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Abstract

Novel Video Completion Approaches and Their Applications

Ali Mosleh, Ph.D.

Concordia University, 2013

Video completion refers to automatically restoring damaged or removed objects in a

video sequence, with applications ranging from sophisticated video removal of undesired

static or dynamic objects to correction of missing or corrupted video frames in old movies

and synthesis of new video frames to add, modify, or generate a new visual story. The

video completion problem can be solved using texture synthesis and/or data interpolation

to fill-in the holes of the sequence inward. This thesis makes a distinction between still

image completion and video completion. The latter requires visually pleasing consistency

by taking into account the temporal information. Based on their applied concepts, video

completion techniques are categorized as inpainting and texture synthesis. We present a

bandlet transform-based technique for each of these categories of video completion tech-

niques. The proposed inpainting-based technique is a 3D volume regularization scheme

that takes advantage of bandlet bases for exploiting the anisotropic regularities to recon-

struct a damaged video. The proposed exemplar-based approach, on the other hand, per-

forms video completion using a precise patch fusion in the bandlet domain instead of patch

replacement. The video completion task is extended to two important applications in video

restoration. First, we develop an automatic video text detection and removal that benefits

from the proposed inpainting scheme and a novel video text detector. Second, we propose

a novel video super-resolution technique that employs the inpainting algorithm spatially

in conjunction with an effective structure tensor, generated using bandlet geometry. The

experimental results show a good performance of the proposed video inpainting method

and demonstrate the effectiveness of bandlets in video completion tasks. The proposed

video text detector and the video super resolution scheme also show a high performance in

comparison with existing methods.
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Chapter 1

Introduction

1.1 Video Completion

Digital completion is a technique commonly used for restoring damaged images or videos.

It is often performed using interpolation and reconstruction of the missing parts. Gen-

erally speaking, completion techniques are divided into two main categories: inpainting,

and texture synthesis. Inpainting-based methods employ interpolation techniques to recon-

struct the missing data using the neighboring available structures. In the texture synthesis

methods, a promising available part of the 2D or 3D data is selected and propagated to the

missing parts1. It is however important to distinguish between image and video completion

techniques.

Image completion is a technique for restoring damaged images or completing the area

of removed objects, which are manually selected by a user to be removed. Typical applica-

tions of image completion include old painting restoration or removal of the scratches from

pictures. One of the pioneering works in this field is [1], which applies non-linear partial

differential equations (PDE) to perform image inpainting in an effort to imitate what artists

manually do to fix old pictures. This idea is developed in [2] with a precise and efficient

solution that applies fluid dynamic Navier-Stoke equations. Also, the PDE-based image

inpainting is followed in [3] which derives a third order PDE equation based on Taylor

1Often, in literature, image and video completion techniques are called inpainting techniques, whether

they are texture synthesis or inpainting based approaches.
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(a)

(b)

(c)

Figure 1.1: Samples of video completion provided in [9]. a) Original frames. b) Frames after object removal.

c) Frames’ hole completion result.

expansion to propagate the level lines. A similar idea of interpolation is used in other im-

age inpainting methods such as [4, 5]. In the texture synthesis based image completion

methods, texture synthesis is done by sampling a texture model in the undamaged part of

the image, based on the geometrical patterns of the image, and fill-in the hole by the sam-

pled texture pattern. One of the most promising methods is the exemplar-based method

proposed in [6] which efficiently takes the property of the edges into account to perform

completion. There are some other innovative methods that apply the structure of the image

texture, such as [7], which uses curvelet structure analysis to perform the inpainting task.

The technique in [8] applies a modified grouplet transform to find the geometrical structure

of the image texture, and then performs image inpainting by a global optimization in the

grouplet domain.

Video completion is defined as a problem of filling the missing parts of video frames

caused by the removal of unwanted objects or restoration of the scratched frames. Figure

1.1 shows sample frames of a video sequence and the visually pleasing completion results

after removing one object. There are important issues about video completion/inpainting

that make it different from a single image completion. First, manually selecting a target

area to be removed is almost impossible, in large part because we deal with many frames,

and not only a single 2D image. Second, human recommended structural information,

2



such as texture samples, is not easy to obtain. Therefore, video completion involves a ro-

bust tracking and also an effective textural propagation. Third, one may consider video

inpainting as an extension of image inpainting in the form of frame-by-frame image in-

painting. However, video inpainting is a much more challenging task than what it seems.

Due to sensitivity of human visual system to temporal aliasing, temporal consistency is of

paramount importance in video completion tasks. This must be taken into consideration in

addition to spatial consistency, which must be preserved for each frame in order to produce

visually pleasing results.

Video completion methods can be broadly divided into two main categories: Inpainting-

based methods, and exemplar-based methods. The inpainting-based video completion

methods are similar to the image inpainting ones that perform filling-in process via in-

terpolation of the available data mostly by applying PDEs. However, these methods are

usually applied frame-by-frame on the video, and thus, most of them do not satisfy the

temporal consistency. It is worth noting that this group of video completion methods

suffer from smoothness effect in the task of inpainting large missing regions. However,

inpainting-based video completion methods are very effective in the case of dealing with

small missing data. As a result, they can be appropriate for the error concealment prob-

lem and also logo, text and scratch removal tasks that normally need to handle small and

thin missing regions. The exemplar-based methods are quite similar to the texture synthe-

sis based image inpainting methods. However, in these techniques, the texture (structure)

sampling is carried out by considering all the frames, and also the moving objects of the

frames, not just a single image as it is done in the texture synthesis based image completion

techniques. Several exemplar-based video completion methods have been proposed in the

literature; some of the most effective ones are discussed in this thesis. These methods are

preferable in video completion of large missing regions generated after undesired object

removal.

3



1.2 Contributions

In this thesis we look at the video completion task from a different view. To this end,

we benefit from the advantages of new generations of wavelets in video completion. We

introduce an efficient video completion approach by applying the bandlet transform [10],

which is one of the latest developed generations of wavelets. The effectiveness of ban-

dlets in both inpainting-based and exemplar-based video completion has been exploited in

our research. First, an examplar-based video completion method that takes advantage of a

bandlet-based patch fusion strategy is proposed. Then, an inpainting-based video comple-

tion that performs the task by means of an optimization in the bandlet transform domain is

proposed. In fact, this is a 3D volume regularization algorithm that benefits from bandlet

bases in exploiting the anisotropic regularities. The resulting video of the exemplar-based

approach is provided to the 3D regularization in order to refine the completion results. In

contrast to many of the state-of-the art video inpainting techniques, our method preserves

the temporal consistency quite well. The structural information revealed by bandlets has

an important role in the completion task. Our experimental results show that the proposed

video completion technique maintains both the spatial and temporal consistency, and also

demonstrate the effectiveness of the bandlet transform in video completion. To validate the

importance of video completion in classical restoration problems, we studied two different

video restoration problems: i) automatic video text/caption removal, and ii) video spatial

super-resolution. Then, we developed a solution for each problem using video inpainting.

We present a two stage framework for automatic video text removal in order to detect

and remove embedded video texts and fill-in their remaining regions by appropriate data.

In the video text detection stage, text locations in each frame are found via an unsupervised

clustering performed on the connected components produced by the stroke width transform

(SWT). Since, SWT needs an accurate edge map, we develop a novel edge detector that

benefits from the geometric features revealed by the bandlet transform. Next, the motion

patterns of the text objects of each frame are analyzed in order to localize video texts. The

detected video text regions are removed, and then the video is restored by the 3D volume

regularization inpainting scheme. The experimental results demonstrate the effectiveness

4



of both our video text detection approach and the video completion technique in the case

of text removal, and consequently the whole automatic video text removal and restoration

process.

A new framework for single image and video super-resolution is also proposed in this

thesis. The main idea is to employ the geometric details of the image in a way that mini-

mizes the possible artifacts caused by the super-resolution process. To this end, we benefit

from the bandlet transform that captures the image surface geometry quite effectively. The

proposed single image super-resolution method is a two-stage scheme. In the first step,

edges and high frequency details of the image are interpolated in the enlarged image. This

interpolation uses a structure tensor, which is modified according to the geometry layer re-

vealed by the image bandlets. In the second stage, the edge interpolated image is fed to the

inpainting scheme in order to estimate the pixel values for the new spatial locations within

the enlarged image. These locations are treated as missing pixels, and then a precise regu-

larization in the bandlet domain is performed to fill-in the missing pixels. In a bid to avoid

flickering artifacts after frame-by-frame spatially super-resolving videos, a pixel intensity

refinement stage is added to the procedure which takes into account the motion flows of

the frames. Due to the use of geometric details that bandlet transform captures and the

edge interpolation stage, our method results in high quality, high resolution images with

no over-smoothing or blurring effect while in the case of video sequences it also preserves

temporal consistency.

The contributions of this thesis are summarized as follows:

� A comprehensive literature review is presented [11] and a video completion/inpaiting

framework is proposed [12–14].

� An accurate video text detection technique is proposed and is employed in an automatic

video inpaiting-based text removal scheme [15, 16].

� A single image and video super-resolution approach is proposed that employs an in-

painting scheme and a bandlet-based structure tensor [17].
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1.3 Thesis Overview

The organization of this thesis is as follows:

� In Chapter 2, the most practical existing video completion, both inpainting based

and exemplar-based methods, are introduced and discussed. Also, an overview of

the bandlet transform is presented.

� In Chapter 3, we propose a new method for video completion tasks by applying the

bandlet transform. First, an exemplar-based video completion scheme is presented.

Then, an inpainting-based video completion method is introduced to refine the com-

pletion results of the exemplar-based technique. Experimental results are provided

to show the effectiveness of our method.

� In Chapter 4, we propose a novel technique for text localization in video sequences

and introduce an automatic video caption removal scheme by employing our pro-

posed video inpainting approach.

� In Chapter 5, we develop a new image/video super-resolution algorithm as another

application of our proposed video completion technique.

� Finally, Chapter 6 provides concluding remarks and future work directions.
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Chapter 2

Background

In this chapter, a comprehensive literature review of video completion techniques, includ-

ing the interpolation methods and the exemplar-based ones, is presented. Since our work

largely relies on the bandlet transform, an overview of the bandeltization processes is also

presented.

2.1 Video Completion in Literature

2.1.1 Interpolation-based Methods

Interpolation-based techniques are mainly edge continuing methods, which apply data in-

terpolation mostly using PDEs to pull the data (edge structure) from the boundary to the

interior region of the missing region. These methods are often performed frame-by-frame

and do not take the temporal information of the video sequences into account quite well.

Therefore, temporal consistency is not satisfied by these methods. Besides, in the case of

dealing with large missing pixels, these methods produce a blurring effect in the inpainting

results. An example of the blurring effect is illustrated in Figure 2.1. However, they are

appropriate for small missing areas, such as scratches in old movies.
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(a) (b)

Figure 2.1: Blurring effect after inpainting. (a) Original frame. (b) Inpainted frame after removal of the bench

and three people [12].

Navier-Stokes Fluid Dynamics Adaptation to Digital Inpainting

One of the pioneering PDE-based methods is the one introduced in [2] which was followed

by [1]. The approach applies ideas from classical fluid dynamics to propagate isophote

lines of the image continuously from the exterior into the inpainting zone. The basic idea

is to assume the image intensity as a stream function for a 2-D flow. The Laplacian of

the image intensity is considered as the vorticity of the fluid; it is pushed to the inpainting

region by a vector field which is defined by the stream function. The algorithm is designed

to continue isophote lines, while matching gradient vectors at the boundary of the region of

the image to be filled-in. The approach directly uses the Navier-Stokes equations for fluid

dynamics, which have the advantage of well-developed theoretical and numerical results

while introducing the importance of propagating both the gradient direction (geometry)

and gray-value (photometry).

The scheme of the PDE-based algorithm proposed in [1] which is designed to project

gradient of the smoothness of the image intensity in the direction of the isophotes has lead

to a discrete approximation of the PDE:

It = ∇⊥I.∇�I (2.1)

where ∇⊥ denotes the perpendicular gradient (−∂y, ∂x) and � denotes the Laplace operator

(∂2

y2
+ ∂2

x2) of the image intensity I . An additional anisotropic diffusion of the image

produces a PDE in the form of:

It = ∇⊥I.∇�I + ν∇.(g(|∇I|)∇I) (2.2)

There is a vital condition that, in the inpainting region of the image, the isophote lines
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which are in the direction of ∇⊥I must be parallel to the level curves of the smoothness

�I of the image intensity. Therefore, here, the goal is to develop Eq. (2.1) or Eq. (2.2) to

a steady state that satisfies this condition which for ν = 0 becomes:

∇⊥I.∇�I = 0 (2.3)

These equations can be adapted to the fluid dynamics. Equation (2.1) is a transport

equation that converts the image intensity I along level curves of the smoothness �I . This

is true if one notes that Eq. (2.1) is equivalent to DI/Dt = 0 where D/Dt is the material

derivative ∂/∂t + v.∇ for the velocity field v = ∇⊥�I . In fact, the velocity field v

converts I in the direction of �I .

Navier-Stokes equations govern the incompressible Newtonian fluids. These equations

relate the velocity vector field v to a scalar pressure p:

vt + v.∇v = −∇p+ ν�v, ∇.v = 0. (2.4)

In the 2-D space, the stream function Ψ that satisfies ∇⊥
Ψ = v belongs to the velocity field

v, which is divergence-free. By means of taking the curl of the first equation in Eq. (2.4)

and applying some basic facts about the 2D geometry, a simple diffusion equation can be

computed:

wt + v.∇w = ν�w (2.5)

where vorticity w = ∇× v satisfies Eq. (2.4).

In fact, the vorticity is related to the stream function through the Laplace operator

�Ψ = w. In absence of viscosity, ν = 0, the Euler equations of inviscid flow are ob-

tained. In terms of the stream function, based on Eq. (2.5) a steady state inviscid flow must

satisfy:

∇⊥
Ψ.∇�Ψ = 0 (2.6)

This equation implies that the stream function, the vorticity and the Laplacian of the stream

function must have the same level curves.

The stream function for inviscid fluids in two dimensions Eq. (2.6) satisfies the same

equation as the steady state image intensity Eq. (2.3). Therefore, in order to solve the 2D
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Table 2.1: Analogy of Navier-Stokes and image inpainting problems [2].

Navier-Stokes Image Inpainting

stream function Ψ image intensity I

fluid velocity v = ∇⊥Ψ isophote direction ∇⊥I

vorticity w = �Ψ smoothness w = �I

fluid viscosity ν anisotropic diffusion ν

inpainting problem, one can find a stream function for inviscid fluid equation, which has

very strong and developed solutions.

The problem is formulated to design a Navier-Stokes based method, using the vorticity-

stream form Eq. (2.5), for the image inpainting application. This is done by considering

Ω as the inpainting region and the image intensity I0 as a smooth function with possibly

large gradient outside Ω, and I0 and �I0 be known on the boundary area ∂Ω. Analogous

quantities are summarized in Table 2.1.

Considering w as the smoothness of the intensity �I , the transport equation Eq. (2.2)

can be solved. Instead, using w the vorticity transport equation is solved:

∂w/∂t+ v.∇w = ν∇.(g(|∇w|)∇w) (2.7)

At the same time, the Poisson problem is solved to recover the image intensity I which

defines velocity field (v=∇⊥I) in (2.7):

�I = w, I|∂Ω = I0 (2.8)

For g = 1 the numerical solutions of Eq. (2.7-2.8) lead to a classical way to solve both

the dynamic fluid equations and to obtain a steady state [2].

This method does not take into account the temporal information of the video sequences

and is performed frame-by-frame. Moreover, it is only appropriate for the narrow regions

to be inpainted and causes blur effect for large regions. However, this method opened a

new issue in the field of automatic digital image/video restoration and has been followed

by many other methods in the literature.

Discrete Laplace Regularization-Based Method

An image and video inpainting method was introduced in [18], which benefits from discrete

p-Laplace regularization on a weighted graph introduced in [19]. This method does not
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perform frame-by-frame inpainting unlike many of the inpainting methods, but considers

the whole video as a volume to perform the inpainting in all the frames to fill-in the missing

regions.

A function f 0
: V → R

m is considered as the image or a video (here, an image is taken

into account as a single frame video). This function is defined over the set of vertices, V ,

of a weighted graph G = (V,E,w). The subset of nodes of the missing region is denoted

by V0 ⊂ V . The purpose of this inpainting method is to interpolate the known values of f 0,

V \V0, to the unknown region, V0, which is solved as the discrete regularization using the

weighted p-Laplace operator by minimizing the following equation:

f ∗
= min

f∈H(V )

{
1

p

∑
v∈V

|∇f(v)|p +
λ(v)

2
||f − f 0||2H(V )

}
(2.9)

where λ is the fidelity parameter, ∇f denotes the weighted gradient of the function f over

the graph, ∇f(v) is the local variation of the weighted gradient operator of the function f

at the vertex v.

λ(v) =

⎧⎨⎩ λ = constant if v ∈ V \V0

0 otherwise
(2.10)

|∇f(v)| =

√∑
u∼v

w(u, v)(f(v)− f(u))2 (2.11)

Equation (2.9) involves the main term, ∇f(v), which represents the weighted gradient

over the graph. The problem of Eq. (2.9) has a unique solution for p ≥ 1, which satisfies:

(�p)f(v) =
1

p

∑
u∼v

γ(u, v)(f(v)− f(u)) (2.12)

γ(u, v) = w(u, v)(|∇f(v)|p−2
+ |∇f(u)|p−2

) (2.13)

where (�pf)(v) is the weighted p-Laplace operator on H(V ) with p ∈ (0,+∞) at the

vertex v.

In the graph, Gk1,k2,k3 = (V,E,w), u ∼ v denotes that a vertex u belongs to the

neighborhood of v defined as:
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Nk1,k2,k3(v) =

⎧⎨⎩ u = (i′, j′, t′) ∈ V \V0 :

|i− i′| ≤ k1, |j − j′| ≤ k2, |t− t′| ≤ k3

⎫⎬⎭ . (2.14)

A patch in the form of 3D (spatial and temporal) centered at vertex v is a box with size

rx × ry × rt is denoted by B(v) and for each patch a feature vector is defined as:

F (f 0, v) = f 0
(u), u ∈ B(v), u ∈ V \V0 (2.15)

Then, the following two weight functions of the graph are considered:

wL(u, v) = exp

(
−
|f(u)− f(v)|2

2σ2

d

)
(2.16)

wNL(u, v) = wL(u, v) exp

(
−
||F (f0, u)− F (f 0, v)||2

h2

)
(2.17)

where h is the standard deviation based on variation of ||F (f 0, u)− F (f 0, v)||

The regularization problem is solved using Gauss-Jacobi algorithm in [19], which is

modified, in brief, as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (0)

= f 0

γ(k)
(u, v) = w(u, v)(||∇f (k)

(v)||p−2
+ ||∇f (k)

(u)||p−2
)

f (k+1)
(v) =

∑
u∼v γ(k)

(u,v)f (k)
(u)∑

u∼v γ(k)(u,v)

The regularization is applied iteratively (k denotes the iteration number) for each node

of the graph until the missing part is completely filled-in. To avoid error propagation,

at each iteration, once the entire outer line is processed it is removed from the subset of

missing region (V0).

This method, however, has a serious computational bottleneck and similar to other

methods which use PDEs, it only works well for small missing regions to be inpainted.

Rank Minimization Approach

Video inpainting is considered as a matrix rank minimization problem in the work pre-

sented in [20]. The scheme starts with finding a set of descriptors that encapsulate vital
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information to restore the damaged pixels. Then an optimal estimate for the descriptors of

the missing region is found. Finally, these descriptors are used to reconstruct the pixels.

The spatio-temporal descriptors are assumed to be generated by a stationary Gaussian-

Markov random process. Therefore, the values of the descriptors of the kth frame stored in

a vector fk are related to the descriptor values of the previous frames by an autoregressive

moving average model with exogenous inputs model (ARMAX) model:

f k+1
=

m−1∑
i=0

gifk−i + hiek−i (2.18)

where gi, hi are fixed coefficients. e(.) denotes a stochastic input assumed to be always

an impulse since the spectral density of e is absorbed in the coefficients gi and hi ( [21],

Chapter 10).

