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ABSTRACT 

 

Vibration Analysis of Thickness- and Width-Tapered Laminated Composite Beams using 

Hierarchical Finite Element Method 

 

Mohammad Amin Fazili  

 

Tapered laminated composite beams provide stiffness-tailoring and mass-tailoring design 

capabilities. They are increasingly and widely being used in engineering applications including 

robotic manipulators, aircraft wings, space structures, helicopter blades and yokes, turbine blades, 

and civil infrastructure. In the present work, the free and the forced vibration response of 

symmetric linear-thickness-and-width-tapered laminated composite beams are considered. 

Considering a variety of tapered configurations according to different types of plies drop-off 

configurations both conventional and hierarchical finite element formulations are developed based 

on cylindrical laminated beam bending theory. Natural frequencies, mode shapes and forced 

vibration response of different types of internally-tapered composite beams are determined. 

Comparison of the hierarchical finite element solution with the Rayleigh-Ritz and a higher-order 

finite element solution is performed. A parametric study is conducted to investigate the effects of 

boundary conditions, width-ratio, taper configurations, thickness-tapering angle, laminate 

configuration, compressive axial force and damping on the free and forced vibration response of 

thickness- and width-tapered laminated composite beams.  



iv 

 

 

ACKNOWLEDGEMENTS 

 

It is my great pleasure to show my appreciation to many people who made this thesis possible.  

First and foremost, I would like to dedicate this accomplishment to my dearest parents, Dr. 

Amir Fazili and Dr. Fariba Zahedi, and thank them for all their endless love, priceless guidance 

and unconditional support. 

Then, I offer my sincerest gratitude to my supervisor, Dr. Rajamohan Ganesan, who has 

supported me, throughout my thesis research with his kind attention, inspiring guidance, patience 

and immense knowledge. 

I am also thankful to all my friends at graduate research office EV 13.167 who supported me 

by sharing ideas and discussion during my research studies.  

Last but not least, I would like to dedicate this thesis to my dear aunt Farangis Zahedi and my 

beloved cousin Amir Karimi who have always encouraged me to achieve high academic success 

throughout my life.    

 

Thank You. 

 

  



v 

 

 

Table of Contents 

 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

Table of Contents ............................................................................................................................ v 

List of Figures .............................................................................................................................. viii 

List of Tables ................................................................................................................................ xv 

Nomenclature ............................................................................................................................. xviii 

1. Introduction, literature review and scope of the thesis ............................................................ 1 

1.1 Vibration analysis in mechanical design .......................................................................... 1 

1.2 Composite materials and structures.................................................................................. 2 

1.3 Finite element method ...................................................................................................... 4 

1.4 Literature survey .............................................................................................................. 5 

1.4.1 Vibration analysis of uniform laminated composite beams ......................................... 5 

1.4.2 Vibration analysis of tapered composite beams ........................................................... 6 

1.4.3 Finite Element Method ................................................................................................ 7 

1.5 Objectives of the thesis .................................................................................................... 8 

1.6 Layout of the thesis .......................................................................................................... 8 

2. Finite element formulation and free vibration analysis of uniform composite beams .......... 10 

2.1 Introduction .................................................................................................................... 10 



vi 

 

 

2.2 Cylindrical bending of laminated composite beams ...................................................... 11 

2.3 Conventional Finite Element Method (CFEM) formulation .......................................... 13 

2.4 Hierarchical Finite Element Method (HFEM) formulation ........................................... 16 

2.5 Free vibration analysis of a uniform laminated composite beam ................................... 18 

2.6 Summary ........................................................................................................................ 23 

3. Free vibration analysis of tapered composite beams ............................................................. 24 

3.1 Introduction .................................................................................................................... 24 

3.2 Free vibration analysis of width-tapered laminated composite beams .......................... 25 

3.2.1 Effect of boundary conditions on natural frequencies ............................................... 25 

3.2.2 Effect of width-ratio on natural frequencies .............................................................. 27 

3.2.3 Effect of taper angle (or equivalently length of the beam) on natural frequencies .... 29 

3.2.4 Effect of laminate configuration on natural frequencies ............................................ 31 

3.2.5 Effect of axial force on natural frequencies ............................................................... 34 

3.3 Free vibration analysis of thickness-tapered laminated composite beams ..................... 36 

3.3.1 Effect of boundary condition on natural frequencies ................................................. 37 

3.3.2 Effect of taper angle (or equivalently length of the beam) on natural frequencies .... 39 

3.3.3 Effect of laminate configuration on natural frequencies ............................................ 42 

3.3.4 Effect of taper configuration on natural frequencies ................................................. 44 

3.3.5 Effect of axial force on natural frequencies ............................................................... 46 

3.4 Free vibration analysis of thickness- and width-tapered laminated composite beams .. 48 

3.4.1 Effect of boundary condition on natural frequencies ................................................. 48 

3.4.2 Effect of taper angle (or equivalently length of the beam) on natural frequencies .... 50 



vii 

 

 

3.4.3 Effect of laminate configuration on natural frequencies ............................................ 52 

3.4.4 Effect of width-ratio on natural frequencies .............................................................. 54 

3.4.5 Effect of taper configuration on natural frequencies ................................................. 56 

3.4.6 Effect of axial force on natural frequencies ............................................................... 58 

3.4.7 Effect of damping on natural frequencies .................................................................. 60 

3.5 Summary ........................................................................................................................ 65 

4. Forced vibration analysis of tapered composite beams ......................................................... 68 

4.1 Introduction .................................................................................................................... 68 

4.2 Undamped Forced vibration analysis ............................................................................. 69 

4.2.1 Formulation ................................................................................................................ 69 

4.2.2 Forced vibration response of uniform composite beams ........................................... 71 

4.2.3 Forced vibration response of thickness- and width-tapered composite beams .......... 77 

4.2.3.1 Effect of taper configuration on forced vibration response ............................. 80 

4.2.3.2 Effect of width-ratio on forced vibration response .......................................... 85 

4.3 Damped forced vibration analysis .................................................................................. 94 

4.3.1 Formulation ................................................................................................................ 94 

4.3.2 Damped forced vibration response of uniform composite beams.............................. 95 

4.3.3 Damped forced vibration response of thickness- and width-tapered  

 composite beams ........................................................................................................ 99 

4.4 Summary ...................................................................................................................... 109 

5. Conclusion and future work ................................................................................................ 111 

5.1 Major contributions ...................................................................................................... 111 



viii 

 

 

5.2 Conclusions .................................................................................................................. 112 

5.3 Recommendations for future work ............................................................................... 116 

BIBLIOGRAPHY ....................................................................................................................... 117 

APPENDIX A ............................................................................................................................. 122 

APPENDIX B ............................................................................................................................. 144 

 

List of Figures 

 

Figure 1.1 Applications of tapered composite structures ............................................................... 3 

Figure 2.1 Global coordinate system ........................................................................................... 11 

Figure 2.2 Element’s nodal degrees of freedom .......................................................................... 13 

Figure 3.1 Width-tapered composite beam .................................................................................. 25 

Figure 3.2 Boundary conditions ................................................................................................... 26 

Figure 3.3 Effect of width-ratio on the first natural frequency of the width-tapered  

 composite beam ..................................................................................................................... 27 

Figure 3.4 Effect of width-ratio on the second natural frequency of the width-tapered  

 composite beam ..................................................................................................................... 28 

Figure 3.5 Effect of width-ratio on the third natural frequency of the width-tapered  

 composite beam ..................................................................................................................... 28 

Figure 3.6 Effect of length on the first natural frequency of the width-tapered  

 composite beam ..................................................................................................................... 30 



ix 

 

 

Figure 3.7 Effect of length on the second natural frequency of the width-tapered  

 composite beam ..................................................................................................................... 30 

Figure 3.8 Effect of length on the third natural frequency of the width-tapered  

 composite beam ..................................................................................................................... 31 

Figure 3.9 LC1, LC2, LC3 and LC4 laminate configurations ..................................................... 32 

Figure 3.10 Effect of laminate configuration on the first natural frequency of the width-tapered  

composite beam ..................................................................................................................... 32 

Figure 3.11 Effect of laminate configuration on the second natural frequency of the width-tapered 

composite beam ..................................................................................................................... 33 

Figure 3.12 Effect of laminate configuration on the third natural frequency of the width-tapered  

composite beam ..................................................................................................................... 33 

Figure 3.13 Effect of compressive axial force on the first natural frequency of the width-tapered 

composite beam ..................................................................................................................... 34 

Figure 3.14 Effect of compressive axial force on the second natural frequency of the width-tapered 

composite beam ..................................................................................................................... 35 

Figure 3.15 Effect of compressive axial force on the third natural frequency of the width-tapered 

composite beam ..................................................................................................................... 35 

Figure 3.16 Taper Configurations ................................................................................................ 37 

Figure 3.17 Effect of the length on the first natural frequency of the thickness-tapered composite 

beam ...................................................................................................................................... 40 

Figure 3.18 Effect of the laminate configuration on the first natural frequency of thickness-tapered 

composite beam ..................................................................................................................... 43 



x 

 

 

Figure 3.19 Effect of taper configuration on the first natural frequency of the thickness-tapered 

composite beam ..................................................................................................................... 44 

Figure 3.20 Effect of taper configuration on the second natural frequency of the thickness- 

composite tapered beam ........................................................................................................ 45 

Figure 3.21 Effect of taper configuration on the third natural frequency of the thickness-tapered 

composite beam ..................................................................................................................... 45 

Figure 3.22 Effect of compressive axial force on the first natural frequency of the thickness-

tapered composite beam ........................................................................................................ 47 

Figure 3.23 Effect of the length on the first natural frequency of the thickness- and width-tapered 

composite beams (bR/bL=0.5) ................................................................................................ 51 

Figure 3.24 Effect of laminate configuration on the first natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) .......................................................................... 53 

Figure 3.25 Effect of width-ratio on the first natural frequency of the thickness- and width-tapered 

composite beam ..................................................................................................................... 55 

Figure 3.26 Effect of taper configuration on the first natural frequency of the thickness- and width-

tapered composite beam (bR/bL=0.5) ..................................................................................... 56 

Figure 3.27 Effect of taper configuration on the second natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) .......................................................................... 57 

Figure 3.28 Effect of taper configuration on the third natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) .......................................................................... 57 

Figure 3.29 Effect of compressive axial force on the first natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) .......................................................................... 59 



xi 

 

 

Figure 4.1 Element’s nodal degrees of freedom .......................................................................... 71 

Figure 4.2 Location of the forces and the moments and the response points for different boundary 

conditions for uniform laminated composite beam ............................................................... 72 

Figure 4.3 First three mode shapes of uniform laminated composite beams with different boundary 

conditions .............................................................................................................................. 74 

Figure 4.4 Forced vibration response (maximum deflection) of the uniform composite beams for 

different boundary conditions ................................................................................................ 75 

Figure 4.5 Forced vibration response (maximum rotation) of the uniform composite beams for 

different boundary conditions ................................................................................................ 76 

Figure 4.6 Location of the forces and the moments and the response points for different boundary 

conditions .............................................................................................................................. 78 

Figure 4.7 First three mode shapes of thickness- and width-tapered laminated composite beams 

with different boundary conditions........................................................................................ 79 

Figure 4.8 Forced vibration response of the thickness- and width-tapered simply supported 

composite beams with different taper configurations............................................................ 81 

Figure 4.9 Forced vibration response of the thickness- and width-tapered clamped-clamped 

composite beams with different taper configurations............................................................ 82 

Figure 4.10 Forced vibration response of the thickness- and width-tapered clamped-free 

composite beams with different taper configurations............................................................ 83 

Figure 4.11 Forced vibration response of the thickness- and width-tapered free-clamped 

composite beams with different taper configurations............................................................ 84 

 



xii 

 

 

Figure 4.12 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

deflection of the thickness- and width-tapered composite beam with  

 taper configuration A ............................................................................................................. 86 

Figure 4.13 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

deflection of the thickness- and width-tapered composite beam with  

 taper configuration B ............................................................................................................. 87 

Figure 4.14 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

deflection of the thickness- and width-tapered composite beam with  

 taper configuration C ............................................................................................................. 88 

Figure 4.15 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

deflection of the thickness- and width-tapered composite beam with  

 taper configuration D ............................................................................................................. 89 

Figure 4.16 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

rotation of the thickness- and width-tapered composite beam with taper configuration A ... 90 

Figure 4.17 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

rotation of the thickness- and width-tapered composite beam with taper configuration B ... 91 

Figure 4.18 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

rotation of the thickness- and width-tapered composite beam with taper configuration C ... 92 

Figure 4.19 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

rotation of the thickness- and width-tapered composite beam with taper configuration D ... 93 

Figure 4.20 Undamped  vs. damped forced response in terms of maximum deflection for the 

uniform composite beam with different boundary conditions .............................................. 97 



xiii 

 

 

Figure 4.21 Undamped  vs. damped forced response in terms of maximum rotation for the uniform 

composite beam with different boundary conditions ............................................................ 98 

Figure 4.22a Effect of damping on forced vibration response in terms of maximum deflection of 

the simply supported composite beams with different taper configurations ....................... 101 

Figure 4.22b Magnified views of plots given in Figure 4.22a near 1st resonance ..................... 102 

Figure 4.23a Effect of damping on forced vibration response in terms of maximum deflection of 

the clamped-clamped composite beams with different taper configurations ...................... 103 

Figure 4.23b Magnified views of plots given in Figure 4.23a near 1st resonance ..................... 104 

Figure 4.24a Effect of damping on forced vibration response in terms of maximum deflection of 

the clamped-free composite beams with different taper configurations.............................. 105 

Figure 4.24b Magnified views of plots given in Figure 4.24a near 1st resonance ..................... 106 

Figure 4.25a Effect of damping on forced vibration response in terms of maximum deflection of 

the free-clamped composite beams with different taper configurations.............................. 107 

Figure 4.25b Magnified views of plots given in Figure 4.25a near 1st resonance ..................... 108 

Figure A.1 Effect of the length on the second natural frequency of the thickness-tapered composite 

beam .................................................................................................................................... 130 

Figure A.2 Effect of the length on the third natural frequency of the thickness-tapered composite 

beam .................................................................................................................................... 131 

Figure A.3 Effect of the laminate configuration on the second natural frequency of the thickness-

tapered composite beam ...................................................................................................... 132 

Figure A.4 Effect of the laminate configuration on the third natural frequency of the thickness-

tapered composite beam ...................................................................................................... 133 



xiv 

 

 

Figure A.5 Effect of compressive axial force on the second natural frequency of the thickness-

tapered composite beam ...................................................................................................... 134 

Figure A.6 Effect of compressive axial force on the third natural frequency thickness-tapered 

composite beam ................................................................................................................... 135 

Figure A.7 Effect of the length on the second natural frequency of the thickness- and width-tapered 

composite beam ................................................................................................................... 136 

Figure A.8 Effect of the length on the third natural frequency of the thickness- and width-tapered 

composite beam ................................................................................................................... 137 

Figure A.9 Effect of laminate configuration on the second natural frequency of the thickness- and 

width-tapered composite beam ............................................................................................ 138 

Figure A.10 Effect of laminate configuration on the third natural frequency of thickness- and 

width-tapered composite beam ............................................................................................ 139 

Figure A.11 Effect of width-ratio on the second natural frequency of the thickness- and width-

tapered composite beam ...................................................................................................... 140 

Figure A.12 Effect of width-ratio on the third natural frequency of the thickness- and width-

tapered composite beam ...................................................................................................... 141 

Figure A.13 Effect of compressive axial force on the second natural frequency of the thickness- 

and width-tapered composite beam ..................................................................................... 142 

Figure A.14 Effect of compressive axial force on the third natural frequency of the thickness- and 

width-tapered composite beam ............................................................................................ 143 

 

 



xv 

 

 

List of Tables 

 

Table 2.1 Mechanical properties of ply ........................................................................................ 18 

Table 2.2 Mechanical properties of resin material ....................................................................... 18 

Table 2.3 Boundary condition coefficients for the uniform composite beams ............................ 20 

Table 2.4 The comparison between CFEM and HFEM and the exact value of the first three natural 

frequencies for simply supported uniform composite beams ................................................ 20 

Table 2.5 The comparison between CFEM and HFEM and the exact value of the first three natural 

frequencies for clamped-clamped uniform composite beams ............................................... 21 

Table 2.6 The comparison between CFEM and HFEM and the exact value of the first three natural 

frequencies for clamped-free uniform composite beams………………………………………....21 

Table 3.1 Natural frequencies of width-tapered composite beam for different  

 boundary conditions .............................................................................................................. 26 

Table 3.2 First natural frequencies (rad/s) of thickness-tapered composite beams ..................... 38 

Table 3.3 Second natural frequencies (rad/s) of thickness-tapered composite beams ................. 38 

Table 3.4 Third natural frequencies (rad/s) of thickness-tapered composite beams .................... 38 

Table 3.5 First natural frequency (rad/s) of the thickness- and width-tapered composite beams for 

different boundary conditions (bR/bL = 0.5)........................................................................... 49 

