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Abstract

Geometric Approaches for 3D Shape Denoising and Retrieval

Anis Kacem

A key issue in developing an accurate 3D shape recognition system is to design an efficient shape

descriptor for which an index can be built, and similarity queries can be answered efficiently. While

the overwhelming majority of prior work on 3D shape analysis has concentrated primarily on rigid

shape retrieval, many real objects such as articulated motions of humans are nonrigid and hence

can exhibit a variety of poses and deformations.

Motivated by the recent surge of interest in content-based analysis of 3D objects in computer-

aided design and multimedia computing, we develop in this thesis a unified theoretical and com-

putational framework for 3D shape denoising and retrieval by incorporating insights gained from

algebraic graph theory and spectral geometry. We first present a regularized kernel diffusion for

3D shape denoising by solving partial differential equations in the weighted graph-theoretic frame-

work. Then, we introduce a computationally fast approach for surface denoising using the vertex-

centered finite volume method coupled with the mesh covariance fractional anisotropy. Addition-

ally, we propose a spectral-geometric shape skeleton for 3D object recognition based on the second

eigenfunction of the Laplace-Beltrami operator in a bid to capture the global and local geometry

of 3D shapes. To further enhance the 3D shape retrieval accuracy, we introduce a graph matching

approach by assigning geometric features to each endpoint of the shape skeleton. Extensive ex-

periments are carried out on two 3D shape benchmarks to assess the performance of the proposed

shape retrieval framework in comparison with state-of-the-art methods. The experimental results

show that the proposed shape descriptor delivers best-in-class shape retrieval performance.
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Introduction

In this chapter, we present the framework and motivation behind this work, followed by the prob-

lem statement, literature review and thesis contributions.

1.1 Framework and Motivation

With the increasing use of 3D scanners to create 3D models, there is a rising need for robust mesh

denoising to remove inevitable noise in the measurements. Even with high-fidelity scanners, the

acquired models are invariably noisy, and therefore require filtering. The great challenge in image

processing and computer graphics is to devise computationally efficient and optimal algorithms

for recovering images and 3D models contaminated by noise and preserving their geometrical

structure. With the increasing use of scanners to create 3D models which are usually represented

as triangle meshes in computer graphics and geometric-aided design, there is a rising need for

robust and efficient 3D mesh denoising techniques to remove undesirable noise from the data.

In the same vein, the importance of 3D shape recognition is irrupting due to the difficulty in

processing information expeditiously without its recognition. With the increasing use of 3D scan-

ners and as a result of emerging multimedia computing technologies, vast databases of 3D models

are distributed freely or commercially on the Internet. The availability and widespread usage of

such large databases coupled with the need to explore 3D models in depth as well as in breadth has

1



sparked the need to organize and search these vast data collections, retrieve the most relevant se-

lections, and permit them to be effectively reused. 3D objects consist of geometric and topological

information, and their compact representation is an important step towards a variety of computer

vision applications, particularly matching and retrieval in a database of 3D models. The first step

in 3D object matching usually involves finding a reliable shape descriptor or skeletal graph which

will encode efficiently the 3D shape information.

1.2 Problem Statement

In computer graphics and geometric-aided design, triangle meshes have become the de facto

standard representation of 3D objects. A triangle mesh M may be defined as M = (V , E) or

M = (V , T ), where V = {v1, . . . ,vm} is the set of vertices, E = {eij} is the set of edges, and

T = {t1, . . . , tn} is the set of triangles, as depicted in Figure 1.1.

FIGURE 1.1: Trianglar mesh representation.

Each edge eij = [vi,vj] of the triangle mesh connects a pair of vertices {vi,vj}. Two distinct

vertices vi,vj ∈ V are adjacent (denoted by vi ∼ vj or simply i ∼ j) if they are connected by

an edge, i.e. eij ∈ E . The neighborhood of a vertex vi is the set v⋆
i = {vj ∈ V : vi ∼ vj}. The

degree di of a vertex vi is simply the cardinality of v⋆
i . We denote by T (v⋆

i ) the set of triangles

2



of the ring v⋆
i . Figure 1.2(left) depicts an example of a neighborhood v⋆

i , where the degree of the

vertex vi is di = 6, and the number of triangles of the set T (v⋆
i ) is also equal to 6.

FIGURE 1.2: Vertex neighborhood v⋆
i (left). Illustration of area(t) and normal

vector n(t) (right).

Consider a triangle t ∈ T with vertices vi, vj and vk, and side lengths a, b and c as illustrated

in Fig. 1.2 (right). The triangle normal n(t) can be calculated as the vector cross product of two

edges of the triangle, and according to Heron’s formula, area(t) is equal to

1

4

√
(a+ (b+ c))(a+ (b− c))(c+ (a− b))(c− (a− b)), (1.1)

where a, b and c are arranged such that a ≥ b ≥ c.

The centroid ccc(ttt) of the triangle ttt is obtained by averaging its vertices

ccc(ttt) =
vvvi + vvvj + vvvk

3
. (1.2)

The normal vector ni at a vertex vi of the mesh is obtained by averaging the normals of its neigh-

boring triangles

ni =
1

di

∑

tj∈T (v⋆
i )

n(tj). (1.3)

Figure 1.3 depicts a 3D teapot model (left) and its vertex normals (right).

The mean edge length ℓ̄ of the mesh M is given by

ℓ̄ =
1

|E|
∑

eij∈E

‖eij‖, (1.4)

3



FIGURE 1.3: Teapot model (left). Right: vertex normals.

where ‖eij‖ = ‖vi − vj‖ if vi ∼ vj , and ‖eij‖ = 0 otherwise.

We define the vertex gradient operator ∇vi (see Figure 1.4) as

∇vi =

{
vj√
dj
− vi√

di
: vj ∈ v⋆

i

}
. (1.5)

We also define the vertex Laplace operator as

∆vi =
∑

j∼i

1√
di

(
vj√
dj
− vi√

di

)
. (1.6)

(a) (b)

FIGURE 1.4: (a) Illustration of vertex gradient on a 3D face model; (b) close-up

view.

4



1.2.1 Surface Denoising

In all real applications, measurements are usually perturbed by noise. In the course of acquiring,

transmitting or processing a 3D model for example, the noise-induced degradation often yields a

resulting vertex observation model, and the most commonly used is the additive one,

v = u+ η, (1.7)

where the observed vertex v includes the original vertex u, and the random noise process η which

is usually assumed to be Gaussian with zero mean and standard deviation σ.

Surface denoising refers to the process of recovering a 3D model contaminated by noise. The

challenge of the problem of interest lies in recovering the vertex u from the observed vertex v,

and furthering the estimation by making use of any prior knowledge/assumptions about the noise

process η.

Generally, surface denoising methods may be classified into two major categories: isotropic

and anisotropic. The former techniques filter the noisy data independently of direction, while

the latter methods modify the diffusion equation to make it nonlinear or anisotropic in order to

preserve the sharp features of a 3D mesh surface. Most of these nonlinear methods were inspired

by anisotropic-type diffusions in the image processing literature [1–8].

1.2.2 3D Shape Recognition

Roughly speaking, 3D object recognition techniques may be classified into two major categories:

feature-based and global methods, as illustrated in Figure 1.5. Most 3D shape matching techniques

proposed in the literature of computer graphics, computer vision and computer-aided design are

based on geometric representations which represent the features of an object in such a way that the

shape dissimilarity problem reduces to the problem of comparing two such object representations.

Feature-based methods require that features be extracted and described before two objects can be

compared. An alternative to feature-based representations is global methods. The idea here is to

represent an object by a global measure or shape distribution defined on the surface of the object.

The shape matching problem is then performed by computing a dissimilarity measure between the

shape distributions of two arbitrary objects.

5



FIGURE 1.5: 3D object recognition diagram.

The goal of 3D object matching may be described as follows: Given two 3D objects M1 and M2

to be matched, find their respective global measures or shape descriptors s1 and s2, and calculate

how dissimilar these objects are using a dissimilarity measure D(s1, s2) that has to be quantified.

The basic idea behind the shape descriptor is to characterize a 3D object with a skeleton graph

that will help discriminate between objects in a database of 3D models. The 3D object matching

problem is depicted in Figure 1.6.

1.3 Literature Review

This section provides an brief overview of related work.

1.3.1 Surface Denoising

In this subsection, we review some representative methods for 3D surface denoising that are closely

related to our proposed approaches, and we briefly show their mathematical foundations and algo-

rithmic methodologies as well as their limitations.

The partial differential equation (PDE)-based smoothing approach is commonly formulated in

a continuous domain which enjoys a large arsenal of analytical tools, and hence offers a greater

6



FIGURE 1.6: 3D object matching problem.

flexibility. Laplacian smoothing is the most commonly used mesh smoothing method which re-

peatedly and simultaneously adjusts the location of each mesh vertex to the geometric center of its

neighboring vertices using the following update rule

vi ← vi +
∑

j∼i

(
vj − vi

di

)
. (1.8)

It is worth pointing out that the Laplacian flow given by Eq. (1.8) is the discrete form of the

isotropic heat equation vt = ∆v applied to each vertex of the triangle mesh, where we assume that

all vertices have the same degree. Although the Laplacian smoothing flow is simple and fast, it

tends, however, to produce a shrinking effect and an oversmoothing result, as shown in Figure 1.7.

A. Mean Filter for Averaging Face Normals:

The mean filter procedure is depicted in Figure 1.8 and is applied in three successive steps [6]:

Step 1 : compute the area weighted average face normal m(ti) for each mesh triangle ti:

m(ti) =
1∑

tj∈t
⋆
i

A(tj)

∑

tj∈t
⋆
i

A(tj)n(tj). (1.9)
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(a) Noisy model (b) Denoised model

FIGURE 1.7: Oversmoothing effect of Laplacian smoothing.

Step 2 : normalize the averaged normal m(ti):

m(ti)←
m(ti)

‖m(ti)‖
(1.10)

Step 3 : update each vertex vi in the mesh as follows:

vi ← vi +
1∑

tj∈T (v⋆
i )

A(tj)

∑

tj∈T (v⋆
i )

A(tj)πi(tj) (1.11)

where πi(tj) = 〈eij,m(tj)〉m(tj), and eij = cj − vi is the vector from vertex vi to the

centroid cj of the triangle tj . Note that by definition of the inner product, the vector πi(tj)

is the projection of the vector eij onto the direction of the normal tj .

B. Angle Median Filtering for Face Normals:

For each triangle ti ∈ T , denote by Θi = {θij = ∠(n(ti),n(tj)) : tj ∈ t⋆i } the set of angles

between n(ti) and n(tj), where n(ti) is the normal of ti and n(tj) is the normal of tj . As

illustrated in Figure 1.9, instead of computing the average face normal in Step 1 of the mean filter,

in the angle median filtering method [6] we first compute the median angle θ̂i = median(Θi) =

∠(n(ti),n(t̂j)) where t̂j is the triangle where the median angle is achieved, and then we replace

the weighted average normal m(ti) by n(t̂j)/‖n(t̂j)‖.
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ti

tj

n(tj) m(tj)

n(ti) m(ti)
m(tj)

vi

cj

tj

eij

πi(tj)

FIGURE 1.8: Illustration of the mesh mean filter algorithm.

The mean and median filtering methods show better performance than the Laplacian flow. These

two methods, however, require a large number of iterations to reach stable results.

ti

tj

n(tj)

n(ti) m(ti)
m(tj)

vi

cj

tj

eij

πi(tj)

FIGURE 1.9: Illustration of the mesh median filter algorithm.

C. Weighted Laplacian Filter:

Instead of using unit edge costs, the weighted Laplacian smoothing method [9] chooses edge

weights based on the approximation to the curvature normal. The edge weights wij are given

by wij = cotαij +cot βij , where αij and βij are the angles ∠vivj−1vj and ∠vivj+1vj depicted in

9



Figure 1.10. Then, the update rule of the weighted Laplacian smoothing procedure is given by

vi ← vi +
1∑

j∼i

wij

∑

j∼i

wij(vj − vi). (1.12)

The improved edge weights are used to compensate for the irregularities of the triangle mesh and

to help avoid the edge equalization.

FIGURE 1.10: Illustration of the angles αij and βij .

D. Bilateral Mesh Denoising:

Similar to the mean and angle median filters, the bilateral 3D mesh denoising method [7] was also

adopted from the bilateral filtering technique used in image denoising. This algorithm filters each

vertex vi of the mesh in the normal direction using local neighborhoods according the following

update rule:

vi ← vi + ni




∑

j∼i

(wc
ij w

s
ij)〈ni,vi − vj〉

∑

j∼i

wc
ij w

s
ij


 , (1.13)

where ni is the vertex normal, wc
ij is the standard Gaussian filter

wc
ij = e−‖vi − vj‖2/2σ2

c

with parameter σc, and ws
ij is feature-preserving weight function

ws
ij = e−〈ni,vi − vj〉2/2σ2

s
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with parameter σs. Bilateral mesh denoising algorithm is parameter-dependent and requires the

user to assign the two parameters σc and σs interactively. The lack of object information, however,

might affect the smoothing result.

