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ABSTRACT

Formalization of Discrete-time Markov Chains in HOL

Li Ya Liu

Concordia University, 2013

Markov chains are extensively used in the modeling and analysis of engineering

and scientific problems which can be expressed as random processes with the mem-

oryless property. Usually, paper-and-pencil proofs, simulation or computer algebra

software are used to analyze Markovian models. However, these techniques either are

not scalable or do not guarantee accurate results, which are vital in safety-critical sys-

tems. To improve the accuracy of the analysis, probabilistic model checking has been

recently proposed to formally analyze Markovian systems. However, model checking

suffers from the inherent state-explosion problem and thus has a very limited scope

in terms of analyzing Markovian models.

In order to overcome the above mentioned limitations, this thesis advocates the

usage of higher-order-logic theorem proving for conducting the analysis of Markov

chains. We present the higher-order-logic formalization of Discrete-time Markov

Chains with finite number of discrete states. We also verify some of their most widely

used properties using a theorem prover. These foundations allow us to formally ex-

press and reason about Markov chains within the sound core of a theorem prover and

thus attain precise results. Moreover, by building upon these foundational results,

this thesis also presents the formalization of classified discrete-time Markov chains

and hidden Markov chains in higher-order logic. These are widely used concepts in

the analysis of Markovian models and thus allow us to tackle the formal analysis of a
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wide range of engineering and scientific systems. For illustration purposes, the thesis

also presents some applications including a binary communication channel, the auto-

matic mail quality measurement (AMQM) protocol, a DNA sequence, a least recently

used (LRU) stack model and the birth-death process.
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Chapter 1

Introduction

In our daily life, most natural phenomena are random or unpredictable. To quan-

tify the possibility of the appearance of random events, probability theory has been

built as an important branch of mathematics for probabilistic analysis of the random

phenomena. The majority of the randomness has some sort of time-dependency. For

example, noise signals vary with time, the duration of a telephone call is somehow

related to the time it is made, population growth is time dependant and so is the case

with chemical reactions. Thus, various probabilistic models are employed to describe

the behaviors of systems. Diverse random processes exhibit the memoryless property

[8], which means that the future state depends only on the current state and is inde-

pendent of any past state. In science and engineering domains, numerous applications

desire to predict the future states by the given current state and these applications

are usually modeled as Markov chains [8].

More than one hundred years ago, Andrey Markov, a Russian mathematician,

proposed a series of foundations related to random processes that exhibit the mem-

oryless property (also called the Markov property). These random processes are now
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commonly known as Markov processes and Andrey Markov’s findings are common-

ly termed as the Markov Theory. Markovian systems can be broadly classified as

four types based on their time and state parameters: discrete-time and discrete

state, discrete-time and continuous state, continuous-time and discrete state, and

continuous-time and continuous state. The discrete-time and discrete state Markov

Process is usually called the Discrete-Time Markov Chain (DTMC) [8].

A DTMC model consists of a list of the possible states of the system along with

the possible transition paths among these states [88]. This kind of a simple structure of

a DTMC model makes it handy to study various behaviors such as transient behavior

and limiting behavior, of a stochastic process with discrete spaces by solving the linear

equations. Therefore, DTMC is the most widely used stochastic process for analyzing

the reliability, maintainability and safety of real-world applications as shown in Figure

1.1. For instance, in biologic science, a typical Markov chain namely, the Birth-

DTMC

Sports

Biology

Economics & 

Finance

MusicChemistry

Physics

Figure 1.1: Markov Chain Application Fields

Death process [109], is applied in modeling biological populations. Also, the Markov

chain theory has been applied in physics (such as thermodynamics [65] and statistical
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mechanics [97]). Moreover, the enzyme activity and the growth of copolymers can be

modeled as a Markov chain in chemistry [104]. Furthermore, a variety of economics

and finance phenomena, such as asset prices [35] and market crashes [93], are described

as Markov chains. Some music composition algorithms [54] based on the Markov

chain theory are employed in software. In addition, the Markov chain theory has

been applied in advanced baseball analysis [19].

A DTMC is further divided into two main categories. It may be time homoge-

neous, which refers to the case where those Markov chains exhibit the constant tran-

sition probabilities between the states, or time inhomogeneous, where the transition

probabilities between the states are not constant and are time dependant. Further-

more, DTMCs are also classified in terms of the characteristics of their state-space.

For example, some states can be reached from all other states and some others are

those that once entered then cannot be left. In practice, these states are the most at-

tractive states in the dynamic analysis of Markovian systems. Regarding the features

of the states in their state space, DTMCs are categorized into different classes, such

as irreducible DTMC, aperiodic DTMC, absorbing DTMC etc., where these classified

Markov chains [88] are widely used to simplify the analysis of long-term behaviors for

most applications.

As an evolved Markov chain, the Hidden Markov Model (HMM) [72] is a s-

tochastic process involving an underlying Markov chain which changes the output of

the random functions associated with each state in the Markov chain. The observer

can visualize the output of the random function but not the underlying states. That

is why the Markov chain involved in this process is called hidden Markov chain. The

observed sequence is said to be conditionally independent [114] on this hidden Markov

chain.
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Initially, HMMs were proposed to solve optimal linear filtering problems as the

simplest dynamic Bayesian networks. However, due to their usefulness in effectively

analyzing probability distributions over a sequence of observations, HMMs are now

extensively used in a variety of applications involving speech recognition, cryptanal-

ysis, molecular biology, data compression, financial market forecasting and artificial

intelligence, as a ubiquitous tool.

1.1 Related Work

Traditionally, engineers have been using paper-and-pencil proof methods to perform

probabilistic and statistical analysis of Markov chain systems. Nowadays, real-world

systems have become considerably complex and the behaviors of some critical subsys-

tems need to be analyzed accurately. The computations tend to grow tremendous-

ly and it becomes practically impossible to analyze a complex system precisely by

paper-and-pencil methods due to the risk of human errors. Therefore a variety of

computer-based techniques, such as simulation, computer algebra systems and prob-

abilistic model checking have been recently proposed to analyze Markovian models.

1.1.1 Simulation

Simulation is the most commonly used automated technique for analyzing Markovian

models. In a simulator, such as the simulink toolbox in Matlab [107], the automatic

analyses are conducted by providing the system model and the input samples. The

arbitrary samples generated by traditional random functions cannot ascertain the

behavior of desired systems for all possible cases. The Markov Chain Monte Carlo

(MCMC) method [25] tends to increase the precision of the analysis by using the

sampling approach to approximate the desired distribution in terms of the residual
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effect of the initial position. Some of the sophisticated MCMC-based algorithms are

capable of producing samples matching the given probability distribution, but the

major limitation of MCMC is that it generally requires hundreds of thousands of

simulations to evaluate the desired probabilistic quantities and becomes impractical

when each simulation step involves extensive computations. In order to improve the

computation efficiency, some approximations are introduced in the complex analysis

process. Especially, in the long-term behavior analysis, the high computational costs

are associated with vp
(n)
ij for large values of n, where v is any probability vector and

p
(n)
ij is the n-step transition probability from state i to state j. Most simulators utilize

an equilibrium vector to approximate vp
(n)
ij in order to reduce the computation time.

Many reliability evaluation software tools integrate simulation and numerical an-

alyzers for modeling and analyzing the reliability, maintainability or safety of systems

using Markov methods, which offer simplistic modeling approaches and are more flex-

ible compared to traditional approaches, for example, Fault Tree [18]. Some prevalent

tool examples include Möbius [84] and SHARPE [105]. These tools mainly provide

the services on analyzing the failure or repair of a model, which may occur in the

lifetime of any product. Some other software tools used for evaluating performance,

e.g., MACOM [102] and HYDRA [85], take the advantage of a popular Markovian

process algebra [7], i.e., PEPA [92], to model systems and efficiently compute passage

time densities and quantities in large-scale Markov chains.

Another technique, Stochastic Petri Nets (SPN ) [32], has been found as a pow-

erful method for modeling large-scale systems because it allows local state modeling

instead of global modeling. SPN are utilized to model the stochastic systems and

offer the capability of analyzing large and complex models. The Markov chain of

an SPN is modeled by means of a reachability graph [61]. The prevailing software
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tools of stochastic petri nets are SPNP [14] and GreatSPN [30]. These tools can

model, validate, and evaluate distributed systems and analyze the dynamic events of

the models by means of embedded Markov chain theory. For example, the quantita-

tive analysis of Generalized Stochastic Petri Nets (GSPNs) [33] mainly depends on

a Markovian solution, in which the models are described as semi-Markov processes

in order to calculate the steady state distributions of the stochastic systems. The

calculations are based on numerical methods again, which is the main limiting factor

of the application of SPN for analyzing safety-critical system models.

Various simulation-based HMM analysis tools, dedicated to a particular sys-

tem domain, have been reported in the literature. Some prominent examples include

HMMTool [43] as part of the NHMMtoolbox [98] to predict daily rainfall sequence.

ChIP-Seq [12], MArkov MOdeling Tool (MAMOT ) [23] and HMMER [42] are some

of the popular simulation software in biological research. However, as mentioned ear-

lier, due to their approximate nature, all these simulation techniques are not reliable

enough for safety-critical applications.

In general, the analysis based on the simulation technique can never be termed

as 100% precise due to the inaccurate nature of the underlying algorithms, which

are based on numerical methods that generate inaccurate results. In addition, many

rounding errors also creep into the analysis due to the involvement of computer arith-

metic. Such approximations and inaccuracies introduced by numerical methods pose a

serious problem while analyzing highly sensitive and safety-critical applications, such

as nuclear reactor controllers and aerospace computing systems.
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1.1.2 Computer Algebra Systems

Computer algebra systems (CAS) provide fully automated support for analyzing

Markovian models and symbolic representation of Markovian systems using a friendly

human-machine interface. The symbolic analysis overcomes the limitations associated

with the inaccurate results generated by applying numerical methods. It facilitates

the calculus problems, such as multiprecision arithmetic, operations on polynomials

and the evaluation of the eigenvalues for linear equations. Recently, the CAS tool

Mathematica [77] has introduced a Markov chain analysis tool-box which offers a

completely automatic analysis. Another well-known CAS, Maple [75], also utilizes

Markov chains for solving financial problems by automatically constructing transition

matrices in Markovian models.

On the surface, CASs provide results as generic formulas and are similar to the-

orem provers. However, the simplifications performed in the CASs are not strictly

mathematical as they are not able to deal with side conditions. For example, Math-

ematica [77] returns 1 as the answer when given “x / x” as the input. It is clear

that “x / x = 1” holds only when x 6= 0. Moreover, CAS algorithms cannot simplify

some expression. For example, the following simplification rule is not supported by

Mathematica [37]:

√
x2 =















x if x ≥ 0

−x if x ≤ 0

As a result, the core of computer algebra systems cannot be considered sound enough

to guarantee the correctness of the final result. Moreover, the presence of huge sym-

bolic manipulation algorithms, which have not been verified in the cores of CASs

also make the analysis results untrustworthy. In addition, if the formulas given by
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CASs are instantiated with concrete values for their parameters, then the real num-

bers obtained for the corresponding results are mainly calculated by applying some

numerical methods, such as the Jacobi Over-Relaxation, Gauss-Seidel and Successive

Over-Relaxation algorithms [6], for the affordable computation reason. In this case,

the results include approximations.

1.1.3 Probabilistic Model Checking

Recently, probabilistic model checking [100] has been proposed for analyzing Marko-

vian systems by modeling stochastic behaviors using probabilistic state machines and

exhaustively reasoning about the probabilistic properties of numerous Markovian sys-

tems in a precise logic. Some of the commonly used probabilistic model checkers are

PRISM [94], VESTA [103] and Ymer [113]. Among them, PRISM is the most widely

used, where the system model is constructed as the state transition graph and the

properties are specified using Probabilistic Computer Temporal Logic (PCTL).

Probabilistic model checking tools perform the formal analysis of Markov chain

models automatically and provide counter-examples if the verification of a system

model failed. Although they offer exact solutions, they are drastically limited by the

state-space explosion problem [5] and the limited expressiveness of the property spec-

ification language. Furthermore, the time for analyzing the properties of a system

is largely dependent on the convergence speed of the underlying algorithms. For ex-

ample, the Power method [90], which is a well-known iterative method, is applied to

compute the steady-state probabilities (or limiting probabilities) of Markov chains in

PRISM. Such algorithms are mainly based on numerical methods, which usually bring

about approximations in the results. These approximations reduce the accuracy of

the results or even execute unreliable results. Moreover, probabilistic model checking
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tools often utilize unverified algorithms and optimization techniques [108]. Finally,

model checking cannot be used to verify generic mathematical expressions for proba-

bilistic analysis due to the inherent state-based nature of the approach. To the best

of our knowledge, no case study of HMM formal analysis has been reported in the

open literature, except for some model checking algorithms based on the Probabilistic

Observation CTL (POCTL), which is used for modeling and specifying properties of

parameterized HMMs. The complexity of these algorithms depends on the size of the

model and the number of variables involved in the property formula. This factor,

coupled with the inherent nature of model checking, severely limits the usage of this

algorithm for analyzing real-world examples.

1.2 Proposed Methodology

With an extensive usage of Markov chains in modeling and analysis of systems, the

availability of their accurate analysis techniques has become imperative. Various

techniques have been proposed for analyzing Markovian models as described above,

but none of them can guarantee providing accurate analysis for all sorts of Markovian

models. Probabilistic model checking provides a formal analysis of various Markov

chain models, but to the best of our knowledge it cannot cater for some, for example

hidden Markovian models [72]. Moreover, model checking suffers from state-explosion

problem when analyzing larger systems and some of its underlying algorithms are not

formally verified.

Higher-order logic interactive theorem proving [28] is a formal method that pro-

vides a conceptually simple formalism with precise semantics. It allows to construct

a computer based mathematical model of the system and perform mathematical rea-

soning to check the systems properties of interest in order to solve the inaccuracy

9



problem mentioned above. Due to the highly expressive nature of higher-order logic

and the inherent soundness of theorem proving, as already described in the previous

section, this technique is capable of conducting formal probabilistic analysis, which is

the prerequisite of the Markov chain model analysis.

Based on the work of [39] and later [79], in this thesis, we propose a comprehen-

sive framework for the formal analysis of DTMCmodels by means of higher-order-logic

theorem proving. A general overview of the proposed framework is depicted in Figure

1.2.

To conduct the Markovian system analysis, the first step is to construct the

formal system model as a function in higher-order logic based on the given system

description. This can be done using the left dotted box that contains the formal

mathematical definitions of Markov chain foundations including discrete-time Markov

chain, classified states, hidden Markov model and the classified discrete-time Markov

chain. The second step is to formally express the system properties, which are given as

a set of characteristics (system behaviors), as the higher-order logic goals utilizing the

formal system model developed in the first step. For the purpose of formally analyzing

the system properties (proving these goals), it requires a library containing some pre-

verified theorems as the properties based on the general models (shown in the boxes

colored as light blue) built upon in the first step. These pre-verified theorems include

some classical theorems, such as the joint probability theorem, Chapman-Kolmogorov

Equation and Absolute probability [55], etc., and the stationary properties [55], which

are verified in higher-order logic based on the classified discrete-time Markov chain.

If the system can be described as a hidden Markov model [72], then it requires the

verification of related properties in the higher-order-logic theorem prover. Our main

work is to establish this library for the purpose of facilitating the formally reasoning
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finite state space [69]. However, the definition of DTMC is not general enough due to

the inherit disadvantage of the probability theorem in [49] and the verified theorems

are not rich enough to deal with various DTMC models. Our work, in this thesis,

mainly relies on the most recent and general formalization of probability theory [81]

and all the formalizations of discrete-time Markov chain are executed in theorem

prover HOL4 [28].

To the best of our knowledge, the only related work to ours is a very recent

work by Hölzl et al. [47], who formally defined a time-homogeneous Markov chain

based on the finite state space and the transition matrix in Isabelle/HOL, where the

authors they assumed no initial distribution or start state. The aim of their work was

to verify PCTL in probabilistic model checkers, hence, a generalized formalization of

DTMC theory has not been provided. Furthermore, their work has not shown the

capability of formalizing the time-inhomogeneous Markov chain.

1.3 Thesis Contributions

The main contribution of this thesis is to provide an alternative approach to verify

Markovian models, which is capable of offering accurate, scalable and generic results.

To meet this objective, we construct a foundational framework for conducting Markov

chain based analysis within the sound core of the higher-order-logic theorem prover

HOL. Some of the key contributions of this thesis are as follows:

• We provide the formalization of DTMC and the verification of the most impor-

tant properties, in which the concepts of reversibility and stationary properties

accommodate the formal reasoning about Markov chain mixing time [67] and

the formalizations of stationary process and stationary distribution grant the

formal verification of the stationary properties of numerous other stochastic
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processes [Bio-Jr-1, Bio-Cf-1]. We formally analyze a Binary Communication

Channel [Bio-Cf-1] and verify certain properties of the Automatic Mail Quality

Measurement (AMQM) protocol [Bio-Jr-1]. Also, these formalizations can be

built upon to formalize other foundations, such as Continuous-Time Markov

Chain (CTMC) [Bio-Tr-1].

