
Symplectic Structures on Spaces of Polygons

Tuan Nguyen

A Thesis

in
The Department

of
Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Science (Mathematics) at

Concordia University

Montreal, Quebec, Canada

June, 2013
c© Tuan Nguyen, 2013



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Tuan Nguyen

Entitled: Symplectic Structures on Spaces of Polygons

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Mathematics)

complies with the regulations of the University and meets the accepted standards
with respect to originality and quality.

Signed by the final Examining Committee:

Dr.DmitriKorotkin Chair

Dr.DmitriKorotkin Examiner

Dr. Iosif Polterovich Examiner

Dr.Alina Stancu Supervisor

Dr.Octav Cornea Supervisor

Approved by
Graduate Program Director

Dean of Faculty

Date



ABSTRACT

Symplectic Structures on Spaces of Polygons

Tuan Nguyen

A symplectic form on a smooth manifold is a differential 2-form on pairs of tangent

vectors of the manifold which is closed and non-degenerate. A polygon in three-

dimensional space is a closed polygonal line, or, more precisely, a polygon of m

sides is a map ρ from the set of the first m integers into Euclidean vector space

R3, such that the sum ρ1 + ρ2 + · · ·+ ρm equals to the zero vector. The vectors

ρ1, ρ2, . . . , ρm are called the sides of the polygon ρ, and their lengths are called

its side lengths. All polygons of fixed side lengths make up a space, and one may

put symplectic structures on this space. In this text we shall describe two ways

to do this; these ways, making use of a method called symplectic reduction, are

due to Haussmann-Knutson [5] and independently to Kapovich-Millson [7], and

have been shown to be equivalent by Hausmann-Knutson [5]. We begin in the first

chapter with a compilation of the necessary definitions and results of group action

and symplectic manifolds, including Hamiltonian action and symplectic reduction.

In the second chapter we define precisely the space of polygons and describe the

aforementioned symplectic forms on them.

There may be some group action on a symplectic manifold. If the group is

a torus whose dimension is half of that of the manifold, and if the action is an

effective Hamiltonian action, then the manifold corresponds to a figure in three-

dimensional space called a Delzant polytope; in fact, Delzant polytopes completely

classify such manifolds. By a result of Kapovich-Milllson [7], on the space of poly-

gons of m sides of fixed side lengths, one may construct such a torus action if the
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m−3 diagonals of the polygons, namely the lengths |ρ1+ρ2|, . . . , |ρ1+· · ·+ρm−2|,

do no vanish. The space of polygons then corresponds to a Delzant polytope, and

may then be identified with other symplectic manifolds corresponding to the same

polytope. We shall describe in this text the case where polygons have 4 sides or 5

sides. Thus, in continuation of the second chapter, we start in the third chapter a

compilation of necessary definitons and results on torus action and Delzant poly-

topes. Because in the case of polygons of 5 sides there appears an operation on

the Delzant polytopes called blow-up, we describe briefly this concept in the same

chapter. In the fourth chapter we describe torus action on the space of polygons

due to Kapovich-Millson [7]; this action means geometrically rotations about the

diagonals, and this idea is also described in the same section. We then apply the

results to the case of polygons of 4 or 5 sides.

Finally, we compile in the appendix a more detailed list of certain definitions

and results that appear in the text.
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Chapter 1

Symplectic structures

The main concepts in this chapter are those of a symplectic manifold and sym-

plectic reduction. Example (1.8) is central to the result of section (2.2), in which

a symplectic structure is defined for the space of polygons of fixed side lengths,

as described in Hausmann-Knutson [5]. It is the culmination of examples (1.2),

(1.5), (1.6), and (1.7).

1.1 Group action

In this section we give a concise compilation of the definitions of a Lie group and

Lie algebra and of related concepts such as group action and the exponential map.

The materials here is standard and is elaborated in relevant chapters in [4], [1],

and [8].

A Lie group G is a smooth manifold in which elements satisfy the group

axioms, namely for any elements g, h, and k of G, there exist a multiplication

operation, denoted (·), such that:

1. g · h is an element of G;

2. (g · h) · k = g · (h · k);

3. there exists an identity element, denoted 1, such that 1 · g = g;

4. for each g there exists an inverse element, denoted g−1, such that gg−1 = 1;

moreover, the multiplication is assumed to be smooth in the sense that the map

G×G → G
(g, h) �→ g · h
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is a smooth map between manifolds.

The tangent space to the Lie group G at the identity is called its Lie algebra

and is denoted by g. The name derives from the fact that a multiplication that

satisfies a specific set of axioms may be defined for vectors in this tangent space.

We can pass from the Lie algebra g to its Lie group G by the exponential

map

exp : g → G, (1.1)

which is characterized, for any element ξ of g, by the properties:

1. For any real numbers s and t, the usual power law holds, namely,

exp(tξ) · exp(sξ) = exp
(
(t+ s)ξ

)
;

2. as the real number t varies, exp(tξ) traces out a curve in G, and the tangent

vector to this curve at t = 0 is ξ. In other words,

d

dt

∣∣∣∣
t=0

exp(tξ) = ξ.

We shall work exclusively with matrix groups. For these, both the Lie groups and

their Lie algbras consist of matrices, and the exponential map is the matrix series,

that is,

exp(ξ) = 1 + ξ +
ξ2

2!
+

ξ3

3!
+ · · · . (1.2)

Let G be a Lie group. G is said to be an action on a manifold M if to each of its

elements g corresponds a diffeomorphism Φ(g) on M satisfying, for all elements g

and h of G, the following conditions

1. Φ(gh) = Φ(g)Φ(h);

2. Φ(g−1) =
(
Φ(g)

)−1
;

3. Φ(1) is the identity diffeomorphism (where 1 is the unit element of the Lie

group G).

The diffeomorphism Φ(g) that correponds to the element g of G will be written

simply as Φg or g, and its value at a point x in M will be written g · x.

The action of the Lie group G on the manifold M defines for each element in

the Lie algebra g of G a vector field on M . If ξ is an element of g, then as t
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varies, exp(tξ) traces out a curve in G, and if x is a point of M , then as t varies,

exp(tξ) ·x traces out a curve in M . The tangent vector to the latter curve at t = 0

is associated to ξ. In this way, if TxM denotes the tangent space to M at x, vector

fields on M are obtained from elements of g by the rule:

g → TxM
ξ �→ ξM (x) := d

dt

∣∣
t=0

(
exp(tξ) · x

)
,

(1.3)

where ξM denotes the vector field associated to ξ.

1.2 Symplectic manifolds

The definitions of a symplectic form and a symplectic manifold given in this section

can be found in [4] or [1]. These references also contain discussions of the standard

theorem (1.1). Example (1.2) is mentioned in [7] and is worked out in detail in

this section.

A smooth manifold M is called a symplectic manifold if on it there is a

symplectic form ω, which by definition is a differential 2-form with the proper-

ties:

1. dω = 0 (ω is closed);

2. if n denotes the dimension of the manifold M , then ωn �= 0 at every point x

of M (ω is non-degenerate everywhere).

Example 1.1. The n-dimensional complex space Cn is a symplectic manifold with

the symplectic form

ω0 =

n∑
i=1

dxi ∧ dyi

where the (xi, yi) are the coordinates of the copies of C. We note that here dω0

equals 0, and moreover,

ωn
0 = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

which shows that the form is non-degenerate everywhere.

The application of the symplectic form on two arbitrary tangent vectors of Cn,

ξ1 =

n∑
j=1

(xj1
∂

∂xj
+ yj1

∂

∂yj
), ξ2 =

n∑
j=1

(xj2
∂

∂xj
+ yj2

∂

∂yj
),

3



leads to the formula

ω(ξ1, ξ2) =

n∑
k=1

(xk1y
k
2 − xk2y

k
1 ).

The following example is mentioned in [5]. We present it in some detail in order

to develop it further in later sections.

Example 1.2. Let Mm×2(C) denote the space of all complex m-by-2 matrices⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm

⎞
⎟⎠ .

Every tangent space to Mm×2(C) may be identified with Mm×2(C) itself. Let u

and v be two matrices in the space, and denote by v∗ the conjugate tranpose of v.

The trace of the product uv∗ is a complex number and so its imaginary part can

be taken. The form

ω(u, v) := Im
(
tr(uv∗)

)
is a symplectic form on Mm×2(C). For, by writing the columns of a matrix one

after another in a row, every matrix corresponds to a vector in the complex space

Cn, with n = 2m. Let

ξ1 = (ξ11 , ξ
2
1 , · · · , ξ

n
1 ), ξ2 = (ξ12 , ξ

2
2 , · · · , ξ

n
2 )

be the complex vectors corresponding to the matrices u and v. The form

〈u, v〉 := tr(uv∗)

is then equivalent to the form

〈ξ1, ξ2〉 :=

n∑
k=1

ξk1 ξ̄2
k
.

We now write down every complex component in terms of its real and imaginary

part, namely,

ξjα = xjα + iyjα, j = 1, 2, . . . , n;α = 1, 2;

when this is put into the form above, we obtain

〈ξ1, ξ2〉 =

n∑
k=1

(xk1 + iyk1 )(x
k
2 − iyk2 ) =

n∑
k=1

(xk1x
k
2 + yk1y

k
2) + i

n∑
k=1

(yk1x
k
2 − xk1y

k
2).
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From the end of the previous example the imaginary part of the form can now be

seen to be a symplectic form.