The model Eq. (2.18) is not simply a combination of surrounding pixels, it denotes the

value of a descriptor of the actual pixels in a lower size space-time domain and relates the

present and the past values. This model is used to find the descriptors of the uncorrupted

regions and then it is used to inpaint the missing values. However, finding the missing

values of each descriptor f is not necessarily done explicitly. A rank-minimization problem

is adopted to estimate the missing values of each descriptor. The observed and missing

descriptors are denoted by f o
k and fm

k , respectively. The idea is to find the values of fm in

such a way that they are maximally consistent with f o, in the sense of the model introduced

in Eq. (2.18). The minimum value of m such that Eq. (2.18) explains the observed data,

is given by the rank of matrix constructed from measurements. The simplest model to

explain this data can be a model in which the missing descriptors that minimize the matrix

rank are corresponded. Instead of exhaustive rank minimization, the problems are solved

by a convex semi-definite programming as follows:

1. Form the Hankel matrix as:

Hf =

⎛⎜⎜⎜⎜⎜⎜⎝
f1 f2 . . . fn/2

f2 f3 . . . fn/2+1

...
...

. . .
...

fn/2 fn/2+1 . . . fn−1

⎞⎟⎟⎟⎟⎟⎟⎠ (2.19)
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Figure 2.2: The general model of the rank minimization-based video completion.

where f denotes either the observed data f o
k if the frame k is present, or the unknown

value fm
k if the frame contains missing pixels. The total number of frames is denoted

by N .

2. Solve the following Linear Matrix Inequality (LMI) optimization problem,

minimize Tr(Y ) + Tr(Z) subject to Hf =

⎡⎣ Y Hf

(Hf )
T Z

⎤⎦ ≥ 0 where Y T
= Y ∈

R
n×n, ZT

= Z ∈ R
n×n and Hf ∈ R

n×n This helps estimate the values of Fm to be

consistent with f o.

This minimization is employed in order to inpaint the damaged frames. The interpo-

lated (and/or extrapolated) values of the descriptors are used to reconstruct the missing

information using a nonlinear combination of the pixels. A general model for the video in-

painting system, including dimensionally reduction (generating the descriptors), rank min-

imization, and non-linear reconstruction using the descriptors, is shown in Figure 2.2. The

inpainting algorithm based on rank minimization is shown in Algorithm 2.1. The steps of

the algorithm are iterated until no missing region remains in the sequence.

Applying this algorithm on several videos has shown promising results. The advantages

of this method are: 1) It is computationally attractive since the algorithm optimizes the use

of spatio-temporal and dynamic information. 2) The method is not restricted to the case

of periodic motion, static or stationary cameras. 3) The method can be used to extrapolate

frames which are used to generate and synthesize new textures from the same family.
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Algorithm 2.1 Inpainting by means of rank minimization.

1: Given a sequence of fames It, t = {1, ..., T}, the target is occluded/corrupted in r ≤

t ≤ s. Thus, the target zt is extracted from the unoccluded frames 1 ≤ t ≤ r and

s ≤ t ≤ T .

2: For each t, t = {1, . . . , r, s, . . . , T} map the pixels to the lower dimensional domain of

descriptors using Localy Linear Embedding (LLE).

3: Apply the rank minimization algorithm using the Hankel matrix to find the descriptor

values {yr, . . . , ys} corresponding to the missing pixels.

4: Reconstruct the pixels zt from yt by means of inverse mapping i.e. descriptor to pixel

domain.

5: Use a robust tracking to keep the track of the centroid of the target in the occluded

frame.

6: Fill theses locations by the reconstructed pixels.

Complex Ginzburg-Landau Equation in Inpainting

Ginzburg-Landau equation was originally developed to describe phase transitions in su-

perconductors near their critical temperature. A solution to this equation develops ho-

mogenous regions (in one, two or three dimensions) with phase transition edges. These

homogenous areas can be, for instance, constant gray value intensity regions in an im-

age. Its analytical properties and adaptability to restore higher than 2-dimensional data has

motivated the use of Ginzburg-Landau equation in image and video inpainting [22].

Ginzburg and Landau derived the following estimations for thermodynamic potential

energy function of semiconductors by considering the kinetic and potential energy:

F (u,∇u) :=
1

2

∫
Ω

| − i∇u|2︸ ︷︷ ︸
kinetic term

+α|u|2 +
β

2
|u|4︸ ︷︷ ︸

potential term

(2.20)

where −i is a negligible factor which comes from quantum mechanics, α and β are physical

constants. These factors are set to α = − 1

ε2
and β = −α. Then the state of minimal energy

satisfies the Euler-Lagrange equation of F (u,∇u) as follows:

δF

δu
= Δu+

1

ε2
(1− |u|2)u = 0 (2.21)

Transition region is a transient that separates different phases. The coherence length which

correlates with the width of transition region is denoted by ε, in physics. An analytical
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formula to solve Eq. (2.21) is given by:

u(x) =
e

√
2
ε
x − 1

e
√
2
ε
x
+ 1

(2.22)

where the order function u : R → R satisfies the boundary condition lim
x→±∞

u(x)= ±1. The

complex Ginzburg-Landau equation has been solved in the domain of inpainting in order

to reconstruct the missing pixels.

Considering D as the image and Ω as the inpainting subset of D, u0
:→ [−1, 1] is the

gray level values scaled to [−1, 1] i.e., −1 and 1 corresponds to white and black, respec-

tively. The real part of the complex valued function u0
: D → C identifies the function

u0 and the imaginary part is selected as I(u0
) =
√

1− (R(u0
))2 where |u0

(x)| = 1 for all

x ∈ D.

The real part of the solution of Eq. (2.21) contains any value in [−1, 1], which is an

estimation of the inpainting region while the imaginary part has an absolute value of 1 for

each pixel. In the case of color images, each color component can be inpainted separately.

In order to reduce the artifacts, the color images can be inpainted by generalizing the equa-

tion Eq. (2.21) to vector value functions (u : D → C
n). Hence, the problem of inpainting

reduces to finding u : Ω → C (C3 for color images) which satisfies Eq. (2.21) and the

Dirichlet boundary condition u|∂Ω = u0|∂Ω.

The complex Ginzburg-Landau equation can be considered as a system of PDEs. In

order to find a solution for Eq. (2.21) with the boundary condition, the steepest descent

method (or any relaxation method) can be applied to the following PDE:

∂u

∂t
= Δu+

1

ε2
(1− |u|2)u. (2.23)

In the case of real valued u, this equation can be considered as a variant of Allen-Cahn

equation:

ut = Δu+ ψ′
(u). (2.24)

If u is complex or vector-valued and ψ(u) has a stable minimum for |u| = 1, which is

true in the case of inpainting problem, equation Eq. (2.24) is called Ginzburg-Landau. An

explicit forward in time finite-difference approach is used to integrate Eq. (2.23). The
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explicit forward in time finite-difference is done by discretizing (2.23) in space and time,

which has the following form:

ut+1

i,j = ut
i,j + δt(Δut

i,j +
1

ε2
(1− |ut

i,j|
2
)ut

i,j) (2.25)

where Δui,j = ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j . Here, ui,j denotes the color vector

intensity at the pixel location (i, j). Also, the time step is such that δt < ε2. It is worth

noting that this explicit forward in time finite difference scheme does not work on rectan-

gular inpainting areas as efficiently as it works on irregular regions like scratches and text

regions.

The Ginzburg-Landau equation can be generalized to any number of dimensions. There-

fore, it can be applied to inpaint the three-dimensional gray valued intensity functions,

specifically video sequences considered as three dimensional volumes. Although the method

is very straightforward and flexible to be applied in the 3D space and satisfies the temporal

consistency, it leads, however, to a smoothing effect in the highly textured regions of the

video volume.

Projection Based Inpainting Using Wavelets

The frequency-spatial representation provided by wavelet transform is used in a projection

onto convex sets (POCS) scheme [23] in order to find and apply the correlation between

the missing pixels and their neighbors [24]. The main assumption in the restoration process

is that the lost block of pixels very likely contains a continuation of its surrounding data.

Wavelets help determine the frequency details of the neighboring data. The algorithm

works based on the constraints applied on the missing pixels in both the wavelet and spatial

domains. The process of projection onto image and wavelet domain and applying the

constraints are formulated as:

In+1 = CiPwiCwPiw(In) (2.26)

where In+1 is the inpainted window after n + 1 iterations, In is the current inpainting

window, Piw is the wavelet transform of the image considered as the projection from im-

age to frequency-spatial domain, and Cw represents the constraints applied in the wavelet
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domain. Projection from wavelet to image domain is represented by Pwj . Finally, Ci in-

dicates the constraints applied in the image domain. As for the wavelet constraint Cw,

the maximum and minimum of wavelet coefficients in the known region are found. Then,

the reconstructed pixel corresponding to the lost pixel in the inpainting region is forced to

be between these maximum and minimum values. The constrained wavelet coefficients are

then projected onto the image domain (Pwi) using the inverse wavelet transform. The newly

grown pixels are constrained (Ci) too. Both wavelet and signal domain constraints satisfy

the criteria that the new pixels must be i) as sharp as the surrounding pixels, ii) on the con-

tinuation of prominent edges along the missing region and, iii) matching the surrounding

area texture wisely.

In order to deal with videos, the frames are stacked as a 3D volume. Then, the missing

part of the video is considered as a 3D hole and 3D wavelet and inverse wavelet transforms

are applied in the algorithm.

2.1.2 Exemplar Based Methods

The exemplar-based methods use a texture model from the undamaged parts of the im-

age/video and try to reconstruct the missing parts using this model. Many of the exemplar-

based video completion methods are based on the exemplar-based image (spatial) comple-

tion algorithm proposed in [6]. These methods try to adapt this image inpainting method to

the temporal information, which is available and useful in video sequences. Therefore, this

section begins with a brief review of this well-known and efficient exemplar-based image

inpainting method [6].

Criminisi’s Exemplar-Based Image Inpainting

The exemplar-based spatial inpainting [6] is an order-based algorithm, in which the best

matching source patch (block) is transferred inward the filling area. The algorithm is

severely dependent on the order of filling-in, determined by two factors: confidence and

priority. In fact, the algorithm gives high priority of synthesis to the regions (patches) of the

target (missing) area which lie on the continuation of image structures and are surrounded
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Ω δΩ

Φ

np

Ψp
∇I⊥p

Figure 2.3: Notation diagram of the exemplar based image inpainting in [6].

by high-confidence pixels. The confidence value of each pixel reflects the confidence and

reliability in the pixel’s value. The algorithm uses three main steps:

1) Computing Patch Priorities: The priority computation is biased toward those patches

which are on the continuation of the strong edges determined by data term D(p) and sur-

rounded by high-confidence pixels approximated by C(p). The priority of each patch Ψp

centered at p is computed using:

P (p) = C(p)×D(p) (2.27)

where the confidence C(p) and the data D(p) value are obtained as follows:

C(p) =

∑
q∈Ψp∩(I−Ω)

C(q)

|Ψp|
(2.28)

D(p) =
|∇I⊥p .np|

α
(2.29)

where Ψp is a patch centered at p and |Ψp| is its area in the video frame I . α is the nor-

malization factor which is 255 for gray-scale images and np is the normal vector of the

border δΩ of the missing are Ω and the source region Φ = I\Ω in the point p. Isophote

(direction and intensity) at point p is denoted by ∇I⊥p . Figure 2.3 illustrates the notation of

the inpainting problem. It is worth noting that the initial value of C(p) is set to C(p) = 0

∀p ∈ Ω and C(p) = 1 ∀p ∈ I − Ω.

2) Propagating Texture and Structure Information: Once the patch to be filled with the

highest priority is found (Ψp̀), it is filled with the extracted data directly sampled from the
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source (Φ) region. The best match to be extracted from the source is found based on the

lowest Sum of Squared Differences (SSD):

Ψq̀ = arg min
Ψq̀∈Φ

SSD(Ψp̀,Ψq). (2.30)

Whenever the best patch in the source region is found, its area which corresponds to the

missing area of the target patch is replicated in the missing area. This propagates both the

structure and the texture information of the source Φ to the target Ω.

3) Updating Confidence Value: After the patch Ψp has been filled with the new pixels,

the confidence value for the border around Ψp is computed as:

C(p̂) = C(p), ∀p ∈ Ψp ∩ Ω. (2.31)

This confidence update reduces the confidence color values of the pixels near the center of

the missing region, which is reasonable.

The above three steps are repeated until the hole in the image is fully filled. This

algorithm not only has a very high performance to complete the missing regions of still

images, but also has been adopted in many of the video completion methods to produce

highly reliable results. Some of these video completion methods are discussed in the next

sub-sections.

Patawardhan’s Occluding and Occluded Object Inpainting

Patawardhan et al. [25] proposed an effective video inpainting method which performs the

video completion task in two cases: 1) Inpainting damaged regions or moving objects in

the static background, and 2) inpainting the moving objects which are partially occluded

by other moving objects. The method is very similar (in fact, adapted) to the well-designed

exemplar-based image inpainting method proposed in [6] (Section 2.1.2). The method

performs segmentation based on optical flow, as the pre-processing stage, to separate the

moving objects of the video from the static background.

The stationary background is filled-in by available temporal information of the corre-

sponding inpainting zone in undamaged frames, as the first process. Then, the priority

based spatial inpainting [6] is performed to fill the remaining unfilled region after temporal

filling.
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Temporal filling of the background requires computation of priority of pixels. First, a

confidence value C(p) is assigned to each pixel p in every frame, which is set to zero for

the pixels in the moving or damaged regions and is initialized to one otherwise. The second

relevant parameter is the data value D(p), which is based on the availability of temporal

information at location p:

D(p) =

∑
p∈∂Ω,t=−δn···δn Mt(p)

β
(2.32)

where Ω is the hole to be inpainted, ∂Ω is the boundary, and Mt = 0 if p is damaged or is

moving, else Mt = 1; t indicates the relative index of frames to the current frame which

is denoted by t = 0 (p belongs to current frame). β is equal to 2n + 1, where n indicates

the total number of considered frames. The priority value of the filling-in at p ∈ ∂Ω is

calculated using Eq. (2.27). This priority value determines the damaged pixel location to

be first filled. Then, the temporal information patches having the highest confidence value

should be copied from the temporally nearest location to the location p. The confidence

value of all the previously damaged pixels in the patch Ψp is updated as in Eq. (2.28), once

the patch is copied to the highest priority location p.

Whenever D(p) = 0, ∀p ∈ ∂Ω there is no temporal information available to be copied.

Therefore, a priority-based spatial inpainting of the hole is performed, exactly similar to

the three steps mentioned in Section 2.1.2.

The method, in the next step, completes the moving objects which are partially occluded

by other objects. This process is done independently from background filling process, as

described in the following steps:

1. Find the highest priority location, using Eq. (2.27), to fill-in the moving object in the

current frame.

2. Search for the best moving patch from the undamaged parts of the video sequences

using Eq. (2.30).

3. Copy only the moving pixels of the best found match to the current fame and update

the confidence value Eq. (2.28).

4. Set the priority of the not moving pixels in the copied patch to zero.
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(a)

(b) (c) (d)

Figure 2.4: Preprocessing performed in [26] to enhance the completion results of Patawardhan’s method. (a)

Sample input video frames. (b) Background mosaics. (c) Foreground mosaics. (d) Optical flow mosaics.

5. Repeat 1 to 4 until all the damaged pixels get zero priority.

In this process, the priority value is computed as Eq. (2.27) but its data term is computed

differently. In Eq. (2.29), I is replaced by a motion confidence image Mc, which is zero if

p belongs to the background and one if p belongs to moving objects to compute the data

term.

This video completion satisfies, firstly, filling-in the background while maintaining tem-

poral consistency and, secondly, filling-in the moving foreground while keeping the motion

globally consistent. However, this method is performed only under stationary scene (i.e.

fixed camera).

Patawardhan et al.’s method was followed in [26] to improve the inpainting scheme

while permitting some camera motions, however the priority and confidence parameters

are applied the same way as described in the aforementioned paragraphs. This method

performs a preprocessing segmentation which results in three frame-mosaics [26]: fore-

ground, background and optical flow, as shown in Figure 2.4. This segmentation leads

to a better performance and reduces the search space and consequently provides a faster

implementation.
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Shih’s Exemplar-Based Method

Another exemplar-based video inpainting method was introduced in [27], which is also

based on the spatial inpainting algorithm proposed in [6] with some modifications. This

method uses a modified patch matching, which incorporates the edge features. The data

term used in the priority calculation is also redefined. In this algorithm, a simple video

tracking is applied to produce a foreground video.

The method follows the notation introduced in Figure 2.3 similar to the method dis-

cussed in Section 2.1.2. A simple region segmentation in the CIE Lab color space is ap-

plied to convert I to a set of segments Í . Considering pi and pj as the pixels and si and sj

the segments, the following conditions are satisfied:

1. ∀pi ∈ I, ∀pj ∈ I, pi and pj are adjacent pixels.

2. SSDCIELab(pi, pj) < δc ⇒ puts pi and pj in the same segment.

3. ∀si ∈ I, ∀sj ∈ I, si and sj are adjacent segments.

4. pn(si)− pn(sj) < δpn ⇒ makes si and sj in the same segment.

where pn(s) computes the number of pixels in the segments and SSDCIELab(pi, pj) calcu-

lates the sum of squared differences in the CIE Lab color space. An appropriate value for

δc is 3 based of the experiments and δnp is usually chosen between 50 to 100 for different

video sequences, which should be selected manually. The results of the segmentation (Í)

are then converted to binary format, BI , using Crispening algorithm. Therefore, Φε ⊂ BI

is the edge map of the corresponding area in Φ ⊂ I (source area).

After the segmentation step, the inpainting is done using a revised version of the algo-

rithm introduced in Section 2.1.2; the initial confidence value C(p) of each pixel in I is

computed as in [6]; i.e. C(p) is set to C(p) = 0 ∀p ∈ Ω and C(p) = 1 ∀p ∈ Φ. Let Ψp be

a patch centered at p ∈ Ω then the confidence value is computed using equation Eq. (2.28).

It is obvious that the confidence value computes the number of the useful pixels of each

patch. So far, the terms are exactly similar to those of [6]. The main difference of this

method and the one in [6] is calculation of the data term. Instead of using isophote [6],
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percentage of edge pixels in the patch is computed in this method to obtain the data term,

in addition to the color variation in the patch:

∀p ∈ δΩ, D(p) = min{1, (Σq∈(Ψp∩Φε)
c)} × var(Ψp)/|Ψp| (2.33)

where var(Ψp) is the variance of the pixels in Ψp. Then the priority is obtained using

Eq. (2.27). Since both terms C(p) and D(p) contain no structural information, a more so-

phisticated patch matching strategy, called patch template matching, is used in this method.

Let Ψp̂ be a patch with the highest priority, which is defined as:

Ψp̂ = argmax{P (p), p ∈ δΩ}. (2.34)

The larger the patch, the better the chance to find the best match. Therefore, the neighboring

pixels are considered, in addition to only using the useful pixels of the patch. A patch

template in his method is defined as:

Γp̂ =

⋃
±Ψp̂

(Ψp̂ ∩ Φ) �= ∅ (2.35)

where ∅ is the empty set and ±Ψp̂ indicates the patch Ψp̂ plus its surrounding patches (eight

neighbors). Then, the best patch template can be found by:

Γq̂ = min
Γq∈Φ

r
q

d(Γp̂,Γq) (2.36)

d(Γp̂,Γq) = SSDCIELab(Γp̂,Γq)×min{1, (
∑

q∈(Γq∩Φε)

c)} (2.37)

where Φ
r
q is a region of the source image centered at q by a distance of r pixels and the

constant c is the weight of the useful pixels in the patch template. In fact, the distance

function Eq. (2.37) takes the SSD and the number of useful pixels into account. In the last

step of the algorithm, the confidence value can be updated using Eq. (2.31) as in [6]. But,

the update strategy is revised to incorporate the degree of similarity into the confidence

map:

C(p) = C(p̂)× (d(Ψp̂,Ψq̂)/α), ∀p ∈ Ψq̂ ∩ Ω (2.38)

The normalization value of α sets the range of d(Ψq̂,Ψq̂)/α to (0, 1].
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To recover a background in a stationary video, the method does not perform the above

inpainting directly frame-by-frame. Instead, the frame-difference of the current back-

ground frame and all the background frames of the video is calculated to find the proper

temporal information to fill the background. After this temporal filling-in, the remained

hole in the background is filled using the aforementioned spatial inpainting method and the

found best matches are propagated to all the background frames.

