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ABSTRACT 

Identification of Dynamics, Parameters and Synaptic Inputs of a Single 

Neuron using Bayesian Approach 

 
Milad Lankarany, Ph.D. 
Concordia University, 2013 

 

Revealing dynamical mechanisms of the brain in order to understand how it works and 

processes information has recently stimulated enormous interest in computational 

neuroscience. Understanding the behavior of a single neuron, the most important building 

block of the brain, is of core interest in the brain-related sciences. Application of the 

advanced statistical signal processing methods, e.g., Bayesian methods, in assessing the 

hidden dynamics and estimating the unknown parameters of a single neuron has been 

considered recently as of special interest in neuroscience. This thesis attempts to develop 

robust and efficient computational techniques based on Bayesian signal processing 

methods to elucidate the hidden dynamics and estimate the unknown parameters of a 

single neuron.  

In the first part of the thesis, Kalman filtering (KF)-based algorithms are derived for the 

Hodgkin-Huxley (HH) neuronal model, the most detailed biophysical neuronal model, to 

identify the hidden dynamics and estimate the intrinsic parameters of a single neuron 

from a single trace of the recorded membrane potential. The unscented KF (UKF) has 

already been applied to track the dynamics of the HH neuronal model in the literature. 

We extend the existing KF technique for the HH neuronal model to another version, 

namely, extended Kalman filtering (EKF). Two estimation strategies of the KF, dual and 

joint estimation strategies, are employed in conjunction with the EKF and UKF for 
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simultaneously tracking the hidden dynamics and estimating the unknown parameters of 

a single neuron, leading to four KF algorithms, namely, joint UKF (JUKF), dual UKF 

(DUKF), joint EKF (JEKF) and dual EKF (DEKF).  

In the second part of this thesis, the problem of inferring excitatory and inhibitory 

synaptic inputs that govern activity of neurons and process information in the brain is 

investigated. The importance of trial-to-trial variations of synaptic inputs has recently 

been investigated in neuroscience. Such variations are ignored in the most conventional 

techniques because they are removed when trials are averaged during linear regression 

techniques. Here, we propose a novel recursive algorithm based on Gaussian mixture 

Kalman filtering for estimating time-varying excitatory and inhibitory synaptic inputs 

from single trials of noisy membrane potential. Unlike other recent algorithms, our 

algorithm does not assume an a priori distribution from which the synaptic inputs are 

generated. Instead, the algorithm recursively estimates such a distribution by fitting a 

Gaussian mixture model. Moreover, a special case of the GMKF when there is only one 

mixand, the standard KF, is studied for the same problem. 

Finally, in the third part of the thesis, inferring the synaptic input of a spiking neuron as 

well as estimating its dynamics and parameters is considered. The synaptic input 

underlying a spiking neuron can effectively elucidate the information processing 

mechanism of a neuron. The concept of blind deconvolution is applied to Hodgkin-

Huxley (HH) neuronal model, for the first time in this thesis, to address the problem of 

reconstructing the hidden dynamics and synaptic input of a single neuron as well as 

estimating its intrinsic parameters only from a single trace of noisy membrane potential. 

The blind deconvolution is accomplished via a novel recursive algorithm based on 
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extended Kalman filtering (EKF). EKF is then followed by the expectation-maximization 

(EM) algorithm which estimates the statistical parameters of the HH neuronal model. 

Extensive experiments are performed throughout the thesis to demonstrate the accuracy, 

effectiveness and usefulness of the proposed algorithms in our investigation. The 

performance of the proposed algorithms is compared with that of the most recent 

techniques in the literature. The promising results of the proposed algorithms confirm 

their robustness and efficiency, and suggest that they can be effectively applied to the 

challenging problems in neuroscience. 
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Chapter 1 

 

Introduction 

1.1 General 
 

Probably the greatest challenge of the 21th century is revealing the mechanism of the 

most mysterious part of the human body, the brain. Understanding human behavior − 

emotion, perception, movement, consciousness, etc − depends upon the identification and 

understanding of the behavior of the most important building block of the brain, namely, 

the neuron. How does it work as a single cell, communicate with other neurons and 

finally process the information? Understanding these neural mechanisms has a major 

impact on finding new therapies for a variety of mental illnesses such as, alzheimer, 

epilepsy and Parkinson.  This is probably the main reason why some prestigious grants 

have been recently dedicated to projects involving mapping and simulating human brain, 

such as the brain activity map project (BRAIN Initiative) [1, 2] and [3], and the human 

brain project (HBP) [4]. In addition to the significance of the treatment of brain disorders, 

assessing the neural basis of human behavior has profound implications for our 

understanding of human learning and consciousness. As an example, advances of neural 
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sciences would directly influence the advances of artificial intelligence and robotics, 

which are of great interest in biomedical engineering.   

In order to unravel the biophysical mechanisms of single neurons and consequently 

neural activities of the brain, various lines of research ranging from theoretical 

neuroscience and psychology to engineering and pure mathematics have been combined 

together to advance the new area, so called computational neuroscience. The term 

computational neuroscience, introduced by Eric L. Schwartz in 1985, means in general 

the integration of a variety of names, such as neural modeling, brain theory and neural 

networks. The major topics in computational neuroscience can be categorized [5] as 

follows: (1) single neuron modeling [6], (2) sensory processing, (3) memory and synaptic 

plasticity [7], (4) cognition, discrimination and learning [8], and, (5) consciousness [9].  

While the brain remains one of the greatest scientific mysteries, the advent of new 

technologies that assist neuroscientists to open this black box has led to numerous 

advances in revealing the mechanisms of neurons, the major building block of the brain. 

Although there are several imaging techniques in the literature that demonstrate the 

neural activities in the brain, e.g., functional magnetic resonance imaging (fMRI), 

computed tomography (CT), positron emission tomography (PET), 

electroencephalography (EEG), magnetoencephalography (MEG), and near infrared 

spectroscopy (NIRS), the direct approach to understand the brain mechanisms at the level 

of single neurons is to probe the neuron experimentally and record the 

electrophysiological responses of a neuron to different (task-specific) stimuli. In this 

regard, there are several techniques in the literature, each of which identifies only a few 

dynamics underlying neural processes. The most important ones are as follows: voltage-

http://en.wikipedia.org/wiki/Eric_L._Schwartz


3 
 

sensitive dye imaging [10] where the propagation of individual action potentials in the 

dendritic tree is observed, calcium imaging [11] that reveals the concentration of calcium 

in the level of single neurons, patch clamp and dynamic clamp techniques [12], [13], [14, 

15] which provide the membrane potential of single neurons to be recorded, and more 

recently, optogenetics [16] (see also the recent amazing method [17] and references 

therein) which is a combination of genetics and optics to control well-defined events 

within specific cells of living tissue. 

The main limitation of such recording techniques, e.g., the membrane potential in patch 

clamp technique, is that they are always uncertain due to the noise in neurons — dynamic 

noise — as well as errors involving the recording equipment such as the electrode 

resistance and capacitance-observation noise [18]. Moreover, as mentioned earlier, these 

techniques measure only a few dynamics of the neurons, from which it is not possible to 

understand the entire processes underlying the information processing of the neurons. 

Therefore, the major challenge today in computational neuroscience is to infer the un-

observed dynamics of single neurons from such noisy and incomplete measurements.  To 

tackle this challenge, scientists employ biophysical neuronal models that effectively 

represent the biological mechanisms of single neurons. Then, by using advanced 

computational algorithms, the parameters of these models are estimated such that the 

output of the model and the measured data have maximal similarities. Advanced signal 

processing algorithms play important roles in extracting the hidden dynamics of single 

neurons from noisy recorded signals. The capability of Bayesian signal processing that 

accomplishes the estimation process based on an a priori model (biophysical models for 

single neurons in our study), the so-called model-based technique, has been reported in 
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[19] and [20] to tackle several real-world problems, mostly in physics and robotics. The 

significance of elucidating the neural mechanisms of the brain from uncertain and 

incomplete electrophysiological recordings as well as their complex and highly nonlinear 

nature has triggered an urgent need for investigating advanced signal processing 

algorithms such as Bayesian approaches. As a consequence, applications of statistical 

signal processing algorithms such as particle filtering [21] and Kalman filtering [22] are 

ever increasing in computational neuroscience, particularly in the identification of the 

hidden dynamics of single neurons. 

 

1.2 Literature Review 

 

As mentioned earlier, due to the limitations of recording techniques, it is not possible to 

assess all the hidden dynamics and mechanisms underlying single neurons. There are 

several methods in the literature that employ biophysical models of single neurons to 

estimate unknown parameters and extract hidden dynamics of the neurons. We classify 

these methods into two major categories: 1) Optimization-based techniques and 2) 

Bayesian approaches.  

Optimization-based techniques generally employ a global search algorithm, often in 

combination with a local search method, to minimize an objective function that measures 

the discrepancy between the various features of the available experimental data and the 

model output [21]. There are several methods in the literature, such as those in [23-31], 

which are used for estimating the parameters of the different neuronal models, e.g., leaky 
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integrate and fire (LIF), Fitzhugh–Nagumo (FN), and Hodgkin-Huxley (HH). Several 

optimization methods have been used for different neuronal models. The most important 

ones are mentioned below. 

The authors of [32] used a gradient descent method to estimate the parameters of the HH 

model, including maximum conductances, time constants, threshold and the slope factor 

of activation curves. The particle swarm optimization (PSO) algorithm is employed in 

[26] to estimate the parameters of various spiking neuron models. A simulated annealing 

technique is used before running the automated fitting algorithm in [33] to reduce the 

exploration space. The authors of [34] compared different optimization methods for 

estimating the parameters of the HH model. It is shown in [34] that PSO and genetic 

algorithms might fail to find the correct parameters when the number of these parameters 

increases. More recently, the authors of [24] proposed a new variant of the differential 

evolution (DE) algorithm to globally estimate all the parameters of the HH model. 

It is to be noted that in optimization-based techniques, the fitness function plays a critical 

role in the estimation process. Different fitness functions for fitting experimental data are 

compared in [27, 28]. A multi-objective optimization approach that combines several 

error functions is proposed in [31]. Genetic algorithm is used in [31] to estimate the 

parameters of compartmental models of neurons, given a large set of experimentally 

measured responses of these neurons. The excellent results of this method, in terms of 

estimating the parameters of the HH model and reproducing spikes, suggest that the 

multi-objective optimization approach [31] could serve as the building blocks for 

biological simulations of large neural networks. 
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Although optimization-based techniques try to estimate the whole set of parameters of 

neuronal models, yet they all need several trials of the recorded data (membrane 

potential, for example) to fit their parametric model. However, the authors of [30] 

reported that the accuracy of such estimation methods grow with the number of recorded 

trials. It is also noteworthy that if the trial-to-trial variations of the neural dynamics, e.g., 

the membrane potential, is large, the optimization-based techniques cannot estimate the 

parameters correctly, and might result in biased estimations [35].  Therefore, these 

techniques can be efficient only if the dynamical noise in the neuron is sufficiently small 

and the recorded data variability is ignorable over trials. 

On the other hand, Bayesian approaches can efficiently estimate the parameters and track 

the dynamics of the neuronal models only from a single trial of recorded data. The main 

advantage of these methods is their capability of trial-to-trial tracking of the dynamics of 

neurons which, indeed, allows studying the stochastic behavior and understanding the 

information processing mechanism of neurons [36]. 

Bayesian approaches, as advanced statistical methods, have been widely used in real 

world applications, mostly in physics and robotics [20]. In the light of Bayesian signal 

processing, there are two major methods for extracting (tracking) and estimating the 

dynamics and intrinsic parameters of the neuronal models (especially for the HH model 

since it is the most detailed neuronal model) from noisy observation (e.g., membrane 

potential): (1) the Kalman filtering (KF) [18, 22, 36-38], and (2) the sequential Monte 

Carlo method (particle filtering) [21, 39]. The sequential Monte Carlo method (particle 

filtering [40]) is used in [39] to automatically smooth the noisy neurophysiological 

recordings (membrane potential) while inferring biophysically important parameters of 
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the HH model. In brief, the method in [39] is based on a standard expectation-

maximization algorithm [41]. The first step, namely, the E-step, includes smoothing 

along with inferring unobserved variables of the HH model. In the second step, the M-

step, new estimates of the parameters (maximum conductances) are then calculated so as 

to maximize the expected joint log likelihood of the observation and the inferred 

distribution over the hidden variables. The particle filtering algorithm associated with a 

robust estimation framework based on the Kitagawa’s self organizing state-space model 

is used in [21] to simultaneously estimate the parameters and the hidden dynamics of the 

HH neuronal model. The authors of [21] have shown that the whole set of the HH model 

parameters, including time constants, reversal potentials, maximum conductances and the 

states (membrane voltage, sodium and potassium activation/inactivation rates) can be 

accurately estimated even at a high level of the observation noise with about 900 particles 

and a smoothing lag of 100 (samples). Kalman filtering is another Bayesian approach that 

has already been used for controlling the dynamics of the reduced neuronal model [42]. 

The authors of [18] reported, for the first time, the capability of the unscented Kalman 

filtering (UKF) to assimilate dynamics of spiking neuronal systems based on the HH 

ionic model. The feasibility of such a UKF-based framework to overcome the limitations 

of the dynamic clamp [12, 14, 15], a technique for creating artificial synaptic 

conductances, is shown in [18]. It has been pointed out in [18] that the UKF approach of 

predicting the hidden states of the HH ionic model can be used to control neuronal 

activity and pathological cellular activity such as seizures. It is shown that by adding 

some new dynamics to the HH model such as the extracellular potassium concentration 

[18, 22], the UKF can effectively track this dynamic, which plays an important role in 
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seizure-like neurons. Assimilating seizure dynamics has been demonstrated in [22], 

where the UKF has been employed to track the dynamics of two connected neurons 

described by the HH model. Although such frameworks are mostly verified by simulation 

studies, they open a new window for neuroscientists to simultaneously track the 

dynamics and estimate the parameters of the detailed biophysical models such as the HH 

model.   

1.3 Motivation and Scope of the Thesis 

 

Considering that the advanced brain-imaging techniques are not able to elucidate all 

dynamics and parameters of a single neuron, investigation of robust and efficient 

computational algorithms which reveal the intrinsic parameters and hidden dynamics of 

single neurons is an urgent demand in the neuroscience community. A comprehensive 

study on the existing methods in the literature has shown that Bayesian approaches are 

not only faster and more robust than optimization-based techniques, but also capable of 

inferring the dynamics of a single neuron from a single trial of recorded data, e.g., the 

membrane potential in current clamp technique. In this regard, the main objective of this 

thesis is to develop efficient and reliable Bayesian-based algorithms for the parameter 

estimation and dynamic identification of single neurons.    

The first objective of the thesis is to develop the Kalman filtering (KF) algorithm for the 

most detailed biophysical model describing the behavior of a single neuron, the Hodgkin-

Huxley (HH) neuronal model. There are two types of unknowns that have to be estimated 

in the HH model: the constant intrinsic parameters of the neuron and the time varying 
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neuronal dynamics. In this thesis, both unscented and extended Kalman filtering 

algorithms for identifying the dynamics of the HH neuronal model are developed based 

on two estimation strategies, namely, dual and joint, to address this objective. 

The second objective of the thesis is inferring the excitatory and inhibitory synaptic 

inputs of a single neuron from a single trial of recorded membrane potential. Many 

existing methods in the literature can only estimate the trial mean of the synaptic inputs. 

Although particle filtering is recently used to infer these synaptic inputs, the distributions 

of these inputs should be known as the a priori knowledge, which is not the case in real 

neurons. We propose a novel recursive algorithm based on Gaussian mixture Kalman 

filtering that can effectively estimate the excitatory and inhibitory synaptic inputs from 

single trials of the membrane potential. 

The third objective of the thesis is to identify the synaptic input of a single neuron as well 

as its intrinsic parameters and hidden dynamics. This important task is introduced in this 

thesis, for the first time. To fulfill our objective, we develop a recursive algorithm based 

on Kalman filtering followed by the expectation-maximization technique.  

1.4 Organization of the Thesis 

 

The detailed organization of the remaining chapters of the dissertation is as follows.  

Chapter 2 presents the fundamentals of neural processes, which are necessary for a good 

understanding of the materials contained in the thesis. As the most important neural 

processes, action potential and synapses are explained in detail.  Furthermore, five levels 
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of neuronal modeling, from detailed compartmental model to simple black box model, 

are introduced. Finally, the most important simplified neuronal models that are widely 

used in the literature are described.  

Chapter 3 aims to reveal unobserved dynamics of a single neuron modeled by the HH 

neuronal model as well as its intrinsic parameters. First, a brief introduction on the 

Bayesian-based approaches in the literature is given. Then, the discretized version of the 

HH neuronal model and its state space representation are derived. Several algorithms 

including joint unscented KF, dual unscented KF, joint extended KF and dual extended 

KF are then developed. In order to provide a fair comparison between our proposed 

algorithms and the existing algorithm that is based on unscented Kalman filtering, 

different illustrative simulations are accomplished. Moreover, to verify the capability of 

the proposed algorithms in real world applications such as spike timing prediction, joint 

unscented KF and joint extended KF are applied to real data in order to predict future 

behavior of a real neuron.       

Chapter 4 considers the problem of inferring excitatory and inhibitory synaptic 

conductances from a single trace of recorded membrane potential. An introduction to the 

existing state-of-the-art methods that employ Bayesian approach to estimate the synaptic 

inputs is first given. A reasonable neuronal model that can reliably mimic the sub-

threshold activities of the membrane potential is introduced next. Furthermore, a general 

recursive framework for estimating time-varying inputs in the nonlinear systems is 

heuristically explained. Then, the Gaussian mixture Kalman filtering that can effectively 

estimate the excitatory and inhibitory synaptic inputs is derived for the neuronal model. 
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The performance of the Gaussian mixture Kalman filtering is compared with that of 

particle filtering, the most recent technique in the literature. 

Chapter 5 addresses the problem of reconstructing the synaptic input as well as 

estimating the intrinsic parameters and the hidden dynamics (of ion channels) of a single 

neuron modeled by the HH neuronal model from a single trace of noisy membrane 

potential. After a brief review on the related works in the literature, the problem of blind 

deconvolution of the HH neuronal model is introduced and formulated. Then, some 

necessary assumptions to ensure the feasibility of the problem solution are given. A novel 

recursive algorithm using the extended Kalman filtering followed by an expectation-

maximization algorithm is proposed to address the above mentioned blind deconvolution 

problem. Finally, some numerical simulations are provided to verify the accuracy and 

robustness of our proposed algorithm. 

 

Chapter 6 summarizes the study undertaken in this thesis and highlights its contributions. 

Some suggestions for further work based on the ideas and schemes developed in this 

thesis are also given. 
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Chapter 2 

 

Preliminaries 

Unlocking the mysteries of the brain requires profound understandings of the biological 

basis of the neural system. Advancements in biological and biophysical representations of 

the neural systems provide several valuable mathematical models mimicking the behavior 

of neurons. These neuronal models are the main tools for leveraging our understanding 

about the information processing of the neurons. Therefore, a general knowledge of the 

biological basis of the neural systems and the mathematical basis of the neuronal models 

is necessary for better understanding of the neural mechanisms underlying brain 

functions. Providing all such materials is beyond the scope of this thesis. However, a 

concise and informative introduction about the biological basis of a single neuron as well 

as the mathematical basis of the most common neuronal models is given here. This 

chapter, in fact, serves as background materials to help reading the dissertation due to its 

multidisciplinary feature. In this chapter, firstly, a brief review on neural processes 

including the generation of an action potential and synapses is provided. Secondly, a brief 

review of different levels of neuronal modeling is presented. Thirdly, the most common 

simplified neuronal models are explained.  
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2.1 Brief Review of Neural Processes 
 

2.1.1 Action Potential (AP) 

In this sub-section, the contribution of a single neuron on receiving, integrating and 

transforming information is considered from the neuroscience point of view. Neuron as 

the most fundamental component of the brain is a specialized cell for receiving, 

integrating and transmitting information. A typical neuron, as shown in Figure 2.1, 

comprises four major components, namely, (1) dendrite and soma (postsynaptic or input 

compartment) that receive the excitatory and inhibitory synaptic inputs, (2) soma and 

axon (integrative compartment) where the input signals are integrated (in soma) and the 

action potential is generated (in axon hillock), (3) axon (conductile compartment) where 

the action potential either is zero or has a maximum value (spike) and (4) axon terminal 

(pre-synaptic or output compartment) where the chemical neurotransmitters are released 

if an action potential occurs. 

 

 

 

Figure 2.1. Typical shape of a single neuron and its building compartments. 
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The sodium (Na
+
) and potassium (K

+
) ions are the ones which exist most across the 

cellular membrane of the neuron. Using approximately 50% of a neuron’s metabolic 

resources [43], the sodium/potassium gradient is maintained during chemical processes. 