E. Vertex-based Anisotropic Diffusion:

The vertex-based anisotropic diffusion [10] is given by the discrete partial differential equation

vt = div(g(|∇v|)∇v), (1.14)

where g is Cauchy weight function given by

g(x) =
1

1 + x2/c2
, (1.15)

and c is a constant tuning parameter that needs to be estimated. Intuitively, the smoothing effect

of the vertex-based anisotropic diffusion may be explained as follows: in flat regions of a 3D

mesh where the vertex gradient magnitudes are relatively small, Eq. (1.14) is reduced to the heat

equation which tends to smooth more but the smoothing effect is unnoticeable. And around the

sharp features of the 3D mesh where the vertex gradient magnitudes are large, the diffusion flow

given by Eq. (1.14) tends to smooth less and hence leads to a much better preservation of the mesh

geometric structures. It can be shown (see [11]) that the 95% asymptotic efficiency on the standard

Gaussian distribution is obtained with the tuning constant c = 2.3849.

In discrete form, the vertex-based anisotropic diffusion flow is reduced to the following update

rule

vi ← vi +
∑

j∼i

1√
di

(
vj√
dj
− vi√

di

)(
g(|∇vi|) + g(|∇vj|)

)
, (1.16)

where the gradient magnitudes are given by

|∇vi| =
(∑

j∼i

∥∥∥vi/
√
di − vj/

√
dj

∥∥∥
2)1/2

, (1.17)

and

|∇vj| =
( ∑

vk∈v
⋆
j

∥∥∥vj/
√
dj − vk/

√
dk

∥∥∥
2)1/2

. (1.18)

Note that the update rule of the proposed method requires the use of two neighboring rings as

depicted in Figure 1.12.
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FIGURE 1.11: Cauchy weight function with c = 2.3849.

1.3.2 3D Shape Recognition

Recent advances in 3D imaging and processing, graphics hardware and networks have led to a

whopping increase in geometry models available freely or commercially on the Internet. As a re-

sult, the task of efficiently measuring the 3D object similarity to find and retrieve relevant objects

for a given query and categorize an object into one of a set of classes has become of paramount

importance in a wide range applications, including computer-aided design, video gaming, special

effects and film production, medicine, and archaeology. The main challenge in 3D object retrieval

algorithms is to compute an invariant shape descriptor that captures well the geometric and topo-

logical properties of a shape [12–16].

The vast majority of 3D shape representation techniques proposed in the literature of computer

graphics and computer vision are primarily based on geometric and topological representations

which represent the features of an object [17–19]. For example, Siddiqi et al. [18] introduced a

shock detection approach based on singularity theory to generate a skeletal shape model. Also,

Siddiqi et al. [20] proposed a directed acyclic graph representation for 3D retrieval using medial
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FIGURE 1.12: Illustration of two neighboring rings.

surfaces. This approach uses the geometric information associated with each graph node along

with an eigenvalue labeling of the adjacency matrix of the subgraph rooted at that node. Cornea

et al. [21] devised a 3D matching framework for 3D volumetric objects using a many-to-many

matching algorithm. This algorithm is based on establishing correspondences among two skeletal

representations via distribution-based matching in metric spaces. Hassouna et al. [22] proposed a

level set based framework for robust centerline extraction of 2D shapes and 3D volumetric objects.

This approach is based on the gradient vector flow and uses a wave propagation technique, which

identifies the curve skeletons as the wave points of maximum positive curvatures. Tagliasacchi et

al. [23] introduced a curve skeleton extraction algorithm from imperfect point clouds. A major

drawback of curve skeletons is that they cannot capture general shape features such as surface

ridges, and are essentially restricted to objects which resemble connected tubular forms.

An alternative to feature-based representations are global methods, which represent a 3D object

by a global measure or shape distribution defined on the surface of the object [24–26]. Ankerst

et al. [24] used shape histograms to analyze the similarity of 3D molecular surfaces. These his-

tograms are built from uniformly distributed surface points taken from the molecular surfaces, and

are defined on concentric shells and sectors around the centroid of the surface. Osada et al. [25]

proposed a global approach for computing shape signatures of arbitrary 3D models. The key idea is

to represent an object by a global histogram based on the Euclidean distance defined on the surface

of an object. More recently, Ion et al. [27] presented an articulation-insensitive shape match-

13



ing approach by constructing histograms from the eccentricity transform using geodesic distances.

Kazhdan et al. [26] proposed a rotation invariant spherical harmonic representation that transforms

rotation dependent shape descriptors into rotation independent ones. Chen et al. [28] presented a

lightfield descriptor for 3D object retrieval by comparing ten silhouettes of the 3D shape obtained

from ten viewing angles distributed uniformly on the viewing enclosing sphere. The dissimilarity

between two shapes is computed as the minimal distance obtained by rotating the viewing sphere

of one lightfield descriptor relative to the other lightfield descriptor. The computation of this de-

scriptor is, however, significantly time consuming compared to spherical harmonics [29].

The recently emerging field of diffusion geometry provides a generic framework for many meth-

ods in the analysis of geometric shapes [30]. It formulates the heat diffusion processes on mani-

folds. Spectral shape analysis is a methodology that relies on the eigensystem (eigenvalues and/or

eigenfunctions) of the Laplace-Beltrami operator to compare and analyze geometric shapes. The

Laplace-Beltrami operator on manifolds is the analogous of the Laplace operator on Euclidean

spaces.
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1.4 Thesis Overview and Contributions

The thesis contributions may be summarized as follows:

● In Chapter 2, we propose a regularized kernel diffusion filter for 3D mesh denoising in the

weighted graph framework. The proposed approach is able to reduce the over-smoothing

effect and effectively remove undesirable noise while preserving prominent geometric fea-

tures of a 3D mesh such as curved surface regions, sharp edges, and fine details. Illustrating

experimental results are presented to show the effectiveness of the proposed approach.

● In Chapter 3, we introduce a surface denoising scheme using the vertex-centered finite vol-

ume method coupled with the mesh covariance fractional anisotropy. The approach is com-

putationally fast and able to effectively remove undesirable noise while preserving prominent

geometric features of a 3D mesh surface such as curved surface regions, sharp edges, and

fine details. Extensive experimental results on various 3D models demonstrate the effective-

ness of the proposed iterative algorithm, which yields satisfactory output results in just one

single iteration.

● In Chapter 4, we propose a spectral skeleton-based approach for deformable 3D object

matching and retrieval. This skeleton is constructed from the second eigenfunction of the

Laplace-Beltrami operator defined on the surface of the 3D object, and thus it is invariant

to isometric transformations. Moreover, our shape descriptor is both compact and efficient

to compute. We also present a robust matching framework by comparing the shortest paths

between the skeleton endpoints. The experimental results demonstrate the feasibility of the

proposed approach in object matching and retrieval on two 3D shape benchmarks.

● In Chapter 5, we summarize the contributions of this thesis, and propose several future re-

search directions that are directly or indirectly related to the ideas developed therein.
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Regularized Kernel Weighted Diffusion

2.1 Introduction

Recent advances in computer and information technology have increased the use of 3D models in

many fields including medicine, the media, art and entertainment. The great challenge in image

processing and computer graphics is to devise computationally efficient and optimal algorithms

for recovering images and 3D models contaminated by noise and preserving their geometrical

structure. With the increasing use of scanners to create 3D models which are usually represented

as triangle meshes in computer graphics and geometric-aided design, there is a rising need for

robust and efficient 3D mesh denoising techniques to remove undesirable noise from the data.

Numerous partial differential equations (PDE)-based methods have been proposed in the liter-

ature to tackle the problem of 2D image denoising with a good preservation of features [31–36].

Much of the appeal of PDE-based methods lies in the availability of a vast arsenal of mathematical

tools which at the very least act as a key guide in achieving numerical accuracy as well as sta-

bility. Partial differential equations or gradient descent flows are generally a result of variational

problems [37]. The 3D mesh denoising problem, however, has received much less attention [1–5].

The widely used mesh smoothing method is the so-called Laplacian flow, which repeatedly and

simultaneously adjusts the location of each mesh vertex to the geometric center of its neighboring
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vertices [1]. Despite its simplicity, the Laplacian smoothing flow produces, however, the shrinking

effect and an oversmoothing result. More recent mesh denoising techniques include the mean, me-

dian, and bilateral filters [6–8] which are all adopted from the image processing literature. Also,

a number of anisotropic diffusion methods for triangle meshes and implicit surfaces have been

proposed recently. The authors in [9, 38] introduced a weighted Laplacian smoothing technique

by choosing new edge weights based on curvature flow operators. This denoising method avoids

the undesirable edge equalization from Laplacian flow and helps to preserve curvature for constant

curvature areas. However, re-computing new edge weights after each iteration results in more

expensive computational cost. In [39], Clarenz et al. proposed a multiscale surface smoothing

method based on the anisotropic curvature evolution problem. By discretizing nonlinear partial

differential equations, this method aims to detect and preserve sharp edges by two user defined pa-

rameters which are a regularization parameter for filtering out high frequency noisy and a threshold

for edge detection. This multiscale method was also extended to the texture mapped surfaces [40]

in order to enhance edge type features of the texture maps. Different regularization parameters

and edge detection threshold values, however, need to be defined by users onto noisy surfaces and

textures respectively before the smoothing process. Bajaj et al. [41] presented a unified anisotropic

diffusion for 3D mesh smoothing by treating discrete surface data as a discretized version of a 2-D

Riemannian manifold and establishing a PDE diffusion model for such a manifold. This method

helps enhancing sharp features while filtering out noise by considering 3-ring neighbors of each

vertex to achieve non-linear approach of smoothing process. Tasdizen et al. [42, 43] introduced

a two-step surface smoothing method by solving a set of coupled second-order PDEs on level set

surface models. Instead of filtering the positions of points on a mesh, this method operates on the

normal map of a surface and manipulates the surface to fit the processed normals. All the surfaces

normals are processed by solving second-order equations using implicit surfaces. In [44], Hilde-

brandt et al. presented a mesh smoothing method by using a prescribed mean curvature flow for

simplicial surfaces. This method develops an improved anisotropic diffusion algorithm by defining

a discrete shape operator and principal curvatures of simplicial surfaces.

In this chapter, we propose a regularized weighted diffusion for 3D shape smoothing using the

statistical concept of kernel density estimation. Kernel density estimates are output as smooth

curves with the amount of smoothing governed by a bandwidth value used during calculation [45].
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The rest of this chapter is organized as follows. In Section 2.2, a regularized kernel weighted

diffusion is introduced. In Section 2.3, we provide experimental results to demonstrate a much

improved performance of the proposed method in 3D mesh denoising.

2.2 Regularized Diffusion on Weighted Graphs

Inspired by continuous regularization of images, we present a general framework based on a dis-

crete regularization on weighted graphs of arbitrary topology.

2.2.1 Differential Operators on Weighted Graphs

A weighted graphG = (V,E,w) is defined by a set of vertices V , a set of edgesE = {e} ⊆ V ×V ,

and a weight function w : E → R+ that assigns nonnegative weights to the edges. Each edge

e = [u, v] ∈ E connects a pair of vertices {u, v}. Two distinct vertices are u, v ∈ V are adjacent

or neighbors (written u ∼ v) if they are connected by an edge, i.e. [u, v] ∈ E. The weight

function is symmetric, that is w(u, v) = w(v, u) for all [u, v] ∈ E. If two vertices u and v are

not connected, then w(u, v) = 0. The degree function is defined as d : V → R+ such that

d(u) =
∑

v∼uw(u, v) =
∑

v∈V w(u, v) for all v ∈ V .

Denote byH(V ) the Hilbert-space of real-valued functions equipped with the inner product

〈ϕ1, ϕ2〉H(V ) =
∑

v∈V

ϕ1(v)ϕ2(v), (2.1)

where ϕ1, ϕ2 : V → R. The L2-norm of a function ϕ : V → R is ‖ϕ‖22 =
∑

v∈V |ϕ(v)|2d(v)
Similarly, we denote byH(E) the Hilbert-space of real-valued functions equipped with the inner

product

〈ψψψ1,ψψψ2〉H(E) =
∑

(u,v)∈E

ψ1(u, v)ψ2(u, v) =
∑

u∈V

∑

v∼u

ψ1(u, v)ψ2(u, v), (2.2)

where the vectors ψψψ1 = ψ1(u, v) ∈ E and ψψψ2 = ψ2(u, v) ∈ E, and ψ1, ψ2 : E ⊆ V × V → R.

