
PRIVACY-PRESERVING DATA-AS-A-SERVICE

MASHUPS

MAHTAB ARAFATI

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

SEPTEMBER 2013

c© MAHTAB ARAFATI, 2013

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mahtab Arafati

Entitled: Privacy-Preserving Data-as-a-Service Mashups

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Information Systems Security

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Abdessamad Ben Hamza Chair

Dr. Jeremy Clark Examiner

Dr. Anjali Agarwal Examiner

Dr. Benjamin Fung Supervisor

Approved by

Chair of Department or Graduate Program Director

September 12, 2013

Dr. Christopher Trueman, Dean

Faculty of Engineering and Computer Science

Abstract

Privacy-Preserving Data-as-a-Service Mashups

Mahtab Arafati

Data-as-a-Service (DaaS) is a paradigm that provides data on demand to consumers

across different cloud platforms over the Internet. Yet, a single DaaS provider may not be

able to fulfill a data request. Consequently, the concept of DaaS mashup was introduced to

enable DaaS providers to dynamically integrate their data on demand depending on con-

sumers’ requests. Utilizing DaaS mashup, however, involves some challenges. Mashing

up data from multiple sources to answer a consumer’s request might reveal sensitive in-

formation and thereby compromise the privacy of individuals. Moreover, data integration

of arbitrary DaaS providers might not always be sufficient to answer incoming requests.

In this thesis, we provide a cloud-based framework for privacy-preserving DaaS mashup

that enables secure collaboration between DaaS providers for the purpose of generating an

anonymous dataset to support data mining. We propose a greedy algorithm to determine

a suitable group of DaaS providers whose data can satisfy a given request. Furthermore,

our framework securely integrates the data from multiple DaaS providers while preserving

the privacy of the resulting mashup data. Experiments on real-life data demonstrate that

our DaaS mashup framework is scalable to large set of databases and it can efficiently and

iii

effectively satisfy the data privacy and data mining requirements specified by the DaaS

providers and the data consumers.

iv

Acknowledgments

I wish to express my gratitude and indebtedness to Dr. Benjamin C. M. Fung, for his

support, generous consultation and giving me his precious time throughout this study. In

this clear sighted way, he has always been inherently sympathetic and social in character,

a perspective which I am now beginning to understand after two years of study at this

university.

Furthermore, I am endlessly grateful to my family for their unwavering supports and

motivation throughout this entire process.

v

To my husband Mahdi with love.

vi

Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Background 5

2.1 Preliminaries . 5

2.1.1 Privacy Models . 6

2.1.2 Anonymization Techniques . 11

2.1.3 Privacy-Preserving High-Dimensional Data Mashup (PHDMashup) 13

2.1.4 Platform-as-a-Service (PaaS) . 14

2.2 Related Work . 16

2.2.1 Privacy-Preserving Data Publishing (PPDP) 16

2.2.2 Privacy-Preserving Distributed Data Mining (PPDDM) 18

2.2.3 Privacy-Preserving Data Integration 19

2.2.4 Web Service Discovery for Data Integration 20

vii

3 The Participants 22

3.1 DaaS Providers . 23

3.2 Data Consumers . 26

3.3 Mashup Coordinator . 27

3.4 Problem Statement . 27

4 The DaaS Mashup Framework 29

4.1 Solution Overview . 29

4.2 The Architecture . 30

4.3 Identify Contributing DaaS Providers . 31

4.4 Compute Total Price . 34

4.5 Construct Mashup table TM . 35

4.6 Request Satisfaction . 36

5 Experimental Evaluation 39

5.1 Implementation . 39

5.2 Impact of Privacy Requirements on Revenue 41

5.3 Efficiency and Scalability . 43

6 Conclusion 48

6.1 Summary of Contributions . 48

6.2 Future Work . 49

Bibliography 51

viii

List of Figures

1 Taxonomy Trees for Job, Age, Sex . 9

2 Windows Azure SQL Database Data Access 15

3 The Framework . 23

4 Framework for Privacy-Preserving Data-as-a-Service Mashups: Implemen-

tation Architecture . 30

5 Data Request Satisfaction . 37

6 Impacts of Threshold L on DaaS Provider’s Revenue 41

7 Impacts of Threshold K on DaaS Provider’s Revenue 42

8 Impacts of Threshold C on DaaS Provider’s Revenue 42

9 Efficiency (Accreq = 70, BPricereq = 3000) 43

10 Efficiency (Accreq = 80, BPricereq = 9000) 44

11 Efficiency (Accreq = 90, BPricereq = 15000) 44

12 Scalability (Accreq = 70, BPricereq = 3000) 45

13 Scalability (Accreq = 80, BPricereq = 9000) 46

14 Scalability (Accreq = 90, BPricereq = 15000) 46

ix

List of Tables

1 Raw Employee Data . 7

2 External Data Table . 8

3 3-Anonymous Employee Data by Generalization 9

4 2-Diverse Data table . 10

5 3-Anonymous Employee Data by Suppression 12

6 Attributes of Three DaaS Providers . 40

x

Chapter 1

Introduction

Mashup is a web technology that integrates information from multiple web applications

into a new web application. For instance, Trendsmap.com1 is a website that integrates

the data from Twitter and Google Maps. It displays the map of cities all over the world

on Google Maps with the most tweeted subjects from Twitter. Data mashup is a special

kind of mashup application for integrating information of multiple data providers based on

consumers’ requests. Data mashup is applicable for different purposes, such as managing

scientific research [But06] and addressing enterprises’ business needs [Jhi06].

Data-as-a-Service (DaaS) is an emerging cloud computing service that provides data

on demand to consumers across various cloud platforms via different network protocols

over the Internet. Utilizing DaaS not only supports data access from anywhere at anytime

but also reduces the cost of data management. We foresee that a new class of integration

technologies will emerge to serve data integration on demand using DaaS providers through

web services, and we call it DaaS Mashup.

In this thesis, we propose a privacy-preserving DaaS mashup framework that allows

DaaS providers to securely integrate and trade their collected person-specific survey data

1http://www.trendsmap.com/

1

to support data mining. In the market, DaaS providers can register and advertise their avail-

able data, and data consumers can submit their data mining requests, such as classification

analysis with a minimum accuracy requirement. Then a mashup coordinator in the frame-

work dynamically determines the group of DaaS providers whose data can fulfill the data

mining request, with the consideration of data availability, bid price, and data quality, such

as classification accuracy. The challenges of constructing a market for sharing survey data

are summarized as follows:

Challenge #1: Privacy concerns. DaaS providers are often reluctant to share the

person-specific data of their survey respondents because of data privacy. Many organi-

zations and companies believe that removing explicit identifying information, such as a

respondents’ name and SSN, from the released data is sufficient for privacy protection.

Yet, substantial research works [Swe02a] [Sam01] demonstrate that this naive approach is

insufficient because a respondent can be re-identified by simple linkage attacks on other

attributes called quasi-identifiers (QID). Two types of privacy concerns have to be ad-

dressed in our proposed DaaS mashup framework. First, the final mashup data has to be

anonymized in order to disable any potential linkage attacks. Second, during the mashup

process, no DaaS provider should learn more information from the other DaaS providers

other than that is revealed in the final mashup data.

Challenge #2: Data quality concerns. Protecting privacy is important. Yet, it is

also equally important to ensure that the final mashup data contributed by multiple DaaS

providers is useful for a given consumer’s data request. A data request can range from a

simple data query to a complex data mining request. The challenge is how to ensure that

the data quality of the final anonymized mashup data meets the data request.

Challenge #3: Matching data requests. Every registered DaaS provider owns differ-

ent data attributes, imposes different levels of privacy protection, and advertises their data

2

with different prices. Data coming from a single DaaS provider may not be sufficient to ful-

fill a data request; subsequently, selecting the appropriate combination of DaaS providers

is a non-trivial task. The selection process has to consider the consumer’s data attribute

requirement, data quality requirement, and bid price as well as the DaaS providers’ privacy

requirements.

The contributions of this thesis can be summarized as follows:

Contribution #1. To the best of our knowledge, this is the first work that proposes a

cloud-based DaaS framework to integrate private data from multiple DaaS providers with

the goal of preserving both data privacy and the data mining quality of the underlying data.

Section 3 provides a formal description of the objectives and behaviour of the participants

in the proposed framework.

Contribution #2. Vaculin et al. [VHNS08] presented a web service framework to an-

swer a request coming from a consumer with the assumption that a single provider can

fulfill the request. In contrast, we remove such an assumption and dynamically identify the

combination of DaaS providers whose data can best satisfy the data privacy, data quality,

and price requirements. If no providers can fulfill the request with the offered price, alterna-

tive solutions with a higher price or lower data quality requirements will be recommended.

Section 4 presents the proposed framework and algorithms.

Contribution #3. We performed experimental evaluation on real-life data to measure

the impact of the DaaS providers’ revenue, the efficiency, and scalability of our proposed

market framework with respect to different privacy levels. Extensive experimental results

suggest that our framework is efficient in terms of processing various sizes of queries with

regard to data quality and bid price. Section 5 shows the experimental results.

The rest of the thesis is organized as follows. Chapter 2 reviews the preliminaries

together with related works. Chapter 3 describes the participants of our framework and

provides the formal definition for our DaaS mashup framework. Chapter 4 illustrates our

3

proposed solution. Comprehensive experimental results are presented in Chapter 5. Finally,

we conclude the thesis and identify some future works in Chapter 6.

4

Chapter 2

Background

In this chapter, we review the preliminary constructs that are required to understand the

research problem and solution discussed in the subsequent chapters. Next, we review the

literature in the related research areas.

2.1 Preliminaries

In privacy-preserving data publishing, choosing the appropriate privacy model and anonymiza-

tion techniques are important issues. When a data provider publishes nothing, data privacy

is maximized, whereas privacy protection can not be guaranteed when a data provider re-

leases raw data without anonymization. Consequently, it is essential for a data provider to

employ a proper data privacy model and an anonymization mechanism. In this section, we

discuss different privacy models and anonymization techniques.

The scenario presented in this thesis involves multiple DaaS providers in a cloud en-

vironment. Thus, we will study a specific data mashup algorithm that is designed for

performing privacy-preserving data mashup on high-dimensional data [FTH+12]. Further-

more, we will discuss the concept of Platform-as-a-Service in cloud computing [MG11].

5

2.1.1 Privacy Models

In 1977 Dalenius [Dal77] provided a very stringent definition for privacy protection: "Ac-

cess to the published data should not enable the attacker to learn anything extra about any

target victim compared to no access to the database, even with the presence of any at-

tacker’s background knowledge obtained from other sources." Dwork [Dwo06], in 2006,

showed it is impossible to claim such an absolute privacy protection due to the presence

of an attacker’s background knowledge. Suppose the job of an individual is sensitive in-

formation. Assume an attacker knows that Bob’s job is a professional job. If an attacker

has access to a statistical database that discloses the professional jobs, then according to

Dalenius [Dal77], Bob’s privacy is compromised, regardless of whether or not his record

is in the database [Dwo06]. Consequently, an attacker having background knowledge can

perform various kinds of privacy attacks. Accordingly, different kinds of privacy models

have been proposed to address this issue.