Table 3.6 Second natural frequency (rad/s) of the thickness- and width-tapered composite beams 

for different boundary conditions (bR/bL = 0.5) ..................................................................... 49 

Table 3.7 Third natural frequency (rad/s) of the thickness- and width-tapered composite beams for 

different boundary conditions (bR/bL=0.5) ............................................................................ 50 



xvi 

 

 

Table 3.8 Effect of damping on natural frequencies of thickness- and width-tapered composite 

beam with the taper configuration A (bR/bL=0.5) .................................................................. 61 

Table 3.9 Effect of damping on natural frequencies of thickness- and width-tapered composite 

beam with the taper configuration B (bR/bL=0.5) .................................................................. 62 

Table 3.10 Effect of damping on natural frequencies of thickness- and width-tapered composite 

beam with the taper configuration C (bR/bL=0.5) .................................................................. 63 

Table 3.11 Effect of damping on natural frequencies of thickness- and width-tapered composite 

beam with the taper configuration D (bR/bL=0.5) .................................................................. 64 

Table A.1 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.01) .. 122 

Table A.2 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.02) .. 123 

Table A.3 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.05) .. 124 

Table A.4 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.1) .... 125 

Table A.5 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.4) .... 126 

Table A.6 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.6) .... 127 

Table A.7 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.8) .... 128 



xvii 

 

 

Table A.8 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 1.0) .... 129 

Table B.1 Assembly algorithm of K and M matrices in CFEM ................................................ 144 

Table B.2 Assembly algorithm of K and M matrices in HFEM with one hierarchical term ..... 145 

 

  



xviii 

 

 

Nomenclature 

 
H Height of the laminate  

𝐻𝑝 Equivalent height of the ply in element  

𝐻𝑟 Equivalent height of the resin in element   

ti Thickness of the i-th ply 

L Length of the beam  

𝑙𝑒 Length of the element  

B Uniform width of the beam  

𝑏𝐿 , 𝑏𝑅 Width at the left section and the right section of the beam  

𝑏(𝑥) Width of the beam at coordinate x  

𝑏𝑅/𝑏𝐿 Width-ratio  

x Longitudinal direction of the laminated beam  

y Transverse direction of the laminated beam  

z Thickness direction of the laminated beam  

u The longitudinal displacement  

v The transverse displacement  

w The displacement along thickness direction 

E1 Longitudinal modulus  

E2 Transverse modulus  

G12 In-plane shear modulus  

𝜌 Density 

𝜌𝑝 Density of ply  



xix 

 

 

𝜌𝑟 Density of resin 

E Elastic Modulus of resin 

G Shear modulus of resin 

ν Poisson’s ratio of resin 

ν12 Major Poisson’s ratio of ply 

ν21 Minor Poisson’s ratio of ply 

[𝑁𝑤] Shape functions of the beam  

[𝑁𝑑] First derivatives of shape functions of the beam 

[𝑁𝑀] Second derivatives of shape functions of the beam 

LC Laminate configuration 

N Number of hierarchical terms 

θ Rotation about the y-axis  

Ai  Hierarchical degrees-of-freedom 

Bi  Hierarchical force terms 

[𝑘] Element stiffness matrix  

[𝐾] Global stiffness matrix  

{𝑢} Nodal displacement matrix of the beam 

𝐷11 Coefficient of bending stiffness 

𝑄11̅̅ ̅̅ ̅ Coefficient of transformed reduced stiffness matrix 

𝑁𝑥 Axial force per unit width along the x-axis 

[𝑚] Element mass matrix  

[𝑀] Global mass matrix 

[𝐶] Global damping matrix  



xx 

 

 

[𝑐] Interpolation functions’ coefficient’s matrix 

λ Square of the natural frequency of the beam  

{𝜙} Eigenvector  

ξ Damping ratio 

{𝑦} Vector of displacements in the transformed coordinates  

{𝐹} Force vector  

𝜔𝑖 i-th Natural frequency  

𝜔𝑑𝑖 i-th Damped natural frequency  

𝜔 Frequency of excitation 

t Time 

FEM Finite Element Method  

CFEM Conventional Finite Element Method  

HFEM Hierarchical Finite Element Method 

HOFEM Higher-Order Finite Element Method  

R-R Rayleigh-Ritz method  

φ Thickness-tapering angle  

[�̃�] Orthonormal eigenvector matrix  

α Mass proportional Rayleigh damping constant  

β Stiffness proportional Rayleigh damping constant  

Pcr Critical buckling load 

 

  



1 

 

 

1. Introduction, literature review and scope of the thesis 

 

1.1 Vibration analysis in mechanical design 

Mechanical vibration is a time-dependent phenomenon which deals with the repetitive 

motion of an object relative to a stationary frame of reference. Mostly, vibration is undesirable, 

not only because of the waste of energy and unwanted resultant motions but also because of 

unwanted sound and noise. Vibration may also lead to fatigue and unpredictable failure of the 

structure or machine due to the created dynamic stresses in the structure. Hence in order to reduce 

or prevent the above-mentioned problems caused by vibration often the problem of controlling the 

vibration of the structure is encountered. 

The vibration of a system may occur due to an excitation generated by initial displacement 

and/or initial velocity of the mass (free vibration) or may occur due to an excitation created by 

harmonically excited force (forced vibration). In free vibration mechanical system will vibrate at 

one or more of its natural frequencies. In this case, damping or friction from material itself or 

surrounding medium will cause the vibration to stop. In forced vibration, the system is forced to 

vibrate at the same frequency as that of the exciting harmonic force. In this case if the frequency 

of exciting force gets close to the natural frequencies of the system, the structure will undergo a 

vibration resonance in which the system will respond at greater amplitude than it does at other 

frequencies. There are many examples of structures failing or not meeting objectives or heavily 

reduced lifetime due to vibration resonances, fatigue or high noise levels in the system which can 

be avoided by proper vibration analysis. 
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1.2 Composite materials and structures 

Composite material refers to material that is created by the synthetic assembly of two or 

more organic or inorganic materials in order to obtain specific material properties such as high 

strength and high stiffness to weight ratio, corrosion resistance, thermal properties, fatigue life and 

wear resistance and increased tolerance to damage [1]. Development and design of polymer 

composite materials and structures is the fastest growing segment of lightweight (durable and 

sustainable) construction and product engineering. Since fifteen years for each five years period 

the world market volume of advanced polymer composites was doubled. For the first decade of 

this millennium a growth of at least 700 percent was foreseen. The majority of structural parts in 

novel aircraft and space platform designs will be materialized in polymer composite materials. In 

case of fireproof interiors including floors and supporting structures (beams and brackets) the 

applied volume of composites are reaching the maximum of almost 100 percent and for the high 

performance and durable exterior shell structures almost 80 percent by volume is within the reach. 

The same trends and developments are true for inshore and offshore wind turbine blade designs 

and the development of the latest fast transport systems varying from trains, cars, ferries, trucks to 

ships and yachts, shows similar tendencies [2].  

In some specific applications of composite structures such as helicopter yoke, robot arms, 

turbine blades and satellite antenna, the laminates need to be stiff at one location and flexible at 

another location. For example in a helicopter yoke, a progressive variation in the thickness of the 

yoke is required to provide high stiffness at the hub and flexibility at the middle of yoke length to 

accommodate for flapping. This type of structure is created by terminating or dropping off selected 

plies at specific locations to reduce the stiffness which is called as the tapered composite structure 
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[3]. Moreover, tapered composite structures are also being used in the sports industry (hockey 

blades, lacrosse shafts and etc.) because of their mass and stiffness tailoring properties. Figure 1.1 

shows some applications of tapered composite structures. 

 

Tapered hockey blade and shaft 

 

 

Wind turbine blade 

 

Helicopter yoke and blade 

 

Aircraft wing 

 

Figure 1.1 Applications of tapered composite structures [38 - 42]  
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1.3 Finite element method  

Finite element method is a numerical technique derived from variational method for finding 

approximate solutions to problems. This method overcomes the disadvantage of the traditional 

variational methods by providing a systematic procedure for the derivation of the approximation 

functions over subregions of the domain. The method has three basic features that account for its 

superiority over other competing methods. First, a geometrically complex domain of the problem 

is represented as a collection of geometrically simple subdomains, called finite elements. Second, 

over each finite element, the approximation functions are derived using the basic idea that any 

continuous function can be represented by a linear combination of algebraic polynomials. Third, 

algebraic relations among undetermined coefficients (i.e., nodal values) are obtained by satisfying 

the governing equations, often in a weighted-integral sense, over each element. Thus, the finite 

element method can be viewed, in particular, as an element-wise application of the Rayleigh-Ritz 

or weighted-residual methods. The finite element method is one of the most powerful numerical 

techniques ever devised for solving differential (and integral) equations of initial and boundary-

value problems in geometrically complicated regions [4]. The greatest advantage of the finite 

element method is its ability to analyze systems with all kinds of shapes, geometry, boundary 

conditions and non-linearities. As a result, it is one of the most accurate and powerful tools used 

to analyze complex mechanical structures such as the vibration of tapered laminated composite 

beams.  

The convergence and accuracy of the results determined using finite element formulation 

depend strongly on the selected type of element. The type of element that is considered for the 

finite element formulation in this study has two degrees of freedom per node (deflection and 
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rotation) and two nodes per element. In Hierarchical Finite Element Method (HFEM) a number of 

trigonometric terms are added to the interpolation functions and therefore the corresponding 

hierarchical degrees of freedom will be added to each element. However, they are non-physical 

degrees of freedom and serve the purpose of keeping the stiffness matrix and mass matrix in 

hierarchical forms. 

1.4 Literature survey 

In this section an up-to-date and comprehensive literature survey on the important works 

done on the free and forced vibration response of uniform and tapered laminated composite beams 

is presented. There has been a lot of studies completed on the subject of vibration analyses of 

laminated composite plates and shells. However, there has been a rare amount of literature on 

vibration analysis of laminated composite beams despite their applicability in various industrial 

and commercial structures. Moreover, the works that have been done using HFEM on the analysis 

of the beams and plates are confined to homogeneous materials. The following is an up-to-date 

survey categorized by the subject: 

1.4.1 Vibration analysis of uniform laminated composite beams 

A free vibration analysis of uniform laminated composite beams without considering the 

effects of shear deformation and rotary inertia was conducted by Abarcar and Caniff [5]. 

Chandrashekhara et al. [6] have studied the free vibrations and obtained the natural frequencies of 

advanced composite beams. They have considered the effect of rotary inertia and shear 

deformation in the free vibration analysis of the beams. Miller and Adams [7] studied the vibration 

characteristics of the orthotropic clamped-free uniform beams using the classical laminate theory 
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without including the effect of shear deformation. Chen and Yang [8] studied the static and 

dynamic formulation of symmetrically laminated composite beams. Vinson and Sierakowski [9] 

determined the exact natural frequencies of a simply-supported uniform composite beam based on 

classical laminate theory. The free vibration analysis of composite beams using exact integration 

method was conducted by Hodges et al. [10]. Khdeir [11] have studied the free vibration of cross-

ply laminated beams with arbitrary boundary conditions. Reddy [12], Berthelot [13], Whitney [14] 

and Jones [15] have found the exact solutions for the free vibrations of uniform laminated 

composite beams. Marur and Kant [16] conducted the free vibration analysis of uniform laminated 

composite beams using finite element formulation. Singh and Abdelnassar [17] examined the 

forced vibration response of composite beams considering a third order shear deformation theory.  

1.4.2 Vibration analysis of tapered composite beams 

Roy and Ganesan [18] have studied the response of a tapered composite beam with general 

boundary conditions. He et al. [19] have conducted a review of the works on tapered laminated 

composite structures with focus on interlaminar failures and three-dimensional stress analyses. 

Thickness-tapered laminated composite beams have been studied for their response in the works 

of Ganesan and Zabihollah [20, 21] using an advanced finite element formulation and parametric 

study. Ahmed [3] has studied and conducted experiments for free and forced vibration response of 

tapered composite beams including the effects of axial force and damping. Badagi [22] conducted 

the free and forced vibration analysis of thickness-tapered width-tapered laminated composite 

beams using Rayleigh-Ritz method. Farghaly and Gadelrab [23] have studied the free vibration of 

stepped uniform-width thickness-tapered Timoshenko composite beams using finite element 
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method. Salajegheh [36] has studied the vibrations of thickness-and-width tapered laminated 

composite beams with rigid and elastic supports using a higher-order finite element method. 

1.4.3 Finite Element Method  

Zienkiewicz [24], Cook [25] and Reddy [4] have used conventional finite element method 

to analyze the vibration of beams. Nabi and Ganesan [26] developed a general finite element 

formulation based on FSDT with 16 degrees of freedom per element to study the free vibration 

characteristics of laminated composite beams. They also conducted a parametric study on the 

influence of beam geometry and boundary conditions on the natural frequencies of the beam. Chen 

[27] has studied the free vibration response of tapered composite beams using hierarchical finite 

element method and Rayleigh-Ritz method. Lees and Thomas [28] conducted a modal analysis on 

a clamped-clamped Timoshenko beam using hierarchical finite element method (HFEM). They 

used two nodes per element with two degrees of freedom that are the deflection and cross section 

rotation, on each node. Bardell [29] conducted a free vibration analysis of a rectangular plate using 

the HFEM considering ten boundary conditions. Yu et al. [30] studied a multivariable hierarchical 

finite element for static and vibration analysis of beams. Ribeiro and Petyt [31] studied the non-

linear free and forced vibration of composite laminated plates using HFEM and harmonic balance 

method. Han and Petyt [32, 33] conducted a study on free and forced vibration of isotropic and 

symmetrically laminated rectangular plates using HFEM. They found that with far fewer degrees-

of-freedom than conventional finite element method, accurate results may be produced using the 

HFEM.  
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1.5 Objectives of the thesis 

The main objectives of the present study are the following:  

1. To investigate the free vibration response of uniform, width-tapered, thickness-tapered and 

thickness- and width-tapered laminated composite beams using the hierarchical finite element 

method.  

2. To conduct a comprehensive parametric study on the effects of boundary condition, width-

ratio, thickness-tapering angle, taper configuration, laminate configurations and compressive axial 

force on the free vibration frequency response of the composite beams. 

3. To study the forced vibration response of undamped and damped thickness- and width-

tapered laminated composite beams using hierarchical finite element method (HFEM) and to 

conduct a comprehensive parametric study on the effects of boundary condition, width-ratio, taper 

configuration, laminate configuration, compressive axial force and damping on the forced 

vibration response (the amplitudes of deflection and rotation). 

The response of tapered laminated composite beams is determined based on classical 

laminated beam theory and cylindrical bending theory. 

1.6 Layout of the thesis 

The present chapter provides a brief introduction and literature review on free and forced 

vibrations of tapered laminated composite beams. 

In chapter 2, the elastic behavior of composite beams is presented based on cylindrical 

bending theory. Then Finite Element Method (FEM) and Hierarchical Finite Element Method 

(HFEM) formulations of the composite beams are presented. At the end of the chapter free 

vibration analysis of the uniform laminated composite beams is conducted using FEM and HFEM, 
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the frequency response is determined and the accuracy and convergence of HFEM is investigated 

compared to FEM.  

Chapter 3 contains a thorough parametric study on the free vibration frequency response of 

three types of tapered laminated composite beams that are width-tapered, thickness-tapered and 

width- and thickness- tapered composite beams. For each type, the effects of boundary condition, 

width-ratio, thickness-tapering angle, laminate configuration, taper configuration and compressive 

axial force on frequency response are determined and presented through tables and figures. 

In chapter 4, the forced vibration analysis of undamped and damped uniform and thickness- 

and width-tapered composite beams is carried out. Moreover, a parametric study on the effects of 

boundary condition, width-ratio and taper configuration on forced vibration response in terms of 

maximum deflection and maximum rotation is conducted.   

Finally in chapter 5, the main contributions made in the present study, overall conclusions 

and the recommendations for future work are presented. 
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2. Finite element formulation and free vibration analysis of uniform 

composite beams 

 

2.1 Introduction 

Laminated composite beams are increasingly and widely being used in engineering applications 

including robotic manipulators, aircraft wings, space structures, helicopter blades and yokes, turbine 

blades and civil infrastructure due to their high stiffness-to-weight and strength-to-weight ratios. Finite 

element method is one of the most accurate and powerful tools used to predict the behavior of complex 

mechanical structures such as the vibration of tapered laminated composite beams. In this chapter free 

vibration analysis of uniform-thickness uniform-width laminated composite beams is conducted. Two 

degrees of freedom (deflection w, rotation θ) per node and two nodes per element are considered in the 

finite element formulations. Simply supported, clamped-clamped and clamped-free boundary 

conditions are considered. The material chosen in this study is NCT-301 graphite-epoxy prepreg [34] 

which is available in the laboratory of Concordia Centre for Composites (CONCOM). The mechanical 

properties of the ply and the resin are given in the Tables 2.1 and 2.2. Symmetric laminate is considered 

in all problems. In this chapter the elastic behavior of composite beams is presented in section 2.2. 

