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Abstract—This paper is concerned with the connectivity preser-
vation of a group of unicycles using a novel distributed control
scheme. The proposed local controllers are bounded, and are
capable of maintaining the connectivity of those pairs of agents
which are initially within the connectivity range. Each local
controller is designed in such a way that when an agent is about
to lose connectivity with a neighbor, the lowest-order derivative
of the agent’s position that is neither zero nor perpendicular
to the edge connecting the agent to the corresponding neighbor,
makes an acute angle with this edge, which is shown to result
in shrinking the edge. The proposed methodology is then used
to develop bounded connectivity preserving control strategies for
the consensus problem as one of the unprecedented contributions
of this work. The theoretical results are validated by simulation.

I. INTRODUCTION

Network Connectivity is an important specification in the
design of distributed control strategies for multi-agent systems.
This problem has been extensively studied in the literature for
different agent dynamics and various applications. In [1], [2],
[3], potential functions and nonlinear weights for the edges
of the interaction graph are used to generate local control
signals for single-integrator agents, which tend to infinity
when two neighboring agents are about to lose connectivity.
Bounded distributed connectivity preserving control strategies
for single-integrator agents are proposed in [4], [5].

In [5], a general class of controllers is introduced with the
property that they preserve connectivity even if a subset of
agents, namely static leaders, are to remain fixed. Connectivity
of the graph of a network can also be preserved by controlling
the second smallest eigenvalue of the corresponding Lapla-
cian matrix, e.g. see [6], [7]. For double-integrator agents,
[8] uses the same ideas as [1] to develop a hybrid control
strategy which yields velocity alignment while maintaining
connectivity and ensuring collision avoidance. The method
also allows edge deletions using a distributed market-based
control strategy. A cohesive overview of the main results of
[6], [1], [3], [8] is presented in a unified framework in [9].

As for the unicycle agents, [10] proposes a discontinuous
and time-invariant feedback control strategy to reach consen-
sus in both positions and headings, while maintaining the
connectivity of those neighbors which are initially in the
connectivity range. However, the translational velocity of an
agent may tend to infinity when it is about to lose connectivity
with a neighbor. Thus, this technique may not be effective in
practice since the actuators of the agents can only handle finite
forces or torques.
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A class of bounded distributed controllers for connectivity
preservation of unicycles is presented as the unprecedented
contribution of the present work, which is an extension of the
results in [5] for single-integrator agents. The proposed control
strategy maintains the connectivity of those agents that are
initially in the connectivity range. Therefore, if the network
is initially connected, it will remain connected at all times.
Connectivity preservation is guaranteed even if some of the
agents are to remain fixed. Smooth potential functions are used
in order to obtain bounded control inputs. Although only the
consensus application is discussed in this paper, a connectivity
preserving containment controller can also be designed using
an approach similar to [5].

II. PROBLEM FORMULATION

Consider a set of n nonholonomic agents in a 2D plane.
Let qi and θi denote the position and heading of agent i,
respectively (i ∈ Nn := {1, . . . ,n}), where qi = [xi yi]

T . The
dynamics of each agent is given by

ẋi = vi cosθi (1a)
ẏi = vi sinθi (1b)
θ̇i = ωi (1c)

where vi and ωi are the translational and angular velocities of
agent i, respectively. Each agent is assumed to be capable of
measuring the relative positions and relative velocities of its
neighbors (as defined later). Denote by G=(V,E) the informa-
tion flow graph, where V = {1, . . . ,n} is the set of vertices and
E ⊂V ×V is the set of edges. The information flow graph G
is assumed to be connected, undirected, and static (the case of
dynamic information flow graphs is addressed later in Remark
1). Denote the set of neighbors of agent i in G by Ni(G), and
the degree of this agent by di(G). Two agents i and j are
said to be in the connectivity range if ∥qi − q j∥ < d, for a
prespecified positive real number d, where ∥ · ∥ denotes the
Euclidean norm. It is assumed that all agents in Ni(G) are
initially located in the connectivity range of agent i, for all
i ∈ Nn. It is also assumed that each agent belongs to either
the set of leaders L or the set of followers F , and that the
leaders are static, i.e. vi ≡ 0, ωi ≡ 0 for all i ∈ L . The main
objective is to design a distributed controller for the followers
to preserve connectivity. More precisely, it is desired to find
a control scheme for the followers such that if the inequality
∥qi(t)− q j(t)∥ < d holds for all (i, j) ∈ E at t = 0, then it
holds at any t > 0 as well. The proposed control scheme is
then used to develop connectivity preserving control strategies
for the consensus problem.