Theorem 1.1 (Darboux). There always exists a local choice of coordinate system

such that locally any symplectic manifold transforms to the standard symplectic

manifold Cn with the symplectic form ω0 =
∑n

i=1 dx
i ∧ dyi.

1.3 Hamiltonian action

The concepts of adjoint and co-adjoint actions, symplectomorphism, symplectic

action, moment map and Hamiltonian action can be consulted in [4], [1], or [9].

Examples (1.5) and (1.6) are contained in [5] but certain aspects which will be

needed in later sections are discussed in some detail in this section.

Let G be a Lie group and g the Lie algebra of G. Let us recall that g is the

tangent space of G at the identity.

Each element g of G may be made to correspond to a linear map on g. We

take g and define a diffeomorphism on G by means of the formula

h �→ ghg−1

for every h in G. The differential of this map at the identity 1 of G is then a linear

map from g onto itself which we denote by

Adg : g → g. (1.4)

The association of g with the linear map Adg is called the adjoint action of the

Lie group on its Lie algebra.

As is known from linear algebra, any linear map of vector spaces produces a

dual map of the dual vector spaces. If A : V → W denotes a linear map of vector

spaces, its dual A∗ : W ∗ → V ∗ is the map which is defined by composition, that

is, the linear function α in W ∗ is brought to the linear function α ◦ A in V ∗.

g is a vector space and so has a dual space which is usually denoted g∗. The

adjoint action above therefore has a dual which is denoted by Ad∗g; this is a linear

map from the dual space g∗ into itself. We now associate to each element g of G

the linear map

Ad∗g−1 : g∗ → g∗ (1.5)
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and call this association the co-adjoint action of G on the dual space g∗.

Example 1.3. We consider the Lie group of invertible complex matrices GL(n,C)

which has as its Lie algebra gl(n,C) all complex n-by-n matrices.

The discussion below, however, applies to all matrix Lie groups. We therefore

write G, g, and g∗ in places of GL(n,C), gl(n,C), and gl∗(n,C).

Each matrix g in the Lie group G defines a diffeomorphism on G by means of

matrix multiplication of the form

h �→ ghg−1

for every matrix h of G. Taking the differential of this map at the identity we

obtain the adjoint action
Adg : g → g

ξ �→ gξg−1.

The coadjoint action can now be obtained from the formula (1.4), namely if α is

an element of g∗, then Ad∗g−1 is that map which brings it to the element α ◦Adg−1

which also belongs to g∗.

Example 1.4. The Lie group SO(3) of all 3-by-3 matrices g with det g = 1 and

satisfy g−1 = gT , where gT denotes the transpose of g. The Lie algebra so(3)

consists of all matrices ξ such that ξT = −ξ.

The adjoint and coadjoint actions may be obtained as in the example above.

We shall, however, interpret these in terms of multiplication of matrices in SO(3)

by vectors in the Euclidean space R3. To do this, we shall use two facts. First,

R3 has a Lie algebra structure which is equivalent to so(3) by the correspondence

c : R3 → so(3)

(x, y, z) �→

(
0 −z −y
z 0 −x
y x 0

)
.

Second, the Lie algebra R3 may be identified with its dual by the usual Euclidean

scalar product, and that this corresponds perfectly with how so(3) may be identified

with its dual.

The adjoint action of SO(3) on its Lie algebra so(3) is the same as multipli-

cation of matrices in SO(3) by vectors in R3. For, if g is a matrix in SO(3) and

v a vector in R3, then the product gv corresponds to the element gc(v)g−1 by the

equation above.

6



The coadjoint action is also multiplication of matrices by vectors. For, if α

is a vector in R3, it is brought by the coadjoint action to the element α ◦ Adg−1,

where g is some matrix in SO(3). Now, if v is a vector in space, we have, by the

relation between the scalar product and orthogonal matrices,

α ◦ Adg−1(v) = α · g−1v = α · gT v = gα · v,

A symplectomorphism between two symplectic manifoldsM1 andM2 having

symplectic forms ω1 and ω2 is a diffeomorphism ϕ : M1 → M2 that satisfies the

condition ϕ∗ω2 = ω1.

Let M be a symplectic manifold and G a Lie group. Then G is said to be a

symplectic action on M if it is an action on M , where every element in G is

associated to a symplectomorphism on M .

Now suppose that G is a symplectic action on M . Again denote by g the Lie

algebra of G, and by g∗ the dual of g. Then a map

φ : M → g∗ (1.6)

is called a moment map if it satisfies, for every element ξ of g and every point

x of M , the conditions:

1. ω(ξM ,−) = −dφξ, where the empty slot in the form is kept for tangent

vectors, and where the real function φξ on M is defined by the formula

φξ(x) := 〈φ(x), ξ〉;

that is, the value of the function at the point x of M is obtained by applying

the linear function φ(x) of g∗ on the element ξ of g. Moreover we recall that

in the above formula ξM denotes the vector field obtained from the action

of G on M [see definition at the end of section (1.1)].

2. φ ◦ Φg = Ad∗g−1 ◦ φ, where Φg denotes the diffeomorphism corresponding to

the action of the element g of G on M [see section (1.1)]. Therefore the

following diagram commutes:

M
φ �� g∗

M

Φg

��

φ �� g∗

Ad∗
g−1

��
(1.7)

7



(This property is called the G-equivariant property.)

The action of G on M is said to be a Hamiltonian action whenever it has a

moment map.

The following example is a development of example (1.2). It will be used later

sections.

Example 1.5. Let us recall that a square matrix α is called Hermitian if it equals

to its conjugate transpose α∗. Let Hm denote the set of Hermitian matrices.

Also, a matrix is called unitary if its inverse equals its conjugate transpose. Let

Um denote the set of unitary matrices. Moreover, we shall denote by um the Lie

algebra of Um, and by u∗m the dual of um. It is known that u∗m may be identified

with um by the scalar product

〈ξ, η〉 =
i

2
tr(ξ∗η)

of any two unitary matrices; here tr means the trace of a matrix.

Each Hermitian matrix α may be made to correspond to an element of u∗m by

multiplying it to any element ξ of um and taking trace of the resulting product,

namely,

α(ξ) =
i

2
tr(αξ). (1.8)

In this example we shall identify Hm with u∗m.

Let Mm×2(C) denote the space of all complex m-by-2 matrices⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm

⎞
⎟⎠ .

We shall denote the elements of Mm×2(C) by the letters x, y, . . . and so on. As

discussed in example (1.2), the space Mm×2(C) may be identified to every one of

its tangent spaces, and moreover it is a symplectic manifold with the symplectic

form being the imaginary part of the trace, more precisely,

ω(x, y) := Im
(
tr(xy∗)

)
.

The matrix product

xx∗

8



is equal to its conjugate transpose and so is an m-by-m Hermitian matrix. We

shall verify below that the map

φ : Mm×2(C) → Hm
x �→ xx∗

(1.9)

is a moment map for the action of Um on Mm×2(C), where the action is left matrix

multiplication.

We shall use the symbols M , g, and g∗ in places of Mm×2, um, and u∗m. More-

over, the diffeomorphism on M corresponding to the unitary matrix g will be de-

noted by Φg.

Thus, we verify the following two equations.

1. ω(ξM ,−) = −dφξ. If ξ is an element of g, the vector field ξM assigns to the

point x of the manifold M the tangent vector [see equation (1.3)]

d

dt

∣∣∣∣
t=0

(
exp(tξ) · x

)
= ξx.

To evaluate the symplectic form ω on tangent vectors, we first note that for

matrices x and y, the numbers tr(xy∗) and tr(yx∗) are complex conjugates,

and so the imaginary part can be taken:

ω(x, y) = Im
(
tr(xy∗)

)
= −

i

2
tr(xy∗ − yx∗).

Now for tangent vectors ξx and y, we have

ω(ξx, y) = − i
2tr(ξxy

∗ − yx∗ξ∗)
= − i

2tr(ξxy
∗ + yx∗ξ)

= − i
2tr(xy

∗ξ + yx∗ξ)
= − i

2tr
(
(xy∗ + yx∗)ξ

)
.

On the other hand, the function

φξ : M → R

works according to the formula

φξ(x) =
i

2
tr(xx∗ξ).

Taking the differential of the function and applying it to the tangent vector

y, we obtain

dφξx(y) =
i

2
tr
(
(yx∗ + xy∗)ξ

)
,

and so the equation claimed at the beginning verifies.

9



2. φ ◦ Φg = Ad∗g∗ ◦ φ (here g−1 = g∗ because the matrix is unitary).

If x is a point of the manifold M , it is brought by the composition φ ◦ Φg

to the element (gx)(gx)∗ of g∗. If now ξ is an element of the Lie algebra g,

then by equation (1.8),

(
gx(gx)∗

)
(ξ) = tr

(
gx(gx)∗ξ

)
.

On the other hand, the same point x is brought by the composition Ad∗g∗◦φ to

the element xx∗ ◦Adg∗ of g
∗ [see discussion of adjoint and coadjoint action

for matrix group in example (1.3)], and this function applies on the element

ξ of g as follows:

xx∗ ◦ Adg∗(ξ) = xx∗(g∗ξg)
= tr(xx∗g∗ξg)
= (gxx∗g∗ξ)
= tr

(
gx(gx)∗ξ

)
.

Hence the second equation verifies.

