
PRIVACY PRESERVATION IN HIGH-DIMENSIONAL

TRAJECTORY DATA FOR PASSENGER FLOW

ANALYSIS

MOEIN GHASEMZADEH

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY
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Abstract

Privacy Preservation in High-Dimensional Trajectory Data for Passenger

Flow Analysis

Moein Ghasemzadeh

The increasing use of location-aware devices provides many opportunities for analyzing

and mining human mobility. The trajectory of a person can be represented as a sequence

of visited locations with different timestamps. Storing, sharing, and analyzing personal

trajectories may pose new privacy threats. Previous studies have shown that employing tra-

ditional privacy models and anonymization methods often leads to low information quality

in the resulting data. In this thesis we propose a method for achieving anonymity in a trajec-

tory database while preserving the information to support effective passenger flow analysis.

Specifically, we first extract the passenger flowgraph, which is a commonly employed rep-

resentation for modeling uncertain moving objects, from the raw trajectory data. We then

anonymize the data with the goal of minimizing the impact on the flowgraph. Extensive

experimental results on both synthetic and real-life data sets suggest that the framework is

effective to overcome the special challenges in trajectory data anonymization, namely, high

dimensionality, sparseness, and sequentiality.
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Chapter 1

Introduction

1.1 Motivation

Over the last few years transit companies have started using contactless smart cards or

RFID cards, such as the EasyCard in Taiwan, the Public Transportation Card in Shanghai,

and the OPUS card in Montréal. In 2008, Société de transport de Montréal (STM), the

public transit agency in Montréal, deployed the Smart Card Automated Fare Collection

(SCAFC) system, which has several advantages compared to the previous systems. For

instance, it has seamless integration with the other transit systems of neighbouring cities.

Another advantage is the speed at which users can access the system. As opposed to the

magnetic stripe cards previously in use, the contactless smart card is more user-friendly and

not only will reduce the risk of becoming demagnetized and rendered useless, but it also

does not require patrons to slide the card in a particular way. More importantly, senior and

junior passengers register their personal information when they first purchase their cards so

that an appropriate fare is charged based on their status.

Automated turnstiles are in place at SCAFC stations to ensure that only people with

valid tickets may access the transport. Consequently, passengers leave a trace of reading

every time they scan a SCAFC card. A data record in the form of (ID, loc, t), which
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identifies the passenger’s identity, location, and time, is then stored in a central database.

The trajectory of a passenger can be represented by a sequence of visited locations, sorted

by time.

New constructions occur and new trends emerge as a city evolves. Passenger flow is

not static and is subject to change depending on all these uncertainties and developments.

Transit companies need to ensure their services evolve with the needs of their passengers

and help shape better service in their growth. Hence, transit companies have to periodi-

cally share their passengers’ trajectories among their own internal departments and external

transportation companies in order to perform a comprehensive analysis of passenger flow

in an area, with the goal of supporting trajectory data mining [19, 26, 27, 50, 63] and traffic

management [33]. By using a probabilistic flowgraph, as shown in Figure 2, an analyst can

identify the major trends in passenger flow and hot paths in a traffic network. For exam-

ple, Figure 2 suggests that 67 percent of passengers who started their journey at location a

with timestamp 1 visited location b with timestamp 2. However, sharing passenger-specific

trajectory data raises new privacy concerns that cannot be appropriately addressed by tra-

ditional privacy protection techniques. Example 1.1 illustrates a potential privacy threat in

the context of trajectory data.

Example 1.1 (Identity linkage attack). Table 1 shows an example of thirteen passengers’

trajectories, in which each trajectory consists of a sequence of spatio-temporal doublets (or

simply doublets). Each doublet has the form (lociti), representing the visited location loci

with timestamp ti. For example, ID#4 indicates that the passenger has visited locations c,

e, and d at timestamps 3, 7, and 8, respectively. With adequate background knowledge, an

adversary can perform a privacy attack, called an identity linkage attack, on the trajectory

database and may be able to uniquely identify a victim’s record as well as his/her visited

locations and timestamps. Preventing identity linkage attack is very important in trajectory

2



Table 1: Raw trajectory database T

ID # Trajectory
1 a1→ b2→ c3→ e5→ f6→ c9

2 e5→ f6→ e7→ c9

3 e5→ e7

4 c3→ e7→ d8

5 b2→ c3→ d4→ f6→ d8

6 c1→ b2→ f6

7 a1→ b2→ e5→ f6→ e7

8 f6→ e7→ c9

9 e5→ e7→ c9

10 b2→ f6→ e7→ d8

11 a1→ c3→ f6→ e7

12 c1→ b2→ f6

13 b2→ c3→ e5→ f6

data sharing and hence is the main goal of this thesis because it is easily performed by an at-

tacker, and upon success it allows the attacker to learn all other locations and timestamps of

the victim. Suppose an adversary knows the data record of a target victim, Alice, in Table 1.

The adversary also has prior knowledge that Alice visited locations b and c at timestamps

2 and 9, respectively. Then an adversary can associate ID#1 with Alice because ID#1

is the only record containing both b2 and c9. Consequently, he can find out that Alice has

also visited locations a, c, e, and f at timestamps 1, 3, 5, and 6, respectively.

This thesis presents a new heuristic method to anonymize a large volume of passenger-

specific trajectory data with local minimal impact on the information quality for passenger

flow analysis. This work falls into a research area called Privacy-Preserving Data Publish-

ing (PPDP), which aims at releasing anonymized data for general data analysis or specific

data mining tasks [11]. Therefore, data holders need to transform the underlying raw data

into a version that is immune to privacy attacks while maintaining the required quality for

the recipient’s desired analysis. Figure 1 depicts the information flow from passengers to

data recipients.

A related, yet different, research area is Privacy-Preserving Data Mining (PPDM),
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Table 2: (2, 2)-privacy preserved database T ′

ID # Trajectory
1 a1→ b2→ c3→ e5→ f6

2 e5→ f6→ e7→ c9

3 e5→ e7

4 c3→ e7→ d8

5 b2→ c3→ f6→ d8

6 c1→ b2→ f6

7 a1→ b2→ e5→ f6→ e7

8 f6→ e7→ c9

9 e5→ e7→ c9

10 b2→ f6→ e7→ d8

11 a1→ c3→ f6→ e7

12 c1→ b2→ f6

13 b2→ c3→ e5→ f6

Figure 1: Privacy-preserving data publishing

which aims at releasing privacy-preserving data mining results, such as classification mod-

els, frequent patterns, or association rules. In the context of passenger flow analysis, re-

leasing data is preferable because data recipients can have greater flexibility in performing

their required analysis on the anonymous data. To the best of our knowledge, this is the

first work studying trajectory data anonymization for passenger flow analysis.
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Figure 2: Probabilistic flowgraph of Table 1

1.2 Data privacy and quality trade-off

Several privacy models, such asK-anonymity [48] and its extensions [5,30,35,56,57], have

been proposed to thwart privacy threats in the context of relational data. However, these

models are not effective on trajectory data due to its high dimensionality, sparseness, and

sequentiality [9]. Consider a mass transportation system with 300 metro and bus stations

operating 20 hours a day. The corresponding trajectory database would have 300 × 20 =

6, 000 dimensions. Since K-anonymity requires every trajectory to be shared by at least K
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Figure 3: LK-anonymized probabilistic flowgraph of Table 1

records, most of the data have to be suppressed in order to achieveK-anonymity. Moreover,

trajectory data are usually sparse because most passengers visit only a few stations within a

short period of time. Enforcing K-anonymity on sparse trajectories in a high-dimensional

space usually results in suppressing most of the data; therefore, the released data is rendered

useless for analysis. Furthermore, these privacy models do not consider the sequentiality in

the trajectories. A passenger traveling from station a to station b is different from the one

traveling from b to a. Sequentiality captures vital information for passenger flow analysis.