Definition 1: For every agent i, the following functions are



introduced

σi(t) :=
1
2 ∑

j∈Ni(G)

∥qi(t)−q j(t)∥2

πi(t) :=
1
2 ∏

j∈Ni(G)

(d2 −∥qi(t)−q j(t)∥2)

πi j(t) := ∏
k∈Ni(G)

k ̸= j

(d2 −∥qi(t)−qk(t)∥2)

Definition 2: The index of a real or vector-valued function
f at time t, denoted by ρ( f (t)), is defined as the smallest
natural number n for which f (n)(t) ̸= 0, where f (n)(t) is the
n-th derivative of f at time t.

III. CONNECTIVITY PRESERVING CONTROLLER DESIGN

Similar to [5], consider a set of distributed smooth potential
functions of the form hi(σi,πi), i ∈ F , with the following
properties for all σi ∈ R+

∂hi

∂σi
(σi,0) = 0 (2a)

∂hi

∂πi
(σi,0) < 0 (2b)

Note that under the conditions given by (2), when agent i
is about to lose connectivity (i.e. πi = 0), any change in hi
results only from a change in πi, and if the agents move in a
direction that leads to a decrease in hi, then the connectivity
will improve (i.e., πi will increase). Define ri = − ∂hi

∂qi
, and

denote by θ ∗
i the angle of ri = [rix riy]

T . For every agent i∈F ,
consider a controller of the form

vi = ∥ri∥cos(θi −θ ∗
i ) (3a)

ωi = θ̇ ∗
i − (θi −θ ∗

i ) (3b)

Calculation of ri and θ ∗
i requires only the relative positions

of the neighbors of agent i. It is straightforward to show
that calculating θ̇ ∗

i also requires the relative velocities of the
neighbors of agent i.

Define T = {t| ∃(i, j) ∈ E : ∥qi(t)− q j(t)∥ ≥ d}. In order
to prove that the controller given by (3) is connectivity
preserving, it suffices to show that T = /0. Assume T ̸= /0,
and let t0 = inft∈T t. This implies that ∥qi(t)−q j(t)∥ ≤ d, for
all (i, j) ∈ E and t ≤ t0, where the equality holds for at least
one edge at t = t0. Construct a graph Gd = (Vd ,Ed) as the
union of the edges (i, j) ∈ E for which ∥qi(t0)−q j(t0)∥ = d,
i.e. the edges that are at the critical distance at t = t0. Define

si j(t) = ∥qi(t)−q j(t)∥2, ∀(i, j) ∈ Ed (4)

Now, assume that si j is decreasing for some (i, j) ∈ Ed , in an
open interval (ta, tb), where ta < t0 < tb. For such an edge
and for every ta ≤ t < t0, the inequality ∥qi(t)− q j(t)∥ >
∥qi(t0)−q j(t0)∥= d holds which is in contradiction with the
fact that ∥qi(t)−q j(t)∥ ≤ d, for all (i, j) ∈ E and t ≤ t0. This
rejects the assumption that T ̸= /0, and hence the control
law given by (3) is connectivity preserving. Thus, in order to
prove the connectivity preservation for the proposed controller,
it suffices to show that the edge described above exists. In
the sequel, some important properties of the graph Gd are

presented, which will be used later in Theorem 1 for finding
such an edge.