In the case of non-stationary video, a simple motion estimation algorithm is performed

to find the global motion vectors and compensate the motion for slow foreground move-

ments and a more complicated algorithm for faster foreground [27].

Exemplar-Based with Ghost Shadow Removal

The video completion may cause “ghost shadows”, i.e, due to the temporal discontinuity of

inpainted area, flickers may be produced after video completion. This problem is partially

solved in [28] using a modified video inpainting method applying a motion segmentation

mechanism. However, it is still challenging to deal with more complicated videos. This

problem was addressed in [29] in detail.

The inpainting parameters in the method introduced in [29] are exactly the same as

those in [27] (Section 2.1.2). The main difference is the object tracking algorithm which is

applied in [29] to remove the ghost shadow effect. 4SS motion estimation algorithm [30],

which is defined for block-based motion estimation in video coding is used to compute

the motion vectors. This motion estimation method maps the moving objects in different

layers and the non-stationary background. The blocks with similar motion in this method

are placed in the same layer. Whenever the objects in each layer are tracked and removed,

the video inpainting process is performed on the bottom layer to the top one to fill-in the

holes after object removal. The motion segmentation, in brief, is performed in the steps

of Algorithm 2.2. For more detail about this motion segmentation one can refer to [29].

After division of the frames into motion layers, based on different motions, a target object

is supposed to be selected by the user and it should be tracked in the entire video sequence.

The tracking is performed by Algorithm 2.2.

To avoid the ghost shadow effect, the inpainted area of the previous frame needs to
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Algorithm 2.2 Motion segmentation algorithms.

1: Apply the 4SS motion estimation algorithm in the HSI color space to compute the

motion map and edge detection.

2: Merge the segments (Closing and Opening).

3: The remaining blocks which are not processed in the previous step are merged using

similar average motion vectors.

Algorithm 2.3 Tracking algorithm in the motion layers.

1: The bounding box, Boxi, of the object to be removed is selected by the user.

2: The motion segment which has the largest number of overlapping pixels with Boxi and

its average motion vector is found.

3: Using the average motion vector, another bounding box in the next frame, Boxi+1 is

found.

4: The image inpainting method of section 2.1.2 is done on each Boxx and results in

Boxy in the entire sequence.

5: For each Boxx the gray-scale difference with its corresponding Boxy is computed.

6: The tracked object is specified by thresholding the result of the difference in the previ-

ous step.

be considered. Moreover, since objects may occlude each other, their relationship, which

is complicated, should be seriously taken into consideration. The completion problem is

shown in Figure 2.5 with the definitions summarized in Table 2.2.

Here, the goal is how to fill-in the hole at frame t + 1. To this end, a transformation

function T (Ω,Δ) is defined, which takes the hole Ω and the average motion vector Δ to

locate the object in the next frame. For example, for a panning video, the transformation

function can be a simple translation such that Ωt+1
= Tarnslate(Ωt, δxy). In general, the

inpainting scheme is Ώ = Inpaint(Ω), where Ώ is the completed hole. Therefore, the two

functions can be combined as:

Table 2.2: Definitions in Figure 2.5.

Ωt hole to be completed at frame t

Ώt+1 hole of Ωt completed at frame t+ 1

ΩE hole to be completed at an upper layer

wt surrounding block of Ωt, Ωt ⊆ wt

wt+1 surrounding block of Ώt+1, Ώt+1 ⊆ wt+1

�xy average motion vector of background

δxy average motion vector of foreground

Ωt+1 hole to be completed at frame t+ 1
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Figure 2.5: Separation of holes in consecutive frames [29].

Translate(Inpaint(Ωt
),Δxy + δxy) = Translate(Ώt,Δxy + δxy) = Ώ

t+1

This transformation function can be generalized for different camera motions such as tilt-

ing and perspective video which takes the scaling factor Sxy and the rotation factor θ,

T (Ω,Δxy, Sxy, θ) in addition to average motion vector.

The inpainting area in each frame contains several regions considering the motion seg-

mentation:

ΩA = Ώ
t+1 \ Ωt+1

ΩB = Ώ
t+1 ∩ Ω

t+1

ΩC = (Ω
t+1 \ Ώt+1

) ∩ wt+1

ΩD = (Ω
t+1 \ wt+1)

For each of the above regions the inpainting strategy is different as follows:

Inpaint(ΩA) = wt+1 ∩ Ώ
t+1

Inpaint(ΩB) = Inpaint+ (ΩB, Ώ
t+1

)

Inpaint(ΩC) = Inpaint+ (ΩC , w
t+1

)

Inpaint(ΩD) = Inpaint+ (ΩD, (S1
t+1 ∪ S2t+1

) \ wt+1
)

Since the original surrounding of Ωt+1 is kept, region ΩA at frame t+1 should be discarded.

To maintain temporal continuity, patches from Ώ
t+1 are used to inpaint ΩB . ΩC is a new

area so the patches from wt+1 are used to inpaint it. The patches outside wt+1 and inside

frame t+1 of the same motion segment (e. g., S1t+1 or/and S2t+1) are used to inpaint ΩD.

This method exhibits a very high performance in terms of video completion while
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avoiding ghost shadows. Besides, it can be applied in the presence of many camera mo-

tions.

Jia’s Tacking and Fragment Merging

In [31] another exemplar-based video completion method very similar to the previous meth-

ods was introduced, but applies the trackability information to find the highest priority. This

method uses frame fragments in the process to find a proper target and a source data. The

method performs the completion task in three main steps iteratively, similar to the previous

methods:

1. Find the most promising target pixel at the boundary of the missing hole and define

a space-time fragment around it.

2. Find the source fragment most similar to the target fragment in the search region of

the video.

3. Merge the source and the target fragments to reduce the hole size.

There is a special way to find the merit of each of the target fragments in this method, which

takes both trackability and the available information into account. In addition, tracking of

the moving objects is done based on the well-known “mean shift” algorithm, to reduce the

search space. The hole is filled-in, fragment-by-fragment, with a “graph cut” algorithm to

merge the source and the target fragments in a way that retains the fine details especially at

the borders.

In order to select the best target fragment T the term merit, OT , is defined and the

largest merit value indicates the best target fragment candidate:

OT = IT + kCT (2.39)

where IT and CT are the info map and trackability map of the target fragment, T respec-

tively, and an optimum choice for k is 2 or 3 to give larger weight to the trackability of the

fragments [29]. The info map and trackability map are defined as:

IT =

∑
v∈T

Mv (2.40)
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CT =

∑
v∈T,Mv=0

τv (2.41)

where Mv is the matte value of the pixel v(x, y, t) and τv is a Boolean value indicating

whether the pixel v is trackable or not. In fact, for a target fragment, which contains

unknown pixels, CT is the number of trackable pixels. An unknown pixel is trackable

if and only if there is an adjacent known neighborhood that contains an object that can

be tracked in the video. This information gives priority to those rare objects which are

trackable in the entire video sequence.

After finding the best target fragment T using the merit value, an appropriate source

fragment S should be found. The method applies tracking to avoid unnecessary frag-

ments to reduce the search space. Trackable and non-trackable target fragments in the

video sequence are treated differently in this method. A non-trackable target fragment has

unchanging texture and color through the whole video. Moreover, global temporal consis-

tency, which is a basic need in the video completion scheme, tells us that the non-trackable

fragment should be filled in a same way in each frame. Therefore, a global search in whole

the video to fill-in a non-trackable fragment is pointless. Instead, one can use the current

frame’s source region information to fill-in the non-trackable fragment. On the other hand,

for trackable target fragments a known trackable neighborhood N usually overlaps the tar-

get, which is active through the entire video. Obviously, the target belongs to a moving

object which is separate from the stationary background. In this case, N is tracked using

the mean shift tracking algorithm through the video which results in a set of small win-

dows including the moving object N . The search is performed on this set of windows for

the trackable target fragment.

After determination of both T and S, these two fragments should be combined in a

way that does not lead to an obvious joint edge. To circumvent this limitation, a graph cut

method is applied to find the “least visible seam” (i. e. the one for which, pixel differences

across the seam are as small as possible) between the target and the source overlap area.

The overlap region of the target and the source is defined as O = T ∩ S. In this method,

the color difference value co is needed at each pixel in the overlap area O:

co = ||ct − cs|| (2.42)
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where o(x, y, t), t(x, y, t), s(x, y, t) ∈ O, T, S and co is expressed as an r, g, b vector.

Then, using the pixels of the overlap area, O, an undirected weighted graph, G, is built,

in which, for each connected pair of pixels, oi and oj with color differences, coi and coj , the

weight is computed as:

wij =

⎧⎨⎩ k
(
1− exp(−

||coi ||+||coj ||

2σ2 )

)
if N(oi, oj)

∞ otherwise
(2.43)

where k and σ are constant values about 10 and 5, respectively. If the pixels are six-

connected N(., .) returns ‘true’. The lower weight implies that the adjacent pixels in T and

O are similar and desirable to have the least visible seam. Hence, the least visible seam is

the one that gives a minimum cut for the graph.

The experiments presented in [31] show that this method is very efficient and fast

enough, with very visually pleasing results, due to the use of the efficient tracking and

graph cut algorithms. However, this method is designed only for simple stationary videos

and does not work properly in the presence of camera motions.

Motion Layer Based Object Removal

Zhang et al. focused on motion layer segmentation to remove the moving objects and fill-in

the resulted missing areas [32]. This method maintains the consistency based on the motion

compensation and a graph cut algorithm for video completion. The algorithm assumes that

the overlapping order of the motion layers in all the frames of the video sequence remains

the same. Based on this assumption, the motion layers are first extracted using a level set

representation and a graph cut algorithm, and consequently the occluded and occluding

pixels and, also, the layer orders are determined. The video completion technique can be

summarized in the following steps:

1. Motion layer segmentation of the video frames and determination of the layers’ or-

ders as shown in Figure 2.6a.

2. Removing the undesired object (motion layer), which results in a missing region in

each layer (Figure 2.6b).

30



(a)

(b) (c)

(d) (e)

Figure 2.6: Steps of the motion layer segmentation based video completion. (a) Generating different motion

layers. (b) All the motion layers of the video and marking the layer to be removed. (c) Synthesizing layers

by means of the motion information of all the frames. (d) Remaining missing pixels are filled by the region

completion method. (e) The completed layers are warped to generate the resulting frame.

3. Filling-in the missing area of each layer by means of motion compensation (Figure

2.6c).

4. Filling-in the remaining missing area by using the region completion approach (Fig-

ure 2.6d).

5. Warping the completed layers of the reference frame to every frame of the sequence

to generate the final frames (Figure 2.6e).

The motion layer segmentation is based on the graph cut algorithm proposed in [33]

to obtain the motion layers and explicitly the occluded pixels (refer to [32] and [33] for

details). After applying the graph cut scheme and obtaining the motion layer segmentation

and the occlusion information, the layer ordering is extracted which is assumed to be the

same in the whole video sequence. It is worth noting that it is not necessary to perform this
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step on all the frames only a few number of the first frames of the sequence can be used in

step 1 of this video completion method.

Since each object belongs to a layer and the layer segmentation has been already per-

formed, it is easy to remove the undesired objects by removing the corresponding layer.

After removing the layer, all the other layers may have missing regions in some of the

frames. In step 2 each incomplete layer the motion parameter is first found by a motion

model. Then, for each layer, a compensated frame is generated, which is the result of all

the warped frames together with their motion parameters. If there is still any uncompleted

region, a graph cut based single image completion method is applied to fill-in the missing

area similar to the other patch exemplar based methods. Similar to the other exemplar-based

methods, this image completion is based on a non-parametric texture synthesis, therefore

the priority of the target patch is very important. Here, the priority of the target patch is

decided based on its number of available pixels. After the target patch, Ψt, is determined,

a search for the source patch, Ψs, is done. The search range for the source patch is reduced

to the locations near the previous found source due to the locality issue. Again, in this

method, finding the source patch is based on the sum of squared differences (SSD) given

in Eq. (2.30).

An interesting aspect of this video completion method is the graph cut algorithm applied

to combine the found source patch, Ψs, and the target patch, Ψt, with overlapping area

denoted by Ψo. Considering vi as the location in the overlapping regions, and Ct(i) and

Cs(i) as the color values in Ψs and Ψt respectively, the graph of the locations, vi and vj ,

with the edge weight of W (vi, vj) is generated as follows:

W (vj, vj) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

‖Ct(vi)− Cs(vi)‖+ if vi and vj

‖Ct(vj)− Cs(vj)‖ are 4-adjacent

neighbors

∞ otherwise

(2.44)

A small value of weight means that if the cut runs between the two locations, the resulting

4 color pairs, Ct(vi)−Cs(vi), Cs(vi)−Ct(vj), Ct(vi)−Ct(vj), Cs(vi)−Cs(vj), are very

similar and lead to the least noticeable seam.
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After the layer compensation and completion step, the synthesized layer of the reference

frame is projected, using the layer motion parameters, to render each frame. This projection

can be easily done by warping it into the corresponding position in the target frame since

the motion parameters of the layers are computed with respect to the reference frame.

This layer compensation and modified graph cut based method preserves the consis-

tency of the video frames very well, albeit the method relies heavily on an accurate motion

layer segmentation.

Video Completion as a Global Optimization

One of the most effective video completion methods is the one introduced in [34], which

treats the inpainting task as a global optimization with a well-defined objective function in

the 3D volume of the frames. The objective function satisfies two important conditions:

i) For every local space-time patch in the video sequence, there should be some similar

patches in the remaining parts of the video, and ii) all the patches must be globally consis-

tent with each other, both, spatially and temporally. In other words, the objective function

is defined to rank the quality of the completion.

As mentioned earlier, a video is treated as a space-time volume. A pixel in the frame t

is denoted by p = (x, y, t), where (x, y) denotes the spatial position of the pixel. A small

space-time fixed-sized window, Wp, around the pixel p is defined. It is clear that, in the

3D space, several windows can contain p. For example, Wp is centered around p, and W i
p

can be the ith window containing p, which is centered around the ith neighbor of p in the

volume. Let the dataset D be the available parts of the video, S be the input video sequence,

and H ⊂ S be the hole region in the video sequence, one can say S is visually coherent

with some other sequence D if every patch in S can be found somewhere in D. The goal is

to complete the missing space-time region H with new data H∗ such that the new resulting

S∗ is coherent with D. Therefore, the following objective function is defined, which should

be minimized by the found S∗:

Coherence(S∗|D) = Πp∈S∗ max
q∈D

sim(Wp, Vq) (2.45)

where windows in the data set D are denoted by V and p, q, run over all the space-time
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points. The patches used here are of size 5 × 5 × 5. Sim(., .) is a function to measure

the similarity between two space-time patches. A typical measure to find the similarity

between two patches is SSD. Since SSD does not consider the temporal information, it is

modified in this method to produce a better similarity measure.

In the similarity measure modification, two parameters are considered in addition to

the space-time R, G, B values of each pixel. First, at each point the spatial and temporal

derivatives (Yx,Yy,Yt) are computed. Then, u = Yt/Yx and v = Yt/Yy are defined to cap-

ture the temporal motion of each point along x and y directions, respectively. Therefore,

a five-dimensional representation is used to express each point, both spatially and tempo-

rally, (R,G,B, u, v). The SSD, as d(Wp, Vq), is applied to find the distance between two

windows Wp and Vq, employing the 5D values for each point in each window. Finally, the

distance measure is converted to a similarity measure using:

sim(Wp, Vq) = e
−

d(Wp,Vq)

2σ2 (2.46)

The value of σ controls the smoothness of the induced error so it is carefully chosen as the

75% of all distances in the current search in all locations.

So far, the well-behaved objective function is defined. Now, the optimization is done

using this objective function. The optimization must satisfy two conditions for any space-

time point p:

1. All the windows W 1

p . . .W
k
p containing p appear in the data set D: ∃V i ∈ D,W i

p =

V i

2. All those V 1 . . . V k agree on the color value c at the location p: c = V i
(p) = V j

(p)

The first condition, which is the reliability of each W i
p, is satisfied by the lower obtained

distance d(W i
p, V

i
). In fact, sim(W i

p, V
i
) measures the degree of reliability of the patch

W i
p. The value of color c at the point p should minimize the variance of the colors, c1 . . . ck,

obtained by V 1 . . . V k at p. In other words, the color value at p should minimize
∑

i s
i
p(c−

ci)2 in order to satisfy the second condition of the optimization, where sip = sim(W i
p, V

i
).

Therefore, the best value for c is obtained by:
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Algorithm 2.4 Global optimization-based video completion.

1: Input: video S, hole H ⊂ S, data set D

2: t ←− 0, St ←− S

3: repeat

4: for all p ∈ H do

5: Let {W i
p}

k
i=1

be all the windows containing p ∈ W i
p

6: Find {V i} ⊆ D maximizing Eq.(2.45)

7: Let ci ∈ V i be the appropriate colors.

8: Set ωi
p = αi

p.sim(W i
p, V

i
).

9: St+1
(p) ←− ci using Eq.(2.48)

10: End for

11: t ←− t+ 1

12: until convergence

13: Output: St

c =

∑
i s

i
pci∑

i s
i
p

(2.47)

This color value calculation is modified in [9] to find a more likely reliable color value

at point p. In [9], the quantity αp is associated, as a weight, to each point which determines

the confidence value of the point p. This weight ensurers that the total error inside the hole

is less than the total error on the hole boundary; αp = γ−dist, where dist is the distance

transform and γ = 1.3. Then, the color value is determined by:

c =

∑
i w

i
pc

i∑
i w

i
p

(2.48)

where ωi
p = αi

p.s
i
p. The whole optimization iteration is summarized in Algorithm 2.4.

Although, as expected, the method is computationally very complex and time consum-

ing, the video completion results of this method reveal its high performance [9] [34], which

made it as one of the most popular techniques in the field of video completion.

Tang’s Video Completion via Maintaining Spatiotemporal Continuity

A technique that performs video completion in the motion and spatial domains separately

was proposed in [35]. The method takes advantage of a global and local motion estimation

scheme quite well.
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In the first step, for each frame a motion map is constructed. The motion map is ob-

tained by means of global motion estimation (GME) and local motion estimation (LME).

The applied GME is an enhanced version of the Lucas-Kanade optical flow computation

technique [36]. The GME results are initial motions for a proposed correlation-based LME

algorithm. The final resulting motion vectors produce the motion map for each frame.

Since the method is specialized for digitized vintage films that normally suffer from a lack

of constant illumination, intensity normalization is performed as a preprocessing step be-

fore motion map construction. Then the video completion is performed in two steps: mo-

tion completion and frame completion. Motion completion is a task similar to Exemplar-

Based with Ghost Shadow Removal video completion discussed in Section 2.1.2. But,

instead of patch pasting, the motion vectors of the source patch are assigned to the border

patch. The priority of each patch Ψ(p,t) to be filled-in is computed by:

P (p, t) = C(p, t)×D(p, t)×W (Ft) (2.49)

where the confidence C and data D values of a patch in frame t centered at p are computed

using equations Eq. (2.28) and Eq. (2.33), respectively. A new parameter called weighting

factor W (Ft) is used in the priority computation that measures the percentage of the source

area available in each frame. A higher value of W (Ft) indicates that the frame Ft has more

source data, thus it has a higher priority.

Patch searching is carried out for the 3D-patch template, Γ(p̂,t) of Ψ(p̂,t). The following

equation is used to find a patch with the least distance to Γ(p̂,t):

d(Γ(p̂,t),Γ(q̂,t)) = SSD(Γ(p̂,t),Γ(q̂,t))×

max(1,
∑

(q,t́)∈(Γ(q̂,t)∩Φε)
c) + fd(t, t́), (2.50)

where fd(t, t́) is the temporal distance.

Once the best match is found, its motion vectors, already determined in motion map

construction step, are assigned to the missing patch (Ψ(p̂,t)). Since the missing areas have

motion information, they can be tracked in the neighboring frames.