In the most basic form of privacy-preserving data publishing (PPDP), the data pub-

lisher’s table has a form of:

D(Explicit_Identifier,Quasi_Identifier, Sensitive_Attributes,Non−
sensitive_Attributes),

where Explicit_Identifier is a set of attributes that explicitly identify an individual,

such as SSN and name. These attributes must be removed before publishing the data.

Quasi_Identifier (QID) is a set of attributes whose combined value may potentially iden-

tify an individual. For example, the combination of gender, native-country, and job. The

values of these attributes may be available publicly from other sources. Sensitive_Attributes

contain sensitive person-specific information, and an adversary is not permitted to link their

values with an identifier. Examples are disease, salary, etc. Non − sensitive_Attributes

consist of all attributes that do not fall into the previous three categories [BBSPA03]. Based

6

on quasi-identifiers, an attacker may still be able to perform different types of privacy at-

tacks. We explain the most common linkage attacks below.

Record linkage attack. In this attack, a small number of records in the released data

table T , named a group, can be identified by some value qid on QID. If the target vic-

tim’s QID matches the value qid, then the target victim is vulnerable to being linked to the

group. In this case, an adversary needs to use background knowledge to be able to identify

the victim’s record from the group.

Job Sex Age Salary
Writer Male 25 50K
Writer Male 21 50K
Dancer Male 27 35K
Dancer Male 25 30K
Engineer Female 38 50K
Doctor Female 30 45K
Doctor Female 30 45K

Table 1: Raw Employee Data

Example 1. Suppose an organization wants to publish an employee’s record in Table 1 to

a research center. If an adversary knows there is a record in the table that belongs to Bob, a

male writer who is 21 years old, he can deduce that Bob has a salary of 50K dollars because

there is only one record with qid =< Writer,Male, 21 > in the table.

Attribute linkage attack. This attack is not similar to record linkage attack as an adversary

may not need to exactly identify the record of a target victim V . In an attribute linkage

attack, an adversary could infer some sensitive information about V based on the set of

sensitive attributes associated with the group to which V belongs. In other words, he wants

to utilize background knowledge of the victim’s qid to infer sensitive values with a certain

degree of confidence. This attack is effective if the confidence, calculated by P (s|qid) =

7

|T [qid∧s]|
|T [qid]| , is high, i.e., |T [qid]|, the number of records in T containing qid, is small.

Name Job Sex Age
Bob Writer Male 21
Cathy Doctor Female 30
Peter Writer Male 25
Alice Doctor Female 30
John Writer Male 29
Henry Dancer Male 27
Renee Engineer Female 38
Bob Dancer Male 25
Linda Doctor Female 31

Table 2: External Data Table

Example 2. Following Table 1, the adversary can infer that all female doctors at age 30

have the sensitive attribute salary 45K. Applying this information to Table 2, an adversary

can infer that Alice has an income of 45K with 100% confidence, provided she comes from

the same population in Table 1. This example shows an effective attack because the number

of records in Table 2 containing qid =< Doctor, Female, 30 > is small.

In general, different privacy models have been proposed to prevent an adversary linking

to an individual with sensitive information, given the knowledge of the quasi-identifier at-

tributes. In this section, we discuss four different privacy models: K-anonymity [Sam01] [Swe02b],

�-Diversity [MKGV07], Confidence Bounding [WFY07], and LKC-Privacy [MFHL09].

K-Anonymity

The notion of K-anonymity, first proposed by Samarati and Sweeney [Sam01] [Swe02b],

is to prevent a record linkage attack through QID. K-anonymity declares the minimum

group size on QID in a table is K, and a table satisfying this requirement is called K-

anonymous. In a K-anonymous table, the probability of linking a victim to a certain record

through QID is at most 1/K because it is indistinguishable for an adversary to identify a

record from at least k − 1 other records with respect to QID.

8

Job Sex Age Salary
Artist Male [20-30) >40K
Artist Male [20-30) >40K
Artist Male [20-30) <40K
Artist Male [20-30) <40K

Professional Female [30-40) >40K
Professional Female [30-40) >40K
Professional Female [30-40) >40K

Table 3: 3-Anonymous Employee Data by Generalization

Job
ANY
Job
ANY

ArtistArtist ProfessionalProfessional

WriterWriter DancerDancer DoctorDoctor EngineerEngineer

Sex
ANY
Sex
ANY

FemaleFemale MaleMale

Age
ANY
Age
ANY

[30-40)[30-40)[20-30)[20-30)

[30-35)[30-35) [35-40)[35-40)

Figure 1: Taxonomy Trees for Job, Age, Sex

Example 3. Table 3 shows a 3-anonymous table; each group of distinct QID groups,

< Artist,Male, [20, 30) > and < Professional, Female, [30, 40) >, contains at least

3 records. This table generalizes QID = {Job, Sex,Age} from Table 1 using taxonomy

trees in Figure 1.

�-Diversity

Machanavajjhala et al. [MKGV07] proposed a �-diversity privacy model to prevent attribute

linkage attacks and pointed out that the K-anonymity model cannot prevent such attacks.

The �-diversity model needed every qid group to contain at least � "well-represented" sen-

sitive values. The notion of "well-represented" has different interpretations, which some

instantiations represented in [MKGV07]. The simplest one is to ensure that the sensitive

attribute has at least � distinct values in each qid group.

Example 4. Table 4 shows a 2-diverse table, in which each qid group contains at least two

distinct values. Thus, even if an adversary figures out the qid group containing the record

9

Job Sex Age Salary
Artist Male [20-30) >40K
Artist Male [20-30) >40K
Artist Male [20-30) <40K
Artist Male [20-30) <40K

Professional Female [30-40) >40K
Professional Female [30-40) >40K
Professional Female [30-40) >40K

Table 3: 3-Anonymous Employee Data by Generalization

Job
ANY
Job
ANY

ArtistArtist ProfessionalProfessional

WriterWriter DancerDancer DoctorDoctor EngineerEngineer

Sex
ANY
Sex
ANY

FemaleFemale MaleMale

Age
ANY
Age
ANY

[30-40)[30-40)[20-30)[20-30)

[30-35)[30-35) [35-40)[35-40)

Figure 1: Taxonomy Trees for Job, Age, Sex

Example 3. Table 3 shows a 3-anonymous table; each group of distinct QID groups,

< Artist,Male, [20, 30) > and < Professional, Female, [30, 40) >, contains at least

3 records. This table generalizes QID = {Job, Sex,Age} from Table 1 using taxonomy

trees in Figure 1.

�-Diversity

Machanavajjhala et al. [MKGV07] proposed a �-diversity privacy model to prevent attribute

linkage attacks and pointed out that the K-anonymity model cannot prevent such attacks.

The �-diversity model needed every qid group to contain at least � "well-represented" sen-

sitive values. The notion of "well-represented" has different interpretations, which some

instantiations represented in [MKGV07]. The simplest one is to ensure that the sensitive

attribute has at least � distinct values in each qid group.

Example 4. Table 4 shows a 2-diverse table, in which each qid group contains at least two

distinct values. Thus, even if an adversary figures out the qid group containing the record

9

Job Sex Age Salary
Writer Male * 50K
Writer Male * 50K
Writer Male * 35K

* Female 25 30K
* Female 25 30k
* Female 25 45K

Doctor * 38 70k
Doctor * 38 70k
Doctor * 38 40k

Table 4: 2-Diverse Data table

of an individual, he can determine the real sensitive value of the individual with no more

than 50% confidence.

Confidence Bounding

Wang et al. [WFY07] presented an alternative privacy model, Confidence Bounding, to

prevent attribute linkage attacks. They considered bounding the confidence of inferring

a sensitive value from a qid group by determining one or more privacy templates of the

form < QID → s, h >, where QID is a quasi-identifier, s is a sensitive value, and h is a

threshold.

Example 5. Consider QID = Job, Sex,Age, < QID →> 40K, 20% >, which states

the confidence of inferring someone’s salary >40K from any group on qid is no more than

20%. Table 3 shows this privacy template is violated because the confidence of inferring a

salary >40K is 50% in the group < Artist,Male, [20− 30) >.

LKC-Privacy

Many privacy models such as K-anonymity [Swe02a] [Sam01] [Swe02b] and its exten-

sions [LDR06a] [MKGV07] [XT06] have been proposed in the last decade to thwart record

and attribute linkage attacks in the context of relational databases. LKC-privacy [MFHL09]

was specifically designed for preventing linkage attacks on high-dimensional data, i.e., data

with a large number of attributes. A data mining request can be complicated and requires

10

many attributes from different data providers, often resulting in a high-dimensional inte-

grated table. Extensive experimental results [MFHL09] have shown that enforcing other

traditional privacy models would result in poor data mining quality in the anonymized data.

The general intuition of LKC-privacy is to ensure that every qid with a maximum

length L in the data table T is to be shared by at least a certain number of records K.

The confidence of inferring any sensitive values in S is at most C, where L,K,C are

data provider-specified privacy thresholds, and S is a set of sensitive values determined by

the data providers. The LKC-privacy model bounds the probability of a successful record

linkage attack to be ≤ 1/K and the probability of a successful attribute linkage attack to

be ≤ C, provided an adversary’s prior knowledge does not exceed L.

LKC-privacy generalizes several traditional privacy models. K-anonymity [Swe02a]

[Sam01] [Swe02b] is a special case of LKC-privacy if L = |QID| and C = 100%, where

|QID| is the number of QID attributes in the data table T . Confidence bounding [WFY07]

is also a special case of LKC-privacy if L = |QID| and K = 1. Consequently, traditional

models are available for data providers, if needed.

2.1.2 Anonymization Techniques

In order to achieve the privacy models, anonymization techniques must be applied to the

raw data to make them less precise. There may be more than one anonymization tech-

nique usable to achieve a privacy model, and choosing the right technique leads to a better

trade-off between data privacy and utility. In the following we present some widely used

techniques often used for anonymization.

Suppression

The simplest anonymization technique is suppression. It is achieved by replacing (sup-

pressing) an attribute value of a cell with a special symbol e.g., "*", or "Any." For example,

11

Job Sex Age Salary
Artist Male [20-30) >40K
Artist Male [20-30) >40K
Artist Male [20-30) <40K
Artist Male [20-30) <40K

Professional Female * >40K
Professional Female * >40K
Professional Female * >40K

Table 5: 3-Anonymous Employee Data by Suppression

in Table 5 certain values of the Age attribute are suppressed to ensure 3-anonymity.

There are different schemes for suppression: Record suppression [BA05] [Iye02] [LDR05] [Sam01],

Value suppression [WFY05] [WFY07], and Cell suppression (or local suppression) [Cox80]

[MW04], which respectively refer to suppressing an entire record, suppressing every in-

stance of a given value in a table, and suppressing some instances of a given value in a

table.