• We develop the formal definitions of classified states and classified DTMCs, as

well as the verified properties of the aperiodic and irreducible DTMCs. The

properties of aperiodic and irreducible DTMCs can be regarded as theorems

and applied in the formal analysis of the long-run behaviors of the Markovian

systems [Bio-Cf-2]. These formalizations can be easily used to formally model

various interesting stochastic processes and classical problems, such as the Birth-

Death Process [Bio-Jr-2]. Moreover, these results have been utilized to formally

validate a generic Least Recently Used (LRU) stack model [Bio-Cf-2].

• We investigate the formalization of discrete-time HMMs and the verification

of their associated properties, such as joint probability and the probability of

observation path, as well as the best path obtained in a theorem prover [Bio-

Cf-3]. We demonstrate the effectiveness of the foundational theorems through

the formal analysis of a DNA sequence in higher-order logic [Bio-Cf-3]. We

also stride the first step on proof automation to reduce the human-computer

interaction. Thus, providing support to common user, who is not familiar with

higher-order logic, to use the theorem prover HOL4 to analyze a HMM, like a

DNA sequence.
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1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide some basic

knowledge on probability theory and Markov chain that are required to understand

the formalization described in the rest of the thesis. We also offer a brief introduction

on theorem proving techniques and the HOL4 theorem prover.

In Chapter 3, we present the proposed higher-order-logic definition of DTMC

and use the associated definitions to verify some classical theorems. The formal

notations of stationary distribution and stationary process are also presented in this

chapter. To illustrate the utilization of these mathematical formalizations, we use

them to analyze two applications, namely the analysis of binary communication model

and the verification of Automatic Mail Quality Measurement (AMQM) protocol.

In Chapter 4, we present the formalization of diverse classified states and classi-

fied DTMCs. Based on their definitions, the major interesting properties of classified

DTMCs are formally verified as theorems, which are quite useful in long-term proba-

bilistic analysis. Then, a least recently used (LRU) stack model is formally validated

as an application. We also present the formalization of discrete-time Birth-Death

chain at the end of this chapter.

As a special Markovian model, the formalization of Hidden Markov Model (H-

MM) is presented in Chapter 5. The properties, including joint probability and state

path probability are verified using the formalization of HMM. We also make use of the

proof of best path selection to introduce the automation technique in higher-order log-

ic. In order to show the usefulness of these properties, we present the formal analysis

of a DNA sequence.

Finally, Chapter 6 provides concluding remarks and outlines several future re-

search directions.
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Chapter 2

Preliminaries

In this chapter, we first briefly introduce higher-order-logic theorem proving and the

HOL4 theorem prover. We then present a development of higher-order logic formal-

ization of probability theory in HOL4, which forms the foundational material required

to understand this thesis.

2.1 HOL Theorem Proving

Theorem proving is the process of verifying theorems using formal reasoning based on

a small set of axioms and inference rules defined in a proof assistant named theorem

prover, which provides a sound environment for mathematical reasoning. This sound

environment ensures that any new theorem must be verified by applying the basic

axioms, primitive inference rules and previously proved theorems. The main idea be-

hind theorem proving is that the system is modeled as a function in some appropriate

logic and the system properties are expressed as theorems in the same logic, then

these theorems are interactively verified based on mathematical reasoning in a theo-

rem prover. The most commonly used logics in the proof systems are propositional
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logic, first-order logic and higher-order logic. Among them, propositional logic can be

used to automatically reason about complete sentences at the cost of a lower expres-

siveness; first-order logic can use quantified variables to check individual objects and

their relationships, however, the logical consequence relation is semidecidable; where-

as higher-order logic requires more interactions because it is neither decidable nor

complete, but higher-order logic enables quantification over arbitrary variables, pred-

icates and functions, which provides the capabilities to express any complex systems

or reason about any mathematical theory. Hence, higher-order logic has the highest

expressiveness. This is the main reason why the theorem proving using higher-order

logic is the most flexible verification technique for a wide range of real-world systems.

The commonly used theorem provers for higher-order logic are Coq [17], HOL4 [45],

HOL Light [44], Isabelle [50], MIZAR [83] and PVS [95]. These theorem provers

are built upon in sound proof systems, where all theorems are tautologies (all proved

theorems are true and semantically valid formulas), while they have the incomplete-

ness feature. However, in order to facilitate the proof process, the higher-order logic

theorem prover provides rich proof assistants and automatic proof methods. Due to

the undecidable nature of higher-order logic, users have to verify theorems in an in-

teractive way. The most advanced probability theories, on which our work depends,

[80] is built upon theorem prover HOL4, hence, we select the theorem prover HOL4

as our proof assistant.

Based on Robin Milner’s proof-checking program, Logic for Computable Func-

tions (LCF) [82], HOL4 is developed for conducting proofs in higher-order logic by

using the strongly-typed functional Meta-Language (ML) [91]. As a system of deduc-

tion with a precise semantics, HOL4 is capable of verifying a wide variety of hardware

and software as well as pure mathematics due to the high expressiveness higher-order
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logic. One of the key principles of the HOL4 system is that its logical core consists

of only 5 axioms and 8 inference rules and all the subsequent theorems are verified

based on these foundations or any other previously verified theorems. HOL4 supports

both forward and backward proofs by applying tactics, which are ML functions that

simplify goals into subgoals. Over the past few decades, the formalization of many

foundational mathematical theories has led to tremendous progress in HOL4. For

example, Harrison [36] formalized real numbers, topology, limits, sequences and series

as well as differentiation and integration. His work is part of the current distribution

of HOL. Hurd [49] developed a probability theory and Hasan [39] formalized statis-

tical properties for continuous random variables and their Cumulative Distribution

Function (CDF) in the HOL4 system. However, in Hurd’s formalization, the space is

implicitly the universal set of the appropriate type. Thus, it is not allowed to rea-

son about a measure space where the space is not the universal set. Since Hasan’s

work is built upon Hurd’s, it inherits the same limitations. Later, Coble [15] defined

probability spaces and random variables based on an improved measure space, which

is formalized as a triple (X, A, µ) and contains an arbitrary space to overcome the

limitation of Hurd’s work. However, in Coble’s work, Borel spaces are not defined on

open intervals and real-valued measurable functions cannot be defined. More recently,

Mhamdi [79] provided a significant formalization of measure theory and probability

theory for formally analyzing information theory. It overcomes the limitations of

Coble’s work by allowing to define sigma-finite and other infinite measures as well as

the signed measures. We use this latter formalization for the work in this thesis.

In Table 2.1, we list some frequently used symbols and functions associated with

the description in the following chapters of this thesis.
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Table 2.1: HOL Symbols and Functions

HOL Symbol Meaning

∀ Logical for all

∃ Logical exists

∧ Logical and

∨ Logical or

∼ Logical negation

(a, b) A pair of two elements

EL k L The kth element of list L

REVERSE L The reverse list of L

divides a b a can be divided by b

λx.fx Function that maps x to f(x)

{x|P(x)} Set of all x such that P (x)

Univ Universal Set

∅ Empty Set

a ∈ S a in S

FINITE S S is a finite set

A ⊆ B A is a subset of B
⋂

P Intersection of all sets in the set P
⋃

P Union of all sets in the set P

A ∩ B A intersection B

A ∪ B A union B

disjoint A B Sets A and B are disjoint

MAXSET A The maximum element in a set A

IMAGE f A Set with elements f(x) for all x ∈ A

convergent (λn. f n) f is convergent

PROD (0, k) (λn. f n)
∏k

n=0 f(n)

SIGMA (λn. f n) s
∑

n∈s f(n)

suminf (λ n.f n) limk→∞

∑k

n=0 f(n)

lim (λ n. f n) Limit of a real sequence f

summable (λ n. f n) f is summable
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2.2 Probability Theory

Mathematically, a measure space is defined as a triple (Ω,Σ, µ), where Ω is a set,

called the sample space, Σ represents a σ-algebra of subsets of Ω, where the subsets

are usually referred to as measurable sets, and µ is a measure with domain Σ. A

probability space is a measure space (Ω,Σ,Pr) such that the measure, referred to as

the probability and denoted by Pr, of the sample space is 1. A probability theory is

developed based on three axioms [79]:

1. ∀ A. 0 ≤ Pr(A)

2. Pr(Ω) = 1

3. For any countable collection A0, A1, · · · of mutually exclusive events,

Pr(
⋂

i∈Ω Ai) =
∑

i∈Ω Pr(Ai).

A random variable is a function from a probability space to a measurable space.

A measurable space refers to a pair (S,Σ), where S denotes a set and Σ represents a

nonempty collection of subsets of S. Especially, if the set S is a discrete set, which

contains only isolated elements, then this random variable is called a discrete random

variable. The probability that a discrete random variable X is exactly equal to some

value i is defined as the probability mass function (PMF) and it is mathematically

expressed as Pr(X = i).

A random process denotes a collection of random variables Xt (t ∈ T ). If the

indices (t) of random variables Xt are discrete, then this random process is a discrete-

time random process.

Nedzusiak [86] and Bialas [9] were among the first to propose to formalize some

measure and probability theories in higher-order-logic. Later, Hurd [49] implemented

their work and formalized a certain measure space as a pair (Σ, µ) in HOL. The
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sample space, on which this pair is defined, is implied from the higher-order-logic

definitions to be equal to the universal set of the appropriate data-type. Building

upon the formalization of measure space, the probability space was also defined in

HOL as a pair (E ,P), where the domain of P is the set E , which is a set of subsets of

infinite Boolean sequences B
∞. Both P and E are defined using the Carathéodory’s

Extension theorem, which ensures that E is a σ-algebra: closed under complements

and countable unions. As a consequence, the space is implicitly a universal set. Based

on Hurd’s formalization of probability theory, Hasan [39] provides the formalization

of random variables and the verification of statistical properties, such as expectation

and variance, for both discrete and continuous random variables [40].

However, as mentioned above, the fact that the sample space in Hurd’s measure

theory is a universal set results in a very complex definition for the arbitrary space,

where the space is not the universal set. This limits its scope considerably.

Later, Coble [16] formalized the measure space as the triple (X, Σ, µ). This

allows to define an arbitrary space X, hence overcomeing the disadvantage of Hurd’s

work. Coble’s probability theory is built upon finitely-valued (standard real number-

s) measures and functions. Specifically, the Borel sigma algebra cannot be defined

on open sets and this constrains the verification of some applications. More recently,

Mhamdi [80] improved the development based on the axiomatic definition of probabili-

ty proposed by Kolmogorov [58]. Mhamdi’s theory provides a mathematical consistent

for assigning and deducing probabilities of events. Hölzl [46] has also formalized three

chapters of measure theory in Isabelle/HOL. Affeldt [2] simplified the formalization of

probability theory in Coq [17]. Among these works, the probability theory formalized

by Mhamdi provides the most generic formal reasoning support and thus can be used

to analyze wider range of applications.
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Mhamdi defined a probability space in higher-order logic as a measure space

(Ω,Σ,Pr) [80], which is exactly matched with the aforementioned mathematical defi-

nition . The probability theory is then developed by giving a probability space p and

the functions space and subsets which return the corresponding Ω and Σ, respec-

tively. The above approach has been successfully used to formally verify most basic

probability theorems [79], such as:

0 ≤ Pr(B) ≤ 1 (2.1)

∑

Bi∈ Ω Pr(Bi) = 1 (2.2)

In [79], a random variable is formally defined (formalized) as a measurable func-

tion X between a probability space p and a measurable space s. It is written as

random variable X p s in HOL. The definition of random variables is general e-

nough to formalize both discrete and continuous random variables. Now, utilizing the

formalization of random variables, the random process {Xt}t≥0 can be easily written

as ∀ t. random variable (X t) p s in higher-order logic.

One of the crucial concepts in the random process study is the conditional prob-

ability, which is used to calculate the occurrence probability of an event when another

event is known to occur. Conditional probability basically reflects the dependency

between the events which happen at different times in a process. The formal defini-

tion of conditional probability in HOL can be found in [41], which is based on Hurd’s

work [49]. In order to make use of the most advanced probability theory in our work,

we improved the formalization of conditional probability as:

Definition 2.1. (Conditional Probability)

The conditional probability of the event A given the occurrence of the event B is

Pr(A|B) = Pr(A ∩ B)/Pr(B)

` ∀ A B. cond prob p A B = prob p (A ∩ B) / prob p B
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where cond prob represents conditional probability, and prob denotes the probability.

There are different functions of a probability space p in HOL. In this thesis, we utilize

the symbol P to denote both the function cond prob p and the function prob p in

HOL and the argument of P would clarify if we want to use it in the context of

cond prob (e.g. P(A | B)) or prob (e.g. P(B)).

In order to facilitate the formalization of Markov chains, we verified various

classical properties of conditional probability based on Definition 2.1. Some of the

prominent ones are listed below:

Pr(A ∩B) = Pr(A|B)Pr(B) (2.3a)

Pr(A ∩B|C) = Pr(A|B ∩ C)Pr(B|C) (2.3b)

Pr(A) =
∑

i∈Ω Pr(Bi)P(A|Bi) (2.3c)

Pr(A) =
∑

i∈Ω Pr(A)Pr(Bi|A) (2.3d)

∑

i∈Ω Pr(Bi|A) = 1 (2.3e)

where A, B and C are events in the event space, and the finite events set {Bi}i∈Ω
contains mutually exclusive and exhaustive events. The first two theorems are obvi-

ously based on Definition 2.1. The third one is the Total Probability Theorem and

the fourth one is a lemma of the Total Probability Theorem. The last theorem is the

Additivity Theorem.

Mathematically, the conditional independence [53] is an important concept,

which is the foundation of graphical models and mainly used in Bayesian Network.

The mathematical definition of conditional independence is:

Definition 2.2. (Conditional Independence)

The events A and B are conditionally independent given the event C if

Pr(A|B ∩ C) = Pr(A|C). (2.4)
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Chapter 3

Discrete-time Markov Chain in

HOL

In this chapter, we describe the formalization of discrete-time Markov chain and the

formal verification of some of its most important properties using the probability

theory presented in [80]. In order to illustrate the usefulness of this work, a binary

communication channel model and a collection process model involved in the Auto-

matic Mail Quality Measurement (AMQM) protocol are formally analyzed in HOL.

3.1 Definition of Discrete-time Markov Chain

Given a probability space, a stochastic process {Xt : Ω → S} represents a sequence

of random variables X, where t represents the time that can be discrete (represented

by non-negative integers) or continuous (represented by real numbers) [8]. The set

of values taken by each Xt, commonly called states, is referred to as the state space.

The sample space Ω of the process consists of all the possible state sequences based

on a given state space S. Now, based on these definitions, a Markov process can be
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defined as a stochastic process with Markov property [13]. If a Markov process has

finite or countably infinite state space Ω, then it is called a Markov chain and satisfies

the following Markov property:

For 0 ≤ t0 ≤ · · · ≤ tn and f0, · · · , fn+1 in the state space, then:

Pr{Xtn+1
= fn+1|Xtn = fn, . . . , Xt0 = f0} = Pr{Xtn+1

= fn+1|Xtn = fn} (3.1)

This means that the future state is only dependent on the current state and is inde-

pendent of all the other past states. Now, the Markov property can be formalized as

follows:

Definition 3.1. (Markov Property)

` ∀ X p s. mc property X p s =

(∀ t. random variable (X t) p s) ∧

∀ f t n.

increasing seq t ∧ P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) 6= 0 ⇒

(P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n} ∩
⋂

k∈ [0,n−1]{x | X tk x = f k}) =

P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n}))

where increasing seq t is defined as ∀ i j. i < j ⇒ t i < t j, thus formal-

izing the notion of increasing sequence. The first conjunct indicates that the Markov

property is based on a random process {Xt : Ω → S}. The quantified variable X

represents a function of the random variables associated with time t which has the

type num. This ensures the process is a discrete time random process. The random

variables in this process are the functions built on the probability space p and a mea-

surable space s. The conjunct P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) 6= 0 ensures that
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the corresponding conditional probabilities are well-defined, where f k returns the kth

element of the state sequence.

We also have to explicitly mention all the usually implicit assumptions stat-

ing that the states belong to the considered space. The assumption P(
⋂

k∈ ts
{x

| X k x = f k}) 6= 0 ensures that the corresponding conditional probabilities are

well-defined, where f k returns the kth element of the state sequence. In fact, the

assumption P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) 6= 0 ensures that the corresponding

conditional probabilities are well-defined and represents the following HOL code:

prob p (BIGINTER (IMAGE (λ k. (X tk x = f k) ∧ (x IN p space p)) [0, n - 1]))

The term x IN p space p ensures that x is in the samples space in the considered

probability space p space p.