Definition 2.2.1 The directional derivative (or edge derivative), denoted by (∇wϕ)(u, v) or

∂vϕ(u), of a function ϕ ∈ H(V ) at a vertex u, along an edge e = (u, v), is defined as

(∇wϕ)(u, v) =
√
w(u, v)(ϕ(v)− ϕ(u)), (2.3)
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The weighted graph gradient ∇wϕ(u) : V → E at a vertex u is defined as the vector of all

directional derivatives (∇wϕ)(u, v) at u, that is

∇wϕ(u) = {(∇wϕ)(u, v) : v ∼ u} = {(∇wϕ)(u, v) : v ∈ V }. (2.4)

Definition 2.2.2 The graph divergence divwψψψ(u) : E → V is defined as the adjoint of the graph

gradient

〈∇wϕ,ψψψ〉H(E) = 〈ϕ,−divwψψψ〉H(V ), ∀ϕ ∈ H(V ), ψψψ ∈ H(E) (2.5)

and it is given by

divwψψψ(u) =
∑

v∼u

√
w(u, v)(ψ(u, v)− ψ(v, u)) =

∑

v∈V

√
w(u, v)(ψ(u, v)− ψ(v, u)). (2.6)

Note that if ϕ(u) is a constant for all u ∈ V , then Eq. (2.5) yields 〈ϕ,−divwψ〉H(V ) = 0, that is

∑

u∈V

divwψ(u) = 0, ∀ψ ∈ H(E) (2.7)

Definition 2.2.3 The weighted graph Laplacian is an operator ∆ : H(V )→ H(E) given by

∆wϕ(u) =
1

2
divw

(
∇wϕ(u)

)
=
∑

v∈V

w(u, v)(ϕ(v)− ϕ(u)) (2.8)

Note that a factor 1/2 is used to be consistent with the definition of the standard Laplace operator.

The Laplacian is self-adjoint

〈∆wϕ(u), ϕ(u)〉 = 〈ϕ(u),∆wϕ(u)〉 (2.9)

and negative semidefinite

〈∆wϕ(u), ϕ(u)〉 = −〈∇wϕ(u),∇wϕ(u)〉 (2.10)

The local H1 norm and the total variational semi-norm of ϕ at u are defined as follows:

Jw
LH1(ϕ) = |∇wϕ(u)|2 =

∑

v∈V

w(u, v)(ϕ(v)− ϕ(u))2

Jw
LTV (ϕ) = |∇wϕ(u)| =

√∑

v∈V

w(u, v)(ϕ(v)− ϕ(u))2
(2.11)
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The nonlocal H1 norm and the total variation semi-norm of ϕ at u are defined as follows:

Jw
NLH1(ϕ) =

∑

u∈V

|∇wϕ(u)|2 =
∑

u∈V

∑

v∈V

w(u, v)(ϕ(v)− ϕ(u))2

Jw
NLTV (ϕ) =

∑

u∈V

|∇wϕ(u)| =
∑

u∈V

(∑

v∈V

w(u, v)(ϕ(v)− ϕ(u))2
)1/2 (2.12)

The nonlocal TV semi-norm is analogous to the classical total variation in image processing.

2.2.2 Problem Statement

In all real applications, measurements are perturbed by noise. In the course of acquiring, trans-

mitting or processing a 3D mesh for example, the noise-induced degradation may be dependent or

independent of data. The noise is usually described by its probabilistic model, e.g., Gaussian noise

is characterized by two moments. Application-dependent, a degradation often yields a resulting

mesh observation model, and the most commonly used is the additive one,

ϕ0 = ϕ+ η, (2.13)

where the observed data ϕ0 ∈ H(V ) includes the noise-free data ϕ ∈ H(V ) and the independent

and identically distributed (i.i.d) random noise process η ∈ H(V ).

Mesh denoising refers to the process of recovering a mesh data contaminated by noise. Unknown

prevailing statistics or underlying mesh/noise models often make a “target” desired performance

quantitatively less well defined. Specifically, it may be qualitative in nature (e.g., preserve high

gradients in a geometric setting, or determine a worst case noise distribution in a statistical estima-

tion setting with a number of interpretations), and may not necessarily be tractably assessed by an

objective and optimal performance measure. The formulation of such qualitative goals, is typically

carried out by way of adapted functionals which upon being optimized, achieve the stated goal.

This approach is the so-called variational approach, which enjoys a large arsenal of analytical

tools and offers a greater flexibility. Generally, the construction of an energy functional is based

on some characteristic quantity specified by the task at hand. This energy functional is oftentimes

coupled to a regularizing force/energy in order to rule out a great number of solutions and to also

avoid any degenerate solution.

When considering the signal model (2.13), our goal may be succinctly stated as one of esti-

mating the underlying data ϕ based on an observation ϕ0 and/or any potential knowledge of the
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noise statistics to further regularize the solution. This yields the following fidelity-constrained

optimization problem

min
ϕ

F(ϕ)

s.t. ‖ϕ− ϕ0‖2 = σ2
(2.14)

where F is a given functional which often defines, as noted above, the particular emphasis on the

features of the achievable solution. In other words, we want to find an optimal solution that yields

the smallest value of the objective functional among all solutions that satisfy the constraints. Using

Lagrange’s theorem, the minimizer of (2.14) is given by

ϕ̂ = argmin
ϕ

{
F(ϕ) + λ

2
‖ϕ− ϕ0‖2

}
, (2.15)

where λ is a nonnegative regularization parameter chosen so that the constraint ‖ϕ−ϕ0‖2 = σ2 is

satisfied. In practice, the parameter λ is often estimated or chosen a priori. Note that the right hand

side of Eq. (2.15) consists of two terms: a smoothness term and a fitting term. The smoothness

term seeks a function that is smooth, whereas the fitting term is used to find a smoothed function

close enough to initial function ϕ0. Unlike, the smoothness term or regularizer consists in seeking

for a function which is smooth. The regularization parameter λ specifies the trade-off between

these two competing terms.

A critical issue, however, is the choice of the functional F , which is often driven by geometric

arguments. A generalization of the nonlocal H1 and total variation is given by the functional

F(ϕ) =
∑

u∈V

F (|∇wϕ(u)|) =
∑

u∈V

F

((∑

v∈V

w(u, v)(ϕ(v)− ϕ(u))2
)1/2

)
(2.16)

where F : R+ → R is a given smooth function. Using (2.20), we hence define a functional

L(ϕ) = F(ϕ) + λ

2
‖ϕ− ϕ0‖2

=
∑

u∈V

F (|∇wϕ(u)|) +
λ

2
‖ϕ− ϕ0‖2,

(2.17)

which by the formulation in (2.15) becomes

ϕ̂ = argmin
ϕ
L(ϕ). (2.18)

To solve the optimization problem (2.18), a variety of iterative methods such as gradient descent

or fixed point method may be applied. The first-order necessary condition to be satisfied by any
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minimizer of the functional L given by (2.17) is that its first variation vanishes. The first variation

of L(ϕ) with respect to ϕ is given by

∂ϕL(ϕ) = ∂ϕF(ϕ) + λ(ϕ(u)− ϕ0(u))

where

∂ϕF(ϕ) = −divw
(
F ′(|∇wϕ(u)|)
|∇wϕ(u)|

∇wϕ(u)

)

Thus, a minimizer of L(ϕ) may be interpreted as the steady state solution to the following regular-

ized gradient descent flow

∂ϕ(u)

∂t
= divw

(
g(|∇wϕ(u)|)∇wϕ(u)

)
+λ(ϕ0(u)− ϕ(u))

=
∑

v∈V

√
w(u, v)(ϕ(v)− ϕ(u))

(
g(|∇wϕ(u)|) + g(|∇wϕ(v)|)

)
+λ(ϕ0(u)− ϕ(u))

(2.19)

where g(z) = F ′(z)/z, with z > 0.

The solution to the regularized gradient descent flow given by Eq. (2.19) leads to a family of

nonlinear filters, parameterized by the weight function and the regularization parameter. There are

basically two main advantages behind using this framework. Firstly, the regularization is formu-

lated directly in discrete setting. Secondly, filters are computed by simple and efficient iterative

algorithms, without solving any PDEs. Since the proposed approach is general, any discrete data

set can be transformed into a weighted graph, by using a similarity measure between data. Thus,

we can consider any function defined on the data as a function defined on the set of vertices of the

weighted graph.

2.2.3 Illustrative Case

An interesting functional is the nonlocal p-Dirichlet given by

F(ϕ) = 1

p

∑

u∈V

|∇wϕ(u)|p =
1

p

∑

u∈V

(∑

v∈V

w(u, v)(ϕ(v)− ϕ(u))2
)p/2

(2.20)

which includes as special cases the nonlocal H1 norm and the total variation semi-norm when

p = 2 and p = 1, respectively [46]. Thus, the regularized gradient descent flow associated to the

nonlocal p-Dirichlet is given by

∂ϕ(u)

∂t
= ∆p

wϕ(u) + λ(ϕ0(u)− ϕ(u)) (2.21)
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where ∆p
wϕ(u) denotes the weighted p-Laplacian given by

∆p
wϕ(u) =

∑

v∈V

√
w(u, v)(ϕ(v)− ϕ(u))

(
|∇wϕ(u)|p−2 + |∇wϕ(v)|p−2

)
(2.22)

and the parameter p ∈ (0,+∞) represents the smoothness degree.

Note that |∇wϕ| is not differentiable when ∇wϕ = 0 (e.g. when p < 2). To overcome the

resulting numerical difficulties, we use the following slight modification

|∇wϕ|ǫ =
√
|∇wϕ|2 + ǫ,

where ǫ is positive sufficiently small.

2.2.4 Choice of Weights

A. General weight function:

Let ϕ ∈ H(V ) be a function defined on each vertex of the set of mesh vertices V . Similarities

between data points are estimated by comparing their features. Features generally depend on the

function ϕ and the vertex set V . Each vertex v ∈ V is assigned a feature vector, denoted by

Fϕ(v) ∈ R
q, where q is the dimension of the feature vector.

ω(u, v) = exp

(
−‖Fϕ(v)− Fϕ(u)‖2

2σ2
d

)
, ∀[u, v] ∈ E, (2.23)

where σd is a parameter that depends on the variations of ‖u − v‖ and ‖Fϕ(v) − Fϕ(u)‖ over the

weighted graph. The graph structure, associated with one of the above weight functions, describes

a general family of filters. This family is linked to several filters defined in the context of image and

mesh processing. Consider for example the case of p-Laplacian: when p = 2, the filter associated

with the weight function given by Eq. (2.23) is equivalent to the bilateral filter, introduced in the

context of image denoising [47, 48]. It is a nonlinear filter that combines geometric and range

filtering. Bilateral filtering is also used to denoise meshes [7]. It is obtained by using the scalar

feature Fϕ(v) = ϕ(v) for all v ∈ V . Using the same parameters, the filter can also be considered

as a discrete nonlocal mean filter, introduced in the context of images [49].

B. Composed weight function:

The weight function ω(u, v) associated to a weighted graph provides a measure of distance between

its vertices that can simply incorporate local, semi-local or nonlocal features according to the
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topology of the graph and the mesh. Consider the following nonlocal weight function given by

ωL(u, v) = ω(u, v) exp

(
−‖F (ϕ0, v)− F (ϕ0, u)‖2

h2

)
, ∀[u, v] ∈ E, (2.24)

In addition to the difference between values, ωL(u, v) includes a similarity estimation of the com-

pared features by measuring a L2-distance between the patches around the vertices u and v. The

functions F (ϕ0, u) and F (ϕ0, v) can represent for example the area or fractional anisotropy values

of u and v, respectively.

2.2.5 Kernel Weighted Diffusion

Kernel density estimates are output as smooth curves with the amount of smoothing governed by a

bandwidth value used during calculation [45]. Densities are calculated by placing kernels over the

distribution of data points. Kernels that overlap one another increase density values in shared areas

of the distribution. For univariate and multivariate data, the Gaussian kernel is the most commonly

used one. In particular, for 3D data, the standardized Gaussian kernel function (see Figure 2.1) is

given by

K(x) =
1

(2π)
3

2

exp

(
−‖x‖

2

2

)
, ∀x ∈ R

3. (2.25)

FIGURE 2.1: 3D level surface of the Gaussian kernel function K(x).

Motivated by kernel density estimation as an important data analytic tool that provides a very

effective way of showing structure in a set of a data [45, 50], we propose a kernel weight function
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given by

ωij = KHi
(vi − vj) , (2.26)

where

KHi
(vi − vj) = det(Hi)

−1/2K
(
H
−1/2
i (vi − vj)

)
(2.27)

and Hi is a symmetric positive semi-definite matrix. This matrix defines a covariance matrix

around the neighborhood of vertex vi, and it is given by

Hi =
∑

j∼i

(vj − ci)(vj − ci)
T , where ci =

1

di

∑

j∼i

vj. (2.28)

It is worth pointing out that Hi is also called the bandwidth matrix in the context of kernel smooth-

ing and it measures the amount of smoothing. Also, note that the choice of the kernel function

appears to have very little effect on the quality of the proposed denoising approach. However, the

selection of the bandwidth matrix is widely recognized to have more effect on the performance

of kernel density estimation. In this proposed method, we use the trivariate Gaussian density as a

kernel function, and the data-driven neighborhood covariance as a bandwidth matrix.

The neighborhood weighting kernel KHi
may be expressed in matrix form as K = (ωij), which

will be referred to as mesh neighborhood weighting kernel matrix. Each element ωij of this m×m
sparse matrix is given by the right-hand side of Eq. (2.27). Thus, the mesh neighborhood weighting

kernel matrix may be written as

K = (ωij) =





det(Hi)
−1/2(2π)−3/2 if i = j

det(Hi)
−1/2K

(
H
−1/2
i (vi − vj)

)
if i ∼ j

0 o.w.