Generalization

Generalization provides better data utility than suppression because it replaces the attribute

values by more general values using taxonomy trees. Generalization uses some interme-

diate states according to the given taxonomy tree to anonymize a table. For a categorical

attribute, a specific value can be replaced with a general one and for a numerical attribute,

an interval covering the exact values can be used. Table 3 shows 3-anonymous data by

generalization using Figure 1 as a taxonomy tree. For instance, it shows the values Writer

and Dancer, for the categorical attribute Job, replaced by a more general value, Artist; the

value 25, for numerical attribute Age, is replaced by an interval [20,30), according to the

taxonomy tree.

Generalization techniques have two main categories: global and local generalization

[LDR05]. Global generalization refers to mapping all instances of a value to the same

general value; in local generalization different instances can be mapped to different general

values.

12

Bucketization

Bucketization [XT06] [MKM+07] is the notion of dividing all the records into several

buckets in such a way that each bucket identifies by an ID. Bucket IDs are stored, along

with encrypted data, on the server. There are two general bucketization methods to se-

lect the bucket ranges: equi-width and equi-depth. Equi-width bucketization works well

with uniformly distributed data because each bucket is the same size. However, equi-depth

bucketization may be more suitable for non-uniformly distributed data because each bucket

has the same number of items.

Other anonymization techniques include a randomization-based approach and an output

perturbation-based approach. A randomization-based approach adds noise to the underly-

ing data if the attributes are numerical attributes and replaces the values with other values

from the domain for the categorical attributes [AS00] [EGS03]. Randomization-based ap-

proach is useful if the applications need to preserve data truthfulness at the aggregated level,

but not at the record level. On the other hand, the output perturbation-based approach first

computes the correct result and then adds noise in order to output the perturbed result.

2.1.3 Privacy-Preserving High-Dimensional Data Mashup (PHDMashup)

Data Mashup is a technology used to integrate data from multiple providers based on a

user’s request. Integrating data from multiple sources always brings some challenges.

First, integrating multiple private data sets from different data providers without using any

privacy models and anonymization techniques would reveal sensitive information to the

other data providers. Moreover, the mashup data might reveal some sensitive information

that was not available before the mashup. Utilizing a traditional privacy model such as

K-anonymity on the raw data would result in the curse of high dimensionality problem

[Agg05]; the high-dimensional data could result in useless data for various data analyses.

13

Consider D = {P1, . . . , Pm} be a set of data providers, where each provider Pi ∈
D : 1 ≤ i ≤ m owns a person-specific data table Ti. The target attribute Class for

classification analysis is shared among all tables. Privacy-Preserving High-Dimensional

Data Mashup (PHDMashup) [FTH+12] is a secure protocol that addresses all the afore-

mentioned challenges and generates a mashup table that fulfills a specified LKC-privacy

requirement while containing as much information as possible for simple or complex data

analysis. During the integration process each data provider learns nothing about the other

provider’s data more than the data in the final mashup table. In this thesis, PHDMashup

serves as the core data mashup protocol of our framework.

2.1.4 Platform-as-a-Service (PaaS)

PaaS is a class of cloud computing services that provide a computing platform-as-a-service

in the cloud. In this model, cloud providers offer a computing platform that includes oper-

ating systems, databases, and web servers. By subscribing to this service, consumers can

easily deploy applications in a cloud-based infrastructure without paying high costs that

include purchasing, maintaining, and configuring hardware and the software required to

deploy applications. We require the PaaS model to have large-scale storage capabilities

and availability, reliability, and easy maintenance.

In this thesis we choose Microsoft Windows Azure because it supports all the afore-

mentioned properties in addition to our familiarity with Windows (ease of use), as well as

different pricing models. The Windows Azure Cloud Services are utilized to deploy the web

services of our framework in the cloud, and Microsoft SQL Azure is used to store the DaaS

providers’ databases in a distributed environment.

In a traditional on-premise application, both the database and the application code are

14

Figure 2: Windows Azure SQL Database Data Access

located in the same physical data center. The Windows Azure platform offers new alterna-

tives to that architecture. Figure 21 illustrates two scenarios of how the application service

can access data in Windows Azure SQL Database.

Scenario A, shown on the left, depicts a model for the time the application code locates

on the premises of a corporate data center, but the database resides in a Windows Azure

SQL database. An application code needs to use client libraries to access database(s) in a

Windows Azure SQL Database. Regardless of the client library chosen, data is transferred

using a tabular data stream (TDS) over a secure sockets layer (SSL).

Scenario B, shown on the right, depicts a model for the time the application code is

1http://www.msdn.microsoft.com/

15

hosted in Windows Azure and the database locates in a Windows Azure SQL Database. The

application code in this scenario also needs to use client libraries to access the database(s)

in a Windows Azure SQL Database. There are many different types of applications that

can be hosted by Windows Azure platform (e.g., web applications or mobile applications).

The client premises in this scenario may represent an end user’s web browser, someone

who wants to access a web application, or a desktop or Silverlight application that uses the

benefits of the WCF Data Services client to access data hosted in a Windows Azure SQL

Database via HTTP or HTTPS protocol.

2.2 Related Work

In this section, we review the literature examining several areas related to our work. We

discuss privacy-preserving data publishing and privacy-preserving distributed data mining

researches. We also discuss solutions that enable integration of data along with preserving

data privacy. We then discuss the studied techniques of discovering web services for data

integration.

2.2.1 Privacy-Preserving Data Publishing (PPDP)

Privacy-preserving data publishing (PPDP) provides methods and tools to publish data in

such a way that the published data remain useful while individual privacy is preserved.

The data publisher first collects data from data owners and then publishes the collected

data to a data recipient, who might be a data miner who wants to conduct data mining

on the published data. The data mining task could be a simple or complex task, e.g.,

classification or clustering analysis. For example, an organization collects information from

its employees and wants to publish an employee’s record to an external research center. In

this case, the organization is the data publisher, the employees are data owners, and the

16

research center is the data recipient that wants to do the data mining task on the collected

data.

Data publishers can be classified into two models: untrusted vs. trusted [Geh06]. In the

untrusted model, the data publisher may attempt to obtain some sensitive information from

the data owner anonymously. Examples are various cryptographic solutions [YZW05],

anonymous communications [Cha81] [JJR02], and statistical methods [War65]. In the

trusted model, the data publisher is trusted and the data owners are willing to share their

sensitive information with the data publisher. In this thesis, we follow the trusted model for

the data publisher, and we call the data publishers DaaS providers.

In a practical data publishing situation, a data recipient could be an attacker. For ex-

ample, there might be untrustworthy people in the research center where a data publisher

wants to publish the employee’s information. The solution to this problem is very different

from cryptographic approaches, where authorized parties can only access published data.

The solution is to preserve both privacy and information utility in the anonymous data. In

our work, we take advantage of the LKC-privacy model to protect privacy and information

usefulness in our result.

For privacy-preserving relational data publishing, there is a large body of work on

anonymizing relational data, based on partitioned-based privacy models. As we discussed

earlier, K-anonymity [Sam01] [Swe02b], �-Diversity [MKGV07], and Confidence Bound-

ing [WFY07] [WFY05] are based on single QID-based approaches that suffer from the

curse of high dimensionality [Agg05], which would result in useless data for data mining.

In Chapter 3 we address this problem by utilizing a LKC-privacy model, which assumes

an adversary knows at most L values of QID attributes of any target victim V .

There are a few algorithms that have proposed solutions for classification analysis [FWCY10].

The examples are [FWY05] [FWY07] [LDR06b] [Iye02] [WYC04]. In these works, re-

searchers have built a classifier based on anonymized data, and then evaluated performance

17

on the testing sets.

Other examples for privacy-preserving data publishing models are as follows: Sweeney

[Swe02a] uses generalization and suppression to achieve K-anonymity for datafly sys-

tems. Preserving classification information in K-anonymous data is studied in [FWY07]

[LDR06b]. Mohammed et al. [MFWH09] propose a top-down specialization algorithm to

securely integrate two vertically partitioned distributed data tables into a K-anonymous ta-

ble. Trojer et al. [TFH09] present a service-oriented architecture for achieving K-anonymity

in the privacy preserving data mashup scenario. Our work has a combination of a single

data source and integrated data source privacy levels. To preserve the privacy of data of

each DaaS provider, we utilize [MFHL09], which proposes a LKC-privacy model with an

anonymization algorithm to address the problem of high-dimensional anonymization. To

achieve LKC-anonymity for the integrated data we utilize [FTH+12], which provides a

service-oriented architecture for achieving LKC-anonymity in the privacy preserving data

mashup. We choose these two models for two reasons: a LKC-privacy model provides a

stronger privacy guarantee than K-anonymity with regard to linkage attacks, and to avoid

significant information loss when K-anonymity is applied on high-dimensional data.

2.2.2 Privacy-Preserving Distributed Data Mining (PPDDM)

Privacy-Preserving Distributed Data Mining (PPDDM) presents a scenario for multiple

data providers who need to do data mining tasks on the integrated data in collaboration with

each other while preserving the privacy of individuals. For example, multiple organizations

want to build a classifier on the salary of employees and publish that classifier to the public,

but not the data itself.

Information integration has been an active area of database research [Jhi06] [Wie93]

[ERS99]. Two different methods are commonly used for releasing the result of data inte-

gration: data sharing and result sharing:

18

PPDDM usually utilizes an assumption about data providers and cryptographic tech-

niques to achieve its goals. The assumption is that the data providers follow a non-colluding

semi-honest model [GMW87], where they do follow the protocol but may try to obtain

some additional information about the other providers from the collected data. The secure

protocols for constructing different data mining models based on cryptographic techniques

are known as Secure Multiparty Computation (SMC) [GMW87] [Gol04] [LP09] [Yao82].

It allows the sharing of the computed result (e.g., a classifier) while it prohibits private data

from being shared. An example is the secure multiparty computation of classifiers [CKV+02]

[DZ02] [ZSR05].

On the other hand, privacy-preserving data publishing (PPDP) allows the publishing of

data records about individuals and not the data mining result sharing [FWCY10]. Agrawal

et al. [AES03] introduce the concept of minimal information sharing that allows only for

the metadata to be shared between data owners for the purpose of answering queries that

span multiple private databases. In the thesis, we utilize a privacy-preserving algorithm that

enables DaaS providers to share data, not only the data mining results. In many applications

data sharing gives greater flexibility than does result sharing because the data recipients can

perform their required analysis [FWY07].

2.2.3 Privacy-Preserving Data Integration

Privacy-Preserving Data Integration [BGIC06] refers to solutions that enable integration of

data along with preserving the privacy of the data effectively, while data integration [DD99]

[Hul97] does not necessarily pay attention to the data privacy.

Bhowmick et al. [BGIC06] analyze the process of designing a privacy-preserving data

integration model and highlight the privacy and security challenges and concerns. They

preserve privacy by designing a query-rewriting module that receives and rewrites the XML

query and filters out the result instances that violate the access rules and data privacy.