To overcome the challenge of anonymizing high-dimensional and sparse data, a new
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privacy model called LK-privacy [40] is adopted in this thesis to prevent identity link-

age attack. LK-privacy was originally proposed to anonymize high-dimensional relational

health data. This new privacy model was built based on the observation that an adversary

usually has only limited knowledge about a target victim. Applying the same assumption

to trajectory data implies that an adversary knows at most L previously visited spatio-

temporal doublets of any target passenger. Therefore, applying the same privacy notion to

trajectory data requires every subsequence with length at most L in a trajectory database

T to be shared by at least K records in T , where L and K are positive integer thresholds.

LK-privacy guarantees that the probability of a successful identity linkage attack is at most

1/K. Table 2 presents an example of an anonymous database satisfying (2, 2)-privacy from

Table 1, in which every subsequence with maximum length 2 is shared by at least 2 records.

While privacy preservation is essential for the data holder, preserving the information

quality is important for the data recipient in order to perform the needed analysis. Anony-

mous data may be used for different data mining tasks; however, in this thesis we aim at

preserving the information quality of the probabilistic flowgraph, which is the primary use

of trajectory data in passenger flow analysis. A probabilistic flowgraph is a tree where each

node represents a spatio-temporal doublet (loc, t), and an edge corresponds to a transition

between two doublets. All common trajectory prefixes appear in the same branch of the

tree. Each transition has an associated probability, which is the percentage of passengers

who take the transition represented by the edge. For every node we also record a termina-

tion probability, which is the percentage of passengers who exit the transportation system

at the node. As an illustration, Figure 2 presents the probabilistic flowgraph derived from

Table 1.

We present an example to illustrate the benefit of LK-privacy over the traditional K-

anonymity model:
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Figure 4: K-anonymized probabilistic flowgraph of Table 1

Example 1.2. Figure 2 depicts the probabilistic flowgraph generated from the raw trajec-

tory data (Table 1). Figure 3 depicts the probabilistic flowgraph generated from Table 2,

which satisfies (2, 2)-privacy. Figure 4 depicts the probabilistic flowgraph generated from

the traditional 2-anonymous data. It is clear that Figure 3 contains more information, in-

cluding doublet nodes, branches, and transitional probabilities, in the flowgraph than Fig-

ure 4. For example, Figure 2 shows that 23% of passengers start their route from b2.

Figure 3 preserves the same probability, but Figure 4 incorrectly interprets the probability

as 38%, resulting in a misleading analysis. This claim is further supported by extensive

experimental results in Chapter 5.

Generalization, bucketization, and suppression are the most widely used anonymiza-

tion mechanisms. In generalization, which can be performed using global generalization

or local generalization [28], specific attributes are replaced by more general attributes. For
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Figure 5: Taxonomy trees for Profession and Age

example, Soccer player and Hockey player can be replaced by a more general value Ath-

lete. For numerical values, an exact value can be replaced by an interval. Figure 5 depicts

the taxonomy trees that generalize specific values to more general ones. Generalization re-

quires the use of taxonomy trees, which are highly specific to a particular application [4]. In

many trajectory data applications, such domain specific taxonomy trees are not available.

This fact largely hinders generalization’s applicability on trajectory data anonymization.

Bucketization [36, 58], on the other hand, publishes trajectory data without any modifica-

tion, but de-associates the relation between quasi-identifiers (QID) and sensitive attributes.

This mechanism fails to protect identity linkage attacks on trajectory data. In addition, a

condensation approach [4] is proposed for multi-dimensional data publishing. However,

for trajectory data, complexity grows exponentially due to the high dimensionality. Fur-

thermore, it is difficult to measure the similarity of trajectories, which is essential to the

condensation approach. Therefore, in this thesis, we employ suppression.

LK-privacy can be achieved by global suppression or local suppression of doublets. A

global suppression on a doublet d means that all instances of d are removed from the data.

Global suppression punishes all records containing d by eliminating all instances of d, even

9



Table 3: Globally suppressing c9 from Table 1

ID # Trajectory
1 a1→ b2→ c3→ e5→ f6

2 e5→ f6→ e7

3 e5→ e7

4 c3→ e7→ d8

5 b2→ c3→ d4→ f6→ d8

6 c1→ b2→ f6

7 a1→ b2→ e5→ f6→ e7

8 f6→ e7

9 e5→ e7

10 b2→ f6→ e7→ d8

11 a1→ c3→ f6→ e7

12 c1→ b2→ f6

13 b2→ c3→ e5→ f6

if the privacy threat is caused by only one instance of d. Table 3 illustrates globally sup-

pressing doublet c9 from Table 1, in which all instances of c9 are removed from the table.

In contrast, a local suppression on a doublet d means that some instances of d are removed

while some remain intact. Local suppression [12, 41] eliminates the exact instances caus-

ing the privacy violations without penalizing others, and hence preserves more information

for data analysis but with the cost of higher computational complexity. Suppose that in

Table 1, c9 from ID#1 causes the privacy violation; applying local suppression on c9 in

Table 4 results in removing the exact instance of c9 from ID#1 rather than removing all

instances of c9. In this thesis, we employ a hybrid approach of local and global suppression

with the goal of maintaining high quality of data for passenger flow analysis with feasible

computational complexity.

1.3 Contributions of the thesis

Based on the practical assumption that an adversary has only limited background knowl-

edge of a target victim, we adopt and modify the LK-privacy model for trajectory data

anonymization, which prevents identity linkage attacks on trajectory data. This thesis

10



Table 4: Locally suppressing c9 from Table 1

ID # Trajectory
1 a1→ b2→ c3→ e5→ f6

2 e5→ f6→ e7→ c9

3 e5→ e7

4 c3→ e7→ d8

5 b2→ c3→ d4→ f6→ d8

6 c1→ b2→ f6

7 a1→ b2→ e5→ f6→ e7

8 f6→ e7→ c9

9 e5→ e7→ c9

10 b2→ f6→ e7→ d8

11 a1→ c3→ f6→ e7

12 c1→ b2→ f6

13 b2→ c3→ e5→ f6

makes three major contributions: First, this is the first work that aims at preserving both

spatio-temporal data privacy and information quality for passenger flow analysis. All pre-

vious privacy works on trajectory data anonymization consider a different information re-

quirement. None of those focus on preserving information quality for generating passenger

flowgraphs as discussed in this thesis. Second, we design a hybrid approach that makes

use of both global and local suppressions to achieve the requirements of both data privacy

and information quality to overcome the challenges of anonymizing high-dimensional and

sparse trajectory data. Third, we present a method to measure the similarity between two

probabilistic flowgraphs in order to evaluate the difference in information quality before

and after anonymization. Extensive experimental results on both real-life and synthetic

trajectory data sets suggest that our proposed algorithm is both effective and efficient to ad-

dress the special challenges in trajectory data anonymization for passenger flow analysis.

1.4 Thesis organization

The rest of the thesis is organized as follows:

11



Chapter 2 provides a literature review on traffic and passenger flow analysis and sum-

marizes some common privacy models for relational, statistical, transaction, and trajectory

data.

Chapter 3 provides the formal definitions of the input trajectory database, the LK-

privacy model, and the passenger flowgraph.

Chapter 4 describes the anonymization algorithm for achieving LK-privacy.

Chapter 5 evaluates the impact of anonymization on the information quality of the flow-

graph and efficiency of our proposed methods on synthetic and real-life data.

Finally, Chapter 6 concludes the thesis and outlines possible future research directions.
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Chapter 2

Literature Review

In this chapter, we first provide an overview of traffic and passenger flow analysis and

then we review some common privacy models for relational, statistical, transaction, and

trajectory data.

2.1 Flow analysis

Palleta et al. [45] present a pilot system that helps public transportation system companies

optimize the passenger flow at traffic junctions. The system utilizes video surveillance,

with the help of AI vision, to monitor and analyze pedestrians’ trajectories. Descriptive

statistics between different sources and destinations generated from trajectories provide an

overview of passenger flow. Halb et al. [20] propose an improved system for multi-modal

semantic analysis of individuals’ movements at public transportation hubs, which is also

applicable to other settings such as consumers’ movements in shopping malls.