In sections 2.3 and 2.4 the conventional finite element method (CFEM) and hierarchical finite 

element method (HFEM) formulations are presented. Finally, in section 2.5 free vibration analysis 

of a uniform laminated composite beam is presented. 
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2.2 Cylindrical bending of laminated composite beams 

  

The classical laminate theory considers the effect of pure bending on stresses and 

deformations. The basic assumption of this theory is that the cross-sections of the beam remain 

plane and normal to the deformed longitudinal axis and the changes in dimensions of the cross-

section are negligible. The rotation is about a neutral axis that passes through the centroid of the 

cross-section. It is also assumed that transverse shear stresses have no effect on beam deformations 

and the material has a linear elastic isotropic behavior. There are two approaches in deriving the 

equations of motion of the laminated composite beams which are the cylindrical bending theory 

and one-dimensional beam theory. Considering the fact that the composite beam that is being used 

in this study has a large length-to-thickness ratio as shown in Figure 2.1 the cylindrical bending 

theory is employed [13]. It is also assumed that the beam is symmetric. 

 

v
w

u

z

x

y

 

Figure 2.1 Global coordinate system 
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By writing the equations of potential and kinetic energies and applying the Hamilton principle and 

cylindrical bending assumptions [27], one can get the equation of motion for a laminated 

composite beam as: 

 

 
∫ 𝑏(𝑥)
𝐿

0

𝐷11(𝑥) (
d2𝑤

d𝑥2
)(
𝑑2𝛿𝑤

d𝑥2
)𝑑𝑥 − ∫ 𝑏(𝑥) 𝑁𝑥

𝐿

0

(
d𝑤

dx
)(
d𝛿𝑤

dx
)𝑑𝑥

− 𝜔2∫ ∫ 𝜌
𝐻/2

−𝐻/2

𝑏(𝑥)
𝐿

0

𝑤𝛿𝑤𝑑𝑥𝑑𝑧 = 0 

(2.1) 

 

In equation (2.1) L is the length of the laminated composite beam, Nx is the compressive axial force 

(if present), and 𝐷11(𝑥) is the coefficient of bending stiffness of the laminated composite beam. 

Considering the cylindrical bending, 𝐷11(𝑥) is defined as [13]: 

𝐷11(𝑥) = ∫ 𝑄11̅̅ ̅̅ ̅𝑧2𝑑𝑧
𝐻/2

−𝐻/2

 (2.2) 

in which 𝑄11̅̅ ̅̅̅ is the coefficient of the transformed reduced stiffness of the beam and H is the total 

thickness of the beam. Also, 𝑏(𝑥) is the width of the beam which is defined as: 

𝑏(𝑥) =
(𝑏𝑅 − 𝑏𝐿)𝑥

𝐿
+ 𝑏𝐿    (2.3) 

In which 𝑏𝐿 is the width at the wide section of the beam and 𝑏𝑅 is the width at the narrow section 

of the beam. In case of the uniform-width beam, b(x) is a constant value that is denoted by b. It is 

also assumed that the deflection in z-direction is: 

 

𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑒𝑖𝜔𝑡  (2. 4) 
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2.3 Conventional Finite Element Method (CFEM) formulation 

In Conventional Finite Element Method (CFEM) the system is divided into a number of 

elements. Each element has a number of nodes, which are the critical points. The displacements or 

forces or any other desired variable within the element are defined as a function of those variables 

in the nodes. For example for an element with two nodes, the displacement of any desired point 

within the element could be defined as a function of displacements of the two nodes. This function 

is called Interpolation or Shape function. In this study two nodes per element and two degrees of 

freedom per node are used in the formulation as shown in Figure 2.2.  

 

Figure 2.2 Element’s nodal degrees of freedom 

In Figure 2.2, w1 and w2 represent the deflections in the thickness direction at the first and 

the second node respectively and 𝜃1and 𝜃2 denote the rotations about the y-axis at the first and the 

second node respectively. Having two degrees of freedom per node and four degrees of freedom per 

element, a third-order polynomial is required for the expression of deflection to satisfy the boundary 

conditions as below: 

𝑊(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2 + 𝑐4𝑥

3 (2.5) 

or: 

𝑊 = [𝐾𝑤][𝑐] (2.6) 

in which: 

[𝐾𝑤] = [1  𝑥  𝑥
2 𝑥3] (2.7) 

w2w1

θ1 θ2
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[𝑐] = [

𝑐1
𝑐2
𝑐3
𝑐4

] (2.8) 

The rotation at the node can be defined as the first derivative of deflection:  

𝜃 = [𝐾𝜃][𝑐] (2.9) 

in which: 

[𝐾𝜃] =
𝑑([𝐾𝑤])

𝑑𝑥
= [0  1  2𝑥  3𝑥2] 

(2.10) 

Applying the boundary conditions considering the first node at 𝑥(1) = 0 and 𝑥(2) = 𝑙𝑒in which, 𝑙𝑒 is 

the length of the element one will have the nodal displacement matrix {𝑢} as: 

{𝑢} = {

𝑤1
𝜃1
𝑤2
𝜃2

} = [𝐾𝑢]{𝑐} (2.11) 

in which: 

[𝐾𝑢] = [

1
0
 1 
0

0
1
  𝑙𝑒
1

0
0
𝑙𝑒
2

 2𝑙𝑒 

0
0
𝑙𝑒
3

3𝑙𝑒
2

] (2.12) 

In order to define a relation between local displacement matrix {𝑢}  and global 

displacement (W), from Equation (2.11) one can write: 

{𝑐} = [𝐾𝑢]
−1{𝑢} (2.13) 

Combining Equations (2.6) and (2.13) gives: 

𝑊 = [𝐾𝑤][𝐾𝑢]
−1{𝑢} (2.14) 

Then by defining Interpolation function matrix [𝑁𝑤] as: 

[𝑁𝑤] = [𝐾𝑤][𝐾𝑢]
−1 (2.15) 

one can define the relation between local displacement matrix {𝑢} and global displacement (W) as: 
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𝑊 = [𝑁𝑤]{𝑢} (2.16) 

Moreover by using the following notations: 

[𝑁𝑑] =
𝑑[𝑁𝑤]

𝑑𝑥
 (2.17) 

[𝑁𝑀] =
𝑑2[𝑁𝑤]

𝑑𝑥2
 

(2.18) 

and substituting Equation (2.16 – 2.18) into Equation (2.1), the governing equation of motion of 

the laminated composite beam is derived as:  

[∫ 𝑏(𝑥) [𝐷11[𝑁
𝑀]𝑇[𝑁𝑀] − 𝑁𝑥[𝑁

𝑑]𝑇[𝑁𝑑]] 𝑑𝑥
𝑙𝑒

0

−𝜔2∫ 𝑏(𝑥)(𝜌𝑝𝐻𝑝 + 𝜌𝑟𝐻𝑟)[𝑁
𝑤]𝑇[𝑁𝑤]𝑑𝑥

𝑙𝑒

0

] {𝑢} = 0 

(2.19) 

Stiffness [𝑘] and mass [𝑚] matrices are defined for each element as: 

[𝑘] = ∫ 𝑏(𝑥) [𝐷11(𝑥)[𝑁
𝑀]𝑇[𝑁𝑀] − 𝑁𝑥[𝑁

𝑑]𝑇[𝑁𝑑]] 𝑑𝑥
𝑙𝑒

0

 (2.20) 

[𝑚] = ∫ 𝑏(𝑥)(𝜌𝑝𝐻𝑝 + 𝜌𝑟𝐻𝑟)[𝑁
𝑤]𝑇[𝑁𝑤]𝑑𝑥

𝑙𝑒

0

 (2.21) 

In equation (2.21) the term (𝜌𝑝𝐻𝑝 + 𝜌𝑟𝐻𝑟) is defined as: 

∫ 𝜌
𝐻/2

−𝐻/2

𝑑𝑧 = 𝜌𝑝𝐻𝑝 + 𝜌𝑟𝐻𝑟 (2.22) 

 

in which 𝜌𝑝 is the density of the ply , 𝜌𝑟 is the density of resin, H is the thickness of the laminated 

composite beam and 𝐻𝑝 and  𝐻𝑟 are the equivalent thicknesses of the resin and ply in each element. 

As it was mentioned above, equations (2.20) and (2.21) provide the stiffness and mass 

matrices for each element. By using an assembly algorithm that is presented in Appendix B, one 
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can assemble global stiffness [K] and mass [M] matrices of the beam. As a result equation (2.19) 

transforms into: 

[[𝐾] − 𝜔2[𝑀]]{𝑢} = 0 (2.23) 

Equation (2.23) is an eigenvalue problem and can be solved to determine the natural frequencies 

of the beam. It should be noted that in Equations (2.20) and (2.21) 𝐻𝑝 and 𝐻𝑟  are specifically 

calculated for each element. 

2.4 Hierarchical Finite Element Method (HFEM) formulation 

In the CFEM formulation a cubical displacement function was assumed in Equation (2.5). 

In the Hierarchical Finite Element Method (HFEM) the displacement function is modified by 

adding trigonometric or polynomial functions at the end of the equation [35]. In this study the 

trigonometric hierarchical functions are used as: 

𝑊(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2 + 𝑐4𝑥

3 +∑𝑐𝑖+4 sin
𝑖𝜋𝑥

𝑙𝑒

𝑁

𝑖=1

,    𝑖 = 1,2,3, … (2.24) 

in which 𝑙𝑒 is the length of the element and N is the number of hierarchical terms. 

Equation (2.24) can be expressed as:  

𝑊 = [𝐾𝑤][𝑐] (2.25) 

𝐾𝑤 = [1  𝑥  𝑥
2 𝑥3 sin

𝜋𝑥

𝑙𝑒
 …  sin

𝑁𝜋𝑥

𝑙𝑒
] (2.26) 

[𝑐] =

[
 
 
 
 
 
 
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5
⋮

𝑐𝑁+4]
 
 
 
 
 
 

 (2.27) 
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In the same manner rotation (𝜃) can be expressed as: 

𝜃 = [𝐾𝜃][𝑐] (2.28) 

𝐾𝜃 =
𝑑(𝐾𝑤)

𝑑𝑥
= [0  1  2𝑥  3𝑥2  

𝜋

𝑙𝑒
cos

𝜋𝑥

𝑙𝑒
… 
𝑁𝜋

𝑙𝑒
cos

𝑁𝜋𝑥

𝑙𝑒
] 

(2.29) 

The displacement matrix in local coordinate system is: 

{𝑢} =

{
  
 

  
 
𝑤1
𝜃1
𝑤2
𝜃2
𝐴1
⋮
𝐴𝑁}
  
 

  
 

= [𝐾𝑢]{𝑐} (2.30) 

in which Ai are the hierarchical degrees of freedom corresponding to hierarchical terms. 

The procedure to determine the stiffness [k] and mass [m] matrices for each element is the 

same as that described for CFEM in section 2.3. The algorithm to assemble the global stiffness [K] 

and global mass [M] matrices is described in Appendix B.  

 

[𝐾𝑢] = 

 

1 0 0 0 0 … 0 

 

    

(2.31) 

0 1 0 0 
𝜋

𝑙𝑒
 … 

𝑁𝜋

𝑙𝑒
 

1 𝑙𝑒 𝑙𝑒
2 𝑙𝑒

3 0 … 0 

0 1 2𝑙𝑒 3𝑙𝑒
2 −

𝜋

𝑙𝑒
 … (−1)𝑁

𝑁𝜋

𝑙𝑒
 

0 0 0 0 1 … 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

0 0 0 0 0 … 1 
[
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 

]
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2.5 Free vibration analysis of a uniform laminated composite beam  

A laminated composite beam made of NCT-301 graphite-epoxy composite material with the 

mechanical properties mentioned in Tables 2.1 and 2.2 is considered. The beam has [0/90]9s 

laminate configuration and a length (L) of 25 cm. The thickness and the width of the beam are 

constant throughout the length of the beam and therefore it is called a “uniform beam”. The beam 

is composed of 36 plies. Individual ply thickness (ti) is 0.125 mm and the beam thickness (H) is 

4.5 mm. The beam has a width of 15 mm. 

Table 2.1 Mechanical properties of ply [22] 

Longitudinal modulus (E1) 113.9 GPa 

Transverse modulus (E2) 7.9856 GPa 

E3 = E2 7.9856 GPa 

In-plane shear modulus (G12) 3.138 GPa 

Major Poisson’s ratio (ν12) 0.288 

Minor Poisson’s ratio (ν21) 0.178 

Density of ply (ρp) 1480 kg/m3 

 

Table 2.2 Mechanical properties of resin material [22] 

Elastic modulus (E) 3.93 GPa 

Shear modulus (G) 1.034 GPa 

Poisson’s ratio (ν) 0.37 

Density of resin (ρr) 1000 kg/m3 
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In order to validate the HFEM formulation, free vibration analysis is carried out using both 

CFEM and HFEM for three boundary conditions that are simply supported, clamped-clamped and 

clamped- free, as shown in Figure 2.3.  

 

    

Figure 2.3 Boundary conditions 

The first three natural frequencies are given in Table 2.4 alongside the exact values of the natural 

frequencies that can be calculated as [13]: 

𝜔𝑖 =
𝛾𝑖
𝑙2
√
𝐷11
𝜌𝐻

 

The values of 𝛾𝑖 for different boundary conditions are given in Table 2.3. 

As it is shown in Tables 2.4 - 2.6, HFEM provides a better accuracy than CFEM with less 

number of elements that will significantly reduce the time required for the computations. It can 

also be shown that there is no significant difference between the results when the second 

Simply Supported

Clamped-Free

Clamped-Clamped
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hierarchical term is added. As a result, in this study HFEM with one trigonometric hierarchical 

term is considered. 

Table 2.3 Boundary condition coefficients for the uniform composite beams 

Boundary Condition 𝛾1 𝛾2 𝛾3 

Simply Supported 9.867 39.478 88.826 

Clamped - Clamped 22.373 61.673 120.90 

Clamped - Free 3.516 22.034 61.701 

 

Table 2.4 The comparison between CFEM and HFEM and the exact value of the first three 

natural frequencies for simply supported uniform composite beams  

 2E* 4E 6E 12E Exact Value 

ω1 

(rad/s) 

HFEM(1)** 1366.79 1366.69 1366.68 1366.68 

1366.68 HFEM(2)*** 1366.70 1366.69 1366.68 1366.68 

CFEM 1372.08 1367.04 1366.76 1366.69 

ω2 

(rad/s) 

HFEM(1) 5468.92 5467.16 5466.79 5466.75 

5466.69 HFEM(2) 5466.85 5466.80 5466.76 5466.74 

CFEM 6067.64 5488.33 5471.18 5467.03 

ω3 

(rad/s) 

HFEM(1) 12662.91 12309.21 12301.12 12300.21 

12300.12 HFEM(2) 12314.15 12300.48 12300.29 12300.19 

CFEM 15251.52 12524.94 12348.73 12303.38 

 

* 2E means 2 Elements ** (1) means one hierarchical term *** (2) means two hierarchical terms 
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Table 2.5 The comparison between CFEM and HFEM and the exact value of the first three 

natural frequencies for clamped-clamped uniform composite beams 

 2E 4E 6E 12E Exact Value 

ω1 

(rad/s) 

HFEM(1) 3100.43 3098.16 3098.13 3098.13 

3098.08 HFEM(2) 3098.28 3098.14 3098.13 3098.13 

CFEM 3148.35 3102.24 3098.95 3098.18 

ω2 

(rad/s) 

HFEM(1) 8550.15 8542.06 8540.30 8540.11 

8540.06 HFEM(2) 8540.34 8540.29 8540.15 8540.11 

CFEM 11351.52 8619.10 8556.87 8541.18 

ω3 

(rad/s) 

HFEM(1) 17240.57 16781.70 16744.70 16742.08 

16741.55 HFEM(2) 16821.05 16743.05 16742.29 16742.05 

CFEM - 17099.59 16861.99 16750.06 
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Table 2.6 The comparison between CFEM and HFEM and the exact value of the first three 

natural frequencies for clamped-free uniform composite beams 

 2E 4E 6E 12E Exact Value 

ω1 

(rad/s) 

HFEM(1) 486.88 486.87 486.87 486.87 

486.87 HFEM(2) 486.88 486.87 486.87 486.87 

CFEM 487.11 486.89 486.88 486.88 

ω2 

(rad/s) 

HFEM(1) 3055.35 3051.28 3051.22 3051.21 

3051.14 HFEM(2) 3051.34 3051.22 3051.21 3051.21 

CFEM 3077.11 3054.77 3051.97 3051.26 

ω3 

(rad/s) 

HFEM(1) 8578.80 8546.55 8543.78 8543.49 

8543.44 HFEM(2) 8546.43 8543.65 8543.53 8543.49 

CFEM 10407.33 8609.63 8559.12 8544.55 
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2.6 Summary 

In this chapter the elastic behavior of composite beams was presented in section 2.2. In sections 

2.3 and 2.4 the Conventional Finite Element Method (CFEM) and Hierarchical Finite Element 

Method (HFEM) were presented and in section 2.5 free vibration analysis of a uniform composite 

beam was conducted. A summary of observations is given below: 

 Clamped-Clamped boundary condition has the largest natural frequencies among all 

boundary conditions. Simply supported and clamped-free beams have the second and the 

third largest natural frequencies respectively.   