(2.29)

Note that the value of the the first row of Eq. (2.29) results directly from Eq. (2.25) when x = 0,

that is K(0) = (2π)−3/2. Figure 2.2 displays a 3D airplane and its mesh neighborhood weighting

kernel matrix.

Next we show how kernel density estimation can be used for 3D mesh reconstruction. Given m

mesh vertices vi, let v be a 3D vector whose i-th realization is vi. Thus, the mesh kernel density

estimate (KDE) may be written in the general form

f̂(v) =
1

m

m∑

i=1

det(H)−1/2K
(
H−1/2(v − vi)

)
=

1

m

m∑

i=1

KH(v − vi), (2.30)
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(a) (b)

FIGURE 2.2: (a) 3D object with m = 3403 vertices and its (b) mesh neighbor-

hood weighting kernel matrix.

where H =
∑m

i=1(vi − c)(vi − c)T is the mesh covariance matrix which controls the smoothness

of the resulting density estimate, and c = (1/m)
∑m

i=1 vi is the mesh centroid. The mesh KDE

is a trivariate volumetric function which may be graphically visualized by plotting a level surface

(also called implicit surface or isosurface) of f̂ as shown in Figure 2.3(b). This figure displays

an isosurface of the mesh KDE using the vertices of the 3D object shown in Figure 2.3(a). The

horizontal slices of the mesh KDE are also depicted in Figure 2.3(c).

(a) (b) (c)

FIGURE 2.3: (a) 3D object; (b) Mesh KDE; (c) Horizontal slices of the mesh

KDE.
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2.3 Experimental Results

In this section, experimental results are provided to show the effectiveness of the regularized kernel

diffusion in 3D surface denoising. The standard deviation of the noise was set to 40% of the mean

edge length, that is σ = 0.4 ℓ̄. More precisely, a vertex vi of a noisy mesh is given by the additive

random noise model:

vi = ui + σ(ηi ◦ ni) (2.31)

where ηi are i.i.d. Gaussian random vectors (i.e. ηi is a 3-dimensional vector containing pseudo-

random values drawn from the standard normal distribution N(0, 1)), ni is the unit normal vector

at the noise-free vertex ui, and ◦ denotes the Hadamard product between two vectors (i.e. the

elements of the vector ηi ◦ni are obtained via element-by-element multiplication of the vectors ηi

and ni).

In practical applications, the covariance matrix Hi given by Eq. (2.28) may become singular. To

circumvent this singularity problem and also to ensure the stability of the proposed algorithm, we

use a regularized covariance matrix as follows

H̃i = Hi + κ I (2.32)

where I is a 3 × 3 identity matrix and κ is a positive fidelity parameter. The parameter κ is often

chosen such that κ > min(λ1, λ2, λ3), where λ1, λ2, and λ3 are the eigenvalues of the regularized

covariance matrix H̃i at each mesh vertex vi. The eigenvalues of H̃i can be broadly classified into

three possible cases as depicted in Figure 2.4:

• λ1 ≈ λ2 ≈ λ3: degenerate case of a sphere.

• λ1 ≈ λ2 ≫ λ3: oblate ellipsoid.

• λ1 ≫ λ2 ≈ λ3: prolate ellipsoid.

Figure 2.5 illustrates the denoising results on a 3D horse model using different values of the

fidelity parameter κ. Notice that the fidelity parameter should be tuned to be small enough to

capture the intrinsic of 3D object and large enough not to recapture noise.
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λ1 ≈ λ2 ≈ λ3 λ1 ≈ λ2 ≫ λ3

λ1 ≫ λ2 ≈ λ3

FIGURE 2.4: Different cases of diffusion: Spherical diffusion (left); planar

diffusion (center); linear diffusion (right).

2.3.1 Output Results without Fitting Term

Figure 2.6 shows that the best smoothed model is obtained by the kernel weighted diffusion with

κ = 0.45. For fair comparison, the number of iterations is set to 5 and the noise standard deviation

is set to 1.5.

2.3.2 Output Results with Fitting Term

As shown in Figure 2.7, adding the fitting term further improve the better performance of kernel

weighted diffusion with κ = 0.45 in comparison with the mean, angle median, Laplacian filter,
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(a) (b)

(c) (d)

(e) (f)

FIGURE 2.5: Output results without fitting term: (a) Original horse model; (b)

Noisy Model; (c) κ = 0.3; (d) κ = 0.4; (e) κ = 0.5; (f) κ = 0.6.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 2.6: Output results without fitting term: (a) Original Model; (b) Noisy

Model; (c) Uniform weighted diffusion; (d) Kernel weighted diffusion with

κ = 0.45; (e) Laplacian filter; (f) Mean filter; (g) Angle median filter; (h)

Bilateral filter.
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uniform weighted diffusion and bilateral filter. As in the previous experiment, the number of

iterations is also set to 5 and the noise standard deviation is set to 1.5.

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 2.7: Output results with fitting term: (a) Original Model; (b) Noisy

Model; (c) Uniform weighted diffusion; (d) Kernel weighted diffusion with

κ = 0.45; (e) Laplacian filter; (f) Mean filter; (g) Angle median filter; (h)

Bilateral filter.
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2.3.3 Quantitative evaluation

Let M = (V , T ) and M̂ = (V̂ , T̂ ) be the original model and the smoothing result model with

vertices V = {vi}mi=1 and V̂ = {v̂i}mi=1. To quantify the performance of the improved approach

in comparison with Laplacian, mean, angle median and bilateral filters methods, we computed

computed the visual error metric [51] given by

E2 =
1

2m

(
m∑

i=1

‖vi − v̂i‖2 +
m∑

i=1

‖I(vi)− I(v̂i)‖2
)
, (2.33)

where I is the geometric Laplacian operator defined as

I(vi) = vi −
1

di

∑

j∼i

vj. (2.34)

Intuitively, the visual error captures the visual difference between the original model and the de-

noised one by taking into account geometric closeness and local smoothness difference. More

specifically, the first term of this visual metric measures how close the vertices in both models

are, whereas the second term captures the object smoothness which basically represents the visual

properties of the human eye.

The values of visual error metric for some experiments are depicted in Figure 2.8 and Figure 2.9

which show that the proposed method gives the best results, indicating the consistency with the

subjective comparison.
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FIGURE 2.8: Quantitative visual errors without fitting term.
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FIGURE 2.9: Quantitative visual errors with fitting term
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Vertex-Centered Finite Volume Diffusion

3.1 Introduction

In light of the latest software, hardware and computing advancements, 3D technology has grown

beyond being a buzzword. Today, 3D technology has become an essential part of the modern

lifestyle and is gaining momentum rapidly, from consumer demand for in-home 3D television

experiences to far-reaching positive implications for healthcare through the use of advanced 3D

medical imaging systems aimed at improving patient outcomes and expanding their clinical prac-

tice. With the increasing use of 3D scanners to create 3D models, which are usually represented as

triangle meshes, there is a rising need for robust mesh denoising techniques to remove inevitable

noise in the measurements. Even with high-fidelity scanners, the acquired 3D models are usually

contaminated by noise, and therefore a reliable mesh denoising technique is often required.

In recent years, a multitude of partial differential equations (PDEs)-based techniques have been

proposed to tackle the 3D mesh denoising problem [1–5]. The most commonly used mesh denois-

ing method is the Laplacian flow, which repeatedly and simultaneously adjusts the location of each

mesh vertex to the geometric center of its neighboring vertices [1]. Although the Laplacian smooth-

ing flow is simple and fast, it produces, however, a shrinking effect and an oversmoothing result.

The most recent mesh denoising techniques include the mean, median, and bilateral filters [6–8]
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which are all adopted from the image processing literature. Also, a number of anisotropic diffu-

sion methods for triangle meshes and implicit surfaces have been proposed. Desbrun et al. [9, 38]

introduced a weighted Laplacian smoothing technique by choosing new edge weights based on cur-

vature flow operators. This mesh denoising method avoids the undesirable edge equalization from

Laplacian flow and helps preserve curvature for constant curvature areas. Re-computing new edge

weights after each iteration, however, results in a more expensive computational cost. Clarenz et

al. [39] proposed a multiscale surface smoothing method based on the anisotropic curvature evolu-

tion problem. By discretizing nonlinear partial differential equations, this method aims at detecting

and preserving sharp edges by two user-defined parameters which are a regularization parameter

for filtering out high frequency noisy and a threshold for edge detection. This multiscale method

was also extended to texture-mapped surfaces [40] in order to enhance edge-type features of the

texture maps. Different regularization parameters and edge detection threshold values need, how-

ever, to be defined by the users onto noisy surfaces and textures respectively before the smoothing

process. Bajaj et al. [41] presented a unified anisotropic diffusion for 3D mesh smoothing by treat-

ing discrete surface data as a discretized version of a 2D Riemannian manifold and establishing a

partial differential equation diffusion model for such a manifold. This method helps enhance sharp

features while filtering out noise by considering 3-ring neighbors of each vertex to achieve a non-

linear approach of the smoothing process. Tasdizen et al. [42, 43] introduced a two-step surface

smoothing method by solving a set of coupled second-order PDEs on level set surface models.

Instead of filtering the positions of points on a mesh, this method operates on the normal map of

a surface and manipulates the surface to fit the processed normals. All the surface normals are

processed by solving second-order equations using implicit surfaces. Also, Hildebrandt et al. [44]

proposed a mesh smoothing method by using a prescribed mean curvature flow for simplicial sur-

faces. This method develops an improved anisotropic diffusion algorithm by defining a discrete

shape operator and principal curvatures of simplicial surfaces.

Roughly speaking, mesh denoising techniques can be defined as the requirement to adjust vertex

positions without changing the connectivity of the 3D mesh, and may be broadly classified into

two main categories: one-step and two-step approaches. The one-step approaches directly update

vertex positions using the original vertex coordinates and a neighborhood around the current vertex,

and also sometimes the face normals. The two-step approaches, on the other hand, first adjust face
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normals and then update vertex positions using some error minimization criterion based on the

adjusted normals. In many cases, a single pass of a one-step or two-step approach does not yield a

satisfactory result, and therefore iterated operations are performed.

In this chapter, we present a 3D mesh denoising method based on the finite volume method

combined with the mesh covariance fractional anisotropy. The finite volume method consists of

associating a finite volume to each vertex of the mesh and applying the integral conservation law

to this local volume. By a finite control volume, we mean a small volume or cell surrounding each

mesh vertex. That is, the discretized space in the finite volume method is formed by a set of small

cells, one cell being associated to one mesh vertex [52].

The technique proposed in this paper falls into the category of one-step approaches. The key

idea of our mesh denoising approach is to use the dual mesh to iteratively update a mesh vertex

according to a geometric flow defined in terms of the control volume centered around the vertex and

weighted by the fractional anisotropy in order to remove the noise effectively while preserving the

nonlinear features of the 3D mesh such as curved surface regions, sharp edges, and fine geometric

details.

The rest of this chapter is organized as follows. In section 3.2, a surface denoising flow in

the finite volume framework is introduced. In Section 3.3, we provide experimental results to

demonstrate the denoising performance of our method on various 3D models.

3.2 Proposed Method

In this section we present a finite volume scheme for surface denoising.

3.2.1 Eigenanalysis of Mesh Covariance Matrix

Let v⋆
i be the neighborhood of a vertex vi, and denote by µi the centroid of v⋆

i as shown in

Figure 3.1, that is

µi =

∑

j∼i

ajvj

∑

j∼i

aj
, (3.1)

where aj =
∑

k∼j area(tttk), tttk ∈ T (vvv⋆j).
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We define the mesh covariance matrix Ci around the neighborhood of a vertex vi as follows

Ci =
∑

j∼i

(vj − µi)(vj − µi)
T (3.2)

FIGURE 3.1: Illustration of the mesh covariance matrix around the neighbor-

hood of a vertex vi.

which is a symmetric and nonnegative definite matrix.

Using eigendecomposition, the mesh covariance matrix can be diagonalized to estimate the ma-

jor, medium, and minor eigenvalues, λ1, λ2 , and λ3, respectively; that is λ1 ≥ λ2 ≥ λ3. The

corresponding directions of these nonnegative eigenvalues are the major, medium, and minor or-

thonormal eigenvectors, e1, e2, and e3, respectively. Thus, the spectral decomposition of covari-

ance matrix is given by

Ci = λ1e1e
T
1 + λ2e2e

T
2 + λ3e3e

T
3

Note that for the sake of notational simplicity, we drop the index i from the eigenvalues and eigen-

vectors of Ci.

The local frame of the tangent space is given by (eee1, eee2, eee3), where eee3 corresponds to the vertex

normal nnni, as shown in Figure 3.2, where the basis vectors of the local frame at each vertex of

a 3D face model are displayed. The tangent plane at each mesh vertex is given by the equation:

(vi−µi)·ni = 0, where ni is the vertex normal. The sum of the eigenvalues, called total variation,

is given by
∑

j∼i

‖vj − µi‖2 = λ1 + λ2 + λ3 = trace(Ci), i = 1, . . . ,m
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FIGURE 3.2: Left: 3D face model and the eigenvectors of its mesh covariance

matrix. Right: close-up view.