In the rest state, concentration of Na
+
 inside the cell is higher and therefore three Na

+
 ions 

are transported outside the cell, while a Na
+
 is entering the cell. In contrast, the higher 

concentration of K
+
 outside the cell causes the transporting of two K

+
 ions inside the cell 

against a K
+
 outside the cell [44] (see Figure 2.2).  So, the concentration gradients are 

followed by swapping two K
+
 inside the cell for three Na

+
 ions outside the cell. 

 

 

Figure 2.2. How sodium and potassium ions move across the membrane (figure from [44]).  

 

 

Ions moving across the membrane are passing through the so-called ion channels. The 

fundamental mechanism underlying an action potential is shown in Figure 2.3. In brief, as 

described in [45], most of the sodium channels are closed in the rest state and the 
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membrane potential is determined primarily by the K
+
 Nernst potential

1
. The sodium 

channels open if the cell is depolarized (the membrane potential increases) above some 

threshold. This further depolarizes the cell and permits even more sodium channels to 

open, allowing more sodium ions to enter the cell and forcing the cell towards the sodium 

Nernst potential. However, the depolarization opens potassium channels, which lead 

potassium ions to exit the cell. As the membrane potential moves toward the potassium 

equilibrium potential, the cell hyperpolarizes. The refractory period occurs when the 

voltage-gated
2
 potassium channels close up again. During this time period, pumps 

exchange excess sodium ions inside the cell with excess potassium ions outside the cell 

[45]. This all-or-nothing process is called an action potential (AP). 

 

 

Figure 2.3. A voltage trace of a typical Action Potential (from [45]). 

 

                                                           
1
 Nernst potential for an ion is the resting potential at which the electrical and chemical driving forces 

cancel each other. 
2
 Voltage-gated channels are referred to the ion channels whose open-close gating probabilities are 

functions of the membrane potential.  
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Moreover, when pre-synaptic neurons fire, neurotransmitters are released and diffuse 

across the synaptic cleft where they bind to receptors on the postsynaptic neuron (see 

Figure 2.4).  So, the interaction between the neurotransmitters and the receptors can cause 

an excitatory post synaptic potential (EPSP) or an inhibitory post synaptic potential 

(IPSP), both of which, unlike the action potential, are passive.  Usually, a single EPSP is 

not sufficient to trigger an action potential and multiple EPSPs are required to generate an 

action potential at the axon hillock
3
 [46].  The IPSPs, that counter act the EPSPs, inhibit 

the likelihood of occurrence an AP. The interactions between the EPSPs and IPSPs can 

trigger a cell to fire an AP.  

 

 

Figure 2.4. Transmission of ions across the (chemical) synapse (figure from [44]). 

 

 

                                                           
3
 Axon hillock is a specialized part of the neuron that is connected to the axon. 
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2.1.2 Synapses 

There are two types of synapses in the brain, namely, chemical and electrical synapses. 

Neurons communicate to each other through synapses. In chemical synapses, this 

communication is accomplished by releasing some chemicals (message). These 

chemicals are referred to as neurotransmitters. In the electrical synapses, action potential 

of one neuron can directly fuse (pass) to another neuron and therefore no delay in 

information transformation occurs. It is to be noted that the electrical synapses (gap 

junctions) are rare in mammalian but can be found in other animals such as electric fish 

[46]. Figure 2.5 shows how the release of neurotransmitters through the chemical 

synapses causes two typical neurons to communicate.  

 

Figure 2.5. Two neurons are communicating through their chemical synapses. 

Synapse
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The process of transmitting information across chemical synapses is accomplished in 

three steps, as shown in Figure 2.6. In the first step, neurotransmitters are stored in the 

axon terminal. In the second step, they are transported to the pre-synaptic membrane 

wherein they can be released in response to an action potential. Finally in the third step, 

the neurotransmitters activate the receptors
4
 of the target cell membrane. If a 

neurotransmitter is able to activate the receptor of the target neuron and therefore 

influences its electrical excitability, it acts in only one of two ways: either to increase or 

to decrease the probability of producing action potentials in the target neuron. It is really 

interesting that despite the wide variety of synapses, they all convey messages of only 

two types: excitatory or inhibitory. As a result, the information that a single neuron 

receives is the combination of several excitatory and inhibitory messages, so called 

excitatory and inhibitory synaptic inputs, respectively.  

 

Figure 2.6. Three steps of chemical processes of neurotransmitters (figure from [44]). 

                                                           
4
 The receptors are ion channels selective to specific ions. When these receptors are active, they can receive 

the neurotransmitters released by another neuron. 



19 
 

2.2 Five Levels of Neuronal Modeling 
  

A brief review of different levels of neuronal modeling is presented in this section. 

According to the prestigious article [47], five levels of neuronal models are classified 

based on their complexities. They are: Level I - detailed compartmental model, Level II - 

reduced compartmental model, Level III - single compartment model, Level IV - cascade 

model, and Level V - black box model. 

 

2.2.1 Detailed Compartmental Model (Level I)  

The cable theory of Rall [48] is used to construct the compartmental model of a single-

cell neuron whose structure is described by anatomical reconstructions. In this level, the 

spatial structure of a neuron contributes to its dynamical behavior. Besides, as the 

voltage-dependent conductances are taken into account, the dynamics of a single cell are 

expressed by a high dimensional system of differential equations containing all spatially 

discretized dendrities. Such a system is nonlinear and time varying in view of the voltage 

difference between the membrane outside and the membrane inside the cell. One may 

have a better understanding about the complexity of such a system when, for example, a 

single neuron contains more than 1000 compartments. In fact, such a detailed model 

provides generating testable mechanistic hypothesis, e.g., simulation of Purkinje cells 

[49] or thalamocortical neurons [50]. Moreover, this level of modeling can be applied to 

predict the effects of extracellular electrical stimulation that is of high interest in deep 

brain stimulation used in the treatment of Parkinson’s disease [51]. However, the detailed 

model suffers from a major drawback. It has high computational complexity because of 

the large dimensionality and intricate structures. Therefore, this level of modeling has just 
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limited applications, e.g., neurons with simple structures and small networks. Figure 2.7 

shows how each segment (such as dendrite and axon) of a neuron is represented by an 

equivalent electrical circuit and consequently by differential equations. 

 

 

Figure 2.7. Level I modeling of single neurons (from [47]). Green arrows show the time-varying 

conductance.  

 

2.2.2 Reduced Compartmental Model (Level II)  

The class of reduced compartmental models with few dendritic compartments is very 

useful for large scale network simulations, such as the ones involving several classes of 

multi-compartmental cortical and thalamic neurons with more than 3000 cells [52]. This 

level of modeling not only can overcome the drawbacks of Level I model, but also can 

help to understand the somatodendritic interactions governing spiking or bursting [53].  

As an example, a two-compartmental model (see Figure 2.8) is used in [54] to show that 

the homeostatic plasticity can follow cellular learning rules which recalibrate dendritic 

channels densities to yield optimal spike encoding of synaptic inputs. In conclusion, 
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Level II neuronal modeling is a fair compromise between realism and computational 

efficiency [47].  

 

 

Figure 2.8. Example of Level II modeling including two compartments, each modeled by Hodgkin-Huxley 

formalism (from [54]). Different indices of g and E stand for different ion channels exist in the dendrite and 

the soma of a typical single neuron. 

 

2.2.3 Single Compartment Model (Level III)  

It has been more than 50 years since Hodgkin and Huxley proposed their model, named 

HH model, for generating the action potentials [55]. Although in this level of modeling 

the spatial structure of the neuron is not taken into account, the neuron’s various ionic 

currents which contribute to sub-threshold behavior and spike generations are considered 

precisely [47]. This level of modeling provides a good quantitative understanding of 
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many dynamical concepts including bursting, phasic spiking and spike-frequency 

adaptation [56]. Another advantage of the HH model is its potential to be generalized to 

explain more complex dynamics, e.g., calcium currents. Figure 2.9 shows a general 

electrical circuit representing the HH model that comprises sodium, potassium and leak 

currents. 

 

Figure 2.9. General HH model showing Level III modeling of neurons (from [47]) 

 

2.2.4 Cascade Model (Level IV)  

This level is a bridge between the system neuroscience and the neural network theory, 

and is based on the cascade structure of a linear filter and a non-linear operator. In the 

studies of sensory systems for the receptive field of a neuron and the transformation of its 

internal activation state into a firing rate, a model that is represented by convolving the 

time varying input with a linear filter and applying a rectifying non-linearity is normally 

used [47]. This level of modeling has the advantage of simplicity and efficacy due to its 

linear and nonlinear (LNL) cascade structure. Therefore, this level is an appropriate 

model to be integrated with signal processing algorithms. As an example, the authors of 
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[57] showed that this level of modeling can easily track the experimental data by 

correlating the neural response and the stimulus (white noise) [57]. Furthermore, some 

studies [58] and [59] have shown that the LNL cascade structure can be obtained by more 

naturalistic stimulation.  The block diagram of this level of modeling is shown in Figure 

2.10.   

 

Figure 2.10. Level IV modeling, the linear non-linear cascade model (from [47]). 

 

2.2.5  Black Box Model (Level V)  

This level of modeling is completely based on signal processing algorithms and is helpful 

in understanding the dynamics of a neuron without considering its biophysical 

machinery. As discussed in [47], this modeling may indicate general principles that 

explain, for example, the operating points of neurons and the adaptability of neurons to 

alter their responses once the input statistics, such as mean and variance, are modified. 

Generally speaking, in this level of modeling, a neuron is considered as a black box that 

receives a set of time dependent inputs, sensory stimuli or spike trains from other 

neurons, and responds with an output spike train in which the input-output relations are 

characterized by a probability distribution p(R|S); the probability that R (response) occurs 

y
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when S (stimulus) is present.  Figure 2.11 shows a general block diagram of this 

modeling. An example of this level of modeling in neuroscience theory is the efficient 

coding hypothesis in visual systems [60], i.e., neural systems are adapted to the statistical 

structure of their sensory inputs and encode such inputs optimally. Therefore, the 

principal mechanism behind computation in the visual cortex can be revealed by 

characterizing the statistics of the sensory environment.  

 

 

Figure 2.11. Level V modeling of single neuron (from [47]). 

In fact, basic computations, e.g., addition, subtraction, multiplication, as well as task-

specific computations, e.g., motion detection, and sound localization, which are 

accomplished by single neurons assess the information processing of single neurons. 

Several studies in the literature (see [47] for more detail) have shown the application of 

the aforementioned five levels of modeling to study such information processing of single 

neurons.  

2.3 Simplified Neuronal Models 
 

In this section, the most well-known simplified neuronal models, which mostly belong to 

the third and fourth levels of modeling (see Section 2.2), are briefly introduced.  
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2.3.1 Leaky Integrate and Fire (LIF) Model 

The LIF model, proposed by Louis Lapicque in 1907, is probably the best known 

example of a formal spiking neuronal model. This model, in its basic representation, is a 

RC circuit that is charged by an external current. The LIF can be expressed as,                                                     

                                                             I
R

V

dt

dV
C                                                 (2.1) 

where C is the capacitance representing the capability of the cell’s membrane to store 

electrical charges (ions), R is the leak resistance and V is the membrane potential, i.e., the 

difference between the voltage inside and the voltage outside the cell membrane. In LIF 

model, as shown in Figure 2.12, when the steady state solution of (2.1) is greater than a 

threshold, V is set to a maximal value that indicates the firing of a neuron. The electrical 

circuit representing the LIF behavior is shown in Figure 2.12.   

 

Figure 2.12. An electrical circuit representing the leaky integrate and fire model. 

Time (msec)
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Although this model seems simple, it can nicely mimic the sub-threshold activities of 

single neurons. It is worthy to note that this property of LIF makes it particularly useful 

for analyzing synaptic activities of neurons where the active channels (spiking) are 

pharmacologically blocked. This is the main reason that we are employing this neuronal 

model for inferring the excitatory and inhibitory synaptic conductances (see Chapter 4). 

Moreover, stronger and biologically more relevant extensions of LIF are the exponential 

integrate and fire model as well as adaptive exponential integrate and fire model (AdEx) 

[61].  

 

2.3.2 Fitzhugh–Nagumo (FN) Model 

The FN model was suggested by Richard Fitzhugh in 1961 and the equivalent circuit was 

created by J. Nagumo [62].  This model comprises two differential equations which 

describe a prototype of an excitable system (e.g., a neuron). The FN model is expressed 

as follows.                                                

                                                                         

)(

)(

cwbVa
dt

dw

IwVf
dt

dV
ext





                                        (2.2) 

where V is the membrane potential that allows regenerative self-excitation (via a positive 

feedback), w is the recovery variable that provides a slower negative feedback,  f(V) is a 

polynomial of third degree, a, b, and c are constant parameters, and Iext is the external 

stimulus to be injected to the neuron. If the amplitude of this stimulus exceeds a certain 

value (threshold), the membrane potential fires. In computational neuroscience, the FN 

http://en.wikipedia.org/w/index.php?title=Richard_FitzHugh&action=edit&redlink=1
http://en.wikipedia.org/wiki/Neuron
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model is considered as the two dimensional simplification of the HH model and is widely 

used in the literature ([63] and see [62] and references therein). The FN model has 

recently been modified using time-varying spiking threshold [63] which can compensate 

some of the limitations of this model. 

  

2.3.3 Morris-Lecar Model 

This model is introduced by Morris and Lecar in 1981 [64]. It can be interpreted as an 

extension of FN model to include voltage gated calcium channel with a delayed rectifier 

potassium channel [64]. This model is described as follows.                              

                               












T

wW

dt

dw

IEVgEVwgEVMg
dt

dV
C extLLKKCaCa

)(

)()()(

         (2.3) 

where the definitions of V, w and Iext are the same as in the FN model, gK, gCa and gL are 

the conductances of potassium, calcium and leak currents, EK, ECa and EL are the 

corresponding reverse potentials, and T∞(V) is the time constant for the potassium 

channel relaxation in response to the changes of voltage which can be given as follows. 

                                                        ]2/)[(sec)( 430 VVVhTvT                                (2.4) 

where V3 and V4 are constant parameters, and T0 is the time scale for the recovery 

process. The open state probability functions, M∞ and W∞, are given as: 
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where V1 and V2 are constant parameters. It is worthy to note that all of the parameters in 

the Morris-Lecar equations are experimentally measurable. Thus, this simple model can 

effectively mimic a wide range of phenomena, e.g., fast spiking and bursting, that occur 

in different excitable systems (see [64] for more details). 

 

2.3.4 Hodgkin-Huxley (HH) Model 

The Hodgkin–Huxley (HH) model, introduced by A. L. Hodgkin and A. F. Huxley in 

1952, describes how action potentials in neurons are initiated and propagated. It uses a set 

of nonlinear ordinary differential equations to approximate the electrical characteristics 

and dynamics of a single neuron. To provide a brief description of this model, consider 

the equivalent lumped circuit representing the HH model in Figure 2.13. As can be seen 

from this figure, the HH neuronal model contains three components [45]: (1) conductors 

(or resistors) representing the ion channels; (2) batteries representing the concentration 

gradients of the ions; and (3) capacitors representing the ability of the membrane to store 

the charge (see chapter 1 of [45] for more details). Each ion channel (K
+
 and Na

+
) in the 

HH model is characterized by a time varying conductor (gK and gNa) in series with a 

battery (EK and ENa) and the leak current is modeled by a constant leak conductor (gL) in 

series with a battery (EL). 
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Figure 2.13. Schematic representation of the HH neuronal model 

 

The HH neuronal model is the most detailed biophysical model to describe dynamical 

behaviors of a single neuron. In this model, the transmembrane potential, V = Vinside -

Voutside, of a single neuron can be described by the following differential equations [45]: 
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where CM is the membrane capacitance, and m, n and h are the gating variables 

considered as the dynamics of the HH model. The equations describing these dynamics 

are given below [45]. 
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It is clear from (2.7) that αq and βq (for q = n, m, h) are nonlinear functions of the 

membrane potential, V. It is to be noted that though we have used the known parameters 

for αq and βq as used in [18, 37, 39, 45, 65], they can be expressed in a general form. Let 

q = n, m, h be the gating variable represented by a first order differential equation as 

follows. 

                                                      
)(

)(
/

V

qVq
dtdq

q


                                                     (2.8) 

where q∞(V) and τq(V) are the steady state and the time constants of the gating variable q, 

respectively. The function q∞(V) is a sigmoid function of the membrane potential 

expressed as: 
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where sq and Vth(q) stand for the slope and threshold of the steady state curve, 

respectively, and 

 

                                                  
2

)(
cosh)(

)(1 qthq

qq

VVs
tV


                                  (2.10) 

 

with tq being time constant factor of the q. 

The HH neuronal model can mimic almost all the behaviors of a single neuron. This 

model, that is considered as the most biophysically detailed neuronal model, will be 

employed in Chapters 3 and 5 of the thesis.  
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2.4 Summary 

A brief review on biological processes underlying the generation of an action potential 

and synapses has been provided in this chapter. Then, different levels of neuronal 

modeling from detailed compartmental model to black box model have been described. 

Finally, the most common simplified neuronal models, namely, leaky and integrate fire 

(LIF), Fitzhugh-Nagumo (FN), Moris-Lecar, and Hodgkin-Huxley (HH), are explained. It 

is to be noted that the LIF model will be used in Chapter 4 of the thesis where inferring 

the excitatory and inhibitory synaptic inputs is of our interest. Furthermore, the HH 

neuronal model will be used in Chapters 3 and 5 where parameter estimation and 

dynamic reconstruction of the spiking neurons are investigated. 
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Chapter 3 

 

 

Dynamic Tracking and Parameter 

Estimation of Hodgkin-Huxley Neuronal 

Model 

 

 

3.1 Introduction 

 

Understanding the brain’s mechanisms relies on assessing the dynamics of its building 

blocks. Identification of the dynamics of a single neuron, the most important building 

block of the brain, is a challenging problem in neuroscience. The main reason is that 

there are several hidden dynamics and parameters in the neurons that are not measurable 

even using recent brain-imaging techniques. A general procedure for estimating these 

hidden variables is stimulating a neuron with a specific input (e.g., current injection) in 

different trials and recording the corresponding responses (e.g., the membrane potential). 

To match this input-output relationship, a reasonable neuronal model that can reliably 

mimic the neuronal behavior should be used. Then, estimation methods are used to 
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calculate the unknown parameters of the model. Figure 3.1 shows a block diagram 

representation of a system X whose parameters should be estimated such that the system 

output and the recorded membrane potential from a real neuron have maximum 

similarities. Hodgkin-Huxley neuronal model is the best candidate since it is the most 

biophysically-detailed model among other neuronal models introduced in Section 2.3. 

Since this model is represented by highly nonlinear differential equations, revealing the 

dynamics and estimating the parameters of this neuronal model is extremely complex and 

computationally expensive. 

 

Figure 3.1. Schematic representation of modeling a real neuron. System X is designed to track the dynamics 

of a real neuron. System X stands for a biophysical neuronal model, e.g., HH model. V, and V̂ express the 

membrane potential of the real and modeled neuron, respectively. I is the stimulus, e.g., injected current, of 

the neuron. 

 

As mentioned in Section 1.2, there are two categories of the algorithms that estimate the 

parameters and identify the dynamics of the single neurons, namely, optimization-based 

and Bayesian-based methods. It has been pointed out Chapter 1 that the Bayesian-based 

methods in general outperform the optimization-based techniques, since the latter cannot 

reveal the variability of the neuronal dynamics in different trials. In the category of 
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Bayesian approaches, unscented Kalman filtering (UKF) [18] and particle filtering (PF) 

[39] and [21] have already been derived for the HH neuronal model. In accordance with 

our descriptions in Section 1.2, the PF-based methods need a large number of particles to 

perform accurate estimation. However, KF-based algorithms are generally more useful 

for real-time applications such as dynamic clamp [18]. 

We investigate, in this chapter, the feasibility of the extended KF (EKF) in extracting 

time-varying dynamics and unknown biophysical parameters (maximum conductances) 

of a single neuron described by the HH neuronal model. Since the hidden dynamics and 

unknown parameters of the HH neuronal model have to be calculated simultaneously, 

two estimation strategies, namely, dual and joint strategies [66-68] are used in 

conjunction with both EKF and UKF algorithms to develop four techniques, namely, 

joint unscented Kalman filter (JUKF), dual unscented Kalman filter (DUKF), joint 

extended Kalman filter (JEKF) and dual extended Kalman filter (DEKF) for the HH 

neuronal model. The precision of these four algorithms as well as their speed and 

computational cost are also studied in order to determine the most appropriate KF-based 

algorithm for real time applications. The accuracy of the above mentioned KF approaches 

are verified under different signal to observation noise ratios. Furthermore, the JUKF and 

JEKF algorithms are extended to estimate various parameters of entire HH neuronal 

model including the kinetics of the ion channels. These algorithms are applied to real data 

recorded from the membrane potential of a single neuron to estimate its ion channel 

kinetics and consequently reveal the underlying dynamics. 
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3.2 State Space Representation of the HH Neuronal Model 

 

The Hodgkin–Huxley (HH) neuronal model has already been introduced in Section 2.3. 