 It was noted that HFEM gives more accurate results with same number of elements 

compared to CFEM. Also it reaches the exact value with much less number of elements 

compared to CFEM.  

 Moreover, it was noted that adding the second hierarchical trigonometric term does not 

make a significant improvement in the accuracy nor the number of elements required to 

reach the exact values. As a result, in this study HFEM with one trigonometric hierarchical 

term is considered. 
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3. Free vibration analysis of tapered composite beams 

 

3.1 Introduction 

In order to reduce the cost and the use of extra-material while preserving the desired 

properties of composite beams, different types of tapering are being developed. In this chapter, the 

study of free vibration frequency response of composite beams considering three types of tapering 

is presented. In section 3.2 the free vibration analysis of a width-tapered laminated composite beam 

is conducted. In section 3.3 the free vibration analysis of a thickness-tapered laminated composite 

beam is conducted.  In section 3.4 the free vibration analysis of a thickness- and width-tapered 

laminated composite beam is conducted. In all the parametric studies presented in this chapter 

NCT-301 graphite-epoxy composite material is used, which is available in the laboratory of 

Concordia Centre for Composites. The mechanical properties of the ply and the resin are given in 

Tables 2.1 and 2.2. Cylindrical bending theory and Hierarchical Finite Element Method (HFEM) 

are used for all the formulations. In each section, the effects of different parameters such as 

boundary condition, taper angle, width-ratio, laminate configuration, taper configuration and axial 

force, on natural frequencies of the beam are analyzed and presented through figures and tables in 

corresponding subsections. An interpretation of each figure is given at the end of each subsection 

and at the end of the chapter a summary of observations and discussion is presented. 
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3.2 Free vibration analysis of width-tapered laminated composite beams 

In the current section, a width-tapered composite beam as it is shown in Figure 3.1 is 

analyzed. In the following subsections, parametric studies are conducted to study the effects of 

boundary condition, width-ratio, taper angle (or equivalently length of the beam), laminate 

configuration and compressive axial force on the natural frequencies of the beam. The beam has 

uniform thickness and is assumed to be symmetric about its mid-plane and therefore only the 

upper-half of the beam is considered in all of the calculations.  

 

Figure 3.1 Width-tapered composite beam 

 

3.2.1 Effect of boundary conditions on natural frequencies  

A laminated composite beam made of NCT-301 graphite-epoxy composite material with 

the mechanical properties mentioned in Tables 2.1 and 2.2 is considered. The beam has [0/90]9s 

laminate configuration and a length (L) of 25 cm.  The beam is composed of 36 plies. Individual 
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ply thickness (ti) is 0.125 mm and the beam thickness (H) is 4.5 mm. The beam has a width of 15 

mm at the wide section (bL) and 7.5 mm at the narrow section (bR), which leads to a width-ratio 

(bR/bL) of 0.5. Free vibration analysis is carried out for four boundary conditions that are simply 

supported, clamped-clamped, clamped-free and free-clamped, as shown in Figure 3.2. The first 

three natural frequencies are given in Table 3.1. 

  

Figure 3.2 Boundary conditions 

 

Table 3.1 Natural frequencies of width-tapered composite beam for different boundary 

conditions 

 Simply Supported Clamped-Clamped Clamped-Free Free-Clamped 

ω1 (rad/s) 1360.53 3071.59 597.54 393.22 

ω2 (rad/s) 5472.06 8503.50 3256.82 2857.78 

ω3 (rad/s) 12309.99 16703.78 8751.79 8358.53 

 

 

Simply Supported Clamped-Clamped

Clamped-Free Free-Clamped
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It can be observed from Table 3.1 that the highest natural frequency is for clamped-clamped 

boundary condition because the stiffness of the beam increases in this condition. The lowest natural 

frequency is for free-clamped beam since there is no support at one end and the stiffness decreases 

accordingly. Simply supported beam has the second highest natural frequencies and clamped-free 

beam has slightly higher natural frequencies than free-clamped beam and comes in third.  One can 

say that since the support is at the wide section of the width-tapered beam (compared to free-

clamped beam), the clamped-free beam has a higher stiffness.  

3.2.2 Effect of width-ratio on natural frequencies  

Width-ratio (bR/bL) is the ratio of width of the beam at the narrow end (bR), over the width 

of the beam at the wide end (bL). The beam in section 3.2.1 is considered with width-ratios of 0.01, 

0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. The first three natural frequencies for four different 

boundary conditions are illustrated through Figures 3.3 - 3.5. 

 

 

Figure 3.3 Effect of width-ratio on the first natural frequency of the width-tapered composite 

beam   
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Figure 3.4 Effect of width-ratio on the second natural frequency of the width-tapered composite 

beam 

 

Figure 3.5 Effect of width-ratio on the third natural frequency of the width-tapered composite 

beam 

It can be seen from Figures 3.3 - 3.5 that by increasing the width-ratio from 0.01 to 1.0, the 

first three natural frequencies increase for simply supported, clamped-clamped and free-clamped 

beams but they decrease for clamped-free beam. The reason is that for the clamped-free boundary 
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condition by increasing the width-ratio, material on the free side is being added up. Therefore, the 

beam becomes more resistant to vibrate and that leads to reduction of natural frequencies. Also it 

is evident that the highest natural frequency is for clamped-clamped boundary condition, while the 

lowest is for free-clamped boundary condition.  

In Tables A.1 - A.8, the values of the first three natural frequencies are presented alongside 

the results obtained using R-R (Rayleigh-Ritz method) [22] and HOFEM (Higher-Order Finite 

Element Method) [36]. The comparison shows that HFEM (Hierarchical Finite Element Method) 

provides accurate results within 0.2% of difference from the above-mentioned methods, which is 

very acceptable. 

 

3.2.3 Effect of taper angle (or equivalently length of the beam) on natural frequencies 

The same tapered composite beam considered in section 3.2.1 is used with width-ratio of 

0.5. The beam is considered to have taper angles (φ) of 0.86°, 0.573°, 0.43° and 0.344° 

(corresponding lengths are 0.1 m, 0.15 m, 0.2 m and 0.25 m). The first three natural frequencies 

for four different boundary conditions are illustrated through Figures 3.6 - 3.8.  

As it is shown in Figures 3.6 - 3.8, by increasing the length of the tapered beam or 

equivalently decreasing the taper angle, all the first three natural frequencies will decrease. It is 

evident that natural frequencies are affected more significantly by changes in length (or 

equivalently taper angle), for beams with clamped-clamped and simply supported boundary 

conditions. Comparing among different boundary conditions, clamped-clamped boundary 

condition has the highest natural frequencies. The second and third highest natural frequencies 

correspond to simply supported and clamped-free boundary conditions, respectively. Clamped-
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free boundary condition has a slightly higher frequency response than free-clamped boundary 

condition, which has the lowest natural frequencies. 

 

 

Figure 3.6 Effect of length on the first natural frequency of the width-tapered composite beam 

 

Figure 3.7 Effect of length on the second natural frequency of the width-tapered composite 

beam 
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Figure 3.8 Effect of length on the third natural frequency of the width-tapered composite beam 

 

3.2.4 Effect of laminate configuration on natural frequencies 

Four different laminate configurations are being considered and labeled as LC1, LC2, LC3 

and LC4 in order to study the effect of laminate configuration on natural frequencies. In this study 

LC1 is the laminate with [0/90]9s configuration, LC2 is the laminate with [±45]9s configuration, 

LC3 is the laminate with [04/±457]s configuration, and LC4 is the laminate with [0/±60]6s 

configuration. LC1 to LC4 are illustrated in Figure 3.9. The free vibration frequency response for 

four boundary conditions that are simply supported (S-S), clamped-clamped (C-C), clamped-free 

(C-F) and free-clamped (F-C) is presented in Figures 3.10 - 3.12. 
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Figure 3.9 LC1, LC2, LC3 and LC4 laminate configurations 

 

Figure 3.10 Effect of laminate configuration on the first natural frequency of the width-tapered  

composite beam 
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Figure 3.11 Effect of laminate configuration on the second natural frequency of the width-

tapered composite beam 

 

Figure 3.12 Effect of laminate configuration on the third natural frequency of the width-tapered  

composite beam 
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As it is shown in Figures 3.10 - 3.12, for all the boundary conditions LC3 has the highest 

frequency response while LC2 has the lowest. LC1 has higher frequency response than LC4 and 

lower frequency response than LC3. Also, it is evident that the clamped-clamped boundary 

condition has the highest frequency response for all configurations. 

 

3.2.5 Effect of compressive axial force on natural frequencies 

To consider the effect of axial force on the frequency response, first a buckling analysis is 

carried out on the same beam as that considered in section 3.2.1 to calculate the critical buckling 

load, Pcr. The free vibration analysis under compressive axial forces equal to 10%, 50% and 90% 

of Pcr is conducted and the first three natural frequencies are presented in Figures 3.13 - 3.15 for 

different boundary conditions. 

 

Figure 3.13 Effect of compressive axial force on the first natural frequency of the width-tapered 

composite beam 
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Figure 3.14 Effect of compressive axial force on the second natural frequency of the width-

tapered composite beam 

  

Figure 3.15 Effect of compressive axial force on the third natural frequency of the width-tapered 

composite beam 
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It can be observed from Figures 3.13 - 3.15 that by increasing the compressive axial force, 

the natural frequencies decrease. The rate of decrease is significant for clamped-clamped and 

simply supported boundary conditions, however it is negligible for clamped-free and free-clamped 

boundary conditions. Also, it is evident that clamped-clamped boundary condition has the highest 

frequency response for all the configurations.  

 

3.3 Free vibration analysis of thickness-tapered laminated composite beams 

In the present section, thickness-tapered composite beam is analyzed. Four different taper 

configurations are considered that are, Configurations A, B, C and D, as shown in Figure 3.16. 

The dark triangles are the resin pockets located in between plies.  It should be mentioned that 

configurations A, B, C and D represent different tapered laminates in the same way that uniform 

laminates were represented as a combination of layers. In the following subsections, parametric 

studies are conducted to study the effects of boundary condition, taper angle (or equivalently length 

of the beam), laminate configuration, taper configuration and compressive axial force on the 

natural frequencies of the beam. The beam has uniform width and is assumed to be symmetric 

about its mid-plane and therefore only the upper-half of the beam is considered in all of the 

calculations. 
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Configuration A Configuration B 

  

Configuration C Configuration D 

 

Figure 3.16 Taper Configurations 

3.3.1 Effect of boundary condition on natural frequencies 

A thickness-tapered composite beam composed of 36 plies at the thick (left) side and 12 

plies at the thin (right) side is considered. Thickness of each ply is 0.125 mm and therefore the left 

side beam thickness is 4.5 mm as opposed to 1.5 mm beam thickness at the right side. The beam 

has a length of 25 cm, a uniform width of 15 mm and [0/90]9s laminate configuration. The 

mechanical properties of the composite material are given in Tables 2.1 and 2.2. Free vibration 

analysis of the beam is conducted and the first three natural frequencies are presented in Tables 

3.4 - 3.6 for configurations A, B, C and D for different boundary conditions. 
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Table 3.2 First natural frequencies (rad/s) of thickness-tapered composite beams 

 Simply Supported Clamped-Clamped Clamped-Free Free-Clamped 

Configuration A 784.5246 1777.5584 484.9711 142.1147 

Configuration B 838.3421 1962.0792 546.5948 155.3737 

Configuration C 856.3092 1995.2596 563.2578 154.5906 

Configuration D 822.4534 1905.7802 508.7018 160.5938 

 

Table 3.3 Second natural frequencies (rad/s) of thickness-tapered composite beams 

 Simply Supported Clamped-Clamped Clamped-Free Free-Clamped 

Configuration A 3196.5868 4904.2811 2132.0842 1466.8182 

Configuration B 3484.9467 5397.0563 2316.5577 1595.7555 

Configuration C 3561.8175 5491.122 2379.1565 1609.9249 

Configuration D 3388.9078 5290.3047 2196.2266 1617.7869 

 

Table 3.4 Third natural frequencies (rad/s) of thickness-tapered composite beams 

 Simply Supported Clamped-Clamped Clamped-Free Free-Clamped 

Configuration A 7140.8785 9619.3095 5310.1348 4661.7109 

Configuration B 7814.0551 10574.5674 5744.3029 5119.5936 

Configuration C 7977.9234 10764.3067 5890.6532 5192.5281 

Configuration D 7557.4338 10289.4157 5499.2824 5114.8815 
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As it is shown in Tables 3.2 - 3.4, the highest values of the natural frequencies are for 

clamped-clamped boundary condition. The second and the third highest values of natural 

frequencies belong to simply supported and clamped-free boundary conditions respectively. Free-

clamped beam has the lowest natural frequencies among all boundary conditions.  

 

3.3.2 Effect of taper angle (or equivalently length of the beam) on natural frequencies 

The same beam as that analyzed in section 3.3.1 is considered. Taper angles of 0.86°, 

0.573°, 0.43° and 0.344° are used (corresponding lengths of tapered beam are 0.1 m, 0.15 m, 0.2 

m and 0.25 m). The free vibration analysis is conducted and the frequency response is presented 

in Figure 3.17 and Figures A.1 and A.2.  

It can be observed from Figure 3.17 that by increasing the length of the beam (or 

equivalently decreasing the taper angle), the first natural frequency decreases dramatically. This 

behavior can be interpreted by the fact that the beam becomes more rigid as its length decreases. 

Therefore it experiences higher natural frequencies. Also, it is evident from Figures A.1 and A.2 

that the second and the third natural frequencies follow the same pattern.  



40 

 

 

 

Figure 3.17 Effect of the length on the first natural frequency of the thickness-tapered composite 

beam 
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Comparing different taper configurations, it is evident that configuration C has the highest 

natural frequencies. Configuration B comes in second with slightly lower values than configuration 

C. Configuration D has lower natural frequencies than configuration B and C and the lowest natural 

frequencies belong to configuration A. From Figure 3.16, it can be observed that configuration A 

has the largest amount of resin pockets among the four configurations, which results in the lowest 

stiffness and therefore the lowest natural frequencies. Configuration D has bigger resin pockets 

compared to configuration B but they are distributed in almost the same manner as configuration 

B throughout the beam, which results in lower natural frequencies than configuration B. However, 

configuration D has lower volume of resin pockets and also they are placed farther from the center 

that leads to higher contribution to the stiffness, compared to configuration A. Therefore, it has 

higher natural frequencies than configuration A. Although Configuration B has the same volume 

of resin pockets as configuration C, but in configuration B they are distributed and located at much 

farther distance from the center and consequently they contribute more to the stiffness. However, 

in configuration C at the same location there is a tapered ply instead of the resin pocket that leads 

to higher stiffness in configuration C compared to configuration B. As a result, configuration C 

has slightly higher natural frequency than configuration B.   

Moreover, among different boundary conditions, the highest natural frequencies are for the 

clamped-clamped boundary condition. Simply supported and clamped-free come in second and 

third respectively, and free-clamped boundary condition has the lowest natural frequencies. 
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3.3.3 Effect of laminate configuration on natural frequencies 

In order to study the effect of laminate configuration on natural frequencies, the same beam 

as that analyzed in section 3.3.1 is considered. Laminate configurations LC1, LC2, LC3 and LC4 

as mentioned in section 3.2.4, and as shown in Figure 3.9 are considered. The free vibration 

analysis of the beam for boundary conditions simply supported (S-S), clamped-clamped (C-C), 

clamped-free (C-F) and free-clamped (F-C) is conducted and the frequency response is presented 

in Figure 3.18 and Figures A.3 and A.4.  

It can be observed from Figure 3.18 that LC3 configuration has the highest value of the 

first natural frequency for all boundary conditions. LC1 and LC4 have the second and the third 

highest values respectively, and LC2 has the lowest values of first natural frequency among the 

four configurations. It is evident in Figures A.3 and A.4 that second and third natural frequencies 

follow the same pattern. 
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Figure 3.18 Effect of the laminate configuration on the first natural frequency of thickness-

tapered composite beam 
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3.3.4 Effect of taper configuration on natural frequencies 

The same beam as that analyzed in section 3.3.1 is considered. The free vibration analysis 

for taper configurations A, B, C and D that are shown in Figure 3.16 is conducted and the first 

three natural frequencies are presented in Figures 3.19 - 3.21.  

