using 

subtractive clustering technique 

 

3.1 Introduction 

Polynomial functions come in handy every day in which they have a lot of 

applications. People use them in the real world because of their ability to describe curves 

and surfaces of various types. For example, roller coaster designers may use polynomials 

to describe the curves in their rides. Combinations of polynomial functions are used in 

economics to do cost analyses. Polynomials have a great efficiency in modelling different 

situations in all types of fields like business’ markets’ modelling, in physics to describe the 

trajectory of projectiles, in industry to model physical phenomena or mainly for modeling 

the sculptured working surfaces, and curves, which we are interested in. 

A new optimization technique is proposed in this chapter to calculate the global 

optimal solution for the constrained polynomial function. The main contribution of this 

technique is to find the global minimum or maximum with reduced the computing time, 

improved accuracy, and avoidance of sticking in the local minimum or maximum. Our 

focus will be on the one variable and two variables constrained polynomial functions 

because they represent curves and surfaces which are the most used in the industrial field. 

Since the one variable equation represents a curve and the two variables equation represents 

a surface, the problem can be transferred to a geometrical problem.  
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Our approach depends on recognizing the different features of the curves and 

surfaces represented by the constrained polynomial function which contain several local 

critical points (minima and maxima). These critical points are represented graphically as 

peak and valley points of the convex and concave features respectively. By knowing the 

local critical points; one of these points will be assigned as the global critical point. The 

feature recognition method divides the curve or surface into specified regions according to 

the curvature from convex, concave, plane, and saddle regions (for surfaces). Convex 

regions contain the local minima and concave regions contain the local maxima which can 

be calculated precisely by our algorithm. 

  The algorithm starts by patching the entity into many data points. The curvature at 

each data point will be calculated. The data points which have the same curvature nature 

will be grouped together into convex regions, concave regions, plane regions, and saddle 

regions. By clustering the planer projections of data points for each group to the enclosed 

clusters we can know the exact number of the clusters inside each region. By finding the 

center of each cluster, it will be the nearest point to the exact center point. The exact center 

point represents a peak point in case of concave region, and valley point in case of convex 

region. To calculate the exact center points, the clusters’ center points will be used as initial 

points. Using close by points as initial points to find the exact points will make the search 

converge very fast. Using the initial local points in simple local optimizer leads to the exact 

local points very quickly. The minimum among the local minima will then be the global 

minimum. A comparison has been done on several case studies between the proposed 

algorithm and the practical swarm optimization (PSO) technique. 
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3.2 Geometric characterization of objective functions 

The polynomial functions can be characterized according to the number of the 

variables to one and multi-variables. The polynomial function represents geometrically a 

curve in case of one variable function and a surface in case of two variables function. 

Consequently the curve and surface features describe the variation of the function. 

Recognizing these features guides to the peaks and valleys of the function. The 

optimization problem starts by assigning the objective function which is the polynomial 

function, and the constraints which are the inequalities bounded the working space. 

 

3.2.1 One variable objective function 

The objective function which contains one variable represents a curve. It can be 

written as 

1

( )         
n

f x c x c R
 



   (3.1) 

 

min ( )
x R

f f x


  (3.2.a)

Such that 

a x b   (3.2.b)
 

The optimization process starts by patch the curve to several data points as shown in Fig. 

(3.1).  
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Figure (3. 1). Curve patching. 

 

Then at each data point the local curvature is calculated by equation (3.3). The curvature 

value at each data point predicts the local geometry shape around this data point and 

classifies this point to the proper region by convex, concave, or plan according to table 

(3.1). The local curve curvature (k) calculations depend on the first and second derivatives 

of the polynomial function as shown in equation (3.3). 

  
3

2 2

( )

1 ( )

f x
k

f x






 
(3.3) 

 

Table (3. 1). The Relation between the geometry shape and curve geometry features. 
 

Curvature (k) Local Shape 
k = 0 Plane 
k < 0 Concave  
k > 0 Convex  
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3.2.2 Dual variables objective function 

Dual variables objective function represents a surface. It can be written as 

1

( , ) y         
m n

f x y c x c R 
 

 

    (3.4) 

( , )
min ( , )
x y R

f f x y


  (3.5.a)

Such that 

a x b

c y d

 
 

 (3.5.b)

 

The optimization process starts with patch the surface to several data points Fig. (3.2).  

 

Figure (3. 2). Surface patching. 

 

For calculating the curvature, surface is differed than the curve. In order to describe 

the surface from a geometric perspective, two critical surface curvatures must be calculated 
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at each data point: Gaussian curvature and mean curvature. These are enough to predict the 

local geometry shape around every data point. According to these curvatures, surface shape 

is categorised into four types: convex, concave, plane, and hyperbolic shape. All the points 

with the same shape are grouped. Gaussian curvature and mean curvature is calculated by 

using the first and second fundamental matrices coefficients of the surface. With the help 

of first and second fundamental matrices, Gaussian and mean curvatures can be calculated 

by using equations (3.6), (3.7). For Gaussian curvature (K): 

2

2

FEG

MLN
K




  (3.6) 

 

For Mean curvature, H: 













2FEG

GL2FMEN

2

1
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3.2.2.1 The First Fundamental Matrix of Surface 

Usually, surfaces are represented by equations ( , )Z f x y  in which x and y are the 

planer coordinates, and Z is the position vector   T ,, zyx  of a point on the surface. The 

first fundamental matrix of the surface is given by 

E F

F G

Z Z Z Z

x x x y

Z Z Z Z

y x y y

                           

A  (3.8) 

 

According to Pythagorean theorem  2 2 2ds dx dy  ,  Fig. (3.3). 
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Figure (3. 3). Pythagorean theory. 
 

Since the surface is wrapped, the modified Pythagorean theorem will be the first 

fundamental form as shown in Fig. (3.4). The first fundamental form is the expression for 

the arc length of the curve passing through any point on the curve: 

2 2 22ds Edx Fdxdy Gdy    (3.9.a)

 since   
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 (3.9.b)

 

E, F, and G … The coefficients of the first fundamental form of the surface. 
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Figure (3. 4) Modified Pythagorean theory. 

 

3.2.2.2 The Second Fundamental Matrix of Surface 

Assuming the existence of the second order derivatives of the surface equations, the 

unit normal of a data point is obtained by 

Z Z
x y

Z Z
x y

 


 
 


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n  the second fundamental matrix is 
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L, M, and N … The coefficients of the second fundamental form of the surface. 
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3.2.2.3 Surface Geometric Features 

By considering the Gaussian and mean curvatures at each data point, the local 

geometric shape around the data point can be identified as shown in Fig. (3.5), the criteria 

are listed in table (3.2). 

 

Figure (3. 5). Surface shapes according to Gaussian and mean curvature. 

 

Table (3. 2). The Relation among the geometry shape and surface geometry features. 
 

Gaussian Curvature (K) Mean Curvature (H) Point Feature Local Shape 

K = 0 H = 0 Parabolic Plane 

K = 0 H > 0 Parabolic Concave Cylinder 

K = 0 H < 0 Parabolic Convex Cylinder 

K > 0 H > 0 Elliptic Concave Ellipse 

K > 0 H < 0 Elliptic Convex Ellipse 

K < 0 H > 0 or H < 0 Hyperbolic Saddle 
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3.3 Clustering technique 

After recognizing the curvature at each data point for both the curve and the surface, 

the points which have the same curvature type will be grouped. The entity may contains 

one or more regions inside each group, for each region, it must contains one of the critical 

points.  The next step is to then find the number of these regions inside each group, and the 

center of each region which represents one of the local critical points, for doing so the 

subtractive clustering technique is adopted. Clustering is the process of grouping a set of 

elements into the same group or cluster so that elements in the same group are to somehow 

similar or have common factor. According to the elements, distribution, and the objective 

of the clustering, different types of similarities are used to place elements into groups, 

where the similarity value controls how the clusters are shaped. Some examples of these 

types of similarities are distance, and intensity.  

There are two main types of clustering; the hard clustering, and the soft clustering. 

In hard clustering, elements are divided into discrete clusters, where each element belongs 

to a single exact cluster. In soft clustering, the elements can have relationships with certain 

levels to more than one cluster, the relationships levels are attached to each element. The 

relationships levels for each element refer to how strong the bond is between the element 

and a particular cluster. Subtractive clustering is one of the processes to designate the 

relationships levels, consequently using these levels to assign the elements to one or more 

clusters.  
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3.3.1 Subtractive clustering method 

Most of the clustering algorithms required the number of clusters’ centers and their 

initial values. The Fuzzy C-Means and k-means algorithms are clear examples of these 

types of clustering algorithms. So the accuracy of the solution therefore depends mainly on 

the number of cluster centers and their initial values. Based on the literature review, we 

used the Subtractive Clustering Method to calculate the number of the clusters and the 

clusters’ centers. The subtractive clustering method assumes that each data point is a 

potential cluster center. A data point with more neighboring data will have a higher 

opportunity to become a cluster center than points with fewer neighboring data. For 

subtractive clustering of a group of data points {x1, x2… xn}; the method starts by 

considering each data point as a potential cluster center. 