19

In [BGIC06], unlike in the data integration researches [DD99] [Hul97], privacy plays the

main role and avoids freely releasing data and schema of the sources.

Barhamgi et al. [BBG+11] propose a privacy preserving approach for mashing-up DaaS

web services. For protecting privacy, they proposed a model to rewrite queries based on

privacy policies defined by data providers. Their privacy model contains a set of rules to

specify the recipients to whom data may be disclosed and the purposes that may be used for

data. This approach contains two rewriting phases, rewriting the query to satisfy the privacy

constraints and rewriting the modified query in terms of available web services. They

arrange services in the mashup by defining a dependency graph, and then insert privacy

filters to generate the mashup data.

In contrast, we use PHDMashup as a secure protocol in order to integrate the data tables

of DaaS providers based on the request coming from a data consumer, while preserving

privacy of mashup data using LKC-privacy model.

2.2.4 Web Service Discovery for Data Integration

Web services discovery for data integration is an area related to our work. Benatallah et

al. [BHRT03] propose a solution to discover web services based on their capabilities. This

approach enables a combination of web services to fulfill a consumer’s request by making

a comparison between the request and available web services in the context of DAML-S

ontologies of services. In [PKPS02] Paolucci et al. show how to discover a web service

and make a semantic match between data providers’ advertisements and requests. Their

solution is based on DAML-S language for service description. Klusch et al. [KFS06] and

Vaculin et al. [VHNS08] extend the work of Paolucci et al. [PKPS02].

In [KFS06] Klusch et al. propose a OWL-S hybrid approach for approximate match-

making of requests and web services using approaches from information retrieval. In

20

[VHNS08], Vaculin et al. propose an RDF-based framework for modeling and discov-

ering data providing services (DPS). They use a matchmaker component for service dis-

covery, and then require service requesters to interact with DPSs directly, while assuming

that there is no direct communication between different DPSs. Unlike their model, our

proposed framework assumes that a consumer’s data request could be best satisfied by

multiple DaaS providers, and therefore enables interactions between DaaS providers for

securely integrating their data in order to answer the data request.

21

Chapter 3

The Participants

This thesis introduces a privacy-preserving framework for trading person-specific survey

data. The framework assumes three types of participants, namely DaaS providers, data

consumer, and mashup coordinator, as depicted in Figure 3. We assume that the data

being shared is in the form of a relational table that is vertically partitioned into sub-tables,

each of which is hosted by one DaaS provider. A data consumer submits a sequence of

data queries to a mashup coordinator in the platform, where each query consists of a data

mining task, the requested attributes, the required data quality, and the maximum bid price.

Since a single DaaS provider might not be able to provide all requested attributes, the

mashup coordinator is responsible for determining the group of DaaS providers that can

cover all the attributes while meeting the requested data quality and price. Finally, the

mashup coordinator has to return an anonymized data table that satisfies a given privacy

requirement that is agreed on by all the contributing DaaS providers. The rest of this section

describes the goals, requirements, and behaviour of these three types of participants in our

proposed framework.

22

Figure 3: The Framework

3.1 DaaS Providers

Let DP = {P1, . . . , Pn} be the group of registered DaaS providers in our framework. Each

provider Pi owns an attribute table in the form of TA
i = (UID,EIDi, QIDi, Seni, Class),

where UID is a system-generated unique identifier of a survey respondent, EIDi is a set

of explicit identifiers, QIDi is a set of quasi-identifiers, Seni is a set of sensitive attributes,

and Class is a target class attribute for classification analysis. Explicit identifiers contain

information, such as name and SSN, that can explicitly identify an individual. They should

be removed before the data publishing. QID is a set of attributes, such as job, sex, and age,

that may identify a respondent if some combinations of QID values are specific enough.

They cannot be removed because they are useful for the data mining task. The sensitive

attribute Seni contains some sensitive information about the survey respondents, such as

diseases they might have. The target class attribute will be explained later in this section.

The DaaS providers want to sell the survey data in their attribute table for profit, but

releasing the raw data may compromise the privacy of their survey respondents. Even if

attributes EIDi are removed, an adversary may still be able to launch effective privacy

23

attacks on some target victims. In a common privacy attack called record linkage an adver-

sary attempts to utilize his background knowledge, represented by a combination of QID

values denoted by qid, of a target victim V , with the goal of identifying V ’s record in the

released data table T . This attack is effective if the number of records in T containing qid,

denoted by |T [qid]|, is small. Another common privacy attack is attribute linkage, in which

an adversary attempts to utilize the background knowledge of V ’s qid to infer V ’s sensitive

value s with a certain degree of confidence. This attack is effective if the confidence, which

is calculated by P (s|qid) = |T [qid∧s]|
|T [qid]| , is high.

Many privacy models [Swe02a] [Sam01] have been proposed in the last decade to

thwart these linkage attacks. In our proposed framework, we choose to impose LKC-

privacy [MFHL09] on the final mashup data for two reasons. First, LKC-privacy was

specifically designed for preventing linkage attacks on high-dimensional data, i.e., data

with a large number of attributes. A data mining request can be complicated and re-

quires many attributes from different DaaS providers, often resulting in a high-dimensional

mashup table. Previous experimental results [MFHL09] have shown that enforcing other

traditional privacy models would result in poor data mining quality in the anonymized data.

Second, LKC-privacy is a generalized privacy model that covers K-anonymity [Swe02a],

confidence bounding [WFY05], and �-diversity [MKGV07]. Therefore, the DaaS providers,

if necessary, have the flexibility to employ these traditional privacy models.

Definition 1 (LKC-Privacy [MFHL09]). Let L be the maximum number of QID values of

the adversary’s background knowledge on any participant in a data table T . Let S be a set

of sensitive values. A data table T satisfies LKC-privacy if, and only if, for any qid with

|qid| ≤ L,

1. |T [qid]| ≥ K, where K > 0 is a minimum anonymity threshold, and

2. ∀s ⊆ S, the probability P (s|qid) ≤ C, where 0 < C ≤ 1 is a maximum confidence

threshold.

24

LKC-privacy guarantees the probability of a successful record linkage to be ≤ 1/K

and the probability of a successful attribute linkage to be ≤ C. L, K, and C are DaaS

provider-specified privacy thresholds. Increasing K, increasing L, or decreasing C im-

poses a higher level of privacy protection, and vice versa. In general, imposing a higher

level of privacy would result in lower data quality, and, therefore, it would lower the data

mining value of the anonymized data. Thus, the DaaS providers would anonymize their

attribute table TA
i with different combinations of L, K, and C, and advertise their prices in

a price table T P
i = (L,K,C,Quality, Price) containing different combinations of privacy

levels in terms of L, K, and C, with the corresponding data quality and price. The data

quality is an objective measure depending on the supported data mining task. For exam-

ple, the quality measure can be classification accuracy for classification analysis, and the

quality measure can be F-measure for cluster analysis. Our proposed platform is applicable

to any data mining task, provided there is a quality measure. In the implementation illus-

trated in the rest of this thesis, we assume that the DaaS providers support classification

analysis, and the quality measure is classification accuracy on the target attribute Class.

Without loss of generality, we assume that there is only one Class attribute shared among

{TA
1 , . . . , T

A
n }. Though LKC-privacy is chosen to be the privacy model in our implemen-

tation, our platform can adapt any privacy model provided there is a privacy parameter(s)

to adjust the privacy level.

Algorithm 1 presents a procedure called buildPT for constructing the price table. The

procedure takes in a set of LKC-privacy requirements. For each LKC-privacy require-

ment, the procedure (Line 2) utilizes an algorithm called Privacy Aware Information Shar-

ing (PAIS) [MFHL09] to anonymize the attribute table TA
i . PAIS is a top-down special-

ization method for achieving LKC-privacy with the goal of maximizing the classification

accuracy on the Class attribute. The resulting anonymized table is denoted by TA′
i . Then,

the procedure (Line 3) employs the C4.5 decision tree classifier [Qui93] to determine the

25

Algorithm 1 buildPT: Price Table Construction
Input: attribute table TA

i

Input: a set of LKC-privacy requirements PRi

Input: price per attribute PAi

Output: price table T P
i

1: for each combination {L,K,C} ∈ PRi do
2: TA′

i ← PAIS(TA
i , L,K,C);

3: Acc ← 100− C4.5(TA′
i)

4: Price = Acc× PAi

5: T P
i ← insert(L,K,C,Acc, Price)

6: end for
7: return T P

i ;

classification accuracy Acc of TA′
i . The output of C4.5 classifier is a classification error

(CE) which is a positive number. Thus, Acc has range [0-100]. The advertised price in

Line 4 is determined by the price per attribute of provider Pi, discounted by the accuracy.

A new record with values L, K, C, Acc, and Price is then inserted into the price table T P
i

(Line 5).

We assume that DaaS providers follow the non-colluding semi-honest model [KMR],

meaning the providers follow the algorithm but are curious to derive sensitive information

from the results obtained from other providers, without colluding with other parties in the

platform. During the mashup process, the DaaS providers should not learn more informa-

tion from other providers other than what is in the final mashup data.

3.2 Data Consumers

Data consumers are participants who want to perform some specific data analysis and

would like to purchase some survey data from the market by submitting a data request,

which can be as simple as a count query or as complex as a data mining operation, such

as a classification analysis or a cluster analysis. In our proposed framework, a data request

is represented in the form of req = {Areq, Accreq, BPricereq}, where Areq is the set of

requested attributes such that

26

Areq ⊆ (
n⋃

i=1

QIDi)∪ (
n⋃

i=1

Seni)∪Class, Accreq is the required minimum classification

accuracy, and BPricereq is the bid price for the requested data. Our model assumes that

any data consumer can be an adversary whose goal is to launch record and attribute linkage

attacks on the received data. Therefore, the final mashup data must satisfy a given LKC-

privacy requirement that is agreed upon by all contributing DaaS providers.

3.3 Mashup Coordinator

A mashup coordinator is a mediator between data consumers and DaaS providers. Given

a data request req = {Areq, Accreq, BPricereq}, the objective of a mashup coordinator

is to coordinate one or multiple DaaS providers to generate a mashup table TM such

that TM contains all the requested attributes Areq, the total price of the mashup table

TPrice(TM) ≤ BPricereq, and the classification accuracy on the final mashup table

Acc(TM) ≥ Accreq. Finally, the mashup coordinator is responsible for sending the fi-

nal mashup table TM to data consumers and distributing the revenue to the contributing

DaaS providers.

In case a mashup table TM satisfies Areq and Accreq but fails to satisfy TPrice(TM) ≤
BPricereq, a mashup coordinator should have the capability to make alternative recom-

mendations to the data consumers, such as increasing the bid price BPricereq or decreasing

the minimum accuracy Accreq.