In the frame completion stage, the possibly same patches in the neighboring frames

are stacked to produce a space-time volume. Then the available data in each patch in the
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Figure 2.7: Motion filed transfer scheme.

volume is propagated to the corresponding missing pixel in the volume. This technique

shows good completion results and visually pleasant. The disadvantage of this method

is the applied preprocessing motion estimation technique, which is quite computationally

complex.

Completion by Motion Field Transfer

Unlike most of the exemplar-based methods, the approach introduced in [37] fills the miss-

ing parts of the video by sampling the spatio-temporal patches of local motions instead of

color and/or intensity values. Color propagation is done only after the estimation of the

missing motion information of the inpainting region. In fact, the method is inspired by the

video completion approach introduced in Section 2.1.2, but performs sampling of motion

vectors instead of color and intensity (Figure 2.7). It assumes that the motion information

is sufficient to fill missing parts in a video sequence. The entire completion process is

summarized in three main steps: local motion estimation, motion field transfer, and color

propagation.

Local motion field is estimated using Lucas-Kanade optical flow computation method

[36]. Each motion vector (u, v)T is estimated by minimizing the following error function:

argmin
(u,v)

∑
x,y,t

(
u
∂I

∂x
+ v

∂I

∂y
+

∂I

∂t

)
, (2.51)

where ∂I
∂x

, ∂I
∂y

and ∂I
∂t

are image derivatives along spatial and temporal directions. The

motion information of each point p = (x, y, t)T in the video is represented by (u(p), v(p))T .

In the next step, the algorithm searches for the most similar source patch given the target

patch. Then, the source patch motion vectors are assigned to the missing motion vectors of
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the target patch. A search for the optimal source patch P̂s is obtained by:

P̂s(x̂s) = arg min
Ps(xs)

d(Ps(xs), Pt(xt)), (2.52)

where Ps and Pt represent a source patch and a target patch, respectively. The position of

source and target patch are denoted by Xs and Xp respectively. The dissimilarity measure

between Ps and Pt is calculated as follows:

d(Ps(xs), Pt(xt)) =
1

|D|

∑
p∈D

dm(m(p+ xs),m(p+ xt)), (2.53)

where D represents the set of available (valid) pixels in the target patch and |D| denotes

its cardinality, p represents the relative position from the center of each patch. As the 2D

motion vector can be seen as a 3D vector considering the temporal information, the motion

vectors are defined as m = (ut, vt, t)T . The distance between two 3D motion vectors is

calculated by the angular difference of the vectors:

dm(m0,m1) = 1−
m0.m1

‖m0‖‖m1‖
= 1− cos θ, (2.54)

where θ is considered as the angle between the two motion vectors. Hence, an optimal

choice of the source patch is the one that minimizes Eq. (2.52). It is worth noting that the

order of filling is determined by the number of available pixels in a target patch. A higher

number of non-hole pixels in a target patch means a higher priority to fill-in.

The assigned motion vectors to the missing pixels indicate the relationship between

missing pixels with their neighbors. The motion vectors of each spatio-temporally adjacent

pixel can be considered as undirected edges in an adjacency graph. The weight factor ω is

assigned to each edge:

ω(p, q) = r(p, , q)s(p, q), (2.55)

where r(p, , q) is the reliability value for the edge and it is calculated by the inverse of

the dissimilarity measure defined in Eq. (2.54). The edge originating from the pixel p may

point to a fractional location in the adjacent frame. Similarly, a point q in the previous frame

may be connected to a fractional location in pixel p. Therefore, the size of the overlapping

areas of these two pixels is used as s(p, q) in the calculation of the edge weight. The color
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of the pixel p is calculated as:

c(p) =

∑
q∈N w(p, q)c(q)∑

q∈N w(p, q)
. (2.56)

In fact, the color value c(p) of the pixel p is a weighted average of the color values at the

pixels q which belong to the set N of connected neighboring pixels.

Suppose there are n hole pixels. For each pixel pi; i = 1, ..., n, Eq. (2.56) is obtained.

Therefore, in the case that there are m boundary pixels {pbj : j = 1, ...,m} with known

color values, the following linear system is formed using the n equations:

C = [W |Wb]

⎡⎣ C

Cb

⎤⎦ , (2.57)

where C = [c(p1), ..., c(pn)]
T is a 3×n matrix, Cb = [c(pb1), ..., c(pbm)]

T is a 3×m matrix.

W and Wb are n× n and n×m matrices defined as:

W =

⎛⎜⎜⎜⎜⎜⎜⎝
0 w12 . . . w1n

w21 0 . . . w2n

...
...

. . .
...

wn1 wn2 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠,

Wb =

⎛⎜⎜⎜⎜⎜⎜⎝
wb

11
wb

12
. . . wb

1m

wb
21

wb
22

. . . wb
2m

...
...

. . .
...

wb
n1 wb

n2 . . . wb
nm

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where wij denotes the normalized weight factor. The values in C are obtained by rewriting

(2.57) as:

C = (I −W )
−1WbCb, (2.58)

where I is an n× n identity matrix.

This motion field transfer strategy in video completion works based on the assumption

that the object motion is continuous in the video. Therefore, the motion information is

sufficient to fill the holes. This is particulary effective when dealing with periodic motions

like a walking person and can be less likely practical in completion of stationary objects

and backgrounds.
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Homography Blending, Sampling and Alignment in Completion

Background and foreground completion is performed independently in the method intro-

duced in [38]. The background completion is done with the image inpainting method

introduced in [39]. However, the image inpainting approach is extended by using layer

segmentation and homography blending in a way to preserve temporal consistency. The

foreground completion is performed in a two-step scheme: First, motion vectors are sam-

pled and regularized by 3D tensor voting in order to maintain temporal coherence and

motion periodicity. Second, the sampled motion data are aligned spatially and temporally

to infer the missing moving pixels.

The background completion consists of four steps: Layer propagation, generating the

layered mosaics, frame repairing, and homography blending. In the first step, layer infor-

mation is propagated to the entire video by means of the mean shift algorithm. In a video

frame, a layer is considered as a 3D image patch with similar features. The background

is segmented into similar layers with depth ordering. Therefore, each layer has an optical

flow which helps achieve a reasonable temporal consistency when the scene is complex.

Afterwards, the different layers in the video are stitched together in order to make the layer

mosaics. Layer mosaic generation is performed automatically by using a phase correla-

tion [40] to produce a good translation matrix. Once the layered mosaics of the background

video are aligned and constructed, large holes may exist in the background. The image in-

painting method introduced in [39] is directly used on each frame. But, projecting the layer

on the reference view produces inconsistency in the layer boundaries. Therefore, a homog-

raphy blending approach is applied as presented in Algorithm 2.5 to remove the flickering

effect at the boundary locations.

The foreground completion consists of two steps: sampling and alignment. In the sam-

pling phase, motion data are sampled and then regularized to preserve the temporal coher-

ence. In the alignment step, the missing pixels are inferred by spatio-temporal alignment

of the sampled pixels.

The periodic motion is sampled in the movel sampling stage. A sample movel is a

video that contains at least one cycle of a periodic motion. If there is a damaged frame in
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Algorithm 2.5 Homography blending algorithm.

1: A layered reference mosaic K is made by choosing a reference frame and then all the

mosaics constructed for all the layers are warped to it while each layer has its own

optical flow.

2: Suppose M1 and M2 are respectively foreground and background layers in the video

with an overlapping region M3 as shown in Fig. 2.8. The homographies H−1

1
and H−1

2

are to warp M1

⋃
M3 and M2

⋃
M3 with regards to the reference mosaic K. M3 is

produced by the blend function H3 = α H1 + (1− α) H2, where α is the blending

coefficient.

3: The repaired frame is warped back by projecting the mosaic K to layer Mi using the

transformation matrix Hi, i = 1, 2, 3.

the movel then it is called damaged movel. The moving pixels are detected first by learning

the background. Then, the connected components are constructed for the moving pixels.

Next, a video mask is produced, which is used to sample a movel. The first and last frames

of the sample movel must be the same to avoid “pop-up” effect. Therefore, the movels need

to be warped up. The first 5 frames and the last 5 frames of the movel are chosen. Then,

the 2D boundaries of the character in all these frames are found using the video mask. The

set of boundary locations in all these frames is used as the input to 3D tensor voting [39] to

infer the in-between boundary locations. Finally, a morphing method is applied to infer the

color of the found pixels in the in-between frames. The movels are regularized afterwards

to preserve the temporal consistency. The centroid of each frame of the movel is found

individually so the corresponding path along their axes is not smooth. In order to make

them coherent, the 3D tensor voting is used again to smooth the trajectory in the spatio-

temporal domain. In the final step of the sampling process, the movel is normalized. In

fact, the pixels in each frame are translated in a way that each centroid moves to the center

of the frame. This yields a faster convergence in the alignment process and also the total

number of voxels to be processed in the moved alignment can be reduced.

The alignment phase is carried out by employing a homography transformation function
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(a)

(b)

Figure 2.8: Homography blending. (a) Remaining small holes after layer projection. (b) Homography blend-

ing by making a new overlapping layer.

in the spatio-temporal space:⎛⎜⎜⎜⎜⎜⎜⎝
x́

ý

t́

1

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
h0 h1 h2 h3

h4 h5 h6 h7

h8 h9 h10 h11

h12 h13 h14 h15

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

H

⎛⎜⎜⎜⎜⎜⎜⎝
x

y

t

1

⎞⎟⎟⎟⎟⎟⎟⎠ (2.59)

where (x, y, t) and (x́, ý, t́) represent the sample and aligned movel coordinates respec-

tively. H is the transformation matrix which relates the sample and aligned movels. The

problem is now the estimation of h = hk, 0 ≤ k ≤ 15. Depending on the type of transfor-

mation, the matrix can be further reduced. For example if the transformation involves only

a translation, the upper 3× 3 matrix turns into an identity matrix. The intensity squared er-

rors for the pixels of the aligned movel must be minimized. Given I is the damaged movel,

and Í is the aligned sample movel, the error term in the overlapping volume between I and

Í is defined as:

E =

∑
[Í(x́, ý, ź)− I(x, y, z)]2 (2.60)

The minimization is performed by Levenberg-Marquardt iterative algorithm. For each

voxel, the intensity gradient is computed (
∂Í
x́
, ∂Í

ý
, ∂Í

ź
)
T . A Hessian matrix A = [akl] and

a weighted gradient vector b are computed as well:

akl =
∑ ∂e

∂hk

∂e

∂hl

(2.61)
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Algorithm 2.6 Voxel alignment algorithm.

1: (xi, yi, ti) is computed using (2.59).

2: E is computed using (2.60).

3: Intensity gradient is computed (
∂Í
x́
, ∂Í

ý
, ∂Í

ź
)
T .

4: Considering ei = Í(x́, ý) − I(x, y), the partial derivative of ei with respect to hk, 0 ≤

k ≤ 15 is computed:

∂ei

∂hk

=
∂Í

∂x́

∂x́

∂hk

+
∂Í

∂ý

∂ý

∂hk

+
∂Í

∂ź

∂ź

∂hk

(2.65)

5: A and b are computed using (2.65).

6: h(m+1) is computed using (2.63) and (2.64).

7: These steps are iterated until e becomes smaller than a threshold value.

bk = −
∑

e
∂e

∂hk

(2.62)

and h is updated by δh:

δh = (A+ αI)−1b (2.63)

h(m+1) ← h(m)
+ δh (2.64)

Then, an iterative algorithm to perform the alignment for each voxel i at (xi, yi, ti) is as in

Algorithm 2.6.

This algorithm is performed on the 3D Gaussian pyramid form of the sample and dam-

aged movel in order to start with a reasonable initialization and guarantee the convergence

of H in fewer iterations.

Each of the background and foreground completion tasks is carried out individually.

Then, the reconstructed foreground is placed in the restored background. It is worth noting

that since the foreground completion is based on the periodic motions, it is restricted to only

a subclass of camera and object motions. For instance, a rotated face cannot be sampled in

a sample movel.

Posture Mapping and Analysis in Foreground Motion Completion

Object-based video completion can be considered as a specific case of exemplar-based tech-

niques, which concentrate on filling-in the missing pixels of moving objects like a moving

person. The object-based technique introduced in [41] [42] performs the completion task
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by a virtual contour construction. Then, a key-posture selecting and mapping is performed.

Finally, in the case of lack of proper postures in the video, synthetic posture generation is

carried out. The method assumes that the object is already separated from the background

and the completion is only performed to complete the missing regions of the object.

The virtual contours are constructed after object extraction. First, the video is sampled

into 2D spatio-temporal slices at different Y and/or X values. This captures the horizontal

and/or vertical trajectories of the moving object. Note that a motion that is not purely hori-

zontal leads to various sizes for the object. Therefore, posture alignment and normalization

is needed. In this case, the largest posture is chosen as the reference to align and normalize

the other postures of the object. A correspondence between each contour point of the ad-

jacent contours is generated, then the affine transformation parameters between the largest

posture and the other postures are found using the least squares optimization scheme. Thus,

all the postures are aligned and normalized with regard to the largest posture of the object.

Before composing a virtual contour, the missing regions of the object trajectories must be

restored. Therefore, the image completion technique introduced in Section 2.1.2 is per-

formed directly on each already sampled 2D spatio-temporal slice. Afterwards, the Sobel

edge detector is employed on each slice to find the boundary of the object’s trajectory.

Then, the completed slices are combined to make a virtual contour which is used later in a

posture mapping and retrieval process. In fact, a virtual contour can provide quite precise

information about the posture and the filling location of an occluded object.

After finding a sequence of virtual contours, they are used to match the most similar

posture sequence in the available set of postures in the entire video. Therefore, a set of key

postures that are the most representative postures need to be selected as the key postures.

The postures need practical descriptors and a measure to find out if they are good matches.

The descriptor and a dissimilarity measure is defined as in [43]. The silhouette of the

posture is described by a set of feature points. Then, a circle centered at the feature point

with radius r is considered to generate a local histogram. Figure 2.9 shows the steps to

generate the local histogram for a posture. The circle is partitioned into Nbin, then the

number of feature points in each partition is assigned to each histogram bin. Hence, for

each posture a set of such histograms is used as the posture’s descriptor. In order to match
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(a) (b) (c) (d)

Figure 2.9: Extracting the local context of a posture. (a) The original object. (b) The silhouette of the object.

(c) Significant points in the silhouette the object. (d) Local histogram of a significant feature point.

two different sampled points in two different postures, the following cost function is used:

F (ai, ci) =
1

2

Nbin∑
k=1

[hai(k) − hci(k)]
2

hai(k) + hci(k)

, (2.66)

where ai and ci represent two sampled points and hai and hai denote the kth bin of their

histograms. The best match can be found by minimizing the following matching function:

H(π) =
∑
j

F (aj, cπ(j)
), (2.67)

where π is a permutation of 1, 2, ..., Nbin. Finally the shape matching function in terms of a

dissimilarity measure for two postures A and C with NA and NC number of sample points

is defined as:

Fsc(A,C) =
1

NA

∑
i

F (ai, cπi
) +

1

NC

∑
j

F (aj, cπ(j)). (2.68)

A posture is selected as a key posture if its dissimilarity to all the other key postures is

smaller than a threshold value THposture set to 0.08. Each posture in the set of key postures

is labeled with a unique number. Then, the virtual contour of each occluded posture is

matched with the key posture that has the most similar context using Eq. (2.68). A special

label is assigned to a virtual contour which does not have a match in the key posture set.

This way, the whole problem is converted to a string matching in order to find a sequence of

postures for a missing or occluded object. Given an input encoded segment, the objective

is to look for the most similar substring in the long string of codes. After finding the

proper substring, the associated postures to the string are used to fill-in the occluded part

of the target object. All the aforementioned steps help preserve a reasonable spatial and

temporal consistency and avoid any flickering effect. However, a lack of key postures can
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result in a poor quality of the video reconstruction since there is not enough number of

available postures in the entire video to generate an appropriate key-posture set. This can

happen especially in the case when the object is occluded in the video for a large period

of time. Therefore, the key-posture set needs to be enriched to cover more sophisticated

motions and objects. The synthesis technique [41] divides a human body into three parts:

the head, torso, and legs. Then it generates new postures using other postures. The posture

synthesis scheme proposed in this method is very case-specific and specialized only for

human body. Therefore, we avoid further discussion and refer the reader to [41] for more

detailed information.

2.2 Bandlet Transform

Wavelets are mathematical functions that cut up data into different frequency components,

and then study each component with a resolution matched to its scale. Wavelets have ad-

vantages over traditional Fourier methods in analyzing physical situations in which the

signal contains discontinuities. However, conventional wavelet bases are not optimal to ap-

proximate natural images due to their disability to take advantage of geometrical regularity

of image structures. In fact, wavelets have a square support. So, they are not adapted to

anisotropic regularity of geometrical elements including edges. Several new bases such as

curvelets [44], contourlets [45] and wedgelets [46] have been proposed to take advantage

of the anisotropic regularity of geometrical image structures. One of the most effective

ones is bandlet transform [47].

An image can be differentiable in a direction parallel to the tangent of an edge curve

even though, very likely, the image may be discontinuous across the contour. Fig. 2.11a

shows the geometric flow in the direction of edges in the hat of Lenna. Such an anisotropic

regularity is exploited by the bandlet transform which constructs orthogonal vectors that are

elongated in the direction of the maximum regularity of the function. Hence, the bandlet

transform is considered as an effective tool to capture the geometric properties of an image.

The first bandlet bases are introduced in [47], [48] having optimal approximation results
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(a) (b)
Figure 2.10: (a) Geometric flows in the direction of edges. (b) Image geometric segmentation.

(a) (b) (c)
Figure 2.11: (a) Wavelet coefficients and geometric flow. (b) Geometric flow and sampling position. (c)

Warped sampling. [10]

for geometrically regular functions. Then, the bandlet bases have been improved by a multi-

scale geometry defined over the coefficients of wavelet bases [49], [50]. In the following

subsections a brief overview of bandlets is provided. For a detailed explanation the reader

is referred to [10].

Orthogonal Bandlets Approximation

The polynomial approximation by means of a thresholding in an orthogonal Alpert basis

is computed for the bandlet approximation. The Alpert transform can be considered as

a polynomial wavelet transform adapted to an irregular sampling grid. It is obtained by

orthogonalizing multi-resolution space of polynomials defined on the irregular sampling

grid. An example of such sampling grid is shown in Fig. 2.11c. The resulting vectors have

vanishing moments on this irregular sampling grid, which is the basic need to approximate

the warped wavelet coefficients. A few vectors from Alpert basis can efficiently approxi-

mate a vector corresponding to a sampling of a function with an anisotropic regularity. This

kind of bandletization of wavelet coefficients is done by an Alpert transform defines a set

of bandlet coefficients. These coefficients can be written as inner products 〈f, bkj,l,n〉 of the

original image f with bandlet functions that are linear combinations of wavelet functions

bkj,l,n(x) =
∑
p

al,n[p]ψ
k
j,p(x) (2.69)
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where the al,n[p] are the coefficients of the Alpert transform. These coefficients depend

on the local geometric flow, since this flow defines the warped sampling locations, as it is

exemplified in Fig. 2.11c. The bandlet function is defined at some location n and wavelet

scale 2
j . Another scale factor 2l > 2

j is introduced by the Alpert transform which defines

the elongation of the bandlet function. Also, the bandlet inherits the regularity of the mother

wavelets ψk
j,p.

Geometric Flow Segmentation Approximation

The family of orthogonal bandlets depends on the local adapted flow over small squares

for each scale 2
j and orientation k. This parallel flow is characterized by an integral curve,

such as the depicted one as the dashed red plot in Fig.2.10a. Due to the bidimensional

regularization performed by the smoothing of the wavelet ψk
j,p, i.e, fi = f ∗ ψk

j,p , this

integral curve does not need to be strictly parallel to the contour.

One needs to segment the set of wavelet coefficients in squares S, in order to approxi-

mate the geometry by a polynomial flow. This segmentation is obtained for each scale 2
j

and orientation k of the wavelet transform using a recursive subdivision in dyadic squares

of various sizes. This subdivision results in a quadtree that specifies if a square S should

be further subdivided in four sub-squares with twice smaller size or not. There is no geo-

metric directional regularity to exploit, if there is no specific direction of regularity inside

a square. This is the case either in uniformly regular regions or at the vicinity of edge

junctions. Thus, it is not necessary to modify the wavelet basis. A sample of such quadtree

segmentation is shown in Fig. 2.12. Obviously, only for the edge squares, the adaptive

flow is required to be computed in order to produce the bandlet bases which exploit the

anisotropic regularity of an image.