 

 

Figure 3.19 Effect of taper configuration on the first natural frequency of the thickness-tapered 

composite beam  
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Figure 3.20 Effect of taper configuration on the second natural frequency of the thickness- 

composite tapered beam 

 

 

Figure 3.21 Effect of taper configuration on the third natural frequency of the thickness-tapered 

composite beam 
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As it is shown in Figures 3.19 - 3.21, for all the first three natural frequencies, configuration 

C has the highest values of natural frequencies. Configuration B has the second highest natural 

frequencies, configuration D comes in third and configuration A comes in fourth. It is reasonable 

because configuration A has the most volume of resin compared to other configurations and 

therefore it is less stiff. Same logic applies for configuration D. Configuration C has the plies at a 

larger distance from the mid-plane and resin pockets at a smaller distance from the mid-plane, 

compared to configuration B and therefore it has slightly larger D11 value than configuration B. 

Consequently it has higher natural frequencies.  

 

3.3.5 Effect of compressive axial force on natural frequencies 

To consider the effect of axial force on the natural frequencies, the same beam as that 

analyzed in section 3.3.1 is considered. First a buckling analysis of the beam is conducted to 

calculate the critical buckling load, Pcr. Compressive axial force is considered. Free vibration 

analysis under compressive axial forces equal to 10%, 50% and 90% of Pcr is conducted and the 

first three natural frequencies are shown in Figure 3.22 and Figures A.5 and A.6 for different 

boundary conditions and taper configurations. 

It can be observed from Figure 3.22 and Figures A.5 and A.6 that by increasing the 

compressive axial force, the natural frequencies decrease dramatically. This is due to the fact that 

in the presence of compressive axial force after the initial deflection, the resultant moment pulls 

the beam further from its neutral position. Therefore the beam becomes more flexible and 

consequently the natural frequencies decrease. 
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Figure 3.22 Effect of compressive axial force on the first natural frequency of the thickness-

tapered composite beam 
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It can also be observed from Figure 3.22 and Figures A.5 and A.6 that the rate of reduction 

of natural frequencies is more significant for clamped-clamped boundary condition. Different taper 

configurations experience the same type of decrease but indeed the values of natural frequency are 

different as expected. Configuration A has the lowest values of natural frequency while 

configuration C has the highest values. Configuration B comes in second and configuration D has 

the third highest values of natural frequencies among the four taper configurations.  

 

3.4 Free vibration analysis of thickness- and width-tapered laminated composite beams 

In this section, the thickness- and width-tapered composite beam is analyzed. The beams 

that are thickness-tapered with different configurations A, B, C and D as shown in Figure 3.16, are 

considered. The beam is also width-tapered and has different width-ratios. In the following 

subsections, parametric studies are conducted to study the effects of boundary condition, taper 

angle (or equivalently length of the beam), laminate configuration, width-ratio, taper 

configuration, compressive axial force and damping on the natural frequencies of the beam. The 

beam is assumed to be symmetric about its mid-plane and therefore only the upper-half of the 

beam is considered in all of the calculations. 

 

3.4.1 Effect of boundary condition on natural frequencies 

A thickness- and width-tapered composite beam composed of 36 plies on the thick (left) 

side and 12 plies on the thin (right) side, is considered. Thickness of each ply is 0.125 mm and 

therefore the thick side beam thickness is 4.5 mm as opposed to 1.5 mm beam thickness at the thin 

side. The beam has a width of 15 mm at the wide section (bL) and 7.5 mm at the narrow section 
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(bR), which leads to a width-ratio (bR/bL) of 0.5. The beam has a length of 25 cm and [0/90]9s 

laminate configuration. The mechanical properties of the composite material are given in Tables 

2.1 and 2.2. Free vibration analysis of the beam is conducted and the first three natural frequencies 

are presented in Tables 3.5 - 3.7 for taper configurations A, B, C and D and for different boundary 

conditions.  

Table 3.5 First natural frequency (rad/s) of the thickness- and width-tapered composite beams 

for different boundary conditions (bR/bL = 0.5) 

 Simply Supported Clamped-Clamped Clamped-Free Free-Clamped 

Configuration A 759.7928 1808.167 584.1598 111.4681 

Configuration B 810.6909 1994.2656 656.9071 122.1972 

Configuration C 827.8537 2031.0045 676.6413 121.364 

Configuration D 795.5791 1926.6602 613.2257 126.8407 

 

Table 3.6 Second natural frequency (rad/s) of the thickness- and width-tapered composite beams 

for different boundary conditions (bR/bL = 0.5) 

 Simply Supported Clamped-Clamped Clamped-Free Free-Clamped 

Configuration A 3220.7583 4947.4488 2274.0021 1369.3277 

Configuration B 3513.4503 5441.8962 2472.9561 1487.6723 

Configuration C 3590.3567 5539.979 2540.0671 1501.2869 

Configuration D 3418.7143 5324.4812 2342.4926 1507.6234 
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Table 3.7 Third natural frequency (rad/s) of the thickness- and width-tapered composite beams 

for different boundary conditions (bR/bL=0.5) 

 Simply Supported Clamped-Clamped Clamped-Free Free-Clamped 

Configuration A 7178.7787 9668.0845 5462.9339 4598.3232 

Configuration B 7857.2848 10623.9842 5913.0091 5049.08 

Configuration C 8021.9524 10818.8145 6063.7484 5122.81 

Configuration D 7604.2207 10326.0708 5656.5905 5039.1064 

 

As it is shown in Tables 3.5 - 3.7, the highest values of the natural frequencies are for 

clamped-clamped boundary condition. The second and the third highest values of natural 

frequencies are for simply supported and clamped-free boundary conditions respectively. Free-

clamped boundary condition has the lowest natural frequencies among all boundary conditions. 

 

3.4.2 Effect of taper angle (or equivalently length of the beam) on natural frequencies 

The same beam as that analyzed in section 3.4.1 is considered. Taper angles of 0.86°, 

0.573°, 0.43° and 0.344° are used (corresponding lengths of the tapered beam are 0.1 m, 0.15 m, 

0.2 m and 0.25 m). The free vibration analysis is conducted and the first three natural frequencies 

are presented in Figure 3.23 and Figures A.7 and A.8.  
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Figure 3.23 Effect of the length on the first natural frequency of the thickness- and width-

tapered composite beams (bR/bL=0.5) 
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 It can be observed from Figure 3.23 that by increasing the length of the beam (or 

equivalently decreasing the taper angle), the first natural frequency decreases dramatically. This 

behavior can be interpreted by the fact that the beam becomes more rigid as its length decreases 

and therefore it has higher natural frequencies. Also, it is evident from Figures A.7 and A.8 that 

the second and the third natural frequencies follow the same pattern. 

 

3.4.3 Effect of laminate configuration on natural frequencies  

In order to study the effect of laminate configuration on natural frequencies, the same beam 

as that analyzed in section 3.4.1 is considered. Laminate configurations LC1, LC2, LC3 and LC4 

that are mentioned in section 3.2.4 and are shown in Figure 3.9 are considered. The free vibration 

analysis for boundary conditions simply supported (S-S), clamped-clamped (C-C), clamped-free 

(C-F) and free-clamped (F-C) is conducted and the first three natural frequencies are presented in 

Figure 3.24 and Figures A.9 and A.10. 

As it is shown in Figure 3.24, laminate configuration LC3 has the highest values of the first 

natural frequency in all of the taper configurations and boundary conditions. LC1 and LC4 have 

the second and the third highest first natural frequencies respectively. LC2 has the lowest first 

natural frequency among all laminate configurations. It is also evident from Figures A.9 and A.10 

that the second and the third natural frequencies follow the same pattern. 
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Figure 3.24 Effect of laminate configuration on the first natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) 
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3.4.4 Effect of width-ratio on natural frequencies  

The same beam as that analyzed in section 3.4.1 is considered. The beam has width-ratios 

of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. The free vibration analysis is conducted and the 

first three natural frequencies for taper configurations A, B, C and D are presented in Figure 3.25 

and Figures A.11 and A.12.  

As it is shown in Figure 3.25 by increasing the width-ratio, the first natural frequencies 

increase for the simply supported, the clamped-clamped and the free-clamped boundary conditions 

but they decrease for the clamped-free boundary condition. The reason is that in the clamped-free 

boundary condition by increasing the width-ratio, the material on the free side is being added up 

and therefore the beam becomes more resistant to vibration and that leads to reduction of natural 

frequencies. Also, it is evident that the highest natural frequency is for the clamped-clamped 

boundary condition, while the lowest is for the free-clamped boundary condition.  
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Figure 3.25 Effect of width-ratio on the first natural frequency of the thickness- and width-

tapered composite beam 
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3.4.5 Effect of taper configuration on natural frequencies 

The same beam as that analyzed in section 3.4.4 with the width-ratio of 0.5 and length of 

25 cm is considered. The free vibration analysis is conducted and the first three natural frequencies 

for taper configurations A, B, C and D are presented in Figures 3.26 - 3.28.  

As it is shown in Figures 3.26 - 3.28, for all three natural frequencies configuration A has 

the lowest natural frequencies. The highest natural frequencies are for configuration C. 

Configuration B has slightly lower values of natural frequencies than configuration C and has the 

second highest natural frequencies. Configuration D has the third highest natural frequencies 

among all configurations. An interpretation of this behavior was presented in section 3.3.4. 

 

 

Figure 3.26 Effect of taper configuration on the first natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) 
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Figure 3.27 Effect of taper configuration on the second natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) 

 

 

Figure 3.28 Effect of taper configuration on the third natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) 
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3.4.6 Effect of compressive axial force on natural frequencies 

The same beam as that analyzed in section 3.4.5 is considered. First a buckling analysis is 

conducted to calculate the critical buckling load, Pcr. The free vibration analysis under compressive 

axial forces equal to 10%, 50% and 90% of Pcr is conducted and the first three natural frequencies 

are shown in Figure 3.29 and Figures A.13 and A.14 for different boundary conditions and taper 

configurations.  

As it is shown in Figure 3.29, the first natural frequency for all the taper configurations and 

also all the boundary conditions decreases by increasing the compressive axial force. It is also 

evident from Figures A.13 and A1.4 that the second and the third natural frequencies follow the 

same pattern. This is due to the fact that in the presence of compressive axial force after the initial 

deflection, the resultant moment pulls the beam further from its neutral position. Therefore the 

beam becomes more flexible and consequently the natural frequencies decrease. 

 



59 

 

 

 

Figure 3.29 Effect of compressive axial force on the first natural frequency of the thickness- and 

width-tapered composite beam (bR/bL=0.5) 
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3.4.7 Effect of damping on natural frequencies 

In order to take into account the effect of damping on natural frequencies of the thickness- and 

width-tapered laminated composite beam, Rayleigh damping method is used to model the viscous 

damping of the beam. Classical Rayleigh damping model uses a system damping matrix [𝐶] defined 

as:  

 [𝐶] = 𝛼[𝑀] + 𝛽[𝐾] (3.1) 

in which 𝛼  denotes the mass proportional Rayleigh damping constant and 𝛽  is the stiffness 

proportional Rayleigh damping constant, and [𝑀]  and [𝐾]  are the mass and stiffness matrices 

respectively.  

The same beam as that analyzed in section 3.4.5 is considered. The beam is assumed to 

have Rayleigh damping with:  

 𝛼 = 3.752 (3.2) 

 𝛽 = 4.83×10-5 (3.3) 

that were determined by experiment [22].  

Damped free vibration analysis is conducted and the first three natural frequencies for taper 

configurations A, B, C and D are given in Tables 3.8 - 3.11 for different boundary conditions. 

It is evident from Tables 3.8 - 3.11 that the addition of damping results in the reduction of 

the natural frequencies for all taper configurations and boundary conditions. The percentage of 

reduction varies between 0.01 % (Configuration A, Clamped-Free) to 3.48 % (Configuration C, 

Clamped-Clamped) depending on the taper configuration and boundary condition. It can be seen 

that the reduction in natural frequencies caused by damping is directly correlated with the damping 

ratio (𝜉) of the beam. As damping ratio increases, the percentage of difference between undamped 
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and damped natural frequencies also increases. It can be seen from Tables 3.8-3.11 that damping 

ratio (𝜉) for the first natural frequency is much smaller than that for the second and the third natural 

frequencies. Therefore the effect of damping on first natural frequency is higher than the second 

and the third natural frequencies. Moreover, it can be observed that the effect of damping on natural 

frequencies is higher for clamped-clamped beams than simply supported and clamped-free beams.  

 

Table 3.8 Effect of damping on natural frequencies of thickness- and width-tapered composite 

beam with the taper configuration A (bR/bL=0.5) 

Boundary Condition  𝜔1(rad/s) 𝜔2(rad/s) 𝜔3(rad/s) 

Simply Supported 

Undamped 784.52 3196.59 7140.88 

Damped 784.35 3186.90 7033.56 

Difference (%) 0.02 0.30 1.50 

𝜉 0.021 0.078 0.173 

Clamped - Clamped 

Undamped 1777.56 4904.28 9619.31 

Damped 1775.84 4869.54 9355.70 

Difference (%) 0.10 0.71 2.74 

𝜉 0.044 0.119 0.233 

Clamped - Free 

Undamped 484.97 2132.08 5310.13 

Damped 484.91 2129.16 5266.05 

Difference (%) 0.01 0.14 0.83 

𝜉 0.016 0.052 0.129 
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Table 3.9 Effect of damping on natural frequencies of thickness- and width-tapered composite 

beam with the taper configuration B (bR/bL=0.5) 

Boundary Condition  𝜔1(rad/s) 𝜔2(rad/s) 𝜔3(rad/s) 

Simply Supported 

Undamped 810.69 3513.45 7857.28 

Damped 810.50 3500.62 7714.17 

Difference (%) 0.02 0.37 1.82 

𝜉 0.022 0.085 0.190 

Clamped - Clamped 

Undamped 1994.27 5441.90 10623.98 

Damped 1976.88 5435.33 10267.86 

Difference (%) 0.87 0.12 3.35 

𝜉 0.132 0.049 0.257 

Clamped - Free 

Undamped 656.91 2472.96 5913.01 

Damped 656.79 2468.43 5852.14 

Difference (%) 0.02 0.18 1.03 

𝜉 0.019 0.060 0.143 
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Table 3.10 Effect of damping on natural frequencies of thickness- and width-tapered composite 

beam with the taper configuration C (bR/bL=0.5) 

Boundary Condition  𝜔1(rad/s) 𝜔2(rad/s) 𝜔3(rad/s) 

Simply Supported 

Undamped 827.85 3590.36 8021.95 

Damped 827.65 3576.67 7869.60 

Difference (%) 0.02 0.38 1.90 

𝜉 0.022 0.087 0.194 

Clamped - Clamped 

Undamped 2031.00 5539.98 10818.81 

Damped 2012.65 5533.06 10442.51 

Difference (%) 0.90 0.12 3.48 

𝜉 0.134 0.050 0.261 

Clamped - Free 

Undamped 676.64 2540.07 6063.75 

Damped 676.52 2535.17 5998.10 

Difference (%) 0.02 0.19 1.08 

𝜉 0.019 0.062 0.147 
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Table 3.11 Effect of damping on natural frequencies of thickness- and width-tapered composite 

beam with the taper configuration D (bR/bL=0.5) 

Boundary Condition  𝜔1(rad/s) 𝜔2(rad/s) 𝜔3(rad/s) 

Simply Supported 

Undamped 795.58 3418.71 7604.22 

Damped 795.39 3406.89 7474.55 

Difference (%) 0.02 0.35 1.71 

𝜉 0.022 0.083 0.184 

Clamped - Clamped 

Undamped 1926.66 5324.48 10326.07 

Damped 1924.49 5280.04 9999.36 

Difference (%) 0.11 0.83 3.16 

𝜉 0.048 0.129 0.250 

Clamped - Free 

Undamped 613.23 2342.49 5656.59 

Damped 613.13 2338.63 5603.30 

Difference (%) 0.02 0.16 0.94 

𝜉 0.018 0.057 0.137 
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3.5 Summary 

 

In this chapter a parametric study was carried out to study the free vibration of tapered 

composite beams. Three types of tapering were considered as width-tapered, thickness-tapered and 

thickness- and width-tapered. For each type of tapering, the effects of main parameters (boundary 

condition, width-ratio, length (or taper angle), laminate configuration, taper configuration and 

compressive axial force) on the natural frequencies were studied. A summary of observations is 

given below: 

 Among all boundary conditions, for the width-tapered beam, the clamped-clamped 

boundary condition has the highest values of natural frequencies. With a rather large difference, 

the simply supported boundary condition has the second highest natural frequencies. Clamped-

free and free-clamped boundary conditions have the third and fourth highest natural frequencies 

respectively, but the difference is not as significant. For the thickness-tapered beam, there is an 

overall decrease in all the natural frequencies (compared to width-tapered beam). However, the 

difference between the natural frequencies that correspond to clamped-free and free-clamped 

boundary conditions is much more significant. For the thickness- and width-tapered beam, the 

difference (compared to thickness-tapered beam) is not significant but the order of the effect of 

boundary condition is the same. 