Abraham et al. [1] propose a model to determine the similarity of vehicle trajectories

with respect to space and time, which has an important role in many traffic-related ap-

plications. In their proposed model they use a remote database to regularly update the

13



trajectories of moving vehicles, based on a cellular network. The database server periodi-

cally processes the trajectories to form the spatio-temporal similarity set, and the details of

the vehicles in a similar cluster are dispersed through the cluster head. Once this informa-

tion is obtained from the server, the vehicle with the cluster head status uses the VANET

infrastructure to share the required information with its neighborhood.

2.2 Anonymizing relational and statistical data

K-anonymity [47–49], `-diversity [35], and confidence bounding [56] are common models

that prevent privacy attacks against relational data. K-anonymity prevents linkage attacks

by requiring every equivalence class (i.e., a set of records that are indistinguishable from

each other with respect to certain identifying attributes) in a relational data table T to con-

tain at least K records. It is based on the concept of generalization by substituting attribute

values with generalized values with the objective of minimal distortion while preventing

identity linkage.

Machanavajjhala et al. [35] present the homogeneity attack and background knowledge

attack to illustrate that K-anonymity does not provide the claimed privacy guarantee. Con-

sequently, they propose a new privacy model called `-diversity that requires each equiv-

alence class to contain at least ` well-represented sensitive values. Li et al. [30] present

skewness attack to illustrate that `-diversity also fails to prevent a privacy attack when

the overall distribution of a sensitive attribute is skewed. Instead, they propose a privacy

model called t-closeness that requires the distribution of a sensitive attribute in any quasi-

identifiers (QID) group to be close to the distribution of the attribute in the overall table.

By utilizing the earth mover’s distance (EMD), t-closeness measures the closeness between

two distributions of sensitive values and requires the closeness to be within t.

Wang et al. [56] present a method to limit the privacy threat by taking into account a

set of privacy templates specified by a data owner. Such templates formulate individuals’

14



privacy constraints in the form of association rules. Wong et al. [57] propose a new pri-

vacy model called (α,K)-anonymization by integrating both K-anonymity and confidence

bounding into a single privacy model.

However, Kifer [24] illustrates that since an injector framework [31] uses a varia-

tion of random worlds or independent and identically distributed random variables for

reasoning about privacy, their method is likely to underestimate the risk of disclosure.

Kisilevich et al. [25] propose K-anonymity of classification trees using suppression, in

which multidimensional suppression is performed by using a decision tree to achieve K-

anonymity. Matatov et al. [37] propose anonymizing separate projections of a dataset in-

stead of anonymizing the entire dataset by partitioning the underlying dataset into several

partitions that satisfy K-anonymity. A classifier is trained on each projection, and then

classification tasks are performed by combining the classification of all such classifiers.

Nergiz et al. [44] propose MultiR K-anonymity, which achieves K-anonymity on mul-

tiple relational tables based on the assumption that a relational database contains a person

specific table, PT , and a set of tables T1, . . . , Tn where PT contains a person identifier,

Pid, and some sensitive attributes; and Ti, for 1 ≤ i ≤ n, contains some foreign keys,

some attributes in QID, and sensitive attributes. MultiR K-anonymity ensures that for each

record r in the join of all tables PT ./ T1 ./ . . . ./ Tn, at least k−1 records share the same

QID with r.

The above privacy models do not focus on an adversary’s background knowledge, but

it is reasonable to assume that in real-life privacy attacks an adversary has prior knowledge

about the victim. Therefore, more recent works focus on an adversary’s background knowl-

edge. Li et al. [31] propose the injector framework to model an adversary’s background

knowledge by mining negative association rules, which is then used in the anonymization

process. This is achieved based on a rationale that if certain facts or knowledge exist in a

database, the authors should be able to find them using data mining techniques.
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Enforcing traditional privacy models on high dimensional relational data usually results

in suppressing most of the data [3], thus rendering the released data useless for future

analysis. Mohammed et al. [40] propose the LKC-privacy model for high dimensional

relational data, which assumes that the adversary’s background knowledge is limited to at

most L attributes. In real-life privacy attacks, it is less likely that an adversary knows all

locations and timestamps of a target victim because a significant amount of effort would be

required to gather all prior knowledge from different locations at different times. Thus, it is

reasonable to assume that the adversary’s background knowledge is bounded by at most L

doublets of locations and timestamps that the target has visited. In this thesis, we follow a

similar assumption of an adversary’s background knowledge and adapt the privacy notion

for trajectory data.

Dwork [13] proposes an insightful privacy notion, called ε-differential privacy, based

on the principle that the risk to a data owner’s privacy should not substantially increase

as a result of participating in a statistical database. ε-differential privacy ensures that the

removal or addition of a single database record does not substantially affect the outcome

of any analysis. In spite of the rigorous privacy guarantee provided by differential privacy,

it has been criticized for not being able to achieve usable information quality in some data

analysis tasks [61]. In particular, for passenger flow analysis, achieving differential privacy

may not be able to provide meaningful data utility. Furthermore, Machanava et al. [34]

indicate that the resulting data is untruthful due to the uncertainty (e.g., Laplace noise)

introduced for achieving differential privacy.

2.3 Anonymizing transaction data

Anonymizing high dimensional transaction data has been widely studied in [10, 18, 21, 51,

53, 54, 59, 60]. In general, this problem setting does not take into account the sequentiality

of the data that is an important factor in our problem. Time contains important information
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for trajectory data mining, specially for passenger flow analysis. Consider two trajectories

a1 → c3 and c1 → a3. They have the same locations and timestamps but in a different

order, and thus they are different from each other. In order to study the passengers’ flow,

it is necessary to take into consideration the sequentiality of the data. However, this in-

creases the chances for an adversary to exploit such a difference for a successful linkage

attack. Therefore, such privacy protection models are not applicable to our problem, and

anonymizing trajectory data requires additional efforts.

Ghinita et al. [18] propose a permutation method that groups transactions with close

proximity and then associates each group to a set of mixed sensitive values. Sensitive values

are then randomized within groups to achieve anonymity. This can work when attributes

can a priori be partitioned into different quasi-identifiers (QID) and sensitive values. They

model the adversary’s background knowledge as an arbitrary number of non-sensitive val-

ues. Their bucketization-based approach limits the probability of inferring a sensitive value

to a specified threshold while it preserves correlations among values for frequent pattern

mining. Terrovitis et al. [53] propose an algorithm to K-anonymize transactions by global

generalization based on some given taxonomy trees in which there are no quasi-identifiers,

any item of the sets could be sensitive, and the items of the sets themselves are exploited to

tie sets of items to individuals. Depending on the adversary’s point of view, they consider

both sensitive and nonsensitive data as potential quasi-identifiers and potential sensitive

data. Terrovitis et al. [54] improve the quality of data by introducing a local recoding

method to achieve anonymity.

He and Naughton [21] argue that the method in [53] does not provide as much pri-

vacy protection as K-anonymity, and by introducing local generalization they extend their

method, which improves data quality. However, generalization does not fit trajectory data

well because in real-life trajectory databases, taxonomy trees may not be available, or a
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logical one for locations may not exist. Moreover, Fung et al. [16] indicate that the tax-

onomy tree of trajectory data tends to be flat and fans out; thus, employing generalization

leads to more information loss than does employing suppression. This is due to the fact

that generalization requires all siblings of a selected node to merge with their parent node,

while suppression only removes the selected child nodes.

Xu et al. [60] extend the K-anonymity model by assuming that an adversary knows

at most a certain number of transaction items of a target victim, which is similar to our

assumption of limited background knowledge of an adversary. In their proposed method,

the set of transactions must be (h,K, p)-coherent in order to achieve anonymization for

set-valued data. If not, the item needs to be globally suppressed, which means deleting the

item from all transactions that contain it. This privacy criterion ensures that for any p item

combination that is nonsensitive, there are at leastK transactions in the database containing

these items, within which at most h percent of transactions contain some sensitive items.