 

a. Initial potentials of the point set 

At first, each data point is regarded as a potential cluster centre, and each cluster has 

only one data point as the centre itself. The potential of a data point, ix , is defined by 

ni
n

j
i

ji ,...,2,1  ,eP
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2

 


 xx

 
(3.11.a)

where 

2

4

ar


 
(3.11.b)

and ar  is a positive constant. The potential of a data point is a function of the distances 

between this point, and every other point. The shorter is the distance, the more contribution 

to the summation. For a data point in dense area, its potential is higher than that in sparse 
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area. Usually, the distance is in the metric of Euclidean norm that is the sum of the squares 

of the difference in each dimension. In order to consider the importance variation of 

dimensions, different weights are assigned to different dimensions. Therefore, the distance 

can be calculated by: 

   21,1,1
2

3,3,21
2 ...   pjpipjiji xxwxxwswxx

 
(3.12)

 

The constant, ar , is the radius defining the neighborhood of a data point: data points inside 

the circle produce significant potential for the centric data point, and data points outside 

exert little influence on the potential. 

  

b. Choose the first cluster center and update the potentials 

The data point with highest potential is selected as the first cluster center. The 

reason is that this point is closely surrounded by a maximum number of data points. The 

maximum potential 
1

Pc of the first cluster center 
1cx  is: 
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The potential of each data point is then revised by the formula 

niic
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1c 
 xx (3.14.a)

where 
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4

br
 (3.14.b)

and br  is a positive constant. The subtractive amount from the potential of each point is 

nonlinear, and inversely proportional to the distance between the point and the first cluster 

center. Therefore, the potentials of data points closer to the first cluster center are reduced 



36 
 

to a very small number, and the potential of the first cluster center becomes null at last. On 

the contrary, the point far away from the center has larger potential comparatively. The 

purpose of subtraction is to find the second cluster center farther away from the first one. 

The constant, br , is also a radius defining a circular region, and the point will have 

measurable reduction in potential, if contained in the region. Usually, br  is set to be greater 

than ar . 

 

 c. Choose the second cluster centre 

Among the updated potentials of data points, the data point with the highest 

potential is selected as the second cluster center. 
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Same as the previous step, part of the highest potential of the second cluster center is 

subtracted from the potential of every data point. In general, if the kth cluster center is 

found, the potential modification is carried out using the formula 

niikc

ii ,...,2,1   ,ePPP
2

k

 
c 

 xx (3.16)

This process will create a series of cluster centers,  
1 2
, , ...,  

kc c cx x x . 

 
d. The criteria for accepting and rejecting cluster centers 

If 
k 1c cP P , the data point 

kcx will be accepted as a cluster center and continue. But if

k 1c cP P , the data point 
kcx will be rejected and the clustering process will be seized. The shortest 

distance among all the distances between 
kcx and cluster centers will be set as mind . In case the 

stopping criteria was not satisfactory: 
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k
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Pd
1

Par
   (3.17)

 Again 
kcx will be accepted as the new cluster center, and the algorithm will continue, otherwise 

the new cluster center 
kcx will be rejected and the potential of 

kcx will be set as zero. This process 

will be repeated till the stopping criteria is satisfied. The two constants are set as,

0.5, and 0.15   .Through the subtractive process, the number of clusters, and their centers 

are found. 

 

3.4 Optimization technique 

The approach objective is to calculate the global optimum by finding all the available local 

minima. According to these objective, the optimization procedures are consist of three steps. 

 

3.4.1 Patching 

  The first step starts with calculating several data points on the surface or the curve 

represented by the objective function. The selected data points have the same infinitesimal 

distances and areas between each other, this process is called patching. The selected data points 

will be the input points to our algorithm. By testing the curvature for each data point (Gaussian and 

main curvatures in case of the surface, and the local curvature in case of the curve) these points can 

be classified into different groups according to the curvature values at each point. These groups are 

convex, concave, plane, and saddle (in case of the surface) groups. According to the type of the 

optimization process, whether it is minimization or maximization, the working group will be 

assigned. The convex group will be the working group in case of minimization, and the concave 

group will be the working group in case of maximization. 
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 3.4.2 Clustering 

The working group data points will then be the input for the second step which is the 

clustering process. The subtractive clustering process is the candidate process to be applied in this 

algorithm because of the pre-mentioned advantages. Subtractive clustering process is looking for 

the clusters’ centers of the input working group data points. According to the intensity distribution 

of the data points in the working group, the number of clusters’ centers and their locations will be 

assigned. The clusters’ center points are from the input data points. The main reason of applying 

the clustering process is to find the closest points to the real center points of the peaks or the valleys 

of the tested surface or curve which represented by the objective function, therefore the clusters 

centers are the closest points to the real center points of the peaks or the valleys. To find the real 

center points of the peaks or the valleys another step should be carried out.  

 

3.4.3 Local optimization 

The local optimization methods have some merits compared with the global optimization 

methods. The local optimization methods tend to converge very quickly whereas, global methods 

might take time. Also, the accuracy of the local optimization methods to discover the solution is 

much better than the accuracy of the global optimization methods, therefore the global optimization 

methods having many parameters must be tuned to improve the accuracy of finding the final 

solution. From everything mentioned above, it is concluded that; if the local optimization method 

is adapted to discover the global solution of multiple local minima and maxima functions it will be 

faster and more accurate.  

Thereby we Quasi Newton method in our algorithm to ensures the high accuracy and low 

computational time. The Quasi-Newton method is one of the most famous algorithms for finding 

the local maxima or minima of the objective functions. Quasi-Newton method is based on Newton's 

method to find the stationary point of the objective function, where the gradient is 0. Newton's 
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method uses the first and second derivatives to find the stationary point staring from an initial point. 

The closer the initial point from the stationary point, the faster the solution is reached. By using the 

clusters centers that we obtain from the clustering algorithm as initial points for the Quasi-Newton 

method ensures a fast convergence in the optimization process. After calculating all the local 

optimum points, the global optimum point is one of them. 

 

3.5 Applications 

To verify the validity of our new approach, different case studies are tested. The cases are 

divided according to the number of variables; one variable and two variables objective 

functions. Different objective functions with different numbers of the local minima are 

used.  

 

3.5.1 One variable objective function case studies 

3.5.1.1 Case study I 

In the first case study the objective function as shown in equation (3.18.a), with the 

constraint inequality equation (3.18.b). Fig. (3.6.a) shows the data points coming from gridding the 

objective function. By checking the data points, they are grouped into two groups as shown in Fig. 

(3.6.b). 

4 3 2( ) 3 9 23 12f x x x x x      (3.18.a)

Such that 

4.5 4.5x    (3.18.b)
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(a) First case study data points. 

 

(b) Data points groups (Convex group “ . ”, Concave group “ * ) 
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For a minimization problem the convex group is selected. By applying the subtractive 

clustering technique the number of clusters with the clusters’ centers are calculated as 

shown in Fig. (3.6.c). The clustering technique gives two clusters with two centers as 

shown in table (3.3).  

 

(c) The center point of each cluster “*”, and the global minimum point “●”. 

Figure (3. 6). Curve first case study. 
 

Table (3. 3). Case study I clusters centers. 

 x F(x) 

1 -3 -24 

2 2 -54 
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Using the clusters’ centers as initial points in Quasi-Newton algorithm, the exact local 

minima is calculated as illustrated in table (3.4). 

Table (3. 4). Case study I exact local minima. 

 x f(x) 

1 -3.103 -24.211 
2 1.853 -54.644 

 

The smaller value of the f(x) represents the global minimum of the objective function as 

shown in table (3.4). 

 

3.5.1.2 Case study II 

6 5 4 3 21 1 7 3
( ) 2 2 2

8 4 8 2
f x x x x x x x        (3.19.a)

Such that 

2.5 2.5x    (3.19.b)

 

(a) Second case study data points. 
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(b) Data points groups (Convex group “ . ”, Concave group “ * ” ) 

 

For a minimization problem the convex group is selected. By applying the subtractive 

clustering technique, the number of clusters with the clusters’ centers are calculated as 

shown in Fig. (3.7.c). The clustering technique gives three clusters with three centers as 

shown in table (3.5).  
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(c) The center point of each cluster “*”, and the global minimum point “●”. 

Figure (3. 7). Curve second case study. 

 

Table (3. 5). Case study II clusters centers. 

 

 x F(x) 

1 0.4 -2.408 
2 2.1 0.0049

3 -1.7 -0.931 

 

Using the clusters’ centers as initial points in Quasi-Newton algorithm, the exact local 

minima are calculated as illustrated in table (3.6). 
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Table (3. 6) Case study II exact local minima. 

 x f(x) 
1 0.387 -2.409 
2 2.07 0.003 

3 -1.721 -0.934 

 

The smaller value of the f(x) represents the global minimum of the objective function as 

shown in table (3.6). 

 

3.5.1.3 Case study III 

5 4 3 2( ) 4 8 5 10 2f x x x x x x       (3.20.a)

Such that 

1.5 2.5x    (3.20.b)
 

 

(a) Third case study data points. 
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(b) Data points groups (Convex group “ . ”, Concave group “ * ” ) 

 

By applying the subtractive clustering technique to the convex group as a minimization 

problem, the number of clusters with the clusters’ centers are calculated as shown in Fig. 