3.4 Problem Statement

The problem is defined as follows. Given a person-specific relational database that is ver-

tically partitioned into n sub-databases, each of which is hosted by one DaaS provider

Pi : 1 ≤ i ≤ n, the objective is to provide a framework for privacy-preserving DaaS

mashup, where the answer to a data consumer’s request req = {Areq, Accreq, BPricereq}

27

is a mashup table TM such that (1) TM satisfies all requested attributes Areq, and the total

price TPrice(TM) and the classification accuracy Acc(TM) of TM satisfy the bid price

BPreq and desired accuracy Accreq, respectively, (2) TM satisfies a given {L,K,C} pri-

vacy requirement agreed by the contributing DaaS providers, and (3) the integration process

between DaaS providers is secure.

28

Chapter 4

The DaaS Mashup Framework

4.1 Solution Overview

The objective of our solution is to provide a market mashup framework with a Service-

oriented architecture (SOA) that enables DaaS providers to securely integrate their survey

data and generate an anonymized mashup table TM such that the privacy of the data is

preserved, while the request coming from the data consumer is satisfied.

The framework for answering a data consumer’s request consists of four steps:

Step 1 - Identify Contributing DaaS Providers. We introduce a greedy algorithm

DaaS Providers Selector (selectDaaSPs) that determines the group of DaaS providers

whose data satisfy all requested attributes such that the total cost is minimal.

Step 2 - Compute Total Price. The mashup coordinator executes a procedure called

Total Price Computation (compTPrice) to compute the total price of the mashup table TM .

Step 3 - Construct Mashup Table. To construct the final mashup table TM and de-

termine its final accuracy, the mashup coordinator executes a procedure called Mashup

Table Construction (buildTM). The latter uses the privacy-preserving PHDMashup algo-

rithm [FTH+12] to securely integrate and anonymize the attribute tables of contributing

DaaS providers. It also utilizes classifier C4.5 to compute the final classification accuracy

29

..Proxy ProxyProxy Privacy-preserving
Mashup Coordinator
Privacy-preserving

Mashup Coordinator

SOAP API

SOAP Client

Mashup Manager

SOAP API

Data Manager

SOAP API

Data Manager

Data Manager

SOAP API

DaaS Provider PnnDaaS Provider Pn

Internet
.

SOAP Client

Proxy ManagerProxy Manager

Proxy Class

S RequestS Request

S ResponseS Response

Data ConsumerData Consumer

RequestRequest

ResponseResponse

DaaS Provider P2DaaS Provider P2

DaaS Provider P11DaaS Provider P1

Figure 4: Framework for Privacy-Preserving Data-as-a-Service Mashups: Implementation

Architecture

of TM .

Step 4 - Satisfy the Data Request. The mashup coordinator ensures that the requested

accuracy Accreq and the bid price BPricereq are fulfilled. Otherwise, the mashup coordi-

nator recommends alternative solutions with a higher price or lower accuracy.

4.2 The Architecture

Service-oriented architecture (SOA) is a pattern for business processes maintenance that

contains large distributed systems. SOA has several properties including services, interop-

erability, and loose coupling. A service is a discrete software module utilized for different

simple or complex functionalities. An enterprise service bus (ESB) enables the interoper-

ability for services among distributed systems and eases the distribution of processes over

multiple systems. Loose coupling minimizes the dependencies of system components and

improves scalability and fault tolerance of the system [Jos07]. The implemented architec-

ture of our framework is illustrated in Figure 4.

The proxy component contains a proxy manager that generates a proxy class based on

the WSDL description and exposes a programmatic interface based on the methods pub-

lished by the web service of the mashup coordinator. When the data consumer sends a

request, the coordinator invokes a method from the interface, where the method call is

30

automatically converted (serialized) to a SOAP request SRequest by the proxy using XmlSe-

rializer class. The SRequest is then XML-formatted and transferred through the network.

Since SOAP web services utilize simple object access protocol to transmit data between

SOAP clients and SOAP APIs, our proxy manager uses the SOAP client to send SRequest

to the SOAP API of the mashup coordinator.

The mashup coordinator component contains three entities: SOAP API, mashup man-

ager, and SOAP client. The serialized request is automatically deserialized by XmlSerial-

izer class in order to extract the data when it reaches the SOAP API. The mashup manager

uses the extracted data to compute the contributing DaaS providers, calculate the total price,

construct the anonymized mashup table TM , and compute the final accuracy of TM . The

mashup manager is also responsible for ensuring that the consumer’s request is fulfilled.

In case the request cannot be fulfilled, it recommends alternative solutions. The SOAP

client entity of the mashup coordinator component is used to communicate with the DaaS

provider components.

Each DaaS provider component consists of two entities: data manager and SOAP API.

The data manager receives requests from a mashup coordinator through the SOAP API,

and then deserializes the request and queries the data accordingly.

Once the final anonymized mashup table TM has been constructed, the mashup man-

ager serializes the TM data, along with its accuracy and price values, and sends that as a

SOAP response back to the proxy via its SOAP API. The proxy component receives the

SOAP response SResponse through its SOAP client, then the proxy manager deserializes the

data and sends it back to the data consumer.

4.3 Identify Contributing DaaS Providers

When the mashup coordinator receives a consumer’s data request req, the first task is to

identify one or more registered DaaS providers that can collectively fulfill all requested

31

Algorithm 2 selectDaaSPs: DaaS Providers Selector
Input: requested attributes Areq

Input: registered DaaS providers DP
Output: contributing DaaS providers D

1: initially R = Areq and D = ∅ and D̂ = DP
2: while R �= ∅ do
3: select Pi ∈ D̂ with the least price per attribute PAi

4: Mi ← {TA
i ∩R}

5: if Mi �= ∅ then
6: D ← (Pi,Mi)
7: R ← R \Mi

8: end if
9: D̂ ← D̂ \Pi

10: end while
11: return D;

attributes Areq such that the price of each attribute is the lowest possible price. We call

such a group contributing DaaS providers. The following is the formal definition:

Definition 2 (Contributing DaaS Providers). Given a set of registered DaaS providers

DP and a set of requested attributes Areq, the contributing DaaS providers are the set

of providers D ⊆ DP such that:

1. ∀A ∈ Areq, ∃Pi ∈ D, where TA
i contains A, and

2. �Pj ∈ DP such that TA
j contains A and the price per attribute PAj < PAi, where

PAj and PAi are the price per attribute for providers Pj and Pi, respectively.

In Algorithm 2, we introduce a greedy procedure DaaS Providers Selector (select-

DaaSPs) that enables the mashup coordinator to compute the contributing DaaS providers

for request req. This algorithm examines the set of attributes Areq and the price per at-

tribute PAi provided by each DaaS provider, and then identifies for each requested attribute

the DaaS provider with the lowest price. The resulting D denotes a set of contributing

DaaS providers. Because there might be more than one set of contributing DaaS providers

that can satisfy req, selectDaaSPs is designed to find only one set of contributing DaaS

32

providers, and terminates once the set has been identified. SelectDaaSPs is a variation of

the weighted set cover problem [Chv79].

Initially, R is equal to the requested attributes Areq, and D̂ is the set of all registered

DaaS providers (Line 1). In each iteration, the algorithm selects a provider Pi ∈ D̂ whose

price per attribute PAi is the least among all providers in D̂ (Line 3). If TA
i , the attribute

table of Pi, contains some requested attributes Mi (Line 4), then the pair of DaaS provider

Pi along with Mi is added to D (Line 6), and Mi is then removed from R (Line 7). Pi is

also removed from D̂ (Line 9), and a new iteration commences until R is empty.

Proposition 4.3.1. The cost of satisfying all requested attributes Areq is
∑

PAi × CAi,

where PAi is the price per attribute of provider Pi, and CAi is the number of covered

attributes by provider Pi.

The runtime complexity of Algorithm 2 is O(nlog m), where n is the number of re-

quested attributes |Areq| and m is the number of DaaS providers |Pi|. The main loop has

complexity O(n) because |Areq| = n. For selectDaaSPs, the major computational cost

comes from the selection of DaaS providers with the least price per attribute PAi. The

complexity of selecting DaaS providers with the least PAi is O(log m) using a priority

heap.

Example 6. In a data request req, let the set of requested attributes be Areq = {a1, a2, a3, a4,
a5, a6, a7, a8}. Let the attributes included in each attribute table of a DaaS provider be

as follows: TA
1 = {a1}, TA

2 = {a2}, TA
3 = {a3, a4}, TA

4 = {a5, a6, a7, a8}, TA
5 =

{a1, a3, a5, a7}, TA
6 = {a2, a4, a6, a8}. Let the price per attribute of each provider be:

PA1 = PA2 = 4, PA3 = 2, PA4 = 1, PA5 = PA6 = 3.

Procedure selectDaaSPs picks TA
4 , TA

3 , TA
5 , and TA

6 in the first, second, third, and forth iter-

ation, respectively, and returns the set of contributing DaaS providers D = {(TA
4 , {a5, a6, a7, a8}),

33

Algorithm 3 compTPrice: Total Price Computation
Input: requested min. classification accuracy Accreq
Input: contributing DaaS providers D
Output: total price TPrice(TM)
Output: privacy requirements L,K,C

1: Pi ← select a provider from D
2: D ← D \Pi

3: Acc ← findAcc(T P
i , Accreq)

4: (L,K,C, Pricei) ← selectLKCP (T P
i , Acc)

5: TPrice(TM) ← Pricei × CAi

6: for each Pj ∈ D : 1 ≤ j ≤ |D| do
7: if (L,K,C) � T P

j then
8: T P

j ← T P
j ∪ buildPT (TA

j , {L,K,C}, PAj)
9: end if

10: TPrice(TM)←TPrice(TM)+selectPrice(L,K,C, T P
j) ×CAj

11: end for
12: return TPrice(TM), L,K,C;

(TA
3 , {a3, a4}), (TA

5 , {a1}), (TA
6 , {a2})}. The cost of satisfying Areq is (1× 4) + (2× 2) +

(3× 1) + (3× 1) = 14.

4.4 Compute Total Price

Once the set of contributing DaaS providers has been determined, the next step for the

mashup coordinator is to compute the total price of the mashup table TPrice(TM).

Given a minimum requested accuracy Accreq and the set of contributing DaaS providers

D determined in Section 4.3, the compTPrice algorithm randomly selects a provider Pi

from the set of contributing DaaS providers and removes it from D (Lines 1-2). Algorithm

findAcc is utilized to examine the price table T P
i and find the smallest accuracy Acc that is

greater or equal to Accreq (Line 3). If such accuracy cannot be found, then findAcc selects

the highest accuracy available in T P
i . Next, algorithm selectLKCP selects from T P

i (Line

4) the values L,K,C, and Pricei corresponding to Acc. Pricei is the price of one attribute

from DaaS provider Pi with regard to L,K,C values, whereas CAi = |Mi| is the number

of covered attributes by provider Pi (Line 5), where Mi is the set of intersecting attributes

34

between attribute table TA
i and requested attributes Areq.