It uses the parameter p to model the adversary’s prior knowledge, which offers flexibility

in anonymization based on the power of the adversary. (h,K, p)-coherence also has the

advantage of incorporating a kind of diversity (of the sort originally introduced in the `-

diversity [35]) in the resulting anonymization. Although the above method is improved in

[59] by preserving frequent itemsets instead of preserving item instances, and it addresses

the high dimensionality concern, the authors considers a transaction as a set of items rather

than a sequence. Therefore, it is not applicable to our problem, which needs to take into

consideration the sequentiality of trajectory data. Furthermore, Xu et al. [59, 60] achieve

their privacy model merely by global suppression, which significantly hinders information

quality on trajectory data.

Tassa et al. [51] improve the quality of K-anonymity by introducing new models:

(K, 1)-, (1, K)-, and (K,K)-anonymity and K-concealment. They argue that (K, 1)-,

(1, K)-, and (K,K)-anonymity do not provide the same level of security as K-anonymity.
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K-concealment, on the other hand, provides a comparable level of security that guaran-

tees that every record is computationally indistinguishable from at least K − 1 others with

higher quality. In their work, anonymity is typically achieved by means of generalizing the

database entries until some syntactic condition is met. Cao et al. [6] propose ρ-uncertainty,

which bounds the confidence of inferring a sensitive item from both sensitive and non-

sensitive items to ρ. They assume that an adversary has some background knowledge of

sensitive items. The privacy is achieved by global suppression for both sensitive and non-

sensitive items and global generalization for only non-sensitive items.

Chen et al. [10] study the releasing of a transaction dataset while satisfying differen-

tial privacy. In their proposed method, the transaction dataset is partitioned in a top-down

fashion guided by a context-free taxonomy tree, and the algorithm reports the noisy counts

of the transactions at the leaf level. This method generates a synthetic transaction dataset

that can then be used to mine the top-N frequent itemsets. Although they claim that their

approach maintains high quality and scalability in the context of set-valued data and is

applicable to the relational data, their method is limited to preserving information for sup-

porting count queries and frequent itemsets, not passenger flowgraphs, which is the main

information to preserve in this thesis.

2.4 Anonymizing trajectory data

With the increase in use of location-aware devices, more trajectory data has been collected

from such devices that provide vast opportunities for researchers to study and analyze the

passenger flow. Yet, sharing such information may cause privacy violation of passengers.

Some recent works [2,7,8,14,15,22,38,39,43,46,52,62] study anonymization of trajectory

data from different perspectives. Based on the assumption that trajectories are imprecise,

Abul et al. [2] propose (K, δ)-anonymity, in which δ represents a lower bound of the uncer-

tainty radius when recording the locations of trajectories. Based on space translation, in
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(K, δ)-anonymity K different trajectories should exist in a cylinder of the radius δ. How-

ever, the imprecision assumption may not hold in some sources of trajectory data, such

as transit data and RFID data. Trujillo-Rasua et al. [55] illustrate that, in general, (K, δ)-

anonymity does not offer trajectoryK-anonymity for any δ > 0. It only offers this property

for δ = 0 when the set of anonymized trajectories consists of clusters containingK or more

identical trajectories each.

Hoh et al. [22] propose the uncertainly-aware path cloaking algorithm to provide pri-

vacy protection for GPS traces. To decrease the identification of trajectories, they selec-

tively remove trajectories with the goal of confusing an attacker. Due to the high dimen-

sionality of trajectory data, Pensa et al. [46] and Terrovitis et al. [52] study privacy pro-

tection in sequential data, which is a simplified type of trajectory data. Pensa et al. [46]

propose a variant of the K-anonymity model for sequential data with the goal of preserv-

ing frequent sequential patterns. Similar to the space translation method in [2], Pensa et

al. [46] transform a sequence into another form by inserting, deleting, or substituting some

items. First, they build a prefix tree using the raw sequences in the raw database. Then the

prefix tree is pruned to ensure that all branches are with a support greater than K. Based

on longest common subsequence (LCS), all pruned infrequent sequences are re-appended

to the prefix tree. Finally, an anonymous database is built by using the prefix tree.

Based on the assumption that different adversaries have different background knowl-

edge of a victim, Terrovitis et al. [52] propose that the data holder should be aware of all

such adversarial knowledge. The objective is to prevent an adversary from obtaining more

information about the published sequential data. Although in their specific scenario it is

feasible to know all adversarial background knowledge before publishing the sequential

data, this assumption is, generally, not applicable to trajectory data. Simplifying trajectory

data to sequential data does help overcome the issue of high dimensionality. However,

for many trajectory data mining tasks, the time information is essential. Therefore, these
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approaches fail to satisfy the information requirement for passenger flow analysis.

Yarovoy et al. [62] provide privacy protection by utilizing an innovative notion of

K-anonymity based on spatial generalization in the context of moving object databases

(MOD). In their proposed algorithm timestamps are considered as the QIDs, and it is as-

sumed that privacy attacks are conducted based on an attack graph. They propose two

different anonymization algorithms, extreme union and symmetric anonymization, based

on the assumption that different moving objects may have different quasi-identifiers; thus,

anonymization groups associated with different objects may not be disjoint. A moving ob-

ject database satisfies K-anonymity if every node in the attack graph G has at least degree

K, and G is symmetric. They identify and generalize the anonymization groups into com-

mon regions to the QIDs while minimizing information loss by measuring the reduction

in the probability of determining the position of an object over all timestamps between the

raw MOD and the anonymous MOD.

Monreale et al. [42] propose a method to ensure K-anonymity by transforming tra-

jectory data based on spatial generalization. Hu et al. [23] present a new problem of K-

anonymity with respect to a reference database. Unlike previous K-anonymity algorithms

that use conventional hierarchy or partition-based generalization, they make the published

data more useful by utilizing a new generalization model called local enlargement. They

also incorporate an adversary’s background knowledge to increase the sustainability of

their proposed algorithm against privacy attacks. Nergiz et al. [43] present a generalization-

based approach to provide privacy protection for trajectory data by applying K-anonymity,

which limits an adversary’s ability to re-identify individuals in a trajectory database. They

consider an adversary’s background knowledge to be a limited part of a trajectory, in which

case he may be interested in the rest or in the whole trajectory of an individual, which

he may use to infer some sensitive information about the victim. Privacy protection is
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achieved in two steps. First, the trajectory database is K-anonymized so that every trajec-

tory is indistinguishable from K − 1 other trajectories. Second, the data is reconstructed

by sampling from anonymized data to prevent further leakage.

Chen et al. [8] propose a sanitization algorithm to generate differentially private trajec-

tory data by making use of a noisy prefix tree based on the underlying data. As a post-

processing step, they make use of the inherent consistency constraints of a prefix tree to

conduct constrained inferences, which lead to better data quality. Later, Chen et al. [7]

improve the data quality of sanitized data by utilizing the variable-length n-gram model,

which provides an effective means for achieving differential privacy on sequential data.

They argue that their approach leads to better quality in terms of count query and frequent

sequential pattern mining. However, these two approaches are limited to relatively simple

data mining tasks. They are not applicable for passenger flow analysis.

Some recent works [9, 14, 15, 38] study preventing identity linkage attacks over trajec-

tory data but with different information requirements. Fung et al. [14, 15] propose LKC-

privacy for anonymizing high-dimensional RFID data, which prevents linkage attacks and

overcomes special challenges of high-dimensional RFID data such as high-dimensionality,

sparseness, and sequentiality. Global suppression is employed in their method, which

leads to less information quality. Similarly, Mohammed et al. [38] study anonymizing

high-dimensional trajectory data to overcome linkage attacks while addressing the spe-

cial challenges of trajectory data anonymization. Chen et al. [9] propose local suppres-

sion for anonymizing trajectory data to improve the quality of the data. They present an

anonymization framework to preserve both instances of spatio-temporal doublets and fre-

quent sequences in trajectory data.