Through scales the geometric structures of an image evolves. Therefore, a different

geometry Γ
k
j can be chosen for each scale 2

j and orientation k. The set of all geometries

is noted as Γ = {Γk
j}

k
j that consists of all the adapted flows of the quadtree segmentation

squares.

In our work, due to the high complexity of quadtree segmentation, we employed a fixed

size for all the squares instead of dynamically finding the size of each square. Fig. 2.10b
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Figure 2.12: Example of quadtree segmentation on scales of the wavelet transform of an image [10].

shows the result of finding the geometric flow for each same-sized square of the quadtree,

on the finest scale of the wavelet transform. We propose a solution for spatio-temporal

inpainting by a bandlet-based regularization. The proposed regularization is in fact an

optimization in the �1 norm of bandlet coefficients. The revealed geometry by bandlet

transform is also employed in our research work in a patch fusion scheme to blend the

matching pathes in an exemplar-based filling-in process.
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Chapter 3

Bandlet-based Video Completion

3.1 Using Bandlets in Inpainting

The bandlet framework can achieve an effective geometric representation of texture images.

It is essential in sparse regularization and spatial or spatio-temporal data reconstruction for

digital inpainting purposes.

The image (spatial) inpainting problem may be formulated as follows. An image I

contains a set of missing pixels indicated by Ω and a source (Φ = I \ Ω) area. The goal

is finding an image Í such that Í(x) is equal to I(x) for the pixels that belong to Φ, i.e.,

Í(x) = I(x) ∀x /∈ Ω while the overall geometry of Í has the same geometrical regularity

as that of I in Φ. In the presence of additive noise ω we have the image f with missing

pixels as f = θI + ω where

θI(x) =

⎧⎨⎩ 0 if x ∈ Ω

I(x) if x ∈ Φ.
(3.1)

A sparsity-based regularization solution for the inverse problem f = θI + ω was proposed

in [51] as

Í = argming

1

2
||f − θg||2 + λ

∑
k

|〈g, ψk〉|. (3.2)

This minimization has been used with the orthogonal wavelet bases ψk for denoising [51]

where the value of λ is chosen based on the level of noise and can be set to 1 for a noise-free

image. Considering the bandlets as anisotropic wavelets warped along the geometry flow,
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we substitute the conventional wavelet bases of Eq. (3.2) with the bandlet bases introduced

in Eq. (2.69) as

Í = argming

1

2
||f − θg||2 + λ

∑
j,l,n,k

|〈g, bΓk,j,l,n〉|. (3.3)

where similar to Eq. (2.69), k and j are the number of orientations and scales of the

wavelets, and l, n are the sampling grid parameters in the Alpert transform employed in

the bandlet transform. As discussed in the next section, our video inpainting scheme is

subject to reconstructing the missing part of the frames generated due to occlusions and/or

undesired object removal. Therefore, we avoid the noise level in the above equations (i.e.,

ω = 0) and rewrite Eq. (3.3) as

Í = argming

∑
j,l,n,k

|〈g, bΓk,j,l,n〉|. (3.4)

This equation is indeed minimizing the �1 norm of the bandlet image representation by

which we achieve a solution for the spatial inpainting problem. In the next section, we

utilize this idea to develop a 3D video volume regularization algorithm as well as the ef-

fectiveness of bandlets for blending the matching results of a best match search approach

in the video completion task.

3.2 Spatio-temporal Video Completion

An important task of video completion is to fill in large missing regions produced by ob-

ject occlusion or undesired object removal. The large missing region completion cannot

be carried out well by simply applying PDE, regularization, or other interpolation based

methods. On the other hand, in the exemplar-based methods, finding a reliable area around

the missing parts and also finding a proper match in the source frames toward the end of

the process reduces the accuracy of the results. Therefore, a video inpainting technique

is proposed here that benefits from both an exemplar-based patch matching and a sparsity

regularization scheme. The process starts looking for best candidates that match a patch

Ψp on the border of the missing region. The N best retained matching patches in the whole

sequence (Fig. 3.1) are then fused and the resulting data replaces the missing part of the

border patch. In case there is no proper match for the border patch, i.e., N = 0, the border
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Figure 3.1: Fusion strategy of patch matching results in a 3D volume video. Ψp lies on the missing region

border. Ψ́1
p,...,Ψ́N

p are the N most similar patches to Ψp and Ψ′′

p is the patch fusion result.

patch is kept unchanged for a further process by the 3D video volume regularization to

generate the final inpainting result.

A 3D patch centered at p on the border ∂Ω of the source Φ and missing Ω regions is

denoted by Ψp as depicted by red in Fig. 1. We search for the best match of Ψp in the Φ of

the whole frames. The best match Ψ́p is found using sum of squared differences (SSD)

Ψ́p = arg min
Ψq∈Φ

SSD(Ψq,Ψp), (3.5)

SSD(Ψq,Ψp) =

∑
(x,y,t)

||Ψp(x, y, t)−Ψq(x, y, t)||
2, (3.6)

where for each RGB pixel located at (x, y) in the source region (Φ) of frame t we have a

vector containing 5 elements (R,G,B, u, v). Considering (Yx, Yy, Yt) as spatial and tem-

poral derivatives of gray-scale video Y , u = Yt/Yx and v = Yt/Yy represent instantaneous

motions in x and y directions respectively [9]. The motion information is involved in the

space-time patch matching in order to preserve the motion consistency.

Unlike many of the exemplar-based methods, we do not simply replace the missing

portion Ω of Ψp by the corresponding pixels in Ψ́p. Instead, the best N matches Bp =

{Ψ́1

p, Ψ́
2

p, Ψ́
3

p, ..., Ψ́
N
p } are fused using the bandlet transform as described in Section 3.2.1,

then the fusing result pixels are copied into the missing part Ω of Ψp. The idea behind us-

ing several top similar patches instead of a single patch in image inpainting was presented

in [52] and [53] by using nonlocal means and a linear blending of the patches spatially, re-

spectively. The reason for employing a fusion framework in our video completion scheme

stems from the fact that, for other border patches Ψṕ spatio-temporally near Ψp that have

many pixels in common with Ψp the resulting set Bṕ would have many matching patches

in common with Bp of Ψp. Therefore, their results of fusion can be very similar. Con-

sequently, the results of inpainting for spatio-temporally close regions become reasonably
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consistent both spatially and temporally.

The value of N is determined using a threshold value τ . If SSD of a patch Ψ́p and

Ψp is lower than τ , B saves Ψ́p. The value of τ should not be too large to filter out many

patches and at the same time it should not be too small to keep so many of them. Based on

our observations we choose 0.85 as a good value for this threshold. Also, N should not be

too large to avoid unnecessary fusions. In our experiments N is limited to N ≤ 10. It is

worth noting that the number obtained for N indicates the degree of reliability of the best

matching patches found for Ψp. A lower value of N means Ψp is not frequently repeated in

the entire frames and consequently the obtained matches are not quite reliable for Ψp. This

case happens frequently in inpainting of scenes captured by a static camera where the goal

is reconstructing the missing region after a stationary object removal. Therefore, we leave a

border patch Ψp intact once the length N of its Bp set is 0 (i.e., ∀Ψq ∈ Φ, SSD(Ψp,Ψq) >

τ ).

The priority of filling-in process is very important in the exemplar patch matching. We

give the highest priority to a border patch Ψp that contains more reliable pixels, lies on

the continuation of textures and also lies on the moving regions of the video comparing to

other patches. The reliability of pixels in the border patch is measured by the confidence

value given by

C(p) =

( ∑
q∈Ψp∩Φ

C(q)

)/
|Ψp|. (3.7)

This parameter is adopted from [6] for the 3D patches, where |Ψp| is the volume size of Ψp.

In this equation and the equations that appear hereafter, Ψp∩Φ indicates pixels of the border

patch Ψp that lie in the source pixels Φ of the video. In the initialization, the confidence

value is set to 1 for the pixels in the source region and 0 for the pixels in the missing area,

i.e. C(p) = 0 ∀p ∈ Ω and C(p) = 1 ∀p ∈ Φ. A patch centered at p on the border ∂Ω

with already more filled-in pixels has a larger confidence than those of other patches. The

number of edge pixels can be used to measure the structural information contained in the

patch. This is obtained by means of the already computed spatial derivatives Yx and Yy.

Suppose Ýx and Ýy represent 0-1 maps of thresholded horizontal and vertical derivatives of

the entire frames, respectively. Instead of manually defining threshold values to generate
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these two binary maps, Otsu’s method can be used to find a proper threshold. Then, the

structural data value of Ψp is defined as

D(p) =

( ∑
q∈Ψp∩Φ

Ýx(q) ∨ Ýy(q)

)/
|Ψp|. (3.8)

Similarly, Ýt that contains 0-1 maps of temporal derivatives is used to determine the motion

data value of a border patch,

M(p) =

( ∑
q∈Ψp∩Φ

Ýt(q)

)/
|Ψp|. (3.9)

A high value of D means that the patch is placed on the continuation of a highly textured

region. Also, a large value of M indicates a large number of moving pixels with large

motion vectors in the border patch. The priority of a border patch is obtained as follows

P (p) = C(p)×D(p)×M(p). (3.10)

A border patch Ψp with the highest P (p) is chosen from the whole frames to be filled-in

first. Once the patch matching is carried out, the confidence value is updated as Ć(p) =

αC(p) where 0 < α < 1. The derivative matrices Ýx, Ýy and Ýt are also updated by copying

the derivative values of Ψ́p into the corresponding locations in Ψp ∩Ω. Then the process is

repeated for a new highest priority border patch until there is no border patch unprocessed.

The resulting video sequence containing unfixed regions (i.e. those with unreliable

matches) are passed to the sparsity regularization inpainting stage for further processes as

discussed in Section 3.2.2.

3.2.1 Patch Fusion

Multi-scale decomposition (MSD) based image fusion schemes, especially wavelet-based

ones, have a great performance compared to regular methods [54]. However, as discussed

in Section 3.1, due to its capability to capture more complicated geometric flows and struc-

tural information in images, the bandlet transform is much more appropriate than wavelet

transform for analysis and synthesis of edges and textures [55]. Hence, we design a fusion

scheme based on bandlets to blend the best patch search results.
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Figure 3.2 shows the proposed image fusion scheme. Consider I1 to IM as M images of

a single scene captured from M different sources (e.g., cameras, sensors, etc.), the bandlet

transform is applied on each Ii to obtain the geometric features Γi in the form of real

numbers and bandlet coefficients C of each image. Now we need to generate a fused set of

geometry flows and bandlet coefficients.

The fused geometry flow set ΓF is computed as follows

ΓF =
( M∑

i=1

jiΓi

)/( M∑
i=1

ji
)
, (3.11)

where ji is 0 if mean μi of the values of Γi is lower than a threshold σ. The value of σ is

chosen as the mean of all μ1, μ2, ..., μM . Indeed, this thresholding leads to applying only

the highly structurally similar source images to produce the fused geometry. The most

similar Γ of the source images are selected and their mean value generates ΓF . The fused

bandlet coefficients’ set is calculated as

CF =
( M∑

i=1

Ci

)/
M. (3.12)

It is worth mentioning that the bandlet coefficients C and the geometric features Γ are

produced for l, n, j, k scales and orientations of Eq. (2.69).

The inverse bandlet transform is performed on ΓF and CF in order to generate the

fused image from the M source images. Fig. 3.3(d) shows an example of the bandlet

based fusion result for 3 source images, where Barbara’s image is manually blurred and the

resulting images are considered as the source images depicted in Fig. 3.3(a)–(c).

Now consider the set Bp of the N best matching patches obtained for Ψp in the proposed

video inpainting technique in Section 3.2. Each Ψ́
i
p of Bp has a size of X×Y×T . The

corresponding spatial planes of patches in Bp are fused using the aforementioned fusion
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Figure 3.2: Bandlet-based fusion framework for M source images.

(a) (b) (c) (d)

Figure 3.3: Fusion result for 3 different source images of Barbara. a-c) Source images. d) Resulting fused

image.

method to produce the resulting inpainting patch Ψ
′′

p, i.e.,

Ψ
′′

p(t1) = fuse

(
Ψ

′1

p (t1),Ψ
′2

p (t1), ...,Ψ
′N
p (t1)

)
...

Ψ
′′

p(ti) = fuse

(
Ψ

′1

p (ti),Ψ
′2

p (ti), ...,Ψ
′N
p (ti)

)
...

Ψ
′′

p(tT ) = fuse

(
Ψ

′1

p (tT ),Ψ
′2

p (tT ), ...,Ψ
′N
p (tT )

)
(3.13)

where Ψp(ti) represents all the X×Y pixels at time index ti (1≤ti≤ T ) in the patch Ψp.

This fusion scheme takes more structural information into account than simply copying the

source (Φ) pixels of the best match Ψ́
1

p to produce the final inpainting result. Besides, as

mentioned earlier such patch fusion strategy followed the introduced search process, helps

gain more visual consistency.

3.2.2 Spatio-temporal Regularization Using Bandlets

As a result of the N best patch matching strategy, the unreliable border patches (i.e.

those that less likely have a match in the whole sequence or those less frequently are re-

peated in the frames) are recognized by the inpainting system. These kinds of patches
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Algorithm 3.1 Bandlet-based 3D video volume inpainting.

1: i = 0 and V i=0
= y

2: while |V (i+1) − V (i)| > ε do

3: Find V́ i using Eq. (3.15)

4: for z = 1 → X × Y × T do {Update the estimate; V i+1
= TB(V́

i
) }

5: Bandlet transform on V́ i
z

6: Soft-thresholding Eq. (3.16) on V́ i
z bandlet coefficients

7: Generate V i+1

z by inverse bandlet transform

8: end for

9: i ← i+ 1

10: end while

remain unchanged in the first inpainting stage and are passed to the 3D regularization pro-

cedure introduced in the following paragraphs.

Considering the 2D minimization problem introduced in Eq. (3.4) as an exhaustive

optimization, we adopt the soft-theresholding algorithm which has been used as a solution

for multi-scale wavelet representation inverse problems such as denoising [56].

The overall geometry is supposed to be fixed for an estimate of the original video. The

soft-theresholding function is carried out iteratively for the minimization of Eq. (3.4) for

each plane in the 3D volume video. At each iteration, the estimate video V i+1 is updated

as follows

V i+1
= TB(V́

i
), (3.14)

V́ i
=

⎧⎨⎩ V i
(x) if x ∈ Ω

y(x) if x ∈ Φ.
(3.15)

Pixels of the original video volume are represented by y(x) in the above equation. TB

denotes the soft-thresholding function performed in the bandlet domain for each existing

plane in V́ i defined as

TB(fz) =
∑
j,l,n,k

tλ(〈fz, bj,l,n,k〉).bj,l,n,k , (3.16)

where fz denotes each existing plane in the video volume. For a 3D volume consisting of

T frames of X×Y pixels, we consider T planes along the time, X planes along horizontal

and Y planes along vertical directions. tλ(x) = max(0, 1 − λ
|x|
)x and the value of λ goes

to 0 as the iteration number increases. bj,l,n,k represents the bandlet functions of various

scales and orientations as in Eq. (2.69).
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(a)

(b)

Figure 3.4: A damaged video volume from different views. a) X-Y planes view. b) T -Y planes view.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.5: Various iteration results of Algorithm 1 on the 11th frame of the video of Fig. 4.7. For a better

illustration the images are cropped from left, right and bottom.

Algorithm 3.1 presents the details of the minimization procedure to inpaint a video

volume. This algorithm stops once the difference between two consecutive estimates is less

than a small value ε. One may think of applying this algorithm on each frame independently

as the inpainting task. Obviously, in a video sequence the flow of motions and trajectories is

very important and needs to be considered in the inpainting task to preserve the consistency.

Figure 4.7(a) displays the resulting video of the exemplar-based repair stage done on the

original video of Fig. 3.7(c). This video contains black holes representing unfixed patches.

Rotating the video volume around the Y axis, one can see the video volume T -Y planes.

As seen for example in the T -Y plane of X = 145 in Fig. 4.7(b), pixels of the missing

region do not only lie on the spatial geometric flows but also those along the time direction.

As a consequence, in each iteration of Algorithm 3.1, the regularization is carried out on
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(a) (b) (c)

Figure 3.6: The 2-stage proposed video completion method shown for a sample frame. (a) Original frame. (b)

Stage 1 result: Exemplar-based patch fusion step (Sec. 3.2.1). (c) Stage 2 result: bandlet-based regularization

on the result of stage 1 (Sec. 3.2.2).

planes X-Y , T -X and T -Y denoted by V́ i
z . Due to limitations of a 3D illustration, the

inpainting result for only a single frame is shown in Fig. 4.8.

3.3 Experimental Results

Several video sequences, including some that are provided in [29], [26] are used to evaluate

the proposed video inpainting method. This set of videos contains sequences captured by

both static and moving camera. The resolution of each video sequence is 320×240. The

intermediate results of the proposed two-stage video completion technique performed on a

sample video sequence for one of its frames are presented in Fig. 3.6. In the implementa-

tion, the following settings are used:

• The size of each patch is 9×9×5 in the patch matching process.

• α is set to 0.5 for confidence update.

• τ is set to 0.85 to choose the N top matching patches.

• Gray-scale values of the RGB frames are found by (R+G+B)/3 whenever

needed like instantaneous motion calculation.

• Considering a border patch Ψp centered at p=(x,y,t), the search range is re-

duced to x−50<x<x+50, y−50<y<y+50 and t−7<t<t+7 in the video se-

quence in order to avoid unnecessary search. This does not negatively affect

the patch matching result, since most likely the best patches for an arbitrary

patch exist in its adjacent space and time locations.

The details of the bandlet transform applied in our technique are as follows:

• Number of scales j, on which geometry is computed, is set to 3.
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• The introduced scale factor l by Alpert transform in the bandletization (Section

3.1) is set to 4.

• Orthogonal wavelets are used in the bandetization.

• In the wavelet transform, Daubechies wavelets are employed.

• A fixed size 8×8 segmentation is employed instead of the complex dyadic

segmentation introduced in Section 3.1.

Fig. 3.7 depicts the results of our video inpainting scheme on different sequences.

These videos are selected from TV, video games, and also captured by a digital camera.

The objective in the sequence of Fig. 3.7(a) is to remove the stationary object and fill-in

its missing region with proper data. Since the camera and the removed object are static,

as discussed in Section 3.2, there is not much information about what was behind the ob-

ject in the whole sequence. Therefore, the inpainting result is mostly produced by 3D

regularization rather than patch matching. Other examples illustrated in Fig. 3.7 depict

inpainting results of videos containing camera motions. In all cases, the proposed method

performs the completion task quite well. In order to gain insight into the effect of each step

of the proposed video completion scheme, several analyses are next presented as well as a

comparison with two state-of-the-art methods.

3.3.1 Effects of Patch Fusion and 3D Regularization

As mentioned before, the N best patch sorting and fusion results in a better performance

in comparison to conventional patch replacement. We show this by means of a quantitative

comparison.

A manual damage is generated on an original video sequence. Then, the damaged video

is completed by the spatio-temporal video completion approach presented in Sec. 3.2. The

completion is performed once without patch fusion, i.e, replacing the missing parts of a

border patch by the corresponding pixels of the best matching patch. The spatio-temporal

completion is carried-out once again by applying the introduced patch fusion technique.

However, since the second stage of our proposed method (i.e., 3D regularization) is not

applied in this experiment, we simply avoid the threshold τ (used to find N ) and set N = 5.

Then, for both cases, the difference of the completion result of the damaged video and the
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.7: Completion results for different video sequences. In each sub-figure, the top row shows the

original frames and the bottom row demonstrates the corresponding inpainting results.

original video sequence is observed by computing the MSE value for the corresponding

frames of the original and the completion result video sequences. Fig. 4.11(a) shows a

frame of the video chosen for evaluation which is damaged as in Fig. 4.11(b) and then

completed as in Fig. 4.11(c) and Fig. 4.11(d).