 By decreasing the length of the tapered beam (or equivalently increasing the taper angle 

while preserving the thicknesses at both sides of the beam), the natural frequencies increase 

dramatically for all boundary conditions and tapering types. For the width-tapered beam, as the 

length decreases, the clamped-free and free-clamped boundary conditions show the same rate of 
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increase. Simply supported boundary condition has a higher rate of increase compared to the 

clamped-free and the free-clamped boundary conditions. The clamped-clamped beam has the 

highest rate of increase in natural frequencies. For the other two tapering types, the clamped-free 

boundary condition has a much higher rate of increase compared to the free-clamped boundary 

condition but the other two boundary conditions follow the same pattern as that for the width-

tapered beam. 

 For all the tapering types, boundary conditions and taper configurations, the laminate 

configuration LC3 has the highest natural frequencies, LC2 has the lowest natural frequencies and 

LC1 and LC4 have the second and third highest natural frequencies respectively. 

 For all the tapering types, boundary conditions and taper configurations, increasing the 

compressive axial force results in decreasing the natural frequencies. This is due to the fact that in 

the presence of compressive axial force after the initial deflection, the resultant moment pulls the 

beam further from its neutral position. Therefore the beam becomes more flexible and 

consequently the natural frequencies decrease. This decrease is more significant in the first natural 

frequency (compared to the second and the third natural frequencies). 

 For the width-tapered beam by increasing the width-ratio the natural frequencies increase 

for simply supported, clamped-clamped and free-clamped boundary conditions but they decrease 

for the clamped-free boundary condition. The reason is that by increasing the width-ratio, the 

additional material on the free side of the beam results in the corresponding changes in the stiffness 

and mass of the beam and consequently, decrease in natural frequencies. The thickness- and width-

tapered beam shows a total decrease in natural frequencies (compared to width-tapered beam) but 

follows the same pattern. 
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 For the thickness-tapered beam, configuration C has the highest values of natural 

frequencies for all the boundary conditions. Configuration B has the second highest natural 

frequencies. Configuration D and configuration A come in third and fourth respectively. Because 

configuration A has the largest volume of resin compared to other configurations, it is less stiff 

and consequently has the lowest natural frequencies. Configuration D has less volume of resin than 

configuration A but much more than configurations B and C. Configuration C has the plies at a 

larger distance from the mid-plane and resin pockets at a smaller distance from the mid-plane, 

compared to configuration B and therefore has a slightly larger D11 value than configuration B and 

higher natural frequencies. Thickness- and width-tapered beam has slightly higher values of 

natural frequencies compared to the other two tapering types, but the effect of taper configuration 

on natural frequencies is the same. 

 Addition of damping results in reduction of natural frequencies. The amount of reduction 

highly depends on the damping ratio (𝜉) and therefore, the amount of reduction is higher for the 

second and the third natural frequencies (compared to the amount of reduction for the first natural 

frequency). 

 Overall, thickness-tapering has much more significant effect on natural frequencies than 

width-tapering. This comes from the fact that the difference between the natural frequencies of the 

thickness-tapered and the thickness- and width-tapered beams is not that significant. However, this 

difference is much more significant between the thickness-tapered and the width-tapered beams. 

The reason is that the thickness of the beam has cubic impact on the D11(x) [13] and consequently 

the stiffness of the beam while the width of the beam b(x) has a linear impact on the stiffness of 

the beam as shown in Equation 2.20.  
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4. Forced vibration analysis of tapered composite beams 

 

4.1 Introduction 

In the previous chapter, free vibration analysis of tapered laminated composite beams was 

conducted and the effects of main parameters on natural frequencies were presented. Three types 

of tapered laminated composite beams (width-tapered, thickness-tapered and thickness- and width-

tapered beams) were considered. In this chapter, forced vibration analysis of  uniform and  

thickness- and width-tapered laminated composite beams is carried out using modal analysis and 

the effects of different parameters such as taper configuration, width-ratio and boundary condition 

on the response in terms of deflection (w) and rotation (θ), are determined in section 4.2. In section 

4.3 the effect of damping on the natural frequencies and the forced vibration response of uniform 

and thickness- and width-tapered laminated composite beams is presented. The cylindrical bending 

theory and Hierarchical Finite Element Method (HFEM) are used in all formulations. The NCT-

301 graphite-epoxy composite material is considered and the mechanical properties of the ply and 

the resin are given in Tables 2.1 and 2.2. Symmetric laminated beams are considered in all problems. 

At the end of the chapter a summary of observations and results are presented. 
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4.2 Undamped Forced vibration analysis  

4.2.1 Formulation 

The equation of motion of an n-DOF (n-degrees of freedom) undamped composite beam 

is given by: 

 [𝑀]{𝑤}̈ + [𝐾]{𝑤} = {𝐹} (4.1) 

in which [𝑀] and [𝐾] are the mass and stiffness matrices and  {𝑤} and {𝐹} represent displacement 

and force vectors respectively. The homogenous solution to equation (4.1) is obtained by solving 

the eigenvalue problem: 

 |[K] − λ[M]|{𝜙} = 0 (4.2) 

in which λ is the eigenvalue and 𝜙 is the corresponding eigenvector. Stiffness and mass matrices 

for the beam can be obtained using hierarchical or conventional finite element formulations as it 

has been explained in previous chapters. The forced vibration of the composite laminated beams 

is determined using mode superposition method [37]. Having the stiffness and the mass matrices 

for a laminated composite beam and solving the eigenvalue problem as in equation (4.2) using 

MATLAB® software, one can find the eigenvalues and the orthonormal eigenvector matrix [�̃�] of 

the beam. Eigenvalues are equal to the square of natural frequencies and the orthonormal 

eigenvector matrix [�̃�] can be used to decouple the equations of motion.  

One can decouple the equations of motion by transforming the coordinates using 

orthonormal eigenvector matrix as: 

 {𝑤} = [�̃�]{𝑦} (4.3) 
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Substituting equation (4.3) into equation (4.1) and pre-multiplying by [�̃�] leads to:  

 [�̃�]𝑇[𝑀][�̃�]{�̈�} + [�̃�]𝑇[𝐾][�̃�]{𝑦} = [�̃�]𝑇{𝐹} (4.4) 

In the equation (4.3)  {𝑦}  is the vector of nodal displacements in the transformed 

coordinates. {𝐹}  is the force vector applied to the beam which represents the nodal forces applied 

to the beam. It can be easily seen [37] then that: 

 [�̃�]𝑇[𝑀][�̃�] = [Ι] (4.5) 

 [�̃�]𝑇[𝐾][�̃�] = [Λ] (4.6) 

where [I] is the 𝑛 × 𝑛 unity matrix and [Λ] is the diagonal matrix of the eigenvalues.  

 

[Λ] = [

𝜆1
0
⋮
0

 

0
𝜆2
⋮
0

 

⋯
⋯
⋱
⋯

  

0
0
⋮
𝜆𝑛

] 

(4.7) 

 
𝜔𝑖 = √𝜆𝑖 

(4.8) 

 

Because the products [�̃�]𝑇[𝑀][�̃�]  and [�̃�]𝑇[𝐾][�̃�]  are diagonal matrices, the new 

equations in terms of transformed coordinates are uncoupled. Substituting Equations (4.5) and 

(4.6) into Equation (4.4) results in 𝑛 decoupled second-order differential equations that are: 

 {�̈�}𝑖 + 𝜆𝑖{𝑦}𝑖 = {𝑓}𝑖 ,    𝑖 = 1,2,… , 𝑛 (4.9) 

in which 

 {𝑓} = [�̃�]𝑇{𝐹} (4.10) 

Then solving each differential equation in equation (4.9) results in: 

 
𝑦𝑖 = 𝑦𝑖(0) 𝑐𝑜𝑠𝜔𝑖𝑡 +

�̇�𝑖(0) 𝑠𝑖𝑛𝜔𝑖𝑡

𝜔𝑖
+
𝑓𝑖 𝑠𝑖𝑛𝜔𝑡

𝜔𝑖
2 −𝜔2

 
(4.11) 
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in which 𝜔𝑖 is the i-th natural frequency, ω is the frequency of excitation, and 𝑦𝑖(0) and �̇�𝑖(0) are 

the initial conditions. 

Having the nodal displacement vector in transformed coordinates {𝑦} and using equation 

(4.3), one can find the forced vibration response in terms of nodal displacement matrix {𝑤}. 

4.2.2 Forced vibration response of uniform composite beams 

A uniform-thickness uniform-width laminated composite beam made of NCT-301 

graphite-epoxy composite material with the mechanical properties given in Tables 2.1 and 2.2 is 

considered. The beam has [0/90]9s laminate configuration and a length (L) of 25 cm. The beam is 

composed of 36 plies. Individual ply thickness (ti) is 0.125 mm and the beam thickness (H) is 4.5 

mm. The beam has a width of 15 mm. The beam is assumed to be symmetric about its mid-plane 

and therefore only the upper-half of the beam is considered in all the calculations.  

As it is shown in Figures 4.1 and 4.2, the beam is divided into 6 elements. Each element 

has 2 nodes and each node has two degrees of freedom that are deflection (w) and rotation (θ). 

 

Figure 4.1 Element’s nodal degrees of freedom 

 

w2

θ2

w1

θ1
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Simply Supported

Clamped-Clamped

Clamped-Free

Free-Clamped

F

M

F

M

F

M

F

M

 

Figure 4.2 Location of the forces and the moments and the response points for different boundary 

conditions for uniform laminated composite beam; the red star represents the point of response 

Moreover, as it was discussed in previous chapters, in Hierarchical Finite Element Method 

(HFEM) additional virtual degrees-of-freedom are added to the system that correspond to the 

number of elements. In this study the beam is divided into 6 elements with each element having 4 
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degrees-of-freedom at the nodes and one hierarchical degree-of-freedom. This results in a 20 

degrees-of-freedom system and consequently the nodal displacement matrix {𝑤}  is in the form of: 

 

{𝑤} =

[
 
 
 
 
 
 
 
 
 
𝑤1
θ1
𝑤2
θ2
⋮
𝑤7
θ7
𝐴1
⋮
𝐴6]
 
 
 
 
 
 
 
 
 

 (4.12) 

The corresponding force matrix {𝐹} is in the form of: 

 

{𝐹} =

[
 
 
 
 
 
 
 
 
 
𝐹1
𝑀1
𝐹2
𝑀2
⋮
𝐹7
𝑀7
𝐵1
⋮
𝐵6 ]
 
 
 
 
 
 
 
 
 

 (4.13) 

A sinusoidal force (F) with the magnitude of 2 N and a sinusoidal moment (M) with the 

magnitude of 2 N-m both with the excitation frequency of ω are applied close to the center of the 

beam for simply supported and clamped-camped boundary conditions, and at the free-end of the 

beam for clamped-free and free-clamped boundary conditions as shown in Figure 4.2. The points 

of response (red stars) are chosen according to mode shapes of free vibration of the laminated 

composite beam with different boundary conditions as shown in Figure 4.3. In order to avoid 

applying the force to the nodal points of the second mode shape of the uniform beams, the force is 

not applied exactly at the middle of the clamped-clamped and simply supported beams as is shown 

in Figure 4.2.  
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Simply Supported 

 

Clamped-Clamped 

 

Clamped-Free 

 

Free-Clamped 

Figure 4.3 First three mode shapes of uniform laminated composite beams with different boundary 

conditions; solid line represents the 1st mode, dashed line represents the 2nd mode and dotted line represents 

the 3rd mode 
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The forced vibration response of the uniform laminated composite beam are shown in Figures 

4.4 and 4.5 for simply supported, clamped-clamped, clamped-free and free-clamped boundary 

conditions using hierarchical finite element method.  

 

 

Figure 4.4 Forced vibration response (maximum deflection) of the uniform composite beams for 

different boundary conditions; bottom figure represents the magnified area of the top figure 
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Figure 4.5 Forced vibration response (maximum rotation) of the uniform composite beams for 

different boundary conditions; bottom figure represents the magnified area of the top figure 

It can be observed that as excitation frequency (ω) nears the natural frequencies, due to 

resonance the response approaches infinity and becomes unstable. Therefore, only a stable part of 

the response (0 <
𝜔

𝜔1
< 1) is used for comparison. It should be noted that in Figures 4.4 and 4.5 

(𝜔1 ) is the first natural frequency of the laminated composite beam with the corresponding 
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boundary condition. Therefore as excitation frequency (ω) reaches the second or the third natural 

frequencies, the value of (
𝜔

𝜔1
) would be different for different boundary conditions or taper 

configurations. 

It is evident from Figures 4.4 and 4.5 that clamped-clamped beam has the lowest amplitude 

of the response (in terms of maximum deflection and maximum rotation). It is due to the fact that 

clamped-clamped beam has the highest stiffness among all boundary conditions. Simply supported 

beam has a lower stiffness than clamped-clamped beam, however it has a higher stiffness than 

clamped-free and free-clamped beams. Free-clamped has the lowest stiffness among all the 

boundary conditions. As a result, simply supported, clamped-free and free-clamped boundary 

conditions have the second, the third and the fourth highest amplitudes of the response 

respectively. 

4.2.3 Forced vibration response of thickness- and width-tapered composite beams 

A thickness- and width-tapered laminated composite beam made of NCT-301 graphite-

epoxy composite material with the mechanical properties given in Tables 2.1 and 2.2 is considered. 

The beam has a width of 15 mm at the wide (left) section with the width-ratio of 0.5. The beam is 

composed of 36 plies at the thick (left) side and 12 plies at the thin (right) side. Thickness of each 

ply is 0.125 mm and therefore the left side beam thickness is 4.5 mm as opposed to 1.5 mm beam 

thickness at the right side. The beam has a length of 25 cm and [0/90]9s laminate configuration. 

The beam is assumed to be symmetric about its mid-plane and therefore only the upper-half of the 

beam is considered in all the calculations. As it is shown in Figure 4.3, the beam is divided into 6 

elements. Each element has 2 nodes and each node has two degrees of freedom that are deflection 

(w) and rotation (θ) as shown in Figure 4.1.  
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Figure 4.6 Location of the forces and the moments and the response points for different 

boundary conditions; red stars represent the points of response 



79 

 

 

A sinusoidal force (F) with the magnitude of 2 N and a sinusoidal moment (M) with the 

magnitude of 2 N-m both with the excitation frequency of ω are applied at the center of the beam 

for simply supported and clamped-clamped boundary conditions, and at the free-end of the beam 

for clamped-free and free-clamped boundary conditions. The points of excitation and the points of 

response are chosen according to mode shapes of free vibration of the laminated composite beam 

with different boundary conditions as shown in Figure 4.6. 

 

Simply Supported 

 

Clamped-Clamped 

 

Clamped-Free 

 

Free-Clamped 

Figure 4.7 First three mode shapes of thickness- and width-tapered laminated composite beams with 

different boundary conditions; solid line represents the 1st mode, dashed line represents the 2nd mode and 

dotted line represents the 3rd mode 
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As it is shown in Figure 4.7 in mode shapes of thickness- and width tapered composite 

beams the nodal points are shifted towards the thin side of the beam compared to that of uniform 

composite beams as shown in Figure 4.3. 

4.2.3.1 Effect of taper configuration on forced vibration response 

Forced vibration analysis is conducted for four different boundary conditions that are 

simply supported, clamped-clamped, clamped-free and free-clamped. It is assumed that yi(0) =

ẏi(0) = 0. The forced vibration response in terms of maximum deflection and maximum rotation 

at the response point is presented in Figures 4.8 - 4.11 for different boundary conditions. It can be 

observed that as excitation frequency (ω) nears the natural frequencies, due to resonance the 

response approaches infinity and becomes unstable. Therefore, only a stable part of the response 

(0 <
𝜔

𝜔1
< 1) is used for comparison. It should be noted that in Figures 4.8 - 4.11 (𝜔1) is the first 

natural frequency of the laminated composite beam with the corresponding boundary condition. 

Therefore as excitation frequency (ω) reaches the second or the third natural frequencies, the value 

of (
𝜔

𝜔1
) would be different for different boundary conditions or taper configurations.  

As it is shown in Figures 4.8 - 4.11 for all boundary conditions, configuration A has the 

highest amplitude of the response (maximum deflection and maximum rotation). Configuration D, 

B and C have the second, the third and the fourth highest amplitudes of the response respectively. 

It is evident that configuration A has the lowest stiffness among all configurations and therefore it 

experiences larger displacement and also larger rotation than other configurations. Configuration 

D has a higher stiffness than configuration A, but lower stiffness than configurations B and C and 
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therefore it has the second highest amplitude of the response. Configuration C has a slightly higher 

stiffness than configuration B and therefore has the lowest amplitude of the response. 

 

  

  

Figure 4.8 Forced vibration response of the thickness- and width-tapered simply supported 

composite beams with different taper configurations; bottom figures represent the magnified area 

of the top figures 
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Figure 4.9 Forced vibration response of the thickness- and width-tapered clamped-clamped 

composite beams with different taper configurations; bottom figures represent the magnified area 

of the top figures 
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Figure 4.10 Forced vibration response of the thickness- and width-tapered clamped-free 

composite beams with different taper configurations; bottom figures represent the magnified area 

of the top figures 
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Figure 4.11 Forced vibration response of the thickness- and width-tapered free-clamped 

composite beams with different taper configurations; bottom figures represent the magnified area 

of the top figures 
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It is evident from Figures 4.8 - 4.11 that for all the taper configurations, clamped-clamped 

beam has the lowest amplitude of the response (in terms of maximum deflection and maximum 

rotation). It is due to the fact that clamped-clamped beam has the highest stiffness among all 

boundary conditions. Simply supported beam has a lower stiffness than clamped-clamped beam, 

however it has a higher stiffness than clamped-free and free-clamped beams. Free-clamped has the 

lowest stiffness among all the boundary conditions. As a result, simply supported, clamped-free 

and free-clamped boundary conditions have the second, the third and the fourth highest amplitudes 

of the response respectively. 