[14, 15] focus on minimal data distortion and [9, 38] focus on preserving maximal

frequent sequences. None of these works focuses on preserving information quality for

generating passenger flowgraphs. In contrast, the main goal in this thesis is to preserve
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both spatio-temporal data privacy and information quality for passenger flow analysis. By

using a sequence of local and global suppression, our proposed algorithm efficiently and

effectively addresses the special challenges in trajectory data anonymization for passenger

flow analysis.
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Chapter 3

Problem Description

The input trajectory database, the LK-privacy model, and the passenger flowgraph are

formally defined in this chapter.

3.1 Trajectory database

A typical Smart Card Automated Fare Collection (SCAFC) system records the smart card

usage data in the form of (ID, loc, t), representing a passenger with a unique identifier ID

who entered the transportation system at location loc at time t. The trajectory of a passenger

consists of a sequence of spatio-temporal doublets (or simply doublets) in the form of

(lociti). The trajectories can be efficiently constructed by first grouping all (ID, loc, t)

entries by ID and then sorting them by time t. Formally, a trajectory database contains a

collection of data records in the form of

ID, 〈(loc1t1)→ . . .→ (locntn)〉, Y1, . . . , Ym

where ID is the unique identifier of a passenger (e.g., smart card number), 〈(loc1t1) →

. . . → (locntn)〉 is a trajectory, and yi ∈ Yi are relational attributes, such as job, sex, and

age. Following convention, we assume that explicit identifying information, such as name,
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SSN, and telephone number, has already been removed. The timestamps in a trajectory

increase monotonically. Thus, 〈a3 → c2〉 is an invalid trajectory. Yet, a passenger may

revisit the same location at a different time, so 〈a3→ c7→ a9〉 is a valid trajectory. Given

a trajectory database, an adversary can perform identity linkage attacks by matching the

trajectories and/or the QID attributes. Many data anonymization techniques [17, 29, 35,

48, 58] have been previously developed for relational QID data; in this thesis we focus on

anonymizing the trajectories, instead.

3.2 Privacy model

Suppose an adversary who has access to the released trajectory database T attempts to

identify the record of a target victim V in T . We adopt the LK-privacy model from [40]

and customize it for thwarting identity linkage attacks on T . LK-privacy is based on the

assumption that the attacker knows at most L spatio-temporal doublets about the victim,

denoted by q = 〈(loc1t1) → . . . → (locqtq)〉, where 0 < |q| ≤ L. Using this background

knowledge, an adversary can identify a group of records, denoted by T (q), that “contains”

q. A record contains q if q is a subsequence of the record. For example, in Table 1, the

records with ID#1, 7, 13 contain q = 〈b2→ e5〉.

Definition 3.1 (Identity linkage attack). Given background knowledge q, T (q) is a set of

records that contains the record of victim V . If the group size of T (q), denoted by |T (q)|,

is small, then the adversary may identify V ’s record from T (q).

For example, in Table 1, if q = 〈b2 → c9〉, then T (q) contains ID#1 and |T (q)| = 1.

The attack reveals other visited locations and potentially other relational attributes of the

victim.

To thwart identity record linkage, LK-privacy requires every sequence with a maximum

length of L in T to be shared by at least a certain number of records K.
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Definition 3.2 (LK-privacy). Let L be a user-specified threshold indicating the maximum

length of the adversary’s background knowledge. A trajectory database T satisfies LK-

privacy if, and only if, for any non-empty sequence q with length |q| ≤ L in T , |T (q)| ≥ K,

where K > 0 is a user-specified anonymity threshold.

LK-privacy guarantees that the probability of a successful identity linkage to a victim’s

record is bounded by 1/K.

3.3 Passenger probabilistic flowgraph

The measure of information quality varies depending on the data mining task to be per-

formed on the published data. Previous works [17, 32] suggest that anonymization algo-

rithms can be tailored to better preserve information quality if the quality requirement is

known in advance. In this thesis, we aim at preserving the information quality for sup-

porting effective passenger flow analysis. More specifically, we would like to preserve

the passenger flow information in terms of a passenger probabilistic flowgraph generated

from the anonymized trajectory data. A passenger flowgraph can reveal hot paths and hot

spots in different periods of time that may not be apparent from the raw data. This knowl-

edge is also useful for studying the interactions between passengers and the transportation

infrastructures.

Definition 3.3 (Passenger probabilistic flowgraph). Let D be the set of distinct doublets

in a trajectory database T . A passenger probabilistic flowgraph (or simply flowgraph) is a

tree in which each node d ∈ D, and each edge is a 2-element doublet {dx, dy} representing

the transition between two nodes, with probability denoted by prob(dx → dy).

The transitional probability prob(dx → dy) captures the percentage of passengers at

doublet dx who moved to dy. In case dx = dy, the probability indicates the percentage of

passengers who terminated their journey at dx. Given a node dx,
∑
prob(dx → dy) = 1
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over all out-edges dy of dx. For example, in Figure 2, 50% of the passengers who have

visited 〈e5 → e7〉 will then visit c9. The remaining 50% of passengers terminate their

journey at e7.

The function Info(d) measures the information quality of a distinct doublet d in a

trajectory database T with respect to the flowgraph generated from T :

Info(d) = α(d)× wα + β(d)× wβ + γ(d)× wγ (1)

where α(d) is the number of instances of d in the flowgraph, β(d) is the total number

of child nodes of d in the flowgraph, γ(d) is the number of root-to-leaf paths containing

d in the flowgraph, and wα, wβ , and wγ are the weights on the α, β, and γ functions,

respectively. The weights, 0 ≤ wα, wβ, wγ ≤ 1 and wα + wβ + wγ = 1, allow users

to adjust the importance of each property according to their required analysis. Similarly,

the function Info(T ) measures the information quality of a trajectory database T by the

summation of the information quality Info(d) over all distinct doublets in T with respect

to the flowgraph generated from T .

Example 3.1. Consider doublet b2 in Figure 2. α(b2) = 3 because three nodes in the

flowgraph contain b2. β(b2) = 5 because the three instances of b2 have five child nodes

in total. γ(b2) = 6 because six root-to-leaf paths in the flowgraph contain b2. Suppose

wα = 0.5, wβ = 0.3, and wγ = 0.2. Info(b2) = 3× 0.5 + 5× 0.3 + 6× 0.2 = 4.2.

3.4 Problem statement

The problem of trajectory data anonymization for passenger flow analysis is defined below:

Definition 3.4. Given a trajectory database T and a user-specifiedLK-privacy requirement,

the problem of trajectory data anonymization for passenger flow analysis is to transform
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T into another version T ′ such that T ′ satisfies the LK-privacy requirement with maximal

Info(T ′), i.e., with local minimal impact on the passenger probabilistic flowgraph.
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Chapter 4

The anonymization algorithm

Our proposed anonymization algorithm consists of three steps. The first step is to gener-

ate the probabilistic flowgraph from the raw trajectory database T . The second step is to

identify all sequences that violate the given LK-privacy requirement. The third step is to

eliminate the violating sequences from T by a sequence of suppressions with the goal of

minimizing the impact on the structure of the flowgraph generated in the first step. Each

step is further elaborated as follows.

4.1 Generating probabilistic flowgraph

To build a probabilistic flowgraph, the first step is to build a prefix tree from the raw trajec-

tories. Each root-to-leaf path represents a distinct trajectory. Each node maintains a count

that keeps track of the number of trajectories sharing the same prefix. The transitional prob-

abilities (Definition 3.3) as well as the α(d), β(d), and γ(d) (Equation 1) of each distinct

doublet d in the trajectory database can be computed from the counts in the prefix tree. The

entire step requires only one scan on the trajectory database records.
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4.2 Identifying violating sequences

An adversary may use any non-empty sequence with length not greater than L as back-

ground knowledge to perform a linkage attack on the trajectory data. By Definition 3.2, a

sequence q with 0 < |q| ≤ L in T is a violating sequence if the number of trajectories in T

containing q is less than the user-specified threshold K.