The eigenvalues determine the shape of the neighborhood v⋆
i of a vertex vi. That is, the local

neighborhood in which we estimate the covariance matrix Ci can be classified into three possible

cases:

• flat: one eigenvalue λ3 is very small or equal to zero, and the other two eigenvalues λ1 and

λ2 have similar finite values, but significantly greater that λ3. The vertices in v⋆
i are almost

coplanar, and the eigenvectors e1 and e2 form a plane that fits the points. The vertex vi

belongs to a flat region.

• edge: two eigenvalues λ2 and λ3 are very small or equal to zero, and λ1 has a finite greater

value. The principal eigenvector e1 identifies the direction along which the vertices in v⋆
i are

distributed. The vertex vi is close to, or on, an edge and the eigenvector e1 is the orientation

of the edge.

• corner: all three eigenvalues have finite, nearly equal values. The point set within v⋆
i is

likely to be a corner.

Figure 3.3 shows the 3D face model colored by the eigenvalues of its mesh covariance matrix,

where each vertex is assigned a true color [λ1, λ2, λ3].
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FIGURE 3.3: 3D face model colored by the eigenvalues of its mesh covariance

matrix.

3.2.2 Finite Volumes of a Dual Mesh

Finite volume methods are discretization techniques that are well suited for the numerical simu-

lation of various types of conservation laws, and have received considerable attention in various

engineering fields, particularly in computational fluid dynamics. The surge in popularity of finite

volumes is largely credited to their generality, simplicity, flexibility, and ease of implementation

for arbitrary meshes. In addition, finite volume methods are close to the physics of the flow system

due to their reliance on the direct discretization on the integral form of the conservation laws [52].

Finite volume methods can be broadly divided into two main classes: cell-centered and vertex-

centered methods, as illustrated in Figure 3.4. In the cell-centered methods, the unknowns are

associated with the control volumes, which are the mesh triangles. For example, any control

volume (triangle) corresponds to a function value at some interior point such as the centroid of

the triangle in the mesh as shown in Figure 3.5. In the vertex-centered methods, the unknowns

are located at the vertices of the control volumes, which are are the polygonal cells shown in

Figure 3.5.

Our proposed mesh denoising approach is based on the vertex-centered finite volume methods.

Thus, in order to associate to each vertex of a triangle mesh M a control volume, we may need to

construct a dual mesh, denoted by M
⋆. The dual mesh is constructed by placing a vertex (typically
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Cell-centered Vertex-centered

FIGURE 3.4: cell-centered vs. vertex-centered control volumes.

centroid) in each triangle tk of M, as shown in Figure 3.5. The centroid ck is the average of the

vertices of the triangle tk. Notice that the vertices (resp. faces) of the dual mesh correspond to

the triangles (resp. vertices) of M. In other words, for any triangle mesh M, there is a dual mesh

M
⋆, obtained by replacing each face (triangle) by a vertex and each vertex by a face, keeping the

number of edges the same. Thus, each vertex in the mesh M corresponds to a face in the dual;

similarly, each triangle in M corresponds to a vertex in the dual. The number of edges in both

is the same, resulting in the same Euler characteristic χ(M) = χ(M⋆), which is a topological

invariant that describes a topological space’s shape or structure regardless of the way it is bent. An

example of a 3D mesh and its dual mesh are shown in Figure 3.6.

3.2.3 Proposed Mesh Denoising Flow

In the sequel, we adopt the vertex-centered finite volume approach, where the unknowns are de-

fined at the vertices of the (primal) mesh, and each cell of the dual mesh is a control volume

associated to a vertex of the (primal) mesh. Referring to Figure 3.5, the control volume associated

to the mesh vertex vi consists of seven triangular cells having vertex vi in common.

Let tj ∈ T (v⋆
i ), the set of triangles of the ring v⋆

i with cardinality di (i.e. j = 1, . . . , di), and

denote by cj the centroid of each triangle tj , as illustrated in Figure 3.5. Denote by rrri = (rij : j ∼
i) a vector of length di, where rij = (vvvi − cccj) · eee3 is the scalar projection of vvvi − cccj onto the minor

eigenvector eee3 (i.e. onto the normal vector nnni). A vector projection of (vvvi − cccj) onto nnni is given by
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FIGURE 3.5: The dual mesh is shown in solid thin gray lines. Thick blue lines

show the original mesh (also referred to as primal mesh).

(a) (b)

FIGURE 3.6: (a) 3D face model; (b) dual mesh.
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((vvvi − cccj) · nnni) nnni = rij nnni, which measures the amount of (vvvi − cccj) in the direction of the minor

eigenvector nnni.

Motivated by the finite volume method which has a direct connection to the physical flow

properties [53], we propose a 3D mesh denoising flow that updates iteratively each mesh vertex

vvvi, i = 1, . . . ,m, according to the following rule

vvvi ← vvvi −

∑

j∼i

exp

(
−‖vvvi − cccj‖

2

2σ̂2
i

)
(FA)i rij nnni

∑

j∼i

exp

(
−‖vvvi − cccj‖

2

2σ̂2
i

) (3.3)

where (FA)i is the fractional anisotropy (usually denoted by FA) at each vertex vi defined by

(FA)i =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2√

2(λ21 + λ22 + λ23)
(3.4)

and the parameter σ̂i is estimated using the concept of mean absolute deviation (MAD) from robust

statistics [54] as

σ̂i = 1.4826MAD(ri)

= 1.4826median (‖ri −median(‖ri‖)‖)
(3.5)

The fractional anisotropy (FA) is a measure of the variance of the eigenvalues and it is often used

in the relatively recent magnetic resonance imaging modality called diffusion diffusion imaging

(DTI) [55]. In DTI, each voxel is assigned a tensor (3 × 3 symmetric matrix) that describes local

water diffusion. In other words, DTI measures the direction of local water diffusion in brain tissue

(water diffuses more rapidly in the direction of the brain cell fibres). The value of the statistic FA

is a scalar between zero and one that describes the degree of anisotropy of a diffusion process. A

value of zero means that diffusion is isotropic, i.e. it is unrestricted (or equally restricted) in all

directions. A value of one means that diffusion occurs only along one axis and is fully restricted

along all other directions. It is worth pointing out that FA may be viewed as a normalized standard

deviation of the eigenvalues. An essential advantage of using FA is that it can be computed without

first explicitly computing the eigenvalues. In fact, FA can be expressed in terms of the Frobenius

norm and the trace of the mesh covariance matrix as follows

(FA)i =

√
3√
2

‖Ci − 1
3
trace(Ci)I‖

trace(Ci)
(3.6)
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where I is the 3 × 3 identity matrix. By definition, the Frobenius norm of a symmetric matrix is

the square root of the sum of its squared elements which equals the square root of the sum of its

squared eigenvalues, and the trace is the sum of the diagonal elements which equals the sum of the

eigenvalues.

The eigenvectors and eigenvalues ofCi represent the principal axes of the ellipsoid and their cor-

responding principal diffusion coefficients, respectively. Therefore, the ellipsoid axes are oriented

according to the eigenvectors, and their lengths depend on the associated eigenvalues.

Figure 3.7(a)-(b) show a noisy 3D bunny model and the output result of our method. The denois-

ing results of our method colored by fractional anisotropy and mean curvature are also shown in

Figure 3.7(c)-(d). Note that a considerable amount of noise has been removed in just one iteration.

3.3 Experimental Results

This section presents experimental results where the multiscale anisotropic Laplacian flow [56],

and the proposed method are applied to noisy 3D models obtained by adding a random Gaussian

noise to the original 3D models, along the normal vector at each vertex. The multiscale anisotropic

Laplacian employs the anisotropic Laplacian operator combined with a roughness scale, and yields

significantly better results than the anisotropic Laplacian and the bilateral filter. The experiments

were performed on an iMac desktop computer with an Intel Core 2 Duo running at 2.93 GHz

and 4 GB RAM; and the proposed mesh denoising algorithm was implemented in MATLAB 7.12

(R2011b).

The standard deviation of the noise was set to 40% of the mean edge length, that is σ = 0.4 ℓ̄,

where ℓ̄ is the mean edge length. More precisely, a vertex vi of a noisy mesh is given by the

additive random noise model:

vi = ui + σ(ηi ◦ ni), (3.7)

where ηi are i.i.d. Gaussian random vectors (i.e. ηi is a 3-dimensional vector containing pseudo-

random values drawn from the standard normal distribution N(0, 1)), ni is the unit normal vector

at the noise-free vertex ui, and ◦ denotes the Hadamard product between two vectors (i.e. the

elements of the vector ηi ◦ni are obtained via element-by-element multiplication of the vectors ηi

and ni).
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(a) (b)

(c) (d)

FIGURE 3.7: (a) Noisy 3D bunny model; (b) denoised model using our method;

(c) output result of our method colored colored by fractional anisotropy; (d)

output result of our method colored by mean curvature. The number of itera-

tions is set to 1.
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3.3.1 Qualitative evaluation of the proposed method

Figure 3.8 compares the denoising results obtained via multiscale anisotropic Laplacian flow and

our method on a 3D hand model. Both the back and the front views of the hand model are depicted.

These visual comparison results show that our method outperforms the multiscale anisotropic

Laplacian approach not only in effectively removing noise but also in preserving well the fine

details of the model.

The denoising results of our method colored by fractional anisotropy and mean curvature are

also shown in Figure 3.9. This better performance is in fact consistent with a variety of 3D models

used for experimentation as shown in Figure 3.10 and Figure 3.11.

Figure 3.12 depicts the output results of our algorithm compared to the multiscale anisotropic

Laplacian flow on an enlarged view of a noisy 3D bunny model’s head shown in Figure 3.12(a).

Note that the geometric structures and the fine details around the eyes, nose, and ears of the de-

noised bunny model are very well preserved. The output result of our method colored by mean

curvature is displayed in Figure 3.13.

3.3.2 Quantitative evaluation of the proposed method

Let M = (V , T ) and M̂ = (V̂ , T̂ ) be the original model and the denoised model with vertices V =

{vi}mi=1 and V̂ = {v̂i}mi=1, and triangles T = {ti}ni=1 and T̂ = {t̂i}ni=1, respectively. To quantify

the performance of the proposed approach, we computed the L2 face-normal error metric [6] given

by

E(M, M̂) =
1

A(M̂)

∑

ˆti∈T̂

A(t̂i)‖n(ti)− n(t̂i)‖, (3.8)

where n(ti) and n(t̂i) are the unit normals of ti and t̂i respectively, and A(t̂i) is the area of t̂i.

The values of L2 face-normal error are displayed in Figure 3.14 through Figure 3.16 for three

models (hand, horse, and fan disk) used for experimentation. These plots show the error results

between the original and the denoised models using our method at iteration numbers 1, 5, 10, 15,

and 20. It should be noted that the error values remain almost unchanged at higher iteration num-

bers, indicating that 1 iteration suffices to denoise 3D models using our method. This observational

evidence is also strongly supported by the visual denoising results shown in Figure 3.17, where 1

iteration appears to yield satisfactory output results.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3.8: Comparison of denoising results on a 3D hand model. (a)-(b)

Noisy model (back and front views); (c)-(d) multiscale anisotropic Laplacian;

(e)-(f) our method. The number of iterations is set to 1.
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(a) (b)

(c) (d)

FIGURE 3.9: Output results of our method colored by: (a)-(b) fractional

anisotropy; (c)-(d) mean curvature. The number of iterations is set to 1.
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(a) (b)

(c) (d)

FIGURE 3.10: Comparison of denoising results on a 3D horse model. (a) Noisy

model; (b) multiscale anisotropic Laplacian; (c) our method; (d) output result

of our method colored by mean curvature. The number of iterations is set to 1.
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(a) (b)

(c) (d)

FIGURE 3.11: Comparison of denoising results on a 3D foot bone model. (a)

Noisy model; (b) multiscale anisotropic Laplacian; (c) our method; (d) output

result of our method colored by mean curvature. The number of iterations is

set to 1.
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FIGURE 3.12: Comparison of denoising results on a 3D bunny model (enlarged

view). Noisy model (top); (b) multiscale anisotropic Laplacian (middle); (c)

our method (bottom). The number of iterations is set to 1.
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FIGURE 3.13: Output result of our method colored by mean curvature. The

number of iterations is set to 1.
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FIGURE 3.14: Plots of L2 face-normal error vs. iteration number for the hand

model.
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FIGURE 3.15: Plots of L2 face-normal error vs. iteration number for the horse

model.
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FIGURE 3.16: Plots of L2 face-normal error vs. iteration number for the fan

disk model.
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FIGURE 3.17: Top row (from left to right): Noisy rabbit model and output

results using our method with iteration numbers 1, 5, 10, and 15. Bottom row:

mean curvature visualization of the models shown in top row.
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Spectral Geometric Shape Retrieval

4.1 Introduction

The importance of 3D shape recognition is irrupting due to the difficulty in processing information

expeditiously without its recognition. With the increasing use of 3D scanners and as a result of

emerging multimedia computing technologies, vast databases of 3D models are distributed freely

or commercially on the World Wide Web. The availability and widespread usage of such large

databases, coupled with the need to explore 3D models in depth as well as in breadth, has sparked

the need to organize and search these vast data collections, retrieve the most relevant selections,

and permit them to be effectively reused. 3D objects consist of geometric and topological infor-

mation, and their compact representation is an important step towards a variety of computer vision

applications, particularly matching and retrieval in a database of 3D models. The first step in 3D

object matching usually involves finding a reliable shape descriptor or skeletal graph, which will

encode efficiently the 3D shape information. Skeletonization aims at reducing the dimensionality

of a 3D shape while preserving its topology [57, 58]. Unlike text documents, 3D models are not

easily retrieved due largely to the variability of their shapes. Attempting to retrieve a 3D model

using textual annotation and a conventional text-based search engine would not work properly in

many cases [59]. The annotations added by users depend on various factors, including language,
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culture, age, and gender. In contrast, content-based 3D shape retrieval methods, which typically

use the shape properties of the query shape to search for similar models, perform better than text-

based approaches [59].