Define the rotation matrix

Rot(α) =

[
cosα −sinα
sinα cosα

]
where α is the rotation angle in radians. It is straight-
forward to verify that d

dt Rot(α) = α̇Rot(α + π
2 ). Consider

an agent i ∈ F ; from (1a), (1b), (3a), and on noting that
ri = ∥ri∥[cosθ ∗

i sinθ ∗
i ]

T , one can obtain

q̇i = vi

[
cosθi

sinθi

]
= Rot(θi −θ ∗

i )ri cos(θi −θ ∗
i )

=
1
2

[
1+ cos2(θi −θ ∗

i ) −sin2(θi −θ ∗
i )

sin2(θi −θ ∗
i ) 1+ cos2(θi −θ ∗

i )

]
ri

=
1
2
(Rot(2αi)+ I2)ri

where αi = θi−θ ∗
i , and I2 is the 2×2 identity matrix. It results

from (3b) that α̇i = −αi. Furthermore, since ∂hi
∂qi

= ∂hi
∂σi

∂σi
∂qi

+
∂hi
∂πi

∂πi
∂qi

, one can rewrite ri as

ri =− ∑
j∈Ni(G)

(
∂hi

∂σi
− ∂hi

∂πi
πi j)(qi −q j) (5)

The next lemma shows that Gd is a union of trees, with at
least one follower leaf.

Lemma 1: The graph Gd is acyclic, and there exists at least
one leaf in Gd which is a follower.

Proof. Suppose that Gd contains a cycle C . Let y(t) denote
the positions of the agents belonging to this cycle, and x(t)
denote the positions of the rest of the agents along with the
headings of all agents. If y(t) = y(t0) for some t ≥ 0, one
can easily show that πi j(t) = 0 for any i ∈ F on C and j ∈
Ni(G). This is due to the fact that every follower i on C is at
distance d from its two neighbors on this cycle. Denote these
two neighbors by i1 and i2; then, at least one of the two terms
(d2−∥qi−qi1∥2) and (d2−∥qi−qi2∥2) appear in πi j, making
it zero. Now, it follows from (5) that ri(t)= 0 and hence vi(t)=
0 for any i ∈F on C . Using this argument, it is easy to show
that x and y satisfy the conditions of Lemma 7 in [5], and hence
y(t) = y(t0) for all t ≥ 0. In particular y(0) = y(t0), implying
that the initial distance between some agents is equal to d,
which contradicts the assumption that ∥qi(0)−q j(0)∥< d for
all (i, j) ∈ E. This proves that Gd is acyclic.

Now, let P be the longest path in Gd and denote by u and
v the vertices at the two ends of this path. Clearly, du(Gd) =
dv(Gd) = 1, which means u and v are two leafs of Gd . Assume
that both u and v are static leaders. Then, every agent i∈F on
P has two neighbors on this path located at distance d from it.
Therefore, an argument similar to the one given above results
that the agents on this path have been fixed from the beginning,
which again contradicts the assumption that ∥qi(0)−q j(0)∥<
d, for all (i, j) ∈ E. Thus, at least one of the two leafs u and
v is a follower. �

The next 3 lemmas will be used later in Theorem 1 to find
the derivative of si j for an edge connected to a follower leaf.

Lemma 2: Consider an agent i ∈F in Gd with di(Gd) = 1,
and let agent j be the one for which ∥qi−q j∥= d. If αi ̸=±π

2 ,



then (qi −q j)
T q̇i < 0.

Proof. It is straightforward to show that for agent i described
in the lemma the relation ri =

∂hi
∂πi

πi j(qi−q j) holds. Therefore,

(qi −q j)
T q̇i =

rT
i

2 ∂hi
∂πi

πi j
(Rot(2αi)+ I2)ri =

(1+ cos2αi)

2 ∂hi
∂πi

πi j
∥ri∥2

The proof follows on noting that 1+cos2αi > 0 for any αi ̸=
±π

2 , and that ∂hi
∂πi

< 0 (from (2b)). �
Lemma 3: Consider an agent i ∈F in Gd with di(Gd) = 1,

and let agent j be the one for which ∥qi − q j∥ = d. If q̇i =

q̇ j = 0, then ṙi =
d
dt (

∂hi
∂πi

πi j)(qi −q j).
Proof. Since d2 −∥qi −q j∥2 = 0, for any l ∈ Ni −{ j}:

π̇il =
d
dt
(d2 −∥qi −q j∥2) ∏

k∈Ni(G)
k ̸=l, j

(d2 −∥qi(t)−qk(t)∥2)

= −2(qi −q j)
T (q̇i − q̇ j) ∏

k∈Ni(G)
k ̸=l, j

(d2 −∥qi(t)−qk(t)∥2)