To better describe the state space representation of the HH neuronal model, its governing 

equations are repeated below,  
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where CM is the membrane capacitance, and m, n and h are given in (2.7).

                                           

 

By defining vector x=[V,n,m,h]
H
, the above general HH model can be rewritten in state 

space domain as: 
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where F[x(t)] is the transient function. There are always sources of neuronal noise which 

may have originated from the membrane channel stochasticity, branch point conduction 

failure, and probabilistic transmitter release [18]. Therefore, as discussed in [18, 22], 

these uncertainties, the so called system noise, can be considered as an additive white 
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Gaussian noise. In view of the limitations of the imaging techniques [18], it is impossible 

to measure all the necessary biophysical variables describing a single neuron model. For 

instance, in intercellular electrophysiological recordings, the membrane potential is the 

only measurable variable. This measurement, on the other hand, may contain noise from 

the recording equipment, which is known as observation noise. Therefore, the HH model 

(3.1) can be expressed as a state space model that includes such uncertainties.  
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where C=[1,0,0,0], v and ε are the system noise and observation noise, respectively,  

IInj(t) is the external injected current and B=[1/CM ,0,0,0]
H
. From (3.1) and (3.2) one can 

easily see that F[x(t)] is highly nonlinear due to x(t). Therefore, the HH dynamical model 

represents a highly nonlinear and time-varying system. To estimate the dynamics ([V, n, 

h, m]) of the HH model, we employ the nonlinear versions of KFs, i.e., UKF and EKF. 

Obviously, as the membrane potential is not recorded continuously, the Euler 

discretization can be employed (see [18, 39]). Since the sampling frequency in 

electrophysiological recordings is sufficiently high (above 10 KHz), Euler discretization 

has been used in all the methods in the literature. However, investigation of the effect of 

other discretization strategies, such as zero-order hold, on the accuracy of the estimated 

states and parameters is an interesting topic which should be considered in future studies.  

Here, for the sake of simplicity for deriving the KF for the HH model, we assume that the 

sampling rate is equal to unity for the rest of this chapter. In this case, (3.3) can be written 

as:  
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We will discuss the actual sampling rate in Section 3.6 and consider how the sampling 

rate would affect our algorithms in Section 3.7. In order to tackle the state space equation 

(3.4) that involves a highly nonlinear function F[x], two main nonlinear versions of the 

KF will be described in the next section. Please note that the mathematical symbols used 

in this chapter for describing KF algorithms are consistent with those in [67]. Moreover, 

the symbol Σ (small sigma whose indices appear as subscript and superscript) is used in 

the thesis to represent the covariance matrix [69].  

 

3.3 Kalman Filtering (KF) 

Before describing the nonlinear versions of the KF which are employed in this chapter, a 

brief introduction about the KF is given here. Generally speaking, KF [70] uses a set of 

mathematical equations underlying the process model to estimate the current state of a 

system and then correct it using any available sensor measurements [70]. As the standard 

Kalman filtering equations are derived for linear time invariant systems, let us assume 

that a system S is represented by the following state space model. 
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where, similar to (3.4), x and y express the state vector and the observation, respectively, 

and A and C are the transition and observation matrices. Now, assuming that the 
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observation measurement y(k) and the state space model (3.5) are given, KF can be 

considered as an estimator that produces three types of outputs [19]. It can be thought of 

as a state estimator or reconstructor, i.e., it modifies the state estimation of x(k) from 

noisy measurements {y(k)}0:k. Second, KF can be considered as a measurement filter that, 

on its input, accepts the noisy sequence {y(k)}0:k and, on its output, produces a filtered 

measurement sequence, )/(ˆ kky . Finally, the processor can be thought of as a whitening 

filter that accepts noisy correlated measurements y(k) and produces uncorrelated or 

equivalent white measurements e(k) = y(k) - )/(ˆ kky , the so-called innovation sequence. 

KF contains two major steps for updating (modifying) the estimate of the state x(k) due to 

the arriving new observation y(k). The first step is the prediction step, in which the a 

priori estimates of the state and covariance matrix, denoted as 1|
ˆ

kkx  and 
1|ˆ 


kkx , are 

calculated as follows. 

                                                 )(ˆˆ
1|11| kBIA Injkkkk   xx                                          (3.6) 

                                                            vxx 


HAA
kkkk 1|11|
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where Σv  is the covariance matrix of the dynamical noise v. Then, the innovation e(k) = 

y(k) - )/(ˆ kky and its covariance matrix Σee(k) = C
1|

ˆ



kk

x C
H
+ σ

2
ε are calculated, where σ

2
ε 

is the variance of the observation noise (note that the dimension of the observation in our 

case is one). In the second step, i.e., the correction step, the a posteriori estimates of the 

state and covariance matrix, denoted as kk|x̂ and 
kk |

x̂ , are calculated as follows. 
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where 
k

Gx  is the so called Kalman gain and can be obtained by 
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3.3.1 Extended KF (EKF) 

In the EKF [19, 67], a first-order Taylor linearization of the nonlinear process and 

measurement models are used to derive the underlying prediction-correction mechanism. 

Using (3.4), the discretized HH model, a priori (predicted) state estimate and error 

covariance matrix can be calculated at each time bin k (Note that the time index k takes 

integer values only). Moreover, following the standard KF for the LTI systems, the 

correction step calculates a posteriori state estimate and error covariance matrix for this 

time instant. These variables will be used in the KF framework for the next time instant 

k+1, upon the arrival of new observation. Here a general mathematical description of the 

EKF is given. Using (3.4), a priori (predicted) state estimate can be written as: 
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The a priori estimate of the error covariance matrix is given by: 
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where
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x
, I is an identity matrix, and Σv is the covariance matrix of 

the process noise. Following the conventional KF for the linear time invariant (LTI) 

systems, the correction step calculates a posteriori state estimate as follows: 
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where 
k

Gx can be obtained by (3.10). Moreover, a posteriori estimate of the error 

covariance matrix can be updated as 

                                                        
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As can be seen from (3.9) and (3.14), 
kk|

x̂ are the same for the standard KF and EKF. 

The main difference between EKF and the standard KF in our case, since the observation 

matrix is constant, is in calculating the transition matrix 
1|ˆ kk

Ax  at each time step k. 

3.3.2 Unscented KF (UKF) 

In the UKF [71-73], a posteriori probability density function of the estimated state is 

approximated by a Gaussian distribution and the mean and covariance of the estimated 

system are propagated by specifying an ensemble of points, sigma points, that 

characterize statistical properties of the states. In fact, unlike the EKF that linearizes the 

nonlinear process function by using Jacobian matrices, the UKF uses the sigma points to 

capture the mean and covariance estimates. 

Given the state vector at time step k-1, one can compute a collection of sigma points and 

store them in the columns of the matrix χk-1 of dimension L×(2L+1), where L is the 
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dimension of the state vector. Please note that in the mathematical symbols used in this 

thesis, k stands for time and j (or i) points to the j
th

 (or i
th

) sigma point; therefore j

kχ 1  is a 

L×1 vector representing the j
th

 sigma point at time k-1. The set of sigma points and their 

associated weights are computed as follows (see [67] for more detail): 
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where LL  )(2  and   
j

L x is the j
th

 column of the matrix square root   xL

,   is a scaling parameter which determines the spread of the sigma points,   is a 

secondary scaling parameter and β is used to incorporate prior knowledge of the state 

distribution. To perform the prediction step, the set of sigma points are transformed by 

the process model, yielding a new set of points, z , where we have:  
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where i
z 1k

 stands for the i
th

 new sigma point at time k-1. Now the a priori state estimate 

and the error covariance can be calculated [67] as: 
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In order to perform the correction step, it is common to compute the so called augmented 

sigma points, 
χ , as follows: 
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Similar to the prediction step, the set of augmented sigma points are transformed by the 

observation function to create a new set of points, 
z  which can be stated as:   
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where C is a 1×L vector. Therefore, the predicted measurement is calculated by: 
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Then, the a posteriori state is estimated as: 
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Finally the a posteriori error covariance matrix is calculated by 

 
H

ky kkkkkkk
GG xxxxx 

1||
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3.4 State-Space Estimation Strategies 

Our objective is to estimate both the hidden states, x=[V,m,n,h]
H
, and the system 

parameters, w=[gNa, gK, gL]
H 

of the HH neuronal model (3.1) by using both the extended 

and unscented versions of the KF. To meet this objective, both the state prediction and 
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parameter estimation tasks need to be accomplished simultaneously. Therefore, we 

rewrite (3.4) as an augmented form to represent both the states and the model parameters:  
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where r(k) is the parameter uncertainty which can be modeled as a zero mean Gaussian 

noise with covariance matrix Σr [67]. The above form of the state space equations 

including unknown parameters as a new set of dynamics and augmented states is 

commonly used in the literature [67]. In order to handle (3.25) where an uncertainty 

exists in both the parameter estimation and the state prediction, some valuable methods 

such as Schmidt-Kalman filter [66] and the state-dependent approach [67] have been 

developed. Apart from the sequential approaches (e.g., KF), some iterative methods 

based on maximum-likelihood (ML) approaches [74] and expectation-maximization 

(EM) algorithms [41] have been derived for linear models [19]. Since these algorithms 

are not sequential, they are only suitable for off-line applications [19]. Two other 

strategies of KF, joint and dual estimation, are to be developed in this chapter to 

simultaneously estimate the unknown states and the parameters of the HH neuronal 

model from the sole noisy membrane potential. 

 3.4.1 Joint Estimation Strategy 

In the joint estimation strategy [66] and [68], the states and the parameters are combined 

together to form a joint state vector to be estimated through a single KF recursion. Thus, 

(3.25) is rewritten as 
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or equivalently, 
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3.4.2 Dual Estimation Strategy 

In dual estimation strategy [66] we run two parallel filters, one on the state and the other 

on the parameters. In this case, it is important to note that we have two different sets of 

equations for the state and the parameters as expressed below. 

State equation:     
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Parameter equation:  
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In the dual estimation strategy, the parameters, w, are treated as a known vector within 

the state filter (3.28) at any given time, k, while the states, x, are treated as a known 

vector in the parallel parameter filter (3.29). Actually, one can easily derive (3.29) by 
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considering that y2(k) depends on the previous value of the state vector x(k-1) and the 

current value of the parameter vector w(k). 

 

 3.5 Proposed Algorithms 

In this Section, using the general framework of the EKF [67]and UKF [72], we will 

derive four algorithms based on the joint and dual estimation strategies [66] and [68]for 

the HH model in the following subsections. 

 3.5.1 Joint Extended Kalman Filtering (JEKF) 

In the joint estimation strategy [67], as mentioned in Subsection 3.3.1, both the states and 

the parameters are estimated jointly, for which the derivative of the transition function 

has to be computed for both the states and the parameters which are represented by

)](),([ kkF wxx
 and )](),([ kkF wxw

 , respectively (see Appendix A for full derivation of these 

matrices). The linearized version of (3.27) can be written as,  
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   (3.30) 

Now, the JEKF algorithm can be itemized for the HH model in three steps as follows. 
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JEKF Algorithm 

1- Initialization: 
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For  ...,2,1k , perform time and measurement updates. 

2- Time update: 

)(
)7:5(ˆ

]ˆ[)4:1(ˆ
ˆ

131|1

1|11|1

1| kI
BF

Inj

kk

kkkk

kk 



















 







0x

xx
x

 

 

























 












 
















r

v

H

kkkkkkkk FFIFFI

kkkk

43

34

1|11|1441|11|144 ]ˆ[]ˆ[]ˆ[]ˆ[

1|11|

0

0

I0

xx

I0

xx

3343

wx

x

3343

wx

x



 

3- Measurement update: 
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In the JEKF algorithm, x indicates the augmented vector of the states and parameters. In 

particular, the first four components of vector x represent the states and the last three 

components represent the parameters. It is worthy to mention that the linearized form of 

the transition function is used just for computing the a priori covariance matrix rather 

than for the prediction step. 
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3.5.2 Dual Extended Kalman Filtering (DEKF) 

Similar to the JEKF, we need to derive the state and parameter equations by linearizing 

(3.28) and (3.29), namely, 

State equation:         
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Parameter equation:  
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The DEKF algorithm can then be itemized for the HH model in five steps as follows. 

DEKF Algorithm 

1- Initialization: 

 HLKNa ggg )0(),0(),0(ˆ
0|0 w  
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0|0

H
hmnvx  
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  

For  ...,2,1k , perform time and measurement updates. 

2- State time update: 
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4- Parameter time update: 
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In the DEKF algorithm, 
k

Gx  and 
k

Gw  represent the Kalman gain for the vector x and that 

for w at time k, respectively. 

 

3.5.3 Joint Unscented Kalman Filtering (JUKF) 

As mentioned in the joint estimation strategy, the unknown parameters w are considered 

as the augmentation of state x. Here, our objective is to apply the UKF to (3.27). The 

JUKF algorithm for the HH dynamical model is summarized below. 
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JUKF Algorithm 

1- Initialization: 

  Iggghmnv
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For  ...,2,1k , perform time and measurement updates. 

2- Calculating sigma points: 
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Note: 1kχ  is a matrix whose columns are 2L+1 sigma points and  
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column of the square root matrix. 

3- Updating time equation: 
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4- Augmented sigma points: 
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For i=0, …, 2L,
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In JUKF algorithm, W
(C)

 and W
(m) 

 are the weight for calculating the mean and the 

covariance of the sigma points, respectively, α determines the spread of the sigma points 

around its mean and is usually set to a small positive value,  is used to incorporate prior 

knowledge of the state distribution, L (=7) is the dimension of the state ( 0x̂ ), and 

  L with being the composite scaling parameter. 
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3.5.4 Dual Unscented Kalman Filtering (DUKF) 

As shown in the dual Kalman filtering strategy, the KF algorithm has been employed 

twice, one for the state prediction and one for the parameter estimation. The DUKF 

approach is described below.  

DUKF Algorithm 

1- Initialization: 
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For  ...,2,1k , perform time and measurement updates. 

2- Calculating sigma points for both states and parameters: 
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Note that Lx (=4) and Lw (=3) are the states and parameters dimensions, respectively. In 

addition, xxx L   and www L   where x  
and w  

are the composite scaling 

parameters.
 

3- Updating time equation for state x: 

For i= 0, …, 2Lx, 
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4- Augmented sigma points for state x: 
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5- Measurement update for state x: 
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6- Time update and sigma points for parameters: 
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7- Measurement update for parameters: 
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In DUKF algorithm, Wx
(m)

, Wx
(C)

, Ww
(m)

 and Ww
(C)

 are the weights for calculating the 

mean and covariance of the sigma points of the state vector x and those for parameters w. 
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It is to be noted that in DEKF and DUKF algorithms, 
kr

  can be set to a small ‘‘fixed’’ 

diagonal matrix (e.g., 10
-4

I), which may then be ‘‘annealed’’ towards zero as training 

continues (see chapter 5 of [67]). 

The performances of the various algorithms are studied in different conditions in the next 

section.  

 

3.6 Performance of the Proposed Algorithms 

In our simulation, an HH model with the same specifications as in [18] is used to 

generate the response of a spiking neuron (fast spiking) to an injected constant current. 

The HH model specifications are summarized in Table 3.1. 

It is to be noted that all the simulations were carried out by MATLAB where the true 

states ([V, n, m, h]
H
) of the HH neuron model are obtained by solving (3.1) using the 

“ode15” of MATLAB functions with 0.01 ms as the integration time step, while the 

membrane potential is sampled every 0.1 ms. Since this sampling rate is sufficiently high, 

no filter instability is observed for the KF-based algorithms. The stimulus, IInj = 0.35 

µA/cm
2
, with 20ms ≤ t ≤ 100ms, is considered as the injected current.  A zero mean white 

noise (considered as observation noise) with σ=21.81mV (SNR=0 dB) is added to the 

generated membrane voltage. The dynamic noise variance for [V, n, m, h]
H
 is respectively 

set to [0.01mV, 1e-4, 1e-4, 1e-4]
H
.  

In order to accomplish a fair comparison, the initial values of the model parameters, gK, 

gNa, gL, are the same as those in [18] which are slightly different from their actual values. 
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Our objective is to verify the feasibility of each of the aforementioned KF approaches to 

estimate the hidden states and unknown parameters of the above HH model from the 

noisy membrane potential as shown in Figure. 3.2. 

 

Table 3.1: HH model specifications 
 

Symbol Specification Description 

EL -54.387 mV Leakage reversal 

potential 

ENa 50 mV Sodium Reverse 

Potential 

EK -77 mV Potassium 

Reverse Potential 

CM 1 2/ cmF  Membrane 

capacitance 

gL 0.3 2/ cmmS  Leakage 

Conductance 

gNa 120 2/ cmmS  Sodium 

Conductance 

gK 36 2/ cmmS  Potassium 

Conductance 

 

 

Figure 3.2. Noisy observed membrane voltage (black solid line) versus the true voltage (red dashed line). 

Figure 3.3 (A-D) presents, respectively, the performances of JUKF, DUKF, JEKF and 

DEKF in tracking the dynamics and estimating the parameters of the simulated HH 

model.  
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Figure 3.3. Tracking the dynamics of HH neuron model using A) JUKF, B) DUKF, C) JEKF), D) DEKF. 

For each method, voltage V, K
+
 channel activation n, Na

+
  channel activation m, Na

+
 channel inactivation h, 

gNa, gK and gL are drawn. Black solid and red dashed lines indicate the true (original) and the estimated 

values. The observation noise standard deviation σ=21.81mV (SNR=0 dB). 
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It is clear from Figure 3.3 that the intracellular voltage (V), the hidden states (m, n and h) 

and the unknown parameters (gNa, gK and gL) have been reconstructed with excellent 

accuracy from the noisy observation. These figures demonstrate the promising 

performance of each method in estimating the states, [V, m, n, h], of the HH model when 

the initial values of parameters are sufficiently close to their true values. However, it is 

observed that gK and gL are always better estimated (converged) than gNa.  

In order to make a more precise comparison between these methods, we perform the 

second part of our simulation to investigate the performance of these algorithms at 

different levels of the observation noise (0-15 dB) by computing the root mean square 

error (RMSE) between the estimated variables and the corresponding true values. It is to 

be noted that initial values of the parameters, in this case, are randomly selected from the 

±25% neighborhood of the true values. This prior assumption about the parameter’s 

boundary is consistent with the results of [30] to ensure the identifiability of the HH 

model. The SNR ratio is calculated as below: 

2

2

10

}}){{(
log10






VEVE
SNRdB

 

where E{.} stands for the expected value and σ
2
 is the observation noise variance. It is 

noteworthy that though the measurement noise in patch clamp or dynamic clamp is quite 

small but here, similar to [21], our scope is to analyze the accuracy of the proposed 

algorithms even at high level of observation noise. Figure 3.4 (A-D) is drawn to show the 

RMSE of the membrane voltage, v, and the maximum conductances, [gNa, gK, gL]. As 

seen in Figure 3.4 (A-D), JUKF, JEKF and DEKF lead to better results in smoothing 

noisy membrane potential as well as estimating the maximum conductances than DUKF, 

especially at low SNR. While the sensitivity analysis of the maximum conductances in 



59 
 

the HH neuronal model is nontrivial [30], we aim here to calculate the estimation 

accuracy of these parameters for different SNRs.  

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 
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Figure 3.4. RMSE versus SNR for (a) V, (b) gNa, (c) gK and (d) gL. 

 

It is found that RMSE of gK and gL does not change considerably for different SNRs 

(except for JUKF algorithm); further, changes in the RMSE of gNa for different SNRs are 

more significant than those of gK and gL. Considering the RMSE of all maximum 

conductances as well as the membrane potential of the HH model, DUKF can perform as 

equally well as the other methods, when either the initial value of parameters are close to 

their true values (as we can see in Figure 3.3 except for the gNa) or the SNR is fairly high. 

Although the difference between JUKF, JEKF and DEKF is very small, JUKF and JEKF 

are more robust to the observation noise. Moreover, Figure 3.5 corresponds to the case 

when the initial values of the HH model parameters are not selected from the mentioned 

boundary (±25% of their true values). Although this example is an extreme case, it 

confirms that the KF-based algorithms still perform accurately. The estimated gNa is 

biased for all the algorithms, this is due to the observation noise because of which the 

algorithms underestimate the sharpness of spikes, and therefore underestimates the 

sodium current.  

 

(d) 
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Figure 3.5. Performance of proposed methods in estimating the parameters of the HH model for SNR = 10 

dB. The color map is drawn on the right hand side of each panel. 
 