We conclude that the action of the unitary group on the space of complex m-by-2

matrices is Hamiltonian.

This example will similarly be used in later sections.

Example 1.6. Using the notations of the above example, let Mm×2(C) denote the

symplectic manifold of all complex m-by-2 matrices⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm

⎞
⎟⎠ ,

the symplectic form being

ω(x, y) := Im
(
tr(xy∗)

)
.

Let H2 denote the space of 2-by-2 Hermitian matrices. Similarly to the example

above, the map (below 1 denotes the identity matrix)

ψ : Mm×2(C) → H2
x �→ x∗x− 1

is a moment map for the action of the Lie group U2, where the Lie group action

is right matrix multiplication.

10



1.4 Symplectic reduction

Symplectic reduction will be presented in the form of a theorem, namely theorem

(1.2). References [4], [1], and [2] contain the theorem and the justification of

the various conditions used in the theorem. Examples (1.7) and (1.8) are due to

Hausmann-Knutson [5].

Let a Lie group G be a Hamiltonian action on a symplectic manifold M with

symplectic form ω, where the moment map for the action is denoted by the symbol

φ : M → g∗,

with g∗ being the dual space of the Lie algebra of the Lie group G.

Moreover, suppose that α is a regular value of φ, that is, α is an element of

g∗ such that the differential dφ is surjective at every point x of φ−1(α). With this

assumption the space φ−1(α) is a submanifold of the manifold M .

Also, denote by Gα the group whose elements are those of G that fix α under

the coadjoint action [see (1.5) for definition of coadjoint action], that is, Gα consists

of all elements g of the Lie group G such that

Ad∗g−1(α) = α.

With this condition, the space

Mα := φ−1(α)/Gα

is well-defined.

Finally, suppose that Gα acts freely and properly on φ−1(α), where, by defini-

tion, an action is called free if the only diffeomorphism having any fixed point is

the one corresponding to the identity element of the group, and it is called proper

if the inverse image of the action of a compact set is also a compact set. Following

this assmption, the space Mα defined above is a manifold.

Theorem 1.2 (Marsden-Weinstein). The manifold

Mα = φ−1(α)/Gα

inherits a symplectic form ωα from the symplectic from ω on the manifold M in

the following way. Let

π : φ−1(α) → Mα

11



be the projection map as shown in this diagram (here i denotes the injection map)

φ−1(α)

π
��

i �� M

Mα = φ−1(α)/Gα

. (1.10)

Then, a point p of the manifold Mα can be the image under projection of any point

x in the set π−1(p), and if u and v are tangent vectors to Mα at the point p, then

they are images of some tangent vectors to the manifold φ−1(α) at x, say u′ and

v′. The value

ω(u′, v′)

is independent of the choice of the point x in π−1(p) and also of the accompanying

tangent vectors u′ and v′, and therefore we can set

ωα(u, v) := ω(u′, v′).

Looking at the diagram above, we may say that ωα is the symplectic form on Mα

that satisfies the equation

π∗αωα = i∗αω.

The following lemma will be used in the example that follows it. Let G2(C
m)

denote the Grassmannian space of complex planes in Cm, in other words the space

of all 2-dimensional complex linear subspaces in Cm, and let V2(C
m) denote the

Stiefel space of all orthogonal 2-frames in Cm, in other words the set of all complex

m-by-2 matrices

(a,b) :=

⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm

⎞
⎟⎠ (1.11)

such that both column vectors have unit length, and moreover that they are

orthogonal, that is,

〈a,b〉 := ā1b1 + ā2b2 + · · ·+ āmbm = 0,

|a| = 〈a, a〉1/2 = 1, |b| = 〈b,b〉1/2 = 1.

Lemma 1.1. Let U2 denote the group of 2-by-2 unitary matrices (a unitary matrix

U is a matrix such that

U∗U = UU∗ = 1 (1.12)
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where U∗ denote the conjugate transpose of the matrix U and 1 the identity ma-

trix). The Grassmannian space G2(C
m) is isomorphic to the space V2/U2, where

a unitary matrix acts on an frame in the Stiefel space by multiplication on the

right.

Proof. By the Gram-Schmidt orthogonalization process, in every 2-dimensional

linear subspace of Cm, which is an element of G2(C
m), an orthonormal 2-frame,

which is an element of V2(C
m), can be built from an arbitrary basis of the sub-

space. On the other hand, if Π is an element of G2(C
m) and (a,b) an orthonormal

2-frame in Π, the right action of any 2-by-2 unitary matrix U on the frame (a,b)

is ⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm

⎞
⎟⎠(

u11 u12
u21 u22

)
=

⎛
⎜⎝

u11a1 + u21b1 u12a1 + u22b1
u11a2 + u21b2 u12a2 + u22b2

...
...

u11am + u21bm u12am + u22bm

⎞
⎟⎠

or, written more concisely,

(a,b)U = (u11a+ u21b, u11a+ u22b). (1.13)

This action leaves unchanged the subspace spanned by the vectors a and b. Indeed,

the vectors

u11a+ u21b, u11a+ u22b

are linearly independent, because any vector in Π has the form αa+ βb for some

complex numbers α and β, and then the equation

x(u11a+ u21b) + y(u11a+ u22b) = αa+ βb

always has a solution for x and y, as we can see by multiplying the conjugate

transpose of the coefficient matrix on both sides,(
u11 u12
u21 u22

)(
x
y

)
=

(
α
β

)
, or

(
x
y

)
=

(
u11 u12
u21 u22

)∗(
α
β

)
.

Therefore the space of orbits of the right action V2(C
m)/U is the Grassmannian

G2(C
m).

The following example is a continuation of example (1.5) and (1.6). It will be

used in later section.
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Example 1.7. We recall here the notations and results of example (1.6). There,

the symbol M2(C) denotes the space of complex m-by-2 matrices

(a,b) :=

⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm.

⎞
⎟⎠

As discussed in that example, Mm×2(C) is a symplectic manifold with symplectic

form

ω(x, y) := Im
(
tr(xy∗)

)
,

and the action of the unitary group U2 on it by right multiplication is a Hamilto-

nian action with the moment map

ψ : Mm×2(C) → H2
(a,b) �→ (a,b)∗(a,b)− 1,

where 1 denotes the identity matrix, and H2 the space of 2-by-2 Hermitian matrices

(which can be identified with the dual of the Lie algebra of U2).

Now, the inverse image ψ−1(0) of the zero matrix 0 consists of all matrices

satisfying the equation

(a,b)∗(a,b) = 1,

and therefore is the Stiefel space V2(C
m) [see equation (1.11) for the definition of

the Stiefel space]. We conclude, from the theorem in this section, that the space

V2(C
m)/U2, which is also the Grassmannian G2(C

m), inherits a symplectic form

from that on Mm×2(C), the way the symplectic form is obtained is described in the

symplectic reduction theorem (1.2) above in this section.

Moreover, using the fact just obtained together with the result of example (1.5)

[see equation (1.9) in the same example], we conclude that the moment map in

that example (here Hm is the space of Hermitian matrices of size m),

φ : Mm×2 → Hm
(a,b) �→ (a,b)(a,b)∗,

(1.14)

gives rise to a moment map for the action of the unitary group Um on the Grass-

mannian G2(C
m), the action being left matrix multiplication. In other words, we

have a moment map

μ : G2(C
m) → Hm. (1.15)
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Let G be a Lie group and H a subgroup of G. The Lie algebra h of H is a

subspace of the Lie algebra g of G, and the dual h∗ a subspace of g∗. The following

lemma can be found in [1].

Lemma 1.2. Let φ be the moment map for the Hamiltonian action of a Lie group

G on a symplectic manifold M . Then, for any subgroup H of G, the composition

of φ and the canonical projection

M → g∗ → h∗

is a moment map for the induced action.

Example 1.8. In example (1.7) we obtained the moment map

μ : G2(C
m) → Hm

for the action of the unitary group Um on the Grassmannian G2(C
m). The diag-

onal unitary matrices is a subgroup of Um; the projection from the dual of its Lie

algebra to u∗m is the map from Hm into Rm picking from each matrix its diagonal

entries. By the lemma above, we obtain a moment map

μ : G2(C
m) → R

m (1.16)

for the action of the diagonal unitary matrices on the Grassmannian.
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Chapter 2

Symplectic structures on the space of

polygons

In this chapter we define precisely the space of polygon of fixed side lengths. There

are two ways to put a symplectic structure on this space, due to Haussmann-

Knutson [5] and independently to Kapovich-Millson [7]; we give an exposition of

these two methods in this chapter.

2.1 Polygons in space

The following general discussion about polygons is contained in [5] or [7].

A polygon of m sides in the three-dimensional Euclidean space R3 is

a set of m vectors in the space that add up to zero; in other words, a polygon is

a map

ρ : {1, 2, . . . , m} → R
3

such that

ρ1 + ρ2 + · · ·+ ρm = 0.

The vectors ρ1, ρ2, . . . , ρm are called the sides of the polygon ρ. As these sides

are vectors in the Euclidean space R3, we may compute their lengths by taking

the Euclidean scalar product of each side with itself; the length of the side ρi will

be denoted |ρi|.

We shall exclude in all of our discussion the polygon whose every side is zero.

By definition polygons are identified up to translations. Let us also note that

vectors in R3 may be rotated, and there is a sense in each rotation, depending on

whether the rotation matrix has determinant 1 or −1. We therefore may identify
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polygons up to orientation-preserving rotations, or just up to rotations, as we

wish; orientation-preserving rotations will be called proper rotations.