The plot indicated as “Exemplar Bandlet-based Patch Fusion” in Fig. 4.12 shows mean

square error (MSE) graph of all the 50 frames of the original video and the spatio-temporal

completion result sequence using the bandlet based patch fusion. Obviously, the MSE
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(a) (b)

(c) (d) (e)

Figure 3.8: (a) Original frame. (b) Damaged frame. (c) Regular exemplar-based inpainting result (Frame

number 13, MSE=19.13). (d) Patch fusion exemplar-based inpainting result (Frame number 13, MSE=18.4).

(e) Two-stage (exemplar patch fusion-based method followed by the bandlet-based 3D regularization) in-

painting result (Frame number 13, MSE=11.86)
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Figure 3.9: Objective evaluation of patch fusion and 3D regularization in video inpainting.

value of the fusion-based completion for almost all the frames is lower than that of the

conventional exemplar-based completion scheme labeled as “Exemplar-based” in Fig. 4.12.

In order to show the performance of the proposed bandlet-based patch fusion technique in

video completion tasks, the experiment is performed another time using another image

fusion technique. A patch fusion scheme similar to Sec. 3.2.1 is considered for a well-

known image fusion technique based on wavelets introduced in [57]. Then, the completion

task is performed by means of the exemplar-based platform applying this fusion technique.

Similar to the wavelet stage of the bandlet transform, Daubechies wavelets are employed

in this wavelet-based patch fusion scheme. The resulting MSE values of all the generated

frames using this method are presented as the “Exemplar-based Wavelet patch Fusion” plot

62



in Fig. 4.12. The plots shown in Fig. 4.12 indicate visually pleasing completion results for

the bandlet-based patch fusion scenario compared to simply replacing the missing region by

the best matching patch and also using an effective fusion method [57] based on wavelets.

Similar experiments are carried out in order to evaluate the effectiveness of bandlet-

based 3D regularization in the inpainting task. This time, the proposed two-stage video

inpainting method is carried-out for the video sequence of Fig. 4.11. In other words,

the damaged video of Fig. 4.11(b) has been inpainted using spatio-temporal patch-fusion

followed by the 3D regularization step in order to refine the results and also to preserve

the visual consistency (Fig. 4.11(e)). The corresponding MSE plots in Fig. 4.12 show a

higher performance for the proposed video completion method compared to using solely

the patch fusion scheme or the convectional exemplar-based video inpainting technique

presented in Sec. 3.2. It is worth mentioning again that the regularization methods are not

practical for large regions due to the blur effect they impose on the resulting frames [6].

However, as presented here a precise combination of a regularization-based method and an

exemplar-based method can result in a higher accuracy.

3.3.2 Comparison with State-of-the-art Methods

The performance of video inapinting/completion methods is generally evaluated subjec-

tively. However, we use MSE to evaluate the effectiveness of our method as done in our

previous experiments. A manual damage is produced on an original video sequence. Then,

the result of the completion method on the damaged video is compared with the original

video sequence by computing the MSE value for the corresponding frames of the original

and the completion result video sequences. Fig. 3.10(a) shows a frame of the video chosen

for evaluation which is damaged as in Fig. 3.10(b) and then completed as in Fig. 3.10(c).

The green plot in Fig. 3.11 shows the MSE graph of all the 47 frames of the original video

and the completion result sequence using the proposed method. For almost all the frames,

the MSE value is low, indicating visually pleasing completion results.

We compared our approach to two well-known video completion methods introduced

in [26] and [35]. Fig. 3.12 shows a sample frame of a video sequence processed by these

two methods as well as by our technique. We performed the same MSE graph generation
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(a) (b) (c)

Figure 3.10: (a) Original frame. (b) Damaged frame. (c) Proposed method completion result (Frame number

22, MSE=8.18).

i.e., computing MSE for the completion results and the original sequence. The produced

graphs are depicted in Fig. 3.11. The graphs and the computed average MSE values of all

the frames indicate a high performance for our proposed method compared to these two

methods. Despite the crucial importance of temporal consistency in video completion, to

the best of our knowledge, none of the existing techniques have been evaluated objectively

in the literature in this sense. This is due to the fact that there is no standard temporal

quality measurement framework designated for video inpainting. Here, we employ the

spatio-temporal most apparent distortion (STMAD) model to analyse our approach with

regards to temporal consistency [58]. A low value for STMAD indicates that the video is

temporally consistent [58]. In fact, the extension of the still image-based most apparent dis-

tortion (MAD) model [59] by taking the motion information between frames into account

is the main idea of STMAD. Table 5.2 presents STMAD values obtained for the completed

videos by the three different techniques. It should be mentioned that the obtained values

are normalized to the range of 0 to 1 and then they are subtracted from 1. Hence, a higher

value in the table indicates a better consistency. The STMAD is calculated between the

inpainted video and the original one of Fig.3.10. As the table indicates, our approach has

the highest value for STMAD and consequently the best temporal consistency among the

other methods. This high performance is largely credited to the effective role of bandlets in

the patch-fusion scheme in the spatio-temporal completion and the 3D regularization and a

good combination of these two different stages.
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Figure 3.11: Objective evaluation of the proposed video completion method. Average frame MSE is 6.11,

6.02, 5.1863 for Patwardhan [26], Tang [35], and the proposed two-stage method, respectively.

(a)

(b) (c) (d)

Figure 3.12: A sample frame inpainted by three differen methods. (a) Damaged frame. (b) The proposed

algorithm result. (c) Completion result of [26]. (d) Completion result of [35]. (For a better illustration the

images are cropped from left, right and bottom)

Table 3.1: Temporal consistency evaluation. STMAD obtained for each resulting video using different video

completion techniques.

Method Patwardhan [26] Tang [35] Ours

STMAD 0.501 0.484 0.601
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Chapter 4

Video Text Removal

4.1 Introduction

Embedded text in a video sequence provides valuable information of paramount impor-

tance. Texts usually appear as logos, subtitles, captions or banners in the video sequence.

Examples of such informative embedded texts can be largely found in the news and other

popular television broadcastings. Although texts provide additional information, not all of

them are necessary as they may occlude important portions of a video. Consider the case,

for instance, when indirect advertisement is not permitted but it is already included within

a frame sequence in the form of a caption. Hence, there should be a way to erase the un-

wanted text from the video. This motivates the need of an automatic approach to remove

undesired texts from a video.

Roughly speaking an automatic video text removal scheme involves two main stages:

i) an automatic video text detection, and ii) an effective video completion/restoration after

the text removal. Existing video text completion techniques rarely cover both of these

aspects in a single platform. The proposed methods in [60–63], for instance, deal with

only the restoration stage from the video inpainting perspective. The proposed scheme

in [64] utilizes a support vector machine (SVM)-based text detection method to localize

texts in the video, then performs the inpainting method introduced in [1] in order to restore

the parts occluded by the removed texts. In [65] the video caption detection is performed
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Figure 4.1: Main stages of the proposed video text detection and removal.

by a multi-layer perceptrons scheme and genetic algorithms. The removal task is carried

out by modeling it as an optimization problem whose cost function is made by isophote

constraints and minimized by genetic algorithms.

In this chapter, we propose a video text completion approach which consists of an accu-

rate video text localization technique and an effective restoration stage. Fig. 4.1 illustrates

different steps of the proposed framework. In the video text detection stage, embedded

texts in each frame are localized then tracked in the entire sequence and removed even-

tually. The most challenging step in video text detection algorithms is finding the text

locations in each frame before tracking them. Therefore, we developed a precise single

frame/image text detection algorithm using SWT and unsupervised classification. A set of

feature vectors is generated for the connected components (CC) produced by SWT. Then,

the feature vectors are employed in a k-means clustering to distinguish text CCs from non-

text ones. Since SWT requires accurate edge locations to process, we also introduce an

effective bandlet-based edge detector. The restoration task after removing the texts from

the video is performed by applying spatio-temporal geometric flows extracted by bandlets

to reconstruct the missing data. To that end, the inpainting algorithm, i.e. the 3D volume

regularization algorithm introduced in Chapter 3 is employed. The two stages of our video

text completion framework are utilized independently. The main challenge of our video

text detection approach is to detect the text regions in each frame. Therefore, a review of

related image text detection techniques is first provided in this chapter.
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4.2 Single Frame Text Detection Related Works

Text in video, especially the superimposed text, is the most reliable information to be con-

sidered in video indexing research work. Many research works have addressed the task of

extracting text regions from videos [66–69]. Our proposed video text detection approach

is based on tracking the detected texts in each frame [15]. In such tracking-based text

detection methods [70, 71] the accuracy of detected text locations in each frame signifi-

cantly affects the performance of the video text detector. To circumvent this limitation,

we develop an accurate single frame (image) text detector as the base of our video text

detection approach. Existing image text detectors may be broadly classified into two main

groups [72, 73]: texture (also called region) based and CC-based methods.

Texture-based methods scan the image at a number of scales and consider the embed-

ded text as a particular texture pattern that is distinguishable from other parts of the image

and its background. Basically, features of various regions of the image are retained. Then,

the presence of text is identified by either a supervised or an unsupervised classifier. Fi-

nally, the neighboring text region candidates are merged based on some geometric features

to generate text blocks. As examples of such methods, the technique introduced in [74] ap-

plies Sobel edge detector in all Y, U, and V channels, then invariant features such as edge

strength, edge density, and edge’s horizontal distribution were considered. The method

presented in [75] produces a statistical-based feature vector using the Sobel edge map and

applies k-means algorithm to classify image regions into text and non-text parts. Assuming

that the horizontal gradient value of text regions is higher than that of other parts of the im-

age, the method in [76] thresholds the variance of gradient values to identify text-regions.

A support vector machine (SVM) classifier is used in [77] to generate text maps from the

gray-level features of all local areas. The method extracts the features through each layer of

image pyramids. The method in [78] also takes advantage of image pyramids to find local

thresholds to detect text areas. The frequency domain is shown to be practical in text-region

classifications. For example, classification is applied in wavelet domain in [79] and [80] in

order to detect aligned texts in an image. In the same vein, the proposed method in [81]

applies frequency domain coefficients obtained by the discrete cosine transform (DCT) to

68



extract features. By thresholding filter responses, text-free regions are discarded and the

remaining regions are grouped as segmented text regions.

CC-based methods stem from the observation that text regions share similar properties

such as color and distinct geometric features. At the same time, text regions have close

spatial relationship. Therefore, based on such properties they are grouped together and

form CCs. The method introduced in [82] finds candidate text regions by utilizing Canny

edge detector, then a region pruning step is carried out by means of an adjacency graph and

some heuristic rules based on local components features. Candidate CCs are extracted by

the method in [75] based on edge contour properties, then text-free components are pruned

by analysis of wavelet coefficients. In order to find CCs, an adaptive binarization is applied

in [83]. Statistical analysis of text regions is performed to determine which image features

are reliable indicators of text. This is done by considering a large training set which consists

of text images. In fact, the feature response of the candidate CCs must be similar to the

text images. A useful operator is defined in [84] to find stroke width of each image pixel.

The SWT image is generated by shooting rays along the direction of each edge pixel’s

gradient. Then, the SWT values are grouped based on their ratios in order to produce

CCs. The text-candidate CCs are selected by applying some rules such as aspect-ratio,

diameter and variance of stroke width of each component. In [85] the CCs are found by

k-means clustering in the Fourier-Laplacian domain. Then, the candidate CCs are filtered

by test string straightness and edge density features. This method is not only practical for

horizontally aligned texts but also for any arbitrary oriented text. A CC-based algorithm

is introduced in [86], which employs Maximally Stable Extremal Regions (MSER) as the

basic letter candidates. Then, by using geometric and stroke width information non-text

CCs are excluded.

A number of existing methods are not categorized in the aforementioned two groups. As

an example, the method in [87] is a hybrid technique whose first step detects text regions in

each layer of image pyramid and projects the text confidence and scale information back to

the original image followed by a local binarization to generate candidate text components.

A CRF model filters out non-text components and then a learning-based minimum spanning

tree (MST) is used to link the CCs. Sparse representation is also applied in the field of
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text detection. The introduced method in [88] benefits from two learned discriminative

dictionaries [89], one for document images, and another for natural images to distinguish

between text and background regions in an input image.

The general scheme of our proposed image text detection method consists of producing

the image edge map and then finding CCs based on SWT guided by the generated edge map.

Next, precise feature vectors are formed using the properties of CCs from SWT and pixel

domain. An unsupervised clustering is performed on the image CCs to detect the candidate

text CCs. Finally, text candidate components are linked to form text-words. The method

is considered as a CC-based technique whose contribution is twofold: 1) Since accurate

edge maps drastically enhance SWT results, a precise edge detection approach adaptive to

text-regions is proposed by employing the bandlet transform. 2) A feature vector based on

text properties and stroke width values is employed in k-means clustering in order to detect

text CCs.

4.3 Video Text Detection

The proposed video text detection performs a motion analysis and tracking for the text

objects found in each frame in order to detect the actual video texts and distinguish them

from the rest on the video. The frame text detector is first presented and then the tracking

scheme is discussed in this section.

4.3.1 Text Detection in Each Frame

The frame text detector is in fact an image text localization technique based on CCs that

benefits from SWT and a k-means clustering which in turn requires accurate edge loca-

tions. The scheme contains three main stages as follows: 1) Edge detection, 2) SWT and

generating CCs, and 3) k-means clustering of the CCs.

Edge Detection Using Bandlets

As discussed earlier, the bandlet transform effectively represents the geometry of an image.

We take advantage of this representation and propose an edge detection algorithm that can
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be used effectively in text-detection techniques. On the other hand, it has been shown

in [90, 91] that finding local maxima of wavelet transform coefficients is similar to the

multi-scale Canny edge detector operator. Since the image coefficients are all warped along

local dominant flows in the bandlet transform, the final bandlet coefficients generated for

each segmentation square S have the form of approximation, and high-pass filtering values

appear in the wavelet transform of a 1D signal. We benefit from the bandlet-based resulting

1D high-pass frequency coefficients that are adapted to the directionality of the edge that

exists in each segmentation square S in order to find a binary map of the edge positions in

the image.

The bandlet transform is performed on the original image, and for each segmenta-

tion square S the bandlet coefficients are generated. For each S, the resulting coefficients

are grouped in low-pass (approximation) and high-pass filtering results similar to the 1D

wavelet transform. Since the approximation part consists of coarse information of the origi-

nal signal, we discard it and only process the high-pass coefficients. The first-order deriva-

tives of the fine-detail bandlet coefficients are computed. By applying a contextual filer,

we find local maxima of the resulting gradient signal since many meaningful edges can be

found in the local maxima of the gradient not only in the global maxima. Then, in order to

improve the quality of the edge image a two level thresholding is employed.

For each point xi in the gradient signal, we check if xi is a local maximum and its value

is greater than a threshold TG. If so, xi is kept as an edge point coefficient otherwise it will

be discarded. Hence, a window with size 2L + 1 centered at xi is set. Then, the binary

indicator of edge points in the gradient signal is generated as follows:

Mi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if gi > TG ∧ gi > gj, ∀j ∈ [i− L, i− 1] ∧

gi > gj, ∀j ∈ [i+ 1, i+ L]

0 otherwise,

(4.1)

where gi represents the gradient value for xi and gj indicates gradient value of neighboring

pixels of xi that exist is the window. M is a map of local maxima of the gradient signal.

The corresponding locations of 0’s of M in the bandlet fine (high-pass) coefficients are set

to 0, for all the bandlet squares S. Then, the inverse bandlet transform is performed in order

to have the final edge locations of the original image.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Edges by different methods. a) Original image. b) Sobel. c) Prewitt. d) Canny. e) Wavelet-based.

f) Bandlet-based.

Obviously, the quality of the edge map depends on the value of the threshold TG. In or-

der to ensure a high quality, a two-level thresholding is employed. First, the edge detection

is performed using a low value for TG and the edge image El is produced. The algorithm

is performed another time utilizing a higher value for TG to generate the edge image Eh.

Apparently, El includes more edge pixels than Eh, which only includes significant edges.

Also, all the edge pixels of Eh exist in El. A combination of Eh and El leads to more

reasonable results. For each edge component Ceh that exists in Eh we inspect El and check

if there is an edge component Cel in El that overlaps Ceh. If so, Cel is taken from El and

saved in the final image edge map.

Considering the bandlet transform structure strictly adapted to strong local pixel flows

through a geometry-based dyadic segmentation, this edge detection scheme reveals reliable

edge pixels. Moreover, since the regions consisting of sparse singularities such as noisy and

foliage pixels, and the regions with various pixel intensities are eliminated in the bandlet

geometric segmentation, the resulting edges are quite appropriate to localize text-edges

embedded in the image. Fig. 4.2 shows the results of four different edge detection methods

including Sobel, Prewitt, Canny, wavelet and the proposed bandlet-based technique. The

input image includes a text and noisy pixels. Our proposed approach shows considerably

better results compared to the other methods.

Stroke Width Transform

The SWT value of each pixel is roughly the width of the stroke that contains the pixel. A

stroke is defined as a part of the image that forms a band of constant width. In the first

step, we find the edges of the input image using the proposed edge detection method (Sec.
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Figure 4.3: Stroke width transform. Finding the gradient value of edge pixel p and shooting a ray in its

direction and finding an edge pixel q with opposite gradient direction on the ray (left). Assigning the stroke

width value to each pixel that lies on the ray (right).

Figure 4.4: The original image and the SWT output using bandlet-based edges are shown at left and right,

respectively.

4.3.1). Then, the gradient direction dp of each edge pixel p is determined. A ray starting

from p with the direction of dp is considered and followed until it meets another edge pixel

q. If the gradient direction dq at edge pixel q is approximately opposite to dp, the distance

value of p and q is assigned to all the pixels that lie on the ray. Fig. 4.3 shows SWT values

of sample pixels that lie on a ray. SWT of a sample image whose edge map generated using

bandlets (Sec. 4.3.1) is computed and shown in Fig. 4.4. This figure shows how effective

SWT can be in finding text regions in images.

Neighboring pixels are grouped together and form CCs if they have similar stroke width

values. The traditional CC algorithm is not performed on a binary mask but on the SWT

values with a different connection criterion. In the CC algorithm, 4-neighboring pixels are

considered. Adjacent pixels are grouped if the ratio of their stroke width values is higher

than 0.3 and lower than 3. Features of the produced CCs are used to find text candidates.

Unsupervised Classification and Refinement

We need to identify components that very likely contain text. Thus, we employ a set of

rules and assumptions in order to make a feature vector for each component. Then, the
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feature vectors are fed to k-means clustering to identify text components.

The variance VSWT of stroke width values in all the text components is not too large. A

high value of VSWT for a CC means that the component consists of the pixels of a foliage

region. The mean μSWT and median MSWT values of each CC are also considered in order

to find text components with the same stroke width, since almost all the characters of a

word would have the same stroke width. Another important feature of a text component is

that it is neither too long nor thin. Therefore, the ratio Rs of the component diameter and

its median stroke width MSWT are added to the feature vector.

Considering a sample character as a text CC, one may observe that the gradient direc-

tions of edge pixels of the component vary significantly. In other words, a text component

can have edge pixels with gradient directions ranging from 0
◦ to 90

◦ for character “I” for

instance or 0◦ to 180
◦ for “O”, indicating a large range of directionality. So, we calculate

the variance VG of gradient directions of all the edge pixels of a CC and save it in the feature

vector. Also, a text component has almost a symmetric distribution for the gradient direc-

tions of the edge pixels. This is due largely to the fact that a character has at least two sets

of edge pixels roughly parallel to each other with opposite gradient directions. Therefore,

we estimate having a symmetric distribution for the direction of edge pixels by computing

the skewness SKG for the gradient directions and add it to the features:

SKG =
μ3

σ3
=

1

n

∑n

i=1
(gi − μG)

3

(
1

n

∑n

i=1
(gi − μG)

2)3/2
, (4.2)

where n is the total number of edge pixels in a CC, gi is the gradient direction at edge

pixel i and μG is the mean of gradient directions of the edge pixels of the CC. In fact, in

this equation μ3 and σ are the third moment about the mean and standard deviation of the

gradient directions, respectively.