For better clarity, in this thesis, P{x | X t x = i} represents prob p {x |

(X t x = i) ∧ (x IN p space p)}. Similarly, the conditional probability P({x |

X (t + 1) x = j}|{x | X t x = i}) represents cond prob p ({x | (X (t + 1)

x = j) ∧ (x IN p space p)}|{x | (X t x = i) ∧ (x IN p space p)}) in HOL.

A DTMC with finite state space is usually expressed by specifying: an initial

distribution p0 which gives the probability of initial occurrence Pr(X0 = s) = p0(s)

for every state; and transition probabilities pij(t) which give the probability of going

from i to j for every pair of states i, j in the state space [88]. For states i, j and a

time t, the transition probability pij(t) is defined as Pr{Xt+1 = j|Xt = i}, which can

be easily generalized to n-step transition probability.

p
(n)
ij (t) =













































0 if i 6= j

1 if i = j

n = 0

Pr{Xt+n = j|Xt = i} n > 0

(3.2)
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This is formalized in HOL as follows:

Definition 3.2. (Transition Probability)

` ∀ X p s t n i j. Trans X p s t n i j =

if i ∈ space s ∧ j ∈ space s then

if n = 0 then

if (i = j) then 1

else 0

else P({x | X (t + n) x = j}|{x | X t x = i})

else 0

It is easy to understand that the probability of an event is zero, when this event

is not in the event space. For instance, i is not in the state space implies that event

{Xt = i} = ∅. In this case, the conditional probability related to an empty set is zero.

Now, the discrete-time Markov chain (DTMC) can be formalized as follows:

Definition 3.3. (Discrete-Time Markov Chain)

` ∀ X p s p0 pij.

dtmc X p s p0 =

mc property X p s ∧ (∀ i. i ∈ space s ⇒ {i} ∈ subsets s) ∧

∀ i. i ∈ space s ⇒ (p0 i = P{x | X t x = i}) ∧

∀ t i j. P{x | X t x = i} 6= 0 ⇒ (pij t i j = Trans X p s t 1 i j)

where the first three variables are inherited from Definition 3.1, p0 and pij refer to the

functions expressing the given initial status and transition matrix associated with this

random process, respectively. The first condition in this definition describes Markov

property presented in Definition 3.1 and the second one ensures the events associated
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with the state space (space s) are discrete in the event space (subsets s), which

is a discrete space. The last two conditions assign the functions p0 and pij to initial

distributions and transition probabilities.

It is important to note that X is polymorphic, i.e., it is not constrained to a

particular type, which is a very useful feature of our definition.

In Definition 3.3, if the function pij depends on t, then this discrete-time Markov

chain is a time-inhomogeneous Markov chain. However, most of the applications

actually make use of time-homogenous DTMCs, i.e., DTMCs with finite state-space

and time-independent transition probabilities [5]. The time-homogenous property

refers to the time invariant feature of a random process. Thus, the one-step transition

probability of the random process can be simplified as pij = Pr{Xt+1 = j|Xt = i} =

pij(t), based on Equation (3.2).

Then, the time-homogenous DTMC with finite state-space can be formalized as

follows:

Definition 3.4. (Time homogeneous DTMC)

` ∀ X p s p0 pij.

th dtmc X p s p0 pij =

dtmc X p s p0 pij ∧ FINITE (space s) ∧

∀ t i j. P{x | X t x = i} 6= 0 ∧ P{x | X (t + 1) x = i} 6= 0 ⇒

(Trans X p s (t + 1) 1 i j = Trans X p s t 1 i j)

where the first and second conjuncts constraint this time-homogeneous DTMC is a

discrete-time Markov chain with the finite state space, the last condition expresses the

time-homogeneous property: ∀ t t′. pij(t) = pij(t
′) and thus pij(t) is simply written

as pij in the rest of this thesis.
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3.2 Classical DTMC Properties

Using the formal definition of DTMC, we proved the most important properties of

DTMC, which are usually called classical DTMC properties and are frequently used

in the analysis of many systems modeled as DTMCs.

3.2.1 Joint Probability Theorem

The joint probability distribution of a DTMC is the probability of a chain of states to

occur. It is very useful in analyzing multi-stage experiments, especially, the stationary

process which is defined on the joint probability distribution. The joint probability

distribution is also used to analyze the reversibility of a Markov chain. Moreover,

this concept is the basis for the joint probability generating function, which is used

in many different fields. We verified this property in HOL as the following theorem:

Theorem 3.1. (Joint Probability)

A joint probability distribution of n discrete random variables X0, . . . Xn in a finite

DTMC {Xt}t≥0 satisfies:

Pr(Xt = L0, · · · , Xt+n = Ln) =
n−1
∏

k=0

(Pr(Xt+k+1 = Lk+1|Xt+k = Lk))Pr(Xt = L0)

` ∀ X p s t L p0 pij.

dtmc X p s p0 pij ⇒

P(
⋂n

k=0{x | X (t + k) x = EL k L}) =

(PROD (0, n) (λ k. P({x | X (t + k + 1) x = EL (k + 1) L}|

{x | X (t + k) x = EL k L})))

P{x | X t x = EL 0 L}
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Proof. We proved Theorem 3.1 by performing induction on the variable n. The

base case can be easily verified by using some set and real arithmetic reasoning.

The proof of the step case starts from rewriting the P(
⋂n+1

k=0{x | X (t + k) x = EL

k L}) to be P(
⋂n

k=0{x | X (t + k) x = EL k L} ∩ {x | X (t + n + 1) x = EL

(n + 1) L}). Then, the proof can be completed by applying Equation (2.3a) and

rewriting the subgoal with Definition 3.3 and the assumption obtained after proving

the base case.

3.2.2 Chapman-Kolmogorov Equation

The Chapman-Kolmogorov Equation [8] is a widely used property of time homoge-

neous DTMCs. It gives the probability of going from state i to j in m + n steps.

Assuming the first m steps take the system from state i to some intermediate state k

and the remaining n steps then take the system from state k to j, we can obtain the

desired probability by adding the probabilities associated with all the intermediate

steps.

Theorem 3.2. (Chapman-Kolmogorov Equation)

For a finite time homogeneous DTMC {Xt}t≥0, its transition probabilities satisfy the

Chapman-Kolmogorov Equation

p
(m+n)
ij =

∑

k∈Ω

p
(m)
ik p

(n)
kj

` ∀ X p s i j t m n p0 pij.

th dtmc X p s p0 pij ⇒

(Trans X p s t (m + n) i j =

SIGMA (λ k. Trans X p s (t + n) m i k * Trans X p s t n k j)

(k ∈ space s))
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Proof. Theorem 3.2 is again verified using induction on the variables m and n. Both

of the base and step cases are discharged using the following lemma:

Lemma 3.1. (Multistep Transition Probability)

` ∀ X p s i j t m p0 pij.

th dtmc X p s p0 pij ⇒

(Trans X p s t (m + 1) i j =

SIGMA (λ k. Trans X p s (t + m) 1 k j * Trans X p s t m i k)

(k ∈ space s))

which gives the m step transition probability p
(m)
ij =

∑

k∈Ω p
(m)
ik pkj. The proof of

Lemma 3.1 starts from rewriting the goal using Definitions 3.2 and 3.4, and then

simplifying the subgoal using the additivity property of probabilities.

3.2.3 Absolute Probability

The unconditional probabilities associated with a Markov chain are called absolute

probabilities, which can be computed by applying the initial distributions and n-step

transition probabilities. This shows that, given the initial probability distributions

and the n-step transition probabilities, the absolute probability in the state j after n

steps from the start time 0 can be obtained by using this equation.

This property is formally verified as the following theorem:

Theorem 3.3. (Absolute Probability)

In a finite time homogeneous DTMC, the absolute probabilities p
(n)
j satisfy

p
(n)
j = Pr(Xn = j) =

∑

k∈Ω Pr(X0 = k)Pr(Xn = j|X0 = k)

` ∀ X p s j n p0 pij.

th dtmc X p s p0 pij ⇒
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(P{x | X n x = j} =

SIGMA (λ k. P{x | X 0 x = k}

P({x | X n x = j}|{x | X 0 x = k})) (k ∈ space s)))

The proof of Theorem 3.3 is based on the Total Probability theorem (2.3c) along with

some basic arithmetic and probability theoretic reasoning.

3.2.4 Reversibility Property

A stochastic process {Xt}t≥0 is said to be reversible if the joint probability of the

sequence X0, X1, . . ., Xn is the same as the distribution of Xn, Xn−1, . . ., X0, that is:

Pr{X0 = x0, X1 = x1, . . . , Xt = xt} = Pr{Xt = x0, Xt−1 = x1, . . . , X0 = xt}.

This reversible stochastic process can be defined in HOL as follows:

Definition 3.5. (A Reversible Stochastic Process)

` ∀ X p s L t.

reversible proc X p s =

(P(

|L|−1
⋂

k=0

{Xt+k = EL k L}) = P(

|L|−1
⋂

k=0

{Xt+k = EL k (REVERSE L)}))

where |L| represents the length of the chain considered.

In Markov chain theory, certain Markov chains satisfy the Detailed Balance

Equations [88], which ensures that this Markov chain has an equilibrium distribution.

This distribution is usually utilized in MCMC methods to construct the samples

with a desired distribution in excessive simulations. This kind of Markov chain also

exhibits a reversibility feature and is called reversible Markov chain. Mathematically,

the Detailed Balance Equations are expressed as

π(i)Pij = π(j)Pji, ∀i, j ∈ Ω (3.3)
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where the π(i) and π(j) are the equilibrium probabilities of being in states i and j,

respectively. The detailed balance equations can be formalized as:

Definition 3.6. (Detailed Balance Equations)

` ∀ f X p s. db equations f X p s =

∀ i j t. (f i * Trans X p s t 1 i j = f j * Trans X p s t 1 j i)

The function f represents the probability distribution π in Equation (3.3). Note

that if i or j is not in the state space, then it can imply both the transition prob-

abilities Pij and Pji, corresponding to Trans X p s t 1 i j and Trans X p s t 1

j i, respectively, equal to zero and thus both sides of Equation (3.3) are zeroes.

A Markov chain is defined as reversible Markov chain if it satisfies the Detailed

Balance Equations. The formal definition in HOL is

Definition 3.7. (Reversible DTMC)

` ∀ X p s p0 pij.

rmc X p s p0 pij =

th dtmc X p s p0 pij ∧ ∀ t. db equations (λ i. P{Xt = i}) X p s

The concept of the reversible process is mainly applied in the area of thermody-

namics [65], while reversible Markov chains are commonly used in MCMC approaches

[25]. We can prove the following property of the reversible Markov chain.

Theorem 3.4. (Reversibility Property)

` ∀ X p s p0 pij t L.

rmc X p s p0 pij ⇒

(P(

|L|−1
⋂

k=0

{Xt+k = EL k L}) = P(

|L|−1
⋂

k=0

{Xt+k = EL k (REVERSE L)}))
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Proof. The backward proof of this theorem starts from rewriting the goal by using

Definition 3.7 and Theorem 3.1, we obtain the following equation in the subgoal to

be proved:

PROD (0, |L|)

(λk. P({x | X (t + k + 1) x = EL (k + 1) (REVERSE L)}|

{x | X (t + k) x = EL k (REVERSE L)})) =

PROD (0, |L|)

(λk. P({x | X (t + k + 1) x = EL (|L| - k - 1) L}|

{x | X (t + k) x = EL (|L| - k) L}))

Then the proof can be completed by applying the following lemma:

` ∀ f n. PROD (0, n) (λ k. f k) = PROD (0, n) (λ k. f (n - k - 1))

which is corresponding to the mathematical expression:

n
∏

k=0

f(k) =
n
∏

k=0

f(n− k − 1)

3.3 Stationary Distributions

It is often the case that we are interested in the probability of some specific states as

time tends to infinity under certain conditions. This is the main reason why stationary

behaviors of stochastic processes are frequently analyzed in engineering and scientific

domains. There is no exception for DTMCs.

Let {Xt}t≥0 be a Markov chain having state space Ω and transition probabilities

{pij}i,j∈Ω. If π(i), i ∈ Ω, are nonnegative numbers summing to one, then π(j) =

∑

i∈Ω π(i)pij is called a stationary distribution. The corresponding HOL definition is

as follows.
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Definition 3.8. (Stationary Distribution)

` ∀ f X p s.

stationary dist f X p s =

(SIGMA (λ k. f k) (k ∈ space s) = 1) ∧

∀ i. i ∈ space s ⇒

0 ≤ f i ∧

(∀ t. f i = SIGMA (λ k. f k * Trans X p s t 1 k i)

(k ∈ space s))

We then utilize this definition to prove the generalized stationary theorem in

HOL:

Theorem 3.5. (Generalized Stationary Distribution)

If a DTMC with finite state space Ω and one-step transition probability Pij has a

probability distribution π that satisfied the detailed balance equations, then there exits

a stationary distribution for this DTMC.

` ∀ X p s p0 pij n.

th dtmc X p s p0 pij ∧ db equations (λ i.P{x | X n x = i}) X p s ⇒

∃ f. stationary dist f X p s

where f refers to π(x).

Proof. The proof can be completed by specifying f as a function (λ i. P{x | X n

x = i}), which is a probability distribution. Then the goal becomes to

` ∀ X p s p0 pij n.

th dtmc X p s p0 pij ∧ db equations (λ i.P{x | X n x = i}) X p s ⇒

stationary dist (λ i.P{x | X n x = i}) X p s

34



Proof. We start to prove this subgoal by rewriting the detailed balance equations and

stationary distribution using Definition 3.6 and 3.8. Then the goal is split into three

subgoals.

• 0 ≤ P{x | X n x = i}

• SIGMA (λ j. P{x | X n x = i} (j ∈ space s) = 1)

• P{x | X n x = i} =

SIGMA (λ j. P{x | X n x = j} Trans X p s t j i) (j ∈ space s)

The first subgoal can be proved by applying the probability theorem in expres-

sion (2.1). While the second one is completed by using the probability additivity

theorem shown in Equation (2.2). The last subgoal is proved by rewriting it using the

Equation (2.3d) and Definition 3.6.

In a time-homogeneous DTMC with finite state space Ω and one-step transition

probability {pij}i,j∈Ω, the steady state probabilities are defined in a vector Vj, which

equals to lim
n→∞

pj(n), if the limiting probability exists for any j ∈ Ω. If a system is in

a steady state, numerous properties are of interest due to the reason that they are

invariant with time.

If the limiting probability exists for any j ∈ Ω in the state space of such a time-

homogeneous DTMC, then the steady state probability vector Vj is the stationary

probability vector of that Markov chain. In other words, Vj is a stationary distribution

of this DTMC if it satisfies:

• Vj =
∑

i ∈ Ω

limn→∞ Vjpij

• ∑

i ∈ Ω Vi = 1

• 0 ≤ limn→∞ Vj
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These three conditions exactly correspond to the subgoals listed in the proof of The-

orem 3.5. This stationary property can be verified using higher-order logic as the

following theorem:

Theorem 3.6. (Steady State Probabilities)

` ∀ X p s p0 pij n.

th dtmc X p s p0 pij ∧

db equations (λ i. lim P{x | X n x = i}) X p s ⇒

stationary dist (λ i. lim P{x | X n x = i}) X p s

Proof. After rewriting the goal with Definition 3.8, the proof process is similar as that

of Theorem 3.5.

3.4 Stationary Process

Stationary processes are frequently used stochastic processes for analyzing time series,

which are the foundations of Ergodic theorems [55]. Mathematically, a stochastic

process {Xt}t∈T is said to be stationary in the strict sense, if for n ≥ 1, t1, t2, . . ., tn,

τ ∈ T, the random variables Xt1 , Xt2 , . . ., Xtn have the same joint distributions as

Xt1+τ , Xt2+τ , . . ., Xtn+τ . In a discrete-time stochastic process, τ is a natural number.

It is worth to note that a stationary process is different from a process with stationary

distribution. In HOL, we formalize a stationary process as follows:

Definition 3.9. (Stationary Process)

` ∀ X p s.

stationary proc X p s =

∀ f t w n. ∀ t. random variable (X t) p s ∧
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(P(

n
⋂

k=0

{x | X (w + k) x = f k}) =

P(

n
⋂

k=0

{x | X (t + k) x = f k}))

where f denotes the state sequence.

Using this definition, we can apply induction on variables t and n to prove that

the PMF of a stationary process is independent of the time.

Theorem 3.7. (Stationary Process Property)

` ∀ X p s t n j.

stationary pmf X p s ⇒ (P({x | X n x = j}) = P({x | X t x = j}))

A stationary process is not a process with a stationary distribution. In fact, a DTMC

is stationary if and only if its initial distribution is stationary. We formally verify this

property from two different perspectives, as shown in the following two theorems.

Theorem 3.8. (Stationary DTMC has Stationary Distribution)

A stationary DTMC has stationary distributions for all the states.