The results of our other simulations, with different specifications for the HH model, 

confirm that the joint estimation strategy of the KF method performs better than the dual 

strategy especially for the UKF. The performances of JEKF and JUKF are almost always 

the same in all simulations. Furthermore, it is worth mentioning that JEKF is much faster 

than JUKF.  
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In order to provide a statistical analysis of the performance of each of the algorithms in 

estimating the maximum conductances (gNa, gK and gL), another simulation including 100 

trials, each lasting 200 ms, is conducted. At each trial, an Ornstein-Uhlenbeck (O-U) 

process (colored noise is filtered by 0.4/(1-0.9z
-1

)) is used as the stimulus, Istim (HH model 

specification is the same as table 3.1). The results for each algorithm (over 100 trials) are 

summarized in Table 3.2. 

Table 3.2: Statistical analysis of four mentioned algorithms. Mean ± std of each parameter over different 

trials is shown. 

 

 

As can be seen from this table, the estimates of gK and gL are unbiased (except for the 

DUKF), while the estimated gNa is biased for all the algorithms. Moreover, it is observed 

that the extended versions of the KF, both the joint and dual estimation strategies, as well 

as JUKF give approximately the same results in estimating both the parameters and the 

dynamics of the HH model. 

 

3.7 Discussion 

In addition to the above mentioned observations made from the results of the simulations, 

we now consider the performance of each of the KF algorithms from a signal processing 

point of view. EKF suffers, in general, from two drawbacks [75]. First, the derivation of 

the Jacobian matrices used for linearizing the nonlinear process and the observation 
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functions are computationally complex and difficult to implement. Second, this 

linearization may lead to filter-instability, if the sampling time is not sufficiently small. 

The first issue of EKF in the HH neuronal model is addressed in this thesis by 

analytically computing such matrices (see Appendix A). It is also easy to extend this 

procedure for the HH models with more dynamics such as calcium, and extracellular 

potassium concentration [18]. The second issue, namely, the sampling period, can be 

neglected since in electrophysiological recordings the sampling frequency is sufficiently 

high (about10 KHz - 25 KHz). Although UKF does not suffer from such issues, it is not 

always a better alternative than EKF in dealing with nonlinear systems. As an example, 

the authors of [75] conducted an empirical comparison between UKF and EKF when they 

are applied to human motion tracking for virtual reality in the presence of noise.  Both the 

analysis and experimental results in [75] indicated that UKF performs equally well as 

EKF does. Similarly in our simulation, the UKF and EKF demonstrated approximately 

equal performance especially in low SNRs. The authors of [75] reported that EKF is a 

better choice for estimating quaternion motion in virtual reality applications. Another 

important comparison between EKF and UKF algorithms in this thesis can be 

accomplished by taking the difference of the joint and dual KF strategies into account. 

This difference arises from the statistical dependency of the states, [v, n, m, h], and the 

parameters, [gNa, gK, gL], of the HH neuronal model in the joint estimation strategy, but 

not in the dual estimation strategy. In other words, the joint estimation technique allows 

explicit computation of the cross covariance of the states and the parameters of the HH 

model which is, however, zero in the dual estimation technique. On the other hand, the 

experiments performed in [76] show little difference between the two approaches. In 
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conclusion, EKF approaches, both the joint and the dual estimation strategies, 

demonstrate promising performance in tracking the dynamics and estimating the 

parameters of the HH model. One of the most important issues of tracking the HH 

model’s dynamics arise from the high level of the dynamical noise (process noise) rather 

than the observation noise. The authors of [18] and [37] selected the noise covariance 

matrices very carefully to yield the best results. However, in our simulation studies, 

although the variance of the dynamical noise is negligible, precise selection of the noise 

covariance matrix plays an important role in the convergence of the parameters and the 

dynamics. We believe that using adaptive algorithms such as [77], which iteratively 

update noise covariance matrices can significantly improve the performance of both the 

UKF and EKF based algorithms and make them more applicable even for HH models 

with high dynamical noise i.e., high level of uncertainties in the HH dynamics. 

The speed of the designed algorithms is of significant importance especially in some 

applications such as dynamic clamp [12], where the time required for reading the 

membrane potential and calculating the current to inject has to be less than the shortest 

time constant in a real neuron. This limitation can be problematic when the biophysical 

model is computationally intensive such as the HH model. Considering the problem we 

have addressed here, where there are seven unknown variables (15 sigma points), UKF is 

considerably faster than the particle filtering method in [21]. Moreover, the EKF-based 

algorithms (JEKF and DEKF) run faster than the unscented ones. One can conclude that 

UKF takes longer computation time than EKF because it has to handle all the sigma 

points. Therefore, the feature of fast implementation of the EKF approaches can 

compensate for the major limitation of the dynamic clamp technique. Furthermore, the 
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results of our simulations indicate that the performance of the EKF approaches is 

equivalent to that of the JUKF, although the EKF-based methods are much faster and 

therefore are more applicable in real time applications. 

 

3.8 Identification of Entire Ion Channels Kinetics of HH 

Neuronal Model 

Estimating the parameters and tracking the dynamics of the HH neuronal model have 

been done in Sections 3.2 – 3.5.  The algorithms proposed therein have been developed 

for a HH model with known kinetics
5
 [78, 79]. These kinetics, e.g., in dynamic clamp 

technique, can be measured experimentally [12], and therefore in this technique, as an 

example, tracking the hidden dynamics (ion channels) and estimating the maximum 

conductances of a single neuron from the recorded membrane potential is of the core 

interest. In such cases, i.e., neurons with known kinetics, our previously proposed 

algorithms, namely, JUKF, DUKF, JEKF and DEKF, are suitable to be employed. 

However, in some other applications, e.g., spike prediction [80], the objective is to find 

the best neuronal model that predicts the spike timing of a single neuron [81]. It is to be 

noted that simpler neuronal models have been widely used in the literature to address 

spike timing prediction. As mentioned in Sections 1.2 and 3.1, the HH neuronal model is 

the most biophysically detailed model that can properly mimic behavior of the spiking 

neurons. The critical question is why the HH neuronal model is rarely employed for spike 

timing prediction [81] (see also [25]). The answer relies on the complexity and highly 

                                                           
5
 Ion channels’ kinetics are referred to the gating variables in the dynamics of ion channels. 
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nonlinear structure of the HH model. Generally speaking, no prior knowledge about the 

ion channels kinetics of the HH model is available, and estimating the entire kinetics is 

nontrivial [81]. In order to apply the HH model to predict spikes of a neuron, all of its 

kinetics and intrinsic parameters, including the maximum conductances and the reversal 

potentials, must be inferred from the recorded membrane potential only. Successful 

methods for estimating the entire parameters of the HH neuronal model use several trials 

of different types of the injected currents in conjunction with the optimization based 

techniques (see [24] and references therein). However, in the category of Bayesian 

approaches where only one trial of the injected current is available, the particle filtering 

[21] is the only work in the literature that estimates the entire set of the HH model 

parameters.  

Our objective in this section is to extend our proposed algorithms in order to estimate the 

entire parameters of the HH neuronal model. Estimating such parameters provides better 

understanding about the dynamics of the ion channels. These hidden dynamics can be 

reconstructed from the noisy membrane potential. In this part, according to the 

appropriate performances of the JUKF and JEKF in our numerical simulations presented 

in Section 3.6, we develop these algorithms to estimate the entire set of the HH model 

parameters.  

Using (2.8), (2.9) and (2.10), and considering the entire parameters of the HH model to 

be unknown, the state and parameter vectors are respectively defined as:  x = [V, n, m, h],   

w = [gNa, gK, gL, ENa, EK, EL, Vth(n), Vth(m), Vth(h), sn, sm, sh, tn, tm, th]. All these variables 

have been already introduced in Section 2.3. According to these definitions for the state 
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and parameter vectors of the HH neuronal model, and in consistent with [21], the 

dynamics of the ion channels are expressed by the Langevin equation [82] as follows. 
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where n∞(V), m∞(V) and h∞(V) represent the steady state values of the gating variables n, 

m and h, respectively, and τn(V), τm(V) and, τh(V) are the corresponding time constants 

(see Section 2.3 for more details). Considering (3.1) and (3.33), the state space 

representation of the HH neuronal model including the entire set of parameters can be 

stated as follows. 
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where Γ[x(t)] is the transient function given by 
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where B = [1/CM, 01×3]
H
 and C = [1, 01×3]. Note that the transient function F[x(t)] in (3.2) 

was defined for a known kinetics, but in general, when the kinetics are unknown, (3.34) 

and (3.2) are equivalent. Furthermore, (3.30), the equation from which JEKF has been 

derived, can be written as: 
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where the derivative of the transition function with respect to the states, )](),([ kk wxx
 , 

and the parameters, )](),([ kk wxw
 , are calculated in Appendix A. 

And, (3.27), the equation from which JUKF has been derived, can be written as: 
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              (3.37) 

Now, JEKF and JUKF, in the same manner described in subsections 3.5.1 and 3.5.2, can 

be applied to (3.36) and (3.37), respectively, to track the hidden dynamics, x, and infer 

the entire parameters, w, of the HH neuronal model. The results of these algorithms for 

estimating the entire parameters of the HH model will be shown in the next section.  

 

3.9 Performance of JUKF and JEKF for Estimating Entire 

Parameters of HH Model   

In this part, the developed JEKF and JUKF algorithms for estimating the entire 

parameters of the HH neuronal model are verified in two experiments. In the first 
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experiment, the accuracy of these algorithms is checked within a simulation study. In the 

second experiment, the real data recordings from a single neuron are used to test the 

performance of the proposed algorithms. Before conducting these experiments, several 

points are to be clarified. There are some protocols for recording data from a single 

neuron using electrophysiological techniques. The most computational methods in the 

literature are developed for specific protocols [83]. In this thesis, due to the limited 

availability of such specific data recordings, our proposed methods are applied to 

estimate the entire HH model parameters of a regular spiking L5 pyramidal cell 

responded to an in-vivo-like current injection. The responses of this cell are recorded in 

current clamp mode. This data is provided from [84] wherein one can find all the 

instructions about the data recording procedures. Our main objective here is to verify the 

feasibility of the HH neuronal model to describe the spiking behavior of this neuron. To 

meet this objective, as mentioned before, the entire set of the HH model parameters has 

to be identified. To our best knowledge, this is the first time that both the unscented and 

extended KF algorithms are developed for the HH model to infer all its parameters.   

 

3.9.1 Numerical Simulation 

Here, a HH model with the parameters summarized in Table 3.3 is used to generate the 

response of a spiking neuron (fast spiking) to an injected current. This current is selected 

from the last 42.5 sec stimulus used in [84]. 200 ms of this stimulus (25 – 25.2 sec) and 

the corresponding generated membrane potential are shown in Figure 3.6.  
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Figure 3.6. Injected current (a) and membrane potential (b) of a neuron described in Table 3.3. 

 

Similar to Section 3.6, all the simulations were carried out by MATLAB where the true 

states ([V, n, m, h]
H
) of the HH neuron model are obtained by solving (3.35) using the 

“ode15” of MATLAB functions with 0.01 ms as the integration time step, while the 

membrane potential is sampled every 0.1 ms. A zero mean white noise (considered as 

observation noise) with σ=1.28mV is added to the generated membrane voltage. The 

initial values of the HH model parameters are mentioned in Table 3.3. Our objective is to 
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verify the feasibility of the JUKF and JEKF algorithms to estimate the entire HH model 

parameters from the noisy membrane potential. 

Figure 3.7 shows the results of the estimated states [V, n, m, h] of the HH model using 

JUKF. Moreover, other estimated parameters including the maximum conductances, the 

reversal potentials and the kinetic of the ion channels are presented in Table 3.3.   
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Figure 3.7. Estimated (dashed red lines) versus true (black sold line) dynamics of the HH neuronal model 

using JUKF, (a) membrane potential, (b) n, (c) m and (d) h. 
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Figure 3.8 shows the estimated states of the HH model using JEKF. The inferred 

parameters are also summarized in Table 3.3.  
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Figure 3.8. Estimated (dashed red lines) versus true (black sold line) dynamics of the HH neuronal model 

using JEKF, (a) membrane potential, (b) n, (c) m and (d) h. 
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Table 3.3. HH model parameters and the estimated values 

Parameter Unit Initial value Estimated value 

JEKF       JUKF 

True value 

gNa mS/cm
2
 30 13.38 15.57 12 

gK mS/cm
2
 10 3.89 2.24 3 

gL mS/cm
2
 0.5 0.12 0.02 0.1 

ENa mV 60 36.68 41.57 40 

EK mV -80 -72.81 -73.10 -72 

EL mV -70 -65.07 -63.22 -60 

Vth(n) mV -70 -63.36 -65.02 -65 

Vth(m) mV -45 -40.69 -38.73 -41 

Vth(h) mV -65 -52.98 -58.51 -55 

Sn - 1 0.06 0.10 0.08 

Sm - 1 0.09 0.09 0.1 

Sh - 1 -0.08 -0.07 -0.08 

tn msec 10 2.49 4.44 4 

tm msec 1 0.29 0.25 0.25 

th msec 10 8.54 4.89 8 

 

The inferred hidden dynamics using both JUKF and JEKF (see Figures 3.7 and 3.8) are 

nicely tracking their true values. Moreover, as can be seen from Table 3.3, all parameters 

of the HH neuronal model are estimated in a good interval of their true values using both 

JUKF and JEKF algorithms. In order to check whether the estimated parameters can 
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mimic the spiking behavior of the neuron (spike timing prediction), these parameters are 

used to reconstruct the membrane potential of the neuron. The reconstructed membrane 

potential using JUKF and JEKF are plotted in Figures 3.9 and 3.10, respectively.    

 

 

Figure 3.9. Reconstructed membrane potential (red dashed line) using JUKF versus true membrane 

potential (solid black line). 
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Figure 3.10. Reconstructed membrane potential (red dashed line) using JEKF versus true membrane 

potential (solid black line). 

 

It is clear from Figures 3.9 and 3.10 that the reconstructed membrane potential of the HH 

model using JUKF and JEKF algorithms can predict almost all spikes (except one) of the 

neuron. More importantly, the sub-threshold activity of the membrane potential is nicely 

tracked by both methods. This highlights the capability of the proposed algorithms for the 

HH neuronal model to predict not only the spike timing of the neuron but also estimate its 

sub-threshold activities. It is worth mentioning that these activities carry important 

information about the synaptic inputs of the neuron. 
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3.9.2 Real Data 

As mentioned before, the real data is provided from [84]. This data is prepared for a 

competition (Challenge A) supported by EPFL to verify the performance of different 

neuronal models for predicting the spike timing of a single neuron with regular spiking 

from L5 pyramidal cell of a 14-day-old Wistar rat [84]. The rat was decapitated, its brain 

was quickly transferred to a slicing chamber filled with iced artificial cerebrospinal fluid 

(ACSF), and 300 mm thick slices of the primary somatosensory neocortex were prepared  

for recording (see [85] and [86] for more details). 

Although the neuronal models built for this data set [83] have generated good 

quantitative predictions of the future activity of the tested neuron under temporally 

structured current injection [83], it is in general difficult to compare the advantages of 

various models and algorithms since each model is designed for a different set of data. It 

is to be noted that the HH neuronal model was not used for this competition. Here, we 

check the feasibility of the JUKF and JEKF algorithms in estimating the entire set of the 

HH model parameters underlying this neuron and reconstructing its ionic dynamics. 

Furthermore, the estimated parameters are used to reconstruct the membrane potential. 

As mentioned before, our goal is not to compete with other existing algorithms that are 

developed only for predicting the spike timing of the neuron. Our main objective is to 

highlight the feasibility of the mentioned algorithms to estimate the entire parameters of 

the HH neuronal model from real recorded data. It is noteworthy that the hidden 

dynamics of the HH model that can be reconstructed using the proposed algorithms can 

elucidate important information about the dynamics of the ion channels of the neuron.    
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Figure 3.11 shows the selected part of the injected current and the corresponding 

recorded membrane potential used for the algorithms to be accomplished.  

 

 

 

 

Figure 3.11. Injected current (a) and membrane potential (b) of a real neuron 
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the algorithms, JUKF and JEKF are run for several segments of the data, each segment 

contains 200 ms, and then the estimated parameters are averaged over these segments. 

These values are then employed as the initiations for the JUKF and JEKF algorithms to 

estimate the entire parameters of the HH model over the whole length of the selected data 

shown in Figure 3.11. The initial and estimated values of each algorithm are summarized 

in Table 3.4. Now, one can reconstruct the membrane potential of the neuron using the 

estimated parameters. The reconstructed membrane potentials from the estimated 

parameters of JUKF and JEKF methods are shown in Figures 3.12 and 3.13, respectively. 

 

Figure 3.12. Reconstructed membrane potential of a neuron using JUKF (red dashed line) versus the 

recorded membrane potential (solid black line) of a real neuron. 

 

Figure 3.13. Reconstructed membrane potential of a neuron using JEKF (red dashed line) versus the 

recorded membrane potential (solid black line) of a real neuron. 
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Table 3.4. Initial values and estimated parameters of the HH neuronal model 

Parameter Unit Initial value Estimated value 

JEKF       JUKF 

gNa mS/cm
2
 14 16.65 19.72 

gK mS/cm
2
 3 5.24 2.55 

gL mS/cm
2
 0.10 0.10 0.01 

ENa mV 20 24.23 23.43 

EK mV -66 -68.17 -65.80 

EL mV -48 -46.39 -45.91 

Vth(n) mV -56 -53.34 -56.22 

Vth(m) mV -43 -43.07 -42.10 

Vth(h) mV -54 -53.82 -48.05 

Sn - 0.09 0.10 0.08 

Sm - 0.32 0.34 0.52 

Sh - 0.13 0.15 0.38 

tn Msec 5.80 7.32 5.78 

tm Msec 0.66 0.69 0.63 

th Msec 8.55 8.45 7.83 

 

 

As can be seen from Figures 3.12 and 3.13, both algorithms can approximately generate 

all the spikes the real neuron does. In order to better observe the temporal resolution and 
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the shape of the reconstructed spikes, one segment of the above figures, between 17.80 

sec – 18.10 sec, is zoomed in and shown in Figure 3.14. 

 

 

 

 

Figure 3.14. Reconstructed membrane potential form the estimated parameters of the HH neuronal model 

using (a) JUKF and (b) JEKF 
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These figures demonstrate that the HH neuronal model can predict the spike timing of a 

real neuron under temporarily structured stimulus (the stimulus used for the recorded 

data). More importantly, the ion channel dynamics of the neuron, namely, the dynamics 

of the potassium and sodium currents, can be identified using the proposed algorithms. 

The corresponding hidden dynamics, namely, n, m and h, are reconstructed using both 

JUKF and JEKF algorithms and shown (for the mentioned time period) in Figures 3.15 

and 3.16, respectively.    
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Figure 3.15. Reconstructed dynamics (a) n, (b) m and (c) h of a real neuron using JUKF 
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Figure 3.16.  Reconstructed dynamics (a) n, (b) m and (c) h of a real neuron using JEKF 

 

As can be observed from Figures 3.15 and 3.16, the hidden dynamics of a real neuron can 

be revealed by applying JUKF and JEKF algorithms to HH neuronal model. These 

dynamics describe how ion channels of a real neuron change in response to the injected 

current. This is the main advantage of the HH neuronal model in comparison with other 

models that only predict the spike timing of the neuron. As mentioned before, no spike 

prediction based on detailed biophysical neuronal model was accomplished in the 

mentioned competition [81]. Since our objective was verifying the feasibility of JUKF 

and JEKF for estimating the entire parameters of the HH neuronal model from the 

recorded membrane potential of a real neuron, and highlighting the capability of these 

algorithms in identifying the hidden dynamics of a real neuron, no quantitative 

comparison between our methods and existing methods in the literature has been done. 