An important feature attributed to texts in images is their relatively high contrast with

the background compared to other regions of the image. This is due to the nature of utilizing

texts i.e, catching one’s sight and conveying information. A scene text or a caption text in

a video frame, for example, must have a strong contrast with the background since the

producer of the text wanted them to stand out clearly. Thus, we consider this important

property and use it in the feature vector. Typically, contrast is estimated by Weber formula:
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Figure 4.5: Clustering of CCs. Text and non-text CCs identification (left). Merging text CCs to generate the

final result (right).

C = (Lo − Lb)/Lb, where Lo and Lb are the luminance of the object and its surrounding

background, respectively. More complex contrast analysis can be found in [92, 93] by

employing discrete cosine transform and wavelets. We simply use the local mean μL and

standard deviation σL of the image intensity to estimate the contrast value of a CC with its

background [94]; CL = σL/μL. CL is computed for the intensity pixels that exist in the

bounding box of a CC and added to its feature vector.

Finally, the bounding box itself must have a reasonable aspect-ratio for a text CC. Nor-

mally, the height of a text component is larger than its width and their aspect-ratio is not

too large. So, we find the aspect-ratio Rasp of the bounding box of each CC and use it in

the feature vector. The final feature vector of each CC has the following form:

−→

F = {VSWT , μSWT , MSWT , Rs, VG, SKG, CL, Rasp} (4.3)

The produced vectors
−→

F of all the CCs of the image are fed to a k-means algorithm with

k = 2 and consequently clustered into two groups, non-text and text components as shown

at left in Fig. 4.5 for instance. In order to identify which cluster is associated to the texts

and which is not, at the beginning of the process we append a sample text to the end of

each input image. Hence, the resulting cluster that contains the sample text components is

considered as the group of text components and the rest of the components are discarded.

In the last step, the remaining text components which are horizontally aligned and have

reasonable distance to each other, for example as far as a character width, are grouped

together and form the word components as shown at right in Fig. 4.5.
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Algorithm 4.1 Video text detection.

1: for fi = 1 → fN (fN :total number of frames) do

2: Find the edge map for fi (Sec. 4.3.1)

3: Generate the STW of fi (Sec. 4.3.1)

4: Unsupervised classification using Eq. (4.3) (Sec. 4.3.1)

5: Text components alignment (Sec. 4.3.1)

6: Save all the spatio-temporal locations of the texts

7: end for

8: Find the video global motion μG (Eq. (4.4))

9: for all the detected frame texts do

10: Track the text using CAMSHIFT algorithm

11: Find the local motion field μO of the tracked text (Eq. (4.4))

12: Find the dissimilarity of μO and μG (Eq. (4.5))

13: Mark the tracked text as a moving text if it satisfies Eq. (4.6)

14: end for

4.3.2 Text Detection in Video Sequence

Once the text locations are detected within each frame of the video sequence, a mechanism

is needed to distinguish the video texts from the natural texts that may exist in a frame.

Considering that an embedded video text appears in a consequence of frames with specific

motion properties compared to the rest of the video, we employ a tracking and motion

analysis scheme in order to specify the video text regions.

The detected text locations in each image are considered as different objects and CAMSHIFT

algorithm [95] is performed on each of them. It is worth noting that CAMSHIFT starts

from a text object of the current frame if the text object has not been already tracked in the

sequence. Therefore, the large set of text locations of all the frames is reduced to a set of

tracked text objects in the video. For each text object we have the spatial and temporal loca-

tions. In the next step, the local motion field of each text object and the global motion field

of the video are estimated using Lucas-Kanade optical flow computation algorithm [36].

Each motion vector (u, v)T is estimated by solving the following optimization problem:

argmin
(u,v)

∑
x,y,t

(
u
∂I

∂x
+ v

∂I

∂y
+

∂I

∂t

)
, (4.4)

where ∂I
∂x

, ∂I
∂y

and ∂I
∂t

are image derivatives along spatial and temporal directions. The

motion information of each point p = (x, y, t) in the video is represented by (u(p), v(p)).
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An embedded video text like a caption or a subtitle can be distinguished from the nat-

ural text regions by analyzing the motion fields. An embedded video text has a distinct

local motion compared to the global motion field of the video. Besides, a video text usu-

ally has a dominant motion which can have one of the three patterns: 1) along horizontal

direction like a caption which enters from the right down corner and leaves from the left

down corner of the screen, 2) along vertical direction like a text line which rolls down from

top to the bottom of the screen, 3) stand-still like a logo on top corner of the screen or a

subtitle that appears at bottom of the screen. Hence, the mean value of the global motion

vectors (ū(pG), v̄(pG)) and the mean value of the motion vectors associated to each text ob-

ject (ū(pO), v̄(pO)) are calculated. Then, the dissimilarity between these two vector mean

values is calculated as follows:

d = ‖μG − μO‖, (4.5)

where μG = ū(pG), v̄(pG) and μO = ū(pO), v̄(pO). Once the motion field of a text object

satisfies the following condition:

d > Tm ∧
(
v̄(pG) = 0 ∨ v̄(pG) = 0

)
, (4.6)

the text object is considered as an embedded video text. The condition in (4.6) indicates

that a video text is distinguishable from the rest of the video specifically the natural text

regions if its local motion dissimilarity with the global motion is larger than a threshold

value Tm and at the same time its local motion is only horizontal, vertical or it is totally

static
(
v̄(pG) = 0∨ v̄(pG) = 0

)
. The steps of the proposed video text detection scheme are

listed in Algorithm 4.1. Fig. 4.6(b) shows the detected embedded video texts in a sample

frame which are distinguished well from the other text objects that exist in the frame shown

in Fig. 4.6(a). Once the video text is located in the entire video, its associated CCs in all

the frames are marked and removed from the sequence (see Fig. 4.6(c)).

4.4 Video Text Removal

The resulting video after removing the caption text needs to be inpainted to be filled with

appropriate pixels. Interpolation-based video inpainting schemes are generally practical to
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(a) (b) (c)

Figure 4.6: Output results of video text detection. a) Original frame. b) Video text detection result. The video

text objects are differentiated from the other text objects by another color. c) Detected video text is removed

and masked.

restore videos that contain small and thin missing regions such as the areas occluded by

text pixels. At the same time, these types of methods do not require sophisticated pre-

processing steps like segmentation, tracking, and motion vector estimation. Image sparse

representation is effectively adapted to the local image properties, specifically the textural

ones. Therefore, we employ the inpainting scheme introduced in Chapter 3 to address the

restoration task. Considering that the resulting video after text localization and removal as

a video that consists of T frames with X×Y pixels for each, there are T , X and Y planes

along the time, horizontal and vertical directions, respectively, the iterative steps of the

minimization process introduced in Algorithm 3.1 in order to inpaint the video volume is

used.

Fig. 4.7(a) displays a sample video after text removal to be restored by the proposed

inpainting algorithm. The inpainting result of a single frame of the sequence is shown in

Fig. 4.8.

4.5 Experimental Results

Several video sequences are used to evaluate the proposed video text removal method.

The set of videos contains sequences captured from TV, movies and video games. The

resolution of each video sequence is 320×240. In the implementation of the text detector

and the video inpainting scheme, the following settings are used:

• Gray-scale values of the RGB frames are found by (R+G+B)/3 whenever

needed.
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Figure 4.7: A video volume from different views. a) X-Y planes view. b) T -Y planes view.

(a) (b) (c) (d) (e)

Figure 4.8: Various iteration results of Algorithm 3.1 on the 15th frame of the video of Fig. 4.7. (The images

are cropped from left, right and bottom.)

• In order to reduce the size of the inpainting volume, instead of performing the

inpainting task on the entire video volume for a text which has a bounding

volume size of w × �× h, the bounding box is confined to w + 50 × � + 10

× h + 50 (w and h, respectively, represent width and height of the volume in

pixels and � represents the number of frames in the volume).

• In the bandlet transform the number of scales j, on which geometry is com-

puted, is set to 3.

• The introduced scale factor l by Alpert transform in the bandletization (Sec.

2.2) is set to 4.
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(a)

(b)

(c)

(d)

(e)

Figure 4.9: Sample automatic video text removal results.

• Orthogonal wavelets are used in the bandetization.

• A fixed size 8×8 segmentation is employed instead of the complex dyadic

segmentation introduced in Sec. 2.2.

Fig. 4.9 depicts the results of our video text removal and restoration scheme on different

sequences. The objective is to detect and remove the text rolling over the sequence shown

in Fig. 4.9(a), the static subtitle that appears in the video of Fig. 4.9(b), the static and

sliding captions in Fig. 4.9(c) and Fig. 4.9(d), and the texts appear in the video of Fig.

4.9(e). Although the sequences involve various camera motions and no matter whether the

embedded text is static or moving, the text detection is performed well and the removed

text pixels are restored visually pleasantly using the proposed inpainting scheme. In order
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Figure 4.10: Sample text detection results using the proposed technique on the ICDAR dataset.

to gain further insight into the effectiveness of each stage of the propped automatic text

removal scheme, various analyses are presented as follows.

4.5.1 Evaluation of the Video Text Detection

As mentioned before, an important contribution of our work is the proposed image text

detector which is used in the single frame text detection to locate the potential text regions

in the entire sequence before tracking them. Therefore, this subsection starts with analyses

of the proposed image text detection technique. Next, a performance analysis of the entire

video text detection steps is presented.

Single Image Text Detection

We evaluated our proposed image text detection approach introduced in Sec. 4.3.1 on the

ICDAR text locating contest dataset [96]. In Fig. 4.10 sample text detection results of

our approach on ICDAR dataset are presented. The dataset contains 251 color images of

various sizes ranging from 307 × 93 to 1280 × 960. Along with the images, the dataset

provides ground-truth locations of the texts that exist in the images, called targets, to have

a precise evaluation of the results of text detection techniques. The result of a text detection

method in the form of a rectangle that bounds a text in the image is called estimate here-

after. We followed the same evaluation scheme by means of Precision and Recall used in

ICDAR competitions [96, 97]. Precision is the number of correct estimates divided by the

total number of estimates. A method has a low precision if the number of text bounding

rectangles is too large. Recall is defined as a ratio of the number between correct estimates

and the total number of targets. Hence, a method that results in a large number of incorrect

rectangles has a low Recall score. The results of a text locating system are not as exact

81



Table 4.1: Performance of the Proposed Image text Detection Method using Other Edge Detectors.

Method Precision Recall f

Bandlet edges 0.76 0.66 0.71

Wavelet edges 0.71 0.59 0.65

Canny edges 0.67 0.51 0.58

Sobel edges 0.53 0.56 0.53

Table 4.2: Performance of Different Image Text Detectors on the ICDAR Dataset.

Method Precision Recall f

Our Method 0.76 0.66 0.71

Zhao et al. [88] 0.64 0.65 0.65

Epshtein et al. [84] 0.73 0.60 0.66

Gllavata et al. [79] 0.44 0.46 0.46

Table 4.3: Performance of Different Video Text Detectors.

Method Precision Recall f

Our Method 0.70 0.61 0.65

Lyu et al. [67] 0.66 0.60 0.63

Kim et al. [69] 0.58 0.56 0.57

as human tagged locations. Therefore, a match mp between two rectangles defined as the

area of their intersection divided by the area of the minimum bounding box containing both

rectangles is used. The value of mp is zero for two rectangles without any intersection and

one for exactly alike rectangles. For each rectangle in the set of estimates, the closest match

in the set of targets is found, and vice versa. Hence, the best match m(r;R) for a rectangle

r in a set of rectangles R is defined as

m(r;R) = max{mp(r; ŕ)|ŕ ∈ R}. (4.7)

Then, Precision and Recall are defined as

Precision =

∑
re∈Es

m(re, Tr)

|Es|
, Recall =

∑
rt∈Tr

m(rt, Es)

|Tr|
, (4.8)

where Tr and Es are the sets of target (ground truth) and estimated boxes, respectively.

These measures are combined into a single measure f with a weight factor α set to 0.5:

f =
1

α
Precision

+
1−α
Recall

. (4.9)

In the first experiment, we employed other edge detection methods in our text detec-

tion scheme instead of the proposed bandlet-based edge detection approach (Sec. 4.3.1).
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Table 4.1 shows Precision, Recall and f values obtained by our text detection approach

for the images of ICDAR dataset using Sobel, Canny, conventional wavelets and bandlet

transform edge detection techniques. In this table the highest values of Precision, Recall

and f are attributed to the method which employs our proposed bandlet-based edge detec-

tor. The result of our proposed approach has been compared with other methods as well.

Table 4.2 shows the list of methods used for comparison and their Precision, Recall and

f values for ICDAR dataset images. The proposed method has a better performance com-

pared to the other listed methods. Specifically, our approach outperforms the SWT-based

method introduced in [84] already shown to have a good performance compared to several

other existing methods [84] including the participating algorithms in ICDAR 2003 [97] and

ICDAR 2005 [96].

Video Text Detection

The whole video text detection technique needs to be evaluated. Therefore, we performed

a similar Precision-Recall performance analysis to find out the effectiveness of our pro-

posed video text detection approach. Instead of an image dataset, we considered this time

the video sequences of Fig. 4.9(a) and Fig. 4.9(b) as the benchmark. These two video

sequences have 168 frames in total. For each frame we manually located target texts’ lo-

cations and marked them as ground-truth text locations. Then, after performing the video

text detection, Precision, Recall and f values are calculated using (4.8) and (4.9) for the

video text detection results. Sample results are provided in Fig. 4.9. The performance

of the proposed method has been compared to that of other existing video text detection

methods. Table 4.3 presents the Precision, Recall and f of the methods introduced in [67]

and [69]. The methods are applied on the same benchmark as our proposed approach. The

table shows that our method distinctly outperforms the other two methods.

4.5.2 Evaluation of the Inpainting Method for Video Text removal

The restoration results using the proposed inpainting scheme is illustrated on sample videos

in Fig.4.9. In all cases, the proposed method performs the inpainting task quite well. In
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(a) (b) (c)

Figure 4.11: a) Original frame. b) Damaged frame. c) Completion result by our method (Frame number 11,

MSE=8.16).
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Figure 4.12: Objective evaluation of the proposed video inpainting approach using different image sparest

representations.

this subsection we evaluate the performance of the proposed video inpainting technique.

First, the effectiveness of the bandlet transform in comparison with two well-known image

sparse representation platforms, wavelet and contourlet transforms is evaluated. Next, a

quantitative comparison with two existing video inpainting techniques is provided.

Effectiveness of Bandlet Transform in Video Inpainting

The bandlet transform is an effective image representation which is strictly adapted to the

local geometry of the image. This feature can be so practical in the case of spatio-temporal

inpainting as we deal with continuation of geometric structures that lie within an image or

a video. Therefore, we evaluated the effectiveness of this transform and compared it with

other sparse representations.

A manual text is generated on an original video sequence. Then, the resulting video

after text removal is completed by the proposed bandlet-based video inpainting approach

presented in Sec. 4.4. The completion is performed once again using conventional wavelets

in Eq. (3.4) and consequently in Eq. (3.16). Also, the inpainting is performed another

time by applying the contourlet transform [45] instead of bandlet transform. Then, for all
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Figure 4.13: Objective evaluation of the proposed video inpainting method compared to Patwardhan [26] and

Tang [35] methods.

the three cases, the difference of the completion result of the text-removed video and the

original video sequence is observed by computing the mean square error (MSE) value for

the corresponding frames of the resulting and the original video sequences. Fig. 4.11(a)

shows a frame of the video chosen for evaluation to which a text is added manually as in

Fig. 4.11(b) and then completed as illustrated in Fig. 4.11(c).

The plot indicated as Bandlet-based in Fig. 4.12 shows MSE graph of all the 50 frames

of the text-removed video and the completion result sequence using the bandlets. Both

of Contourlet-based and Wavelet-based graphs, which indicate MSE values, resulted by

respectively employing wavelets and contourlets in the proposed inpainting scheme are

above Bandlet-based. This implies that the bandlet transform is more effective than the

other sparse representations once used in our proposed regularization-based video inpaint-

ing approach.

Comparison with Existing Video Inpainting Techniques

Our video inpainting approach is compared with two video completion methods introduced

in [26] and [35]. We performed the same MSE graph generation i.e., computing MSE for

the inpainting results of the text-removed video sequence (Fig. 4.11(c)) and the original

sequence (Fig. 4.11(a)). The output graphs are depicted in Fig. 4.13. These graphs indi-

cate a high performance for our proposed approach compared to these two methods. This

high performance is largely credited to the effective role of bandlets in the spatio-temporal

inpainting.
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Chapter 5

Video Super Resolution

5.1 Introduction

A high resolution (HR) image contains more details compared to the same image with a low

resolution (LR) because of the higher pixel density of the HR image. As a result, images

with high resolution are desirable in many applications. For example, analysis of satellite

images to detect objects, moving object detection and recognition in surveillance videos,

and online video streaming are other applications that rely heavily on HR images. Due

to the constrains of image acquisition systems and/or storage limitations, it is not always

feasible to have HR images. Hence, single image super-resolution (SR) was introduced

for increasing the resolution of a given image to provide more visual information after

up-scaling the image.

The most common methods for single image SR are based on interpolation [98, 99]

since they have a low complexity. However, these methods generate artifacts in the result-

ing image such as blurring effect and zigzagging edges. To enhance the interpolation-based

techniques, a reconstruction constraint is enforced in [100, 101] in order to have smoothed

and/or down-sampled versions of the HR image close to the original image. There are

several works that followed the idea presented in [102, 103] to preserve the edges in the

SR process. The method introduced in [104] employs local image background/foreground

86



patches to reconstruct sharp discontinuities between them. The method in [105] bene-

fits from a gradient profile prior for local image structures to be applied in SR. Machine

learning based techniques, such as the ones proposed in [106], estimate the high-frequency

details of the target image by a learning process in a set of natural images. Also, the

method in [107] uses a Markov Random Field (MRF) to learn the prediction from LR to

HR. The primal sketch priors are employed in [105] to enhance burred edges and corners

even though the method relies on a large number of images as the training set. The scheme

in [108] is performed via the sparse representation of the image generated by the image

dictionary learning strategy introduced in [109]. This method trains two dictionaries for

LR and HR patches, then, enforces the similarity between the LR and HR image patch

pairs with respect to their own dictionaries. The approach presented in [110] analyzes the

patch redundancy within different scales to recover at each pixel its best possible resolution

increase.

Another category of SR techniques are performed in a transform domain (e.g., wavelet)

of the image. The algorithm proposed in [111] first estimates the edge regularities by ana-

lyzing the decay of wavelet coefficients across scales and then the regularity is preserved by

extrapolating a new sub-band used in synthesising HR image. In the same vein, the method

introduced in [112] employs wavelet transform for image interpolation. Since the wavelet

transform does not provide enough directionality and regularity details of the image, re-

cently developed image transforms have been used for SR purposes. For instance, the SR

technique proposed in [113] predicts the edge regularity of the HR image by analyzing the

directionality details of the LR image well-captured by the contourlet transform. Also, the

approach introduced in [114] employs the grouplet transform geometric details of the LR

image to find the edge details and predict their behaviors in the HR image by analyzing the

grouplet structure tensor.

The generalization of image SR to the problem of video SR is not trivial, since the

temporal consistency needs to be preserved. A simple frame-by-frame application of the

static image approach leads to unacceptable flickering artifacts. Therefore, efforts were

directed to address the video SR task [115–118].

In this chapter, a new SR method based on the bandlet transform is proposed. Our
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technique benefits from the advantages of the bandlets in effort to exploit the geometrical

details of images. The new pixels in the up-scaled image are estimated by means of a reg-

ularization in the bandlet domain representation of the image. In fact, this scheme involves

an optimization in the bandlet transform domain in order to inpaint the unknown pixels

that lie among the original pixels of the enlarged image. Since spatial regularization-based

techniques tend to cause blurring or over-smoothing effect in inverse problems, particularly

in inpainting [2, 6, 13], we propose in this work an effective edge preserving scheme based

on a structure tensor that can be generated by applying the geometric details revealed by

the bandlet transform. Since the edge details are interpolated accurately based on their

directionality, our method produces HR images produced after the inpaitning process with

a considerable quality. The proposed SR method is discussed in Section 5.2. Then, the

method is extend to the video frames in Section 5.3. Finally, in Section 5.4, the experimen-

tal results are presented.