(3.8.c). The clustering technique, gives two clusters with two centers as shown in table 

(3.7). 
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(c) The center point of each cluster “*”, and the global minimum point “●”. 

Figure (3. 8). Curve third case study. 
 

Table (3. 7). Case study III clusters centers. 

 x F(x) 

1 -0.05 -2.024 

2 1.65 -5.963 

 

Using the clusters’ centers as initial points in Quasi-Newton algorithm, the exact local 

minima are calculated as illustrated in table (3.8). 

 
Table (3. 8). Case study III exact local minima. 

 x f(x) 
1 -0.048 -2.024 

2 1.681 -6.007 
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The smaller value of the f(x) represents the global minimum of the objective function as 

shown in table (3.8). 

 

3.5.1.4 Case study IV 

8 7 6 5 4 3 2( ) 4 12 3 4 7 20 12f x x x x x x x x x          (3.21.a)

Such that 

1.5 3x    (3.21.b)
 

 

(a) Fourth case study data points. 
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(b) Data points groups (Convex group “ . ”, Concave group “ *” ) 

 

To solve the minimization problem the convex group is selected. By applying the 

subtractive clustering technique, the number of clusters with the clusters’ centers are 

calculated as shown in Fig. (3.9.c). The clustering technique gives three clusters with three 

centers as shown in table (3.9). 

 

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-70

-60

-50

-40

-30

-20

-10

0

10

20

30



50 
 

 

(c) The center point of each cluster “*”, and the global minimum point “●”. 

Figure (3. 9). Curve fourth case study. 
 

Table (3. 9). Case study IV clusters centers. 

 x F(x) 

1 -1.1 0.087 

2 1 -32 
3 2.8 -62.089

 

Using the clusters’ centers as initial points in Quasi-Newton algorithm, the exact local 

minima are calculated as illustrated in table (3.10). 

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-70

-60

-50

-40

-30

-20

-10

0

10

20

30



51 
 

 
Table (3. 10). Case study IV exact local minima. 

 x f(x) 

1 -0.998 0.004 
2 1 -32 
3 2.755 -63.516 

 

The smaller value of the f(x) represents the global minimum of the objective function as 

shown in table (3.10). 

 

3.5.2 Two variables objective function case studies 

3.5.2.1 Case study I 

In the first case study, the objective function as shown in equation (3.22.a), and the working 

space constraints are the variables boundaries as inequality constraints. Fig. (3.10.a) shows the data 

points coming from gridding the objective function. By testing the data points’ curvature, they are 

grouped into four groups as shown in Fig. (3.10.b).  

2 21 1
( 2 )/1000

2 21
( , )

3

x y y

f x y xye
    
   (3.22.a)

Such that 

100 100

100 100

x

y

  
  

 (3.22.b)
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(a) First case study data points. 

 

(b) Data points groups (Convex group “ . ”, Concave group “ * ”, hyperbolic group “ o ”, 

and plane group “ x ”). 
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For a minimization problem the convex group is selected. By applying the subtractive 

clustering technique, the number of clusters with the clusters’ centers are calculated as 

shown in Fig. (3.10.c). The clustering technique gives two clusters with two centers as 

shown in table (3.11).  

 

(c). Convex data points clusters with the clusters centers “□” and the global minimum 

point “●’ 

Figure (3. 10). Surface first case study. 
 

Table (3. 11). Case study I clusters centers. 

 x y 

1 14 -31 
2 -16 29 

 

Using the clusters centers as initial points in Quasi-Newton algorithm, the exact local minima 

are calculated as illustrated in table (3.12). 
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Table (3. 12). Case study I exact local minima. 

 x y f(x,y) 

1 15.8114 -31.8738 -62.3552 
2 -15.8114 31.8738 -62.2943 

 

The smaller value of the f(x,y) represents the global minimum of the objective function as 

shown in table (3.12). 

 

3.5.2.2 Case study II 

The objective function 

2 2 2 2 2 22 ( 1) 3 5 ( 1)( , ) 3(1 ) (2 10 10 ) 0.3x y x y x yf x y x e x x y e e             (3.23.a)

  
Such that 

3.5 3.5

3.5 3.5

x

y

  
  

 (3.23.b)

  

(a) Second case study data points. 
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 (b) Data points groups (Convex group “ . ”, Concave group “ * ”, hyperbolic group “ o ”, 

and plane group “ x ”). 

 

For solving the minimization problem the convex group is selected. By applying the 

subtractive clustering technique, the number of clusters with the clusters’ centers are 

calculated as shown in Fig. (3.11.c). The clustering technique gives four clusters with four 

centers as shown in table (3.13).  
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(c) Convex data points clusters “.” with the clusters centers “□” and the global minimum 
point “●” 

 
Figure (3. 11). Surface second case study. 

 

 

Table (3. 13). Case study II clusters centers. 

 x y 

1 0.2 -1.6 

2 -1.3 0.2 
3 2 1.3 
4 0.3 0.4 

 

Using the clusters’ centers as initial points in Quasi-Newton algorithm, the exact local 

minima are calculated as illustrated in table (3.14). 
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Table (3. 14). Case study II exact local minima. 

 x y f(x,y) 
1 0.2283 -1.6255 -6.511 

2 -1.3474 0.2045 -3.0498 

3 4.1981 2.2898 0 

4 0.2964 0.3202 -0.0649 

 

The smaller value of the f(x,y) represents the global minimum of the objective function as 

shown in table (3.14). 

 

3.5.2.3 Case study III 

The objective function 

2 4 6 2 41
( , ) 4 2 4 4

3
f x y x x x xy y y       (3.24.a)

Such that 

2 2

1 1

x

y

  
  

 (3.24.b)

 

(a) Third case study data points. 
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(b) Data points groups (Convex group “ . ”, Concave group “ * ”, hyperbolic group “ o ”, 

and plane group “ x ”). 

 

To calculate the global minimum, the convex group is selected. By applying the subtractive 

clustering technique, the number of clusters with the clusters’ centers are calculated as 

shown in Fig. (3.12.c). The clustering technique gives six clusters with six centers as shown 

in table (3.15).  
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(c) Convex data points clusters “.” with the clusters centers “□” and the global minimum 
point “●” 

 

Figure (3. 12). Surface third case study. 
 

Table (3. 15). Case study III clusters centers. 

 x y 

1 0 0.8 

2 0 -0.8 

3 1.7 0.8 

4 -1.7 0.8 

5 1.7 -0.8 

6 -1.7 -0.8 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



60 
 

Using the clusters’ centers as initial points in Quasi-Newton algorithm the exact local minima 

are calculated as illustrated in table (3.16). 

 

Table (3. 16). Case study III exact local minima. 

 x y f(x,y) 
1 -0.089 0.712 -1.031 

2 -0.089 -0.712 -0.903 

3 1.703 0.796 -0.215 

4 -1.703 0.796 -0.215 

5 1.703 -0.796 -0.215 

6 -1.703 -0.796 -0.215 

 

The smaller value of the f(x,y) represents the global minimum of the objective function as 

shown in table (3.16). 

 

3.5.2.4 Case study IV 

The objective function 

30x
( , ) 5sin( )sin( )e

30 30

xy
f x y

 
  (3.25.a)

Such that 
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 (3.25.b)
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(a) Fourth case study data points. 

 

(b) Data points groups (Convex group “ . ”, Concave group “ * ”, hyperbolic group “ o ”, 

and plane group “ x ”). 
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Similar to the previous case studies, for solving the minimization problem the convex 

group is selected. By applying the subtractive clustering technique, the number of clusters 

with the clusters’ centers are calculated as shown in Fig. (3.13.c). The clustering technique 

gives eight clusters with eight centers as shown in table (3.17). 

 

 

(c) Convex data points clusters “.” with the clusters centers “□” and the global minimum point “●” 
 

Figure (3. 13). Surface fourth case study. 
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Table (3. 17). Case study III clusters centers. 

 x y 

1 18 -15 

2 -12 15 

3 18 45 

4 -12 -45 

5 48 15 

6 48 -45 

7 -42 -15 

8 -42 45 

 

Using the clusters’ centers as initial points in Quasi-Newton algorithm, the exact local 

minima are calculated as illustrated in table (3.18). 

 

Table (3. 18). Case study III exact local minima. 

 x y f(x,y) 
1 17.942 -14.99 -8.664 

2 -12.057 14.99 -3.187 

3 17.942 44.99 -8.664 

4 -12.057 -44.99 -3.187 

5 47.942 14.99 -23.553 

6 47.942 -44.99 -23.553 

7 -42.057 -14.99 -1.172 

8 -42.057 44.99 -1.172 

 

The smaller value of the f(x,y) represents the global minimum of the objective function. In 

this case, the algorithm gives two locations for the same value global minimum which 

cannot be detected by any other algorithms. 
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3.5.3 Comparison between our approach and PSO 

 The pre-mentioned case studies are solved by using the particle swarm optimization 

(PSO) algorithm in order to make a comparison with the results obtained by using our 

approach, as shown in table (3.19). 