Because the LKC-privacy model requires one set of L,K,C values for anonymization,

for each remaining contributing DaaS provider Pj , algorithm compTPrice checks the price

table T P
j to find the L,K,C values selected in Line 4. If a T P

j does not contain the specified

L,K,C values (Line 7), then algorithm buildPT (Line 8) is invoked to generate a new row

in the T P
j table by utilizing given specified L,K,C values. Then for each T P

j , selectPrice

identifies the corresponding price value, multiplies it by CAj , and then adds it to the total

price (Line 10). The resulting TPrice(TM) is the total price of mashup table TM . This

algorithm outputs the total price TPrice(TM) and the set of L,K,C values (Line 12).

4.5 Construct Mashup table TM

To construct the mashup table TM , the mashup coordinator utilizes a secure algorithm

called Privacy-Preserving High-Dimensional Data Mashup (PHDMashup) [FTH+12]. In

this section, we first introduce the PHDMashup algorithm. We then show how to con-

struct the anonymized mashup table TM that satisfies the requested attributes of the data

consumer, and we compute its final accuracy.

Let D = {P1, . . . , Pm} be a set of contributing DaaS providers, where each provider

Pi ∈ D : 1 ≤ i ≤ m owns a person-specific data table Ti. The target attribute Class for

classification analysis is shared among all tables. Privacy-Preserving High-Dimensional

Data Mashup (PHDMashup) is a data integration protocol that securely integrates the data

tables of any set of DaaS providers with this setting and ensures that the final mashup

table satisfies a specified LKC-privacy requirement with the goal of maximizing the data

quality for classification analysis. PHDMashup serves as the core data mashup protocol in

our framework. Yet, we would like to emphasize that Fung et al. [FTH+12] did not present

a DaaS framework on how to identify the appropriate combination of DaaS providers with

consideration of price and data quality requirements, which is a main contribution of this

35

thesis.

Algorithm 4 buildTM: Mashup Table Construction
Input: contributing DaaS providers D
Input: privacy requirements L,K,C
Output: mashup table TM

Output: accuracy of mashup table Acc(TM)

1: TM ← PHDMashup(D, L,K,C)
2: Acc(TM) ← 100− C4.5(D, L,K,C)
3: return TM , Acc(TM);

Procedure buildTM presented in Algorithm 4 is executed by the mashup coordinator for

the purpose of computing mashup table TM and determining its accuracy Acc(TM). Given

a set of contributing DaaS providers D and privacy requirements L,K,C, the mashup co-

ordinator runs the PHDMashup algorithm (Line 1) in order to integrate and anonymize the

raw data of contributing DaaS providers D and generates a mashup table TM that satisfies

the given privacy requirements L,K,C. The PHDMashup algorithm preserves the privacy

of every data provider by guaranteeing the mashup coordinator does not gain more infor-

mation than the final mashup TM gives. The classifier C4.5 computes the classification

error for the anonymized mashup table TM and privacy requirements L,K,C (Line 2),

where the resulting value Acc(TM) is the classification accuracy of the mashup table TM .

Procedure buildTM returns both the mashup table TM and its accuracy Acc(TM) (Line 3).

4.6 Request Satisfaction

Having constructed the mashup table TM and determined its accuracy Acc(TM) and price

TPrice(TM), the mashup coordinator must ensure the requested accuracy Accreq and the

bid price BPricereq are fulfilled such that TPrice(TM) ≤ BPricereq and Acc(TM) ≥
Accreq. If Accreq and BPricereq are not fulfilled, the mashup coordinator constructs an-

other mashup table TM and verifies the fulfillment again. If no TM table can fulfill Accreq

and BPricereq simultaneously, the mashup coordinator recommends alternative solutions

36

with a higher price or lower accuracy. Figure 5 illustrates the activity diagram for request

satisfaction.

Areq

Return:
 TM , TPrice(TM), Acc(TM)

selectDaaSPs()

compTPrice()

buildTM()

Acc(TM) > Accreq

Suggest TPrice(TM)
and Acc(TM)

NoFind lower Acc YesSucceed

Yes

User
Accepts

Yes

No

No TPrice(TM) <= BPricereq

Yes

Saved
Result Find higher Acc SucceedNo

Yes

Yes

No

No

Figure 5: Data Request Satisfaction

The goal of the mashup coordinator is to find the mashup table TM whose price TPrice(TM)

is the lowest possible among all mashup tables satisfying requested attributes Areq. As il-

lustrated in Section 3.1, Price = Acc× PAi for any privacy requirements L,K,C, where

PAi is the price per attribute of provider Pi. Therefore, in order for TPrice(TM) to be the

lowest possible, Acc(TM) must be as close as possible to Accreq. The mashup coordinator

iteratively executes compTPrice and buildTM procedures to identify a mashup table TM

such that its accuracy Acc(TM) is closest to Accreq and greater than or equal to Accreq.

If no lower accuracy can be found in the price table T P
i of the first selected contributing

DaaS provider Pi, but both Accreq and BPricereq are satisfied, then the mashup coordi-

nator returns the anonymized mashup table TM with its total price TPrice(TM) and final

37

accuracy Acc(TM) to the data consumer.

The mashup coordinator might recommend alternative solutions if Accreq and BPricereq

could not be mutually fulfilled. For instance, for any mashup table TM that satisfies all

requested attributes Areq, if Acc(TM) is always less than Accreq, then the mashup coordi-

nator suggests to the data consumer the mashup table TM whose accuracy Acc(TM) is the

highest achievable accuracy, given that TPrice(TM) might be higher than the bid price

BPrice(TM).

38

Chapter 5

Experimental Evaluation

5.1 Implementation

We implemented our proposed architecture in Microsoft Windows Azure1, a cloud-based

computing platform. Platform-as-a-service (PaaS) [MG11] is a class of cloud comput-

ing services that provides a computing platform, including operating systems, databases,

and web servers, as a service to the users. PaaS offers large storage, high reliability, and

easy maintenance. Our developed web services are deployed in Microsoft Windows Azure

Cloud Services together with Microsoft SQL Azure as the storage for DaaS providers in

a distributed environment. Our works are applicable to other PaaS providers who support

similar services. DaaS providers are distributed in a cloud environment, each of which is

implemented on a Windows Server 2008 R2 running on AMD OpteronTM Processor 4171

HE@2.09 GHz with 1.75 GB RAM, and each hosts an SQL Azure database. The mashup

coordinator is implemented as a web service, whereas the data consumer is implemented

as a web client that interacts with the mashup coordinator via HTTP protocol.

We utilize a real-life adult data set [BL13] in our experiments to illustrate the per-

formance of our proposed framework. The adult data set contains 45,222 census records

1http://www.microsoft.com/azure/

39

consisting of eight categorical attributes, six numerical attributes, and a class attribute rev-

enue with two levels, ≤ 50K or > 50K. We perform our experiments with the assumption

of having three DaaS providers in the system. Thus, the adult data is vertically partitioned

into three overlapping partitions, each of which contains 6 attributes. The partitions are

used to construct the attribute tables TA
1 , TA

2 , and TA
3 corresponding to providers P1, P2,

and P3, respectively.

Table 6 shows the attributes of each data provider. Each table contains 6 attributes. The

common attributes are coloured in gray. The tables share a common UID for joining. The

sensitive attribute in each table is Marital-Status, with two values: Divorced and Separated.

The remaining 6 attributes in each table are the QID attributes. The taxonomy trees of all

categorical attributes can be found in [FWY07].

Leaves # Leaves # Leaves # Leaves
Age numerical

Final-weight categorical 7 4
Education-Num categorical 14 3

WorkClass 8 5 categorical 6 3
Education 16 5 categorical 5 3

Marital-Status 7 4 categorical 2 2

Leaves # Leaves
numerical
numerical
numerical
categorical 7 4
categorical 2 2
categorical 40 5

categorical Sex

Native-Country

DaaS Provider P1 DaaS Provider P2

DaaS Provider P3

categorical Relationship

Marital-Status

categorical Race

Sex

numerical 13492 - 1490400 Marital-Status

Capital-Loss 0-4356

numerical 1-16 Occupation

Hours-per-week 1-99

Attribute Type
numerical range

numerical 17-90 Education-Num 1-16

Capital-Gain 0-99999

Attribute Type
numerical range

Attribute Type
numerical range

Table 6: Attributes of Three DaaS Providers

The objective of our experiments is to evaluate the performance of the proposed market

framework for privacy-preserving DaaS mashup. We first study the impact on the revenue

of each data provider that results from enforcing various LKC-privacy requirements by

varying the thresholds of maximum adversary’s knowledge L, minimum anonymity K,

and maximum confidence C. Next, we evaluate the efficiency of our solution and show

40

that it is efficient with regard to the number of requested attributes |Areq|, classification

analysis Accreq, and bid price BPricereq.

5.2 Impact of Privacy Requirements on Revenue

To evaluate the impact of LKC-privacy requirements on the revenue of each DaaS provider,

we use all 45,222 records of each data for anonymization, build classifier C4.5 on 2/3 of

the anonymized records as the training set, measure the classification error on 1/3 of the

anonymized records as the testing set, determine the final classification accuracy FAcc, and

then compute the revenue of each DaaS provider Pi with respect to its price per attribute

PAi.

Figure 6, Figure 7 and Figure 8 illustrates the impact of L,K,C thresholds on the

revenue of each DaaS provider. The data providers can use these results as a guideline to

estimate their revenue with respect to the enforced LKC-privacy requirements.

800

825

850

875

900

925

950

975

1000

1 2 3 4 5

P1 P2 P3

Threshold L

Re
ve

nu
e

Figure 6: Impacts of Threshold L on DaaS Provider’s Revenue

Figure 6 depicts the effect of threshold L. We observe that the revenue of each DaaS

provider is insensitive to threshold L when L >= 2.

Figure 7 depicts the effect of threshold K. The revenue of P1 and P3 is mainly unaf-

fected by the change of value of K. However, the increase of the value of K might neg-

atively impact the revenue, as is the case with DaaS provider P2, whose revenue dropped

41

10
800

825

850

875

900

925

950

975

1000

0 100 200 300 400 500

P1 P2 P3

Threshold K
Re

ve
nu

e

Figure 7: Impacts of Threshold K on DaaS Provider’s Revenue

by 5% (from $892 to $844) when K increased from 200 to 300. The reason for this drop

is that when the specialization level K is increased to 300, the number of “good" attributes

that can lead to useful discrimination between the classes is reduced.

800

825

850

875

900

925

950

975

1000

0.2 0.3 0.4 0.5

P1 P2 P3

Threshold C

Re
ve

nu
e

Figure 8: Impacts of Threshold C on DaaS Provider’s Revenue

Figure 8 depicts that revenue is insensitive to the increase in the value of confidence

threshold C. Consequently, we conclude that the primary privacy parameter that has a

major impact on the revenue of a DaaS provider in our framework is the specialization pa-

rameter K.

42

5.3 Efficiency and Scalability

One major contribution of our work is the development of an efficient and scalable market

framework for privacy-preserving DaaS mashup. The runtime complexity of our approach

is dominated by the number of requested attributes |Areq| in the consumer’s data request

req, the classification accuracy Accreq, and the bid price BPricereq. Therefore, we study

the runtime under different numbers of requested attributes Areq and different values of the

pair (Accreq, BPricereq).