` ∀ X p s n p0 pij.

th dtmc X p s p0 pij ∧ stationary pmf X p s ⇒

stationary dist (λ i.P{x | X n x = i}) X p s

Proof. We rewrite the goal using Definitions 3.8 and 3.9 and then split the goal into

three subgoals and the proof steps become similar to those for Theorem 3.5. The proof

of the last subgoal requires P{x | X n x = j} = P{x | X (n - 1) x = j}, which

can be proved by instantiating the variables t and n to be n and n - 1, respectively,

using Theorem 3.7. The proof is finalized by applying Theorem 3.3.
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If the variable n in Theorem 3.8 is assigned a value 0 then the stationary DTMC

is said to have a stationary initial distribution. Thus, Theorem 3.8 shows that a

stationary DTMC has stationary initial distributions.

Theorem 3.9. (A DTMC with Stationary Initial Distribution is a Stationary Process)

If the initial distributions of a DTMC are stationary then the corresponding DTMC

is stationary as well.

` ∀ X p s p0 pij.

th dtmc X p s p0 pij ∧

stationary dist (λ i.P{x | X 0 x = i}) X p s ⇒

stationary proc X p s

Proof. We proceed with the verification of this theorem by first rewriting the goal

using Definitions 3.8 and 3.9 and then performing induction on the variable n of the

stationary process definition, given in Definition 3.9. The base case is true obviously

and the step case can be proved using Theorem 3.1.

Using these fundamental definitions, we formally verified most of the classical

properties of DTMCs with finite state-space in HOL. Some of the relevant ones to the

context of this thesis are presented later. In next section, we provide two applications

of the above definitions and theorems.

3.5 Applications

To illustrate the usefulness of the formalization of DTMC in higher-order logic, in this

section we present two applications: a simplified binary communication channel [109]

and the Automatic Mail Quality Measurement (AMQM) protocol [87].
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3.5.1 Binary Communication Model

A binary communication channel [109] is a channel with binary inputs and outputs.

The transmission channel is assumed to be noisy or imperfect, i.e., it is likely that

the receiver gets the wrong digit. This channel can be modeled as a two-state DTMC

with the following state transition probabilities.

Pr{Xn+1 = 0 | Xn = 0} = 1 - a; Pr{Xn+1 = 1 | Xn = 0} = a;

Pr{Xn+1 = 0 | Xn = 1} = b; Pr{Xn+1 = 1 | Xn = 1} = 1 - b

The corresponding state and channel diagrams are given in Figure 3.1 and 3.2,

respectively.

Figure 3.1: State Diagram

1

1

Figure 3.2: Channel Diagram

The binary communication channel is widely used in telecommunication theory

as more complicated channels are modeled by cascading several of such channel. In

Figure 3.2, variables Xn−1 and Xn denote the digits leaving the systems (n−1)th stage

and entering the nth one, respectively. a and b are the crossover bit error probabilities.

Because X0 is also a random variable, the initial state cannot be determined and thus

the initial distributions Pr(X0 = 0) and Pr(X0 = 1) cannot be 0 or 1. Although the

initial distribution is unknown, the n-step transition probabilities can be verified as

the elements of the matrix in Equation (3.4). Also, the steady-state probabilities can

be concluded as that in Equation (3.5).

P n =







b+a(1−a−b)n

a+b

a−a(1−a−b)n

a+b

b−b(1−a−b)n

a+b

a+b(1−a−b)n

a+b






(3.4)
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lim
n→∞

P n =







b
a+b

a
a+b

b
a+b

a
a+b






(3.5)

In HOL, we defined two functions Linit and Lt to express the initial distribu-

tions and transition probabilities.

Definition 3.10. (Initial Distributions)

` ∀ c d.

Linit c d i =

if (i = 0) then c

else

if (i = 1) then d

else 0

Definition 3.11. (Transition Probabilities)

` ∀ a b t i j.

Lt a b t i j =

if (i = 0) ∧ (j = 0) then 1 - a

else

if (i = 0) ∧ (j = 1) then a

else

if (i = 1) ∧ (j = 0) then b

else

if (i = 1) ∧ (j = 1) then 1 - b

else 0

Based on the description of the binary communication channel, it is formalized

in HOL, using Definition 3.12.
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Definition 3.12. (Binary Communication Channel Model)

` ∀ X p a b c d.

BINARY CHANNELS MODEL X p a b c d =

th dtmc X p ([0, 1], POW [0,1]) (Linit c d) (Lt a b) ∧

|1 - a - b| < 1 ∧ 0 ≤ a ∧ a ≤ 1 ∧ 0 ≤ b ∧ b ≤ 1 ∧

(c + d = 1) ∧ 0 < c ∧ c < 1 ∧ 0 < d ∧ d < 1

In this formal model, the function X represents the random variable in the time-

homogeneous DTMC. p represents the probability space and the measurable state

space is expressed as a pair ([0, 1], POW [0,1]), where “0” and “1” are involved in

the set of state value, and the second element POW [0,1] is a sigma-algebra. Variables

a, b, c and d are parameters of the functions of the initial distributions and transition

probabilities.

The first condition ensures that the channel can be modeled as a time-homogeneous

DTMC, with two states in the state space. Linit c d and Lt a b represent the gen-

eral initial distributions and the transition probabilities (corresponding to the p0 and

pij in Definition 3.3), respectively. The next five conditions define the allowable inter-

vals for parameters a and b to restrict the probability terms in [0,1]. It is important

to note that, |1 - a - b| < 1 ensures that both a and b cannot be equal to 0 and

1 at the same time and thus avoids the zero transition probabilities. The remaining

conditions correspond to the boundary of parameters c and d, which are probabilities

and would not be determined as “0” or “1”.

Next, we use our formal model to reason about the following properties, which

correspond to Equations (3.4) and (3.5).

Theorem 3.10. (nth step Transition Probabilities)

` ∀ X p a b c d n.

BINARY CHANNELS MODEL X p a b c d ⇒
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(P({x | X n x = 0} | {x | X 0 x = 0}) =
b+a(1−a−b)n

a+b
) ∧

(P({x | X n x = 1} | {x | X 0 x = 0}) =
a−a(1−a−b)n

a+b
) ∧

(P({x | X n x = 0} | {x | X 0 x = 1}) =
b−b(1−a−b)n

a+b
) ∧

(P({x | X n x = 1} | {x | X 0 x = 1}) =
a+b(1−a−b)n

a+b
)

Proof. Theorem 3.10 has been verified by rewriting the original goal using Theorem

3.2 and performing induction on n and then completing the proof by applying some

arithmetic reasoning.

Theorem 3.11. (Limiting State Probabilities)

` ∀ X p a b c d.

BINARY CHANNELS MODEL X p a b c d ⇒

(lim (λ n. P({x | X n x = 0} | {x | X 0 x = 0}) = b
a+b

) ∧

(lim (λ n. P({x | X n x = 1} | {x | X 0 x = 0}) = a
a+b

) ∧

(lim (λ n. P({x | X n x = 0} | {x | X 0 x = 1}) = b
a+b

) ∧

(lim (λ n. P({x | X n x = 1} | {x | X 0 x = 1}) = a
a+b

)

Proof. Theorem 3.10 is then used to verify Theorem 3.11 along with the limit of real

sequence principles.

A special case of the property corresponding to Equation (3.4) has been verified

in the PRISM model checker for some specific values of the variables a, b, c, d and

n [71]. However, Equation (3.5) cannot be verified directly in a PRISM due to the

involvement of limiting behavior. Unlike model checking, our approach provides the

verification of the desired probabilistic characteristics as generic theorems (i.e., Theo-

rems 3.10 and 3.11) that are universally quantified for all allowable values of variables.

This small two-state DTMC case study clearly illustrates the main strength of the

proposed theorem proving based technique against the probabilistic model checking

[94] approach.
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3.5.2 AMQM Protocol

In this section, we will study the probability of reaching a targeted state in an Au-

tomatic Mail Quality Measurement (AMQM) system based on the ISO/IEC 18000-7

Standard [1] by building upon our formalized DTMC described above.

An AMQM system is used to measure the quality of postal service transport and

delivery by IPC (International Post Corporation). It measures how fast mail travels

from one point to another by using an in-planting process monitoring of the tag serial

number and recording the time when a message from the tag is received. This kind of

quality measurement of solutions is based on Radio-frequency identification (RFID)

[1], which is a technology that identifies and tracks objects, such as a product, an

animal or a person by using radio waves to transfer data from an electronic tag,

called the RFID tag. In the last decade, a large volume of research was conducted

on complying RFID systems with the international standard ISO/IEC 18000-7. The

AMQM system exhibits some features of the ISO/IEC 18000-7 standard and hence

its formal analysis is quite important.

In an AMQM system, tags are intended for identifying the objects that are to be

managed. The interrogator communicates with the tag in its RF (Radio Frequency)

communication range and controls the protocol, reads information from the tag, di-

rects the tag to store data in some cases, and makes sure that messages are delivered

and are also valid. An interrogator controls the messages that are transmitted during

their allotted time periods called slots and an acknowledge that is received when each

message has been received successfully.

Based on the AMQM communication protocol, the timing diagram of a tag col-

lection process is depicted in Figure. 3.3. Thereafter, the communication sequence

starts with a Wakeup Period (WP), within which wake up signals are sent to bring
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all tags in the ready state. The WP is followed by a collection round named Com-

mand Period (CP), which in turn consists of a collection command period, a Listen

Period (LP) and an Acknowledge Period (AP). The interrogator then waits for the

responses from the tags that are sent randomly. The tag collection is done based on

a predetermined algorithm that complies with the ISO/IEC 18000 7 standard. Thus,

this system has two properties:

Figure 3.3: Tag Collection Process

1. The probability that a message can be delivered successfully within i slots is

1 - (n−1
n
)i.

2. If the collection process is long enough, eventually any message can be delivered

successfully.

This communication protocol can be modeled as a DTMC with 4 states: s0(start),

s1(try), s2(lost) and s3(delivered) [1], as shown in Figure 3.4.

In the start state, the message is generated. The next state is always the state

try and thus the probability from the start state to the try state is 1. The probability

44



Figure 3.4: DTMC Model of the AMQM Protocol

of losing a message is α. Thus in the case of losing a message, the system will move

to the lost state with probability α. Whereas, it moves to the delivered state with

probability β = 1−α in case of a successful transmission. Hence, the probability that

a message can be delivered successfully is β, which equals to 1 - α. Once a message is

delivered successfully, the system moves to the start state for getting ready to identify

the other tags in the next time slot. When the collection process ends, the system

goes to sleep mode in order to minimize power consumption. The state transition

probability matrix, corresponding to the Markov chain given in Figure 3.4, is as

follows:

P =



















0 1 0 0

0 0 1− 1/n 1/n

0 1 0 0

1 0 0 0



















; I =



















1

0

0

0



















(3.6)

The initial distribution and transition probability can be expressed as two func-

tions in higher-order logic as follows:
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Definition 3.13. (Initial Distribution and Transition Probability)

` Li i = if (i = 0) then 1 else 0

` Lt n t i j = case (i,j) of

(0, 1) → 1 | (0, ) → 0 | (1, 2) → 1 - 1
n

| (1, 3) → 1
n

|

(1, ) → 0 | (2, 1) → 1 | (2, ) → 0 | (3, 0) → 1 | (3, ) → 0

Now, the tag collection process involved in the AMQM protocol can be for-

malized as a time-homogeneous DTMC, based on the state diagram and the initial

distribution and transition probability matrix.

Definition 3.14. (AMQM Collection Model)

` ∀ X p a b c d. AMQM MODEL X p n =

th dtmc X p ([0, 3], POW [0, 3]) Li (Ltr n) ∧ (1 ≤ n)

Here, the state space is represented as a pair, in which the set [0, 3] contains

all the states and POW [0,3] is the sigma-algebra of the states set [0, 3], to ensure

this state space is measurable. Li and (Ltr n) are the initial distribution and the

transition probability matrix described in Definition 3.6. Variable n denotes the num-

ber of tags that are sent randomly. The first condition ensures the model to be a

time-homogeneous DTMC. The second condition interprets that more than one node

is considered in this collection process. Generally, the possible path of delivering a

message successfully can be expressed as π = (start, try, (lost, try)k, delivered).

Here, k represents the number of iterations required for a successful message

transmission. We use Pr(�deliveredi) to represent the probability of delivering a

message within i trials, where � is a logic symbol and means that “eventually” the

event deliveredi happens. Then the probability of reaching state s3 is given by the
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following equation where n represents the number of tags.

Pr(�deliveredi) =
i−1
∑

k=0

αkβ = 1− (
n− 1

n
)i (3.7)

If the collection process is long enough, that is i tends to +∞, then finally

the message always can be delivered successfully. So the probability of delivering a

message successfully in the future is

Pr(�delivered) =
∞
∑

k=0

αkβ =
β

1− α
=

1
n

1− n−1
n

= 1 (3.8)

As mentioned before, the probability of reaching the delivered state depends on

the tag collection algorithms, for example, in [1], an improved algorithm is presented

for fast tag collection. Thus, Equations (3.7) and (3.8) play a vital role in assessing

the performance of a tag collection algorithm. In this thesis, we formally verify these

equations and our results can in turn be used to formally reason about the effectiveness

of a tag collection algorithm.

Now, the two properties presented in Equations (3.7) and (3.8) can be expressed

as the goals in the following two theorems:

Theorem 3.12. (Probability of Reaching Delivered State in AMQM Protocol Model)

` ∀ X p n i.

AMQM MODEL X p n ⇒

sum (0, i) (λ k. P({X2+k∗2 = 3} ∩
k−1
⋂

m=0

({X3+m∗2 = 1} ∩ {X2+m∗2 = 2}) ∩

{X1 = 1} ∩ {X0 = 0})) = 1 - (n−1
n
)i

Theorem 3.13. (Reachability Probability of AMQM Protocol)

` ∀ X p n.

AMQM MODEL X p n ⇒
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lim (λ i.

sum (0, i) (λ k.

P({X2+k∗2 = 3} ∩
k−1
⋂

m=0

({X3+m∗2 = 1} ∩ {X2+m∗2 = 2}) ∩

{X1 = 1} ∩ {X0 = 0}))) = 1

Proof. The proofs of both Theorems 3.12 and 3.13 are mainly based on Theorem 3.1

along with some arithmetic reasoning.

Theorem 3.12 corresponds to Equation (3.7), in which i refers to the number

of trials required for successfully delivering n tags. The condition n 6= 0 means that

the system will not be waken up if no tag is detected. The performance of a tag

collection algorithm can be evaluated by this probability. Theorem 3.13 verifies that

the probability of reaching the delivered state in infinite trials is 1. That is to say, if

the tag collection process is long enough, at last all the tags generated at start state

will be received by the reader successfully.

In [87], the PRISM model checker [94] has been used to analyze the AMQM

protocol described above. To verify its correctness, the property expressed in The-

orem 3.13 was verified from the point of view of reaching a good state in [87]. The

verification of this property is based on solving a group of linear equations instead of

verifying a PCTL expression mainly because this property involves an infinite sum-

mation, which is impossible to express in PCTL. Similarly, the collision probabilities,

corresponding to Equation (3.7), have been verified for some special cases using iter-

ative algorithms. Due to the inherent nature of numerical methods based analysis,

these analyses cannot be termed accurate despite consuming enormous computing

resources. Moreover, these results are not generic like the ones reported in Theorem

3.12 of this thesis, which means that the complete analysis has to be redone in case

the information about the number of tags or time slots changes. On the other hand,
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the proposed theorem proving based approach allowed us to formally reason about

the generic expressions of two of the most important characteristics of the AMQM

protocol, namely, the probability of reaching delivered state in the AMQM protocol

model and the reachability probability of AMQM protocol. The results exactly match

the results obtained via paper-and-pencil proof methods [87].

3.6 Summary and Discussion

In this chapter, we present a higher-order-logic formalization of the DTMC with

a finite state space, which can be regarded as the first step towards a successful

theorem-proving based analysis of DTMC. This formalization allows to model poly-

morphic states in different systems, where the states are not required to be positive

integer. Another flexibility of this definition is that both time-homogeneous and

time-inhomogeneous DTMC can be modeled based on this formalization. When the

transition probabilities are time dependant, then the parameter pij, contains the de-

pendence on time t. Furthermore, the general state space s in Definition 3.3 covers two

cases: infinite or finite state spaces. Since the time-homogeneous DTMCs are the most

frequently used in many applications, we present the definition of time-homogeneous

DTMC.

Building upon the formalization of DTMC, the most important theorems, such

as joint probability theorem, Chapman-Kolmogorov Equation and Absolute probability,

were formally verified in HOL. These theorems are foundational for analyzing all kinds

of DTMC models. Then, we defined the reversible stochastic process and detailed

balance equations, which facilitate the verification of the reversibility property of a

DTMC. Also, we described the formalizations of stationary distribution and stationary

process, which are the basic concepts of the performance analysis. Using these notions,
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we verified some interesting properties of the DTMC that satisfy the detailed balance

equations.