 

Table (3. 19). Comparison between our approach and PSO 

One variable objective functions 
 The new approach  PSO 

 x - f(x) 
Time 
(sec)  

 
x - f(x) 

Time 
(sec) 

Time saved  

1 1.853 - -54.644 1.012  1.853 - -54.644 2.023 50 % 

2 0.387 - -2.409 0.987  0.387 - -2.409 1.619 39 % 
3 1.681 - -6.007 1.186  0 - 0 0.88 - 
4 2.755 - -63.516 1.278  2.755 - -63.516 2.697 52.6 % 

Two variables objective functions 

 x y f(x,y) 
Time 
(sec) 

 
x y f(x,y) 

Time 
(sec) 

Time saved  

1 -15.8114 31.8738 -62.2943 1.1447  -6 6 -11.001 0.784 - 

2 0.2283 -1.6255 -6.511 1.2415  0.2828 -1.5784 -6.499 3.8226 67.5 % 
3 -0.089 0.712 -1.031 1.2376  0.089 -0.7127 -1.031 2.8393 56.4 % 
4 47.942 14.99 -23.553 1.2654  6 -6 -2.1099 0.829 - 

 

From the table (3.19), it is clear that by using the new approach there is a time saving of 

about 50 %. Also, in some cases, the PSO algorithm gets stuck in local minimum. In the 

PSO algorithm, each run leads to a different solution. 

 

3.6 Conclusion 

A new global optimization algorithm is proposed to solve polynomial functions of 

one, or two variables by using the subtractive clustering technique. The new proposed 
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algorithm proves to be successful in finding the global solution for polynomial functions 

with one, or two variables. The results obtained from comparing the new approach with 

the particle swarm optimization algorithm on several case studies showed that the new 

approach is faster by about two times, with a very good repeatability, and has a great 

capability to avoid getting stuck in the local minimum. 
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Chapter 4 

Plunge milling tool path optimization 

 

4.1 Introduction 

From the literature review; it is found that the proper cutting forces and tool path 

planning are important elements to improve the efficiency of the plunge milling process. 

Therefore our focus will be on improving the efficiency of plunge milling process by 

maximizing the removed material using the least number of plunging points. This will 

strongly reduce the total machining time, in addition to optimizing each tool path by 

solving the travelling salesman problem (TSP) through the use of the simulated annealing 

optimization technique while taking into consideration a very important aspect which is 

the tool availability.  

 

In this chapter, the 2D pocket with polygon boundary area is covered with specified 

radii circles in two steps. (1) Fill the pocket with the minimum number of specified radii 

circles which are tangent to each other and/or the pocket boundary without overlapping by 

building an algorithm using the maximum hole degree (MHD) theory for solving the circle 

packing problem. (2) Cover the areas left between the non-overlapped circles by using the 

same specified radii. After obtaining the circle loci, the circles are grouped according to 

the radii. The tool path for each group is optimized by solving the travelling salesman 

problem (TSP) using the simulated annealing (SA) technique. By the end of this chapter, 
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the model will be applied on a free-form pocket boundary with an island, and sculptured 

surface bottom. 

 

4.2 Circle packing mathematical model 

From geometry point of view, circle packing is the circles arrangement study (equal 

or different sizes) on a given plain surface such that no overlapping occurs, and all circles 

touch each other. According to literature, the maximum hole degree method is one of the 

most used methods for packing non-overlapped circles inside a specified boundary. 

Therefore, the maximum hole degree method is adopted in our work. 

The mathematical model consists mainly of two algorithms. (1) Algorithm for 

filling a pocket with non-overlapping circles of specified radii by applying the maximum 

hole degree method to solve the non-overlapped circle packing problem. (2) Algorithm for 

covering the gaps between the non-overlapped circles coming from the first algorithm to 

maintain the complete covering of the surface area with the same specified radii circles.  

 

4.2.1 Maximum hole degree theory 

Inspired from human experience in packing, the benefits of placing an object at 

different positions in a container are different. This can be represented by a Chinese 

proverb; “Gold corner, silver side, and grass middle”. It means that for packing places 

inside a container the corner positions possess higher values than those at the side while 

the side positions possess higher values than those in the middle. From the previous 

discussion, for each position of the circle to be placed, there is a parameter represents the 

benefit of this position to the hole packing configuration. This parameter is called the hole 
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degree, in which corners have the highest hole degree which is called corner placement. 

Therefore, placing circles at corner positions leads to better packing configuration. The 

word corner is not just the region between two of the container’s boundaries but also the 

region formed by two circles already placed inside the container, or a circle and any of the 

container boundaries. With regard to applying this theory on the practical case studies, an 

algorithm is built. 

 

4.2.2 Algorithm to fill a pocket with tangent circles of specified radii 

The packing problem is concerned with how to pack objects with a given shape, and 

size, into a bounded space without overlap. Filling the pocket area with circles of specified 

radii has been done in several steps according to the flow chart Fig. (4.1). The main 

procedure is filling the pocket with the specified circles in decreasing order, where they are 

tangent to the existing circles and/or the pocket polygon. These steps are repeated until 

there is no more space is available for any of the specified circles. The decreasing order is 

used with regard to the plunging application. Using the bigger diameters as much as we 

can reduces the number of plunging places which by rule reduces the machining time. 



69 
 

Tools radii Pocket verixes

First circle

Second circle

Add to 
circles matrix

Gauge and 
overlap

Select the 
smaller radius

Last 
available 

radius

Yes

No

Yes

Calculate the hole 
degree per each

No

Find all feasible 
corner placements

Select the one with 
max hole degree

Gauge
Select the 

smaller radius

End

Yes

Yes

Convexity

Add to 
circles matrix

No

Last 
available 

radius
No

 

Figure (4. 1). First algorithm flow chart 
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4.2.2.1 Check convexity of the polygon corners 

The polygon corners must be checked to know whether they are convex or concave. 

The convex corner is one of the candidate corner placements. The given is a polygon with 

its vertices ordered in a counter clock wise manner. The polygon vertices are 

 ip  i 1 , 2, , n  as shown in Fig. (4.2). For any two edges i i 1 i 1 i 2p p ,p p  

 
  since they are in 

xy plane, the cross product of the two edges gives the value and direction of the 

perpendicular in the z coordinate according to the right hand rule as shown in Fig. (4.2).  

i 1
i i 1 i 1 i 2

i 1

z Convex at p  corner
p p p p

z Concave at p  corner


  


 
   

 
 (4.1) 

  

p1 p2

pi

pi+1

pn

pi+2
pi+3

pipi+1   pi+1pi+2 

 

pi+1pi+2 pi+2pi+3 

 

 

Figure (4. 2). Convexity check. 
 
4.2.2.2 Check boundaries gauging 

Gauging is not allowed in this algorithm. So, the current circle is checked for 

intersection with the polygon, if the intersection exists, the plunger will gauge the part. A 
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polygon with vertices pi (i = 1, 2… n) and a circle with center O and radius R are shown in 

Fig. (4.3). The coordinates of i
i

i

x
p

y

 
  
 

, and the coordinates of 
x

y

O
O

O

 
  
 

. In general, the 

parametric equation of  i i 1p p 


 will be: 

   i i 1 i i 1 ip u p  p  p u p - p   


 (4.2) 

 

pi

pi+1

pper

o

R

D

 

Figure (4. 3). Boundaries gauge check. 

 

per i i 1p O p  p 0 
 

 (4.3) 

 

Substituting in (4.3) with (4.2) 

   per i 1 iO  p p  p 0     (4.4) 

 

 per i i 1 ip  p u p - p   (4.5) 

 

   i i 1 i i 1 iO p u p  p   p  p 0          (4.6) 
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     i i 1 i i 1 iO p u p  p   p  p 0          (4.7) 

 

       i i 1 i i 1 i i 1 iO p p  p u p  p  p  p 0           (4.8) 

 

   
2

i i 1 i i 1 iO p p  p u p  p 0      


 (4.9) 

 

The u value corresponding to the point pper can be calculated as: 

     x 1 2 1 y 1 2 1

per 2

2 1

o x x x o y y y
u  

p p

    



  (4.10)

  

 
perp 1 per 2 1x  x u  x x    (4.11)

 

 
perp 1 per 2 1y  y u  y y    (4.12)

 

The perpendicular distance from the center to i i 1p p 


  

perD p  O


 (4.13)

 

Then gauging VG depends on (u, D)  

  
  G

0       u 0,1 , D R
V

1       u 0,1 , D R

   
 

 (4.14)

 

In some cases (concave corners) the perpendicular distance is less than the circle’s radius 

but there is no gauging as shown in Fig. (4.4). The general form will then be: 
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  
  
  
  

G
i i 1

i i 1

0       u 0,1 ,D R

1       u 0,1 ,D R
V

0       u 0,1 , Op R and Op R

1       u 0,1 , Op R or Op R





  


     


  

 

 

 (4.15)

 

pi

pi+1

pper

o

R

 

Figure (4. 4). General case. 