= 0

This also implies that π̇i = 0. On the other hand,

d
dt
(

∂hi

∂σi
) =

∂ 2hi

∂σ 2
i

σ̇i +
∂ 2hi

∂πi∂σi
π̇i

From (2a), it is straightforward to show that ∂ 2hi
∂σ2

i
= 0. Since

π̇i is also zero (as noted above), hence d
dt (

∂hi
∂σi

) = 0. The proof
follows now on noting that

ṙi = − ∑
l∈Ni(G)

(
∂hi

∂σi
− ∂hi

∂πi
πil)(q̇i − q̇l)

− ∑
l∈Ni(G)

d
dt
(

∂hi

∂σi
− ∂hi

∂πi
πil)(qi −ql)

�
Lemma 4: Consider an agent i ∈F in Gd with di(Gd) = 1,

and let agent j be the one for which ∥qi − q j∥ = d. Also,
assume αi =±π

2 . The following results hold:
a) (qi −q j)

T q̈i = 0
b) If q̇ j = 0, then (qi −q j)

T q(3)i < 0
Proof.

Part (a). Since Rot(2αi) = Rot(±π) =−I2, thus,

q̈i =
1
2
(Rot(2αi)+ I2)ṙi + α̇iRot(2αi +

π
2
)ri =−αiRot(−π

2
)ri

As a result,

(qi −q j)
T q̈i =− αi

∂hi
∂πi

πi j
rT

i Rot(−π
2
)ri = 0

Part (b). One can easily find the third derivative of qi as

q(3)i = (αiRot(−π
2
)+2α2

i I2)ri −2αiRot(−π
2
)ṙi

If q̇ j = 0, then Lemma 3 yields

(qi −q j)
T Rot(−π

2
)ṙi =

d
dt
(

∂hi

∂πi
πi j)(qi −q j)

T Rot(−π
2
)(qi −q j)

=0

Therefore,

(qi −q j)
T q(3)i =

rT
i

∂hi
∂πi

πi j
(αiRot(−π

2
)+2α2

i I2)ri

=
2α2

i
∂hi
∂πi

πi j
∥ri∥2

< 0

�
It follows from Lemma 2 that under the proposed control

law, when a follower leaf i in Gd is about to lose connectivity
with a neighbor, it is forced to move in such a way that it
makes an acute angle with respect to the corresponding edge.
If, however, the heading of the agent is perpendicular to this
edge, then, according to Lemma 4, the velocity of the agent is
zero and the acceleration of the agent is perpendicular to this
edge. The derivative of the acceleration in this case makes an
acute angle with this edge, aiming to shrink it.

Another outcome of the above lemmas is that for a follower
leaf i in Gd , if the heading of the agent is perpendicular to ri,
then ρ(qi) = 2; otherwise, ρ(qi) = 1. Also, note that since the
leaders are static, the index ρ(qi) is ∞ for every i ∈ L . The
following three lemmas will be used in Theorem 1 to find the
derivatives of si j for an edge connected to a leaf whose other
end is a non-leaf follower.

Lemma 5: Consider a follower agent i in Gd , and define
η = min j∈Ni(G){ρ(πi j)}. If di(Gd)≥ 2, then ρ(qi)≥ η +1.

Proof. The proof is similar to that of Lemma 3 in [5], using
the relation ρ(qi)≥ ρ(ri)+1. �

Lemma 6: Consider a follower agent i in Gd , and let ν be
one of the (possibly multiple) neighbors of this agent in Gd
for which ρ(qν) = max j∈Ni(Gd){ρ(q j)}. Then

ρ(qi)≥ 1+ ∑
j∈Ni(Gd )

j ̸=ν

ρ(q j)

Proof. The proof is similar to that of Lemma 4 in [5], and
is omitted here. �

Lemma 7: Consider an agent i ∈F in Gd with di(Gd)≥ 2.
If ρ(q j) = 2 for any agent j ∈Vd ∩F with d j(Gd) = 1, then
ρ(qi)≥ 4.