Finally, it is to be noted that the existing methods in the literature only predict the spikes 

and cannot reveal the dynamics of the neuron.    
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3.10 Summary 

A comprehensive study of different types of KF methods, namely, JUKF, DUKF, JEKF 

and DEKF, and their application to predict the hidden states and estimate the unknown 

parameters of the HH neuronal model, have been presented in this chapter. All the 

methods have been mathematically justified. Simulation results have demonstrated the 

high accuracy of the proposed methods (particularly JUKF, JEKF and DEKF) in the 

prediction and estimation of the hidden states and the unknown parameters of the HH 

neuronal model. In particular, the EKF-based methods exhibit a performance equivalent 

to that of JUKF, especially for high SNRs ( > 5dB). The KF-based algorithms (as well as 

particle filtering) provide a possibility of trial-to-trial tracking of the dynamics of the HH 

model, which would be impossible using conventional methods. The results of our 

simulations have indicated that the performance of the EKF approaches is equivalent to 

that of the JUKF although the EKF-based methods, especially JEKF, are much faster and 

therefore are more applicable in real-time application such as dynamic clamp. Moreover, 

JUKF and JEKF have been developed for the HH model to estimate its entire parameters 

including maximum conductances, reversal potentials and ion channels kinetics. In order 

to verify the feasibility of these methods in estimating the entire parameters of the HH 

model, two experiments have been conducted. The accuracy of developed JUKF and 

JEKF has been confirmed in a simulation study. Moreover, the results of applying these 

algorithms to real data have indicated the capability of these algorithms in revealing the 

ion channels’ dynamics of a real neuron.   
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Chapter 4 

 

 

Inferring Excitatory and Inhibitory 

Synaptic Inputs 

 

 

4.1 Introduction 

 

Time-varying excitatory and inhibitory synaptic inputs govern neuronal activities and 

convey information in the brain. Interaction of these inputs constructs the shape of the 

receptive fields and can elucidate the synaptic mechanism underlying the functional 

activities of neurons. Therefore, inferring synaptic inputs from neuronal recordings is an 

important topic of interest in neuroscience [87-90] and [91]. In many cases, intercellular 

recordings of membrane potential (or current) under pharmacological blockade spiking 

activities are used to estimate synaptic inputs. Estimating synaptic inputs based on the 

averaging of many trials and linear regression fitting, which is commonly used, is not 

always the best methodology because the trial-to-trial variations of synaptic inputs are 

ignored. The significance of such variations in understanding the neuronal mechanisms 

(especially spontaneous) of the brain activity and their key roles in information 
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processing are well reviewed in [92]. Figure 4.1 shows the problem of inferring 

excitatory and inhibitory synaptic inputs from recorded membrane potential in a typical 

biological neural network. In this figure, each neuron is connected to its neighbor and 

receives excitatory and inhibitory synaptic conductances (or inputs) from other neurons 

(which do not belong to the mentioned network).  

 

 

 

 

Figure 4.1. Inference of the excitatory and inhibitory synaptic inputs (or equivalently synaptic 

conductances) of a neuron from recorded membrane potentials in a typical biological neural network. α
ij
 

represents the coupling weight between the i
th

 and the j
th

 neurons (effective from neuron i to j), gsyn(exc) 

and gsyn(inh) respectively show the excitatory and inhibitory synaptic conductances received by the i
th

 

neuron.   
 



89 
 

As mentioned in Chapter 3, Bayesian-based methods provide the capability of trial-to-

trial tracking the dynamics of a single neuron. Furthermore, as will be seen in Section 

4.2, the excitatory and inhibitory synaptic conductances can be considered as the 

dynamics of a single neuron. In this regard, it is necessary to mention two recent studies 

[38] and [93] that have used the well-known Bayesian approach to infer the synaptic 

conductances from single trial of recorded membrane potential. In both studies, 

promising results were reported in low observation noise. Kobayashi et al. [38] 

considered the Ornstein-Uhlenbeck stochastic model with time-dependent mean and 

variance as the neuronal model. Kalman filtering (KF) was then used to track these 

statistical moments from recorded membrane potential. Paninski et al. [93] used a 

compact neuronal model associated with two differential equations representing the 

dynamics of the excitatory and inhibitory synaptic conductances. Then, the sequential 

Monte-Carlo method or particle filtering (PF) was derived for filtering/smoothing the 

dynamics of the model. Finally, an expectation-maximization (EM) algorithm, both in 

parametric and non-parametric manner, was used to infer the time-varying mean of the 

synaptic conductances. Since the above-mentioned studies used the Bayesian approach, 

the synaptic input’s distributions have to be known as a priori knowledge. This is the 

major theoretical drawback of these methods, since synaptic distributions are unknown in 

real neurons. Moreover, Kobayashi et al [38] assumed that all excitatory or inhibitory 

synaptic weights are identical in order to obtain an explicit relation between the 

excitatory/inhibitory synaptic inputs and the mean and variance of the total input current 

(sum of excitatory and inhibitory inputs). However, this assumption does not necessarily 

hold in real neurons. 
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The difficulty in estimating the time course of both excitatory and inhibitory synaptic 

inputs from only a single trial of recorded data as compared with other conventional 

methods (averaging and estimating the mean of synaptic inputs) is that the problem is 

underdetermined, since two unknown variables have to be estimated at each time instant. 

In order to overcome this difficulty, we propose, in this chapter, a robust recursive 

algorithm, based on Gaussian mixture Kalman filtering (GMKF), for filtering/smoothing 

the dynamics of a compact neuronal model (including synaptic conductances) followed 

by an EM algorithm to infer the statistical parameters of such synaptic inputs [35, 94]. 

Our methodology provides more degrees of freedom for these inputs by estimating their 

distributions with a Gaussian mixture model (GMM). As we are dealing with Gaussian 

distribution for each mixand, KF is considered optimal, which is also faster and easier 

than the PF approach [93]. Moreover, we will prove that the least square (LS) estimation 

technique that is commonly used in the literature is a biased-estimator for the time-

varying synaptic inputs. This drawback of the LS method may challenge our 

understanding on the balance of excitatory and inhibitory synaptic conductance [87]. 

 

4.2 A Neuronal Model Including Excitatory and Inhibitory 

Synaptic Inputs 

As already pointed out in Section 2.1, despite the wide variety of synapses in the brain, 

they all convey messages only in two types: excitatory or inhibitory. In fact, excitatory 

synaptic inputs increase the probability of producing action potentials in the target 

neuron, while the inhibitory synaptic inputs reduce that probability. In order to consider 
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the influence of the excitatory and inhibitory synaptic inputs on a single neuron, a 

reasonable neuronal model similar to that of [93] is employed here. This neuronal model 

represents the dynamics of a single neuron that receives synaptic inputs from other 

neurons. The observation is the sub-threshold membrane voltage where the active 

channels are pharmacologically blocked. This model can be expressed as follows. 
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where V, gE and gI are the dynamics of the neuron indicating the membrane potential and 

excitatory and inhibitory synaptic conductances, respectively, w(t) is white Gaussian 

noise of variance σ
2

w, NE(t) and NI(t) are the instantaneous excitatory and inhibitory 

synaptic inputs to the neuron at time step t [6, 65, 93], respectively, and dt is the time bin 

that may differ from the voltage recording sampling time [93]. Note that the time index t 

takes integer values between 0 and T, where T×dt is the entire (physical) time of 

recording. We assume that these time steps are equidistant. Similar to [93] and [38], the 

reversal potentials EL, EE, and EI, the leakage conductance gL, and the synaptic time 

constants τE and τI are known. 

Our objective in this chapter is to assess the time trace of the excitatory and inhibitory 

synaptic conductances, gE and gI, as well as the corresponding synaptic inputs NE and NI 

from noisy membrane potential using the known Bayesian approach.  To optimally 

reconstruct the time course of the excitatory and inhibitory synaptic conductances, we 
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have to determine the probability distributions of the corresponding synaptic inputs, as 

the a priori knowledge in the Bayesian approach. Most of previous studies used Poisson 

distribution as the distribution of the synaptic inputs [38] (see also [93] that derives PF 

for the exponential distribution). Here we use a weaker assumption about the 

distributions of the synaptic inputs, that is, the probability distribution function of the 

synaptic input can be estimated by a finite number of weighted Gaussians — Gaussian 

mixture model (GMM). Moreover, by identifying and tracking each Gaussian component 

with KF, we propose a general GMKF-based algorithm. The probability distribution 

functions of the excitatory and inhibitory synaptic inputs are given by 
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where )(tμ
jE  and )(tμ

jI  are, respectively, the mean of the excitatory and inhibitory 

inputs at time t that belong to the j
th

 mixand ( }:1{ Gj ). Here, G is the number of 

mixands. Similarly, )(t
jE  and )(t

jI  are the time-varying variances of these inputs at 

time t, and αj is the weight for the j
th

 mixand. Our goal is to estimate NE(t) and NI(t) in 

(4.1) by using the GMM in (4.2). To this end, we use extended Kalman filtering (EKF) to 

estimate the dynamics of (4.1) followed by the well known EM algorithm to infer the 

statistical parameters of the synaptic inputs, )(tμ
jE , )(tμ

jI , )(t
jE , and )(t

jI  in (4.2). 

By using these statistics as the a priori knowledge, we repeat our algorithm until no 

considerable changes in the estimated dynamics occur. 
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4.3 Inferring Time-Varying Excitatory and Inhibitory 

Synaptic Conductances 

As mentioned in Section 4.2, we would like to infer the excitatory and inhibitory synaptic 

conductance, or equivalently the synaptic inputs, only from noisy membrane potential. 

Moreover, it is previously discussed in Section 4.1 that the well-known least square (LS) 

method, belong to the optimization-based category, is widely used in neuroscience. This 

technique for inferring the excitatory and inhibitory synaptic conductances is presented in 

subsection 4.3.1. Moreover, it is shown there that the LS is a biased estimator and not 

able to track trial-to-trial variability of the synaptic inputs. However, trial-to-trial 

estimating these inputs from noisy membrane potential can reveal the drivers of neurons 

and play an important role in our understanding of information processing in neuronal 

circuits. In subsection 4.3.2, we present a general recursive framework for the 

identification of nonlinear and time-varying systems based on which our methods are 

proposed.  

4.3.1 Least Square (LS) Method 

Here we show that the LS estimation of the synaptic conductances is biased if their 

variations are correlated with those of the membrane potential. From (4.1) we can easily 

show that the dynamics of membrane potential during the blockade of sodium channels 

(no spikes) satisfy:                                                                                  

                               IVVgVVgVVg
dt

dV
C IIEELLM  )()()(                          (4.3) 
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where CM  is the membrane capacitance, and I is the external input. We assume that the 

excitatory/inhibitory synaptic conductances, gE and gI, are stochastic variables and denote 

their trial-means by 
Eg and 

Ig , and trial-to-trial variations by ∆gE ξE and ∆gI ξI, where 

∆gE and ∆gI are respectively the amplitudes of variations in excitatory and inhibitory 

synaptic conductances, and ξE and ξI are the corresponding stochastic parts modeled by 

white Gaussian noise of zero mean and unit variance, i.e., the assumption that the 

excitatory and the inhibitory synaptic conductances are independent. We also denote the 

trial-mean and the trial-to-trial variation of the membrane potential by V and ∆V ξV (ξV, 

that is correlated with ξE and ξI, is modeled by Gaussian noise of zero mean and unit 

variance), respectively. With these notations the trial-mean of the membrane potential is 

described by:  

                                      IVVgVVgVVg
dt

Vd
C IIEELLM  )(ˆ)(ˆ)(                 (4.4) 

where I is the trial-mean of the external input and the LS estimation of the excitatory and 

inhibitory conductance is given by (see Appendix B for more detail): 
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where Eĝ and Iĝ  are the estimated excitatory and inhibitory synaptic conductances, 

respectively. The interpretation of (4.5) is: the LS estimation is biased if the trial-to-trial 

variation of the synaptic conductances and the membrane potential are correlated, which 

is usually the case for current-clamp recordings (recording membrane potential via 

clamping the injected current in different levels). This bias is negligible if the fluctuation 
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of the synaptic conductance or the membrane potential is small. For example, fluctuation 

of the membrane potential could be kept small in voltage-clamp (VC) recordings [87], 

although perfect control of the membrane potential along a spatially extended neuron is 

often difficult [91, 95]. In the special case where excitatory and inhibitory synaptic 

conductances are independent and changing much slower than the dynamics of the 

membrane potential, (4.5) is simplified as: 
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This result indicates that the LS method underestimates the excitatory and inhibitory 

synaptic conductance. Furthermore, if we denote by <•> the temporal-average of the 

function represented, the LS estimation of the covariance between excitatory and 

inhibitory conductance differs from the truth by: 
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Note that this difference is always positive because of the concavity of 1/x function (see 

Appendix B). This means that the LS method overestimates the excitatory and inhibitory 

covariance in the above case if the fluctuation of the synaptic conductance is small. 
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4.3.2 General Recursive Framework  

A general recursive framework for identification of nonlinear time-varying systems is 

schematically drawn in Figure 4.2. It tracks the hidden dynamics and estimates the 

(statistical) parameters of a dynamical system, S, which is defined as: 

                                                     
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where F and H are the transition and observation functions, respectively, and v(t) and ε(t) 

are the system noise (or the unknown stochastic inputs) and the observation noise, 

respectively. In Figure 4.2, θ stands for the statistical parameters of v and ε, e.g., the 

mean and variances. The objective of the recursive algorithm shown in Figure 4.2 is to 

estimate/track the dynamics of S as well as infer the statistical parameters of the 

stochastic sources v and ε. Although this framework has been used in [65, 93], we show 

its effectiveness and usefulness in estimating both the hidden states of a system (in a 

state-space model as well as those modeled as convolution relationship) and the statistics 

of its input. The recursive algorithm begins with an arbitrary initiation followed by 

filtering/smoothing steps (2 & 3). These filtering/smoothing steps are necessary to 

identify the hidden dynamics of S. Accomplishing this step and calculating the statistics 

(mean, variance, etc.) of such dynamics, the parameters of the stochastic sources can be 

inferred by using an appropriate optimization technique, e.g., the expectation-

maximization (EM) algorithm. Since these parameters construct the initial values of the 

next iteration, the algorithm can stop with an appropriate criterion. In the next section, we 

develop our proposed algorithms based on this framework. 
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Figure 4.2. Schematic representation of the general recursive framework for tracking the dynamical states 

and estimating the time-varying stochastic inputs represented by system (4.7), where x is the state of the 

system and y is the observation. Here, k and θ0 are the iteration number and the initial values of the 

statistical parameters, respectively. X and Y are abbreviations for the entire samples of x and y over time, 

i.e., X=x(0:T) and Y=y(0:T). θ is the unknown statistical parameters of the system noise. 
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4.4 Gaussian Mixture Kalman Filtering 

In this section, we propose a novel method based on Gaussian mixture Kalman filtering 

(GMKF) that not only overcomes the aforementioned limitations of the LS method, but 

also gives the opportunity of trial-to-trial estimation of the excitatory and inhibitory 

synaptic conductance. We show that our proposed algorithm requires fewer assumptions 

than the recent proposals [93] and [38] that also provide trial-to-trial estimation of 

synaptic conductance. In particular, the proposed technique outperforms that of [93] due 

to its ability of estimating an unknown synaptic distribution using Gaussian mixture 

model (GMM). 

 Let x(t)= [V(t), gE(t), gI(t)]
H
 denote the vector of neuron dynamics at time t, where the 

superscript 
H
 represents the matrix transpose operation. The dynamical system in (4.8) 

can be rewritten as:  
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Here, C is the observation vector, [1,0,0], ε is the observation noise of variance σ
2

ε, and 

the distribution of the system noise (dynamical noise) vt=[w(t), NE(t),NI(t)]
H
 is a GMM 

containing G mixands. 
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where αj is the probability of selecting the j
th

 mixand, and NE and NI, which are of our 

interest, describe excitatory and inhibitory synaptic inputs, respectively. Since the 

distribution of the system noise is a mixture of Gaussians, one may simply use KF for 

each mixand (recall that KF is an optimal filter when the system noise is Gaussian). The 

major drawback of this approach is that the number of Kalman filters required to estimate 

the conditional probability p(x(t)|y(0:t)) increases exponentially with time [96]; therefore, 

the computational cost of this approach becomes very heavy. However, to eliminate this 

drawback, we use a parallel dynamic state space and resampling approach [96]. The aim 

of this approach is to keep a constant number of Kalman filters for estimating the 

conditional probability p(x(t)|y(0:t)) upon the arrival of a new observation at t. In this 

regard, the conditional probability p(x(t)|y(0:t)) is approximated by K filters. Then, it is 

obvious that K×G Kalman filters are required to represent p(x(t+1)|y(0:t+1)) (see 

Appendix C for more details). Using a resampling technique, K filters are again selected 

to approximate the later probability; hence, the number of filters remains constant at the 
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arrival of each new observation. Consistent with this description, p(x(t)|y(0:t)) can be 

expressed as the combination of K parallel Kalman filters, as given below. 

                                   

)),:0(|)(()()):0(|)((
1

itytpttytp i

K

i

xx 


                             (4.12) 

where p(x(t)|y(0:t),i) indicates the conditional probability distribution function (pdf) of 

the i
th

 filter and βi(t) is the normalized weight corresponding to the i
th

 Kalman filter for 

the new observation at t. For the new observation at time instant t+1, the conditional pdf 

p(x(t+1)|y(0:t+1)) is given by the K×G parallel Kalman filter (since p(x(t+1)|x(t)) is 

represented by G mixands).  
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where γi,j(t+1) is the conditional probability of selecting the i
th

 filter and j
th

 mixand  at the 

arrival of y(t+1), i.e., γi,j(t+1) = p(i,j|y(0:t+1)). As mentioned above, to avoid increasing 

the number of filters at each new time, we resample to select the most K probable filters 

from the K×G filters used in (4.13). Consequently, (4.13) can be rewritten as  
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where βi(t+1) is obtained by selecting the K most significant values of γi,j(t+1). In the 

next subsection, the KF is derived for each }:1{ Ki  and }:1{ Gj . The final 

estimation of the states is the combination of the results of these filters.   
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4.4.1 Forward Kalman Filtering 

As mentioned in Section 3.3, in KF, we use a set of mathematical equations underlying 

the process model to estimate the current state of a system and then correct it using 

available sensor measurements [67]. In EKF, a truncated first-order Taylor linearization 

of the nonlinear process and measurement model is used to derive the underlying 

prediction-correction mechanism. Using (4.1), a priori (predicted) state estimate and 

error covariance matrix can be calculated at each t. Moreover, following the standard KF 

for linear time invariant systems, the correction step calculates a posteriori state estimate 

and error covariance matrix for this time instant. These variables will be used in the KF 

recursive framework for the next time instant t+1, regarding the arrival of a new 

observation. According to the above discussions, after combing results from K Kalman 

filters and G mixands at t, we run K×G parallel Kalman filters. Then, resampling to select 

K filters is accomplished before the arrival of new observation at t+1. For each i 

belonging to {1:K} and j belonging to {1:G}, we aim to calculate the state estimate 

E{xi,j(t)|y(0:t)} and state correlation matrix E{xi,j(t) (xi,j(t))
H 

|y(0:t)} in the forward 

filtering step (see Figure 4.2) and E{xi,j(t)|y(0:T)} and E{xi,j(t) (xi,j(t))
H 

|y(0:T)} in the 

backward filtering (smoothing) step using KF approach, where E{.} stands for the 

expected value and  xi,j  is the state vector belong to the i
th

 filter and  j
th

 Gaussian mixand. 

For the forward filtering step, for each i and j, we can apply the EKF approach [69] as 

explained in Appendix D. 
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4.4.2 Backward Kalman filtering (Smoothing)  

In this step, we obtain the smoothed state estimate E{xi,j(t)|y(0:T)} and state correlation 

matrix E{xi,j(t) (xi,j(t))
H 

|y(0:T)} and the corresponding weights γi,j(t) for all 

}:0{},:1{},:1{ TtGjKi  . This step is explained in details in Appendix E. 

Calculating E{xi,j(t)|y(0:T)} and E{xi,j(t) (xi,j(t))
H 

|y(0:T)} in the backward filtering 

(smoothing) step, we can infer the statistical parameters of the system noise v via the EM 

algorithm. 

4.4.3 Inferring Statistical Parameters via Expectation-Maximization 

The EM algorithm is a robust optimization technique for inferring the parameters of 

models involving unobserved data [41], e.g., the excitatory/inhibitory synaptic inputs 

NE(t) and NI(t) in this chapter. This algorithm is guaranteed to increase the likelihood of 

the model at each iteration and therefore, can find a local optimum of the likelihood [93]. 

In this section, the EM algorithm is used to infer the statistical parameters of (4.2), i.e., 

the time varying mean ( )(t
jvμ ) and the variance of the states (σ

2
w, )(t

jv ), and the 

variance of the observation noise (σ
2

ε). Before using the EM algorithm, let us summarize 

what we have estimated by the mixture of Kalman filters as follows: the (smoothed) state 

estimate E{xi,j(t)|y(0:T)} and state correlation matrix E{xi,j(t) (xi,j(t))
H
 |y(0:T)} and the 

corresponding weights γi,j(t) for all }:0{},:1{},:1{ TtGjKi  . Having these values 

we can easily calculate the final state estimate E{x(t)|y(0:T)} as the combination of the 

mixtures and parallel filters. 
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where  HIE tgtgtVtx )(ˆ),(ˆ),(ˆ)(ˆ   is the state vector estimated by KF. Note that for the 

sake of simplicity of expressing notations, we denote E{xi,j(t)|y(0:T)} by )(ˆ
, tjix . To use 

the EM algorithm, it is essential to write the joint distribution of the states and 

observation, over time, as follows (X and Y denotes the entire samples of x and y over 

time, respectively): 

         
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 (4.16) 

We want to maximize the log of the joint probability of the states and observation via the 

EM algorithm for each mixture as follows. 
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                         (4.18) 

By doing the corresponding calculations to solve (4.18) (as described in Appendix F), we 

can obtain the mean and variance of each mixand (for both excitatory and inhibitory 

inputs). By combining them, the total mean and variance of the synaptic inputs as well as 

the observation noise variance are calculated. As a result, we can update the statistical 

parameters of the excitatory and inhibitory synaptic inputs as well as the variance of the 

observation noise in the M-step (see Appendix F for full derivations). Inferring all the 

parameters, we can initialize the next iteration of the recursive algorithm (see Fig 4.2). 
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The algorithm continues until no considerable changes in two consecutive iterations 

occur. 