 

4.2.2.3 Check circles overlap 

The current circle is checked for intersection with any other circle inside the 

polygon. For two circles with centers O1, O2 and radii R1, R2, the center distance (D) must 

be checked as shown in Fig. (4.5) 

1 2D O O


 (4.16)

 

Then intersection Vint depends on the value of (D)  

1 2
int

1 2

0         D R R
V

1         D R R

 
   

  (4.17)
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o2o1

o2o1

D

D

Intersection = 0

Intersection = 1

R1
R2

 

Figure (4. 5). Circles overlapping check. 

 

4.2.2.4 Calculate the corner placements 

According to the previous researches in circle packing, the corners are the best 

places to be packed because they give a very close packing arrangement which enable more 

items to be packed. The corner placement can be defined as a placement pcpj of a given 

circle j with center point coordinates xj , yj , and radius rj , is considered feasible if the circle 

lies completely inside the polygon (no gauging with the boundaries). A feasible placement 

is called a corner placement if the circle touches two items at least (i.e. two polygon edges, 

edge and circle or two other circles). The available corner placements to the next circle will 

be calculated in two cases: Case A: The current circle is tangent to one or more of the 

polygon edges, as shown in Fig. (4.6). Case B: The current circle is tangent to one or more 

of the existing circles inside the polygon, as shown in Fig. (4.7). In both cases it is given: 
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(1) Polygon with its vertices. (2) Circle with its location inside the polygon and its radius. 

(3) The radii of the circles to be packed. 

 

Case (A):  

To calculate the available corner placement center (pcp) in case of the current circle 

being tangent to one or more of the polygon sides, the polygon with its vertices are pi (i = 

1, 2… n) and a circle with center O and radius R, as shown in Fig. (4.6). 

R

rj

Pi

Pi+1

Pioff

PCP

Pi-1

Pi+2

Pi+1off



o


Ø 

PQ

x



 

Figure (4. 6). Corner placements for a circle tangent to a boundary. 
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The coordinates of i
i

i

x
p

y

 
  
 

, and the coordinates of
x

y

O
O

O

 
  
 

. The next circle will be with 

center 
j

j

x
C

y

 
  
  

, and radius rj. In general, vector i i 1p p 


 will be taken as an example. Two 

steps are required to calculate (pcp):  

(1) Calculate the offset points ( io ff i 1offp , p  ) of the start and end points i   i 1p , p  inside the 

polygon:  

a. Calculate the angle () between i i 1p p 


 ,  and i 1 ip p


  

i 1 i i  i 1 i 1 i i  i 1p p  .  p p p p  p p  cos    
   

 (4.18)

 

1 i 1 i i  i 1

i 1 i i  i 1

 p p  .  p p
cos   

p p  p p
  

 

 
  
 
 

 
   (4.19)

 

b. Calculate the angle () between i i 1p p 


 and positive x-axis  

i 1 i i  i 1x x p p  cos          0 2       


 (4.20)

 

i 1 i i  i 1y y p p  sin   


 (4.21)

 

1 i 1 i

i  i 1

x x
cos

p p
 



   
 
 
  (4.22)

 

The offset point of (pi) w.r.t the next circle with radius rj will be (pioff) 

The polar angle of i ioffp p 

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2
  

θ
 (4.23)

 

j
i ioff

r
p p     

sin
2





 

(4.24)

 

ioff i i ioffx x p p  cos  


 (4.25)

 

ioff i i ioffy y p p  sin  


 (4.26)

 

2. Calculate the corner placement center point w.r.t the radius of the next circle (rj): 

After offsetting the line i i 1p p 


 by the value rj inside the polygon, we get the line

ioff  i 1offp p 


.  By offsetting the circle with center O and radius R in order to have same center 

and radius equal to (R+rj). The corner placement center points will be the intersection 

points between the offset circle and the line ioff  i 1offp p 


. To calculate the intersection points 

the equation ioff  i 1offp p 


will be 

 ioff  i 1off ioff i 1off ioffQ p p  p v p  p          0 v 1      


 (4.27)

 

The dot product of the line Qp O


  , and ioff  i 1offp p 


 which are perpendicular to each other 

at Qp 0 . 

   i 1off ioffO  Q  p  p 0     (4.28)

 

Plugging equation (4.27) in (4.28): 

   ioff i 1off ioff i 1off ioffO p v p  p    p  p 0         (4.29)
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The (v) value corresponding to the point ( Q  p ) can be calculated as: 

     x iof i 1off ioff y ioff i 1off ioff

2

i 1off ioff

o x x x o y y y
v  

p p

 



    



  (4.30)

 

 Q ioff i 1off ioffx  x v x x    (4.31)

 

 Q ioff i 1off ioffy  y v y y    (4.32)

and, 

Qd p  O


 (4.33)

 

For the triangle  O pQ pcp: 

cp jp O R r 


 (4.34)

 

Q cp cp x x p O  .cos . cos   


 (4.35)

 

cp Q cp x x p O  .cos . cos   


 (4.17)

 

Q cp cp y y p O  .cos . sin   


 (4.37)

 

cp Q cp y y p O  .cos . sin   


 (4.38)

 

 … The angle between cp p O


, and cp Qp p


. 
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Case (B): 

To calculate the available corner placements in case of two circles are tangent to 

each other, as shown in Fig. (4.7). Two circles with centers (Oi, Oi+1) and radii (Ri+1, Ri) 

and center. The coordinates of 
xi

i
yi

O
O

O

 
  
 

, and the coordinates of 
xi 1

i 1
yi 1

O
O

O





 
  
 

. The next 

circle will be with center 
j

cp
j

x
p

y

 
  
 

 and radius rj. To calculate the coordinates of the point 

pcp: 

1. Get the offset circle from the first circle by the value of rj, the resultant circle will be 

with the same center Oi and radius i jR r  . 

2. Get the offset circle from the second circle by the value of rj, the resultant circle will 

have the same center Oi+1 and radius i 1 jR r  . 

3. The intersection points between the resultant two offset circles will be the available 

corner placements centers to the next circle which can be calculated as follow: 

i. Get the cosine value of the angle  between i i 1O O 


and i cpO p


 : 

i i 1 i i 1O O R R  


 (4.39)

 

i 1 cp i 1 jO p R r  


 (4.40)

 

cp i j ip O r R 


 (4.41)
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Oi Oi+1

pcp

Ri+1

Ri

I

rj



 

Figure (4. 7). Corner placements with other circles. 

 
2 2 2

i i 1 i cp cp i 1

i i 1 i cp

 O O  O p  p O  
cos     

2 O O   O p

 



 
 

  

   (4.42)

 

ii. Calculate the unit vector for line i i 1O O 


   denoted by Û  

i 1 i

i i 1

O O
U      

O
ˆ

O





   (4.43)

 

x

y

ˆ U
U

U

 
  
 

 (4.44)

 

Calculate iO I


 

i i cpO I O p cos  
 

 (4.45)
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From Fig. (4.7)  

 i cp j iO p r R 


 (4.46)

 

 i j iO I r R cos   


 (4.47)

 

 i j iO I U  r R  coˆ s    


 (4.48)

 

iii. Calculate the unit perpendicular vector for line i i 1O O 


: 

y
per

x

U
U

U
ˆ  

   
 (4.49)

iv. Calculate the vector cpIp


   

cp i cpIp O p  sin  
 

 (4.50)

 

  2
cp j iIp r R  1 cos    


 (4.51)

 

  2
cp per j iIp U  r sˆ R  1 co     


 (4.52)

 

 The intersection point cpp  can be calculated 

cp i i cpp O O I Ip  
 

 (4.53)

 

    2
cp i j i per j ip O U r R  cos U  r R  1 cos        (4.54)

 

4.2.2.5 Corner placements feasibility check 

The corner placement is said to be feasible if it exists inside the polygon, and the 

circle with the center of this corner placement must at least touch two items inside the 
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polygon without intersection with any other item. To check the feasibility for the corner 

placement, two tests must be applied: 

(a) Inside-polygon check.  

(b) Circles intersection check. Given:  

1. For each tangent circle and boundary there exist two corner placements.  

2. For each two tangent circles there exist two corner placements.  

According to the definition of the corner placement a tangency must occur between the 

next circle and two items inside the polygon (two circles, circle and boundary, or two 

boundaries).  

 

a. The first check, inside-polygon check: 

If the corner placement center is inside the polygon this means that the whole next circle 

will be inside the polygon according to the tangency condition. To check the corner 

placement center 
j

j
j

x
C

y

 
  
 

, if inside the polygon or not, the next steps are applied: 

1. Obtain the points with the largest x-coordinate ( maxx ) and lowest x-coordinate ( minx ) 

values among the polygon vertices. 

2. Establish a horizontal line with a start, and an end points as: 

 Start point
min

s
j

x
p

y

 
  
 

, End point 
max

e
j

x
p

y

 
  
 

  

The line equation is  

 s l e sL p u p p    (4.55)

 

The horizontal line will intersect with some of the polygon boundaries. 
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3. Get the intersection points with the polygon boundaries 
int

int
j

x
p , int 1,2, ,k

y

  
       

  

k … the number of polygon boundaries. 