Proof. If di(Gd)≥ 3, then Lemma 6 yields ρ(qi)≥ 1+2+
2 = 5, and hence the statement of the present lemma holds in
this case. Now, for the case when di(Gd)= 2, Lemma 6 implies
that ρ(qi)≥ 1+2 = 3. Let Ni(Gd) = { j,k}. Using the equality
πi j = d2 −∥qi −qk∥2, it can be easily shown that π̇i j = 0 and
π̈i j = (qi − qk)

T q̈k. It is now aimed to prove that π̈i j = 0. If
k ∈ L , then ρ(qk) = ∞. Also, if k ∈ F and dk(Gd)≥ 2, then
ρ(qk)≥ 3. Hence, in these two cases q̈k = 0, and subsequently
π̈i j = 0. On the other hand, if k ∈F and dk(Gd) = 1, then from
the assumption of the lemma ρ(qk) equals 2, implying that
αk =±π

2 . Thus, Lemma 4 yields (qi −qk)
T q̈k = 0. It follows

from the above argument that π̇i j = π̈i j = 0. Similarly, π̇ik =
π̈ik = 0. Therefore, η = min{ρ(πi j),ρ(πik)} ≥ 3, and hence it
is concluded from Lemma 5 that ρ(qi)≥ 4. �

Theorem 1: Consider a set of n nonholonomic agents in
a plane with dynamics of the form (1), and assume that the
leaders are static. Assume also that n potential functions are



given which satisfy the conditions in (2). Then, the distributed
controller (3) for the followers is connectivity preserving.

Proof. As stated earlier, to prove this theorem it suffices to
show that for some (i, j) ∈ Ed the function si j defined by (4)
is decreasing in an open interval around t0. It is shown in the
sequel that any edge connected to a follower leaf of index one
is an appropriate candidate (for the case where the index of
every follower leaf is 2, any edge connected to any follower
leaf can be selected). Two cases are considered here:
i) Gd has at least one follower leaf of index 1. Let i be the
vertex representing one of such followers, and j be the vertex
for which ∥qi − q j∥ = d. Then, ṡi j = 2(qi − q j)

T q̇i + 2(q j −
qi)

T q̇ j. Since ρ(qi) = 1, thus αi ̸=±π
2 , and Lemma 2 implies

that (qi − q j)
T q̇i < 0. If ρ(q j) ≥ 2, then q̇ j = 0, and hence

ṡi j < 0. If ρ(q j) = 1, then j is also a follower leaf of Gd , and
similarly (q j −qi)

T q̇ j < 0, which yields ṡi j < 0. Therefore, si j
is decreasing in an open interval around t0, which completes
the proof for this case.
ii) The index of every follower leaf in Gd is 2. Consider a
follower leaf i in Gd , and let j be the vertex for which ∥qi −
q j∥= d. Clearly, ṡi j = 0 and also s̈i j = 2(qi −q j)

T q̈i +2(q j −
qi)

T q̈ j. Lemma 4 implies that (qi −q j)
T q̈i = 0. Similarly, if j

belongs to F and is a leaf, then (q j −qi)
T q̈ j = 0. If, on the

other hand, j is a static leader or is a follower but not a leaf,
then q̈ j = 0. Therefore, regardless of j being a leaf or not, the
equality s̈i j = 0 holds. To find the third derivative of si j, note
that since the index of every follower in Gd is assumed to
be 2, s(3)i j = 2(qi −q j)

T q(3)i +2(q j −qi)
T q(3)j . From Lemma 4,

(qi −q j)
T q(3)i < 0. If j belongs to F and is a leaf, then it can

be concluded in a similar way that (q j −qi)
T q(3)j < 0, which

along with the above inequality yields s(3)i j < 0. If j ∈ F and
d j(Gd)≥ 2, then Lemma 7 implies that ρ(q j)≥ 4 and hence
q(3)j = 0, resulting in s(3)i j < 0. The same result holds also if
j is a static leader. Now, it is deduced from ṡi j = s̈i j = 0 and
s(3)i j < 0 that si j is decreasing in an open interval around t0,
which completes the proof. �

Remark 1: The connectivity preservation results presented
so far can be easily extended to the case of dynamic edge
addition, where new edges may be added to the information
flow graph once two agents enter the connectivity range.
Suppose that new edges are added to the information flow
graph at the time instants t1, t2, . . . , and denote by G(tk) the
resultant information flow graph at t = tk, k = 1,2, . . .. For
any edge e ∈ E(tk), the corresponding agents remain in the
connectivity range during the time interval [tk, tk+1] according
to Theorem 1. This, along with the fact that E ⊆ E(t1) ⊆
E(t2)⊆ . . ., implies that for any edge of the information flow
graph the corresponding agents remain in the connectivity
range at all times once the edge is created.