Let α = (α1, . . . , αm) be an element of Rm. We use the symbol mP3
+(α) to

denote the space of polygons with m sides in R3, all with side lengths α1, . . . , αm;

here we use the plus sign (+) to identify polygons that are proper rotations of

each other.

There are two apparently different ways to put a symplectic structure on the

space mP3
+(α). These two ways have been shown to be essentially equivalent by

Haussmann and Knutson in the paper [5] . We shall only describe the two ways;

their comparison is shown in the aforementioned paper.

2.2 The symplectic structure by unitary action

Lemmas (2.1) and (2.2) and further discussion about quarternions can be found

in [8]. Otherwise, this section is an exposition of the results that are due to

Hausmann-Knutson [5].

2.2.1 Preliminaries

Below are some additional facts about polygons that shall be used in the main

theorems of this section. A polygon may be scaled by a positive factor, and by this

we mean that every side of the polygon may be multiplied by the same positive

scalar; the orientation of the polygon remains unchanged after such an operation.

We have used the symbol mP3
+(α) to denote the space of polygons of given side

lengths, up to translations and proper rotations. We now drop the letter α in the

symbol, and thereby introduce a new symbol, mP3
+. This symbol will denote the

space of polygons of m sides in the space R3, identified up to translations, proper

rotations, and scaling.

Every polygon

ρ : {1, 2, . . . , m} → R
3

has a perimeter which is defined as the sum of its side lengths:

|ρ| := |ρ1|+ |ρ2|+ · · ·+ |ρm|.

We may multiply every side of a polygon by the same appropriate positive scalar
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to obtain a scaled polygon having perimeter equal to 2. As the space mP3
+ consists

of polygons up to scaling, every element of mP3
+ has a representative of perimeter

equal to 2. The length map

l : mP3
+ → R

m (2.1)

is defined as the map which assigns to each element of mP3
+ the side lengths of the

representative whose perimeter equals to 2.

We now describe a way to build a map, say

Φ : G2(C
m) → mP3

+, (2.2)

from the Grassmannian into the space mP3
+. The construction makes use of the

results of the following proposition and lemmas.

Let the symbol mP3 denote the space of polygons ofm sides in theR3, identified

up to translation, scaling, and rotations [and not proper rotations, that is why the

plus sign + has been dropped; for a discussion of rotations see the beginning of

section (2.1), and for a discussion of scaling see the discussion at the beginning of

this section].

Proposition 2.1. There exists a surjective map, say

Φv : V2(C
m) → mP3,

from the Stiefel space V2(C
m) onto the space mP3.

We construct this map Φv by using an additional map, called the Hopf map and

denoted φ : H → R3, from the quarternions into the three-dimensional Euclidean

space, which we now define. Let H be the algebra of quaternions, that is, the

four-dimensional real vector space consisting of vectors of the form

q = a+ bi+ cj + dk

where a, b, c, and d are real numbers, and i, j, and k denote the basis vectors;

this vector space moreover has an associative bilinear multiplication defined by

the following rules: for real numbers ζ, η and vectors q1, q2, q3,

1. (ζq1)(ηq2) = (ζη)q1q2;
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2. (q1q2)q3 = q1(q2q3);

3. for the basis vectors,

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = −1.

On the algbra of quarternions, the conjugation operation

q = a+ bi+ cj + dk �→ q̄ = a− bi− cj − dk

has the following properties

q1 + q2 = q̄1 + q̄2, q1 · q2 = q̄2 · q̄1

and leads to the definition of the norm of a quarternion,

|q|2 = qq̄ = a2 + b2 + c2 + d2.

Denote by H0 the space of imaginary quarternions, namely those of the form

q̄ = −q, q = xi+ yj + zk.

In this space,

|q|2 = qq̄ = x2 + y2 + z2.

Therefore, H0 can be identified with the three-dimensional Euclidean vector space

R3.

The Hopf map

φ : H → H0 
 R
3 (2.3)

is defined by the formula

φ : q �→ q̄iq.

Let us obtain at this point a detailed formula for the Hopf map. If q is a quar-

ternion, then we may write

q = a + bi+ cj + dk = (a+ bi) + (c+ di)j,

and therefore any quarternion q may be written in the form

q = u+ vj
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for some complex numbers u and v. Using this form in the Hopf map we obtain

the formula

φ : u+ vj �→ (ū− jv̄)i(u+ vj) = i(ū+ jv̄)(u+ vj) = i(|u|2 − |v|2 + 2ūvj). (2.4)

Proof of proposition (2.1). The map

Φv : V2(C
m) → mP3

is defined by making use of the Hopf map defined by formula (2.4) in the following

way. We take an orthonormal frame and assign to it a set of vectors by the rule:

(a,b) =

⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm

⎞
⎟⎠ �→ (φ(a1 + b1j), φ(a2 + b2j), . . . , φ(am + bmj)). (2.5)

We shall verify below that the image of the frame (a,b) under the above map is

a polygon of m sides having perimeter equal to 2. This polygon belongs to some

class in the space mP3; we take this class as the image of the frame (a,b) under

Φv, thereby define Φv as a map from V2(C
m) into mP3. The surjective property

of Φv will be shown at the end of the proof.

The element

(φ(a1 + b1j), φ(a2 + b2j), . . . , φ(am + bmj))

is a polygon with perimeter equal 2. Indeed, if (a,b) is a frame that belongs to

V2(C
m), then

〈a,b〉 =

m∑
r=1

ārbr = 0, |a| =

m∑
r=1

|ar|
2 = 1, |b| =

m∑
r=1

|br|
2 = 1;

these properties, with the use of the formula (2.4), imply

m∑
r=1

φ(ar + brj) = i(

m∑
r=1

|ar|
2 −

m∑
r=1

|br|
2 + 2

m∑
r=1

ārbrj) = 0,

|φ(ar + brj)|
2 = (|ar|

2 + |br|
2)2, or

m∑
r=1

|φ(ar + brj)| =

m∑
r=1

|ar|
2 +

m∑
r=1

|br|
2 = 2.

We now show that Φv is surjective or, specifically, given an arbitrary polygon of

m sides whose the r-th side is the vector (xr, yr, zr), there is a frame in V2(C
m)
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which will be mapped to it under the map (2.5). First, for a quarternion ar + brj,

the Hopf formula (2.4) shows that

φ(ar + brj) = i[(|ar|
2 − |br|

2) + 2ārbrj].

We shall write the complex numbers involved as ar = ur + ivr and br = u′r + iv′r.

Then the formula above is equal to

φ(ar + brj) = [u2r + v2r − (u′r)
2 − (v′r)

2]i− 2(urv
′
r − vru

′
r)j + 2(uru

′
r + vrv

′
r)k.

Moreover, we have the following useful identities:

|ar|
2 = u2r+v2r , |br|

2 = (u′r)
2+(v′r)

2, 2ārbrj = 2(uru
′
r+vrv

′
r)j+2(urv

′
r−vru

′
r)k.

(2.6)

Let us look at the system of equations

u2r + v2r − (u′r)
2 − (v′r)

2 = xr
−2(urv

′
r − vru

′
r) = yr

2(uru
′
r + vrv

′
r) = zr.

Since for the given polygon it is true that

m∑
r=1

xr =

m∑
r=1

yr =

m∑
r=1

zr = 0

we have

m∑
r=1

u2r + v2r − (u′r)
2 − (v′r)

2 =

m∑
r=1

−2(urv
′
r − vru

′
r) =

m∑
r=1

2(uru
′
r + vrv

′
r) = 0.

It then follows from the last identity in (2.6) that
∑m

r=1 2ārbrj = 0, in other words

the vectors

a = (a1, . . . , am), b = (b1, . . . , bm)

are complex orthogonal. After normalization (a,b) becomes a frame in V2(C
m)

and moreover the first equation in the above system is automatically satisfied.

Let us recall that a 2-by-2 unitary matrix U is one that satisfies UU∗ = 1,

where U∗ denotes the conjugate transpose of U . Let U2 denote the set of all 2-

by-2 unitary matrices. In this set, the unitary relation U∗U = 1 implies that each

matrix has determinant ±1. Let SU2 denote the matrices in U2 with determinant

equal 1.
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Lemma 2.1. SU2 is isomorphic to the multiplicative group of unit quarternions.

Proof. First, the unit quarternions forms a multiplicative group because the norm

of a quarternion q,

|q|2 = qq̄ = a2 + b2 + c2 + d2,

satisfies the relation

|q1q2| = |q1||q2|.

The algebra of quarternions H can be realized as 2-by-2 matrices in the fol-

lowing way

q = a+ bi+ cj + dk �→ A(q) =

(
a− id −bi− c
−bi + c a+ id

)
(2.7)

It is then true that

A(q1q2) = A(q1)A(q2), A(q1 + q2) = A(q1) + A(q2).

In particular, by realizing unit quarternions as 2-by-2 matrices, and by setting

x+ yj, where x = a− id and y = −c− ib, one sees that

|q| = a2 + b2 + c2 + d2 = |x|2 + |y|2

and moreover that the matrix corresponding to q is

A(q) =

(
x y
−ȳ x̄

)
.

Therefore |q| = 1 implies A(q)∗A(q) = 1 and detA(q) = 1.