4.2.3.2 Effect of width-ratio on forced vibration response 

The same beam as that analyzed in section 4.2.3.1 is considered. The beam is considered 

to have width-ratios (bR/bL) of 0.2, 0.5 and 1. A sinusoidal force (F) with the magnitude of 2 N 

and a sinusoidal moment (M) with the magnitude of 2 N-m both with the excitation frequency of 

ω are applied at the center of the beam for simply supported and clamped-clamped boundary 

conditions, and at the free-end of the beam for clamped-free and free-clamped boundary conditions 

as shown in Figure 4.6.  

Forced vibration analysis is conducted for simply supported, clamped-clamped, clamped-

free and free-clamped boundary conditions and it is assumed that  yi(0) = ẏi(0) = 0. Forced 

vibration response in terms of maximum deflection and maximum rotation at the points of response 

is presented in Figures 4.12 - 4.15 for different taper configurations. 

It should be noted that in Figures 4.12 - 4.15 due to instability of the forced vibration 

response when the excitation frequency approaches natural frequencies, only the stable part of the 

response (0 <
𝜔

𝜔1
< 1) is used for comparison.  
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Figure 4.12 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

deflection of the thickness- and width-tapered composite beam with taper configuration A 
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Figure 4.13 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

deflection of the thickness- and width-tapered composite beam with taper configuration B 
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Figure 4.14 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

deflection of the thickness- and width-tapered composite beam with taper configuration C 
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Figure 4.15 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

deflection of the thickness- and width-tapered composite beam with taper configuration D 
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Figure 4.16 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

rotation of the thickness- and width-tapered composite beam with taper configuration A 
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Figure 4.17 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

rotation of the thickness- and width-tapered composite beam with taper configuration B 
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Figure 4.18 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

rotation of the thickness- and width-tapered composite beam with taper configuration C 
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Figure 4.19 Effect of width-ratio (bR/bL) on forced vibration response in terms of maximum 

rotation of the thickness- and width-tapered composite beam with taper configuration D 
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As it is shown in Figures 4.12 – 4.19, by increasing the width-ratio the amplitudes of the 

response in terms of both maximum deflection and maximum rotation decreases for all taper 

configurations and boundary conditions.  

 

4.3 Damped forced vibration analysis 

4.3.1 Formulation 

The equation of motion of an n-DOF damped laminated composite beam with an arbitrary 

excitation force is given by: 

 [𝑀]{𝑤}̈ + [𝐶]{𝑤}̇ + [𝐾]{𝑤} = {𝐹} (4.14) 

in which [𝑀] , [𝐾]  and [𝐶] are the mass, stiffness and damping matrices and  {𝑤}  and {𝐹} 

represent displacement and force vectors respectively. 

By assuming {𝑤} = [�̃�]{𝑦} and pre-multiplying both sides of the Equation (4.14) by [P̃]
T
, 

the equation transforms into: 

 [�̃�]𝑇[𝑀][�̃�]{�̈�} + [�̃�]𝑇[𝐶][�̃�]{�̇�} + [�̃�]𝑇[𝐾][�̃�]{𝑦} = [�̃�]𝑇{𝐹} (4.15) 

It was shown in section 4.2.1 that the matrices [�̃�]𝑇[𝑀][�̃�] and [�̃�]𝑇[𝐾][�̃�] are diagonal matrices. 

In general, [�̃�]𝑇[𝐶][�̃�] is not a diagonal matrix and therefore Equation (4.15), is coupled by the 

damping matrix. However it can be shown [37] that if [𝐶]  is proportional to [𝐾]  and [𝑀] , 

[�̃�]𝑇[𝐶][�̃�]  becomes diagonal, which results in n uncoupled equations. Using Rayleigh 

proportional damping theory as discussed in section 3.4.7 and substituting Equation (3.1) into 

Equation (4.15) results in: 

 {�̈�} + (𝛼[𝐼] + 𝛽[𝛬]){�̇�} + [𝛬]{𝑦} = {𝑓} (4.16) 
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Equation (4.16) is a set of n uncoupled equations that are: 

 {�̈�}𝑖 + 2𝜉𝑖𝜔𝑖{�̇�}𝑖 +𝜔𝑖
2{𝑦}𝑖 = {𝑓}𝑖 ,    𝑖 = 1,2, … , 𝑛 (4.17) 

in which,  

 
𝜉𝑖 =

1

2
(
𝛼

𝜔𝑖
+ 𝛽𝜔𝑖) 

(4.18) 

ξi is the damping ratio corresponding to the i-th mode.  

It can be shown that the solution to Equation (4.17) is in the form of: 

 
𝑦𝑖 = 𝑒

−𝜉𝑖𝜔𝑖𝑡 [𝑦𝑖(0) 𝑐𝑜𝑠𝜔𝑑𝑖𝑡 +
�̇�𝑖(0) + 𝑦𝑖(0)𝜉𝑖𝜔𝑖

𝜔𝑑𝑖
𝑠𝑖𝑛𝜔𝑑𝑖𝑡] 

 

 
+  

𝑓𝑖

√(𝜔𝑖
2 −𝜔2)2 + (2𝜉𝑖𝜔𝑖𝜔)

2

𝑠𝑖𝑛(𝜔𝑡 − 𝑡𝑎𝑛−1
2𝜉𝑖𝜔𝑖𝜔

𝜔𝑖
2 −𝜔2

) 
(4.19) 

 
𝜔𝑑𝑖 = 𝜔𝑖√1 − 𝜉𝑖

2
 (4.20) 

In equations (4.19) and (4.20), 𝜔𝑖 is the i-th natural frequency, 𝜔𝑑𝑖 is the i-th damped frequency 

and ω is the frequency of the excitation. Having the nodal displacement vector in transformed 

coordinates {𝑦} and using equation (4.3), one can find the damped forced vibration response in 

terms of nodal displacement matrix {𝑤}. 

 

4.3.2 Damped forced vibration response of uniform composite beams  

The same beam as that analyzed in section 4.2.2 is considered. The beam is assumed to 

have Rayleigh damping with mass and stiffness proportional Rayleigh damping constants that are 

𝛼 = 3.752 and 𝛽 = 4.83×10-5 respectively.  A sinusoidal force (F) with the magnitude of 2 N and 

a sinusoidal moment (M) with the magnitude of 2 N-m both with the excitation frequency of ω 
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are applied close to the center of the beam for simply supported and clamped-clamped boundary 

conditions, and at the free-end of the beam for clamped-free and free-clamped boundary conditions 

as shown in Figure 4.2. It is assumed that yi(0) = ẏi(0) = 0. 

 Damped forced vibration analysis is conducted and the damped response alongside the 

undamped response in terms of maximum deflection and maximum rotation at the point of 

response is presented in Figures 4.20 and 4.21 for different boundary conditions. 

It can be observed from Figures 4.20 - 4.21 that by considering damping, the amplitude of 

the response decreases, especially as the frequency of excitation nears natural frequencies 

(resonance). The reduction of amplitude is much more significant near the second and the third 

natural frequencies compared to that near the first natural frequency. The reason is that the 

damping ratio is very small for the first natural frequency (compared to the second and the third 

natural frequencies).  

Moreover, it is evident that the effect of damping on the response is most significant for 

the clamped-clamped boundary condition. Simply supported, clamped-free and free-clamped 

boundary conditions have the second, the third and the fourth largest amount of amplitude 

reductions of the forced vibration response respectively.  (This is illustrated in Figure 4.20).  
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Figure 4.20 Undamped (solid line) vs. damped (dashed line) forced response in terms of 

maximum deflection for the uniform composite beam with different boundary conditions 
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Figure 4.21 Undamped (solid line) vs. damped (dashed line) forced response in terms of 

maximum rotation for the uniform composite beam with different boundary conditions 
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4.3.3 Damped forced vibration response of thickness- and width-tapered composite 

beams 

The same beam as that analyzed in section 4.2.3.1 is considered. The beam is assumed to 

have Rayleigh damping with mass and stiffness proportional Rayleigh damping constants that are  

𝛼 = 3.752 and 𝛽 = 4.83×10-5 respectively.  A sinusoidal force (F) with the magnitude of 2 N and 

a sinusoidal moment (M) with the magnitude of 2 N-m both with the excitation frequency of ω 

are applied at the center of the beam for simply supported and clamped-clamped boundary 

conditions, and at the free-end of the beam for clamped-free and free-clamped boundary conditions 

as shown in Figure 4.6. It is assumed that yi(0) = ẏi(0) = 0. 

 Damped forced vibration analysis is conducted and the damped response alongside the 

undamped response in terms of maximum deflection at the point of response is presented in Figures 

4.22a - 4.25a for different boundary conditions. . It can be observed that as excitation frequency 

(ω) nears the natural frequencies, due to resonance the undamped response approaches infinity and 

becomes unstable. Therefore, a stable part of the response (0 <
𝜔

𝜔1
< 1) is presented in Figures 

4.22b – 4.25b for comparison.  

It can be observed from Figures 4.22a - 4.25a that by considering damping, the amplitude 

of the response decreases, especially as the frequency of excitation nears natural frequencies 

(resonance). The reduction of amplitude is much more significant near the second and the third 

natural frequencies compared to that near the first natural frequency. The reason is that the 

damping ratio is very small for the first natural frequency (compared to the second and the third 

natural frequencies), as it was discussed in section 3.4.7. Moreover, it is evident that the effect of 

damping on the response is most significant for the clamped-clamped boundary condition. Simply 
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supported, clamped-free and free clamped boundary conditions have the second, the third and the 

fourth largest amount of amplitude reductions of the forced vibration response respectively.  

It can also be seen from Figures 4.22b - 4.25b that for all boundary conditions, 

configuration A has the highest damped response among all taper configurations. Configurations 

D and B have the second and the third highest amplitudes of the damped response, respectively. 

Configuration C has the lowest amplitude of the damped response among all taper configurations.  
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Figure 4.22a Effect of damping on forced vibration response in terms of maximum deflection of 

the simply supported composite beams with different taper configurations 
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Figure 4.22b Magnified views of plots given in Figure 4.22a near 1st resonance 
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Figure 4.23a Effect of damping on forced vibration response in terms of maximum deflection of 

the clamped-clamped composite beams with different taper configurations 
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Figure 4.23b Magnified views of plots given in Figure 4.23a near 1st resonance   
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Figure 4.24a Effect of damping on forced vibration response in terms of maximum deflection of 

the clamped-free composite beams with different taper configurations 
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Figure 4.24b Magnified views of plots given in Figure 4.24a near 1st resonance   
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Figure 4.25a Effect of damping on forced vibration response in terms of maximum deflection of 

the free-clamped composite beams with different taper configurations 
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Figure 4.25b Magnified views of plots given in Figure 4.25a near 1st resonance   
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4.4 Summary 

In this chapter forced vibration analysis was carried out on uniform and thickness- and 

width-tapered composite beams. The effects of main parameters (boundary condition, width-ratio 

and taper configuration) on the response were studied. Moreover, damped forced vibration analysis 

was carried out and the effects of damping on forced vibration response were presented. A 

summary of observations is given below: 

 For the undamped beam, as the excitation frequency approaches the natural frequencies, 

the amplitude of the response reaches infinity. This causes instability of the response near the 

natural frequencies and therefore in this study, only a stable part of the response (0 <
𝜔

𝜔1
< 1) is 

used for comparison. 

 For the uniform composite beam, clamped-free boundary condition has the largest 

amplitude of response. Simply supported boundary condition has the second largest amplitude of 

response and clamped-clamped boundary condition has the smallest amplitude of response. 

 For the thickness- and width-tapered composite beam (for all the taper configurations and 

width-ratios) free-clamped boundary condition has the largest amplitude of response. Clamped-

free and simply supported boundary conditions have the second and the third largest amplitudes 

of response respectively. Clamped-clamped boundary condition has the smallest amplitude of 

response. 

 For the thickness- and width-tapered composite beam, for all the boundary conditions taper 

configuration A has the largest amplitude of response. Configurations D and B have the second 

and the third largest amplitudes of responses and configuration C has the smallest amplitude of 

response. 



110 

 

 

 For the thickness- and width-tapered composite beam, for all the boundary conditions and 

taper configurations, by increasing the width-ratio, the amplitude of response decreases. The 

percentage of reduction is more significant for simply supported boundary condition compared to 

clamped-clamped and clamped-free boundary conditions. 

 Addition of damping results in reduction of the amplitude of the response, especially near 

natural frequencies. The amount of reduction highly depends on the damping ratio (𝜉)  and 

therefore, the amount of reduction is larger for the second and the third natural frequencies 

(compared to the amount of reduction for the first natural frequency).  

 Also, clamped-clamped boundary condition has the largest damping ratio (𝜉) among all 

boundary conditions. Simply supported, clamped- free and free-clamped boundary conditions have 

the second, the third and the fourth largest damping ratios respectively. Therefore the amount of 

reduction for the clamped-clamped boundary condition is the largest for all the taper 

configurations. Simply supported and clamped-free boundary conditions have the second and the 

third highest amounts of reduction of the amplitudes of the response. Free-clamped boundary 

condition has the smallest amount of reduction of the amplitude of the response. 
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5. Conclusion and future work 

 

5.1 Major contributions 

In the present study, free and forced vibration analyses of tapered laminated composite 

beams were conducted using Hierarchical Finite Element Method (HFEM). The HFEM 

formulation of a laminated composite beam was carried out based on cylindrical bending theory. 

In the HFEM formulation two degrees of freedom (deflection and rotation) per node, two nodes 

per element and one trigonometric hierarchical term were considered. A comprehensive parametric 

study was conducted to study the effects of main parameters (boundary condition, width-ratio, 

thickness-taper angle, laminate configuration, thickness-taper configuration and compressive axial 

force) on free vibration frequency response of width-tapered, thickness-tapered and thickness- and 

width tapered composite beams.  

Moreover, the effects of boundary condition, width-ratio, thickness-taper configuration and 

damping on the forced vibration response of the uniform and thickness- and width-tapered 

composite beams in terms of maximum deflection and maximum rotation were studied. The 

viscous damping of the beams was modeled using Rayleigh damping method. 
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5.2 Conclusions 

The most important and principal conclusions of the present study are given below: 

 HFEM gives more accurate results with the same number of elements compared to CFEM. 

Also, the natural frequencies reach the exact values with much less number of elements compared 

to CFEM.  

 Adding the second hierarchical trigonometric term does not make a significant 

improvement in the accuracy nor the number of elements required to reach the exact values. As a 

result, in this study HFEM with one trigonometric hierarchical term is considered. 

 For the width-tapered beam, the clamped-clamped boundary condition has the highest 

values of natural frequencies. With a rather large difference, the simply supported boundary 

condition has the second highest natural frequencies. Clamped-free and free-clamped boundary 

conditions have the third and fourth highest natural frequencies respectively, but the difference is 

not as significant. For the thickness-tapered beam, there is an overall decrease in all the natural 

frequencies (compared to width-tapered beam). However, the difference between the natural 

frequencies that correspond to clamped-free and free-clamped boundary conditions is much more 

significant. For the thickness- and width-tapered beam, the difference (compared to thickness-

tapered beam) is not significant but the order of the effect of boundary condition is the same. 

 By decreasing the length of the tapered beam (or equivalently increasing the thickness-

taper angle while preserving the thicknesses at both sides of the beam), the natural frequencies 

increase dramatically for all boundary conditions and tapering types. For the width-tapered beam, 

as the length decreases, the clamped-free and free-clamped boundary conditions show the same 

rate of increase. Simply supported boundary condition has a higher rate of increase compared to 
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the clamped-free and the free-clamped boundary conditions. The clamped-clamped beam has the 

highest rate of increase in natural frequencies. For the other two tapering types, the clamped-free 

boundary condition has a much higher rate of increase compared to the free-clamped boundary 

condition but the other two boundary conditions follow the same pattern as that for the width-

tapered beam. 

 For all the tapering types, boundary conditions and taper configurations, the laminate 

configuration LC3 has the highest natural frequencies, LC2 has the lowest natural frequencies and 

LC1 and LC4 have the second and third highest natural frequencies respectively. 

 For all the tapering types, boundary conditions and taper configurations, increasing the 

compressive axial force results in decreasing the natural frequencies. This is due to the fact that in 

the presence of compressive axial force after the initial deflection, the resultant moment pulls the 

beam further from its neutral position. Therefore the beam becomes more flexible and 

consequently the natural frequencies decrease. This decrease is more significant in the first natural 

frequencies (compared to the second and the third natural frequencies). 