IV. A BOUNDED CONNECTIVITY PRESERVING
CONSENSUS ALGORITHM FOR UNICYCLES

Consider a team of n unicycles in a 2D plane with the
dynamics of the form (1), and assume that the corresponding
information flow graph G is static and is a tree. Assume also
that n potential functions are given which are analytic and, in

P
qi

ri

i 

i!

iq 

iqP
dt

d
"

Fig. 1: The configuration described in Lemma 8 for the case when
|αi + γi|> π

2 .

addition to (2), satisfy the following constraints

∂hi

∂σi
(σi,πi)> 0,

∂hi

∂πi
(σi,πi)≤ 0, for σi ≥ 0 and πi > 0

(6)
Then, it is desired to show that using the controller given
by (3), the agents converge to consensus while preserving
connectivity. Connectivity preservation follows directly from
condition (2) and the results of the previous section. To prove
the convergence to consensus, a few lemmas and theorems are
presented in the sequel.

It follows from connectivity preservation that σi and πi in
(5) are bounded, and so are ∂hi

∂σi
and ∂hi

∂πi
as analytic functions

of σi and πi. Thus, there exists a positive real number rM
such that ∥ri(t)∥ ≤ rM , for all t ≥ 0 and all i ∈Nn. For a fixed
point P ∈ R2, define RP(t) = maxi∈Nn ∥P− qi(t)∥. Denote by
d+
dt RP(t) the right derivative of RP(t) with respect to t. The

next lemma will be used to find an upper bound for d+
dt RP(t).

Lemma 8: Let i be an agent for which ∥P−qi(t)∥= RP(t)
(i.e., the farthest agent from P at time t). Also, assume
|αi(t)| ≤ π

2 . Then d
dt ∥P−qi(t)∥ ≤ rM|αi(t)|.

Proof. Denote by γi the angle between P − qi and ri.
Also, define βi j = ∂hi

∂σi
− ∂hi

∂πi
πi j, and write (5) as ri =

−∑ j∈Ni(G) βi j(qi −q j). It follows from (6) and connectivity
preservation that βi j > 0. Moreover, since agent i is the farthest
agent from P, the circle centered at P with the radius ∥P−qi∥
contains all agents, and hence (P− qi)

T (q j − qi) ≥ 0 for all
j ∈Nn. Therefore (P−qi)

T ri ≥ 0, which implies that |γi| ≤ π
2 .

On the other hand, it is straightforward to show that

d
dt
∥P−qi(t)∥=− (P−qi)

T

∥P−qi∥
q̇i = ∥ri∥sin(|αi + γi|−

π
2
)cosαi

(7)
(this is illustrated in Fig. 1 for the case where |αi+γi|> π

2 ). It
follows from |αi| ≤ π

2 and |γi| ≤ π
2 that −π

2 ≤ |αi+γi|− π
2 ≤ π

2 .
If −π

2 ≤ |αi + γi|− π
2 ≤ 0, then it is concluded from (7) that

d
dt ∥P−qi(t)∥ ≤ 0 and the proof is complete. If, on the other
hand, 0 < |αi + γi|− π

2 ≤ π
2 , then it follows from (7) and the

inequality sinx < x for all x ∈ (0, π
2 ], that

d
dt
∥P−qi(t)∥ ≤ ∥ri∥(|αi + γi|−

π
2
)cosαi ≤ rM|αi|

which completes the proof. �
Lemma 9: Define αM = maxi∈Nn |αi(0)| and

TM = max{ln 2αM
π ,0}. Then, for any t1 ≥ TM and any

t2 > t1, RP(t2)≤ RP(t1)+ rMαMe−t1 .
Proof. Let I denote the set of all agents at distance RP(t)

from P at time t (i.e., the set of farthest agents from P at time



t). Then, it can be easily shown that

d+

dt
RP(t) = max

i∈I

d
dt
∥P−qi(t)∥ (8)