4.4.4 Special Case: Kalman Filtering 

The simplest case of our GMKF-based algorithm is a simple Kalman filter (G=1 & K=1) 

for the filtering/smoothing step. By providing the sufficient statistics in these steps, the 

non-parametric EM algorithm gives the smoothed mean and variance (both are time-

varying) of excitatory and inhibitory synaptic inputs. As a brief description of this 

algorithm, the probability distribution function p(x(t)|y(0:t)) is approximated by only one 

Gaussian distribution. Therefore, E{x(t)|y(0:T)} (or )(ˆ tx , which is given as a 

combination of K×G parallel filters in the GMKF) can be calculated through the standard 

KF. This strategy not only reduces the complexity of the GMKF-based algorithm but also 

results in a highly accurate reconstruction of the excitatory and inhibitory synaptic 

conductances in many cases. Two major issues arise from the specific choice of G=1 and 

K=1 that we need to clarify. First, the synaptic conductances have to be constrained as 

positive values. Second, the EM algorithm has to be derived based on truncated Gaussian 

distributions for the synaptic inputs. Note that these would not be an issue if G > 1 is 

used, since the probability of having negative synaptic conductances naturally decreases 

with the number of Gaussian mixiands. 

The first issue can be easily addressed by using the constrained KF [97]. We use convex 

optimization toolbox CVX [98] to penalize the Kalman gain as follows (SDPT3 is 

another MATLAB package for semi-definite problem optimization that can be used): 

 



105 
 

 

              

  

13

1

21

))()()((..

)()())()(())((minarg)(











0x tetKtDts

tKtKCtKItCtKItracetK

t

HHt

x

C


  (4.19) 

 

where K
C
(t) is the constrained Kalman gain at t, x

t-1
(t) and Σ

t-1
x(t) are the predicted state 

estimate and state correlation matrix at t, respectively, and D is a diagonal matrix with the 

values [-1, 1, 1] preserving the negativity of membrane potential as well as the positivity 

of the synaptic conductances. According to this constrained optimization, the Kalman 

gain, at each time t, is calculated such that the positivity of synaptic conductances is 

satisfied. It is noteworthy that our results show that a simple constraint on the (updated) 

state estimate Dx
t
(t)≧0 (x

t
(t)= x

t-1
(t)+K(t)e(t) in standard KF), without applying the 

constrained optimization for calculating the new Kalman gain, K
C
(t), exhibits a 

performance very similar to that obtained by using (4.19). This means that the simple and 

conventional KF with ignoring negative synaptic conductances (zero forcing the updated 

x
t
(t) for negative synaptic conductances), can be an effective alternative for (4.19).   

The second issue makes the M-step of our EM algorithm more complicated than we have 

presented for the GMKF-based algorithm. Here again, we have heuristically found that 

the standard EM algorithm assuming Gaussian distributions of the synaptic conductances 

works very well because the estimated synaptic conductances rarely take negative values 

even if the largest noise level explored in this paper is applied. 
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4.5 Performance of the Proposed Algorithms 

We consider two different cases for our simulations to study the performance of our 

proposed algorithms. In the first case, we would like to highlight the capability of 

Bayesian approaches in comparison with the LS method in the estimation of trial-to-trial 

synaptic conductances. In the second Case, we aim to compare the performance of the 

proposed KF- and GMKF-based algorithms with the particle filtering (PF) [93] in two 

different conditions, namely, large and small signal-to-noise ratios (SNRs). In all the 

simulations, our recursive algorithm (for both KF- and GMKF-based) ran for 10 

iterations, which is consistent with the previously used parameters in [93] and gives a fair 

condition to compare our proposed algorithms and the PF-based algorithm [93]. Other 

model parameters used are similar to that in [93] and summarized in Table 4.1. 

 

Table 4.1. Characteristics of the neuron model 

EE 10 mV 

EI -75 mV 

EL -60 mV 

gL 80 S 

τE 3 ms 

τI 10 ms 

 

4.5.1 Bayesian Approach vs. LS method 

In order to compare the performance of the LS methods and that of the Bayesian 

approaches, the LS method in both voltage-clamp and current-clamp modes, particle 

filtering (PF) [93] and our proposed GMKF algorithm are applied to two conditions, 
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where the synaptic inputs are distributed from exponential distributions with time-varying 

trial-mean. In the first condition, the trial-mean is sinusoidally modulated in time with 

frequency of 5 Hz (the inhibition is delayed by 0.1 sec to excitation). In the second 

condition, excitatory and inhibitory synaptic inputs are generated from Ornestein-

Uhlenbeck (O-U) process (excitation and inhibition are independent).  

 

Example 4.1. As mentioned above, in this experiment we consider two different types of 

excitatory and inhibitory synaptic inputs, where both are distributed from exponential 

distributions with time-varying trial-mean. Firstly, the trial-mean is sinusoidally 

modulated in time with frequency of 5 Hz. Note that there are two sources of variability 

here: one is that the phase of the time-varying mean for excitation is randomly drawn in 

each trial from a zero mean Gaussian distribution of variance 0.25 (sec), and the other is 

that the actual synaptic input at each time is randomly drawn from the exponential 

distribution. Synthetic traces (10 trials, each lasted 1 sec) of membrane potential (in the 

current clamp- mode) and somatic current (in the voltage-clamp mode with the offline 

series resistance compensation [87]) are recorded with three levels of the injected 

currents ([-0.01, 0.01, 0.03]
nA

) and five levels of holding potentials ([-10, -30, -60, -70, -

80]
mV

), respectively, and provided for the LS method.  
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Figure 4.3. Results of Example 4.1, true values (black solid line) and estimated ones (red dashed lines). 
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It is noteworthy that for PF [93] and GMKF, no injected current or holding potential is 

needed. Figure 4.3 shows the performance of each method in estimating the excitatory 

and inhibitory synaptic conductance of Example 4.1. 

As can be seen from Figure 4.3, both voltage-clamp and current-clamp techniques suffer 

from inaccurate estimations of synaptic conductances in single trials (two trials randomly 

selected and shown). This is in contrast to particle filtering and GMKF, which can 

robustly estimate the trial-mean as well as the trial-to-trial fluctuation of the synaptic 

conductances. Secondly, the excitatory and inhibitory synaptic inputs are generated from 

Ornestein-Uhlenbeck (O-U) process (excitation and inhibition are independent). We 

summarize the result of this condition in Table 4.2 to further quantify the accuracy of 

each method. In accordance with the theoretical drawbacks of the LS method, our results 

indicate that LS method can only estimate the trial mean; this is the reason why it does 

not have any variance over trials (see Table 4.2). Moreover, the LS method overestimates 

the correlation between excitatory and inhibitory synaptic conductance. However, GMKF 

and PF can properly estimate synaptic conductance at each trial and they do not suffer 

from overestimating the excitatory and inhibitory correlation. 

Table 4.2: Excitatory/inhibitory correlation coefficients in Example 4.1 (mean ± std is shown). 

True and Estimated synaptic conductances Correlation coefficient of trial-to-trial (gE & gI) 

True gE & gI 0.05±0.07 

Estimated gE & gI by LS from current clamp  0.67 

Estimated gE & gI by LS from voltage clamp  0.59 

Estimated gE & gI by particle filtering (PF) [93] 0.12±0.14 

Estimated gE & gI by GMKF 0.11±0.11 
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4.5.2 Proposed Algorithms vs. Particle Filtering [93] 

In this subsection, first, we conducted two numerical experiments to demonstrate the 

performance of the KF-based (see Example 4.2) and GMKF-based (see Example 4.3) 

algorithms with large SNR, similar to [93], where the variances of system noise (σ
2

w) and 

observation noise (σ
2

ε) were sufficiently small. Note that estimating excitatory and 

inhibitory synaptic inputs in this condition was relatively easy and the results did not 

depend much on the algorithms used. Then, the robustness of the KF- and GMKF-based 

algorithms were verified in three subsequent experiments (see Examples 4.4 – 4.6) with 

small SNR, in which the PF-based algorithm [93] did not perform well. Time step for our 

simulations was 2 ms. 

Example 4.2. In this experiment, the mean of the synaptic excitatory and inhibitory 

inputs are nonlinear functions of their synaptic fields.  

 

where ξE and ξI were sinusoidally modulated (5 Hz) input signals and kE and kI were 

constant weights. ξI had 5 ms delay relative to ξE. The synaptic inputs, both excitatory 

and inhibitory, are generated from a Poisson distribution. The variance of (voltage) 

system noise (σ
2

w) is negligible and that of observation noise (σ
2

ε) is 0.5 mV.  Obviously, 

since we use a non-parametric EM algorithm, ξE and ξI are unknown. Figure 4.4 

indicates the results of the KF-based algorithm in estimating the excitatory and inhibitory 

synaptic conductances. 
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Figure 4.4. Estimating synaptic conductances and inputs given a single voltage trace of Example 4.2 using 

the KF-based algorithm: membrane potential (top), excitatory and inhibitory synaptic conductance (second 

and third from top) and excitatory and inhibitory synaptic inputs (fourth and fifth from top). Black solid 

lines represent true values and the red dashed lines represent the estimated ones. The blue dots at the top 

figure represent the observed membrane potential. The initial values of the KF-based algorithm were set as 

follows: The time-varying means (for both excitatory and inhibitory) were generated from a uniform 

distribution and their variances (for both excitatory and inhibitory) were 1 (for all times). 

 

Example 4.3. In this experiment, the synaptic mean functions were modeled by the 

absolute value of random realizations of Ornstein-Uhlenbeck processes. The synaptic 

inputs, both excitatory and inhibitory, were generated from the Poisson distribution and 

the observation noise was negligible. For the GMKF-based algorithm, we set G=2 

(number of mixands) and K=4 (number of Kalman filters; see our discussion about 

GMKF setting). The variance of the system noise (σ
2

w) was negligible and that of the 

observation noise (σ
2

ε) was 0.5 mV. Figure 4.5 shows the results of the GMKF-based 

algorithm for this experiment. 
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Figure 4.5. Estimating excitatory and inhibitory synaptic conductances given a single membrane potential 

trace of Example 4.3 using the GMKF-based algorithm. Other descriptions concerning this figure are the 

same as those in Figure 4.4. The initial values of the GMKF-based algorithm (G=2, K=4) were set as 

follows: the time-varying means (for both excitatory and inhibitory) were generated from a uniform 

distribution and their variances (for both excitatory and inhibitory) were 1 for both mixands (for all times). 

 

As can be seen from Figures 4.4 and 4.5, both the KF- and GMKF-based algorithms 

accurately identify the excitatory and inhibitory synaptic inputs. These results are not 

very surprising given the large SNR used in these experiments. In fact, the PF-based 

algorithm could also accurately estimate synaptic inputs under similar conditions [87]. In 

the following experiments, we explore cases with a small SNR.  

 

Example 4.4. In this experiment, the mean of the synaptic input of excitatory was a 

cosine function (amplitude 2 and frequency of 5Hz) and that for the inhibitory was a 

constant value (time-independent). Then, the synaptic inputs were generated from a 

Gaussian distribution of variance 1.5 and 0.05, respectively, for excitatory and inhibitory 
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inputs. The small variance of the inhibitory synaptic input generated a very narrow 

distribution function (almost delta function). The variances of the membrane voltage 

(σ
2

w) and observation noise (σ
2

ε) were 10
-2

 mV and 3 mV, respectively. These parameters 

were chosen not because they are physiologically realistic, but they illustrate differences 

in the algorithms. Figure 4.6 shows the results of the KF- and PF-based algorithms in 

estimating the synaptic conductances from the observed noisy membrane potential 

generated in this experiment. 

As can be seen from Figure 4.6, gE and gI as well as the membrane voltage are better 

estimated using the KF-based algorithm. It is clear that the PF-based algorithm could not 

track either gE or gI. Figure 4.7 shows the distributions of excitatory and inhibitory 

synaptic conductances. It shows that the KF-based algorithm could estimate the true 

distributions of gE and gI very well, while the PF-based algorithm failes, especially for 

the inhibitory synaptic conductance. 
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Figure 4.6. Estimating synaptic conductances and inputs given a single voltage trace of Example 4.4 using 

the KF-based (a) and PF-based (b) algorithms. Other descriptions about the figure are the same as those in 

the Figure 4.4. The initial values of the KF-based algorithm were as follows: the time-varying means (for 

both excitatory and inhibitory) were generated from a uniform distribution and their variances (for both 

excitatory and inhibitory) were 5 (for all times). This initial setting (increasing the variance) helped the KF-

based algorithm to better estimate the distributions of the synaptic inputs in this experiment. 
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Figure 4.7. Histogram of the excitatory (a) and inhibitory (b) synaptic conductances of the true (blue), 

estimated using the KF-based (red) and the PF-based (black) algorithms in Example 4.4. 

 

In Example 4.4, we considered an extreme case in which the inhibitory synaptic input had 

very narrow distribution. In this case, the KF-based algorithm (by selecting appropriate 

initiation, i.e., large enough variance) could effectively estimate both the excitatory and 

inhibitory synaptic conductances, even though the PF-based algorithm completely failed 

(see Figures 4.6 and 4.7). Under this small SNR condition, the prior distribution of 

synaptic input made an important contribution to the results. While the exponential prior 

distributions assumed for the PF-based algorithm tended to underestimate the inhibitory 

synaptic input, the KF-based algorithm could better approximate the inhibitory input by 

fitting a single Gaussian distribution. 
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Example 4.5. In this experiment, the specifications of the synaptic inputs were the same 

as those in Example 4.2.  However, the variances of the membrane voltage (σ
2

w) and 

observation noise (σ
2

ε) increased to 10
-2

 mV and 3 mV, respectively. Figure 4.8 shows the 

results of the GMKF- and PF-based algorithms in estimating the synaptic conductances 

from the observed noisy membrane potential generated in this experiment.  

The results of each algorithm in Figure 4.8 confirm that the gE and gI (and therefore NE 

and NI) are better estimated using the GMKF-based algorithm than by using the PF-based 

algorithm. It should be noted that the membrane potential is also better tracked using the 

GMKF-based algorithm. To see how these algorithms approximate the distributions of 

the excitatory and inhibitory synaptic conductances, we plot the histograms of gE & gI 

estimated by the GMKF- and PF-based algorithms in Figure 4.9. 
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Figure 4.8. Estimating synaptic conductances and inputs given a single voltage trace of Example 4.5 using 

the GMKF-based (a) and PF-based (b) algorithms. Other descriptions about the figure are the same as those 

in Figure 4.4. The initial values of the GMKF-based algorithm (G=2, K=4) were as follows: the time-

varying means (for both excitatory and inhibitory) were generated from a uniform distribution and their 

variances (for both excitatory and inhibitory) were 0.5 for the first mixand and 2 for the second mixand (for 

all times). 
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Figure 4.9. Histogram of the excitatory (a) and inhibitory (b) synaptic conductance of the true (blue), 

estimated using the GMKF-based (red) and PF-based (black) algorithms in Example 4.5. 

 

As can be seen from Figure 4.9, the approximated histogram of the GMKF-based 

algorithm better represents the true distributions for both the excitatory and inhibitory 

synaptic conductances.  

Example 4.6. In this experiment, the pre-synaptic mean functions are modeled by the 

absolute value of random realizations of Ornstein-Uhlenbeck processes (same as 

Example 4.3). The synaptic inputs, both excitatory and inhibitory, are generated from the 

log-normal distribution of variance 1.5. The variances of the membrane voltage (σ
2

w) and 

observation noise (σ
2

ε) were 10
-2

 mV and 3 mV, respectively. Figure 4.10 shows the 

results of the GMKF-based and PF-based algorithms.  
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Figure 4.10. Estimating synaptic conductances and inputs given a single voltage trace of Example 4.6 using 

the GMKF-based (a) and PF-based (b) algorithms. Other descriptions about the figure were the same as the 

Figure 4.4. The initial values of the GMKF-based algorithm (G=2, K=4) were as follows: the time-varying 

means (for both excitatory and inhibitory) were generated from a uniform distribution and their variances 

(for both excitatory and inhibitory) were 1 for the first mixand and 4 for the second mixand (for all times). 

 

-55

-50

V
 (m

V
)

0

20
g e

0

5

10

g i

0

20

N
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

N
i

time

-55

-50

V
 (m

V
)

0

20

g e

0

5

10

g i

0

20

N
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2
4
6
8

10

N
i

time

(a) 

(b) 



121 
 

Similar to Example 4.5 where the GMKF-based algorithm outperformed the PF-based 

algorithm, Figure 4.10 indicates that the gE and gI as well as the membrane voltage are 

better estimated by the GMKF-based algorithm. The estimated gE and gI using the PF-

based algorithm could not follow the rapid fluctuations of the synaptic conductances.  

Figure 4.11 depicts the histogram of the true and estimated gE & gI using the GMKF- and 

PF-based algorithms. 

 

 

 

 

Figure 4.11. Histogram of the excitatory (a) and inhibitory (b) synaptic conductances of the true (blue), 

estimated by GMKF-basd (red) and PF-based (black) algorithms in Example 4.6. 
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A heavy high-amplitude tail of the distribution of synaptic inputs has often been observed 

in neuronal circuits [99-101]. The heavy tail of the log-normal distribution in Example 

4.6 (for both gE and gI) occasionally produce large synaptic inputs and induced rapid 

changes in synaptic conductances, which the PF-based algorithm could not keep track of. 

Hence, this result likely applies to the performance of the GMKF-based vs. PF-based 

algorithms for heavy-tailed distributions in general. As is clear from Figures 4.10 and 

4.11, the GMKF-based algorithm can better track synaptic inputs because GMKF (in this 

experiment) used two Gaussian mixands that provide more degrees of freedom for fitting 

the log-normal distribution than only one exponential distribution, which was used in the 

PF-based algorithm [93]. 

Theoretically speaking, the PF-based algorithm [93] does not perform accurately under 

small SNR conditions, if the true underlying distributions for synaptic inputs are different 

from the presumed prior distributions (e.g., an exponential distribution [93]). Our 

experiments with various distributions of synaptic inputs confirm that the PF-based 

algorithm [93] works well if the variance of the observation noise and membrane voltage 

noise are sufficiently small. The PF-based algorithm can give approximately the same 

results as the GMKF-based algorithm in this case. However, our experiments suggest that 

the PF-based algorithm does not accurately estimate synaptic inputs for heavy-tailed 

distributions (Example 4.6), as well as for distributions that are not properly 

approximated by the prior distribution (Examples 4.4 and 4.5) in noisy systems. Under 

this condition, the GMKF-based algorithm outperforms the PF-based algorithm due to its 

capability of estimating an arbitrary distribution of synaptic inputs by using a GMM.  It 

should be noted that a larger number of mixands (G>2) may be necessary if the synaptic 
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input distribution is dissimilar to a Gaussian distribution: for example, with a very long 

tail. 

 4.5.3 Statistical Analysis 

In addition to the above-mentioned observations from the simulation results and in order 

to compare our algorithms with the PF-based algorithm [93], a statistical analysis is 

performed in this section. Two types of synaptic inputs, namely, structural (cosine 

function) and non-structural (O-U process) are considered to generate the membrane 

potential. Then, each algorithm is applied to 10 trials of these experiments. For the 

experiment with the structural synaptic input, the same specifications as in Example 4.5 

are used and for the experiment in which synaptic inputs are generated from the O-U 

process, the same specifications as in Example 4.6 are applied. Tables 4.3 and 4.4 

quantify the performance of each algorithm in these experiments. For each algorithm, the 

mean and standard deviation (std) of the normalized error over time are calculated for V, 

gE and gI, where the normalized error is defined as: 
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where, nx and nx̂  are the true and estimated values of the n
th

 trial, respectively. The mean 

and std are calculated over 10 trials, err(n)|n=1:10. 
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Table4.3: Statistical analysis of the performances of the GMKF-, KF-, and PF-based [93] algorithms in the 

experiment with structural synaptic input (specifications of the simulation were the same as in Exp 4.5). 

The values describe trial means and standard deviations of the normalized estimation error. 

 

Table 4.4: Statistical analysis of the performances of the GMKF-, KF- and PF-based [93] algorithms in the 

experiment with non-structural synaptic input (Specifications of the simulation were the same as in Exp 

4.6). Definition of parameters is the same as Table 4.3. 