In this chapter, we describe a spectral skeletonization approach that aims at representing 3D

objects with topological coding, which we refer to as Spectral Reeb Graph (SRG). Topology

represents the connectedness of a shape and enables parts of shapes, which are connected, to be

mapped and drawn equivalently. One of the key mathematical tools used to study the topology

of spaces is Morse theory, which is the study of the relationship between functions on a space

and the shape of the space. Morse theory studies the properties of a Morse function which has

only nondegenerate singular points [57,60], and it describes the topology changes of the level sets

of this function at those singularities. Regular or noncritical points do not affect the number or

genus of the components of the level sets. It can be shown that Morse functions are dense and

stable in the set of all smooth functions, that is the structure of nondegenerate singularities does

not change under small perturbations [57,60]. A Morse theoretic representation that captures topo-

logical properties of objects is the so-called Reeb graph proposed in [17], which is based on the

Morse height function. The vertices of the Reeb graph are the singular points of a Morse function

defined on the surface of a 3D object [17,57]. The height function-based approach may lead to the

extraction of an unbounded number of critical points, except in the case of triangle meshes where

the number of critical points is bounded by the number of mesh vertices. This limitation has been

addressed in [61] by introducing a fair Morse function that produces the least possible number of

critical points. Since the level sets of the height function are horizontal planes perpendicular to the

height axis, the main weakness of such Reeb graphs is that they are not invariant to rotation. Hilaga

et al. [19] used the geodesic distance from point to point on a surface to overcome the problem

of automatic extraction of the source point. The geodesic integral is, however, computed using a

selected (typically small) random subset of points on the surface, which may lead to inaccuracies

in terms of effectively capturing the topological structure of the surface. Moreover, another disad-

vantage of using the geodesic distance is its sensitivity to topological changes. That is, modifying

the shape connectivity may significantly alter the shortest paths between feature points, resulting in

significant changes of the geodesic distance. Tierny et al. [62] presented a structural oriented Reeb

graph based method for partial 3D shape retrieval. Partial similarity between two shapes is then
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evaluated by computing a variant of their maximum common sub-graph. Aouada et al. [63] pro-

posed a topological Reeb graph using an intrinsic global geodesic function defined on the surface

of a 3D object. This approach decomposes a shape into primitives, and then detailed geometric

information is added by tracking the evolution of Morse’s function level curves along each primi-

tive. A detailed overview of the mathematical properties of Reeb graphs and their applications to

shape analysis is presented in [64]. Pascucci et al. [65] introduced a robust method for fast Reeb

graph computation that is able to handle non-manifold meshes. Also, Patane et al. [66] proposed

an efficient Reeb graph computation algorithm by studying the evolution of the level sets only at

the saddle points of a Morse function.

More recently, there has been a surge of interest in the spectral analysis of the Laplace-Beltrami

(LB) operator, resulting in a slew of applications to manifold learning [67], object recognition

and shape analysis [68–71]. It is worth pointing out that spherical harmonics [26] are nothing but

the LB eigenfunctions on the sphere. Reuter [69] introduced a Morse-theoretic method for shape

segmentation and registration using the topological features of the LB eigenfunctions. These eigen-

functions are computed via a cubic finite element method on triangular meshes, and are arranged

in increasing order of their associated eigenvalues. Rustamov [70] proposed a feature descrip-

tor referred to as the global point signature (GPS), which is a vector whose components are scaled

eigenfunctions of the LB operator evaluated at each surface point. GPS is invariant under isometric

deformations of the shape, but it suffers from the problem of eigenfunctions switching whenever

the associated eigenvalues are close to each other. Bronstein et al. [71] proposed a non-rigid shape

retrieval approach using bags of features based on the heat kernel signature (HKS) [72]. HKS

is a temporal shape descriptor, which is defined as an exponentially-weighted combination of the

eigenfunctions of the LB operator on a manifold. HKS is a local shape descriptor that has a number

of desirable properties, including robustness to small perturbations of the shape, efficiency, and in-

variance to isometric transformations. However, HKS depends on the time parameter, which needs

to be set a priori. Also, the discrete heat kernel requires finding a few hundred eigenvalues and

eigenfunctions of a typically large LB matrix, which is often a computationally expensive process.

In addition, the choice of the vocabulary size, the time parameter, and the number of eigenval-

ues/eigenfunctions can have an impact on the performance of the HKS-based retrieval algorithm.

The idea of HKS was independently proposed by Gȩbal et al. [73] for 3D shape skeletonization
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and segmentation under the name of auto diffusion function (ADF). As the name suggests, ADF

describes the diffusion from a surface point to itself. Shi et al. [74] used the level curves of the

second eigenfunction of the LB operator to construct the spectral skeleton of 3D neuroanatomical

structures. In addition to having a nice geometric property of following the pattern of the overall

shape of a 3D object, the second eigenfunction of the LB operator can capture the intrinsic struc-

ture of elongated shapes (e.g. hippocampus) and it is also invariant to isometric transformations.

Moreover, the spectral skeleton is invariant to the pose of the shape [74].

Motivated by the aforementioned invariance properties of the second eigenfunction of the LB

operator, we propose to use the spectral Reeb graph framework to construct the shape skeleton of

a 3D object. The key idea is to identify and encode regions of topological interest of a 3D object in

the Morse-theoretic framework. That is, the level sets (isocontours) of the second eigenfunction are

computed (identified), then each level set is encoded as a skeleton node representing the centroid

of the isocontour.

The rest of this chapter is organized as follows. In Section 4.2, we start with a review on the

LB operator and Morse-theoretic Reeb graph for topological modeling of 3D shapes. This is

followed by a brief spectral geometric analysis of the LB operator. We also explore the connection

between Morse theory and the spectrum of the LB operator. Then, we delineate algorithmic steps

for computing the spectral Reeb graph of a 3D object based on the second eigenfunction of the

LB operator. Section 4.3 introduces the path dissimilarity skeleton graph matching method by

comparing the relative shortest paths between the skeleton endpoints. In Section 4.4, we present

experimental results for topological coding using the spectral Reeb graph and we demonstrate the

feasibility of this skeletal graph as a shape descriptor for 3D object matching and retrieval.

4.2 Spectral Reeb Graph Framework

4.2.1 Laplace-Beltrami Operator

Let M be a smooth orientable 2-manifold (surface) embedded in R
3. A global parametric repre-

sentation (embedding) of M is a smooth vector-valued map x defined from a connected open set

(parametrization domain) U ⊂ R
2 to M ⊂ R

3 such that x(u) = (x1(u), x2(u), x3(u)), where

u = (u1, u2) ∈ U , as illustrated in Figure 4.1. Note that the components of x and u are denoted
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by superscripts in place of subscripts. This superscript convention stems from the use of tensor

notation which greatly simplifies the formalism of the theory of surfaces [75, 76].

FIGURE 4.1: Parametric representation of a surface.

Given a twice-differentiable function f : M→ R, the Laplace-Beltrami (LB) operator is defined

as

∆Mf = − 1√
det g

2∑

i,j=1

∂

∂uj

(√
det g gij

∂f

∂ui

)
, (4.1)

where the matrix g = (gij) is the Riemannian metric tensor on M, and gij denote the elements

of the inverse of g. The metric tensor g is an intrinsic quantity in the sense that it relates to

measurements inside the surface [76, 77].

The LB operator is a second-order partial differential operator acting on the space of real-valued

functions on a manifold. Let L2(M) be the space of square integrable functions on the manifold

M. The space L2(M) is endowed with inner product

〈f1, f2〉 =
∫

M

f1(x)f2(x) da. (4.2)

where da is the area element of the surface M.

4.2.2 Morse theory for Topological Modeling

Morse theory explains the presence and the stability of singular points in terms of the topology

of the underlying smooth manifold. The basic principle is that the topology of a manifold is very

closely related to the singular points of a smooth function defined on that manifold [60]. A smooth
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function f : M → R on a smooth manifold M is called a Morse function if all its singular points

are nondegenerate, i.e. the Hessian matrix is nonsingular at every singular point. A point x is

called a regular point of f if the differential df : TxM → R is surjective, that is, the Jacobian

matrix (3 × 1 in the case of a 2-manifold) has rank equal to dim(R) = 1. Otherwise, the point

x is called a critical point. Nondegenerate singularities are isolated, that is, there cannot be a

sequence of nondegenerate singularities converging to a nondegenerate singularity x ∈ M. A

level set f−1(a) of f at a value a ∈ R may be composed of one or many connected components.

The Morse deformation lemma states that if no critical points exist between two level sets of f ,

then the two level sets are topologically equivalent and can be deformed onto one another [57]. In

particular, they consist of the same number of connected components. Furthermore, Morse theory

implies that topological changes on the level sets occur only at critical points. This property can be

illustrated by considering the sub-surface Ma consisting of all points at which f takes values less

than or equal to a real number a

Ma = {x ∈M : f(x) ≤ a}. (4.3)

Denote by La the set of points where the value of f is exactly a, that is La = f−1(a). Note that

when a is a regular value, the set La is a smooth curve of M and it is the boundary of Ma as

illustrated in Figure 4.2.

(a) (b) (c)

FIGURE 4.2: Illustration of: (a) Level curve La, (b) Subsurface Ma, (c) Sub-

surface and Level curve.

Figure 4.3 shows the evolution of the subsurface Ma as a changes, when f is a height function.

If a < minx∈M{f(x)}, then Ma = ∅. And as we increase the parameter a, the subsurface Ma

changes until it covers the entire surface M.
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FIGURE 4.3: Evolution of Ma as a changes.

An interesting concept related to Morse theory and very useful to analyze a surface topology

is the Reeb graph. The latter is defined as a quotient space M/∽ with the equivalence relation

given by x ∽ y if and only if f(x) = f(y) and x,y belong to the same connected component of

f−1(f(x)). An equivalence class is defined as [x] = {y ∈ M : x ∽ y}. Intuitively, M/∽ is a

space created by taking the space M and gluing x to any y that satisfies y ∽ x. The classes [x] are

the connected components for the Reeb graph, and being in the same component is an equivalence

relation:

y ∽ x⇐⇒ f(y) = f(x) and x,y ∈ C, (4.4)

where C denotes the connected component of f−1(f(x)).

4.2.3 Spectral Geometric Analysis of the Laplace-Beltrami Operator

Spectral geometry is concerned with the eigenvalue spectrum of the LB operator on a compact

Riemannian manifold, and aims at describing the relationships between such a spectrum and the

geometric structure of the manifold. Spectral geometric problems can be broadly divided into

two main categories: direct problems and inverse problems. A direct problem attempts to infer

information about the eigenvalues and eigenfunctions of the LB operator from knowledge of the

geometry of the manifold. In the inverse problem, however, the goal is to investigate what geo-

metric and topological information of the manifold can be recovered from the spectrum of the LB

operator. The inverse spectral problem has been translated over the years into the conversational

question “Can one hear the shape of a manifold?” by several mathematicians, most notably by

Kac [78] because of its analogy with the wave equation, which models the transverse vibrations

of ideal stretched objects. The answer to this question is demonstrably untrue: one cannot hear
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the shape of a manifold. In other words, the spectrum cannot completely determine the geometry

and topology of a manifold as there exist non-isometric manifolds with the same spectrum [79].

However, some geometric and topological information about the manifold can be inferred, such as

the dimension, volume, curvature and the Euler characteristic.

Eq. (4.1) shows that the LB operator is determined by the Riemannian metric, indicating that the

spectral theory of the LB operator is intimately connected with the geometry of the Riemannian

manifold (M, g). An eigenfunction f of the LB operator satisfies ∆Mf = λf , where λ is the

associated eigenvalue. Moreover, the eigenfunctions of the LB operator are the critical points

(vectors) of the Rayleigh-Ritz quotient, which is an energy functional defined as

R(f) =

∫

M

‖∇Mf‖2da
∫

M

‖f‖2da
(4.5)

and the eigenvalues are the values of the functional R at such critical points. Obviously, the

infimum value λ1 = 0 of R(f) is achieved for a constant function f = ϕ1. Since ∆M is a

Hermitian operator, the set of eigenvalues (spectrum) {λi, i = 1, 2, . . . ,∞} of ∆M is an infinite

discrete subset of R+. Assuming M is compact, these eigenvalues may be written in increasing

order as 0 = λ1 < λ2 ≤ λ3 ≤ . . . , with associated eigenfunctions {ϕi, i = 1, . . . ,∞}, such that

ϕ1 = 1/
√

area(M) = const. Moreover, the eigenfunctions of the LB operator form an orthogonal

basis for the the space L2(M). That is, 〈ϕi, ϕj〉 for i 6= j.