Furthermore, we can formally define mixing time and coupling [67] in HOL

based on the definition of stationary distribution presented in Section 3.3 and verify

the relevant theorems, like rapid mixing property and Convergence Theorem [67].

One of the well-known ferromagnetism statistical models, Ising model [67], can be

formalized based on the Markov chain mixing time notations and it can be applied

in neuroscience [48], physics and statistical genetics [73]. On the other hand, our

formalization of DTMC is general enough to describe time-inhomogeneous DTMCs,

which are part of the notations in MCMC algorithms [11] and are also applied in

many fields, like the adiabatic theorem [60] in quantum computations, by means of

instantiating the transition probability (in Definition 3.3), which is a function taking

the time t as its argument.

The main challenge of our work is to describe the Markov property and a DTMC

using the proper and flexible predicates, respectively, in the higher-order logic. The

proof script of the formalization and verification of the notions presented in this

chapter require around 2000 lines of HOL4 code [68].

The binary communication channel is a typical DTMCmodel and many telecom-

munication systems are based on this basic structure. For this reason, we analyzed

some properties of this basic channel structure as the first application presented in

this chapter. As the first step, this channel is formalized as a DTMC model using

higher-order logic. Then, two interesting properties of this channel are proved based

on this model. The proof script only requires around 500 lines of HOL4 code. This ex-

ample mainly illustrates a flow of the complete verification process of a DTMC model

using theorem proving and it shows the usefulness of our formalization of DTMC.
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The DTMC presented in the above example can also been interpreted as the

time-dimension model in a Dynamic Spectrum Access/Cognitive Radio (DSA/CR)

system [111], which is constructed for measuring spectrum occupancy, or the s-

dependent Bernoulli trials in software reliability models [29], which is used to es-

timating the software failures. Also, the simple random walk with no barriers [3] can

also be expressed using this DTMC model.

Another interesting application presented in this chapter is the verification of

two properties of the tag collection process in the AMQM protocol. This process is

formally defined as a time-homogeneous DTMC model based on the state diagram

described in the specification. Usually, people are interested in learning the probability

of all the tags sent out by the nodes involved in a wireless network are delivered

successfully. We proved theorems presented in Section 3.2 to verify the properties of

this DTMC model with around 600 lines of code in HOL.

In the telecommunications domain, various systems, such as the time elapsing

in a synchronous fashion of a Bluetooth device [20], wireless LAN [63] and broad-

cast protocols [22], are described using state diagrams, which can be modeled as the

DTMCs. The existing library of the formalized DTMC presented in this chapter can

be applied to verify these telecommunication system models as well as those in many

other domains.

The formalization of DTMC and the verification of the properties presented

in this chapter, are the fundamental notations in DTMC theory, which facilitate

the analysis of classical properties of general Markovian models. In fact, distinct

discrete-time Markov chains exhibit diverse attractive features in analyzing long-term

properties. These interesting characteristics can be analyzed based on classified states

and classified DTMCs, which will be elaborated in the next chapter.
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Chapter 4

Classified Discrete-Time Markov

Chain in HOL

In this Chapter, the formalization of classified DTMCs will be introduced. We first

formalize some foundational notions of classified states, which are categorized based

on reachability, periodicity or absorbing features. Then, these results along with

our formal definition of a DTMC are used to formalize classified Markov chains,

such as aperiodic and irreducible DTMCs. Based on these concepts, some long-

term properties are verified for the purpose of formally checking the correctness of

the functions of Markovian systems or analyzing the performance of Markov chain

models.

4.1 Classified States

The foremost concept of states classification is the first passage time τj, or the first

hitting time, which is defined as the minimum time required to reach a state j from
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the initial state i:

τj = min{t > 0 : Xt = j}.

The first passage time can be defined in HOL as:

Definition 4.1. (First Passage Time)

` ∀ X x j. FPT X x j = MINSET {t | 0 < t ∧ (X t x = j)}

where X is a random process and x is a sample in the probability space associated with

the random variable Xt. Note that the first passage time is also a random variable.

The conditional distribution of τj defined as the probability of the events starting

from state i and visiting state j at time n is expressed as f
(n)
ij = Pr{τj = n|X0 = i}.

This definition can be formalized in HOL as follows:

Definition 4.2. (Probability of First Passage Events)

` ∀ X p i j n.

f X p i j n = P({x | FPT X x j = n}|{x | X 0 x = i})

Another important notion, denoted as fij, is the probability of the events start-

ing from state i and visiting state j at all times n, is expressed as fij =
∑∞

n=1 f
(n)
ij .

It can be expressed in HOL as (λ n. f X p i j n) sums fij. Thus fjj provides

the probability of events starting from state j and eventually returning back to j. If

fjj = 1, then the mean return time of state j is defined as µj =
∑∞

n=1 nf
(n)
jj . The

existence of this infinite summation can be specified as summmable (λ n. n ∗ f X

p j j n) in HOL.

A state j in a DTMC {Xt}t≥0 is called transient if fjj < 1, and persistent if fjj

= 1. If the mean return time µj of a persistent state j is finite, then j is said to be

persistent nonnull state (or positive persistent state). Similarly, if µj is infinite, then

j is termed as persistent null state.
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The greatest common divisor (gcd) of a set is a frequently used mathematical

concept in defining classified states. We formalize the gcd of a set as follows:

Definition 4.3. (The gcd of a Set)

` ∀ A. GCD SET A = MAXSET {r | ∀ x. x ∈ A ⇒ divides r x}

where MAXSET is a function in the Set Theory of HOL4 such that MAXSET s defines

the maximum element in the set s. A period of a state j is any n such that p
(n)
jj is

greater than 0 and we write dj = gcd {n : p
(n)
jj > 0} as the gcd of the set of all periods.

A state i is said to be accessible from a state j (written i → j), if there exists

a nonzero n-step transition probability of the events from state i to j. Two states i

and j are called communicating states (written i ↔ j) if they are mutually accessible.

A state j is an absorbing state if the one-step transition probability pjj = 1. The

formalization of some other foundational notions of the classified states is given in

Table 4.1.

4.2 Classified DTMCs

In this section, we build upon the above mentioned definitions to formalize classified

DTMCs. Usually, a DTMC is said to be irreducible if every state in its state space

can be reached from any other state including itself in finite steps.

Definition 4.4. (Irreducible DTMC)

` ∀ X p s p0 pij.

Irreducible mc X p s p0 pij =

th dtmc X p s p0 pij ∧

(∀ i j. i ∈ space s ∧ j ∈ space s ⇒

Communicating states X p s i j)
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Table 4.1: Formalization of Classified States

Definition Condition HOL Formalization

Transient State fjj < 1
` ∀ X p j. Transient state X p j =

∀ x. {t | 0 < t ∧ (X t x = j)} 6= ∅ ∧
(∃ s. s < 1 ∧ (λ n. f X p j j n) sums s)

Persistent State fjj = 1
` ∀ X p j. Persistent state X p j =

∀ x. {t | 0 < t ∧ (X t x = j)} 6= ∅ ∧
(λ n. f X p j j n) sums 1

Persistent
Nonnull State

fjj = 1
µj < ∞

` ∀ X p j. Nonnull state X p j =

Persistent state X p j ∧
summable (λ n. n * f X p j j n)

Persistent
Null State

fjj = 1
µj = ∞

` ∀ X p j. Null state X p j =

Persistent state X p j ∧
∼ summable (λ n. n * f X p j j n)

Periods of a State
0 < n
0 < pnjj

` ∀ X p s j.

Period set X p s j =

{n | 0 < n ∧ ∀ t. 0 < Trans X p s t n j j}
GCD of a
Period Set

dj
` ∀ X p s j.

Period X p s j = GCD SET (Period set X p s j)

Periodic State dj > 1
` ∀ X p s j. Periodic state X p s j =

(1 < Period X p s j) ∧
(Period set X p s j 6= ∅)

Aperiodic State dj = 1
` ∀ X p s j. Aperiodic state X p s j =

(Period X p s j = 1) ∧
(Period set X p s j 6= ∅)

Accessibility i → j
` ∀ X p s i j.

Accessibility X p s i j =

∀ t. ∃ n. 0 < n ∧ 0 < Trans X p s t n i j

Communicating
State

i ↔ j

` ∀ X p s i j.

Communicating states X p s i j =

(Accessibility X p s i j) ∧
(Accessibility X p s j i)

Absorbing
State

pjj = 1
` ∀ X p s j.

Absorbing states X p s j =

(Trans X p s t 1 j j = 1)
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where th dtmc is time-homogeneous Markov chain defined in Definition 3.4 and the

second conjunct expresses that all the states in the state space can communicate with

each other.

If there exists a state in the state space of a DTMC, which cannot reach some

other states, then this DTMC is called reducible.

Definition 4.5. (Reducible DTMC)

` ∀ X p s p0 pij.

Reducible mc X p s p0 pij =

th dtmc X p s p0 pij ∧

∃ i j. i ∈ space s ∧ j ∈ space s ∧

∼Communicating states X p s i j

A DTMC is considered as aperiodic if every state in its state space is an aperiodic

state; otherwise it is a periodic DTMC.

Definition 4.6. (Aperiodic DTMC)

` ∀ X p s p0 pij.

Aperiodic mc X p s p0 pij =

th dtmc X p s p0 pij ∧

(∀ i. i ∈ space s ⇒ Aperiodic state X p s i)

Definition 4.7. (Periodic DTMC)

` ∀ X p s p0 pij.

Periodic mc X p s p0 pij =

th dtmc X p s p0 pij ∧ (∃ i. i ∈ space s ∧ Periodic state X p s i)
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If at least one absorbing state exists in a DTMC and it is possible to go to the

absorbing state from every non-absorbing state, then such a DTMC is named as an

absorbing DTMC.

Definition 4.8. (Absorbing DTMC)

` ∀ X p s p0 pij.

Absorbing mc X p s p0 pij =

th dtmc X p s p0 pij ∧

∃ i. i ∈ space s ∧ Absorbing state X p s i ∧

(∀ j. j ∈ space s ⇒ Communicating state X p s i j)

Finally, if there exists some n such that p
(n)
ij > 0 for all states i and j in a DTMC,

then this DTMC is defined as a regular DTMC.

Definition 4.9. (Regular DTMC)

` ∀ X p s p0 pij.

Regular mc X p s p0 pij =

th dtmc X p s p0 pij ∧

∃ n. ∀ i j. i ∈ space s ∧ j ∈ space s ⇒ Trans X p s t n i j > 0

The main utility of the higher-order logic formalization of the classified Markov

chains mentioned above is to formally specify and analyze the dynamic features of

Markovian systems within the sound environment of a theorem prover as will be

demonstrated in the following section.

4.3 Long-term Properties

The analysis of the long-term behavior of a DTMC is dependent on the type of state

under consideration. Among the classified DTMCs formalized in the previous section,
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aperiodic and irreducible DTMCs are considered to be the most widely used ones in

analyzing Markovian systems because of their attractive stationary properties, i.e.,

their limit probability distributions are independent of the initial distributions. For

this reason, we now focus on the verification of some key properties of aperiodic and

irreducible DTMCs [34].

4.3.1 Positive Transition Probability

Based on the the aperiodicity and irreducibility characteristics of certain DTMCs, we

can prove the most important properties of them. One of the results is that aperiodic

and irreducible DTMCs possess positive transition probabilities at some point, which

is useful to prove the convergence theorems in next subsection. To prove this property,

we have to start from some fundamental theorems.

Theorem 4.1. (Closed Period Set)

In an aperiodic DTMC, the set of the times when state i has a non-null probability

of being visited is closed under addition.

` ∀ X p s p0 pij i.

Aperiodic DTMC X p s p0 pij ∧ i ∈ space s ⇒

∀ a b. a ∈ Period set X p s i ∧ b ∈ Period set X p s i ⇒

(a + b) ∈ Period set X p s i

Proof. We verified the above theorem by rewriting the goal with the definition of

Period set given in Table 4.1 and Definition 4.6, and then applying Theorem 3.2

along with some arithmetic and set theoretic reasoning.

Another key property of an aperiodic DTMC indicates that the transition prob-

ability p
(n)
ij is greater than zero, for all states i and j in its state space. It is very
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useful in analyzing the stability or reliability of real-world systems.

Theorem 4.2. (Positive Return Probability)

For any state i in the finite state space S of an aperiodic DTMC, there exists an N

< ∞ such that 0 < p
(n)
ii , for all n ≥ N and all i in the state space.

` ∀ X p s p0 pii i t.

Aperiodic DTMC X p s p0 pii ∧ i ∈ space s ⇒

∃ N. ∀ n. N ≤ n ⇒ 0 < Trans X p s t n i i

In this theorem, N refers to a nature number and its type is num. The variable with this

kind of type is less than infinity in HOL. The formal reasoning about the correctness

of the above theorems involves Theorems 3.2 and 4.1 and the following Lemmas 4.1,

along with some arithmetic reasoning and set theoretic reasoning.

Lemma 4.1. (Positive Element in a Closed Set)

If an integer set S contains at least one nonzero element and S is closed under

addition and subtraction, then S = {kc; k ∈ Z}, where c is the least positive element

of S.

` ∀ s:int → bool. s 6= ∅ ∧

(∀ a b. a ∈ s ∧ b ∈ s ⇒ (a + b) ∈ s ∧ (a - b) ∈ s) ⇒

0 < MINSET {r | 0 < r ∧ r ∈ s} ∧

(s = {r | ?k. r = k * MINSET {r | 0 < r ∧ r ∈ s}})

where MINSET A refers to the minimum element in the set A and the type of A is

integer.
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Lemma 4.2. (Linearity of Two Integer Sequences)

For a positive integer sequence a1, a2, · · · , ak, there exists an integer sequence n1,

n2, · · · , nk, such that d =
∑k

i=1niai, where d is the greatest common divisor of

sequence a1, a2, · · · , ak.

` ∀ a k. 0 < k ∧ (∀ i. i ≤ k ⇒ 0 < a i) ⇒

(∃ n. GCD SET {a i | i ∈ [0, k]} =
∑k

i=0
n i * a i)

Lemma 4.3. (Least Number)

If a set of positive integers A is nonlattice, i.e., its gcd is 1, and closed under

addition, then there exists an integer N < ∞ such that n ∈ A for all N ≤ n.

` ∀ (A:int → bool) a.

(A = {a i | 0 < a i ∧ i ∈ UNIV(:num)}) ∧ (GCD SET A = 1) ∧

(∀ a b. a ∈ A ∧ b ∈ A ⇒ (a + b) ∈ s) ⇒ (∃ N. {n | N ≤ n} ⊂ A)

The proofs of Lemmas 4.1, 4.2 and 4.3 are based upon various summation properties

of integer sets and the properties of gcd of a set. These properties were not available in

the HOL libraries and thus had to be verified as part of our development. The detailed

proof steps can be found in [11] and the proof script for these lemmas, including their

prerequisite results are available at [68].

Theorem 4.3. (Existence of Positive Transition Probabilities)

For any aperiodic and irreducible DTMC with finite state space S, there exists an

N , such that, for all n ≥ N , the n-step transition probability p
(n)
ij is non-zero, for all

states i and j ∈ S.
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` ∀ X p s p0 pij i j t.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ∧

i ∈ space s ∧ j ∈ space s ⇒

∃ N. ∀ n. N ≤ n ⇒ 0 < Trans X p s t n i j

Proof. We proceed with the proof of Theorem 4.3 by performing case analysis on the

equality of i and j. The rest of the proof is primarily based on Theorems 3.2 and 4.2,

Definition 3.1 and Lemmas 4.2 and 4.3.

Theorem 4.4. (Existence of Long-run Transition Probabilities)

For any aperiodic and irreducible DTMC with finite state space S and transition

probabilities pij, there exists lim
n→∞

p
(n)
ij , for all states i and j ∈ S.

` ∀ X p s p0 pij i j t.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒

∃ u. lim (λ n. Trans X p s t n i j) = u

Proof. We first prove the monotonic properties ofMn
j andmn

j , which are the maximum

and minimum values of the set {n ≥ 1: p
(n)
ij >0}, respectively. Then, the proof is

completed by verifying the convergence of the sequence (Mn
j - mn

j ) for all n such

that N ≤ n by applying Theorem 3.2 and some properties of real sequences. It is

important to note that we do not need to use the assumption j ∈ space s here, like

all other theorems, as ∀ n j. j /∈ space s ⇒ (p
(n)
j = 0), which in turn implies lim

n→∞

p
(n)
j = 0 and lim

n→∞
p
(n)
ij = 0 by using the conditional probability theorem presented in

Equation (2.3a).
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4.3.2 Convergence Analysis

The long-run probability distributions are often considered in the convergence analysis

of random variables in stochastic systems. It is not very easy to verify that the

limit probability distribution of a certain state exists in a generic non-trivial DTMC,

because the computations required in such an analysis are often tremendous. However,

in the aperiodic and irreducible DTMCs, we can prove that all states possess limiting

probability distributions, by the following two theorems.