4. The polygon boundaries general formula is 

 i i 1 iP p u p p    (4.56)

 

 At the intersection points the boundary line equation, and the horizontal line equation are 

equal 

   i i 1 i s l e sp u p p p u p p      (4.57)

 

   i i 1 i min l max minx u x x x u x x      (4.58)

 

   i i 1 i j l j jy u y y y u y y      (4.59)

 

 From (4.59):  

j i

i 1 i

y y
u

y y





 (4.60)

 

If  u 0,1   , Sub with (4.60) in (4.56) 

 int i i 1 ip p u p p    (4.61)

 

Since all the points have the same yj coordinate 

 int i i 1 ix x u x x    (4.62)

 

If  u 0,1 , there is no intersection between this boundary and the horizontal line. 
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5. After obtaining all values of  intx  int 1,2, , k  : 

By excluding the points which have coordinates
j

int i

i

x x

y y

   
   
  

. For the rest of intx  

the value of inC  will indicate if the circle is inside or outside the polygon according to the 

number of intersection points with the polygon boundaries to the right and the left of the 

tested point (nr, nl) 

   
   

r l
in

r l

1,  n ,n 2n 1
C  

0,  n ,n 2n

   
   n 0,1,2,...  

 

(4.63)

rn Number of points with int jx x (to the right of the tested point) 

ln Number of points with int jx x  (to the left of the tested point) 

Examples are illustrated in Fig. (4.8). 

Cj p1pintpk p2

Cj p1pintpk p2

(a)

(b)
 

Figure (4. 8). Check point inside a polygon. 
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b. The second check, circle overlaps check: 

In this algorithm the intersection between circles or a circle encloses by another 

circle is not allowed as shown in Fig. (4.9). Therefore the center of the corner placement 

must be checked to avoid overlap between the next circle and any of the already existing 

circles inside the polygon. To start the check, the distances between the center of the corner 

placement and the other circle centers D must be calculated: 

j iD C O


 (4.64)

 

To be sure that the intersection will not occur, the comparison between D and the value of 

 i jR r  gives the value of intV which indicates the intersection 

 
 

i j

int

i j

1   D R r
V

0  D R r

   
 

 (4.65)

 

D

Ri

Cj

Cj

Oi

enclosed

Intersection

rj

rj

 

Figure (4. 9). Circles overlap check. 
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4.2.2.6 Max hole degree 

Filling a pocket with circles of specified radii which are tangent to each other or to 

the pocket boundary without overlapping is based on three important concepts: (1) Corner 

placement. (2) Hole degree. (3) Maximum hole degree (MHD) rule. The hole degree of a 

corner placement indicates how close the given circle is to the other circles inside the 

polygon (and to the polygon boundaries). The higher the hole degree of the corner 

placement, the higher will be the density of the circles. Therefore, the maximum hole 

degree rule indicates that for a given set of possible corner placements, the placement with 

the maximum hole degree should be selected as the next one. 

 

The last step is to calculate the main parameters to get the maximum holed degree 

value for the tested corner placement: 

i. The corner placement center is pre-calculated.  

ii. Hole degree (HD) of a corner placement, which can be calculated using the following 

steps: 

1. Calculate the perpendicular distances between the corner placement center, and 

the pocket boundaries which will not be tangent to the coming circle at point pB, 

as shown in Fig. (4.10). 

   
k

22

i,s i Bx i By id x p y p r      (4.66)

 

2. Calculate the distances between the corner placement center, and the existing 

circles which will not be tangent to the coming circle, as shown in Fig. (4.10). 

   2 2

i, j i j i j i jd x x y y r r       (4.67)
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3. The hole degree denoted by  can be calculate by the formula 

min

i

d
1  

r

 
   

 
 (4.68)

 

 
kmin i,j i,sd …The minimum value among all d , d   

 

Figure (4. 10). Hole degree of a corner placement. 

 

iii. Max hole degree (MHD) of a corner placement: 

Intuitively, since the next circle should be placed as close as possible to the circles 

already existing inside the polygon, a packing procedure should select the corner placement 

having the maximum hole degree to put the next circle into the polygon. The priority is to 

the circle of a higher diameter should be taken into consideration. 
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4.2.2.7 Applications 

Two case studies are illustrated for concave and convex polygons Fig. (4.11), and 

Fig. (4.12) by using three circles with specified radii (20, 15, 10). 

 

 

Figure (4. 11). First case study for convex polygon. 

 

Table (4. 1). First case study results. 

Circle size R1=20 mm R2=15 mm R3=10 mm Covered area 

No. of circles 20 2 3 75.57 % 
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Figure (4. 12). Second case study for polygon with some concave corners. 

 

Table (4. 2). Second case study results. 

Circle size R1=20 mm R2=15 mm R3=10 mm Covered area 

No. of circles 19 1 8 75.53 % 

 

4.2.3 Algorithm to cover the gaps between the non-overlapped with the 

minimum number of specified radii circles 

For pocket machining, it is not allowed to have a material left at the middle of the 

pocket after the machining process. Applying the circle packing algorithm will cover the 

polygon area by non-overlapped circles which will leave a non-covered area between these 

circles. Therefore, another algorithm is proposed to cover the areas between the circles. 
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The input data is the non-overlapping circles radii and centers positions, the specified 

circles radii, and the pocket vertices as shown in the flowchart Fig. (4.13). 

Packed circles’ 
centers

Tools radii
Pocket 
vertices

Delaunay 
triangulation 

Boundary 
gauge

Opened 
triangles   

Merge opened  
triangles 

Closed 
triangles  

Polygons to 
be covered

Enclosing 
circles

Final 
enclosing 

circles

Remove 
gauged triangle

Yes

No

Within
specified

radii
yes

Divide to two 
polygons

No

 

Figure (4. 13). Second algorithm flow chart 
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4.2.3.1 Assign the non-covered area 

The non-covered area is a free area between at least three tangent circles or more. 

To assign the area, the smallest polygon surrounding this area is found for less calculating 

time. By using the centers loci, and the radii of the non-overlapped circles the steps to find 

the polygon are as follow: 

 

i. The Delaunay triangulation is applied on the centers of the non-overlapping circles 

Triangulation of the center points of the non-overlapping circles gives an initial 

description of the non-covered area. The good triangulation is the one giving triangles close 

to being equiangular, which is known as MaxMin angle criterion. A triangulation that is 

optimal in the sense of the MaxMin angle criterion and which is defined on the convex hull 

of a point set is called a Delaunay triangulation. 

 

Properties of Delaunay triangulation: 

1. The outer boundary must be convex hull Fig. (4.14). 

 

Figure (4. 14). Convex hull boundary for Delaunay triangulation. 



92 
 

2. A circle circumscribing any Delaunay triangle does not contain any other points in its 

interior. In other words, three points i j kp ,p ,p P  are vertices of the same triangle iff the 

circle through i j kp ,p ,p contains no other points of P in its interior Fig. (4.15). 

pi

pj

pk

 

Figure (4. 15). Delaunay triangle. 

 

3. MaxMin angle criterion is applied (Lawson’s local optimization procedure ‘LOP’). The 

Delaunay triangulation maximizes the minimum angle. Compared to any other 

triangulation of the points, the smallest angle in the Delaunay triangulation Fig. (4.16.b) 

is at least as large as the smallest angle in any other Fig. (4.16.a).  

1 6 1 6

'    min min  i i
i i

 
   

  (4.69)

  

α2 
α'2 α3 

α'4 

α5 

α'1 α6 

α'6 
α1 

α'5 
α4 

α'3 
pi

pj

pl pl

pk

pj

pi

pk

(a) (b)  

Figure (4. 16). Edge flip to find max min angle. 
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4. For a set of points P, the Delany triangulation data output,  

2 2triN n k    (4.70)
 

3 3edN n k    (4.71)
Ntri … number of triangles. 

Ned … number of edges. 

n … number of points in set P. 

k … number of points on convex hull boundary of P. 

 

ii. Classify the triangles 

In order to form the polygon containing the free area between a set of tangent circles, 

two principles must be considered:  

(1) Closed triangle which L = R1+ R2  Fig. (4.17.a).  

(2) Opened triangle which L > R1+ R2  Fig. (4.17.b). 

L

 

(a) Closed triangle     (b) Opened triangle. 
 

Figure (4. 17). Difference between triangles. 
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iii. Form the enclosing polygons 

The single triangle contains the free area between three tangent circles, but for the open 

triangle, it has a shared link with one or two other open triangles. So the open triangles 

with a shared open edge Fig. (4.18.a) must be merged to obtain a closed polygon which 

contains the free area between a set of tangent circles Fig. (4.18.b).   

 

a

b

c

d

a

b

c

d

(a) (b)
 

Figure (4. 18). Merging the open triangles with the shared open edge. 

To get the smaller polygon which surrounds the same free area, the tangent points for the 

set of tangent circles are connected Fig. (4.19). For a tangent point p ab  the coordinates 

are calculated:   

1 1 2u=R /(R +R )  (4.72)
 

x x x xp =a +u(b -a )  (4.73)
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y y y yp =a +u(b -a )  (4.74)

 

a

b

c

d

p

 

Figure (4. 19). Smaller polygon connect the tangent points. 