Definition 4.1 (Violating sequence). Let q be a sequence of a trajectory in T with 0 < |q| ≤

L. q is a violating sequence with respect to a LK-privacy requirement if |T (q)| < K.

Example 4.1 (Violating sequence). Consider Table 1. Given L = 2 and K = 2, the

sequence q1 = 〈a1→ c9〉 is a violating sequence because |q1| = 2 ≤ L and |T (q1)| = 1 <

K. However, the sequence q2 = 〈c3 → e7 → d8〉 is not a violating sequence even though

|T (q2)| = 1 < K because |q2| = 3 > L.

Enforcing theLK-privacy requirement is equivalent to removing all violating sequences

from the trajectory database. An inefficient working solution is to first generate all possible

violating sequences and then remove them. Consider a violating sequence q that by defini-

tion has |T (q)| < K. Thus, any super sequence of q in T must also be a violating sequence.

Therefore, the number of violating sequences is huge, making this approach infeasible to

be applied on real-life trajectory data. Instead, Chen et al. [9] observe that every violating

sequence must contain at least one minimal violating sequence, and eliminating all minimal

violating sequences guarantees to eliminate all violating sequences.

Definition 4.2 (Minimal violating sequence). A violating sequence q is a minimal violating

sequence (MVS) if every proper subsequence of q is not a violating sequence [9].

Example 4.2 (Minimal violating sequence). Consider Table 1. Given L = 2 and K = 2,

the sequence q1 = 〈b2 → c9〉 is a MVS because |T (q1)| = 1 < K, and all of its proper

subsequences, namely b2 and c9, are not violating sequences. In contrast, the sequence
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Algorithm 1 Identifying minimal violating sequences (MVS)
Require: Raw trajectory database T
Require: Thresholds L, K
Ensure: Minimal violating sequences MV S

1: C1 ← all distinct doublets in T ;
2: i← 1;
3: while i ≤ L and Ci 6= 0 do
4: Scan T once to compute |T (q)|, for ∀q ∈ Ci;
5: for ∀q ∈ Ci where |T (q)| > 0 do
6: if |T (q)| < K then
7: MV Si =MV Si ∪ {q};
8: else
9: NV Si = NV Si ∪ {q};

10: end if
11: i++;
12: end for
13: Ci ← NV Si−1 on NV Si−1;
14: for ∀q ∈ Ci do
15: if ∃v ∈MV Si−1 such that q A v then
16: Ci = Ci − {q};
17: end if
18: end for
19: end while
20: return MV S =MV S1 ∪ · · · ∪MV Si−1;

q2 = 〈c3→ d4〉 is a violating sequence but not a MVS because d4 is a violating sequence.

Chen et al. [9] prove that a trajectory database T satisfies (KC)L-privacy if, and only if,

T contains no minimal violating sequence. (KC)L-privacy is a generalized privacy model

of LK-privacy, so the same proof is applicable to LK-privacy by setting the confidence

threshold C = 100% in the proof.

Algorithm 1 presents a procedure to identify all minimal violating sequences, MV S,

with respect to a given LK-privacy requirement. First, C1 contains all distinct doublets,

representing the set of candidate sequences with length 1. Then it scans the trajectory

database T once to count the support of each sequence q in Ci (Line 4). Then, for each q in

Ci, if |T (q)| is less than K, it is added to MV Si (Line 7); otherwise, it is added to NV Si
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(Line 9), which will be used to generate the next candidate set Ci in the next iteration.

Generating the next candidate set consists of two steps. First, a self-join of the non-violating

sequence set, NV Si−1, is conducted (Line 13). Two sequences qx = (locx1t
x
1) → . . . →

(locxi t
x
i ) and qy = (locy1t

y
1) → . . . → (locyi t

y
i ) can be joined if the first i − 1 doublets are

identical and txi < tyi . The joined sequence is (locx1t
x
1)→ . . .→ (locxi t

x
i )→ (locyi t

y
i ). This

definition assures that all candidates from self-join would be generated only once. Second,

for each q in Ci, if q is a super sequence of any sequence in MV Si−1, q will be removed

from Ci (Lines 14-18) because by definition q cannot be a minimal violating sequence.

Line 20 returns all minimal violating sequences.

Example 4.3. GivenL = 2 andK = 2, the MVS set generated from Table 1 isMV S(T ) =

{d4, a1→ c9, b2→ c9, c3→ c9}.

4.3 Removing violating sequences

After all minimal violating sequences are identified, the next step is to eliminate them

with the goal of minimizing the impact on information quality for passenger flow analysis.

However, finding an optimal solution based on suppressions forLK-privacy is NP-hard [9].

Thus, we propose a greedy algorithm to efficiently eliminate minimal violating sequences

with a reasonably good sub-optimal solution.

Suppressing a doublet generally increases privacy and decreases information quality.

Intuitively, a doublet d is a good candidate for suppression if suppressing it would result in

eliminating a large number of MVS’s and would have local minimal impact on the passen-

ger flowgraph. Equation 2 measures the goodness of suppressing a doublet d:

Score1(d) =
PrivGain(d)

Info(d)
(2)

where PrivGain(d) is the number of MVS that can be eliminated by suppressing d and
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Info(d) measures the information quality of a doublet d defined in Equation 1. The greedy

function considers both data privacy and information quality simultaneously by selecting a

suppression with the maximum privacy gain per unit of information loss.

We also define three other functions for comparison: Score2(d) randomly selects a

doublet for suppression without considering PrivGain(d) and Info(d):

Score2(d) = 1 (3)

Score3(d) aims at maximizing PrivGain(d) without considering Info(d):

Score3(d) = PrivGain(d) (4)

Score4(d) aims at minimizing loss of Info(d) without considering PrivGain(d):

Score4(d) =
1

Info(d)
(5)

Most of the previous works on trajectory anonymization [14, 15, 38] employ global

suppression, which guarantees that globally suppressing a doublet d does not generate new

MVS. In other words, the number of MVS monotonically decreases with respect to a se-

quence of suppressions [9]. Yet, local suppression does not share the same property. For

example, locally suppressing b2 from ID#1 in Table 1 generates a new MVS 〈a1 → b2〉

because the support |T (a1→ b2)| = 2 decreases to |T ′(a1→ b2)| = 1 < K, where T ′ the

database resulted from the local suppression. Identifying the newly generated MVS is an

expensive computational process and there is no guarantee that the anonymization process

can be completed within a |MV S| number of iterations. To overcome this challenge, a

local suppression is performed only if it does not generate any new MVS.

Definition 4.3 (Valid local suppression). A local suppression over a trajectory database is
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Algorithm 2 Check validity of a local suppression
Require: Trajectory database T
Require: Thresholds L, K
Require: A doublet d in a minimal violating sequence m
Ensure: A boolean indicating if locally suppressing d from m is valid

1: D′ ← {d′ | d′ ∈ D, d′ ∈ T (m), d′ ∈ (T (d)− T (m))};
2: MV S1← {m1 |m1 ∈MV S, |m1| = 1}
3: MV S ′ ← {m′ |m′ ∈MV S, d ∈ m,MV S(d)} ∪MV S1;
4: Remove all doublets, except for d, in MV S ′ from D′;
5: Q ← all possible sequences with size ≤ L generated from d after removing super

sequences of the sequences in MV S − T (d);
6: Scan T (d)− T (m) once to compute |q|;
7: for each sequence q ∈ Q with |q| > 0 do
8: if |q| < K then
9: return false;

10: end if
11: end for
12: return true;

valid if it does not generate any new MVS [9].