Let O3 consist of all 3-by-3 matrices A with ATA = 1, where AT denotes the

transpose of A. This relation implies that each matrix has determinant 1 or −1.

Let SO3 denote all matrices in O3 whose determinants equal 1; it will be called

the group of proper rotations in R3.

One recalls that the space of imaginary quarternions consists of the quar-

ternions defined by the relation

q̄ = −q,

namely those having the form q = bi+ cj + dk. Moreover, the formula

|q| = b2 + c2 + d2

may be used to identify H0 with R3.
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Lemma 2.2. If q is a unit quarternion, then the transformation

αq : x �→ q̄xq, x ∈ H0 = R
3 (2.8)

is a proper rotation of the space R3.

Proof. Since x̄ = −x, the following formula is true:

αq(x) = q̄xq = q̄x̄q = −q̄xq,

which shows that q̄xq is an element of H0. The mapping αq is linear and satisfies

αq(0) = 0. Since it is true that the length of a vector remains unchanged after the

transformation,

|q̄xq| = |q̄||x||q| = |x|,

the element αq is determined by a matrix αq in O3. The function f(q) = detαq

is a continuous function of q and takes only two values ±1. But f(1) = 1 and

SU2 ≈ S3 is a connected surface. Therefore, detα1 = 1 always, and αq ∈ SO3 for

|q| = 1.

Now the map Φ : G2(C
m) → mP3

+ mentioned in formula (2.2) is defined by

making use of the map Φv : V2(C
m) → mP3 defined in proposition (2.1). The

latter satisfies the relation

Φv

(
(a,b)U

)
= (Ūφ(a1 + b1j)U, Ūφ(a2 + b2j)U, . . . , Ūφ(am + bmj)U)

[see (1.13) for the formula of the action of a 2-by-2 unitary matrix on an

orthonormal frame]. This relation is true because, after quarternions have been

realized as 2-by-2 matrices [see (2.7)], the Hopf map itself satisfies the formula

φ : qU �→ qUiqU = Ū q̄iqU = Ūφ(q)U.

By lemmas (2.1) and (2.2), the map Φv : V2(C
m) → mP3 indeed induces the map

Φ : G2(C
m) → mP3

+.

The result of example (1.8) is the deduction of the moment map

μ : G2(C
m) → R

m,

for the action of the diagonal unitary matrices, denoted by Um
1 , on the Grassman-

nian G2(C
m).
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Lemma 2.3. The moment map of example (1.8),

μ : G2(C
m) → R

m,

is equal to the composition of the length map l in formula (2.1) and the map Φ in

formula (2.2).

Proof. Let Π be an element of G2(C
m) with an orthonormal basis (a,b) [which is

an element of V2(C
m); see formula (1.11) and the discussion preceding it for the

definitions of these two spaces]. The diagonal of the matrix product

(a,b)(a,b)∗ =

⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm

⎞
⎟⎠(

ā1 ā2 · · · ām
b̄1 b̄2 · · · b̄m

)

shows that the image of Π under μ is

μ(Π) = (|a1|
2 + |b1|

2, · · · , |am|2 + |bm|2)

[see formula (1.14), (1.15), and (1.16)]. On the other hand, from the formula (2.5),

(a,b) =

⎛
⎜⎝

a1 b1
a2 b2
...

...
am bm

⎞
⎟⎠ �→ (φ(a1 + b1j), φ(a2 + b2j), . . . , φ(am + bmj)),

the length of each side can be computed and equals to

|φ(ai + bij)|
2 = |i(|ai|

2 − |bi|
2) + 2āibik|

2

= |ai|
4 + |bi|

4 + 2|ai|
2|bi|

2

= (|ai|
2 + |bi|

2)2.

It is now seen that μ = l ◦ Φv.

2.2.2 The symplectic structure by unitary action

An element α = (α1, α2, . . . , αm) of Rm is called generic when it satisfies the

conditions:

1. Every component is non-negative: αi ≥ 0 for i = 1, . . . , m;

2. the sum of the components equals 2: α1 + α2 + · · ·+ αm = 2;

3. there is no element β = (β1, β2, . . . , βm) of R
m such that

m∑
i=1

βi = 0 and |βi| = αi, i = 1, . . . , m.
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(Thus a polygon whose side lengths are represented by a generic α = (α1, α2, . . . , αm)

is always a non-lined polygon, since a lined-polygon of side lengths (α1, α2, . . . , αm)

always corresponds, after a direction on the line has been chosen and a sign given

to every side length, to a set of numbers β = (β1, β2, . . . , βm) with the sum
∑m

i=1 βi

equal to 0; this set of number β is simply the sides of the lined-polygon.)

The element α = (α1, α2, . . . , αm) of Rm is called regular if in addition to

being generic as defined above, it also satisfies the condition 0 < αi < 1 for all the

component elements.

The result of example (1.8) is the deduction of the moment map

μ : G2(C
m) → R

m,

for the action of the diagonal unitary matrices, denoted by Um
1 , on the Grass-

mannian G2(C
m). It is shown by Hausmann-Knutson [5] that if α is a regular

element of Rm, then α is a regular value of the moment map [in the sense defined

in section (1.4)]

μ : G2(C
m) → R

m

above.

Theorem 2.1. If α is a regular element of Rm, the polygon space mP3
+(α) is a

symplectic manifold diffeomorphic to the symplectic reduction Um
1 \μ−1(α).

Proof of theorem (2.1). The formula for the length map defined in (2.1) shows

that for a given α,

l−1(α) = mP3
+(α).

Lemma (2.3) then shows that l−1(α) = Um
1 \μ−1(α).

2.3 The symplectic structure by rotations

This section is an exposition of the materials contained in [7]. Specifically, except

lemma (2.4) which can be found in [4], all results are discussed in [7].

Let α = (α1, . . . , αm) be a set of positive real numbers. For a component αi,

let S2(αi) denote the sphere of radius αi, and let

Sα := S2(α1)× · · · × S2(αm).
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Each point on the sphere S2(αi) may be regarded as a vector in the Euclidean

space R3. The group SO(3) acts on Sα by rotation on each component sphere.

Again denote by mP3
+(α) the space of polygons with m sides in R3, all with

side lengths α1, . . . , αm, where the plus sign (+) identifies polygons that are proper

rotations of each other. mP3
+(α) may be regarded as a subset of Sα for which the

sum of the component vectors add up to zero, up to rotations of the vectors. In

other words, if we define a map μ : Sα → R3 by

μ(e) = e1 + · · ·+ em

then mP3
+(α) equals to SO3\μ

−1(0).

Theorem 2.2. The map μ : Sα → R3 defined by

μ(e) = e1 + · · ·+ em

is a moment map for action of SO3 on Sα, and therefore, by the remark just before

this theorem, the space of polygons mP3
+(α) may be given a symplectic structure by

the symplectic reduction SO3\μ
−1(0).

We describe first a symplectic form on Sα.

Lemma 2.4. Let S2(r) denote the sphere of radius r. Let x be a point of S2(r),

and let u, v be tangent vectors at x; these may be regarded as vectors in R3, with

u and v orthogonal to x. Also, let the dot (·) denote the scalar product in R3, and

let the cross (×) denote the vector product in R3. The form

νx(u, v) = x · (u× v)

is a symplectic form on S2(r).

Proof. The given form is a 2-form on the 2-dimensional manifold S2(r), and so it

is closed.

Let u be a nonzero tangent vector. Non-degeneracy of the form means that

there exists a vector v such that νx(u, v) is non-zero. We may take v = u × x,

because it is a vector in the tangent plane of S2(r) at x, and then u × (u × x) is

a vector parallel to x, and therefore

νx(u, v) = x ·
(
u× (u× x)

)
is non-zero.
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The symplectic form on Sα is the form

ω :=

n∑
j=1

1

α2
j

p∗jν

where pj denotes the projection map from Sα onto the component sphere S2(αj).

Proof of theorem (2.2). It suffices to verify the theorem for the one factor case.

We shall write S2(r) in place of S2(α1). The Lie algebra so(3) and its dual will be

identified with R3 and its dual, and also R3 and its dual will be identified by the

usual scalar product [see example (1.4)]. If ξ is an element in so(3) = R3, then

the induced vector field is

ξM (x) = ξ × x

for any point x in S2(r). Now for any tangent vector v at x,

ωx

(
ξM (x), v

)
= −

1

r2
x · [(ξ × x)× v] = −

1

r2
x · [(ξ · v)x] = −ξ · v.

On the other hand, μ(x) = x, and therefore

dμx(ξ) = ξ.

Since the Lie algebra and its dual are identified by the scalar product, we have

〈ξ, v〉 = ξ · v.

Thus ω(ξM ,−) = −dμ.

To verify the equivariant condition, let x be a point of S2(r). If g is an element

of SO(3), the action of g on x is the matrix product g ·x, which under the moment

map goes to g · x. On the other hand, the same element x goes to x under the

moment map, and the coadjoint action Ad∗g−1, according to example (1.4), brings

it to the element g · x.
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Chapter 3

Symplectic toric manifolds, Delzant

polytopes, and Blow-up

In this chapter we present a brief discussion of a Delzant polytope and related

concepts and results, all of which are necessary for the discussion in the last

chapter. The materials below can be found in relevant chapters in [4], [1], or [2].