 

4.2.3.2 Calculate the enclosing circle 

The next step is to find out the data of the circles (radius and center point) which 

cover the polygons coming from the previous step. The circle data can be calculated by 

using the tangent points (ab, bc, cd, da) of the set of the tangent circles Fig. (4.20). Let

max x x x xx = max(ab ,bc ,cd ,da ) , min x x x xx = min(ab ,bc ,cd ,da ) , max y y y yy = max(ab ,bc ,cd ,da ) , 

and min y y y yy = min(ab ,bc ,cd ,da ) : 

x max mincen =(x -x )/2  (4.75)

 

y max mincen =(y -y )/2  (4.76)

 



96 
 

2 2
max x max yR= (x -cen ) +(y -cen )  (4.77)

 

 

a

b

c

d

R
cen

ab

bc

da

cd

 

Figure (4. 20). Circle enclosing the polygon. 

 

The circle radius is readjusted to the closest bigger value between the specified radii. If 

the radius of the enclosing circle is bigger than the maximum radius of the specified radii, 

the polygon is divided and the enclosing is done again till the covering radii are within the 

values of the specified radii. 

 

4.2.3.3 Applications 

By applying the second algorithm on the first, and second case studies Fig. (4.21), 

and Fig. (4.22). 
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(a) Assign the non-covered area. 

 

 
(b) Calculate the enclosing circles. 
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(c) Readjusting the enclosing circles. 

Figure (4. 21). First case study. 

 

Table (4. 3). First case study results. 

Circle size R1=20 mm R2=15 mm R3=10 mm Covered area 

No. of circles 33 10 5 88.11 % 
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Figure (4. 22). Second case study. 

 

Table (4. 4). Second case study results. 

Circle size R1=20 mm R2=15 mm R3=10 mm Covered area 

No. of circles 26 17 17 84.95 % 

 

 

4.3 Tool path optimization 

After applying the circle packing algorithm, and covering the free area algorithm, 

the machining time is improved, specifically, the cutting time by finding the least number 

of plunging times. The coming step is to optimize the tool path which links these plunging 

places. By optimizing the tool path for each tool the non-cutting time will be improved. 
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The problem is to find the shortest path connecting the plunging places since the tool is 

required to visit each plunging place once, which can by formulated as a travelling sales 

man problem (TSP).  

 

4.3.1 Solving travelling salesman problem (TSP) by using simulated 

annealing algorithm (SA) 

Travelling sales man problem is represented mathematically as an optimization 

problem with the objective function: 

min ij ij
i j

c x

  (4.78)

Such that 

1,

1           1,...,
n

ij
i i j

x j n
 

   (4.79)

1,

1           1,...,
n

ij
j i j

x i n
 

   (4.80)

 

According to many researchers Simulated Annealing (SA) has been successfully applied 

and adapted to give an approximate solution for the TSP. Simulated annealing is an 

optimization technique, analogous to the annealing process of metal atoms. The simulated 

annealing techniques were proposed by Kirkpatrick, et al, (1983). The system simulates 

the annealing process of metal atoms. Metal atoms at a high temperature will become 

unstable at their initial states, and therefore they are looking for other states. While cooling, 

the metal atoms will find an energy state that is lower than their initial state. The state 

changing procedure can be applied to solve real problems. The system generates a new 

state and then compares the energy of the new state with the energy of the current state. If 
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the energy of the new state is lower than the energy of the current state, then the system 

accepts this state. Otherwise, the system changes to this state according to the transition 

probability P, shown as follows:  

( )
E

kTP e



  

(4.81)

 

(S') (S)E E E    (4.82)
 

Where ‘k’ is the Boltzmann constant, ‘T’ is the current temperature of the system, ‘S’ is 

the current state, ‘Sꞌ’ is the new state, and ‘E’ is the energy function. If the system 

temperature is being cooled to a predefined temperature or the maximum number of 

iterations are met, the system prints out the best state, i.e., the near optimal solution. Fig. 

(4.23) shows the flowchart of the simulated annealing algorithm. 



102 
 

 

Figure (4. 23). Simulated annealing algorithm flow chart. 

 

To find the optimum tool path for the plunging tools for the pre-described case 

studies; the circles are grouped according to their radii to different groups. The centers for 

the circles will be considered as the cities to be visited.  For each group the SA algorithm 

will be applied on all the centers to find out the optimum tool path as shown in Fig. (4.24), 

and Fig. (4.25). 
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Figure (4. 24). Appling simulated annealing to optimize the tool path case study I for 

each group of circles have common radius. 

 
Figure (4. 25). Appling simulated annealing to optimize the tool path case study II for 

each group of circles have common radius. 
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4.3.2 Pocket with island 

  An island is an area in which the cutting tool will avoid when machining the 

selected pocket area. According to the design purposes, the parts may get one or more 

pockets with an island among its features. The more cases the algorithm can solve, the 

more power it has. To make our new approach suitable for the real manufacturing; another 

feature is added to the algorithms. This feature considers the island existence in the pocket 

during the calculation because pockets mostly represent die mold cavities or thin wall parts 

which might have islands. Fig. (4.26), and Fig. (4.27) show two case studies with islands. 

The results of applying our approach on the two case studies are shown in tables (4.5), and 

(4.6). 

 

(a) Applying the CP algorithm 
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(b) Tool pass optimization by using SA 

Figure (4. 26). Third case study for convex polygon with island. 

 

Table (4. 5). Case study III results. 

Circle size R1=20 mm R2=15 mm R3=10 mm Covered area 

No. of circles 23 12 26 84.04 % 
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(a) Applying the CP algorithm 

 

(b) Tool pass optimization by using SA 

Figure (4. 27). Fourth case study for concave polygon with island. 



107 
 

Table (4. 6). Case study IV results. 

Circle size R1=20 mm R2=15 mm R3=10 mm Covered area 

No. of circles 22 14 8 79.89 % 

 

4.3.3 Free form boundary pocket with island  

Due to the progress of the Computer Aided Design (CAD) techniques, the free form 

curves and surfaces have been widely adopted in the mechanical design. As a result, the 

pockets with free form boundaries became important features in mechanical parts which 

urged us to apply the algorithm on such types of features. Since the main idea of that 

approach is to fill a polygon with circles, the free form boundary is simplified to a polygon 

with many edges. By discretizing the free form boundary to very small segments, it 

becomes a polygon with many edges. The algorithm is tested on a more realistic case study; 

a pocket with island in which both have free form boundary. Fig. (4.28) shows a case study 

with free form boundaries for the pocket and the island designed by CATIA and machined 

to its final shape by using the CATIA contouring module. Fig. (4.29) shows the results of 

applying the proposed approach, and the validation of the result on the DMU 60T 

machining center. 
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(a) CATIA model for pocket with island have free form boundary. 

 

 
(b) The machined part by using CATIA contouring. 

Figure (4. 28). Case study V, the pocket and island boundaries are free form curve. 
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(a) Applying the CP algorithm     

 

 
(b) Tool pass optimization by using SA on each group of circles 
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(c) The machined part 

Figure (4. 29). Appling the CP algorithm on case study V. 

 

4.3.4 Comparison between CP method and the current methods 

  In this section, we will compare our method with two existing methods: (1) OCfill method 

[7], and (2) Plunging module in CATIA. In the case study V, which is a pocket with an island both 

have free form boundaries. Fig. (4.29) showed the result obtained by using CP approach, Fig. (4.30) 

shows the result obtained by using the OCfill method, and Fig. (4.31) shows the result obtained by 

applying the plunge milling module in CATIA. The results of the comparison are illustrated in 

Table (4.7). The comparison was carried out on several parameters: (1) the number of plunging 

places, (2) the percentage of the accessible area, and (3) the reduction of the machining time 

comparing to the contour machining. The last row in the table (4.7) shows the total free tool pass 

after applying the SA technique.       
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(a) Results by using the OCfill algorithm 

      

 
(b) The machined part 

Figure (4. 30). Appling the OCfill method on case study V. 
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(a) Results by applying plunge milling feature in CATIA 

        

 
(b) The machined part 

Figure (4. 31). Appling the Plunge milling feature in CATIA on case study V. 
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Table (4. 7). Comparison between CP algorithm, OCfill method, and CATIA 

 CP OCfill Catia plunging 

Tool diameters (inch) Dia. No. Dia. No. Dia. No. 

 

1 1 0.5 22 0.25 149 

0.72 11 0.25 48 - - 

0.373 32 0.125 101 - - 

0.125 100 - - - - 

No. of plunging times Total 144 Total 171 Total 149 

Accessible area 91.298 % 83.34 % 77.27 % 

Machining time reduction 
Compared with CATIA countering 

42.1 % 31.1 % 5.26 % 

Travelling path length (inch) 35.34 38.536 34.443 

 

 

4.3.5 Conclusion 

  Plunge milling has a high metal removal rate which is significantly reduces the 

rough machining time making it suitable for parts that need to loss high amount of the 

material during the roughing process like pockets. The proposed approach facilities finding 

the optimum tool path during plunging the pockets with islands. It also introduces a new 

feature to calculate the tool path when plunging the pockets that have free form boundary 

with an island. According to the cases studied, the approach is able to reduce the machining 

time by up to 42.1 %, and gives a significant improvement of the machining efficiency 

compared to the existing methods. The new approach has the ability to cover more area 

with less number of plunging places. As shown in the comparison, the area covered is about 

91 % when the new approach is used with less number of plunging places compared to the 

other methods. One of the most efficient features in our approach is the ability to use any 

pre-specified diameters of the tools being used with any numbers of the plunging tools. 