Efficiency. We split the total runtime of our approach into three major phases: Data Pre-

Processing, corresponding to Algorithm 1; Contributing DaaS Providers, corresponding

to Algorithm 2; and Final Mashup TM , corresponding to Algorithm 3 and Algorithm 4.

Figure 9, Figure 10, and Figure 11 depict the runtime of each phase when the number of

requested attributes Areq ranges between 4 and 13 attributes, with three different values of

the pair (Accreq, BPricereq).

0

25

50

75

100

4 7 10 13

Data Pre-Processing Contributing DaaS Providers

Final Mashup T^M Total

Number of Requested Attributes |Areq|

Final Mashup TM

Ru
nt

im
e

(S
ec

)

Figure 9: Efficiency (Accreq = 70, BPricereq = 3000)

Figure 9, Figure 10, and Figure 11 depict the runtime of each phase when the classifica-

tion accuracy and bid price pair (Accreq, BPricereq) is equal to (70%,$3,000), (80%,$9,000),

and (90%,$15,000), respectively. We observe that the runtime of the Data Pre-Processing

phase and the Contributing DaaS Providers phase is almost constant with regard to |Areq|,

43

0

25

50

75

100

4 7 10 13

Data Pre-Processing Contributing DaaS Providers

Final Mashup T^M Total

Number of Requested Attributes |Areq|
Ru

nt
im

e
(S

ec
)

Final Mashup TM

Figure 10: Efficiency (Accreq = 80, BPricereq = 9000)

0

25

4 7 10 13

Data Pre-Processing Contributing DaaS Providers

Final Mashup T^M Total

Ru
nt

im
e

(S
ec

)

Number of Requested Attributes |Areq|

Final Mashup TM

Figure 11: Efficiency (Accreq = 90, BPricereq = 15000)

Accreq, and BPricereq. On the other hand, when |Areq| ≥ 7, the runtime of the Final

Mashup TM phase grows linearly as the number of requested attributes |Areq| increases.

We also observe that the runtime of the Final Mashup TM phase dominates the total run-

time of our approach. This is due to the fact that sometimes the integration procedure

buildTM in Algorithm 4 might be executed more than once to satisfy the consumer’s re-

quest with regard to the bid price and data utility level. Note that in Figure 11, the total

runtime when |Areq| = 13 is 12 sec, in contrast to 75 sec in Figure 9 and 95 sec in Figure 10.

This is because Accreq = 90% and BPricereq = $15, 000 are both beyond the threshold

of accuracy and price in the DaaS providers’ price tables. In this case algorithm 3 selects

the highest accuracy from the data providers’ price tables and computes the corresponding

total cost while avoiding the need to find higher or lower accuracies, which reduces the

44

number of times Algorithm 4 needs to run. Consequently, we conclude that our proposed

solution is efficient with regard to the number of requested attributes |Areq|, classification

analysis Accreq, and bid price BPricereq.

Scalability. We evaluate the scalability of our algorithm with respect to data volume by

blowing up the size of the Adult data set. First, we combined the training and testing sets,

giving 45,222 records. For each original record r in the integrated set, we created α − 1

"variations" of r, where α > 1 is the blowup scale.

For scalability evaluation in order to show the sensitivity to the change of requested

accuracy and bid price values, we consider three different combinations for requested ac-

curacy Accreq and requested price BPricereq according to the price table of data providers.

Each line in Figure 12, Figure 13, and Figure 14 illustrates the total runtime of our solution

for different number of requested attributes |Areq| by consumer.

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000

|Areq|=5 |QID|=9 |QID|=13

of Records (in thousands)

Ti
m

e
(s

ec
on

ds
)

|Areq|=5 |Areq|=9 |Areq|=13

Figure 12: Scalability (Accreq = 70, BPricereq = 3000)

Figure 12 depicts the total runtime of our algorithm from 200,000 to 1 million records

for Accreq = 70 and BPricereq = 3000. The total runtime of answering consumer’s re-

quest with consideration to the consumer’s data attribute requirement for 1 million records

is 146s when the number of requested attributes |Areq| = 5, 230s when the number of re-

quested attributes |Areq| = 9, and 339s when the number of requested attributes |Areq| =

45

13.

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000

|QID|=5 |QID|=9 |QID|=13|Areq|=5 |Areq|=9 |Areq|=13

of Records (in thousands)

Ti
m

e
(s

ec
on

ds
)

Figure 13: Scalability (Accreq = 80, BPricereq = 9000)

Figure 13 depicts the total runtime of our algorithm from 200,000 to 1 million records

for Accreq = 80 and BPricereq = 9000. The total runtime of answering consumer’s re-

quest with consideration to the consumer’s data attribute requirement for 1 million records

is 163s when the number of requested attributes |Areq| = 5, 267s when the number of re-

quested attributes |Areq| = 9, and 365s when the number of requested attributes |Areq| =
13.

0

50

100

150

200

250

0 200 400 600 800 1000

Att_Num=5 Att_Num=9 Att_Num=13

of Records (in thousands)

Ti
m

e
(s

ec
on

ds
)

|Areq|=5 |Areq|=9 |Areq|=13

Figure 14: Scalability (Accreq = 90, BPricereq = 15000)

Figure 14 depicts the total runtime of our algorithm from 200,000 to 1 million records

for Accreq = 90 and BPricereq = 15000. The total runtime of answering consumer’s re-

quest with consideration to the consumer’s data attribute requirement for 1 million records

46

is 134s when the number of requested attributes |Areq| = 5, 190s when the number of re-

quested attributes |Areq| = 9, and 227s when the number of requested attributes |Areq| =
13.

The total runtime in Figure 14 is less than the total runtime in Figure 12 and the total

runtime in Figure 13 because Accreq and BPricereq in Figure 14 go beyond the accuracy

threshold and prices specified in the providers’ price tables.

The runtime of all three figures scale linearly with respect to the data set’s size. The

experimental results on real-life data sets suggest that our algorithm is scalable with respect

to the number of requested attributes and the number of records with different accuracy and

bid price requirements.

47

Chapter 6

Conclusion

In this thesis we implemented a DaaS mashup cloud-based framework for the online mar-

ket and generalized the privacy and information requirements to the problem of a privacy-

preserving DaaS mashup with the objective of generating anonymous answers to a variety

of data mining queries requested by consumers. We propose a solution for secure collabo-

ration between the most suitable set of DaaS providers, while achieving LKC-privacy on

the mashup data without revealing more detailed information in the process. Our proposed

solution differs from the classic secure multiparty computation due to the fact that we allow

data sharing instead of data mining result sharing. Data sharing provides the data recipient

greater flexibility to perform different data analysis tasks.

In this chapter, we summarize the contributions, followed by a description of future

research directions.

6.1 Summary of Contributions

First, we present a greedy algorithm for secure collaboration between the most suitable set

of DaaS providers, while achieving LKC-privacy on the mashup data without revealing

more detailed information in the process. The proposed solution identifies the combination

48

of contributing DaaS providers whose data can fulfill the data privacy, data quality, and bid

price requirements.

Second, we propose a solution and implement a DaaS mashup cloud-based framework

to mash-up private data from distributed DaaS providers to satisfy a consumer’s request,

while preserving both data privacy and data mining quality of the underlying data. We

also consider alternative solutions for cases where no providers can satisfy a consumer’s

request. In these cases, the nearest suggestions to the consumer’s needs will be offered.

Finally, we conduct extensive experimental study on a real-life data set and examine the

impact of employing different privacy thresholds on the revenue of each DaaS provider. We

then demonstrate that our approach is efficient and scalable in terms of processing various

sizes of queries with regard to data quality and bid price. Next, we show that our solution

is highly scalable for large scaled data sets.

6.2 Future Work

For our future work, we identify two potential research directions:

First, in the greedy algorithm proposed in this thesis we presented a solution to output

one set of contributing DaaS providers in terms of price. It implies that the identified set of

DaaS providers is the cheapest set of providers whose data can satisfy data privacy and data

quality as well as bid price requirements. However, this solution provides an answer which

is be on behalf of the user in terms of price, but it does not identify the minimum number

of DaaS providers whose data can fulfill a consumer’s request. One possible direction for

future work is to modify the algorithm in a way that the output is the smallest number of

DaaS providers that can satisfy the query such that the total cost is minimal.

Second, in this thesis, we utilize the price per attribute values of each DaaS provider

in the greedy algorithm to find a set of contributing DaaS providers whose data can satisfy

the request with minimum cost. Our solution selects a DaaS provider from that set and

49

tries to satisfy the requested accuracy and bid price. However, our solution determines the

lowest price needed to answer a request. It would be interesting to study how price and

accuracy can collaborate in one greedy algorithm to propose a privacy-preserving DaaS

mashup framework that can fulfill a consumer’s request. This feature allows the consumer

to select a better total price for the request.

50

Bibliography

[AES03] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across pri-

vate databases. In Proceedings of the 2003 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD), pages 86–97, 2003.

[Agg05] C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In Proceed-

ings of the 31st International Conference on Very Large Data Bases (VLDB),

pages 901–909, 2005.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of

the ACM SIGMOD International Conference on Management of Data (SIG-

MOD), pages 439–450, 2000.

[BA05] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-

anonymization. In Proceedings of the 21st IEEE International Conference

on Data Engineering (ICDE), pages 217–228, 2005.

[BBG+11] M. Barhamgi, D. Benslimane, C. Ghedira, S.-E. Tbahriti, and M. Mrissa. A

framework for building privacy-conscious daas service mashups. In Proceed-

ings of the IEEE International Conference on Web Services (ICWS), pages

323–330, 2011.

51

[BBSPA03] L. Burnett, K. Barlow-Stewart, A. Pros, and H. Aizenberg. The gene trustee:

A universal identification system that ensures privacy and confidentiality for

human genetic databases. Journal of Law and Medicine, 10, 2003.

[BGIC06] S. S. Bhowmick, L. Gruenwald, M. Iwaihara, and S. Chatvichienchai.

PRIVATE-IYE: A framework for privacy preserving data integration. In Pro-

ceedings of the 22nd International Conference on Data Engineering Work-

shops, pages 91–91, 2006.

[BHRT03] B. Benatallah, S. Hacid, C. Rey, and F. Toumani. Request rewriting-based

web service discovery. In Proceedings of the International Semantic Web

Conference (ISWC), pages 242–257, 2003.

[BL13] K. Bache and M. Lichman. UCI Machine Learning Repository. University of

California, Irvine, School of Information and Computer Sciences, 2013.

[But06] D. Butler. Mashups mix data into global service. Nature, 439:6–7, 2006.

[Cha81] D. L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24:84–88, 1981.

[Chv79] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of

Operations Research, 4:233–235, 1979.

[CKV+02] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for

privacy preserving distributed data mining. SIGKDD Explor. Newsl., 4:28–

34, 2002.

[Cox80] L. X. Cox. suppression methodology and statistical disclosure control. Jour-

nal of the American Statistical Association, 75:377–385, 1980.