The second eigenvalue of the LB operator is given by

λ2 = inf
f⊥ϕ1

R(f) (4.6)

and ϕ2 is its associated eigenfunction. Note that since ϕ1 is a constant function, f ⊥ ϕ1 implies

〈f, ϕ1〉 = 0, which yields
∫
M
fda = 0.

The eigenvalues and eigenfunctions have a nice physical interpretation: the square roots of

the eigenvalues
√
λi are the eigenfrequencies of the membrane, and ϕi(x) are the corresponding

amplitudes at x. In particular, the second eigenvalue corresponds to the sound we hear the best [80].
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4.2.4 Discrete Laplace-Beltrami Operator

Using a mixed finite element/finite volume method on triangle meshes [?], the value of ∆Mf at a

vertex vi can be approximated using the cotangent weight scheme as follows

∆Mf(vi) ≈
1

ai

∑

j∼i

cotαij + cot βij
2

(
f(vj)− f(vi)

)
, (4.7)

where αij and βij are the angles ∠(vivk1vj) and ∠(vivk2vj) of two faces tα = {vi,vj,vk1}
and tβ = {vi,vj,vk2} that are adjacent to the edge [i, j], and ai is the area of the voronoi cell

(shaded polygon), as shown in Figure 4.4. It should be noted that the cotangent weight scheme is

numerically consistent and preserves several important properties of the continuous LB operator,

including symmetry and positive-definiteness [81].

FIGURE 4.4: Cotangent weight scheme: illustration of the angles αij and βij .

Define the weight function ω : V × V → R as

ωij =





cotαij + cot βij
2ai

if i ∼ j

0 o.w.

(4.8)

Then, for a function f : V → R that assigns to each vertex vi ∈ V a real value f(vi) (we can

view f as a column vector of length m), we may write the LB operator given by Eq. (4.7) as

Lf(vi) =
∑

j∼i

ωij

(
f(vi)− f(vj)

)
, (4.9)
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where the matrix L is given by

L =





dj if i = j

−ωij if i ∼ j

0 o.w.

(4.10)

and dj =
∑m

i=1 ωij is the weighted degree of the vertex vi. Note that ωij 6= ωji implies L is not a

symmetric matrix. Thus, the spectrum (set of eigenvalues) of the eigenvalue problem Lϕi = λiϕi

may not be real [70]. Noting that ωij = cij/ai, where

cij =





cotαij + cot βij
2

if i ∼ j

0 o.w.

(4.11)

we may factorize the matrix L as L = R−1C, where R = diag(ai) is a positive-definite diagonal

matrix and C is a sparse symmetric matrix given by

C =





∑m
i=1 cij if i = j

−cij if i ∼ j

0 o.w.

(4.12)

Therefore, we may write the eigenvalue problem Lϕi = λiϕi as a generalized eigenvalue problem

Cϕi = λiRϕi, which can be solved efficiently using the Arnoldi method of ARPACK. Figure 4.5

shows a 3D elephant model and the sparsity pattern of the cotangent matrix C. Recall that the

sparsity pattern (or support) of a matrix A = (aij) is the set of indices ij with aij 6= 0.

4.2.5 Spectral Skeleton

The eigenvalues λi and associated eigenfunctions ϕi of the LB operator can be computed by solv-

ing the following generalized eigenvalue problem:

Cϕi = λiRϕi, i = 1, 2, . . . ,m (4.13)

where ϕi is the unknown eigenfunction evaluated at m mesh vertices. That is, ϕi is an m-

dimensional vector.

We may sort the eigenvalues in ascending order as 0 = λ1 < λ2 ≤ · · · ≤ λm with associated

eigenfunctions as ϕ1,ϕ2, . . . ,ϕm, where each eigenfunction ϕi = (ϕi(v1), . . . , ϕi(vm))
′ is an

m-dimensional vector. Moreover, these eigenfunctions are orthogonal 〈ϕi,ϕj〉R = 0, ∀i 6= j,
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FIGURE 4.5: 3D elephant model and sparsity pattern plot of the associated

cotangent matrix C.

where the orthogonality is defined in terms of the R-inner product. That is, 〈ϕi,ϕj〉R = ϕ′iRϕj .

Additionally, any function f : V → R (viewed as a column-vector of length m) on the triangle

mesh M can be written in terms of the eigenfunctions as follows

f =
m∑

i=1

αiϕi, where αi = 〈f,ϕi〉. (4.14)

Note that since the sum of each row in the matrix C equals zero, the first eigenvalue λ1 is

zero and the corresponding eigenfunction ϕ1 is a constant m-dimensional vector. The top row of

Figure 4.6 shows a 3D horse model colored by the second, third and fourth eigenfunctions, while

the bottom row displays the isocontours of these eigenfunctions.

We can use the variational characterizations of the eigenvalues in terms of the Rayleigh-Ritz

quotient. That is, the second eigenvalue is given by

λ2 = inf
f⊥ϕ1

f ′Cf

f ′Rf
= inf

f⊥ϕ1

∑
i∼j cij(f(vi)− f(vj))

2

∑
i f(vi)2ai

(4.15)

and ϕ2 = (ϕ2(v1), . . . , ϕ2(vm))
′ is its corresponding eigenvector.

The eigenfunction ϕ2 is displayed in Figure 4.7(a)-(b), where each vertex vi is colored by

ϕ2(vi). The level curves of ϕ2 are shown in Figure 4.7(c)-(d).
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.6: (a)-(c) 3D horse model colored by ϕ2,ϕ3,ϕ4. (d)-(f) level sets

of ϕ2,ϕ3,ϕ4.

In Figure 4.8(a) we can observe that the isocontours are consistent with global large deformation

(first column), local small bend (second column), and among the shapes from different classes,

but share similar topological structure (third column). The correspondence of isocontours on the

shapes from the same class are displayed in Figure 4.8(b), which shows models that include various

topological structures. Finally, the consistency of isocontours on the shapes from the different class

are displayed in Figure 4.8(c). Although the shapes are explicitly different, their isocontours can

capture their intrinsic correspondence well.

On the other hand, Uhlenbeck [82] showed that the eigenfunctions of the LB operator are Morse

functions on the interior of the domain of the operator. Consequently, this generic property of the

eigenfunctions gives rise to constructing their associated Reeb graphs.

Analogous to Fourier harmonics for functions on a circle, the LB eigenfunctions associated to

lower eigenvalues correspond to low frequency modes, whereas those associated to higher eigen-
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(a) (b)

(c) (d)

FIGURE 4.7: (a)-(b) 3D hand model colored by ϕ2 (front and back views).

(c)-(d) Level sets of ϕ2 (front and back views).

values correspond to high frequency modes that describe the details on the mesh. As shown in

Figure 4.6, Figure 4.7, and Figure 4.9(a), the second eigenfunction of the LB operator captures

well the overall shape of 3D objects. Motivated by the isometric invariance property of the second

eigenfunction of the LB operator and also by its generic property as a Morse function as well as

by the fact that intuitively the second eigenvalue corresponds to the sound we hear the best, we

propose to use the spectral Reeb graph to construct the shape skeleton of a 3D object as follows:

First, the level sets (isocontours) of the second eigenfunction are computed (identified), as depicted

in Figure 4.9(b); then each level set is encoded as a skeleton node representing the centroid of the

isocurve, as shown in Figure 4.9(c). The main algorithmic steps for computing the spectral Reeb

graph are described in detail in Algorithm 1.
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(a)

(b)

(c)

FIGURE 4.8: (a) Isocontours are invariant under both global and local deforma-

tion. (b) Proportionality correspondence of pairwise nonrigid shapes with var-

ied topological structure. (c) Isocontours are consistent among different classes

of shapes.
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(a) (b)

(c)

FIGURE 4.9: (a) 3D horse model colored by ϕ2; (b) level sets of ϕ2; (c)

spectral Reeb graph.

4.3 Spectral Reeb Graph Matching

In this section, we outline a path similarity skeleton graph matching approach by comparing the

relative shortest paths between the spectral skeleton endpoints [83]. The proposed skeleton graph

matching is based on the dissimilarity of the shortest paths between the endpoints of the skeletal

Reeb graph. A skeleton endpoint refers to the skeleton node that is connected by only one edge

as shown in Figure 4.10. It is important to point out that endpoints are the salient points of the

skeleton and can be seen as visual parts of the original 3D shape [83]. In the same vein as [84],

considering only the shortest skeletal paths between endpoints would help avoid the instability

problem of the skeleton junction points (i.e. points having three or more adjacent points) and also
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Algorithm 1 Proposed skeletonization approach

1: Compute the second eigenfunction ϕ2 of the LB operator by solving the sparse generalized

eigenvalue problem Cϕi = λiRϕi.

2: Compute N level sets Lk (k = 1, . . . , N ) of ϕ2

3: for each level set Lk (k = 1 to N )

4: VerticesSetp[0,1] = setIntersect(M,1); ⇐ Find vertices (subset of the 3D mesh M) of level

set Lk

5: NodeSetp = centroid(VerticesSetp[0,1](n));⇐ Assign a node to each connected component

at its centroid.

6: for k = 2 to N do

7: VerticesSetc[k − 1, k] = setIntersect(M, k − 1, k);⇐ Find intersection of M from region

Lk−1 to Lk

8: for each component VerticesSetc [k − 1, k](n) do

9: NodeSetc = centroid(VerticesSetc [k − 1, k](n))
10: for each connected portion do

11: Connect NodeSetc and NodeSetp

12: end for

13: end for

14: NodeSetp = NodeSetc

15: VerticesSetp = VerticesSetc

16: end for

to make our proposed method more robust to shape deformation. The shortest path between each

endpoint and all other endpoints of the skeleton provides an important endpoint feature that will

be incorporated into our matching dissimilarity measure.

Our proposed skeleton graph matching approach is based on the assumption that similar skele-

tons have a similar structure of their endpoints. It is common that the skeletons of similar 3D

shapes may have different structures of junction nodes. One of the major advantages of the pro-

posed method is that it does not require that the graphs be converted to trees prior to finding the

correspondence, as this conversion may result in the loss of important structural information and,

consequently, negatively influence the 3D object recognition result.

In contrast to existing methods for skeleton matching, our proposed approach focuses on the

dissimilarity between the shortest paths connecting the skeleton endpoints. We use the shortest

paths between endpoints to establish a correspondence relation of the endpoints in different skeletal

Reeb graphs. It is worth noting that the idea of using the shortest paths in skeletal graph matching

and classification has been previously explored in the literature. For example, Demirci et al. [85]

proposed transforming the graphs into points in a low-dimensional geometric space using low-
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FIGURE 4.10: Spectral Reeb graph of 3D Octopus model and its skeleton end-

points displayed in blue color.

distortion graph embedding techniques. Each point in the embedding space corresponds to a node

in the original graphs. The distance in the embedding space reflects the shortest-path distance

in the original graphs in order to keep topological relations. Ling et al. [86] proposed using the

inner-distance to build shape descriptors that are robust to articulation and capture part structure.

The inner-distance is defined as the length of the shortest path between landmark points within the

shape silhouette.

After generating the 3D shape skeleton, our next step is to develop a robust approach for skeletal

graph matching. To this end, we match any two Reeb graphs by establishing a correspondence of

their endpoints. Then, we apply a pruning algorithm [87] to remove non-salient nodes from the

skeleton graph. The proposed matching method consists of two main steps. The first step, which

we refer to as indexing, reduces the number of skeletons to be compared with. In the second step,

we match the Reeb graphs by applying a dissimilarity measure to retrieve the closest 3D model.

These two steps are explained in more details in the following subsections.
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4.3.1 Indexing

A linear search through a database of 3D models is inefficient for large databases, as it requires

comparing the query object to each model in the database and selecting the closest one [20]. There-

fore, the goal is to apply an efficient indexing mechanism to narrow the search scope in a small set

of objects that are most probably similar to the query object. Using our skeletonization algorithm,

we may formulate the indexing problem as finding skeletons of which the topological structures

are similar to the query skeleton. It is important to note that similar shapes will have the same

skeleton even if they are subject to some deformation or transformation. Moreover, these skeletons

will have the same number of endpoints.

Thus, in our indexing mechanism we use the number of skeleton endpoints as the base for

indexing, with an error rate of 2 or 3 nodes, meaning that for two skeletons to be in the same index

group they should have the same number of endpoints. However, due to noise there might be a

difference of 1 or 2 nodes at most, as a result of the pruning process.

4.3.2 Endpoint correspondence

After applying the indexing mechanism, the next step is to match the skeletons. Our proposed

matching method considers both topological and geometrical features of the matched 3D models.