To find an upper bound for d+
dt RP(t), first note that αi(t) =

αi(0)e−t (since α̇i = −αi), and hence |αi(t)| ≤ π
2 for t ≥

TM . Now, using Lemma 8 along with (8) yields d+
dt RP(t) ≤

rMαMe−t , for any t ≥ TM . By integrating both sides of this
relation from t1 to t2, one can obtain RP(t2) − RP(t1) ≤
rMαM(e−t1 − e−t2)≤ rMαMe−t1 , which completes the proof.�

The immediate result of the above lemma is that under the
proposed control law the agents evolve in a bounded region
in the plane. Note, however, that unlike the case of single-
integrator agents in [11], the convex hull of the agents in the
case of unicycles is not necessarily contracting. This is due to
the fact that when the heading of agent i is not exactly in the
same direction as ri (i.e., the angle αi is nonzero), then the
agent may not move toward the convex hull of its neighbors.
Therefore, the method used in [11] (which is mainly based on
the contracting property of the convex hull of agents) cannot
be directly employed here to deduce the convergence of the
agents to consensus. However, it is shown in the sequel that
for the proposed controller, the dynamics of the positive limit
set of the closed-loop system (see [12] for the definition of the
positive limit set) reduces to that of the connectivity preserving
controllers for single-integrator agents studied in [5]. Thus, the
results of [11] can be used in this case to deduce convergence
to consensus. To this end, the following lemma is borrowed
from [12].

Lemma 10: If a solution x(t) of ẋ = f (x) belongs to a
bounded domain D for t ≥ 0, then its positive limit set L+

is nonempty, compact, and invariant. Also, x(t) approaches
L+ as t → ∞.

The dynamics of the agents under the proposed control
strategy can be written as

q̇i =
1
2
(Rot(2αi)+ I2)ri

α̇i = −αi (9)

Denote by L+ the positive limit set for a solution
[qT (t) αT (t)]T of (9), where q(t) = [qT

1 (t) . . .q
T
n (t)]

T and
α(t) = [α1(t) . . .αn(t)]T . Note that L+ possesses the properties
described in Lemma 10 because the solution of (9) evolves in
a bounded region (as shown earlier). For any [pT β T ]T ∈ L+,
there is a sequence {tn} with tn → ∞ as n → ∞, such that
q(tn)→ p and α(tn)→ β as n → ∞. This implies that β = 0
because α(tn) = e−tnα(0)→ 0 as tn → ∞. As a result, for the
solutions starting in L+ (and hence staying in L+ as this set
is invariant), (9) reduces to

ṗi = ri =− ∂hi

∂ pi
(10)

This is the same connectivity preserving controller developed
for single-integrator agents in [5]. Theorem 1 from [5] is used
in the next lemma to characterize some important properties
of L+.

Lemma 11: For any [pT 0T ]T ∈ L+ and any (i, j) ∈ E, the
inequality ∥pi − p j∥< d holds.

Proof. By definition, for any [pT 0T ]T ∈ L+, there is a
sequence {tn} with tn →∞ as n→∞, such that q(tn)→ p. Since
∥qi(tn)− q j(tn)∥ < d (because of connectivity preservation),
hence ∥pi − p j∥ ≤ d. Now, choose an arbitrary τ > 0 and let
pτ(t) be a solution of (10) which passes through p at time
τ (i.e. pτ(τ) = p). It follows from the invariance property
of L+ that [(pτ(t))T 0T ]T ∈ L+ for all t ≥ 0. In particular,
[(pτ(0))T 0T ]T ∈ L+ implies that ∥pτ

i (0)− pτ
j (0)∥ ≤ d. Let

Gd(0) be the union of the edges (i, j) ∈ E(G) for which
∥pτ

i (0)− pτ
j (0)∥= d. Let also GM = (VM,EM) be the maximal

induced subgraph of Gd(0) such that di(GM)≥ 2 for every i ∈
VM . Since G is a tree, Gd(0) is acyclic and thus GM is empty.
Therefore, Theorem 1 from [5] yields ∥pτ

i (t)− pτ
j (t)∥< d for

all (i, j) ∈ E and t > 0. The proof follows now on noting that
∥pi − p j∥= ∥pτ

i (τ)− pτ
j (τ)∥. �

Theorem 2: Consider a team of n unicycle agents in a 2D
plane with the dynamics of the form (1), and the control
law (3). Consider also a set of analytic functions hi, i ∈ Nn,
satisfying the conditions given by (2) and (6), which are used
to obtain the control parameters in (3) as discussed in the
previous section. Moreover, assume that the information flow
graph is a static tree. Then, the agents converge to consensus
while preserving connectivity.