Theorem 4.5. (Existence of Long-run Probability Distributions)

For any aperiodic and irreducible DTMC with finite state space S, there exists lim
n→∞

p
(n)
i , for any state i ∈ S.

` ∀ X p s p0 pij i.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒

∃ u. (λ n. P{x | X n x = i} → u)

Proof. We used Theorems 3.3 and 4.4, along with some properties of the limit of a

sequence, to prove this theorem in HOL.

Theorem 4.6. (Existence of Steady State Probability)

For every state i in an aperiodic and irreducible DTMC, lim
n→∞

p
(n)
i is a stationary

distribution.

` ∀ X p s p0 pij.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒

(stationary dist p X (λ i. lim (λ n. P{x | X n x = i}) s)

Proof. The proof of Theorem 4.6 involves rewriting with Definition 3.8 and then

splitting it into the following three subgoals:
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• 0 ≤ lim
n→∞

p
(n)
j

•
∑

i∈Ω

lim
n→∞

p
(n)
i = 1

• lim
n→∞

p
(n)
j =

∑

i∈Ω

lim
n→∞

p
(n)
i pij

Utilizing the probability bounds theorem, we can prove the first subgoal. The proof

of the second subgoal is primarily based on the additivity property of conditional

probability [41]. Then the last subgoal can be proved by applying the linearity of

limit of a sequence and the linearity of real summation.

4.4 Applications

In the previous section, the most important theorems of classified DTMCs are provided

in higher-order logic to analyze the long-term behavior of Markovian systems. In order

to demonstrate their usefulness, in this section, we first present a formal validation

of a LRU stack Model in HOL4. Then, we utilize the formalization of aperiodic and

irreducible DTMCs to formally define a discrete-time Birth-Death Process [109], which

can be applied in formally analyzing the performance of software data structure.

4.4.1 LRU Stack Model

In a Least Recently Used (LRU) stack model, as shown in Figure 4.1, a sequence

of stacks s1s2· · · st· · · are associated with a reference string w = x1x2· · · xt· · · . Any

stack st is a n-tuple (j1, j2, · · · , jn), where ji refers to the ith most recently referenced

page at time t [109]. Let Dt be the position of the page xt in the stack st−1. Then

the distance string is D1D2· · ·Dt· · · , which is associated with the referencing string.

This distance string can be modeled as a sequence of independent and identically
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distributed (IID) random variables [4], which makes their probability mass function

(PMF) as Pr(Dt = i) = ai, where i = 1, 2, . . . , n and refers to the position of

the least recently used page in the stack at time t, and
∑n

j=1aj = 1. This way the

distribution function becomes Pr(Dt ≤ i) =
∑i

j=1aj. Now, if a tagged page occupies

the ith position in the stack at time t, which is expressed as st in Figure 4.1, then

the position of this page in the stack st+1 depends on the next reference xt+1 and the

position of this page in the stack st.

a1 a1 a1+a21-a1 1-a1-a2a2 a3
a1+a2+ … +a(n-1)a1+a2+ … +a(n-2)

a(n-1) an

Figure 4.1: LRU Stack Updating Procedure

Based on the described updating procedure in the LRU stack, the evaluation

of the page-fault rate of the LRU paging algorithm becomes quite simple. If the

evaluated program has been allocated i page frames of main memory, then a page

fault will occur at time t when Dt > i. Hence, the page fault probability is [109]

F(LRU) = Pr(Dt > i) = 1−
i

∑

j=1

aj (4.1)

The movement of the tagged page through the LRU state is then a random

process {Et}t≥0. If the page occupies the ith position in the stack st, then Et = i, for

all i, 1 ≤ i ≤ n. Now, we have the following transition probabilities:
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pi1 = Pr(Et+1 = 1|Et = i) = Pr(Dt+1 = i) = ai, 1 ≤ i ≤ n

pii = Pr(Et+1 = i|Et = i) = Pr(Dt+1 < i) =
i−1
∑

j=1

aj−1, 2 ≤ i ≤ n

pi,i+1 = Pr(Et+1 = i+ 1|Et = i) = Pr(Dt+1 > i) = 1−
i

∑

j=1

aj−1, 1 ≤ i ≤ n− 1

pi,j = 0, otherwise.

The LRU stack is then described as an aperiodic and irreducible DTMC [109]

by assuming ai > 0 for all i ∈ [1, n].

The state diagram of this aperiodic and irreducible DTMC is shown in Figure 4.2,

1

a1

2

a1

3

a1+a2

1-a1 1-a1-a2

a2
a3

n - 1 n

a1+a2+ … +a(n-1)a1+a2+ … +a(n-2)

a(n-1)

an

Figure 4.2: State Diagram for the LRU Stack Model

where we can find that the transition probabilities can be expressed as the following

higher-order logic function [109]:

Definition 4.10. (Transition Probability Matrix)

` Lt a t i j =

if (j = 1) then a i else

if (j - i = 1) then 1 - sum (1, i) (λ j. a j) else

if (j = i) then sum (1, i - 1) (λ j. a j) else 0

which can be used to formalize the LRU stack model as:
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Definition 4.11. (LRU Model)

` LRU model X p a n p0.

Aperiodic DTMC X p ([1, n], POW ([1, n])) p0 (Lt a) ∧

Irreducible DTMC X p ([1, n], POW ([1, n])) p0 (Lt a) ∧

1 ≤ n ∧ (∀ j. 0 < j ∧ j ≤ n ⇒ 0 < a j) ∧

(sum (1, n) (λ j. a j) = 1)

where the state space is described as a pair ([1, n], POW ([1, n])), in which the

first element contains all the states {1, 2, · · · , n} and the second one is the sigma

algebra of the first element. The condition (1 ≤ n) is used to avoid the case when

the length of the referencing string is zero. The other two conditions represent the

specification of the model mentioned above.

Using the formal definition of this LRU stack model, we can now formally reason

about its limiting distributions, which are mainly used to describe the stationary

behaviors of this model.

Theorem 4.7. (Existence of the Limiting State Distribution in the LRU Stack Model)

In the LRU stack model, there exists lim
t→∞

p
(n)
i , for every i ∈ [1, n].

` ∀ X p a n p0 i.

LRU model X p a n p0 ∧ i ∈ [1, n] ⇒

∃ u. (λ t. P{x | X t x = i} → u)

Proof. We verify this property by directly applying Theorem 4.5 and the definition of

limit of a real sequence.
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Theorem 4.8. (LRU Stationary Limiting State Distribution)

In the LRU stack model, lim
t→∞

p
(n)
i = 1

n
, for every i ∈ [1, n].

` ∀ X p a n p0 i.

LRU model X p a n p0 ∧ i ∈ [1, n] ⇒

(lim (λ t. P{x | X t x = i}) = 1
n
)

Proof. The proof of this property is primarily based on Theorems 3.3 and 4.8 along

with the following lemma:

Lemma 4.4. (Identity Limiting State Distribution)

` ∀ X p a n p0 i j.

LRU model X p a n p0 ∧ i ∈ [1, n] ∧ j ∈ [1, n] ⇒

(lim (λ t. P{x | X t x = i}) = lim (λ t. P{x | X t x = j}))

Proof. The HOL proof of the above lemma is based on Theorem 3.3 along with some

arithmetic reasoning.

Theorem 4.8 implies that lim
t→∞

p
(t)
i (for any tag i) is independent of its initial

distribution and the position of the tagged page has an equal probability to be in any

stack position. This means that any page is equally likely to be referenced in the long

run. As a result, it concludes that this LRU stack specification does not cover the

case of nonuniform page referencing behaviors of some programs. Thus, we have been

able to formally verify the numerical methods result presented in [106].

The ability to formally verify theorems involving classified Markovian models

and the proof script only consists of about 400 lines code in HOL4. The short script

clearly indicates the usefulness of the formalization, presented in the earlier section

of this thesis, as without them the reasoning could not have been done in such a

straightforward manner.
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4.4.2 Discrete-time Birth-Death Process

The Birth-Death process is an important sub-class of Markov chains as it involves

a state space with non-negative integers. Its remarkable feature is that all one-step

transitions lead only to the nearest neighbor state. The discrete-time Birth-Death

Processes are mainly used in analyzing software stability, for example, verifying if a

data structure will have overflow problems.

The discrete-time Birth-Death Process can be described as a state diagram

depicted in Figure 4.3.

0

a0

1

d1

b0 a1

2

a2

d2

b1

i-1

ai-1

i

di

bi-1 ai

i+1

ai+1

di+1

bi

Figure 4.3: State Diagram of Discrete-time Birth-Death Process

In the above diagram, the states 0, 1, · · · , i, · · · are associated with the popu-

lation. The transition probabilities bi represents the probability of a birth when the

population is i, di denotes the probability of a death when the population becomes i,

and ai refers to the population in the state i.

Considering 0 ≤ ai ≤ 1, < bi < 1 and 0 < di < 1 (for all i, 1 ≤ i ≤ n), the

Birth-Death process described here is not a pure birth or pure death process as the

population is finite. Thus, the Birth-Death process can be modeled as an aperiodic

and irreducible DTMC [109].

In this DTMC model, the amount of population, usually considered, is greater

than 1. Also, ai, bi and di should satisfy the additivity of probability axiom [109].

Then, the transition probability is given in the following function:
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Definition 4.12. (Transition Probability of Discrete-time Birth Death Process)

` ∀ a b d t i j.

DBLt a b d t i j =

if (i = 0) ∧ (j = 0) then a 0 else

if (i = 0) ∧ (j = 1) then b 0 else

if (0 < i) ∧ (i - j = 1) then d i else

if (0 < i) ∧ (i = j) then a i else

if (0 < i) ∧ (j - i = 1) then b i else 0;

Based on these concepts, the discrete-time Birth-Death process is formalized as:

Definition 4.13. (Discrete-time Birth Death Process Model)

` ∀ X p a b c d n p0.

DB MODEL X p a b d n p0 =

Aperiodic MC X p ([0, n], POW [0,n]) p0 (DBLt a b d) ∧

Irreducible MC X p ([0, n], POW [0,n]) p0 (DBLt a b d) ∧

1 < n ∧ (a0 + b0 = 1) ∧ ∀ j. 0 < j ∧ j < n ⇒ (aj + bj + dj = 1) ∧

∀ j. j < n ⇒ 0 < bj ∧ bj < 1 ∧ 0 < dj ∧ dj < 1

In this definition, this process is formally described as an aperiodic and irre-

ducible DTMC, in which the state space is expressed as a pair ([0, n], POW [0,n]).

The set [0, n] represents the population and POW [0,n] is the sigma-algebra of the

set [0, n]. Since the aperiodic and irreducible DTMC is independent of the initial

distribution, the parameter p0 in this model is a general function. The other conjunc-

tions shown in Definition 4.13 are the requirements described in the specification of

the discrete-time Birth-Death process mentioned above.

Now, we can prove that this discrete-time Birth-Death process possesses the

limiting probabilities.

69



Theorem 4.9. (Discrete-time Birth-Death Process Exists Limit Probability)

` ∀ X p a b d n p0 i.

DB MODEL X p a b d n p0 ⇒ (∃ u. P{Xt = i} → u)

Proof. This theorem can be verified by rewriting the goal with Definition 4.13 and

then applying Theorem 4.5.

Now, we can prove that the limit probability distributions are the stationary

distributions, which are defined in Definition 3.8, and are independent of the initial

probability vector as the following theorem.

Theorem 4.10. (Stationary Distributions in a Discrete-time Birth-Death Process)

` ∀ X p a b d n p0.

DB MODEL X p a b d n p0 ⇒ (∃ f. stationary dist p X f s)

Proof. We prove this theorem by first instantiating f to be the limiting probabilities,

lim (λ t. P{Xt = i}), and then by applying Theorem 4.9.

The last two theorems verify that the Birth-Death process holds the steady-

state probability vector vi = lim
t→∞

P{Xt = i}. The computation of the steady-state

probability vector vi is mainly based on the following two Equations (4.2a) and (4.2b):

v0 = a0v0 + d1v1 (4.2a)

vi = bi−1vi−1 + aivi + di+1vi+1 (4.2b)

Now, these two equations can be formally verified by the following two theorems.

Theorem 4.11. (Equation 4.2a)

` ∀ X p a b d n p0.

DB MODEL X p a b d n p0 ⇒

(lim (λ t. P{Xt = 0}) =

a0 * lim (λ t. P{Xt = 0}) + d1 * lim (λ t. P{Xt = 1}))
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Proof. We first apply Theorems 3.3 and 4.10 to simplify the main goal, then finalize

the proof by applying the conditional probability additivity theorem expressed in

Equation (2.2), along with some arithmetic reasoning.

Theorem 4.12. (Equation 4.2b)

` ∀ X p a b d n i p0.

DB MODEL X p a b d n p0 ∧ i + 1 ∈ [0, n] ∧ i - 1 ∈ [0, n] ⇒

(lim (λ t. P{Xt = i}) =

bi−1 * lim (λ t. P{Xt = i - 1}) + ai * lim (λ t. P{Xt = i})

+ di+1 * lim (λ t. P{Xt = i + 1}))

Proof. We proceed the proof of this theorem by applying Theorems 3.3, 4.10, 4.11

and the Lemma given in Equation (2.3d), along with some arithmetic reasoning.

The general solution of the linear Equations (4.2a) and (4.2b) are expressed as:

vi+1 =
i+1
∏

j=1

bj−1

dj
v0 (4.3a)

v0 =
1

n
∑

i=0

i+1
∏

j=1

bj−1

dj

(4.3b)

These two equations are the major targets of the long-term behavior analysis and can

be verified in higher-order logic as the following two theorems:

Theorem 4.13. (Equation 4.3a)

` ∀ X p a b d n i Linit.

DB MODEL X p a b d n Linit ∧ i + 1 ∈ [0, n] ⇒

(lim (λ t. P{Xt = i + 1}) =

lim (λ t. P{Xt = 0}) * PROD (1, i + 1) (λ j.
bj−1

dj
))

Proof. The proof of this theorem starts with induction on the variable n. The base

case can be verified by Theorem 4.11 and some real arithmetic reasoning. The proof
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of the step case, then, is completed by applying a lemma which proves the following

Equation (4.4) based on the DB MODEL:

vi+1 =
bi
di+1

vi+1 (4.4)

The proof of this lemma is mainly done by induction on variable i. The base

case is proved by applying Theorems 3.3, 4.10 and 4.11 as well as some real arithmetic

reasoning. The proof of the step case is completed by using Theorem 4.12 along with

some arithmetic reasoning.

Theorem 4.14. (Equation 4.3b)

` ∀ X p a b d n i Linit.

DB MODEL X p a b d n Linit ∧ i + 1 ∈ [0, n] ⇒

(lim (λ t. P{Xt = 0}) = 1

sum (0, n+1) (λi. PROD (1, i+1) (λj.
bj−1

dj
))
)

Proof. The proof of this theorem starts from rewriting the goal as lim (λ t. P{Xt
= 0}) * sum (0, n+ 1) (λi. PROD (1, i + 1) (λj.

bj−1

dj
) = 1. Then we split the

summation into two items: b0
d1

and sum (1, n+ 1) (λi. PROD (1, i + 1) (λj.
bj−1

dj
).

The proof is completed by applying Theorems 4.11, 4.13 and the probability additivity

theorem expressed in Equation (4.2a) and some real arithmetic reasoning.

After these theorems are verified, the limit probabilities of any states in this

model can be calculated by instantiating the parameter n and transition probabilities

a, b and d. Thus, it becomes unnecessary for the potential user to employ any

numerical arithmetic to analyze the long-term behaviors of this model. The solution

shown in Equations (4.3a) and (4.3b) is mainly used to predict safety properties in the

development of the population in a long period, in various domains, such as statistics

and biological.

More specifically, when the birth-death coefficients are bi = λ and di = µ (λ and

µ are constants) for all i in the state space, then the model described in Definition
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4.13 represents a classical M/M/1 queueing system [57] (in this case, the average inter

arrival time becomes 1
λ
and the average service time is 1

µ
). Thereafter, the verified

theorems can be directly applied to analyzing the ergodicity of M/M/1 queueing.

4.5 Summary and Discussion

This chapter first present a formal definition of the first passage time in higher-order

logic. Based on this formalization, a series of classified states, including transient

state, persistent state and persistent null state, as well as nonnull persistent state, are

introduced. By introducing the formalization of the greatest common divisor (gcd) of

a set, the periodic and aperiodic states are formally defined in HOL. We also present

the higher-order-logic formalization of the communicating state and absorbing state.

Building upon these definitions, we formalized a number of most common classified

DTMCs. These concepts primarily appear in the reachability analysis or long-term

behavior analysis.