3.1 Symplectic toric manifolds

Let Tk denote the k-dimensional torus. The Lie algebra of Tk and its dual, t

and t∗, may be both identified with Rk. As Tk is a commutative group, the

adjoint action, and therefore the coadjoint action is the identity mapping. If Tk

is also a symplectic action on a symplectic manifold M with symplectic form ω,

the equivariant property in the definition of a moment map simplifies somewhat,

so that a map

φ : M → R
k

is called a moment map for the action of Tk on M if for every ξ of t and every g

of Tk [compare with definition (1.6)]:

1. ω(ξM ,−) = −dφξ, where the empty slot in the form is kept for tangent

vectors, and the function

φξ : M → R

is defined by the formula

φξ(x) := 〈φ(x), ξ〉;

that is, the value of the function at the point x of M is obtained by applying

the linear function φ(x) of t∗ on the element ξ of t. Moreover we recall that

28



in the above formula ξM denotes the vector field obtained from the action

of Tk on M [see definition at the end of section (1.1)].

2. φ ◦ Φg = φ, where Φg denotes the diffeomorphism corresponding to the

action of the element g of Tk on M [see section (1.1)]; thus the map must

be invariant under the action of the torus.

The action of Tk on M is called a Hamiltonian action whenever it has a

moment map.

A symplectic toric manifold is a compact connected symplectic manifold

M on which there is defined a Hamiltonian action of a torus Tk satisfying the

requirements:

1. The action is effective, which by definition means that each element in Tk

corresponds to only one symplectomorphism on M ;

2. the dimension of Tk is half the dimension of M .

3.2 Delzant polytopes

Let M be a symplectic toric manifold [see definition in section (3.1)]. It is known

that the image φ(M) of M under the moment map is a Delzant polytope, where,

by definition, a Delzant polytope Δ in Rn is a convex polytope that satisfies

the conditions:

1. There are n edges meeting at each vertex;

2. the i-th edge belonging to the vertex p may be written in the form p + tui

where ui ∈ Zn and 0 ≤ t < ∞;

3. the elements ui, i = 1, . . . , n can be chosen to form a basis for Zn.

Now let MT denote the set of fixed points of M under the action of the torus

Tk onM . It is also known that the image φ(MT ) of the fixed points of the moment

map are the vertices of the polytope φ(M).

Example 3.1. The 2-sphere S2 is a symplectic manifold with symplectic form

ω = dθ ∧ dh. Let circle S1 act on S2 by rotation:

eit · (θ, h) = (θ + t, h).
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The action is Hamiltonian with moment map

φ = h,

where h denotes the height function on the sphere. The Delzant polytope of the

moment map is the closed interval [−1, 1].

•

•

The fixed points of the action are the North and South pole of the circle; their

images under the moment map are −1 and 1 which coincide with the vertices of

the segment.

Equivalently, the projective space CP1 is a symplectic manifold with the Fubini-

Study form

Ω =
1

4
ω

where ω is the symplectic form on the 2-sphere; the circle S1 acts on CP
1 by the

action

eit · [w0 : w1] = [w0 : e
itw1].

The action is Hamiltonian with moment map

φ[w0 : w1] = −
1

2
·

|w1|
2

|w0|2 + |w1|2
.

The Delzant polytope in this case is the closed interval [−1/2, 0]. The fixed points

of the action are [1 : 0] and [0 : 1]; their images under the moment map are 0 and

−1/2 which coincide with the vertices of the segment.

Example 3.2. The 2-torus T2 = (S1×S1) act on the symplectic manifold S2×S2

by the Hamiltonian action

(eit, eit
′

) ·
(
(θ, h), (θ′, h′)

)
=

(
(θ + t, h), (θ′ + t′, h′)

)
.

The moment map is

φ
(
(θ, h), (θ′, h′)

)
= (h, h′).
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The Delzant polytope of the moment map is the square [−1, 1]× [−1, 1].

• •

• •

The fixed points of the action are the cross product of the north and south pole of

the component spheres; their images under the moment map are (−1, 1), (1, 1),

(1,−1), and (−1,−1) which coincide with the vertices of the square φ(S2 × S2).

Alternatively, the torus T2 acts on CP
1 ×CP

1 by the Hamiltonian action

(eit, eit
′

) ·
(
[w0 : w1], [w

′
0 : w

′
1]
)
=

(
[w0 : e

itw1], [w
′
0 : e

it′w′1]
)

with moment map

φ
(
[w0 : w1], [w

′
0 : w

′
1]
)
= −

1

2

(
|w1|

2

|w0|2 + |w1|2
,

|w′1|
2

|w′0|
2 + |w′1|

2

)
.

The Delzant polytope is the square [−1/2, 0] × [−1/2, 0]. The fixed points of the

actions are

(
[1 : 0], [1 : 0]

)
,

(
[1 : 0], [0 : 1]

)
,

(
[0 : 1], [1 : 0]

)
,

(
[0 : 1], [0 : 1]

)
whose images under the moment map are indeed the vertices of the square φ(CP1×

CP
1).

Example 3.3. The 2-dimensional projective space CP
2 is a symplectic manifold

with the symplectic forn

Ω :=
i

2|z|4

n∑
j,k=1

(
|zj|

2dzk ∧ dz̄k − z̄jzkdzj ∧ dz̄k
)
.

The 2-dimensional torus T2 acts on CP
2 by the Hamiltonian action

(eit, eit
′

) · [w0 : w1 : w2] = [w0 : e
itw1 : e

itw2]

with the moment map

φ
(
[w0 : w1 : w2]

)
= −

1

2

(
|w1|

2

|w0|2 + |w1|2 + |w2|2
,

|w2|
2

|w0|2 + |w1|2 + |w2|2

)
.
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The Delzant polytope φ(CP2) is the triangle with vertices (−1/2, 0), (0, 0), and

(0,−1/2).

•

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

•

•

The fixed points of the actions are

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]

whose images under the moment map coincide with the vertices of the triangle

φ(CP2).

Theorem 3.1 (Delzant). There is a one-to-one correspondence between symplectic

toric manifold and Delzant polytopes.

3.3 Blow-up

3.3.1 Blow-up of a symplectic manifold

The concept of blow-up will be described very briefly in this section. A result on

blow-up will stated at the end and will be used in a later section.

Let us describe first symplectic blow-up at the origin of Cn, the stan-

dard symplectic space with the symplectic form ω0 [see example (1.1)]; this is by

definition the space

L =
{(

(z1, . . . , zn), [w1 : · · · : wn] ∈ C
n ×CP

n−1
)∣∣wjzk = wkzj for all j, k

}
.

(3.1)

The space L may be seen as the space Cn where the origin has been replaced

smoothly with the projective space CP
n−1, for the following two reasons. First,

the natural projection

β : L → C
n

is diffeomorphic when restricted to the subset β−1
(
Cn−{0}

)
; second, the preimage

of the origin, β−1(0), is diffeomorphic to CP
n−1.

L

p
��

β �� Cn

CP
n−1

(3.2)
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The blow-up L defined above is a complex submanifold of Cn × CP
n−1. A sym-

plectic form on Cn ×CP
n−1 is ω0 + εΩ, where

ω0 =

n∑
i=1

dxi ∧ dyi

is the standard symplectic form, ε is a positive real number, and

Ω :=
i

2|z|4

n∑
j,k=1

(
|zj|

2dzk ∧ dz̄k − z̄jzkdzj ∧ dz̄k
)
.

is called the Fubini-Study form on CP
n−1.

The blow-up L, as a complex submanifold of Cn × CP
n−1, inherits the sym-

plectic form of the latter; in other words, the symplectic form on the blow-up

L is β∗ω0 + εp∗Ω, where p : L → CP
n−1 denotes the natural projection [see the

diagram (3.2)].

Now let M be a symplectic manifold with symplectic form ω, and let x be an

arbitrary point of M . By theorem (1.1), there exists a neighborhood of x which

can be identified symplectically with Cn, the n-dimensional complex space with

the standard symplectic form ω0. Therefore the symplectic blow-up at this point

is done just as in the case of Cn above.

The following theorem will be used later.

Theorem 3.2. The blow-up at one point of a symplectic manifold M is diffeo-

morphic to the connected sum M#CP
n, where CP

n denotes the n-dimensional

complex projective space with reversed orientation.

3.3.2 Blow-up of a symplectic toric manifold

The following theorem will also be used in a later section.

Theorem 3.3. Let M be a symplectic toric manifold with symplectic form ω, torus

action Tk, and moment map φ. If x ∈ M is a fixed point under the action of Tk,

then the blow-up of M at x is a toric manifold; moreover, its Delzant polytope is

obtained by replacing the vertex φ(x) of the polytope φ(M) by the n vertices

φ(x) + εui, i = 1, . . . , n

where ε is a positive number of appropriate magnitude, and u1, . . . , un the primitive

inward-pointing edge vectors at φ(x), so that the rays φ(x) + tui for t ≥ 0 form

the edges of φ(M) at φ(x).

33



Example 3.4. According to example (3.3), the projective space CP2 is a symplec-

tic toric manifold whose the corresponding Delzant polytope is the triangle with

vertices (−1/2, 0), (0, 0), and (0,−1/2).

•

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

•

•

As mentioned in that example, the fixed point of the torus action [0 : 0 : 1] is

mapped to the vertex (0,−1/2) of the polytope. A blow-up at the point [0 : 0 : 1]

then results in a new symplectic toric manifold whose Delzant polytope is obtained

by cutting the triangle in the direction of the side opposite to the vertex (0,−1/2).