Proof. The first step of the proof is to show that there exists
a constant vector p̄, for which [p̄T 0T ]T ∈ L+ and p̄1 = p̄2 =
. . .= p̄n. To this end, let p(t) be a solution to (10) starting from
a point p(0), where [pT (0) 0T ]T ∈ L+. Since L+ is invariant,
hence [pT (t) 0T ]T ∈ L+ for all t ≥ 0. On the other hand, (10)
can be written as

ṗi =− ∑
j∈Ni(G)

βi j(pi − p j) (11)

where βi j =
∂hi
∂σi

− ∂hi
∂πi

πi j. Lemma 11 along with (6) yields
βi j > 0 for all (i, j) ∈ E. The stability of the system governed
by (11) has been extensively studied in the literature (e.g., see
[11]). Using Proposition 2 in [11], it is straightforward to show
the convergence of p(t) to a point p̄ for which p̄1 = p̄2 = . . .=
p̄n := p. Now, one can conclude that [p̄T 0T ]T ∈ L+ because
L+ is a closed set according to Lemma 10.

To complete the proof, it suffices to show that for the
solution [qT (t) αT (t)]T of (9), q(t) converges to p̄, or equiv-
alently Rp(t) = maxi∈Nn ∥p − qi(t)∥ → 0 as t → ∞. Since
[p̄T 0T ]T ∈ L+, there is a sequence {tn} with tn → ∞ as n →∞,
such that q(tn) → p̄ as n → ∞, implying that Rp(tn) → 0 as
n → ∞. For any ε > 0, choose a sufficiently large number
n such that tn > TM , rMαMe−tn < ε

2 , and Rp(tn) < ε
2 . Then,

it results from Lemma 9 that for every t > tn the relation
Rp(t) ≤ Rp(tn) + rMαMe−tn < ε holds, which completes the
proof of convergence of qi’s to p. �

V. SIMULATION RESULTS

Example 1: To verify the effectiveness of the controller
proposed in Section IV, consider 6 unicycle agents with
dynamics of the form (1) moving in a 2D plane, with the
information flow graph G depicted in Fig. 2. Assume that
d = 1, and that the initial position and heading of each agent
is as shown in Fig. 2. Suppose that agent i is using a controller
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Fig. 2: The information flow graph G along with the initial positions and
headings of agents in Example 1.
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Fig. 3: The agents’ planar motion in Example 1.

of the form (3), and that

hi(σi,πi) =− πi

1+σi
, i ∈ N6

This function satisfies the conditions given in (2) and (6).
Hence, the resultant controller is connectivity preserving and
leads to consensus, according to Theorem 2.

The planar motion of the agents under the proposed con-
troller is shown in Fig. 3. Denote the distance between agent i
and its neighbor j by di j (i.e., di j := ∥qi −q j∥). This distance
is depicted in Fig. 4 for different agents as a function of
time. While all initial distances are relatively close to d,
the proposed controller keeps them less than d for every
(i, j)∈ E(G) at all times, as the agents converge to consensus.
The translational and angular velocities of the agents are also
depicted in Figs. 5 and 6, respectively.

VI. CONCLUSIONS

This paper presents a connectivity preserving distributed
control law for a network of unicycles. If two agents are
initially located in the connectivity range, under the proposed
control strategy they will remain connected at all times. The
controller is designed in such a way that when an agent is
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Fig. 4: The distances between the neighboring agents in Example 1.
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Fig. 5: The translational velocities of agents in Example 1.
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Fig. 6: The angular velocities of agents in Example 1.

about to lose connectivity with a neighbor, the lowest order
derivative of the agent’s position which is neither zero nor
perpendicular to the corresponding edge, makes an acute angle
with this edge, aiming to shrink it. Simulations confirm the
validity of the theoretical results.
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