We assign to each endpoint in the Reeb graph (query or model) some features that may help

identify the closet endpoint in the other skeletal graph. Thus, our skeleton graph matching problem

may be reduced to finding the best correspondence between the endpoints in the query and the

endpoints in the model. This can be achieved by minimum weight matching of the two sets of

endpoints. A dissimilarity measure between the set of endpoints in both query and model skeletons

is used. Therefore, the matching problem aims at finding the best correspondence between the

query skeleton endpoints and the database skeletons endpoints. Two endpoints are said to be in

close correspondence if the dissimilarity measure between their endpoints has a smaller value.

In other words, the matching problem is now reduced to finding the maximum correspondence,

minimum weight matching of the two sets of endpoints. The endpoint correspondence process is

shown in Algorithm 2.
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(a)

(b)

FIGURE 4.11: (a) Horse’s spectral Reeb graph. (b) Shortest paths between

pairs of endpoints on the skeleton.
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FIGURE 4.12: Shortest paths between the mesh centroid and an endpoint on

the skeleton.
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Algorithm 2 Endpoint correspondence

Let E = (vi)i=1,..,n1
and Ẽ = (ṽj)j=1,..,n2

be two sets of endpoints.

For each endpoint vi ∈ E:

1: Compute a dissimilarity measure between vi and all the nodes in Ẽ
2: Find the node ṽj with the minimum dissimilarity and assign its correspondence to vi

3: Delete vi and ṽj from the list of nodes in E and Ẽ, respectively

Repeat steps 1-3 for all nodes in E until one of the node sets E or Ẽ is empty

4.3.3 Matching endpoints using skeleton paths

Endpoint Features: When generating the skeletal Reeb graph of a 3D shape we assign three

features to each endpoint of the skeleton. The first feature is the relative node area, which is equal

to the area of the neighboring triangles of the endpoint divided by the total area of the 3D model.

This feature provides important information about the endpoint as sometimes the skeletons of two

models may look similar, albeit their shapes are completely different. Thus, adding this feature

to an endpoint will help discriminate between endpoints based on the original 3D shape and not

just its skeleton. The reason behind using the relative area is its invariance to scaling. The second

feature assigned to an endpoint is the relative node path, which is equal to the sum of shortest path

distances from each endpoint to all other endpoints of the skeleton (see Figure 4.11(b)) divided by

the sum of the shorted paths from the mesh centroid (root node) to each endpoint. And the third

feature is the relative centroid path, which is the shortest path distance from the mesh centroid to

each endpoint (see Figure 4.12), divided by the sum of the shortest paths from the mesh centroid

to all endpoints.

Endpoints Dissimilarity: Let G and G̃ the spectral Reeb graphs of two 3D shapes M and M̃,

respectively. The skeleton endpoints sets of G and G̃ are denoted by E = {vi}i=1,..,n1
and Ẽ =

{ṽj}j=1,..,n2
, respectively. We define the local dissimilarity measure between two endpoints vi and

ṽj as the Euclidean distance

Φ(vi, ṽj) = ‖ωi − ω̃j‖, (4.16)

between the 3D vectors ωi = (ai, dvi, dci)
T and ω̃j = (ṽj, dṽj, dc̃j)

T , whose components are

defined by:

• ai and ãj are the relative node areas of vi and ṽj
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• dvi =
∑n1

k=1 δ(vi,vk)/
∑n1

k=1 δ(c,vk) and dṽj =
∑n2

k=1 δ(ṽj, ṽk)/
∑n2

k=1 δ(c̃, ṽk) are the

relative node paths of vi and ṽj

• dci = δ(c,vi)/
∑n1

k=1 δ(c,vk) and dc̃j = δ(c̃, ṽj)/
∑n2

k=1 δ(c̃, ṽk) are the relative centroid

paths of vi and ṽj

• c and c̃ are the centroids of M and M̃, respectively

• δ(·, ·) is the Dijkstra’s shortest path distance.

Therefore, the geometric dissimilarity between two spectral Reeb graphs is given by the distance:

D(G, G̃) =
n1∑

i=1

n2∑

j=1

Φ(vi, ṽj) =

n1∑

i=1

n2∑

j=1

‖ωi − ω̃j‖. (4.17)

The main algorithmic steps of the proposed graph matching approach are described in more

details in Algorithm 3.

Algorithm 3 Proposed graph matching approach

Given two 3D objects M and M̃

1: Generate the skeletal Reeb graphs G and G̃ of M and M̃, respectively

2: Apply graph pruning to remove non-salient nodes

3: Find the skeleton endpoints sets E = (vi)i=1,..,n1
and Ẽ = (ṽj)j=1,..,n2

of G and G̃, respec-

tively

4: for all endpoints (vi) and (ṽj) do

5: Compute the relative node areas ai and ãj of vi and ṽj , respectively

6: Compute the relative node paths dvi and dṽj

7: Compute the relative centroid paths dci and dc̃j
8: end for

9: Apply Algorithm 2 to find the correspondence between G and G̃
10: Compute the dissimilarity D(G, G̃) given by Eq. (4.17).

4.4 Experimental Results

In this section we present the results of the proposed framework. We implemented our algorithms

using C++, OpenGL, and MATLAB. The experiments were performed on an iMac desktop com-

puter with an Intel Core i5-2400S running at 2.50 GHz and 8 GB RAM.
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An important property of any shape descriptor is the ability to match similar shapes even in

the presence of noise. To that end, we start by demonstrating the robustness of the proposed

skeletonization algorithm to noise. Figure 4.13 depicts the extracted spectral Reeb graphs of a

noise-free model and its noisy version using the proposed algorithm. It is evident that the spectral

skeletonization algorithm shows a good preservation of the mesh topological structure. Note that

the difference between the skeletons of the original model and the noisy model is minor and not

readily noticable.

(a) Noise-free model (b) Noisy model

FIGURE 4.13: Robustness of spectral Reeb graph to noise.

We tested the performance of the proposed matching algorithm using the McGill Shape Bench-

mark [20]. This publicly available database provides a 3D shape repository, which contains 255

objects that are divided into ten categories, namely, ‘Ants’, ‘Crabs’, ‘Spectacles’, ‘Hands’, ‘Hu-

mans’, ‘Octopuses’, ‘Pliers’, ‘Snakes’, ‘Spiders’, and ‘Teddy Bears’. Sample models from this

database are shown in Figure 4.14.

The McGill’s database objects are represented by voxel grids as well as by triangle meshes.

Table 4.1 shows that the proposed approach yields correct matching results, where a low value

(displayed in boldface with a colored box around it for emphasis) of the dissimilarity measure

indicates that the objects are more similar.
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FIGURE 4.14: Sample shapes from McGill’s Articulated Shape Database.

Only two shapes for each of the 10 classes are shown.

We also compared our approach with spherical harmonics (SH) [26], medial surfaces (MS) [20],

and Reeb graph patch dissimilarity (RGPD) [83]. The results show that our method achieves better

retrieval results than the spherical harmonics as shown in Table 4.2, where the top ten retrieved 3D

objects are displayed (top-to-bottom). As can be seen in Table 4.2, the proposed approach returns

correct results whereas the spherical harmonics method yields poor retrieval results (columns 2, 4,

and 6). Also, the proposed algorithm performs slightly better than the RGPD approach.

To carry out comparison experiments on the entire benchmark of articulated 3D objects, we eval-

uated the retrieval performance of the proposed approach using the standard information retrieval

evaluation measure of precision versus recall curve, where

precision =
No. relevant objects retrieved

Total No. objects retrieved
(4.18)

and

recall =
No. relevant objects retrieved

Total No. relevant objects in the collection
. (4.19)

A precision-recall curve that is shifted upwards and to the right indicates superior performance.

A perfect retrieval result produces a horizontal curve (at precision = 1.0), indicating that all the

shapes within the query objects class are returned as the top ranked matches. It is evident from

Figure 4.15 that our method significantly outperforms spherical harmonics, medial surfaces, and

the Reeb graph path dissimilarity approach.

Finally, we tested the performance of the proposed approach on the Princeton Shape Bench-

mark [29]. The Princeton Shape Benchmark is a publicly available database of 3D polygonal

models collected from the Word Wide Web, along with a set of software tools that are widely
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FIGURE 4.15: Precision vs. Recall curves for Reeb graph path dissimilarity,

spherical harmonics, medial surfaces, Reeb graph path dissimilarity, and pro-

posed approach using the McGill Shape Benchmark 4.14.

used by researchers to report their shape matching and retrieval results and compare them to the

results of existing algorithms. As can be seen in Table 4.3, the proposed approach shows supe-

rior performance over spherical harmonics, where the top five retrieved 3D objects are displayed

(top-to-bottom).
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TABLE 4.1: Matching results using the proposed approach. Each database ob-

ject is matched against all the other objects in the database. Each cell shows the

dissimilarity measureD(G, G̃) between two objects selected from the database.

The smallest value corresponds to the correct match.

0.0124 0.1127 0.1216 0.1258 0.1131 0.1344 0.1257

0.1116 0.0073 0.1136 0.1297 0.1227 0.1124 0.1131

0.1311 0.1142 0.0653 0.1356 0.1315 0.1171 0.1137

0.1146 0.1329 0.1113 0.0055 0.1332 0.1621 0.1552

0.1193 0.1248 0.1342 0.1421 0.1131 0.1572 0.1592

0.1327 0.1109 0.1152 0.1474 0.11719 0.1021 0.1116

0.1223 0.1128 0.1175 0.1453 0.1623 0.1121 0.0042
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TABLE 4.2: Retrieval results using the McGill Shape Benchmark. The query

shapes are shown in the second row. The top ten retrieved objects (top-

to-bottom) using spherical harmonics (SH), Reeb graph path dissimilarity

(RGPD), and our proposed approach (SRG) are shown in rows 5 to 14.

Query

Retrieved Objects

SRG RGPD SH SRG RGPD SH SRG RGPD SH
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TABLE 4.3: Retrieval results using Princeton 3D Benchmark. The query

shapes are shown in the second row. The top five retrieved objects (top-to-

bottom) of our proposed approach.

Query

Retrieved Objects
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Conclusions and Future Work

This thesis has presented two 3D mesh denoising techniques, namely the regularized weighted

graph based kernel diffusion and the vertex-centered finite volume diffusion. We also proposed a

spectral geometric approach for nonrigid 3D shape retrieval using the second eigenfunction of the

Laplace-Beltrami operator on manifolds. We have demonstrated through extensive experiments

the much better performance of the proposed methods in comparison with existing techniques in

the literature.

In Section 5.1, the contributions made in each of the previous chapters and the concluding results

drawn from the associated research work are presented. Suggestions for future research directions

related to this thesis are also provided in Section 5.2.

5.1 Contributions of the Thesis

5.1.1 Kernel Weighted Diffusion

In Chapter 2, we introduced a simple and fast 3D shape smoothing technique using the concept of

multivariate kernel density estimation [88]. The main idea behind our proposed approach is to use a

regularized weighted kernel diffusion in a bid to avoid over-smoothing and to preserve the geomet-

ric structure of the 3D mesh data, while effectively removing undesirable noise. The experimental
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results showed that our proposed technique is robust and outperforms existing approaches.

5.1.2 Finite Volume Diffusion

In Chapter 3, we proposed a simple and fast 3D mesh denoising method in the finite volume frame-

work [89]. The main idea behind our approach is to use a vertex-centered finite volume scheme in

conjunction with local weights defined in terms of the mesh covariance fractional anisotropy. The

approach shows a good performance in preserving the geometric structure of the 3D mesh data,

while effectively removing undesirable noise. The experimental results showed that our method

outperforms the multiscale anisotropic Laplacian technique.

5.1.3 Spectral Geometric Shape Recognition

In Chapter 4, we proposed the use of shortest path distance matching algorithm for shape skeletons

constructed from the second eigenfunction of the Laplace-Beltrami operator [90, 91]. The better

performance of the proposed framework was demonstrated on McGill’s articulated shape database

compared to spherical harmonics, medial surfaces, and Reeb graph path dissimilarity. Additionally,

we also use our algorithm on the Princeton’s shape benchmark and we showed that the proposed

approach gives also satisfactory results for non-articulated shape models.

5.2 Future Research Directions

Several interesting research directions, motivated by this thesis, are discussed below:

5.2.1 Partial Matching of 3D Shapes

Our ongoing research efforts are currently focused on further improving the results by appropri-

ately choosing more discriminatory endpoint features. We also intend to extend our approach to

partial matching of 3D shapes.

5.2.2 Unifying Topology and Geometry

Viewed from the Morse-theoretic perspective, the eigenfunctions of LB operator capture the topo-

logical features of shapes. Integrating the surface geometry into the shape skeleton would provide
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a unified intrinsic framework of both topology and geometry for deformable 3D shape retrieval.

5.2.3 From Image Processing to Geometry Processing

Generally speaking, this thesis provides two bridges to borrow ideas from image processing for ge-

ometry processing. More precisely, it generalizes methods in the Euclidean space to the weighted

graph space, resulting in a fruitful way to understand 3D shapes by extending sophisticated meth-

ods in image domain via these tools. Our not-so-distant future plan is to explore other tools to

link these two fields, such as finding a proper generalization of sparse coding and low rank matrix

recovery based methods in the image domain for 3D surfaces.
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