Therefore, the original polytope becomes

•

�
�
�
�
�
�
�

• •

• •

According to theorem (3.2), the manifold after blow-up is diffeomorphic to the

connected sum CP
2#CP

2.
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Chapter 4

Torus action on the space of polygons

We give in this chapter an exposition of the result that one may define a torus

action on the space of polygons of non-vanishing diagonals. This result is due to

Kapovich-Millson [7]. The examples in this chapter are elaborated in Haussmann-

Knutson [5].

4.1 Torus action on the space of polygons of non-vanishing

diagonals

In this section we give an exposition of the same materials found in Kapovich-

Millson [7]. We shall use an alternative definition of a moment map given in

[6]. Finally, except for the proof of the elementary lemma (4.1), all proofs are

contained in [7].

We recall that mP3
+(α) denotes the space of polygons in R3 of side lengths

α = (α1, . . . , αm), identified up to translations and proper rotations. Each polygon

ρ in mP3
+(α) has m− 3 diagonals

ρ1 + ρ2, . . . , ρ1 + · · ·+ ρm−2,

some of which may be zero. Let Mα consist of the polygons in mP3
+(α) none of

the diagonals of which is zero. In Mα define the functions

lk : Mα → R, k = 1, . . . , m− 2
ρ �→ |ρ1 + · · ·+ ρk+1|

that measure the lengths of the diagonals. It will be shown below that correspond-

ing to each lk there is a flow ψt
k, where t denotes a real number, that rotates a

part of ρ in Mα around the k-th diagonal, and that the period of ψt
k(ρ) is 2π. In

other words, we will have the following theorem.
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Theorem 4.1. The space Mα, consisting of polygons that have no zero diagonal,

admits a free Hamiltonian action by a torus Tm−3. The moment map is

φ : Mα → Rm−3

ρ �→ (l1, · · · , lm−3).

We shall use an alternative definition of a moment map, one that makes use of

the concepts of Hamiltonian vector fields and Poisson brackets. Let f be a smooth

function on a symplectic manifold M with symplectic form ω. Associated to f is

the Hamiltonian vector field Hf defined by the relation

ω(Hf ,−) = −df.

The Poisson bracket of two smooth functions f and g on M is defined as

{f, g} := ω(Hf , Hg),

where Hf and Hg are the Hamiltonian vector fields associated to f and g.

Now let a Lie group G be a symplectic action on M . Moreover, let g denote

the Lie algebra of G, and g∗ the dual of g. The action is called a Hamiltonian

action if there is a map

φ : M → g∗ (4.1)

such that for all ξ and η in g,

1. Hφξ = ξM , where here and below, the function φξ : M → R is defined by

the formula

φξ(x) := 〈φ(x), ξ〉,

and ξM is the vector field onM defined by the formula [compare with formula

(1.3)]
g → TxM
ξ �→ ξM (x) := d

dt

∣∣
t=0

(
exp(tξ) · x

)
,

2. {φξ, φη} = −φ[ξ,η], where [ξ, η] means the Lie bracket of the vectors.

The map φ : M → g∗ is called a moment map for the action.

The theorem above follows from the following results that will be developed

for the space mP3
+(α). In particular, the functions lk will be derived from certain
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functions fk on mP3
+(α); moreover, associated to fk are the flows ϕt

k which have

the same geometric meaning just like the flows ψt
k associated to the lk, and which

imply that ψt
k can be found.

It was shown in section (2.3) that mP3
+(α) inherits a symplectic form, by sym-

plectic reduction, from the form

ω :=

n∑
j=1

1

α2
j

p∗jν

on the space

Sα = S2(α1)× · · · × S2(αm),

where ν is the symplectic form on the sphere S2(αi) of radius αi defined by

νx(u, v) = x · (u× v),

and where the action is the action of SO(3) on the component sphere. We note

that, generally, on a symplectic manifold M , the non-degeneracy of the form ω

means that one may identify vector fields and 1-forms on M by the relation

X �→ ω(X,−)

where X denotes a vector field on M . Thus, there always exists a Hamiltonian

vector field for a given smooth function on M . On mP3
+(α) define the functions

fk : ρ = (ρ1, . . . , ρm) �→
1

2
|ρ1 + · · ·+ ρk+1|

2, k = 1, . . . , m− 3

that correspond to the lengths squared of the k-diagonals of ρ in mP3
+(α). It is

shown in Kapovich-Millson [7] that the Hamiltonian vector field Hfk associated

to fk is given by

Hfk(ρ1, . . . , ρm) = (μk × ρ1, . . . , μk × ρk+1, 0, . . . , 0)

where

μk = ρ1 + · · ·+ ρk+1

is the k-th diagonal of ρ.

Proposition 4.1.

{fk, fl} = 0

for all k, l.
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Proof. The Poisson bracket is anticommutative and therefore it may be assumed

that k < l. Then

{fk, fl} = ω(Hfk , Hfl)

=
∑k+1

i=1
ρi
α2

i

·
(
(μk × ρi)× (μl × ρi)

)
=

∑k+1
i=1 [ρi · (μk × μl)]

= μk · (μk × μl)
= 0,

where we have used these vector identities: If a,b, c are vectors in R3, then

a · (b× c) = −b · (a× c)
a× b× c = (c · a)b− (c · b)a.

The flows ϕt
k associated to fk are the solutions of the following systems of

ordinary differential equations

dρi
dt = μk × ρi, 1 ≤ i ≤ k + 1,
dρi
dt = 0, k + 2 ≤ i ≤ m.

(4.2)

To solve the systems of equations, we identify the Lie algebra of SO(3) with R3

with the cross product (×) and, for each vector u in R3, define, from the operator

adu : R3 → R3

v �→ u× v

the element exp(adu) in SO(3) by the power series

exp(adu) :=

∞∑
n=0

(adu)
n

n!
.

The solutions of the systems of equations (4.2) is the result of the following

proposition.

Proposition 4.2. Suppose ρ is a polygon in mP3
+(α) with sides ρ1, . . . , ρm. Then

ρ(t) := ϕt
k has sides ρ1(t), . . . , ρm(t) given by

ρi(t) = exp(tadμk
)ρi, 1 ≤ i ≤ k + 1

ρi(t) = ρi, k + 2 ≤ i ≤ m.

Let us show first, by the following lemma, the interpretation of the flows ϕt
k

as rotations of part of a polygon about the k-th diagonal.

Lemma 4.1. Let Π denote the orientated plane in R3 orthogonal to the vector u.

Then exp(adu) is the rotation in Π through an angle of |u| radians. In particular,

the curve exp(tadu) has period 2π/|u| and angular velocity |u|.
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We recall first some facts about rotations. An infinitesimal rotation R may be

written as

R 
 I + A

for some infinitesimal matrix A. Therefore,

RTR 
 I + AT + A.

The orthogonal relation RTR = I required of a rotation implies that AT = −A,

or that A = θJ for some real number θ and where J is the 2-by-2 antisymmetric

matrix

J =

(
0 1
−1 0

)
.

Therefore, an infinitesimal rotation R may be written as

R 
 I + θJ .

Rotation through a finite angle θ is obtained by accumulating infinitesimal rota-

tions and has the form

R(θ) = lim
N→∞

R

(
θ

N

)N

= lim
N→∞

(
1 +

θ

N
J
)N

= eθJ . (4.3)

Proof of lemma (4.1). Choose u to be the z-axis, so that u = (0, 0, |u|). If v =

(v1, v2, 0) is a vector in the plane Π orthogonal to u, then

u× v =

(
x̂ ŷ ẑ
0 0 |u|
v1 v2 0

)
= |u|(−v2)x̂+ |u|v1ŷ.

Thus adu corresponds to the operator

|u|

(
0 1
−1 0

)
.

Comparing this form with the form in (4.3) it is seen that the lemma is verified.

Proof of proposition (4.2). The last n − k − 1 sides remain constant throughout

and so may be ignored. Define

ρ̄1 = ρ1 + · · ·+ ρk+1 = μk, ρ̄i = ρi, 2 ≤ i ≤ k + 1.

We obtain then the following system of equations

dρ̄1
dt =

∑k+1
i=1

dρi
dt =

∑k+1
i=1 μk × ρi = μk × μk = 0

dρ̄i
dt = dρi

dt = μk × ρi = ρ̄1 × ρ̄i, 2 ≤ i ≤ k + 1.
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Then ρ̄1, and therefore μk, is invariant under the flow. Integration yields

ρi(t) = exp(tadμk
)ρi, 2 ≤ i ≤ k + 1.

To find ρ1(t), we note that

exp(tadμk
)μk =

k+1∑
i=1

exp(tadμk
)ρi =

k+1∑
i=1

ρi(t) = μk

and therefore

ρ1(t) = μk(t)−

k+1∑
i=2

ρi(t) =

k+1∑
i=1

ρi(t)−

k+1∑
i=2

ρi(t) = exp(tadμk
)ρ1.

On account of the proposition just shown and of lemma (4.1), we have the

following corollary.

Corollary 4.1. The curve ϕt
k(ρ) is periodic with period 2π/lk, where

lk = |ρ1 + · · ·+ ρk+1|

is the length of the k-diagonal μk of ρ.