Algorithm 2 checks the validity of suppressing a doublet d from a minimal violating

sequence m. Let D′ be the set of distinct doublets that coexist in both T (m) and T (d) −

T (m) (Line 1). Let MV S1 be the set of size-one MVS (Line 2). Let MV S ′ be the union

of MVS containing d and MV S1 (Line 3). Line 4 then removes all doublets, except for d,

in MV S ′ from D′ because such a doublet is already a MVS, or a subsequence of a MVS,

and is not a future MVS candidate. Line 5 generates all possible candidates, which can be

new MVS. Line 6 scans all records containing d to compute |q| for each q ∈ Q. For each

q in Q whose length is less than K, the algorithm returns false, indicating an invalid local

suppression.

Algorithm 3 summarizes the anonymization algorithm. Line 1 generates the flowgraph

from the trajectory database, which is then needed to compute Info of doublets. Line

2 calls Algorithm 1 to generate all the minimal violating sequences MV S. Line 3 calls

Algorithm 2 to calculate the score of all doublet instances and stores the results in the
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Algorithm 3 Anonymize trajectory data
Require: Trajectory database T
Require: Thresholds L, K
Ensure: Anonymous T ′ satisfying the given LK-privacy requirement

1: Generate Flowgraph from database T ;
2: Generate MV S(T ) by Algorithm 1;
3: Build Score table by Algorithm 2;
4: while Score table 6= 0 do
5: Select a doublet d with the highest score from its MVS m;
6: if d is a local suppression then
7: MV S ′ ← {m′ |m′ ∈MV S, d ∈ m′ ∧ T (m′) = T (m)};
8: Suppress the instances of d from T (m);
9: else

10: MV S ′ ←MV S(d);
11: Suppress all instances of d in T ;
12: end if
13: Update the Score(d′) if both d and d′ are in MV S ′;
14: MV S =MV S −MV S ′;
15: end while
16: return the suppressed T as T ′;

Score table. In each iteration, a doublet d with the highest score from its MVS m is

selected. If the selected suppression d is a local suppression, then Line 7 identifies the set

of MVS, denoted byMV S ′, that will be eliminated due to locally suppressing d, and Line 8

removes the instances of d from the records T (m). If the selected suppression d is a global

suppression, then Line 10 identifies the set of MVS, denoted byMV S ′, that contains d, and

Line 11 suppresses all instances of d from T . Line 13 updates the Score table for the next

round and Line 14 removes the suppressed MVS of d from MV S. The algorithm repeats

these operations until the Score table becomes empty.

Next, we analyze the computational complexity of our anonymization algorithm. The

proposed algorithm consists of three steps. The first step is to generate the flowgraph,

which requires one scan on the trajectory database to build a prefix tree. We generate

the flowgraph whose computational time is equal to
∑|T |

i=1 |ti|, where |T | is the number

of records in T and |t| is the number of doublets in each record. Usually, the number of
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doublets in a records is small and it is reasonable to |ti| = |t|. Hence, the cost is bounded

to the size of the database, |T |. In the second step, we identify all MVS. Here the most

expensive operation is scanning the raw trajectory database T once for all sequences in

each candidate set Ci. The cost is
∑L

i=1 |Ci|i, where |Ci| is the size of candidate set Ci.

Since C1 consists of the all size-one sequences, its size would be the number of distinct

doublets in T that is the number of dimensions, |s|. By self-joining W1, which consists

of all size-one and non-violating sequences from C1, C2 is generated; therefore ,the upper

bound of C2 is |s|(|s| − 1)/2. However, for i ≥ 3, the size of the candidate sets does

not increase significantly because for all candidates, the two sequences need to share the

same prefix in order to perform the self-join and be the future candidate for MVS. Also,

the pruning process in Algorithm 1 greatly reduces the candidate search space. Therefore,

a good approximation is C ≈ |s|2. However, in the worst case, the computational cost of

the second step is bounded by O(|s|L|T |), where |T | is the number of records in T . The

third step is the anonymization process, which includes calculating scores for each MVS in

table Score, and then removing all MVS iteratively. The most costly operation is to check

if the instances of the doublets in MV S(T ) are valid for local suppression. The number

of instances of doublets in MV S(T ) is less than
∑L

i=1 |Ci|i, and thus is also bounded by

|s|L. For every instance in MV S(T ), it is necessary to call Algorithm 2 at most twice, and

in the worst case, for each call all records in T need to be scanned. Hence, the cost is still

bounded by O(|s|L|T |). By incorporating all steps, the complexity of the entire algorithm

is O(|s|L|T |). In addition to the theoretical analysis above, the scalability of our algorithm

is further experimentally validated in Chapter 5.2.
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Chapter 5

Experimental Evaluation

The experimental evaluation serves two purposes. First, we want to evaluate the impact

of anonymization on the information quality of the flowgraph with respect to different

privacy parameters and weights. Second, we want to evaluate the efficiency of our proposed

algorithm.

To evaluate the impact of anonymization we introduce a new similarity measureϕ(G,G′)

to measure the similarity between the flowgraph G generated from the raw trajectory data

and the flowgraph G′ generated from the anonymized trajectory data. Algorithm 4 illus-

trates the procedure for computing ϕ(G,G′). First, all distinct doublets of each flowgraph

are sorted by time and location (Lines 1-3). Then, for each pair of identical doublets d ∈ G

and d′ ∈ G′ the algorithm computes α(d), β(d), γ(d), α(d′), β(d′), and γ(d′); computes

the ratios among them; and then sums up the ratios, denoted by aSum, bSum, and cSum

(Lines 5-16), respectively. In case d is a leaf node, β(d) = 0. To avoid dividing by zero,

Line 9 skips the division, uses the counter i to keep track of the number of doublets having

β(d) = 0, and subtracts i from the total number of distinct doublets in Line 18. Line 19

returns the similarity measure ϕ, which is a weighted sum of the ratios.

We could not directly compare our proposed algorithm with previous works [2, 9, 46,

52, 62] on trajectory data anonymization because their proposed solutions do not consider
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Algorithm 4 Comparing two flowgraphs
Require: Flowgraph G
Require: Flowgraph G′

Require: Weights wα, wβ, wγ
Ensure: Similarity measure ϕ

1: UL← {d | d ∈ G};
2: UL′ ← {d′ | d′ ∈ G′};
3: Sort UL and UL′ by time and location;
4: i← 0;
5: for each d ∈ UL do
6: for each d′ ∈ UL′ do
7: if d = d′ then
8: aSum += α(d′)

α(d)
;

9: if β(d) 6= 0 then
10: bSum += β(d′)

β(d)
;

11: else
12: i++;
13: end if
14: cSum + = γ(d′)

γ(d)
;

15: end if
16: end for
17: end for
18: ϕ← aSum

|G| × wα +
bSum
|G|−i × wβ +

cSum
|G| × wγ;

19: return ϕ;

preserving information in a passenger flowgraph. Thus, we compare our results with the

results generated from K-anonymous data.

Two data sets, Metro200K and STM514K, are used in the experiments. Metro200K is a

data set simulating the travel routes of 200,000 passengers in the Montréal subway transit

system with 29 stations in 24 hours, forming 696 dimensions. STM514K is a real-life data

set provided by Société de transport de Montréal (STM) 1. It contains the transit data of

514,213 passengers among 65 subway stations within 48 hours, where the time granularity

is set to the hour level. The properties of the two experimental data sets are summarized in

Table 5.
1www.stm.info
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Table 5: Experimental data set statistics

Data sets Records |T | Dimensions |s| Data size (Kbytes) Data type
Metro200K 200,000 696 12,359 Synthetic
STM514K 514,213 3120 12,910 Real-life

5.1 Information quality

We evaluate the information quality by calculating the similarity of the raw flowgraph and

the anonymized flowgraph in terms of varyingK, L, and weights. We also show the benefit

of a reasonable L value over the traditionalK-anonymity in combination with other param-

eters. High-dimensional trajectory data are usually sparse. Consider passengers in transit

systems. Among all available locations and all possible timestamps, they may visit only a

few locations at a few timestamps, making the trajectory of each individual relatively short.