52

[Dal77] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik

Tidskrift, 15:429–444, 1977.

[DD99] R. Domenig and K. R. Dittrich. An overview and classification of mediated

query systems. SIGMOD Record, 28:63–72, 1999.

[Dwo06] C. Dwork. Differential privacy. In Proceedings of the 33rd International

Colloquium on Automata, Languages and Programming (ICALP), pages 1–

12, 2006.

[DZ02] W. Du and Z. Zhan. Building decision tree classifier on private data. In

Proceedings of the IEEE International Conference on Privacy, Security and

Data mining, pages 1–8, 2002.

[EGS03] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in pri-

vacy preserving data mining. In Proceedings of the 22nd ACM SIGMOD-

SIGACTSIGART Symposium on Principles of Database Systems (PODS),

pages 211–222, 2003.

[ERS99] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth, editors. Management of het-

erogeneous and autonomous database systems. Morgan Kaufmann Publishers

Inc., 1999.

[FTH+12] B. C. M. Fung, T. Trojer, P. C. K. Hung, X. Li, K. Al-Hussaeni, and R. Dssouli.

Service-oriented architecture for high-dimensional private data mashup. IEEE

Transactions on Services Computing, 5:373–386, 2012.

[FWCY10] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data

publishing: A survey of recent developments. ACM Computing Surveys, 42:1–

53, 2010.

53

[FWY05] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for informa-

tion and privacy preservation. In Proceedings of the 21st IEEE International

Conference on Data Engineering (ICDE), pages 205–216, 2005.

[FWY07] B. C. M. Fung, K. Wang, and P. S. Yu. Anonymizing classification data for

privacy preservation. IEEE Transactions on Knowledge and Data Engineer-

ing (TKDE), 19:711–725, 2007.

[Geh06] J. Gehrke. Models and methods for privacy-preserving data analysis and pub-

lishing. In Proceedings of the 22nd International Conference on Data Engi-

neering (ICDE), pages 105–105, 2006.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.

In Proceedings of the 19th annual ACM symposium on Theory of computing

(STOC), pages 218–229, 1987.

[Gol04] O. Goldreich. Foundations of cryptography: Volume 2, basic applications,

2004.

[Hul97] R. Hull. Managing semantic heterogeneity in databases: A theoretical per-

spective. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, pages 51–61, 1997.

[Iye02] V. S. Iyengar. Transforming data to satisfy privacy constraints. In Proceedings

of the 8th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (SIGKDD), pages 279–288, 2002.

[Jhi06] A. Jhingran. Enterprise information mashups: integrating information, sim-

ply. In Proceedings of the 32nd International Conference on Very Large Data

Bases, pages 3–4, 2006.

54

[JJR02] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for elec-

tronic voting by randomized partial checking. In Proceedings of the 11th

USENIX Security Symposium, pages 339–353, 2002.

[Jos07] N. Josuttis. SOA in Practice: The Art of Distributed System Design. O’Reilly

Media, Inc., 2007.

[KFS06] M. Klusch, B. Fries, and K. Sycara. Automated semantic web service discov-

ery with owls-mx. In Proceedings of the 5th International Joint Conference

on Autonomous Agents and Multiagent Systems, pages 915–922. ACM, 2006.

[KMR] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computa-

tion. IACR Cryptology ePrint Archive, 2011:272.

[LDR05] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: efficient full-

domain k-anonymity. In Proceedings of the 31st ACM SIGMOD International

Conference on Management of Data (SIGMOD), pages 49–60, 2005.

[LDR06a] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional

k-anonymity. In Proceedings of the 22nd International Conference on Data

Engineering (ICDE), pages 25–25, 2006.

[LDR06b] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware anonymiza-

tion. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 277–286, 2006.

[LP09] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-

preserving data mining. Journal of Privacy and Confidentiality, 4:59–98,

2009.

[MFHL09] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C-k Lee. Anonymizing

healthcare data: a case study on the blood transfusion service. In Proceedings

55

of the 15th ACM International Conference on Knowledge Discovery and Data

Mining (SIGKDD), pages 1285–1294, 2009.

[MFWH09] N. Mohammed, B. C. M. Fung, K. Wang, and P. C. K. Hung. Privacy-

preserving data mashup. In Proceedings of the 12th International Conference

on Extending Database Technology (EDBT), pages 228–239, 2009.

[MG11] P. Mell and T. Grance. The nist definition of cloud computing. pages 800–145.

National Institute of Standards and Technology (NIST), 2011.

[MKGV07] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-

diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge

Discovery from Data, 1, 2007.

[MKM+07] D. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Halpern. Worstcase

background knowledge in privacy-preserving data publishing. In Proceed-

ings of the 23rd IEEE International Conference on Data Engineering (ICDE),

pages 126–135, 2007.

[MW04] D. Molnar and D. Wagner. Privacy and security in library RFID: issues, prac-

tices, and architectures. In Proceedings of the 11th ACM conference on Com-

puter and Communications Security (CCS), pages 210–219, 2004.

[PKPS02] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic match-

ing of web services capabilities. In Proceedings of the First International

Semantic Web Conference on The Semantic Web, pages 333–347, 2002.

[Qui93] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., 1993.

56

[Sam01] P. Samarati. Protecting respondents identities in microdata release. IEEE

Transactions on Knowledge and Data Engineering (TKDE), 13:1010–1027,

2001.

[Swe02a] L. Sweeney. Achieving k-anonymity privacy protection using generaliza-

tion and suppression. International Journal on Uncertainty, Fuzziness and

Knowledge-based Systems, 10:571–588, 2002.

[Swe02b] L. Sweeney. k-anonymity: a model for protecting privacy. Intertation Journal

on Uncertainty, Fuzziness and Knowledge-Based Systems, 10:557–570, 2002.

[TFH09] T. Trojer, B. C. M. Fung, and P. C. K. Hung. Service-oriented architecture for

privacy-preserving data mashup. In Proceedings of the IEEE International

Conference on Web Services (ICWS), pages 767–774, 2009.

[VHNS08] R. Vaculin, C. Huajun, R. Neruda, and K. Sycara. Modeling and discovery of

data providing services. In Proceedings of the IEEE International Conference

on Web Services (ICWS), pages 54–61, 2008.

[War65] S. L. Warner. Randomized response: A survey technique for eliminating eva-

sive answer bias. Journal of the American Statistical Association, 60:63–69,

1965.

[WFY05] K. Wang, B. C. M. Fung, and P. S. Yu. Template-based privacy preserva-

tion in classification problems. In Proceedings of the 5th IEEE International

Conference on Data Mining (ICDM), pages 466–473, 2005.

[WFY07] K. Wang, B. C. M. Fung, and P. S. Yu. Handicapping attacker’s confidence:

An alternative to k-anonymization. Knowledge and Information Systems

(KAIS), 11:345–368, 2007.

57

[Wie93] G. Wiederhold. Intelligent integration of information. In Proceedings of the

1993 ACM SIGMOD International Conference on Management of Data (SIG-

MOD), pages 434–437, 1993.

[WYC04] K. Wang, P. S. Yu, and S. Chakraborty. Bottom-up generalization: A data

mining solution to privacy protection. In Proceedings of the 4th IEEE Inter-

national Conference on Data Mining (ICDM), pages 249–256, 2004.

[XT06] X. Xiao and Y. Tao. Personalized privacy preservation. In Proceedings of

the 2006 ACM SIGMOD International Conference on Management of Data

(SIGMOD), pages 229–240, 2006.

[Yao82] A. C. Yao. Protocols of secure computations. In Proceedings of the 23rd

Annual Symposium on Foundations of Computer Science, SFCS ’82, pages

160–164. IEEE Computer Society, 1982.

[YZW05] Z. Yang, S. Zhong, and R. N. Wright. Anonymity-preserving data collection.

In Proceedings of the 11th ACM SIGKDD Conference (SIGKDD), pages 334–

343, 2005.

[ZSR05] Y. Zhiqiang, Z. Sheng, and N. W. Rebecca. Privacy-preserving classification

of customer data without loss of accuracy. In Proceedings of the 5th SIAM

International Conference on Data Mining, 2005.

58

SOAP API

SOAP Client

Mashup Manager

SOAP API

Data Manager

SOAP API

Data Manager

Data Manager

SOAP API

Internet

SOAP Client

Proxy ManagerProxy Manager

Proxy Class

S RequestS Request

S ResponseS Response

Data ConsumerData Consumer

RequestRequest

ResponseResponse

Figure 4: Framework for Privacy-Preserving Data-as-a-Service Mashups: Implementation

Architecture

of TM .

Step 4 - Satisfy the Data Request. The mashup coordinator ensures that the requested

accuracy Accreq and the bid price BPricereq are fulfilled. Otherwise, the mashup coordi-

nator recommends alternative solutions with a higher price or lower accuracy.

4.2 The Architecture

Service-oriented architecture (SOA) is a pattern for business processes maintenance that

contains large distributed systems. SOA has several properties including services, interop-

erability, and loose coupling. A service is a discrete software module utilized for different

simple or complex functionalities. An enterprise service bus (ESB) enables the interoper-

ability for services among distributed systems and eases the distribution of processes over

multiple systems. Loose coupling minimizes the dependencies of system components and

improves scalability and fault tolerance of the system [Jos07]. The implemented architec-

ture of our framework is illustrated in Figure 4.

The proxy component contains a proxy manager that generates a proxy class based on

the WSDL description and exposes a programmatic interface based on the methods pub-

lished by the web service of the mashup coordinator. When the data consumer sends a

request, the coordinator invokes a method from the interface, where the method call is

30

with a higher price or lower accuracy. Figure 5 illustrates the activity diagram for request

satisfaction.

Areq

Return:
 TM , TPrice(TM), Acc(TM)

selectDaaSPs()

compTPrice()

buildTM()

Acc(TM) > Accreq

Suggest TPrice(TM)
and Acc(TM)

NoFind lower Acc YesSucceed

Yes

User
Accepts

Yes

No

No TPrice(TM) <= BPricereq

Yes

Saved
Result Find higher Acc SucceedNo

Yes

Yes

No

No

Figure 5: Data Request Satisfaction

The goal of the mashup coordinator is to find the mashup table TM whose price TPrice(TM)

is the lowest possible among all mashup tables satisfying requested attributes Areq. As il-

lustrated in Section 3.1, Price = Acc× PAi for any privacy requirements L,K,C, where

PAi is the price per attribute of provider Pi. Therefore, in order for TPrice(TM) to be the

lowest possible, Acc(TM) must be as close as possible to Accreq. The mashup coordinator

iteratively executes compTPrice and buildTM procedures to identify a mashup table TM

such that its accuracy Acc(TM) is closest to Accreq and greater than or equal to Accreq.

If no lower accuracy can be found in the price table T P
i of the first selected contributing

DaaS provider Pi, but both Accreq and BPricereq are satisfied, then the mashup coordi-

nator returns the anonymized mashup table TM with its total price TPrice(TM) and final

37