 By increasing the width-ratio for the width-tapered beam the natural frequencies increase 

for simply supported, clamped-clamped and free-clamped boundary conditions but they decrease 

for the clamped-free boundary condition. The reason is that by increasing the width-ratio, the 

additional material on the free side of the beam results in the corresponding changes in the stiffness 

and mass of the beam and consequently, decrease in natural frequencies. The thickness- and width-

tapered beam shows a total decrease in natural frequencies (compared to width-tapered beam) but 

follows the same pattern. 
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 For the thickness-tapered beam, configuration C has the highest values of natural 

frequencies for all the boundary conditions. Configuration B has the second highest natural 

frequencies. Configuration D and configuration A come in third and fourth respectively. Because 

configuration A has the largest volume of resin compared to other configurations, it is less stiff 

and consequently has the lowest natural frequencies. Configuration D has less volume of resin than 

configuration A but much more than configurations B and C. Configuration C has the plies at a 

larger distance from the mid-plane and resin pockets at a smaller distance from the mid-plane, 

compared to configuration B and therefore has a slightly larger D11 value than configuration B and 

higher natural frequencies. Thickness- and width-tapered beam has slightly higher values of 

natural frequencies compared to the other two tapering types, but the effect of taper configuration 

on natural frequencies is the same. 

 Overall, thickness-tapering has much more significant effect on natural frequencies than 

width-tapering. This comes from the fact that the difference between the natural frequencies of the 

thickness-tapered and the thickness- and width-tapered beams is not that significant. However, this 

difference is much more significant between the thickness-tapered and the width-tapered beams.  

 For the uniform composite beam, clamped-free boundary condition has the largest 

amplitude of forced vibration response. Simply supported and clamped-clamped boundary 

conditions have the second and the third largest amplitudes of response respectively.  

 For the thickness- and width-tapered composite beam (for all the taper configurations, 

laminate configurations and width-ratios) free-clamped boundary condition has the largest 

amplitude of response. Clamped-free and simply supported boundary conditions have the second 
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and the third largest amplitudes of response respectively. Clamped-clamped boundary condition 

has the smallest amplitude of response. 

 For the thickness- and width-tapered composite beam, for all the boundary conditions taper 

configuration A has the largest amplitude of response. Configuration D and B have the second and 

the third largest amplitudes of responses and configuration C has the smallest amplitude of 

response. 

 For the thickness- and width-tapered composite beam, for all the boundary conditions and 

taper configurations, by increasing the width-ratio, the amplitude of response decreases. The 

percentage of reduction is more significant for simply supported boundary condition compared to 

clamped-clamped and clamped-free boundary conditions. 

 Addition of damping results in reduction of the amplitude of the response, especially near 

natural frequencies. The amount of reduction highly depends on the damping ratio (𝜉)  and 

therefore, the amount of reduction is larger for the second and the third natural frequencies 

(compared to the amount of reduction for the first natural frequencies).  

 Also, clamped-clamped boundary condition has the largest damping ratio (𝜉) among all 

boundary conditions. Simply supported, clamped- free and free-clamped boundary conditions have 

the second, the third and the fourth largest damping ratios respectively. Therefore the amount of 

reduction for the clamped-clamped boundary condition is the largest for all the taper 

configurations. Simply supported and clamped-free boundary conditions have the second and the 

third highest amounts of reduction of the amplitudes of the response. Free-clamped boundary 

condition has the smallest amount of reduction of the amplitude of the response. 
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5.3 Recommendations for future work 

The presented study was an attempt to determine the effects of different material, 

geometrical and structural properties on the free vibration frequency response and the forced 

vibration response of the tapered composite beams. The author suggests the following as future 

work to complete the current study: 

 Free and forced vibration analysis of the tapered composite beams considering the First 

order shear deformation theory (FSDT) using HFEM. 

 Reliability analysis of the tapered composite beams by choosing the main parameters (that 

were studied in the present thesis) as random variables. 

 Random vibration analysis of the tapered composite beams. 
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APPENDIX A 

 

 

Table A.1 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.01) 

bR/bL 0.01 

  R-R HOFEM HFEM 

Difference (%)  

R-R 

Difference (%)  

HOFEM 

S-S 

ω1 (rad/s) 1198.5 1199.32 1199.49 0.08 0.01 

ω2 (rad/s) 5055.5 5055.28 5056.53 0.02 0.02 

ω3 (rad/s) 11438 11428.2 11433.65 0.04 0.05 

C-C 

ω1 (rad/s) 2474.9 2439.11 2473.47 0.06 1.41 

ω2 (rad/s) 7264.3 7159.2 7254.54 0.13 1.33 

ω3 (rad/s) 14657 14504.74 14697.61 0.28 1.33 

C-F 

ω1 (rad/s) 902.44 903.69 903.79 0.15 0.01 

ω2 (rad/s) 3916.8 3921.75 3922.61 0.15 0.02 

ω3 (rad/s) 9530.7 9541.81 9545.58 0.16 0.04 

F-C 

ω1 (rad/s) 151.1 150.11 155.54 2.94 3.62 

ω2 (rad/s) 2019.4 2014.95 2048.23 1.43 1.65 

ω3 (rad/s) 6879.4 6868.19 6961.83 1.20 1.36 
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Table A.2 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.02) 

bR/bL 0.02 

  R-R HOFEM HFEM 

Difference (%)  

R-R 

Difference (%)  

HOFEM 

S-S 

ω1 (rad/s) 1203 1204.21 1204.38 0.11 0.01 

ω2 (rad/s) 5062.9 5065.42 5066.74 0.08 0.03 

ω3 (rad/s) 11446 11445.58 11451.45 0.05 0.05 

C-C 

ω1 (rad/s) 2511.3 2494.86 2512.17 0.03 0.69 

ω2 (rad/s) 7328.2 7273.14 7324.92 0.04 0.71 

ω3 (rad/s) 14754 14679.47 14791.31 0.25 0.76 

C-F 

ω1 (rad/s) 885.7 886.91 887 0.15 0.01 

ω2 (rad/s) 3850.6 3855.48 3856.27 0.15 0.02 

ω3 (rad/s) 9384.6 9395.68 9399.08 0.15 0.04 

F-C 

ω1 (rad/s) 167.12 167.18 169.43 1.38 1.35 

ω2 (rad/s) 2075 2076.36 2093.02 0.87 0.80 

ω3 (rad/s) 6980.6 6985.16 7035.84 0.79 0.73 

 

  



124 

 

 

Table A.3 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.05) 

bR/bL 0.05 

  R-R HOFEM HFEM 

Difference (%) 

 R-R 

Difference (%)  

HOFEM 

S-S 

ω1 (rad/s) 1214.1 1215.7 1215.8 0.14 0.01 

ω2 (rad/s) 5077.3 5082.88 5083.77 0.13 0.02 

ω3 (rad/s) 11460 11469.56 11474.17 0.12 0.04 

C-C 

ω1 (rad/s) 2591.3 2590.94 2594.72 0.13 0.15 

ω2 (rad/s) 7470.2 7462.21 7475.59 0.07 0.18 

ω3 (rad/s) 14971 14958.4 14993.06 0.15 0.23 

C-F 

ω1 (rad/s) 840.96 842.11 842.19 0.15 0.01 

ω2 (rad/s) 3691.5 3696.27 3696.89 0.15 0.02 

ω3 (rad/s) 9067.8 9079.05 9081.71 0.15 0.03 

F-C 

ω1 (rad/s) 198.79 199.16 199.48 0.35 0.16 

ω2 (rad/s) 2185.9 2189.56 2193.11 0.33 0.16 

ω3 (rad/s) 7172.5 7184.04 7197 0.34 0.18 
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Table A.4 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.1) 

bR/bL 0.1 

  R-R HOFEM HFEM 

Difference (%)  

R-R 

Difference (%)  

HOFEM 

S-S 

ω1 (rad/s) 1227.4 1229.11 1229.15 0.14 0.00 

ω2 (rad/s) 5087.8 5094.4 5094.81 0.14 0.01 

ω3 (rad/s) 11464 11478.05 11481.09 0.15 0.03 

C-C 

ω1 (rad/s) 2673.6 2676.97 2677.5 0.15 0.02 

ω2 (rad/s) 7614.4 7620.69 7623.23 0.12 0.03 

ω3 (rad/s) 15188 15177.87 15188.52 0.00 0.07 

C-F 

ω1 (rad/s) 780.66 781.71 781.77 0.14 0.01 

ω2 (rad/s) 3510.7 3515.27 3515.72 0.14 0.01 

ω3 (rad/s) 8759.7 8770.84 8772.88 0.15 0.02 

F-C 

ω1 (rad/s) 232.94 233.32 233.32 0.16 0.00 

ω2 (rad/s) 2299.5 2303.09 2303.52 0.17 0.02 

ω3 (rad/s) 7347.8 7359.31 7361.73 0.19 0.03 
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Table A.5 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.4) 

bR/bL 0.4 

  R-R HOFEM HFEM 

Difference (%)  

R-R 

Difference (%)  

HOFEM 

S-S 

ω1 (rad/s) 1259.9 1261.39 1261.4 0.12 0.00 

ω2 (rad/s) 5085.7 5091.9 5092.02 0.12 0.00 

ω3 (rad/s) 11439 11453.15 11455.45 0.14 0.02 

C-C 

ω1 (rad/s) 2835.8 2839.29 2839.27 0.12 0.00 

ω2 (rad/s) 7873.7 7883.45 7883.8 0.13 0.00 

ω3 (rad/s) 15485 15504.47 15511.12 0.17 0.04 

C-F 

ω1 (rad/s) 589.8 590.5 590.52 0.12 0.00 

ω2 (rad/s) 3089.8 3093.44 3093.58 0.12 0.00 

ω3 (rad/s) 8200.2 8209.93 8211.02 0.13 0.01 

F-C 

ω1 (rad/s) 341.34 341.77 341.76 0.12 0.00 

ω2 (rad/s) 2599.3 2602.53 2602.46 0.12 0.00 

ω3 (rad/s) 7708.9 7718.54 7718.95 0.13 0.01 
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Table A.6 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.6) 

bR/bL 0.6 

  R-R HOFEM HFEM 

Difference (%) 

 R-R 

Difference (%)  

HOFEM 

S-S 

ω1 (rad/s) 1266.5 1267.88 1267.88 0.11 0.00 

ω2 (rad/s) 5081.5 5087.07 5087.18 0.11 0.00 

ω3 (rad/s) 11432 11444.15 11446.53 0.13 0.02 

C-C 

ω1 (rad/s) 2864.6 2867.75 2867.75 0.11 0.00 

ω2 (rad/s) 7915.2 7923.87 7924.32 0.12 0.01 

ω3 (rad/s) 15533 15549.98 15557.16 0.16 0.05 

C-F 

ω1 (rad/s) 527.05 527.62 527.63 0.11 0.00 

ω2 (rad/s) 2974.1 2977.28 2977.36 0.11 0.00 

ω3 (rad/s) 8075.8 8084.5 8085.48 0.12 0.01 

F-C 

ω1 (rad/s) 386.35 386.79 386.77 0.11 0.01 

ω2 (rad/s) 2701.1 2704.12 2704.08 0.11 0.00 

ω3 (rad/s) 7809.6 7818.32 7818.89 0.12 0.01 
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Table A.7 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 0.8) 

bR/bL 0.8 

  R-R HOFEM HFEM 

Difference (%)  

R-R 

Difference (%)  

HOFEM 

S-S 

ω1 (rad/s) 1269.2 1270.44 1270.44 0.10 0.00 

ω2 (rad/s) 5079.9 5084.81 5084.92 0.10 0.00 

ω3 (rad/s) 11429 11440.43 11442.84 0.12 0.02 

C-C 

ω1 (rad/s) 2875.9 2878.71 2878.72 0.10 0.00 

ω2 (rad/s) 7931.3 7938.96 7939.44 0.10 0.01 

ω3 (rad/s) 15552 15566.62 15573.99 0.14 0.05 

C-F 

ω1 (rad/s) 484.13 484.6 484.6 0.10 0.00 

ω2 (rad/s) 2895.1 2897.87 2897.91 0.10 0.00 

ω3 (rad/s) 7996.6 8004.25 8005.11 0.11 0.01 

F-C 

ω1 (rad/s) 422.33 422.74 422.73 0.09 0.00 

ω2 (rad/s) 2776 2778.65 2778.65 0.10 0.00 

ω3 (rad/s) 7881.6 7889.28 7889.97 0.11 0.01 
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Table A.8 The first three natural frequencies of a width-tapered composite beam for different 

width ratios - A comparison between HFEM, HOFEM and R-R methods (bR/bL= 1.0) 

bR/bL 1.0 

  R-R HOFEM HFEM 

Difference (%) 

 R-R 

Difference (%) 

 HOFEM 

S-S 

ω1 (rad/s) 1270 1271.06 1271.06 0.08 0.00 

ω2 (rad/s) 5080 5084.23 5084.34 0.09 0.00 

ω3 (rad/s) 11430 11439.52 11441.93 0.10 0.02 

C-C 

ω1 (rad/s) 2879 2881.34 2881.35 0.08 0.00 

ω2 (rad/s) 7936 7942.54 7943.03 0.09 0.01 

ω3 (rad/s) 15558 15570.55 15577.96 0.13 0.05 

C-F 

ω1 (rad/s) 452.44 452.81 452.81 0.08 0.00 

ω2 (rad/s) 2835.4 2837.71 2837.73 0.08 0.00 

ω3 (rad/s) 7939.1 7945.68 7946.46 0.09 0.01 

F-C 

ω1 (rad/s) 452.44 452.81 452.81 0.08 0.00 

ω2 (rad/s) 2835.4 2837.71 2837.73 0.08 0.00 

ω3 (rad/s) 7939.1 7945.68 7946.46 0.09 0.01 
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Figure A.0.1 Effect of the length on the second natural frequency of the thickness-tapered 

composite beam 
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Figure A.0.2 Effect of the length on the third natural frequency of the thickness-tapered 

composite beam 
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Figure A.0.3 Effect of the laminate configuration on the second natural frequency of the 

thickness-tapered composite beam 
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Figure A.0.4 Effect of the laminate configuration on the third natural frequency of the 

thickness-tapered composite beam 
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Figure A.0.5 Effect of compressive axial force on the second natural frequency of the 

thickness-tapered composite beam 
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Figure A.0.6 Effect of compressive axial force on the third natural frequency thickness-

tapered composite beam 
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Figure A.0.7 Effect of the length on the second natural frequency of the thickness- and 

width-tapered composite beam 
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Figure A.0.8 Effect of the length on the third natural frequency of the thickness- and 

width-tapered composite beam 
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Figure A.0.9 Effect of laminate configuration on the second natural frequency of the 

thickness- and width-tapered composite beam 
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Figure A.0.10 Effect of laminate configuration on the third natural frequency of 

thickness- and width-tapered composite beam 
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Figure A.0.11 Effect of width-ratio on the second natural frequency of the thickness- and 

width-tapered composite beam 
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Figure A.0.12 Effect of width-ratio on the third natural frequency of the thickness- and 

width-tapered composite beam 
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Figure A.0.13 Effect of compressive axial force on the second natural frequency of the 

thickness- and width-tapered composite beam 
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Figure A.0.14 Effect of compressive axial force on the third natural frequency of the 

thickness- and width-tapered composite beam 
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APPENDIX B 

 

Table B.1 shows assembly algorithm of K and M matrices in CFEM for a composite 

beam divided into 6 elements. Each element has 2 nodes and each node has 2 degrees of 

freedom (wi and θi). Each color represents an element’s k or m matrix. In the areas that two 

matrices overlap, the two corresponding matrix elements are being added together. 

 

Table B.1 Assembly algorithm of K and M matrices in CFEM 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14   

1                w1 

2                θ1 

3                w2 

4                θ 2 

5                w3 

6                θ 3 

7                w4 

8                θ 4 

9                w5 

10                θ 5 

11                w6 

12                θ 6 

13                w7 

14                θ 7 
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In the hierarchical finite element method (HFEM) with one trigonometric term, each 

element’s stiffness (k) or mass (m) matrix is a 5x5 matrix. The fifth row and the fifth 

column are the hierarchical terms corresponding to hierarchical non-physical degree of 

freedom (Ai) to complete the form of a square matrix. As it is shown in Table B.2 the global 

stiffness (K) and mass (M) matrices are assembled in the same manner as CFEM for the 

first four rows and columns. And the hierarchical terms fill the rest of the matrix.  

Table B.2 Assembly algorithm of K and M matrices in HFEM with one hierarchical term 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20   

1                      w1 

2                      θ1 

3                      w2 

4                      θ 2 

5                      w3 

6                      θ 3 

7                      w4 

8                      θ 4 

9                      w5 

10                      θ 5 

11                      w6 

12                      θ 6 

13                      w7 

14                      θ 7 

15                      A1 

16                      A2 

17                      A3 

18                      A4 

19                      A5 

20                      A6 
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