In real-life trajectory data the average length of a trajectory equals to 4 sequences. There-

fore, it is reasonable to set L = 3. Setting L to a greater value means that the adversary

has almost complete knowledge about his victim, which in turn means there is no need for

further identity linkage attack.

In real-life passenger flow analysis, an analyst may want to emphasize preserving dif-

ferent properties in a passenger flowgraph by adjusting the weights. Thus, we create two

scenarios with different weights.

5.1.1 Scenario 1

Subway stations provide a unique opportunity for out-of-home marketing. Suppose that

a company is granted permission to display their advertisements in the subway stations.

The company may request the metro company to share the anonymized trajectory data for

research purposes. In this case, it is reasonable to put more emphasis on α, which represents

the number of instances of each station in the flowgraph. Accordingly, we set wα = 0.5,

wβ = 0.3, and wγ = 0.2.

39



Figure 6: Similarity vs. K(L = 3, wα = 0.5, wβ = 0.3, wγ = 0.2)

Figure 6.a depicts the similarity measure ϕ of the two flowgraphs before and after the

anonymization for L = 3 and 10 ≤ K ≤ 100, with different Score functions on the

Metro200K data set. WhenK = 10, the similarity is 0.99, indicating almost no information

has been lost in terms of the flowgraph. As K increases, the similarity decreases. This

shows a trade-off between data privacy and the information quality of the flowgraph. The

results of K-anonymity are achieved by setting L = |s|, where |s| is the number of distinct

doublets in the given data set. The experimental results suggest that applying LK-privacy

does produce less information loss than applying traditional K-anonymity, with respect to
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Figure 7: Similarity vs. K(L = 3, wα = 0.3, wβ = 0.5, wγ = 0.2)

passenger flow analysis. To show that the benefit is statistically significant, we conduct a

one-tail t-test on the 10 pairs of test cases from 10 ≤ K ≤ 100. The p-values for Score1,

Score2, Score3, and Score4 in Figure 6.a are 1.75E-3, 1.28E-2, 5.67E-4, and 1.58E-3,

respectively. Figure 6.b depicts the similarity measure ϕ of the flowgraphs before and after

the anonymization for L = 3 and 10 ≤ K ≤ 100 with different Score functions on the

STM514K data set. Similar trends can be observed. The p-values for Score1, Score2,

Score3, and Score4 in Figure 6.b are 2.83E-3, 1.09E-2, 3.8E-4, and 2.18E-2, respectively,

showing that the benefit is statistically significant at α = 5%.
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5.1.2 Scenario 2

In this scenario, the weights are set at wα = 0.3, wβ = 0.5, and wγ = 0.2, with L = 3 and

10 ≤ K ≤ 100. The results in Figures 7.a and 7.b in this scenario indicate that our proposed

algorithm still performs best, suggesting that our method is robust against different weights

and different scenarios of flowgraph analysis. The behaviour of our algorithm is similar in

both scenarios. For example, in both scenarios we have almost the same results forK = 70,

even though the weight α in Scenario 1 is much higher than the weight α in Scenario 2.

The results further confirm that our score functions in general produce better infor-

mation quality than K-anonymity, except for Score2, which suppresses MVS randomly.

To show that the benefit of our proposed algorithm over K-anonymity is significant, we

conducted a one-tail t-test on 10 pairs of test cases from 10 ≤ K ≤ 100. The p-values

for Score1, Score2, Score3, and Score4 in Figure 7.a are 4.75E-3, 2.8E-3, 4.67E-3, and

9.08E-3, respectively. The p-values for Score1, Score2, Score3, and Score4 in Figure 7.b

are 3.98E-3, 5.0E-2, 4.5E-3, and 2.88E-3, respectively, showing that the benefit is statisti-

cally significant at α = 5%.

5.2 Scalability

Next, we demonstrate the scalability of our proposed algorithm on a relatively large trajec-

tory data set. The setting is similar to Metro200K but of larger size. Since the complexity

is dominated by the number of dimensions |s| and the number of records |T |, we examine

the performance of our framework with respect to |s| and |T |.

5.2.1 Effect of number of records |T |

Figures 8.a and 9.a illustrate the runtime of our algorithm on a data set with 4,000 di-

mensions and sizes ranging from 400,000 records to 1,200,000 records. In Figure 8.a we
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Figure 8: Scalability (L = 3, K = 30)

observe that the runtime for generating the flowgraph is linear and proportional to the num-

ber of records. The algorithm takes less than 15 seconds to generate the flowgraph from

1.2 million records. As |T | increases, the runtime of identifying MVS also increases lin-

early. The runtime of suppression, however, decreases rapidly as the number of records

increases. This is due to the fact that when the number of records increases, there is a

substantial reduction in the number of MVS; therefore, it takes less time to suppress them.
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Figure 9: Scalability (L = 3, K = 30)

5.2.2 Effect of dimensionality |s|

Figures 8.b and 9.b depict the runtime of our algorithm on a data set of 1 million records,

with the number of dimensions (number of distinct doublets) ranging from 4,000 to 8,000.

Figure 8.b shows that increasing the number of dimensions has no significant effect on

the runtime of flowgraph generation. However, when the number of dimensions increases,

the runtime of identifying MVS increases because increasing the number of dimensions

introduces a larger number of distinct sequences, which in turn increases the number of

MVS and the runtime for removing them.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

With the advancement of the use of technology in transportation companies there is a strong

tendency toward sharing information for analysis purposes. Consequently, sharing high-

dimensional passenger-specific trajectory data raises new privacy concerns that cannot be

appropriately addressed by traditional privacy protection techniques.

In this thesis, we study the problem of anonymizing high-dimensional trajectory data

for passenger flow analysis. We demonstrate that applying traditional K-anonymity to tra-

jectory data is not effective for flow analysis. Thus, we adapt the LK-privacy model for

trajectory data anonymization. We present an anonymization algorithm that thwarts identity

record linkages while effectively preserving the information quality for generating a prob-

abilistic passenger flowgraph on uncertain data. The originality of our approach derives

from the utilization of the probabilistic flowgraph as the measure of information quality in

the anonymization process. Extensive experimental results on both real-life and synthetic

passenger trajectory data suggest that data privacy can be achieved without compromising

the information quality of passenger flowgraph analysis.
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6.2 Future work

By deploying various location-aware devices in transportation systems, such as contactless

smart cards or RFID cards and GPS receivers, massive volume of spatio-temporal trajec-

tory data is generated daily. Such data can be used to study and monitor the traffic flow

in the anonymized trajectory data. In this thesis, the focus is specifically on preserving

information quality for passenger flow analysis. By utilizing a probabilistic flowgraph, the

proposed method in this thesis can be applied to study the anonymization of trajectory data

for traffic flow analysis which studies the interaction between vehicles, drivers, and even

infrastructures such as highways and traffic control devices. Hence, our future work will

focus on preserving the privacy of high-dimensional data for traffic flow analysis.

We will study the anomyziation of high-dimensional trajectory data for traffic flow anal-

ysis in a transportation system by considering two aspects. First, it is more efficient and

beneficial for a transportation company to designate routes with the shortest travel time for

their passengers. Second, the company requires to take into consideration the availability of

transportation utilities such as bus stops. Considering both the shortest travel time and the

availability benefit both the transportation company and the passengers. By reducing the

travel time the passengers would reach their destination sooner, while it would reduce the

costs for transportation company, as well. On the other hand, routes with shorter travel time

should not decrease the availability of transportation’ utilities for passengers. For example,

if the company places its bus stations in a way which leads to a short travel time, but the sta-

tions are far away from passengers access, it is more likely that few passengers would use

that particular bus line. Therefore, it is required to preserve the paths in the network which

have the shortest travel time and provide the most availability to the passengers. Conse-

quently, in our future work the proposed probabilistic flowgraph can be incorporated in an

anonymization framework in a transportation system to provide both better monitoring and

optimization of the designated bus routes and privacy preservation.
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