5.2 Bandlet-based Image Super-resolution

Preserving high frequency details such as edges in an image is a challenge in a SR task.

To tackle this problem, we propose a two-stage SR scheme. In the first stage, the edge

information of the original image is captured by means of a structure tensor analysis which

benefits from the local geometric details obtained by the bandlet transform. Then, in the

up-scaled image the edge pixels are propagated to the missing neighboring pixels by con-

sidering the direction of the edge. This interpolation task is performed on the edge pixels

of the image in order to avoid over-smoothing in the next step of the SR process. In the

second stage, a regularization is performed in the up-scaled image. This spatial regular-

ization is in fact an optimization in the bandlet domain representation of the resized image

that approximates the new pixels in an inpainting fashion.

5.2.1 Edge Pixels Interpolation

A structure tensor is a matrix representation of partial derivatives information. In the spatial

domain, it is typically used to represent the gradient or edge information of an image since
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it provides a more powerful description of local patterns compared with the directional

derivative [119]. The structure tensor is given by the matrix:

S =

⎛⎝ I2x IxIy

IyIx I2y

⎞⎠ (5.1)

where Ix and Iy denote the first order partial derivatives of image I along x and y, respec-

tively. Eigen-decomposition of S yields eigenvalues (λ1, λ2) and eigenvectors (e1, e2). The

vector e1 represents a normal vector directed to the gradient edge and the vector e2 is the

tangent. In turn, the certainty of the gradient structure along the associated eigenvectors is

indicated by the eigenvalues. These new gradient features provide a precise description of

the local gradient characteristics.

Since the structure tensor relies on the local gradient which in turn needs accurate ge-

ometric (directionality) details of the textures, we modified Eq. (5.1) using the bandlet

geometric details in order to benefit from more precise directionalities. As mentioned in

Sec. 2.2, before the bandletization process a quad-tree segmentation is performed on the

image based on the dominant regularity that exists in each region (Fig. 2.10b). Therefore,

in this segmentation stage the regularity direction of each pixel flow is determined and

represented by Γ (Sec. 2.2). Given this directionality information for each segmentation

square, indicated by θΓ as an angle ranging from −90
◦ to 90

◦, we modified Eq. (5.1) as

follows:

Ś =

⎛⎝ I2x cos
2
(θ́Γ) IxIy cos(θ́Γ) sin(θ́Γ)

IyIx sin(θ́Γ) cos(θ́Γ) I2y sin(θ́Γ)

⎞⎠ (5.2)

where θ́Γ is the 90◦ rotated version of the directionality degree of each segmentation square

θΓ. The values cos(θ́Γ) and sin(θ́Γ) in Eq. (5.2) give a weight to the edge pixels with a regu-

larity along θΓ in each region. Thus, the eigen-decomposition of Ś results in characteristics

of edges corresponding to the geometrical flows that exist within the image. Hence, edges

and high frequency details are characterized more effectively. The norm of Ś in terms of

eigenvalues, i.e, ||Ś|| =

√
λ́1 + λ́2 identifies the edge pixels in the image as shown in

Fig. 5.1b. The edge map of the image can then be found by thresholding ||Ś||.
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(a) (b)

(c) (d)

Figure 5.1: (a) Barbara image. (b) ||Ś|| of structure tensor (Eq.(5.2)). (c) Up-scaled image to be filled in with

appropriate pixels. (d) Edge pixels interpolation result.

Now the task is to assign appropriate values to the new pixels of the up-scaled image

that lie on the edges and high frequency image components. Let Í be the scaled image by

2 (Fig. 5.1c), then Í(2x, 2y) = I(x, y) and Í(2x − 1, 2y − 1) = 0. If the corresponding

value of the pixel Í(2x, 2y) in the edge map is 1, then this edge pixel needs to be properly

continued to the adjacent pixels. From the eigen-decomposition of Eq. (5.2) we have the

tangent vector of the edge pixel at I(x, y). Given the tangent vector as a degree value

ranging from −90 to 90 denoted by α, the pixel value at Í(2x, 2y) is assigned to any of its

5 neighboring pixels as follows:

Í(x− 1, y) = Í(x, y) if −25 ≤ α(x, y) ≤ 25

Í(x+ 1, y) = Í(x, y) if −25 ≤ α(x, y) ≤ 25

Í(x− 1, y + 1) = Í(x, y) if −60 ≤ α(x, y) ≤ −30

Í(x, y + 1) = Í(x, y) if −90 ≤ α(x, y) ≤ −65 or

65 ≤ α(x, y) ≤ 90

Í(x+ 1, y + 1) = Í(x, y) if 30 ≤ α(x, y) ≤ 60

. (5.3)

This edge continuing scheme ensures the preservation of high frequency details of the

image once the image is enlarged, as can be seen in Fig. 5.1d. In the next step, the values

of remaining pixels of the enlarged image are estimated via an inpainting process.
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Algorithm 5.1 Bandlet-based image inpainting algorithm.

1: i = 0 and Y (i=0)
= Í

2: Find Ý (i) using Eq. (3.4)

3: Apply bandlet transform on Ý (i) (Sec. 2.2)

4: Update the estimate; Y (i+1)
= TB

λ (Ý (i)
) (applying Eq.(3.16) on the bandlet coefficients

of Ý (i) and performing inverse bandlet transform to generate Y (i+1))

5: i ← i+ 1, if |Y (i+1) − Y (i)| < ε stop, else go to step 2

5.2.2 Image Inpainting

As shown in Fig. 5.1d, many of the pixels of the enlarged image are not estimated yet, after

the edge pixel interpolation step. These pixels can get new intensity values by inpaitnting

the up-scaled image. An inpainting task is performed quite effectively if it employs the

geometrical features of the image. Since bandlets provide us with practical local geometric

characteristics, we take advantage of them to inpaint the enlarged image.

The input of an inpainting process is an image Y that contains some missing pixels.

The missing pixels are often connected and make a blank region (or several regions). As

defined in Sec. 3.1, let Ω be the set of missing pixels and Φ = Y \ Ω be the source pixels.

The goal is to find a new image Ý such that Ý (x, y) is equal to Y (x, y) for the pixels that

belong to Φ, i.e., Ý (x, y) = Y (x, y) ∀(x, y) /∈ Ω. At the same time, the overall geometry

of Ý is supposed to have the same geometrical regularity as the original image Y in Φ.

Considering the new unassigned pixels of the enlarged image as the missing pixels, we

modified the saptio-temporal video inpainting scheme introduced in Algorithm 3.1 to be

applied for single images as presented in Algorithm 5.1 to approximate the unassigned

pixels. Therefore, in the inpainting process we have Y = Í .

5.3 Video Super-Resolution

The direct application of the proposed static image super-resolution scheme of Sec. 5.2

on videos in a frame-by-frame fashion results in disturbing artifacts. It was applied on

several video sequences, and as expected there was a strong flickering effect in the static

parts of the video frames. This kind of flickering occurs, largely because of the intensity
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difference between the estimated corresponding pixels in two consecutive frames. Looking

at each independently (frame-by-frame) super resolved frame, there is a visually pleasant

result and no artifact is perceived by human eye. However, since each frame is processed

individually, the resulting intensity values for corresponding pixels in these frames are

different. Therefore, looking at the frames as in a sequence with an average frame-rate

would cause flickering effect due to the lack of temporal consistency. We address this

problem by taking into account the motion information among the frames and refining the

super resolved pixels by using the exploited motion vectors.

5.3.1 Computing Motion

In order to find the motion vectors between two frames, the optical flow is computed based

on the objective function proposed in [120], [121]. While it has discontinuities agreeing

with object boundaries, the resulting flow field is supposed to be smooth. Let I1 and I2 be

two images (frames) and the flow vector be w(p) = (u(p), v(p)) at p = (x, y) which is

the grid coordinate of images. Assuming there are L possible states for u(p) and v(p) (i.e.,

horizontal and vertical flows, respectively) and considering ε as a set of the four spatial

neighbors, the optical flow energy function is defined by data term, small displacement

term, and smoothness term as follows:

E(w) =
∑
p

min(||I1(p)− I2(p+ w(p))||1, t) (5.4)

+

∑
p

η(|u(p)|+ |v(p)|) (5.5)

+

∑
(p,q)∈ε

min(α|u(p)− u(q)|, d) (5.6)

+min(α|u(p)− v(q)|, d)), (5.7)

The pixels to be matched along with the flow vector w(p) are constrained by the data

term Eq. (5.4). The flow vectors are constrained to be as small as possible by the small

displacement term defined in Eq. (5.5). In addition, adjacent pixels are supposed to have
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similar flow vectors. Therefore, they are constrained by the smoothness term, Eq. (5.6) and

(5.7) along with a smoothing (regularization) factor of α > 0. In the data term and the

smoothness term the outliers are matched to the theresholds t and d, respectively. The use

of coarse-to-fine search for optimization and the incorporation of stronger local constraints

on the motion, result in impressive optical flow estimates [121].

5.3.2 Pixel Intensity Refinement

Once each frame is super-resolved individually using the image super-resolution technique

introduced in Sec. 5.2, we need to take the motion information into account and refine the

intensity values of the pixels that lie in the static regions of the frames to avoid flickering

artifacts. With respect to the notation used for the still image super-resolution procedure,

let It be a frame in the original video, and Ýt be its corresponding super-resolved frame,

where Ýt(2x, 2y) = It(x, y). For p = (2x−1, 2y−1), p = (2x−1, 2y) or p = (2x, 2y−1)

in Yt as the location of an estimated pixel, we consider p1 = (x, y), p2 = (x − 1, y),

p3 = (x − 1, y − 1) and p4 = (x + 1, y) in It as the four adjacent neighboring locations

of p at Ýt. If there is no motion at p1, p2, p3 and p4 regarding the pervious frame It−1, one

can consider that p belongs to a static region in the frame It. Therefore, the intensity of

the estimated pixel in the enlarged (super-resolved) image must be similar to that of the

corresponding pixel in the previous frame. To that end, we first calculate the sum of the

magnitudes of the motion vectors obtained for p1, p2, p3 and p4 as follows:

M = |w(p1)|+ |w(p2)|+ |w(p3)|+ |w(p4)|, (5.8)

where w represents the motion vector found in Sec. 5.3.1. It should be noted that in the

motion flow computation, the previous frame It−1 is considered as the reference frame.

Then, if the value of M is smaller than a small value δ, there assumed to be no motion at

p. Hence, the pixel value at p is updated as: Ýt(p) = (Ýt−1(p) + Ýt(p))/2.

Algorithm 5.2 presents all the steps required to generate a super-resolved video. As

discussed in Sec. 5.4, this algorithm results in a high quality spatially enlarged video with

a high temporal consistency.
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Algorithm 5.2 Video spatial super-resolution.

1: Video sequence: {I1, I2, ..., It, ..., IN}

2: Generate Í1 (Sec.5.2.1)

3: Generate Ý1 (Sec.5.2.2)

4: for t=2 to N do

5: Generate Ít (Sec.5.2.1)

6: Generate Ýt (Sec.5.2.2)

7: for all x and y in I(x, y) do

8: if p = (2x− 1, 2y − 1) or p = (2x− 1, 2y) or p = (2x, 2y − 1) in Yt then

9: if M < δ Eq.(5.8) then

10: Ýt(p) = (Ýt−1(p) + Ýt(p))/2

11: end if

12: end if

13: end for

14: end for

(a)

(b)

(c)

Figure 5.2: SR result on different images. (a) Original images. (b) HR results obtained for 256×256 inputs.

(c) HR results obtained for 128×128 inputs.

5.4 Experimental Results

5.4.1 Image Super-Resolution

Our image SR method discussed in Sec. 5.2 is tested on several standard images, including

Lena, Barbara, Baboon and Boat each of which has a size of 512×512. In order to evaluate94



the accuracy of the proposed approach, the original image is once down-sampled by a

factor of 2 and another time by a factor of 4; then the down-sampled images are enlarged

using the SR technique to the original size (512×512). This way, after the SR task for each

sample image we have 2 different 512×512 versions, one is the original image, the other is

the resulting HR image. The effectiveness of our algorithm is evaluated by calculating the

PSNR. Fig. 5.2 illustrates the result of our algorithm on four different images. It is worth

mentioning that, in the case of dealing with a color image, the image is first transformed

from RGB to YCbCr, then since the Cb and Cr components contain only low-frequency

details, these components are interpolated (bi-cubic). Thus, the SR algorithm is carried

out only on the Y (intensity) component. It is also noteworthy that for an image to be up-

scaled by a factor of 2 the algorithm, i.e, the two steps discussed in Sec. 5.2.1 and 5.2.2,

is performed once. Therefore, for larger scales it can be done iteratively until we get the

desired image size so was it done to enlarge the 128×128 images in our experiments.

To gain further insight into the effectiveness of our proposed SR technique, we com-

pared it with two other methods ( [110] and [105]). These methods were used to enlarge

the sample images shown in Fig. 5.2 in a same way done by our approach. PSNR values

are calculated for the results of each method and reported in Table 5.1. As the table indi-

cates, our technique outperforms the other two methods, which is quite reasonable since

our approach benefits from precise local image geometric details revealed by an effective

image representation, i.e, bandlet transform.

5.4.2 Video Super-Resolution

The proposed spatial video SR technique (Sec. 5.3) is tested on several video sequences.

Similar to the experiments carried out for the still images, we first down-sampled the origi-

nal videos by 2 and 4, then performed Algorithm 5.2 on the down-scaled videos to produce

HR videos with the same size as that of the original videos. Fig. 5.3 illustrates sample

frames of two tested videos and the resulting HR frames. The original size of these videos

was 352×288, so the SR task was performed on the 176×144 and 88×77 frames. Since we

have both the original 352×288 frames and the 352×288 super-resolved frames we can use

PSNR to evaluate our approach. The sample video shown in Fig. 5.3(d) was tested by the
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.3: SR result for different frames of two video sequences. (a)(d) Original frames. (b)(c) HR results

obtained for 176×144 inputs. (d)(e) HR results obtained for 88×77 inputs.

video spatial SR methods introduced in [115, 116] to compare their results with the results

of our algorithm. The PSNR graphs of all the resulting ×2 enlarged (HR) frames are shown

in Fig. 5.4 for all the three methods. As these graphs indicate, our SR technique has a better

performance in terms of PSNR compared with the other two techniques. As discussed in

Sec. 5.3, having reasonable visual pleasant results is largely due to preserving the temporal

consistency in the resulting super resolved videos. Therefore, we evaluated the temporal

consistency of the HR videos. We employ the spatio-temporal most apparent distortion
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Table 5.1: PSNRs of HR images obtained by different methods.

PSNR Values (dB)

Image Our Method [110] [105]

Lena (256×256) 37.69 32.45 31.89

Barbara (256×256) 26.66 24.90 25.02

Baboon (256×256) 25.67 23.32 23.61

Boat (256×256) 32.97 29.10 28.63

Lena (128×128) 34.09 30.38 29.31

Barbara (128×128) 24.28 22.73 21.82

Baboon (128×128) 23.07 22.91 20.74

Boat (128×128) 29.93 27.11 27.23

Table 5.2: Temporal consistency evaluation. STMAD obtained for each resulting video using different SR

techniques.

Method Bishop [115] Shan [116] Ours

STMAD (176×144) 0.492 0.551 0.671

STMAD (88×77) 0.413 0.484 0.601

(STMAD) model to analyze our approach with regards to temporal consistency [58, 59].

Table 5.2 presents STMAD values obtained for the super-resolved videos by the three dif-

ferent techniques. The STMAD is calculated between the resulting videos and the original

one of Fig. 5.3(d). The obtained values are normalized to the range of 0 to 1 and then they

are subtracted from 1. Hence, a higher value in the table indicates a better consistency.

According to this table, our approach has a better STMAD compared to the other methods.

Consequently, the best temporal consistency is provided by our proposed method. This

high performance both spatially and temporally (in terms of PSNR and STMAD, respec-

tively) is largely credited to the effective role of bandlets in the edge preserving and spatial

inpainting schemes along with taking into account the motion information of frames in

order to preserve the temporal consistency.
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Figure 5.4: Objective evaluation of the proposed, Bishop [115] and Shan [116] video SR methods.
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Chapter 6

Conclusions

We presented a video inpainting approach that effectively benefits from the geometric fea-

tures represented by bandlets. The conventional exemplar-based video completion is mod-

ified and followed by a 3D regularization in order to perform the inpainting task. The patch

search is carried out using the pixel values and instantaneous motion information. Then,

the best matching patches are blended by a bandlet-based fusion framework to fill in the

border patch. The fusion procedure employs the geometric flows and texture structures

revealed by the bandlet transform. Afterwards, since some patches remain unchanged in

the generated video, a 3D regularization based on bandlets refines the inpainting results.

This is performed by enforcing the sparseness of the bandlet image representation through

a minimization over the bandlet coefficients. The minimization is done iteratively by a

soft-thresholding scheme in the video volume. Unlike many existing video completion

methods, our approach does not require background/foreground segmentation, decompo-

sition of motion layers, tracking and/or optical-flow mosaics computation. Moreover, the

experimental results show a high performance of our video inpainting approach in preserv-

ing the spatio-temporal consistency, and consequently in reconstructing the videos visually

pleasingly.

As an application of video completion, we presented an automatic video text removal

scheme which involves an automatic video text detection and a practical inpainting stage.

The video text detection technique strictly relies on an accurate text detector for single
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frames. We proposed a connected component-based image text detection developed as an

unsupervised clustering scheme. A feature vector based on properties extracted from stroke

width transform connected components, distinct characteristics of text components that

exist in the image and their general geometry is formed. Since the accuracy of the image

text detector depends on precise edge locations to generate the connected components, we

employed the properties of bandlet transform in representing local image geometry and

introduced a novel edge detection approach which is quite adapted to edge locations of

texts embedded in various types of images. The detected text regions in all the frames

are tracked in the entire video sequence in order to locate the video text and distinguish it

from the other parts of the video. The text is removed and the video is restored using the

proposed inpainting technique which performs 3D regularization in the bandlet domain.

The experimental results indicate a high performance of our video inpainting approach in

the case of text removal and crucial role of bandlets in reconstructing the videos visually

pleasingly. Also, the results indicate a considerable performance for both the bandlet-based

edge detector and video text detection scheme.

As a second application of video completion, we proposed a single image SR technique

that benefits from the bandlet transform in representing geometric features of images. The

main stage of our proposed scheme is the inpainting task performed via the the image

regularization technique to estimate the unknown pixels in the up-scaled image. In order

to avoid over-smoothing in the HR images, prior to the inpainting process, the edge pixels

and high frequency details of the image are interpolated in the up-scaled image. The edge

propagation is performed using a structure tensor modified according to the image surface

geometry captured in the bandlet transform diadic segmentation step. In order to maintain

the temporal consistency in the HR videos, we took the motion information of the frames

into account and performed a pixel intensity refinement to avoid the flickering effect in

the static regions of the frames. Our approach performs the SR task with a considerable

performance, as demonstrated by the experimental results.

The vast majority of the run-time of our video completion algorithm is spent on com-

puting the bandlet transform, which lacks an optimized implementation since it is relatively

new. Therefore, our first future work direction is to find possible solutions for optimizing
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bandlet transform and reducing its complexity, specifically in the inpaiting task.

The completion task of the remaining holes or occluded regions after an undesired mov-

ing object removal can be accomplished more accurately if the moving object is separated

from the background frames. In this case, the background can be filled-in easily using the

available temporal information. Also, the occluded moving object can be completed much

faster and more accurately since it is already separated from the background. This happens

because the patch matching or interpolation process needs to be applied only on the fore-

ground sequence, and an unnecessary search for the best match is avoided. Therefore, as

another future work, we plan to apply motion layer segmentation or moving object tracking

schemes, as done for example in [26] [29] [31] [32] [33] in conjunction with the proposed

video completion method.

Sparse coding (modelling data vectors as sparse linear combinations of basis elements)

and dictionary learning (learning basis set) were proven to be very effective for signal

reconstruction and classification in the image processing domain [122–124]. Dictionary

learning is performed by an optimization based on stochastic approximations to scale up

to large datasets with millions of training samples. This can be effectively employed in

video completion task. A future work direction in this field may yield practical and high

performance solutions for spatio-temporal inpainting problems.
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