Algorithms\Features v gE gI 

PF  0.0246 ± 7×10
-3

 0.6678 ± 0.4×10
-2

 0.6479 ±0.4×10
-2

 

KF 0.0233 ± 7×10
-3

 0.6392 ± 0.6×10
-2

 0.6322 ± 0.7×10
-2

 

GMKF 0.0147 ± 1×10
-3

 0.4599 ± 0.6×10
-2

 0.5811 ± 0.6×10
-2

 

 

From Tables 4.3 and 4.4, we can conclude that the performance of our KF- and GMKF-

based algorithms is better (for all parameters) than that of the PF-based algorithm. When 

the synaptic distribution is not heavy-tailed (Table 4.3), the KF- and GMKF-based 

algorithms exhibit approximately the same performance. However, for a heavy-tailed 

synaptic distribution (log-normal in Table 4.4), the GMKF-based algorithm outperforms 

the KF-based algorithm. In the GMKF-based algorithm, one could use G>2 (number of 

mixands) which results in more expensive computations. In our simulations, however, 

G=2 was good enough to provide a balance between computational costs and accuracy. 

For very heavy-tailed distributions, the higher the value of G the better the accuracy 

obtained for estimating synaptic inputs. Note that the simulations of (G=2 and K=4, i.e., 

eight filters for each time) takes approximately the same running time as the PF-based 

algorithm. Moreover, we observe that K=2, 3 or 4 (number of filters used for estimating 

p(x(t)/y(0:t))) does not change the final results appreciately.  As a rule of thumb, we can 

conclude that K=G is a good choice for selecting the value of K. It should be noted that 

Algorithms\Features v gE gI 

PF 0.0124 ± 1×10
-3

 0.5658 ± 5×10
-3

 0.3046 ± 3×10
-2

 

KF 0.0031 ± 0.2×10
-3

 0.4106 ± 0.7×10
-3

 0.2614 ± 0.5×10
-2

 

GMKF 0.0033 ± 0.2×10
-3

 0.4611 ± 0.7×10
-3

 0.2876 ± 0.5×10
-2
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when G=1&K>1 (the system noise is approximated by only one Gaussian distribution), it 

is called Gaussian sum filtering (Kalman or particle can be applied, see [96]). In this case, 

the conditional probability p(x(t)|y(0:t)) is estimated using K Gaussian filters. However, 

our case with G>1 and K>1 is called Gaussian mixture filtering. In fact, in this case, G>1 

forces K to be greater than unity in order to better approximate p(x(t)|y(0:t)), whose filter 

number grows exponentially over time (see [96]).  

Finally, it is to be noted that two other methods have been proposed in the literature for 

estimating excitatory and inhibitory synaptic conductances from single trials of the 

recorded membrane potential. Quick alternation of the membrane potential between 

excitatory and inhibitory reversal potentials [102] enabled nearly simultaneous 

reconstruction of excitatory and inhibitory synaptic conductances from single trials. One 

advantage of our method compared to this approach is that it does not require rapid 

alternations of the membrane potential, which might cause experimental artifacts. Thus, 

our method provides a wider applicability to existing as well as future experimental data. 

Another approach is to infer excitatory and inhibitory synaptic conductances by using the 

oversampling method [103]. Unlike this approach, our KF/GMKF algorithms do not 

require the manual adjustment of oversampling time steps to suppress singularity 

problems. The main advantage of our methods in comparison with [38] and [93] relies on 

the fact that it has the flexibility to estimate an arbitrary (and unknown) probability 

distribution function of the synaptic inputs by using a GMM. 
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4.6 Summary 

We have proposed in this chapter a recursive algorithm based on GMKF for estimating 

the excitatory and inhibitory synaptic conductances (and inputs) from noisy recorded 

membrane potential only. The main advantage of this method in comparison with other 

recent algorithms relies on the fact that it has the flexibility to estimate an arbitrary (and 

unknown) probability distribution function of the synaptic inputs by using a GMM. 

Moreover, we have derived and tested a special case of the GMKF-based algorithm when 

there is only one mixand, i.e., the Kalman filter, has been derived and tested for 

estimating the excitatory and inhibitory synaptic conductances. Simulation results have 

demonstrated the accuracy and robustness of the proposed algorithms in noisy conditions 

for estimating the synaptic inputs with arbitrary distributions generated from different 

distributions. In this regard, we have found that the GMKF- and KF-based algorithms 

outperform the PF-based algorithm. We have also found that the GMKF- and KF-based 

algorithms have approximately identical performances in many cases, where simple 

distributions of synaptic inputs are assumed. On the other hand, the GMKF-based 

algorithms provide much more accurate estimation than the KF-based one when synaptic 

inputs are drawn from heavy-tailed distributions with many strong synapses. In practice, 

running both KF-based and GMKF-based algorithms and comparing their results should 

provide an idea on how complex the underlying distributions of synaptic inputs are. 

Therefore, the simplicity and high speed of the KF-based algorithm as well as the 

robustness and general applicability of the GMKF-based algorithm make them efficient 

techniques for neuroscientists to monitor trial-to-trial variability of the excitatory and 

inhibitory synaptic inputs.` 



127 
 

 

Chapter 5 

 

 

Blind Deconvolution of Hodgkin-Huxley 

Neuronal Model 

 

 

5.1 Introduction 

A neuron transforms information via a complex interaction between its previous states, 

its intrinsic properties, and the synaptic input it receives from other neurons. Inferring 

synaptic input of a neuron only from its membrane potential (output) that contains both 

sub-threshold and action potentials can effectively elucidate the information processing 

mechanism of a neuron [6], [36]. In this chapter, the concept of blind deconvolution used 

in communication and signal processing [104-107] is applied for the first time to the 

Hodgkin-Huxley (HH) neuronal model [108], to address the problem of reconstructing 

the hidden dynamics and synaptic input of a single neuron as well as estimating its 

intrinsic parameters only from a single trace of the noisy membrane potential.  

Figure 5.1 shows the schematic representation of encoding the natural stimuli, e.g., an 

image, in the brain. The challenging question in neuroscience is to understand how this 
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encoding takes place. Understanding the encoding process without having access to the 

synaptic inputs of the neurons is impossible. Therefore, inferring the synaptic inputs of a 

neuron from its output, e.g., the membrane potential in our case, is of great interest in 

neuroscience.  

 

 

Figure 5.1. Estimating synaptic input and parameters of a neuron from recorded membrane potential 

 

There are several works in neuroscience which aimed to extract the synaptic input of a 

neuron (excitatory and inhibitory synaptic inputs separately or the sum of them) from the 

sub-threshold membrane potential (see [87] and references therein). In addition to the 

significance of synaptic input in neural coding, the dynamics of ion channels influence on 

neural coding properties [6]. The recent methods in [36] and [37] are the only works in 

the literature that are not restricted to sub-threshold recordings of the membrane potential 

wherein the Hodgkin-Huxley (HH) neuronal model is used to represent the behavior of a 

single neuron and Kalman filtering technique is employed to estimate both the ion 
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channels dynamics and synaptic input. It is to be noted that the intrinsic parameters of the 

neuron, e.g., the maximum conductances, are known in [36] and [37].  

In this chapter, we extend the scope of the previous works ([36] and [37]) by addressing 

the problem of reconstructing the hidden dynamics of ion channels and synaptic input 

(sum of the excitatory and inhibitory) of a single neuron modeled by the HH neuronal 

model as well as estimating its intrinsic parameters, maximal conductances and statistical 

parameters (standard deviation of channel noise) from a single trace of noisy membrane 

potential only. In fact, this chapter can be considered as a generalization of Chapter 3 

where not only the parameters of the HH neuronal model are estimated but also the 

synaptic input of the neuron is inferred from noisy membrane potential only.   

 

5.2 Blind Deconvolution of the Hodgkin-Huxley Neuronal 

Model 

In this section, we briefly describe the problem of blind deconvolution of the HH 

neuronal model and the assumptions made to address this problem. The HH model has 

already been introduced in Section 2.3. A modified version of this model including the 

synaptic input can be stated as follows. 

              )()()()()( 43 tItIEVgEVngEVhmg
dt

dV
C syninjLLKKNaNaM          (5.1) 

where (gNa, gK, gL) and (ENa, EK, EL) denote the maximum conductances and the reversal 

potentials of the sodium, potassium and leak currents, respectively. Isyn is the total 
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synaptic input (excitatory and inhibitory) that a neuron receives and Iinj is the 

intracellularly injected current. As mentioned in Section 3.8, m, n and h, which indicate 

the dynamics of the HH model, can be determined by the Langevin equation [82]. 

                                                    hnmqqVqV
dt

dq
qq ,,,)()1)((                             (5.2) 

where αq(v) and βq(v) are nonlinear functions of the voltage (see Chapter 2 for details). In 

view of the limitations of the imaging techniques, it is impossible to measure all 

necessary biophysical variables describing a single neuron model. We assume here the 

intercellular electrophysiological recordings by which the membrane potential, V (plus 

noise) in (5.1), is the only measurable variable. Our objective is to reconstruct the full HH 

ionic dynamics, {n(t), m(t), h(t)} for the entire recording time, estimating the unknown 

parameters, {gNa, gK, gL}, and inferring the synaptic input, Isyn(t), using solely single trial 

of membrane potential. This measurement, on the other hand, may contain noise from the 

recording equipment, which is known as observation noise and modeled by white 

Gaussian noise [18]. It is to be noted that it is not possible to address this problem using 

only a single trace of observation (membrane potential) because the number of unknowns 

overwhelms the number of data points. To overcome this problem some a priori 

knowledge about the unknown variables has to be taken into account. The assumptions 

are as follows: (1) - the reversal potentials (ENa, EK, EL) have been already measured 

experimentally, (2) - functional form of the voltage-dependent ionic inputs, αq(V) and 

βq(V), are known, (3) - similar to [36], the smoothness of the synaptic input is preserved 

by a random-walk-type prior and (4) - consistent with [30], the initial values of the 

maximum conductances are randomly selected from the ±25% neighborhood of the true 
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values to ensure the identifiability of the HH model. Now, to meet our objective based on 

the aforementioned assumptions, we define a state vector x = [V, n, m, h, Isyn, gNa, gK, gL]
H
 

including the observed state variable, V, augmented by unobserved state variables, [n, m, 

h, Isyn], and system parameters, [gNa, gK, gL]. Therefore, a state space representation of the 

HH neuron model can be expressed as follows                                            

                                                       
 









)()()(

)()()()(

tεtCty

ttBItFt inj

x

vxx
                                            (5.3) 

where C=[1,01×7], B=C
H
, ε(t) (observation noise), v(t) (system noise) and Iinj(t) are 

mutually independent. ε and v are modeled respectively by a zero-mean white Gaussian 

noise of variance σ
2

ε and that of covariance matrix Σv = diag([σ
2

V, σ
2

n, σ
2

m, σ
2

h, σ
2

syn, σ
2
Na, 

σ
2

K, σ
2

L]). F[x(t)] is the time-varying transition function that can be easily obtained from 

(5.1) and (5.2) (see [18, 37] and Chapter 3 for more details). Let us define θ = [σ
2

V, σ
2

n, 

σ
2

m, σ
2
h, σ

2
syn, σ

2
Na, σ

2
K, σ

2
L]

H
 as the statistical parameters of the HH neuronal model. In 

the next section, we present our proposed recursive algorithm to track (estimate) the state 

vector x (neuron’s dynamics) and the statistical parameter θ. 
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5.3 Proposed Algorithm 

The same framework as described in Section 4.3 (see also Figure 4.2) is used here to 

develop a recursive algorithm for estimating the dynamics and parameter of (5.1). 

According to this framework, the recursive algorithm consists of three main steps whose 

implementations for the blind deconvolution problem are given here. It begins with the 

initial values, θ0, which can be set to very small values like 10
-6

 (for all statistical 

parameters).  

Step 1. In this step, the extended Kalman filtering (EKF) is employed to 

accomplish filtering the states x and providing the first and second order conditional 

statistics, E{x(t) |y0:t} and E{x(t) (x(t))
 H

|y0:t} (full derivation of EKF for the HH model is 

given in Chapter 3).  

Step 2. Sufficient statistics for the EM algorithm, E{x(t)|y0:T} and E{x(t) (x(t))
 H

 

|y0:T} over the entire time, {0:T}, are calculated by Kalman backward filtering 

(smoothing), in this step.  

Step 3. Here, the new estimation of the statistical parameters, θ̂ , is calculated by 

the EM algorithm as follows.  

                                             
   

  dXYXpXYp

YXYpEQ
ts

)|()ˆ|,(logmax

,|)ˆ|,(logmax)ˆ,(max
ˆ..








                                   (5.4) 

where Y and X stand for the observation, {y}0:T, and states, {x}0:T, over the entire time. In 

fact, the aim is to find new statistical parameters θ̂  that maximizes the expected joint log 
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likelihood of the observation and the hidden states with respect to statistical parameters θ. 

Expanding (5.4), we can write: 

                   

  





















))|1(log()),1|(log(

)),)((log(,|)ˆ|,(log

2

1

),|(



 

)(p)(t(t)p

(t)typEYXYpE

T

t

T

t

YXp

xxx

x|

   

(5.5) 

In this chapter, similar to Chapter 4, we treat time t as a discrete variable that takes 

integer values between 1 and T, where T×dt is the entire (physical) time of recording. 

Recalling that p(y(t)|x(t),θ) = N(y(t);Cx(t) ,σ
2

ε) and p(x(t)| x(t-1),θ) = N(x(t);F[x(t)]+BIinj 

,Σv), where N(µ,σ
2
) stands for the normal distribution of mean µ and variance σ

2
, and 

taking the derivative of (5.5) with respect to Σ 
-1

v (=diag(θ)), we can calculate the new 

estimate of Σv as follows. 
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are the first and second order 

statistics that have been already calculated in the Kalman smoothing step (see Appendix 

E for more detail). Then, θ can be easily obtained as the diagonal elements of 
v̂ . It is to 
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be noted that A(t) in (5.6) represents the first order derivative of the transition function F 

with respect to the states, x(t) (see Appendix A for computing A(t)).  

Once θ is calculated, it would be considered as the initial value for the recursive 

algorithm. The algorithm stops when no considerable change occurs in two consecutive 

iterations. It is observed from our simulations that the variation of the estimated synaptic 

input, Isyn, is a good candidate to be used as the stopping criterion. Therefore, our 

algorithm stops when the variance of difference of the estimated synaptic inputs in the 

consecutive iterations is less than 5%.  

5.4 Performance of the Proposed Algorithm 

In this section, several illustrative numerical simulations are provided to study the 

accuracy of our proposed algorithm for blind deconvolution of the HH neuronal model. 

Two different types of synaptic input are considered in our simulations. In the first 

simulation, the synaptic input contains two jumps (see Figure 5.2) which do not fulfill the 

smoothness assumption we previously made. The second simulation is more realistic 

wherein the synaptic input is generated from Ornstein-Uhlenbeck process (white 

Gaussian noise filtered by 0.4/(1-0.9z
-1

)). For each experiment, the accuracy of our 

proposed algorithm in estimating the parameters of the HH neuronal model and 

reconstructing its synaptic input is demonstrated. The simulated data is generated by an 

HH model whose specifications are: {ENa=55, EK=-90, EL=-70}
mV

, {gNa=32, gK=10, 

gL=0.1}
µS/m2

, cM=1
µF/cm2

 and the rate constants of the ion channel state transitions (αq(v) 

and βq(v)) are the same as those used in Equation (2.7). A zero mean white Gaussian 

noise of standard deviation 10 mV is added to the generated membrane potential as the 
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observation noise. All the simulations are carried out by MATLAB and the HH neuron 

model dynamics are obtained by using the “ode15” of MATLAB functions with 0.01 ms 

as the integration time step while the membrane potential is sampled every 0.1 ms. 

Figures 5.2 and 5.5 show the noisy recorded membrane potentials (top) and the true 

synaptic inputs (bottom) for the first and the second simulation, respectively. Figures 5.3 

and 5.6, respectively, demonstrate the reconstructed versus the true membrane potentials 

(top) and the synaptic input (bottom) of each experiment using the proposed algorithm. 

Moreover, Figures 5.4 and 5.7 illustrate the reconstruction of the HH channel dynamics, 

for each experiment. 

 

Figure 5.2. Noisy membrane potential in the first simulation (top) and original synaptic input (bottom). 
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Figure 5.3. Estimated (red dashed line) versus true (black solid) membrane potential (top) and synaptic 

input (bottom). The algorithm stops in the 7
th

 iteration. The initial value of θ (for all variables) in this 

example is set to 10
-6

. 

 

 

Figure 5.4. Estimated (red dash line) versus true (black solid) channel dynamics of the HH model. The 

initial values of n, m, h are zero. 
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Figure 5.5. Noisy membrane potential in the second simulation (top) and original synaptic input (bottom). 

The step current, Iinj = 0.06 µA/cm
2
, 20ms ≤ t ≤ 150ms, is injected to neuron in this simulation. 

 

 

Figure 5.6. Estimated (red dashed line) versus true (black solid) membrane potential (top) and synaptic 

input (bottom). The algorithm stops in the 3
th

 iteration. Synaptic input is generate by low pass filtering 

(0.4/(1-0.9z
-1

)) the white Gaussian noise. The initial value of θ (for all variables) in this example is set to 

10
-4

. 
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Figure 5.7. Estimated (red dash line) versus true (black solid) channel dynamics of the HH model. The 

initial values of n, m, h are zero. 

 

Figure 5.8 shows as to how the parameters of the HH model, the maximum conductances 

in the first experiment, converge to their true values. As can be seen from this figure, all 

the estimated parameters, gNa, gK and gL accurately converge to their true values. 

However, as mentioned in Chapter 3, the estimated gNa is biased. This might be due to the 

observation noise that the algorithm underestimate the sharpness of spikes and therefore 

underestimates the sodium current. 
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Figure 5.8. Estimated (red dash line) versus true (black solid) parameters of the HH model. 

 

As seen in Figures 5.2 – 5.8, the membrane potential, V, the dynamics of ion channels, 

{n, m, h}, the synaptic input, Isyn, and the intrinsic parameters {gNa, gK, gL}, are all 

estimated with excellent accuracy only from noisy recorded membrane voltage using our 

proposed algorithm. 

The importance of our technique in blind deconvolution of the HH neuronal model relies 

on the fact that the unobserved synaptic input of a neuron can be estimated from a single 

trial of recorded membrane potential. It is to be highlighted that the capability of trail-to-

trial inferring the synaptic inputs of a single neuron is of high interest in neuroscience 

because the stochastic behavior of neurons can be assessed. To the best of our 

knowledge, our proposed technique is the first algorithm for trial-to-trial inferring 

synaptic input of a spiking neuron. In fact, the proposed technique is a generalization of 

the algorithms employed in Chapters 3 and 4. The concept of the JEKF algorithm that has 

been already developed in Chapter 3 is used in the second step of the proposed algorithm 
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to jointly estimate the parameters and the states of the HH neuronal model. Moreover, 

since the synaptic input of the neuron is considered as a new state for our algorithm, 

inferring this state reminds the inference of the excitatory and inhibitory synaptic inputs 

in Chapter 4. It is also worth mentioning that the proposed algorithm for blind 

deconvolution of the HH model is based on the framework used in Chapter 4. 

  

5.5 Summary 

A novel recursive algorithm has been proposed, in this chapter, to address the problem of 

estimating the unobserved dynamics, the synaptic input and the intrinsic parameters of 

the Hodgkin-Huxley neuronal model. Application of the blind deconvolution to the HH 

neuronal model has been tackled by employing an extended Kalman filtering followed by 

an EM algorithm. The robustness and accuracy of this algorithm have been validated by 

two illustrative simulations. The corresponding promising results imply that the proposed 

algorithm provides a powerful framework for estimating the unobserved dynamics and 

input of a neuron and therefore, can better reveal how neurons transform information 

from the synaptic input to the membrane potential.  
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Chapter 6 

 

 

Conclusion 

 

 

6.1 Concluding Remarks 

Investigation of some of the open problems in computational neuroscience that helps in 

our understanding about the information processing of the neurons has been the core 

objective of this thesis. To meet this objective, three challenging problems in the 

computational neuroscience that aim to identify the hidden dynamics, estimate the 

intrinsic parameters, and reconstruct the synaptic input of a single neuron have been 

studied.  Several methods based on Bayesian signal processing have been developed to 

address these problems. 