114 
 

Also, the algorithm is applicable on the pockets with an island both have free form 

boundaries which have wide applications in the industry.  

 

4.4 Pocket with sculpture bottom surface with polynomial function case 

study 

In the previous case studies we discussed the pockets have flat bottom in which the 

depth of cut is constant for all the plunged places. In this section, we will widen the scope 

of our work to include the pockets with a sculptured surfaces bottoms. These types of 

pockets became widely used after the high progress in the CAD software which led to 

impressive development in the parts design, especially, in the field of dies’ design. Dies 

can be described as pockets but with non-flat bottoms. Sheet metal, or plastic parts are 

produced using dies. Due to the complexity of the parts, the dies have a sculptured bottom 

surfaces. Some of the sculptured surfaces follow polynomial functions. Our focus will be 

on the sculptured surfaces which follow the polynomial functions. By using our 

optimization approach, we will be able to find the exact depth of cut for each plunged place 

in a fast manner to avoid gauging with the pocket bottom.  

Finding the accurate depth of cut at each plunging place calculated by using the 

plunge milling approach is very important. To avoid the gauging, the tool at each plunging 

place must stop before reach the pocket bottom by the value of the finishing allowances. 

In case of the plan bottom the depth of cut is constant value for all the plunging places but 

for the sculpture surface the depth of cut will be at the highest point of the sculpture bottom 

surface within the cross section of the plunging tool. So if we are able to calculate the 

height of the maximum point of the sculpture bottom surface inside the circle represents 
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the plunger; that value plus the value of the finishing allowances (since plunge milling is a 

rough process) must be the depth of cut at which the tool should stop. 

Therefore to achieve the task mentioned above; our new optimization algorithm will 

be applied to provide the desired accuracy in a proper calculation time. The working steps 

are summarized in: (1) Find the min no. of circles can cover the pocket area. (2) Calculate 

all the local maximum points for the bottom surface. (3) Calculate the global maximum 

point of the surface for each projected circle. 

 

1. Find the circles which cover the pocket surface, and their optimum tool path by applying 

the algorithms for circle packing as shown in Fig. (4.32), and table (4.8). 

 

(a) Boundary covered by using CP algorithm 
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(b) Optimum tool path. 
 

Figure (4. 32). Applying the CP algorithm on the free form boundary case study. 
  

Table (4. 8). Case study results. 

Circle size D1=1 in D2=0.72 in D3=0.373 in D4=0.125 in Covered area 

No. of circles 7 6 28 75 93.336 % 

 

2. Calculate all the local maxima of the constrained objective function which is the surface 

equation. The pocket bottom is a sculpture surface represented by polynomial function 

as shown in Fig. (4.33) and equation (4.83). 
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The total distance = 5.23979      6.43057      10.6876      12.0459 = 34.4038 mm
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(a) Catia model. 

 

 

(b) Matlab model. 

Figure (4. 33). Case study for pocket with sculpture bottom. 

 

( , ) cos(3 3.15) sin( 3.15)f x y x y     (4.83.a)

 

Such that 
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2  x  2

2  y  2

  
  

 (4.83.b)

 

The local maxima can be calculated according to our optimization algorithm as follow: 

a. Find the grid mesh of the surface. 

b. Calculate the curvature at each data (grid) point as shown in Fig. (4.34) and group 

according to the type of curvature. 

 

 

Figure (4. 34). Data points groups (Convex group “ . ”, Concave group “ * ”, hyperbolic 

group “ o ”, and plane group “ x ”). 
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c. As shown in Fig. (4.35), for the maximum optimization problem the concave group is 

under study. By applying the subtractive clustering we have two clusters with cluster 

centers as shown in table (4.9) which are the initial points. By applying the Quasi Newton 

method we have the exact local maxima as shown in table (4.10) 

 

Table (4. 9). Case study clusters centers. 

 x y 
1 -1 -1 
2 1 -1 

 

 

Figure (4. 35). Concave data points clusters “*” with the clusters centers “□” and the 

exact local maximum point “O” 
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Table (4. 10). Case study exact local maxima. 

 x y f(x,y) 
1 -1.05 -1.579 0.2 
2 1.044 -1.579 0.2 

 

3. From the previous two steps we calculated the loci of the circles cover the pocket area 

and all the local maximum points for the constrained objective function as shown in Fig. 

(4.36).  

 

Figure (4. 36). The cover circles and all the local maximum points “o”. 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2



121 
 

From these information for each circle the local maximum points will be checked if one 

or more of them are inside the circle or not. If yes the maximum between them will be the 

stop point. If not the maximum point will be on the projected boundary of this circle on the 

bottom surface as shown in Fig. (4.37).  

 

(a) 

 

(b)  

Figure (4. 37). The projected boundary of the circle on the bottom surface. 
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By substituting with: 

cos( )cx x R    
(4.83) 

sin( )cy y R    

In the surface equation: 

( ) cos (3x 3  sin ( ) 3.15) sin (  sin ( ) 3.15)c cf R y R         

 (4.84) 

0 2    

c

c

x  ... x cordinate of the circle center.

y  ... y cordinate of the circle center.

R ... the raduis of the circle.

 

Equation (4.84) represents the projected boundary of the circle which contains the 

maximum point in this case. By applying the new optimization technique the projected 

circle boundary is gridded to several data points. The data points grouped to convex, 

concave, and plan points as shown in Fig (4.38). 
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Figure (4. 38). Data points groups (Convex group “ □ ”, Concave group “o”), and Cluster  

center “*”. 

For the concave group, it is clustered and the clusters centers are calculated. By using the 

clusters centers as initial points the global maximum point will be calculated as shown in 

Fig. (4.39). 
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Figure (4. 39). The global maximum point “●” 
 

Fig. (4.40) shows the case study on a CNC milling machine by using CATIA roughing 

module and plunge milling roughing by applying the CP algorithm and our global 

optimization algorithm.  
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(a) CATIA roughing. 

 

(b) Plunge milling roughing by CP algorithm with considering the depth of cut. 

Figure (4. 40). Case study of pocket with free form boundary and sculpture bottom. 
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4.4.1 Conclusion 

By applying the new two approaches for CP algorithm and our global optimization 

algorithm on the case study of pocket with free form boundary and sculpture surface 

bottom; The rough plunge milling reduces about 62.8% of the rough machining time 

compared with applying CATIA roughing. 
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Chapter 5 

Conclusion and future work 

 In this research, new methods have been developed for optimize the total machining 

time of the plunge milling process during the rough machining of the pockets. Also a new 

method to find out the polynomial function global optimization by using subtractive 

clustering technique. The major contributions of this research are summarized as follows: 

 

● A new approach to optimize the total machining time of the rough machining of 

the pockets by using the plunge milling is established. This approach consists of 

three main algorithms. (1) Algorithm to packing the pocket area with the 

minimum number of specified radii circles without overlapping by using the 

maximum hole degree (MHD) theory in solving the circles packing problem. (2) 

Algorithm to accurately cover the areas left the non-overlapped circles by the 

same used specified radii. (3) Algorithm to solve the travelling sales man problem 

which represents the free tool path between the plunging places by using the 

simulated annealing optimization (SA) technique. This algorithm reduces the 

total machining time by reducing both the cutting time and the non-cutting time. 

The cutting time is reduced by finding the lowest number of plunging places by 

using a specified tools radii to cover the same pocket area, and reduces the non-

cutting time by reduce the free traveling time between the plunging places. The 

most important feature of this approach are its applicability on the types of 

pockets even they have a polygon boundary or free form boundary, also if the 
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pocket has an island or not, and its ability of use any number of the available tools 

with the standard radii. The case studies showed that using the approach reduces 

the total machining time by about 40%, also the accessible area reached 90%.  

 

● A new approach to calculate the global optimal solution of the constrained 

polynomial function to reduce the computing time, improve the accuracy, and 

avoid stuck in the local minimum. Our focus is on the one variable and two 

variables constrained polynomial functions because they represent curves and 

surfaces which are the most used in the industrial field. This approach help a lot 

to find accurately the depth of cut at each plunging place when plunging a pockets 

with sculpture bottom represented by polynomial function, which increases the 

efficiency of the plunging process. The comparison with another optimization 

techniques showed that this approach reduces about 55% of the calculating time 

and increases the accuracy in the same time, with no possibility to stick in the 

local minimum. 

 

The future work 

For the future research, the following topics are suggested to expand the present 

research work: 

● Develop the plunging approach to use the hollow plungers. 

● Develop the plunging approach to be used on the complex pockets with the 5 axis 

CNC milling machine. 
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