The functions l1, . . . , lm−3 are smooth on Mα and also satisfy the relation

{lk, ll} = 0. (4.4)

Moreover, since fk = l2k/2, we have

dlk =
dfk
lk

and consequently the Hamiltonian vector fields associated to the lk are

Hlk = Hfk/lk.

Since the lk are invariant under the flow ϕt
k, the solution procedure in the above

proposition also works for Hlk . Let ψ
t
k be the flows of Hlk . We have the following

proposition.
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Proposition 4.3. Suppose ρ is a polygon in Mα with sides ρ1, . . . , ρm. Then

ρ(t) := ψt
k has sides ρ1(t), . . . , ρm(t) given by

ρi(t) = exp(tadμk/lk)ρi, 1 ≤ i ≤ k + 1
ρi(t) = ρi, k + 2 ≤ i ≤ m.

The interpretation of the flows is analogous: ψt
k rotates part of ρ about the

k-th diagonal with constant angular velocity 1. Hence ψt
k(ρ) has period 2π. We

conclude that Mα admits a free action by a torus Tm−3.

The Lie algebra of the torus may be identified with Rm−3 in which, for any

two vectors ξ and η one has [ξ, η] = 0. The basis vectors in Rm−3 are associated

with the functions lk. On account of the relation (4.4) for the functions lk, and on

account of the fact that the flows ψt
k are solved directly in terms of the Hamiltonian

vector fields associated to the lk, it follows directly that the map

φ : Mα → Rm−3

ρ �→ (l1, · · · , lm−3).

is a moment map for the action of the torus on Mα, according to the criteria in

the definition of a moment map given at the beginning of this section. Theorem

(4.1) is then established.

4.2 The space of polygons of 4 and of 5 sides

Here we apply the results above to some of the simplest examples. In reference

[7] there are elaborations of these examples. The reference also contains more

examples that require results not discussed in this text.

4.2.1 Polygons with 4 sides

The space of polygons with 4 sides in three-dimensional space is denoted, according

to our notation, by the symbol 4P3
+(α), where

α = (α1, α2, α3, α4)

is generic [see definition in section (2.2.2)]. For this space, the length of the

diagonal, which according to theorem (4.1) is also the moment map,

4P3
+(α) → R

ρ �→ |ρ(1) + ρ(2)|
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does not vanish when α1 �= α2 or α3 �= α4. This condition implies that the image

of the moment map, which will be denoted by Δ, is the intersection of the two

intervals

[|α1 − α2|, α1 + α2], [|α4 − α3|, α4 + α3]

which is a closed interval. This coincides with the Delzant polytope in example

(3.1). The space 4P3
+(α) is diffeomorphic to CP

1.

4.2.2 Polygons with 5 sides

The space of polygons with 5 sides in three-dimensional space is denoted, according

to our notation, by the symbol 5P3
+(α), where

α = (α1, α2, α3, α4, α5)

is generic [see definition in section (2.2.2)]. For this space, the lengths of the

diagonals, which according to theorem (4.1) make up the moment map

4P3
+(α) → R2

ρ �→
(
|ρ(1) + ρ(2)|, |ρ(1) + ρ(2) + ρ(3)|

)
,

do not vanish when α1 �= α2 and α4 �= α5. This condition implies that the image of

the moment map, which will be denoted by Δ, is the intersection of the rectangular

region

[|α1 − α2|, α1 + α2]× [|α5 − α4|, α5 + α4]

with the non-compact rectangular region that satisfies the following set of inequal-

ities

x+ y ≥ α3, y ≥ x− α3, y ≤ x+ α3, x, y ≥ 0.

The Delzant polytope Δ therefore has at most 7 sides.

Figure 4.1: Δ as the intersection of two regions

We shall only look at the case when Δ has three and four sides. In the case Δ

has three sides, it is the triangle

•

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

•

•
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which coincides with the image of CP2 treated in example (3.3).

In the case Δ has four sides, it is either the square

• •

• •

which coincides with the image of S2 × S2 treated in example (3.2), or it is the

figure

•

�
�
�
�
�
�
�

• •

• •

which is obtained by blowing-up CP
2 at a point as treated in example (3.4) (ac-

cording to that example, the resulting manifold after the blow-up is diffeomorphic

to CP
2 ×CP

2).
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Appendix A

Differential forms and some related

properties

In this appendix we give a brief discussion of differential forms and some related

properties. More can be found in [3].

The algebraic rules for handling differential forms may be thought of as being

suggested by the laws of transformations of integrals when the integration variables

are changed. Let f be a function of the n variables x1, . . . , xn. In the multiple

integral ∫ ∫
· · ·

∫
f(x1, . . . , xn)dx1dx2 · · ·dxn

we pick out the differentials dx1, . . . , dxn and compose from them the entities (the

indices run from 1 to n)

1, dxi, dxi ∧ dxj , dxi ∧ dxj ∧ dxk, . . . , dx1 ∧ · · · ∧ dxn, i < j < k, . . . (A.1)

which we shall treat as being independent from one another. On these entities we

define an algebra according to the rule

dxi ∧ dxj = −dxj ∧ dxi. (A.2)

For example, let

ω0 =

n∑
i=1

dxi ∧ dyi.

It then follows that the product of ω0 with itself n times is, using the rule above,

ωn
0 =

n∑
i1,...,in=1

dxi1 ∧ dyi1 ∧ · · · ∧ dxin ∧ dyin = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

A differential q-form is either an expression of the form

fi1···iqdx
i1 ∧ · · · ∧ dxiq
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or more generally a sum of such expressions.

To obtain a q + 1-form from a q-form we define the differential operation

d according to the following rule. If f is a function of n variables, we take the

differential of f according to the formula of calculus:

df =

n∑
i=1

∂f

∂xi
dxi. (A.3)

For a single expression

ω = fi1···iqdx
i1 ∧ · · · ∧ dxin

we define

dω = dfi1···iq ∧ dxi1 ∧ · · · ∧ dxiq .

Finally, for a general q-form which is a sum of single expressions as above, we take

the differential of each term in the sum and add the results. For example, if there

are only two variables which we shall denote x and y, the differential of the form

ω = xdy

is the form

dω =

(
∂x

∂x
dx+

∂x

∂y
dy

)
∧ dy = dx ∧ dy.

The following identities are useful for our text. By (A.2) an expression

fi1···iqdx
i1 ∧ · · · ∧ dxin

is necessarily zero if any two indices coincide. Hence, if there are only n indepen-

dent variables x1, . . . , xn, the differential of any n-form is necessarily zero. For

example, if

ω = fdx1 ∧ · · · ∧ dxn

the differential of ω is

dω =

n∑
i=1

∂f

∂xi
dxi ∧ dx1 · · ·dxn

which must be zero, since every term in the sum contains a repeated index and so

vanishes.
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Moreover, according to (A.3), df vanishes if f is a constant function. It follows

that the differential of any combination of the independent entities (A.1) vanishes.

For example, if

ω0 =

n∑
i=1

dxi ∧ dyi

then dω0 vanishes.

Differential forms may be treated as objects that operate on tangent vectors.

Let us recall here only the essential points; for further discussion please see [3].

Every point of an n-dimensional manifold may be given a set of local coordinates,

say x1, . . . , xn, associated with a local orthogonal coordinate system. If f is a

function given in terms of the local variables, the rates of change of f , in the

directions of the coordinate axes of the local coordinate system, at a point are

given by the partial derivatives

∂f

∂xi
, i = 1, . . . , n,

all evaluated at the point. These partial derivatives are obtained by evaluating

the partial derivative operators

∂

∂xi
, i = 1, . . . , n

on f at the given point. We treat these operators as independent entities and

form from them the various sums
n∑

i=1

ai
∂

∂xi

(here ai denote arbitrary real numbers) which we shall call tangent vectors at

the given point of the manifold. Using the rule of calculus,

∂xi

∂xj
= δij ,

we set up the following rule: at each point of the manifold, the differentials dxi

are to be treated as a dual basis to the operators ∂/∂xj . Then 1-forms belong

to the dual of the tangent space at the point, and they operate linearly on the

tangent vectors there. For example, given the total change of a function f at a

point, namely the 1-form

df =

n∑
i=1

∂f

∂xi
dxi,
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we obtain the rate of change in a given direction by computing (at the point in

question)
∂

∂xj
(df) =

∂f

∂xj
.

There is a generalization of the above that treats n-forms as objects that

operate on n tangent vectors according to some algebraic rules. Let us mention

the following useful formula. If v1 and v2 are two tangent vectors at a point of a

manifold and, say dx1∧dx2, is a differential 2-form, then one may apply the form

to the tangent vectors; the value is the determinant of the matrix
(
dxi(vj)

)
. For

example, for the 2-form

ω0 =

n∑
i=1

dxi ∧ dyi

and two arbitrary tangent vectors of Cn,

ξ1 =

n∑
j=1

(xj1
∂

∂xj
+ yj1

∂

∂yj
), ξ2 =

n∑
j=1

(xj2
∂

∂xj
+ yj2

∂

∂yj
),

the application of the form on the tangent vectors is the sum of the determinants

of the matrices (
dxi(ξ1) dxi(ξ2)
dyi(ξ1) dyi(ξ2)

)
,

which is equal to

ω(ξ1, ξ2) =

n∑
k=1

(
dxk(ξ1)dy

k(ξ2)− dxk(ξ2)dy
k(ξ1)

)
=

n∑
k=1

(xk1y
k
2 − xk2y

k
1).
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