To facilitate the probabilistic analysis of DTMC models, we verified the most

important properties of aperiodic and irreducible DTMCs, which can be found in most

textbooks and are frequently used in real-world applications. These properties (the-

orems in the higher-order logic) represent the foundation of classified DTMCs, which

enables to derive more interesting properties of classified DTMCs. Moreover, these

theorems are also frequently used in ergodic theory [55] due to the fact that aperiodic

and irreducible DTMCs belong to the special class of ergodic systems. Furthermore,

the properties of the ergodicity of DTMCs, the regular and absorbing DTMCs can

be verified by applying their definitions, given in Section 4.2, and the theorems p-

resented in Section 3.3. The absorbing DTMCs are frequently applied in modeling

social-psychological problems [64]. Combining the formalization of absorbing DTMC
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in Section 4.2 with the matrix theory [24], the properties of absorbing DTMC can

also be formally verified using higher-order logic.

The proof scripts contain about 8000 lines of HOL4 code and are available at

[68]. The major challenge of the work presented in this chapter is to find a way to

formally verify the theorems. Most of the times, the detailed proof steps are not

available in the textbooks. Moreover, some proofs in the textbook are doubtful. For

instance, the proof steps of Lemma 4.3 presented in [11] are based on an underlying

assumption that the order of the sequence n0, · · · , ni and a0, · · · , ai are correlated

with each other, whereas this correlation property between these two sequences is not

correct. Thus, most of the times we have to develop the proofs in HOL from scratch.

The LRU stack model is a typical model [99] for simulating the paging behaviors

of memory management in computer architectures. Later, this model was found

to be erroneous based on simulation results [110] and the authors commented that

some experimental results had shown that the LRU stack depth distribution varies

significantly among programs, even the same program running with different stimuli

[110]. Furthermore, in [109], the LRU stack model is described as an aperiodic and

irreducible DTMC, which can be validated by the developed formalization of classified

DTMCs elaborated in this chapter. To proceed with the validation of this LRU stack

model, we described it formally in HOL. Then we proved that this model exhibits the

uniform page referencing behavior in the long-term, which exactly matched with the

speculation stated in [110]. The proofs of this property of the LRU stack model require

only 300 lines of code in HOL4. Compared with the large but limited experimental

data, our formal validation of this model is more comprehensive and more accurate.

This instance illustrates the usefulness of the approach proposed in this thesis and

the flexibility of our higher-order logic formalization.
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Another special type of DTMC, presented as an application in this chapter,

is the discrete-time Birth-Death process. We modeled this process by applying the

formalizations of aperiodic and irreducible DTMC and then verified the general e-

quations ((4.3a) and (4.3b)) for expressing the limit probabilities of all states in the

state space. Although the proof of these two equations required less than 400 lines

of HOL4 code, these two theorems are very helpful on predicting the amount of the

population considered in such kind of discrete-time Birth-Death process. Especially,

if the discrete-time Birth-Death process model is used to represent the behaviors of a

data structure which is being manipulated in a software program [109], then we can

apply the theorems proved in Section 4.4.2 to analyze software reliability parameters,

such as the memory overflow problem of the given data structure.

As a special Birth-Death process, the M/M/1 queueing model [57] can be for-

mally analyzed by applying the verified properties in the last section of this chapter.

Furthermore, a number of queueing systems can be expressed by means of instantiat-

ing the parameters of the verified Birth-Death process in this thesis, such as M/M/m

(the m-server case) and M/M/∞ (Responsive Servers) [57], etc.

The applications presented Chapter 3 and 4 show that the formalizations of

DTMCs and classified DTMCs are quite useful in the analysis of Markovian models

using theorem proving technique. In fact, these formalizations facilitate diverse new

research directions in the domain of formal verification, such as the formal analysis

of hidden Markov models (HMMs) in higher-order logic, which can be applied in the

recognition of DNA sequences. We will describe the formalization of HMMs and the

verification of their important properties, as well as a DNA sequence analysis in HOL

in the next chapter.
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Chapter 5

Formalization of Hidden Markov

Model

In this chapter, we provide the formalization of an extended DTMC models, namely,

hidden Markov models (HMMs), which are the core concept for formally evaluating

the probability of the occurrence of a particular observed sequence and finding the best

state sequence to generate given observation. In order to present the usefulness of the

formalization of HMM and the formal verification of HMM properties, we illustrate

the formal analysis of a DNA (DeoxyribonNucleic acid) sequence at the end of the

chapter.

5.1 Definition of HMM

In order to accurately analyze the HMMs, we propose to apply the formalized DTM-

C to formally define HMMs and verify their properties in higher-order logic as the

extended DTMC models.

An HMM is a pair of two stochastic processes {Xk, Yk}k≥0, where {Xk}k≥0 is a
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Markov chain, and {Yk}k≥0 is conditionally independent [114] of {Xk}, i.e., Yk depends

only on Xk and not on any Xt, such that t 6= k. The HMMs model situations where

an experimenter sees some observers at every instant (mathematically represented by

Yk) and suspects these observables to be the outcome of a process that can be modeled

by a Markov chain ({Xk}k≥0). The name “Hidden Markov Model” arises from the

fact that the state in which this model is at a particular instant is not available to

the observer. Now, a HMM is defined as a parameterized triple (A, B, π(0)) with the

following conditions:

1. Hidden Markov Chain {Xk}k≥0 with a finite state space S, the initial distribution

π(0) = {πi(0)}i∈S and the transition probabilities A = {aij}i∈S,j∈S.

2. A random process {Yk}k≥0 with finite state space O. The hidden Markov chain

and the random process are associated with the emission probabilities B =

{bj(Ok)}j∈S,k∈O = {Pr{Yn = Ok|Xn = j}}j∈S,k∈O. It implies that:

• ∀ j k. bj(Ok) ≥ 0

• ∑

k∈Obj(Ok) = 1.

3. The random process {Yk}k≥0 and hidden Markov chain {Xk}k≥0 have conditional

independence.

This yields the following formalization:

Definition 5.1. (HMM)

` ∀ X Y p sX sY p0 pij pXY.

hmm X Y p sX sY p0 pij pXY =

dtmc X p sX p0 pij ∧ (∀ t. random variable (Y t) p sY) ∧

(∀ i. i ∈ space sY ⇒ {i} ∈ subsets sY) ∧
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(∀ t a i. P{x | X t x = i} 6= 0 ⇒

P({x | Y t x = a}|{x | X t x = i}) = pXY t a i) ∧

∀ t a i tx0
ty0 stsX stsY tsX tsY.

t 6∈ {tx0
+ m | m ∈ tsX} ∧ t 6∈ {ty0 + m | m ∈ tsY} ∧

P({x | X t x = i} ∩ ⋂

kεtsX
{x | X (tx0

+ k) x = EL k stsX} ∩
⋂

kεtsY
{x | Y (ty0 + k) x = EL k stsY}) 6= 0 ⇒

P({x | Y t x = a}|

({x | X t x = i} ∩ ⋂

kεtsX
{x | X (tx0

+ k) x = EL k stsX} ∩
⋂

kεtsY
{x | Y (ty0 + k) x = EL k stsY}))=

P({x | Y t x = a}|{x | X t x = i})

In this definition, the variable X denotes the random variable of the underlying

DTMC (as the first conjunct constrains), Y indicates the random observations (so Y t

is a random process as the second condition describes), and pXY indicates the emission

probabilities, i.e., the probability of obtaining a particular value for Y depending on the

state X. Like the second condition in Definition 3.3, the condition (∀ i. i ∈ space

sY ⇒ {i} ∈ subsets sY) ensures that the event space is a discrete space. The con-

junct (∀ t a i. P{x | X t x = i} 6= 0 ⇒ P({x | Y t x = a}|{x | X t x =

i}) = pXY t a i) assigns the function pXY to emission probabilities under the con-

dition P{x | X t x = i} 6= 0 , which ensures that the corresponding conditional

probabilities are well-defined. The non-trivial conjunct in the above definition is the

last one which formalizes the notion of conditional independence mentioned above.

In our work, we consider mainly discrete time and finite-state space HMMs, which is

the most frequently used case.

Time-homogenous HMMs can also be formalized in a way similar to time-

homogenous DTMCs. Note that, in practice, time-homogenous HMMs always have a
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finite state-space.

Definition 5.2. (Time-homogeneous HMM)

` ∀ X Y p sX sY p0 pij pXY.

thmm X Y p sX sY p0 pij pXY =

hmm X Y p sX sY p0 pij pXY ∧

FINITE (space sX) ∧ FINITE (space sY) ∧

∀ t a i j. P{x | X t x = i} 6= 0 ∧ P{x | X (t + 1) x = i} 6= 0 ⇒

(Trans X p s (t + 1) 1 i j = Trans X p s t 1 i j) ∧

(pxy (t + 1) i j = pxy t i j)

where the model is constrained to be a hidden Markov model (by the first condition

hmm X Y p sX sY p0 pij pXY) with finite spaces for both the states and observations;

also the last conjunct ensures that the transition probabilities of HMM satisfy the

homogeneous property and the emission probabilities possess the independency of

time.

Next, we verify some classical properties of HMMs, which play a vital role in

reducing the user interaction for the formal analysis of systems that can be represented

in terms of HMMs.

5.2 HMM Properties

HMMs are used to solve three types of problems: 1) evaluating the probability of

occurrence of a particular observed sequence; 2) finding the most probable state se-

quence to generate given observations; and 3) learning parameters in the presumed

model. The solutions are related to certain important HMM properties, which are

verified in the following sections.

79



5.2.1 Joint Probability of HMM

The most important property of time-homogeneous HMMs is the expression of the

joint distribution of a sequence of states and its corresponding observation, which can

be expressed using products of its emission probabilities and transition probabilities.

This is frequently used to find the best state path or estimate model’s parameters.

Mathematically, this is expressed as the following equation:

Pr(Y0, · · · , Yt, X0, · · · , Xt) = Pr(X0)Pr(Y0|X0)
t−1
∏

k=0

Pr(Xk+1|Xk)Pr(Yk+1|Xk+1)

(5.1)

and has been formally verified using the HOL theorem prover as follows:

Theorem 5.1. (Joint Probability of HMM)

` ∀ X Y p sX sY p0 pij pXY t stsX stsY.

thmm X Y p sX sY p0 pij pXY ⇒

(P(
⋂t

k=0{x | X k x = EL k stsX} ∩ ⋂t

k=0{x | Y k x = EL k stsY}) =

P{x | X 0 x = EL 0 stsX}

P({x | Y 0 x = EL 0 stsY}|{x | X 0 x = EL 0 stsX})

(PROD (0, t) (λ k. P({x | X (k + 1) x = EL (k + 1) stsX}|

{x | X k x = EL k stsX})

P({x | Y (k + 1) x = EL (k + 1) stsY}|

{x | X (k + 1) x = EL (k + 1) stsX}))))

where the first eight variables keep the same notations as the corresponding ones

in Definitions 5.1 and 5.2, variable t represents the index of the last observation

considered in this theorem and it also equals to the amount of the production numbers

from 0 to (t - 1) on the right-side of Equation (5.1), and stsX and stsY denote the

possible underlying state path and observable sequence, respectively.
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Proof. The proof of this theorem is primarily based on Theorem 3.1 and Definitions

5.1 and 5.2, along with some arithmetic reasoning.

This theorem provides the foundations to solve the three types of problems that

HMMs are primarily used for, as explained in Section 5.1.

5.2.2 Observation Sequence Probability

The first type of problems that HMMs are usually used to solve is evaluating the prob-

ability of occurrence of a particular observed sequence, which can be mathematically

expressed as:

Pr{Y0, · · · , Yt} =
∑

X0,··· ,Xt ∈
space s

Pr{X0}Pr{Y0|X0}
t−1
∏

k=0

Pr{Xk+1|Xk}Pr{Yk+1|Xk+1}

Using Theorem 3.1, we can formally verify this equation as follows.

Theorem 5.2. (Joint Probability of Observation Sequence)

` ∀ X Y p s t sX sY p0 pij pXY stsY.

thmm X Y p sX sY p0 pij pXY ⇒

let L = {L | EVERY (λx. x ∈ space sX) L ∧ (|L| = t+ 1)} in

(P(
⋂t

k=0{x | Y k x = EL k stsY}) =

SIGMA (λ stsX. P{x | X 0 x = EL 0 stsX}

P({x | Y 0 x = EL 0 stsY}|{x | X 0 x = EL 0 stsX})

(PROD (0, t) (λ k.

P({x | X (k + 1) x = EL (k + 1) stsX}

{x | X k x = EL k stsX})

P({x | Y (k + 1) x = EL (k + 1) stsY}|

{x | X (k + 1) x = EL (k + 1) stsX}))) (stsX ∈ L)
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where |L| returns the length of the list L and EVERY p L is a predicate which is true

iff the predicate p holds for every element of the list L.

Proof. The proof of this theorem is based on induction on variable t. The base case

is proved by using some conditional probability theorems and set theoretic reasoning.

The step case is then verified by applying the total probability theorem given in

Equation (2.3c) and Theorem 5.1, as well as Definition 5.1.

This theorem is frequently used in estimating the parameters of a HMM using

the maximum likelihood method [96], in which the computations of the parameters

mainly depend on the joint probability of a given observable sequence. Furthermore,

it plays an important role in the Baum-Welch algorithm [96].

5.2.3 Best Path Selection

In addition to the above property, researchers are often interested in the probability of

a particular underlying state path, considering all possible observable sequence. The

mathematical expression and the corresponding theorem are presented below.

Pr{X0, · · · , Xt} =
∑

Y0,··· ,Yt ∈
space s1

Pr{X0}Pr{Y0|X0}
t−1
∏

k=0

Pr{Xk+1|Xk}Pr{Yk+1|Xk+1}

Theorem 5.3. (Joint Probability of State Path)

` ∀ X Y p s t sX sY p0 pij pXY stsX.

thmm X Y p sX sY p0 pij pXY ⇒

let L = {L | EVERY (λy. y ∈ space sY) L ∧ (|L| = t+ 1)} in

(P(
⋂t

k=0{x | X k x = EL k stsX}) =

SIGMA (λ stsY. P{x | X 0 x = EL 0 stsX}

P({x | Y 0 x = EL 0 stsY}|{x | X 0 x = EL 0 stsX})

(PROD (0, t) (λ k.
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P({x | X (k + 1) x = EL (k + 1) stsX}

{x | X k x = EL k stsX})

P({x | Y (k + 1) x = EL (k + 1) stsY}|

{x | X (k + 1) x = EL (k + 1) stsX}))) (stsY ∈ L)

This theorem is very similar to Theorem 5.2 given the symmetric nature of the con-

ditional independency property between the processes {Xk}k≥0 and {Yk}k≥0. Hence,

the proof process is also quite similar to that of Theorem 5.2.

Theorems 5.2 and 5.3 provide ways to compute the probabilities that are usu-

ally desired while analyzing HMMs, specifically, Theorem 5.3 is quite important in

selecting the most probable state path (called best path in this thesis). Consequently,

if the best path is to be selected among a series provided potential state pathes, then

the joint probabilities of these state pathes can be calculated by instantiating the

parameters with concrete values and a real number can be obtained for the corre-

sponding state path, finally, the state path possessing the greatest joint probability

will be selected.

5.3 Proof Automation

Though the analysis of HMMs is based on interactive theorem proving, it seems

natural to try to automatize such computations. This is extremely useful since, in

practice as one is always interested in applying the theorems to concrete situations.

In this section, we describe how to automatically acquire interesting probabilities and

find the best state path, for a given HMM, using the results of Theorems 5.2 and 5.3.

This makes the accuracy of theorem proving available even to users with no knowledge

about logic or theorem proving.

In order to automate the computation associated with Theorem 5.1, we define
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a Standard ML (SML) function hmm joint distribution (ini distr trans distr

e distr sts obs) which takes as input the initial distributions, the transition prob-

abilities, the emission distributions, a list of states and a list of observations: When

calling this function, these parameters will be automatically substituted to, respec-

tively, p0, pij, pXY, stsX and stsY of Theorem 5.1. We then take t to be the length of

sts (which should be the same as obs): this seems to be the most common case in

practice, but could be easily relaxed if needed by adding a parameter to the function.

We can then compute, using the theorems about list, real numbers, etc. in HOL4, the

right-hand side of the equation in Theorem 5.1 in an exact way (as a fraction). In the

end, the function returns the corresponding instantiation of a HOL4 theorem stating

the equality between the joint probability and its value. Note that the result is really

a HOL4 theorem: even the operations between real numbers like multiplication or

addition are obtained by deductive reasoning, thus making every single step of the

computation completely reliable and traceable. For convenience, the result can also

be converted (outside HOL4) into an SML floating point value, in order to compare

with those results created by simulation tools.

The implementation of the function hmm joint distribution requires the de-

velopment of an intermediate lemma, in which some functions are defined for pa-

rameterizing the variables in Theorem 5.1 and outputting the results given by HOL4

through SML.