In the first part of this study, Kalman filtering (KF) algorithms for the most detailed 

biophysical model representing the behavior of a single neuron, the Hodgkin-Huxley 

(HH) neuronal model, have been developed to identify the hidden dynamics and estimate 

the unknown parameters of a single neuron. Since there are two types of unknowns, 

namely, the time-varying dynamics and the constant parameters, that have to be estimated 
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in the HH neuronal model, the unscented and extended Kalman filtering algorithms have 

been used in conjunction with two parameter estimation methods, namely, the dual and 

joint estimation methods, leading to four KF algorithms, namely, joint unscented KF 

(JUKF), dual unscented KF (DUKF), joint extended KF (JEKF) and dual extended KF 

(DEKF). The accuracy of these four algorithms as well as their speeds and computational 

costs have been studied in order to determine the most appropriate KF-based algorithm in 

real world applications such as dynamic clamp. The accuracy of these four proposed 

algorithms has been evaluated under different signal to observation noise ratios.  The 

results have shown that the EKF-based methods perform as well as JUKF does, 

especially at low SNRs. More importantly, the faster implementation of the EKF methods 

makes them particularly useful in real time applications. Moreover, JUKF and JEKF have 

been extended to estimate the entire parameters of the HH neuronal model including the 

kinetics of the ion channels. In order to verify the feasibility of these methods, two 

experiments have been conducted. The accuracy of the developed JUKF and JEKF 

algorithms has been confirmed in our simulation study. Furthermore, by applying these 

algorithms to real data, the entire kinetics of the ion channels have been inferred. More 

importantly, the hidden dynamics of the real neuron which represent the dynamics of the 

ion channels have been reconstructed by using the proposed methods.  

In the second part of the thesis, the problem of inferring the excitatory and inhibitory 

synaptic inputs of a single neuron from a single trial of the recorded membrane potential 

has been studied. Due to the fact that most of the existing methods in the literature are 

based on least square (LS) estimation, they can only estimate the trial mean of the 

synaptic inputs. Moreover, it has been established that the LS estimation technique is a 
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biased-estimator for the excitatory and inhibitory synaptic inputs. As an alternative for 

the LS method, a novel recursive algorithm based on Gaussian mixture Kalman filtering 

(GMKF) has been proposed to estimate both the synaptic inputs from a single trial of the 

noisy membrane potential. Moreover, the simplest case of our algorithm which has only 

one Gaussian mixand, namely, the well-known Kalman filtering has been developed in a 

recursive framework, yielding simpler, faster, and more robust results than the existing 

particle filtering based algorithms do. In order to compare the performance of the 

proposed algorithms with that of other existing algorithms, two illustrative simulation-

cases have been studied. In the first case, it has been demonstrated that the LS-based 

methods are not capable of estimating the excitatory and inhibitory synaptic inputs from a 

single trial of the recorded data, while the proposed algorithms and the PF method [93] 

can accurately estimate these inputs from a single trace of the membrane potential. In the 

second case, the performance of our KF- and GMKF- based algorithms has been 

compared with that of PF-based method. From the simulation studies, it was observed 

that when SNR is high,  estimating the excitatory and inhibitory synaptic inputs was 

relatively easy and the results do not depend much on the algorithms used. However, in 

the case of low SNRs, the proposed algorithms have significantly outperformed the PF 

algorithm. In conclusion, the proposed GMKF-based algorithm has exhibited accurate 

and robust performance over the entire range of parameters studied and our KF-based 

algorithm has exhibited fast and simple estimation in many representative scenarios. 

Thus, our proposed algorithms can be considered to be promising tools in neuroscience 

for estimating the excitatory and inhibitory synaptic conductances, or equivalently 

synaptic inputs, from a single trial of the recorded membrane potential. 
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In the third part, the problem of identifying the synaptic input of a single neuron as well 

as its intrinsic parameters and hidden dynamics has been studied. This problem has been 

tackled by applying the concepts of blind deconvolution to the HH neuronal model, and 

accomplished via a novel recursive algorithm based on the extended KF, followed by the 

expectation-maximization (EM) algorithm that estimates the statistical parameters of the 

HH neuronal model. Since the proposed algorithm is recursive, the estimated parameters 

act as the initial values for the next iteration. The accuracy and robustness of the 

proposed algorithm have been demonstrated through numerical simulations. The 

proposed algorithm should be particularly useful in understanding of the neural coding 

mechanism of a neuron. 

 

6.2 Scope for Future Work 

Considering that a number of Bayesian-based approaches have been proposed in this 

thesis to address some of the open problems in computational neuroscience, several 

extensions on the proposed algorithms that should make them more useful to deal with 

real data are worth studying further. Moreover, in view of the signal processing theme of 

the proposed algorithms and their promising performance for problems with highly 

nonlinear and time-varying structures, further investigation on the application of the 

proposed methods in other engineering areas is suggested. 

As mentioned in Chapter 3, four KF-based algorithms have been derived for the HH 

neuronal model with known kinetics. Then, JUKF and JEKF algorithms have been 

extended to infer the entire kinetics of the HH neuronal model. The kinetics can be 
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measured in real neurons through very complicated electrophysiological experiments, 

hence it is important to compare the results of the proposed algorithms with those 

measured experimentally. Moreover, it is worth improving the propose KF algorithms to 

the most recent ones such as cubature KF (CKF) [109] and adaptive unscented KF [110].   

The proposed GMKF- and KF- based algorithms in Chapter 4 can be generalized for the 

spiking neurons. Although the main experimental tests in neuroscience for inferring 

excitatory and inhibitory synaptic inputs have been carried out on the neurons whose 

active channels are pharmacologically blocked, it is worth improving our proposed 

recursive framework for the spiking neuronal models, such as the Moris-Lecar and HH 

models. It is obvious that trial-to-trial tracking of the synaptic inputs, which has been 

addressed by using our algorithms, can better elucidate the functioning roles of the 

excitatory and inhibitory synaptic inputs. Thus, it is highly recommended that the 

proposed methods be used in experimental investigations.  

 Our proposed algorithm in Chapter 5 that uses the concept of blind deconvolution to 

estimate both the dynamics and the input of a single neuron can be enhanced in a way 

similar to that mentioned for the algorithms in Chapter 3. This algorithm can be improved 

in order to estimate the kinetics of the HH neuronal model. Furthermore, an algorithm 

can be developed to estimate both the excitatory and inhibitory synaptic inputs.   
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Appendix A 

 

Derivation of Transition Functions in (3.30) and (3.36) 

 

First, we calculate the components of matrix )](),([ kkF wxx
  as follows.         
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It is required to calculate the partial derivatives of F1, F2, F3 and F4 with respect to V, n, 

m and h, while assuming w to be a constant. Using (3.2), the first column is thus given by 
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The second column is obtained as 



156 
 

0

)()(

/)(4

43

2

31





















n

F

n

F

VV
n

F

CEVng
n

F

nn

MKK

                                                                                      (A.3) 

The third column can be expressed as 
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And finally, the fourth column is given by 
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Furthermore, we have the following derivatives: 
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In order to calculate )](),([ kkF wxw
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in (3.30), it is required to calculate the partial 

derivatives of F1, F2, F3 and F4 with respect to gNa, gK and gL, while assuming x to be 

constant. One can easily see that F2, F3, and F4 have no derivatives with respect to these 

parameters. Thus )](),([ kkF wxw
  can be simplified as 
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where, the first row can be computed as follows: 
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Now, we want to calculate the transition function )](),([ kk wxx
  in (3.36). Similar to 

(A.1), we can write the components of this transition function as follows.    
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where the partial derivatives of Γ1, Γ2, Γ3 and Γ4 with respect to V are given by 
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The second column of (A.8) is obtained as 
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The third column of (A.8) can be expressed as 
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And finally, the fourth column of (A.8) is given by 
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Furthermore, we have the following derivatives for q= n, m, h: 
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In order to calculate )](),([ kk wxw


 
in (3.36), it is required to calculate the partial 

derivatives of F1, F2, F3 and F4 with respect to w = [gNa, gK, gL, ENa, EK, EL, Vth(n), Vth(m), 

Vth(h), sn, sm, sh, tn, tm, th], while assuming x to be constant. Thus )](),([ kk wxw
  can be 

written as 
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where the components of the first row are calculated as follows. 
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The components of the other rows can be written in a general form for, respectively, i = 

1, 2, 3 and q = n, m, h. 
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Appendix B  

Hints to proof (4.5), (4.6) and (4.7) 

 

Hints to Proof (4.6) 

As mentioned in Chapter 4, the excitatory/inhibitory synaptic conductances gE and gI, are 

stochastic variables changing over trials. According to our assumptions in subsection 

4.3.1, gE and gI, for each time t, can be written as: 

IIIIEEEE gggggg  ,                                                                            (B.1) 

where ∆gE and ∆gI are respectively the amplitudes of variations in excitatory and 

inhibitory synaptic conductances, ξE and ξI are the corresponding stochastic parts 

modeled by white Gaussian noise of zero mean and unit variance, and Eg and Ig  are the 

trial means of excitatory and inhibitory synaptic conductances, respectively. Moreover, 

the membrane potential of each trial can also be expressed by 

VVVV                                                                                                               (B.2) 

where V , ∆V and ξV are the trial mean, the amplitude of variation and the stochastic part 

of the membrane potential, respectively. It is important to note that the stochastic part of 

the membrane potential is correlated with that of the excitatory and inhibitory synaptic 

conductances.  

Recalling (4.3), and averaging over different trials, we have 
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IVVgVVgVVg
dt

Vd
C IIEELLM  )()()(                                                       (B.3) 

Using (B.1) and (B.2) in (B.3), and accomplishing some calculus using Mathematica, 

(B.3) is stated as follows. 

   
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)(

)(

  

(B.4) 

Now, by using (B.4) and equating it by (4.4), we can easily infer Eĝ and Iĝ from (4.5). 

 

Hints to Proof (4.6) 

As mentioned in subsection 4.3.1, if the excitatory and inhibitory synaptic conductances 

are independent and changing much slower than the dynamics of the membrane potential, 

we can assume that V immediately converges to an adiabatic fixed point defined by the 

quasi-stationary values of gE and gI, namely, 

LIE

IIEELL

ggg

VgVgVgI
V




                                                                                          (B.5) 

Now, assuming that the injected current is the same for different trials, by averaging over 

trials we will have: 
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where, 
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By LS method, we aim to find Eĝ and Iĝ  such that, 
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By equation (B.8) to (B.6), and using (B.7), Eĝ and Iĝ can be calculated as follows. 
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In order to prove (4.6), while considering that the trial-to-trial variations of the synaptic 

conductances are represented by (B.1), V0 and g are expanded as follows. 
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                                        (B.11) 

Now, by replacing (B.10) and (B.11) in (B.9) and simplifying it by using Mathematica, 

we can calculate Eĝ and Iĝ in (4.6). 
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Hints to Proof (4.7) 

In order to prove the inequality used in (4.7), we can apply Jansen’s inequality. We want 

to show that 
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Appendix C  

Number of Kalman Filters in the GMKF Algorithm   

In order to show how the number of mixture Kalman filters grows exponentially with the 

arrival of a new observation y(t), we assume that p(x(t-1)|y(0:t-1)) can be represented by 

K Kalman filters [96] as follows. 

)),1:0(|)1(()1())1:0(|)1((
1

itytpttytp i

K

i

 


xx                                           (C.1) 

where βi(t-1) is the normalized weight for the i
th

 Kalman filter at time t-1. Then, 

p(x(t)|y(0:t-1)) will be given by the following equation considering that p(x(t)|x(t-1)) is 

approximated by G mixands. 

),),1:0(|)(()1())1:0(|)((
11

jitytpttytp ij

K

i

G

j

 


xx                                      (C.2) 

where p(x(t)|y(0:t-1), i, j) is the conditional probability of the state x(t) for the i
th

 filter 

and j
th

 mixand given the observation up to time t-1. Now p(x(t)|y(0:t)) can be calculated 

using the Bayesian rule. 
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and the denominator of (C.4), for each i and j, can be calculated as follows. 


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xxxxxx
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         (C.5) 

Although (C.5) can be easily obtained using the results of KF (see Appendix F), our main 

goal is to highlight that p(x(t)|y(0:t)) in (C.3) is approximated by K×G filters. 

Consequently, p(x(t+1)|y(0:t+1)) will be represented by K×G
2
 filters and the number of 

filters increases exponentially with the arrival of each new observation. As mentioned in 

Section III, and according to [96], this problem can be overcome by resampling. To do 
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this, it is required to select the most probable K filters of (C.3) from γi,j(t). For such a 

case, p(x(t)|y(0:t)) will be approximated by only K filters as follows. 
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xx 
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                                                                 (C.6) 

where βi(t) is the weight for the K highest values of γi,j(t). Since βi(t) is normalized after 

the resampling process, it gives equivalent weights to all the selected filters (1/K for each 

filter). Please note that the resampling process is done only to eliminate the increase in 

the number of filters required for approximating p(x(t)|y(0:t)) at the arrival of new 

observation y(t). Hence, K×G Kalman filters are needed to run at each time t to compute 

p(x(t)|y(0:t)) for each new observation y(t). 
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Appendix D   

Kalman Forward Filtering ([69]) 

In this appendix, the Kalman forward filtering is derived for each i belonging to {1:K} 

and j belonging to {1:G}. The standard KF technique includes two main steps: time 

update and measurement update [67]. In the time update step, for each i and j, the 

predicted state estimate E{xi,j(t)|y(0:t-1)} and the predicted state correlation matrix 

E{xi,j(t) (xi,j(t))
H 

|y(0:t-1)} (therefore the state covariance matrix, E{xi,j(t) (xi,j(t))
H 

|y(0:t-

1)} - (E{xi,j(t)|y(0:t-1)})
2
) are calculated using (4.1) (or (4.4), i.e., the system dynamic). 

Then, in the measurement update step, the updated state estimate E{xi,j(t)|y(0:t)} and 

updated state correlation matrix E{xi,j(t) (xi,j(t))
H 

|y(0:t)} are calculated using the standard 

Kalman filtering. In the following, for the sake of simplicity in representing the 

equations, E{xi,j(t)|y(0:t-1)} and E{xi,j(t)|y(0:t)} are denoted as x
t-1

i,j(t) and x
t
i,j(t), 

respectively. Accordingly, the predicted and updated state covariance matrices are 

denoted as )(1

,
tt

x ji

  and )(
,

tt

x ji
 , respectively. Please note that the symbol Σ (small sigma 

whose indices appear as subscript and superscript) that is used in the thesis to represent 

the covariance matrix is consistent with the reference [96]. Moreover the symbol ∑ 

(capital sigma whose range appear at the bottom and top) is used for the summation. For 

each i and j, the time update step can be followed by 
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where 
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)(

txx

xF
tA




 is the time dependent transition matrix, and 

jvμ  and 
jv  are the 

mean and variance of the synaptic input corresponding to j
th

 mixand. The so called 

Kalman gain is then obtained by 
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where 
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Here, C = [1,0,0] is the observation vector  and σ
2

ε is the observation noise variance. By 

defining the innovation process as )()()( 1

,, tCtyte t

jiji

 x , the updated state estimate and 

state covariance matrix are calculated as follows. 
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Since the KF-based algorithm is implemented in recursive manner, (D.4) is used for the 

next iteration and x
t
i,j(t) (or E{xi,j(t)|y(0:t)}) is estimated for all the time samples of the 

observation data y(0:T). 
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Appendix E  

Kalman Backward Filtering (Smoothing) [69] 

Similar to Appendix D, Kalman backward filtering is accomplished for K×G Kalman 

filters at each iteration t. The resampling procedure is already performed to eliminate the 

increase in the number of filters estimating p(x(t)|y(0:t)). The goal with backward 

filtering is providing a better estimate of the state mean E{xi,j(t)|y(0:T)} and the state 

correlation matrix E{xi,j(t) (xi,j(t))
H 

|y(0:T)} using all the observed data y(0:T). Again, for 

the sake of simplicity, E{xi,j(t)|y(0:T)} and the state covariance matrix (E{xi,j(t) (xi,j(t))
H 

|y(0:T)} – (E{xi,j(t)|y(0:T)})
2
 ) are denoted as )(ˆ tt

i,jx  and )(ˆ
,

tΣ t

x ji
, respectively. Following 

the standard Kalman backward filtering algorithm [96], for each i belonging to {1:K} and 

j belonging to {1:G}, we have: 
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where, according to [96], 
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The state covariance matrix is calculated as follows (see [96]). 
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For time indices, since in backward filtering the initial values start at t=T, we have  
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Moreover, it is necessary to obtain the correlation matrices E{xi,j(t) (xi,j(t))
H 

|y(0:T)} and 

E{xi,j(t) (xi,j(t-1))
H 

|y(0:T)} for the expectation-maximization (EM) algorithm. These 

matrices are, respectively, denoted as )(ˆ 1

, tRt

ji


 and )(ˆ

, tRt

ji  in our equations and can be 

obtained (see [96], page 47-49) by 
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Having obtained the above statistics, we can use the EM algorithm to infer the statistical 

parameters of each mixture. 
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Appendix F  

Expectation-Maximization for the GMKF-Based Algorithm 

Recalling (4.16) and (4.17), we want to maximize the logarithm of the joint probability of 

the states and observation via the EM algorithm for each mixture. Then, the results are 

combined to yield the final estimate of the states as well as the distributions of the 

synaptic inputs. Hence, we have 
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where X and Y stand for all the states and observation over time, respectively. The 

expected value of the joint probability in (E.1) can be expanded as follows. 
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when using (F.2) to solve (F.1), we need to calculate Ep(X|i,j,Y){x(t)}, Ep(X|i,j,Y){x(t-

1)(x(t))
H
} and Ep(X|i,j,Y){x(t) (x(t))

H
}. These statistics are already calculated in the 

backward filtering step as indicated by )(ˆ tt

i,jx , )(ˆ 1

, tRt

ji



 
and )(ˆ

, tRt

ji , respectively. As 

mentioned in Appendix C, p(y(t)|y(0:t-1), i, j) can be simply computed by the results of 

the KF as follows. 
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where to calculate the second line of (F.3), the results of Kalman forward filtering are 

used. It is worth mentioning that computation of the integral in (F.3) is trivial since 

p(y(t)|x(t), i, j) and p(x(t)|y(0:t-1), i, j)  are expressed by Gaussian distribution. Using 

(F.3), p(i,j|y(0:t)) can be estimated as 
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Note that βi(t-1) is the normalized weight after resampling and is equal to 1/K for all t. 

Now we can derive the M step by taking the derivative of (F.2) with respect to the 

unknown parameters [α, µv, Σv, σ
2

ε]. It should be noted that it is convenient to 

demonstrate the optimized parameters in the EM algorithm as ]ˆˆˆˆ[ 2

εvv σ,Σ,,α μ . For αj, one 

can write 
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and noting that  
j

j 1 . Using Lagrange multiplier, we can solve (F.5) as follows. 
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which results in solving the following set of equations. 
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The optimized 
ji ,

ˆ
v  can be calculated by taking the derivative of (F.2) to v̂ , as given 

below:    
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(F.8) 

Since we want to calculate 
ji ,

ˆ
v  for each i, j, we can rewrite (F.8) as 
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Obviously, (F.9) can be obtained for each mixand j as follows (by combining K filters). 
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In the non-parametric approach, our goal is to estimate the time-varying mean (and 

variance) using a (defined) basis function Ψ (spline basis function in this paper). As a 

result, the time-varying means )}({ tNE
jE  and )}({ tNE

jI  can be estimated as follows 

(recall that )}({ tE
jv =[0, )}({ tNE

jE , )}({ tNE
jI ]). 
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where gE and gI are the second and third components of the state vector x, respectively, 

αE = 1-dt/τE and αI = 1-dt/τI are inferred from (4.1). In order to model )}({ tNE
jE = Ψ (t) ×

jEω  and )}({ tNE
jI = Ψ (t) ×

jIω , we need to find the weighting vectors, 
jEω and 

jIω , of 

the basis function Ψ as follows: 
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where }E{
jEN  and }E{

jIN  indicate )}({ tNE
jE  and )}({ tNE

jI  over the entire time. The 

basis function Ψ consists of 50 spline basis functions, as that in [93].  

Similarly, the covariance matrix
ji ,

ˆ
v can be inferred by taking the derivative of (F.2) with 

respect to this parameter.  
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Then, for each i and j we have 
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Note that the full derivation of (F.14) is described in [69]. In a manner similar to (F.9), 

(F.14) can be obtained for each mixand j as follows, 
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Recalling (4.11), the time varying variances of the excitatory and inhibitory inputs can be 

expressed as 
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where 
2,2

, )(ˆ tRt

ji  stands for the (2, 2)
th

 element of the matrix )(ˆ
, tRt

ji . In our non-

parametric model, )(ˆ t
jE =Ψ(t)

jE  and )(ˆ t
jI =Ψ(t)

jI . The weighting vectors 
jE and 

jE of the basis function Ψ are given by 
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where 
jEΣ̂  and 

jIΣ̂  indicate )(ˆ t
jE  and )(ˆ t

jI  over the entire time, respectively. Hence, 

the system noise (including synaptic inputs) can be represented by a Gaussian mixture 

model (GMM) as follows.  
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Moreover, as mentioned before, we can simply calculate the final state estimate x(t) as 

the combination of K×G parallel filters at each time t.  
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Note that the variances of the membrane voltage (σ
2

w) and observation noise (σ
2

ε) can be 

calculated in a straightforward way, as mentioned in [93]. 

 

 

 

 

 

 

 