The computations associated with Theorem 5.3 can also be automated sim-

ilarly. To obtain the best path automatically, we need to compute the set of all

possible state paths, compute the probability of each of these paths as the function

hmm joint distribution does, and then return the path which has the highest joint
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probability. In order to be the most accurate as possible, all these computation-

s shall be done inside HOL4. This can be achieved by an SML function best path

(ini distr trans distr e distr st ty obs) where ini distr, trans distr, e di

str, and obs denote the same objects as for hmm joint distribution and st ty de-

notes the type of terms representing states. This type should be a non-recursive

enumerated type, i.e., defined as C1 | C2 | . . . Ck, where C1, . . . , Ck are constructors

without arguments: this ensures that the state-space is finite. The function then takes

care of computing the list of all possible paths, then computes the corresponding joint

probability as hmm joint distribution does, and, in the end, returns the state path

which has the best such probability (note that the notion of “best probability” is also

defined inside HOL4 by using the axiomatic definition of the order on real numbers).

This function is currently very slow due to the computation of the set of all pos-

sible state paths, but there is a lot of room for improvement, in particular by filtering

paths which have trivially a null probability. This can be done by proving a theorem

which is quite similar as Theorem 5.3 but the set of the possible state path does not

include those containing null transition probability or null emission probability, e.g.,

L = {L | EVERY (λ x. x ∈ space sX) L ∧ (|L| = n + 1) ∧

(∀ x y k. x ∈ space sX ∧ y ∈ space sY ⇒

P({x | X (k + 1) x = EL (k + 1) stsX}|

{x | X k x = EL k stsX}) > 0 ∧

P({x | Y k x = EL k stsX}|

{x | X k x = EL k stsX}) > 0)} .

For those applications containing any null transition probabilities or emission prob-

abilities, the computation load will be significantly reduced by applying a theorem

which is similar to Theorem 5.3, except for the L.
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We now show how to apply these theorems and functions in practice, by pro-

viding the formal analysis of a HMM of DNA model in the next section.

5.4 Application: DNA Sequence Analysis

DNA sequence analysis plays a vital role in constructing gene mapping, discovering

new species and investigating disease-manifestations in genetic linkage, parental test-

ing and criminal investigation. Statistical methods are mainly applied for analyzing

DNA sequences. In particular, obtaining the probability of a state path underlying

the DNA fragment is the most critical step in identifying a particular DNA sequence.

A DNA fragment is a sequence of proteins called A, T, G and C. However, not

every sequence represents a valid DNA: some regularities can be found among the

possible sequences. For instance, it might be that all four proteins can appear with

equal probability at the beginning of the sequence, but, after a particular point, only

A and G can appear, and then all four can appear again but with higher probabilities

for A and E. In this application, there are thus three different “states” of the DNA,

characterized by the probabilities of occurrence of each base. In this DNA model,

the first state is called exon (E), the second one 5’ splice site (5), and the third one

intron (I) [10]. This model is described and studied very naturally using HMMs [21]:

a DTMC over the states E, 5, and I is used in order to know in which state the

proteins are, then another random process is defined which characterizes the emission

of A, G, T or C according to the state which the proteins are in. This is summarized

in Figure 5.1.

In order to formalize this HMM, we first define the types representing the states

and the bases below.
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Figure 5.1: 5’ Splice Site Recognition Model

Definition 5.3. (Data Types)

` dna = A | G | T | C

` state = START | E | I | FIVE | END

Note that, in order to characterize the sequence, it is a common practice to

add some fake start and end states. Hence the definition of state in Definition 5.3

includes START and END, which have no emission probabilities. As examples, we define

the following state and DNA sequences:

Definition 5.4. (State Path and DNA Sequences)

` state seq =

[START; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; FIVE; I; I; I; I; I; I; I; END]

` dna seq = [C; T; T; C; A; T; G; T; G; A; A; A; G; C; A; G; A; C; G; T; A; A; G; T; C; A]

So to model the HMM represented in Figure 5.1, we need an initial distribution, the

transition probabilities, and the emission probabilities, which we define as follows:

Definition 5.5. (DNA Model Parameters)

` ini distr i = if (i = START) then 1 else 0
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` trans distr t i j = case (i, j) of

(START, E) → 1 | (E, E) → 0.9 | (E, FIVE) → 0.1 | (FIVE, I) → 1 |

(I, I) → 0.9 | (I, END) → 0.1 | → 0

` e distr a i = case (i, a) of

(E, ) → 0.25 | (FIVE, A) → 0.05 | (FIVE, G) → 0.95 | (I, A) → 0.4 |

(I, T) → 0.4 | (I, C) → 0.1 | (I, G) → 0.1 | → 0

Then, in order to work with random variables X and Y denoting the states and

the observations, respectively, on a probability space p, it is sufficient to have the

following predicate:

thmm X Y p sX sY ini distr trans distr e distr

∧ space sX = univ(: state) ∧ space sY = univ(: dna)

where univ(:t) is the set of all possible values of type t, e.g., univ(:dna) = {A; G;

T; C}. Now, for instance, we can prove the theorem which gives the probability of

obtaining the sequence dna seq if the underlying state path is state seq:

Theorem 5.4. (Joint Probability of A DNA Segment)

` ∀ X Y p sX sY.

thmm X Y p sX sY ini distr trans distr e distr ∧

space sX = univ(: state) ∧ space sY = univ(: dna) ⇒

P(
⋂|state seq|−1

k=0 {x | X k x = EL k state seq} ⋂

⋂|dna seq|−1
k=0 {x | Y k x = EL k dna seq}) =

0.2518 ∗ 0.923 ∗ 0.14 ∗ 0.95 ∗ 0.45

To prove this theorem, a lemma of Theorem 5.1 is first verified:

Lemma 5.1. (Extended Joint Probability of HMM)

` ∀ X Y p t sX sY p0 pij pXY stsX stsY.
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thmm X Y p sX sY p0 pij pXY ∧ (|stsx| = t + 3) ∧ (|stsy| = t + 1) ⇒

(P(
⋂t+2

k=0{x | X k x = EL k stsX}
⋂ ⋂t

k=0{x | Y k x = EL k stsY}) =

P{x | X 0 x = EL 0 stsX}

P({x | X (k + 2) x = EL (k + 2) stsX}|

{x | X (k + 1) x = EL (k + 1) stsX})

(PROD (0, t) (λ k. P({x | X (k + 1) x = EL (k + 1) stsX}|

{x | X k x = EL k stsX})

P({x | Y (k + 1) x = EL k stsY}|

{x | X k x = EL (k + 1) stsX}))))

where the state path stsx involves the START and END states, as shown in Figure 5.1.

Lemma 5.1 allows us to consider the joint probability of the states along with the

observed events, in which the number of states is more than the observations, in a

HMM, comparing to the Theorem 5.1.

Another interesting property is to find the state path has the best probability of

occurrence given a particular DNA sequence. In our particular context, this problem

is called 5’ splice site recognition. We can analyze the DNA segment, which starts

from any potential state. This can be formalized as follows using the previously used

DNA sequence:

Theorem 5.5. (Best State Path)

` ∀ X Y p sX sY.

thmm X Y p sX sY ini distr trans distr e distr ∧

space sX = univ(: state) ∧ space sY = univ(: dna) ⇒

REAL MAXIMIZE SET

[E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; FIVE; I; I; I; I; I; I; I]

(λsts. P(
⋂|sts|−1

k=0
{x | X k x = EL k state seq} ⋂
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⋂|dna seq|−1

k=0
{x | Y k x = EL k dna seq})

{sts | |sts| = 26})

where REAL MAXIMIZE SET m f s is a predicate which is true only if f m is the max-

imum element of {f x | x ∈ s} (this is defined as a predicate because there can be

several elements of s having this property). Note once again that this theorem is for-

mally verified, i.e., even the comparisons between probabilities are proved deductively

from the axiomatic definition of real numbers. Consequently, the confidence that we

can have in the result is maximal.

While Theorems 5.4 and 5.5 have been proved in the classical theorem prov-

ing way, i.e., interactively, there are rare chances that a biologist has the required

knowledge of higher-order logic and HOL4 so as to conduct such a study. However,

we automate the analysis by using SML functions that we presented in the previous

section.

5.5 Summary and Discussion

In this chapter, we first provided a formal definition of hidden Markov models. Build-

ing upon the definition of the time-homogeneous HMM, we verified fundamental prop-

erties, such as the joint probability of the sequences of states and observations, the joint

probability of an observed sequence and the best path selection. These properties pro-

vide the foundations of the computation algorithms applied in diverse simulation tools

and computer algebra systems in order to mitigate the tremendous computation loads

in the HMM analysis. The HOL4 proof script of above theorems consists of about

1600 lines of code. In addition, we presented an automatic verification method for

systems involving HMMs in this chapter. Our automation can be further optimized

in order to compare with the other simulation tools.
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HMMs are widely applied in almost all speech recognition [114], data com-

pression and artificial intelligence and pattern recognition, as well as computational

molecular biology applications. For this reason, we utilized our proved results for

the formal analysis of a DNA sequence. We first defined the DNA types and the

underlying states using HOL types, then constructed the DNA sequence model by

instantiating the relevant parameters. The joint probability of a state sequence is

obtained accurately based on the given model. Moreover, we described how to select

the DNA sequence, which has the highest joint probability of a possible underlying

state path (the best path). Finally, we showed the way to automatically compute the

best path of an observed DNA sequence.

This HMM application is a vivid example showing that the formalized DTMC

(presented in Chapter 3) can be easily applied to formalize various other derivative

Markovian processes, such as Queue, semi-Markov processes, and Markov Decision

Process (MDP) as well. Numerous algorithms implemented in probabilistic model

checker for analyzing DTMC models can be verified using theorem proving [47]. Sim-

ilarly, the algorithms, such as Forward-Backward, Viterbi and Baum-Welch algorithm

[74], implemented in many statistical simulation tools for analyzing discrete HMM-

s can also be verified by using the verified HMMs theorems interpreted in Chapter

5. These algorithms can then be integrated into a tool to formally analyze HMMs

automatically by using automated theorem proving techniques.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have proposed a framework (shown in Figure 1.2) to facilitate the

formal analysis of the systems modeled as discrete-time Markov chains using higher-

order logic theorem proving. We formalized Discrete-Time Markov Chain, Classified

States and Classified DTMCs as well as Hidden Markov Model and verified their most

important properties, which are the major components in our framework, in the the-

orem prover HOL4. These formalizations offer the capability of formally evaluate the

performance, maintainability and reliability of diverse systems which are described

as DTMCs. Compared with conventional paper-and-pencil analysis, simulation tech-

nique or computer algebra systems, our approach allows the formal verification of the

desired DTMC systems using a sound theorem prover and thus guarantees generic,

accurate and reliable results. Thus, we believe that the analysis of DTMCs using

higher-order logic theorem proving based on our development will be free of approx-

imation and precision problems due to the soundness nature of higher-order logic
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environment. For these reasons, the proposed approach can be used in formal per-

formance analysis of safety critical and/or mission critical engineering and scientific

applications related to discrete-time Markov chain.

Among the higher-order logic libraries shown in the framework, the generalized

formalization of discrete-time Markov chain is built upon a state-of-the-art proba-

bility theory and allows to handle both time-homogeneous and time-inhomogeneous

DTMCs with generic state spaces. Based on this formalization, we have been able to

formally verify a fundamental telecommunication network element, the binary com-

munication channel as well as the tag-collection process in an automatic mail quality

measurement (AMQM) protocol, which are expressed as discrete-time Markov chain-

s. These applications highlight the benefits of the formalization of DTMCs and the

formal verification of their properties using a higher-order-logic theorem prover.

The formalization of the DTMC theory enabled the formal definitions of classi-

fied states and classified DTMCs and the formal proofs of their significant properties.

As an example, we used the formalization of the aperiodic and irreducible DTMCs

to validate the LRU stack model in higher-order logic and achieved a general result

which is consistent with a simulation based analysis of a similar model [106]. In addi-

tion, we presented a formalization of discrete-time Birth-Death process, which can be

applied in analyzing software reliability, based on the formalization of classified DTM-

Cs. These examples highlight the benefits of our results and guarantee the validity of

every single instance of the system.

Finally, we used the formalized DTMC to model Hidden Markov Chains (HMM-

s), which is a widely used type of extended DTMC with diverse potential applications.

The proposed formalization of HMMs provides a novel approach to analyze statistical

models involving two random processes. Also, we presented a case study about DNA
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sequence analysis based on a HMM. To facilitate this analysis process in a better

way, we introduced certain automatic simplifiers to reduce the user intervention in

formal modeling and analyzing of real-world systems that can be described in terms

of HMMs.

6.2 Future Work

The Markov Chain theory involves important mathematical concepts in analyzing a

variety of applications and the DTMC concept is one of its basic brick. The formal-

ization and verification results, presented in this thesis, pave the avenues to a precise

analysis of Markovian systems using theorem proving as a complement to the tradi-

tional paper-and-pencil, simulation and computer algebra system based analyses, as

well as probabilistic model checking techniques. Diverse future work directions can be

performed building upon the work presented in this thesis. These potential directions

are depicted in the Figure 6.1, and discussed briefly the sequel.

DTMC

MDP

Queueing

Theory

Markov 

Random Field

Markov Chain 

Monte CarloHMM

Markov 

Mixing Time

Figure 6.1: Future Research Directions
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• A continuous-time Markov chain (CTMC) refers to a random process, in which

the random variables remain in the current state for some random (particularly,

exponentially distributed) interval of time and then transit to different states.

Using the formal definition of the continuous-time Markov chain and two of its

verified properties in [70] and the limiting, derivative and integral theories, it

is possible formally derive the Kolmogorov’s backward equation [109] as well as

variety of its other properties in HOL4. The formalization of CTMC would

enable the formal analysis of many applications, e.g., continuous-time HMMs,

which are used for formally assessing diseases (i.e. the progress of breast cancer)

in medical and biological domains, or estimating the electronic system reliability.

Continuous-time semi-Markov processes [51] and Markov jump processes [78]

can also be formalized using such a CTMC formalization.

• Queueing theory [11] is a mathematical study of a system which processes of

the flows of customers or/and services. A queue system is usually described

as a Birth-Death process in which the population consists of customers. This

potential project may start by formalizing the count process and poisson process

[112], as well as the continuous-time Markov chain. Various queues can be found

in the open literature, such as M/G/1, M/G/∞, GI/GI/1 [101] and they can

be used to model diverse interesting applications.

• The principal of Markov Decision Process (MDP) [52] is a Markov chain with a

reward function and a discount factor. We can develop a platform for formally

analyzing MDP models using our formalization of DTMC. For instance, the for-

malization of discrete-time MDP is just a simple extension of Definition 3.1. It

can also be further extended to formalize continuous-time MDP [31], which can
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be applied in the analysis of queueing systems, epidemic processes and popula-

tion processes (including Birth-Death Processes, Birth, Death and Catastrophe

Processes) [27].

• Markov Random Field (MRF) (also called undirected graphical model)[56] is

a type of stochastic process, which forms a natural generalization of Markov

processes, where the time index is replaced by a space index. The MRF is

mainly found in the physics domains and the basic ideas of this subject and

its applications can be found in [56]. Our formalization of DTMC provides a

general form for formally defining a MRF from the discrete space point of view.

• The random walk is a mathematical model describing a path that consists of a

succession of random steps. In fact, the random walk process is a sum process

[66] and this type of random process has several different classes, such as the

symmetric random walk and the asymmetric simple random walk [59]. Among

the diverse random walk processes, the simple random walk (or nearest neighbor

random walk) in one dimension is a DTMC. The formalization of random walk

can start from the simple random walk and then be extended to other types

of random walk processes. The applications of random walk can be found in

diverse areas, such as polymer physics, kinetic theory of chemical reactions [59].

• The Gambler’s ruin problem is a simple random walk, however, many variations

of this problem can be found in the open literature, such as the fair ruin problem,

the unfair ruin problem and the N-player ruin problem. The major issue of this

problem is to find out the solution, which refers to the probability that the

gambler wins finally. This can be formally proved in a theorem prover using

higher-order logic by applying our formalization of DTMC interpreted in this
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thesis. The principal of the gambler’s ruin problem offers the capabilities of

modeling the risk insurance business [38] in higher-order logic.

• Our work provides a possibility to combine both model checking and theorem

proving in order to offer an integrated framework that takes advantage of both

methods for formally analyzing Markovian systems. For instance, the behavior

of a timed Markovian system involves huge computations in model checking that

may lead to state space explosion problem. Since probabilistic model checkers,

such as PRISM, are based on probabilistic extensions of the timed automata

formalism, an interface between probabilistic PRISM model and HOL4 will only

require the definition of the timed automaton in HOL4. This interface can utilize

our proved theorems in HOL4 in order to verify such behavior. On the other

hand, in order to improve the automation of the verification process in HOL4,

certain HOL4 goals can be translated into PCTL expressions, and hence verified

automatically using a probabilistic model checker.

• The formalizations involved in our work can also be applied in formal analysis of

diverse real-world applications, such as telecommunication networks [76], real-

time reactive systems [89], robotic system [26] and digital circuits [62] and so

on.
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