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ABSTRACT 

 

Condition Based Maintenance Optimization Using Data Driven Methods 

 

Bai Rong Wu, Ph. D. 

Concordia University, 2013 

 

In condition based maintenance (CBM), maintenance activities are scheduled based on 

the predicted equipment failure times, and the predictions are performed based on 

conditon monitoirng data, such as vibration and acoustic data. The reported health 

condition prediction methods can be roughly classified into model-based, and data-

driven, and integrated methods. Our research mainly focuses on CBM optimization using 

data driven methods, such as proportional hazards model (PHM) and artificial neural 

network (ANN), which don't require equipment physical models. 

In CBM optimization using PHM, the accuracy of parameter estimation for PHM greatly 

affects the effectiveness of the optimal maintenance policy. Directly using collected 

condition monitoring data may  
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introduce noise into the CBM optimization, and thus the optimal maintenance policy 

obtained based on this model may not be really optimal. Therefore, a data processing 

method, where the actual measurements are fitted first using the Generalized Weibull-FR 

function, is proposed to remove the external noise before fitting it into the PHM.  

Effective CBM optimization methods utilizing ANN prediction information are currently 

not available due to two key challenges: (1) ANN prediction models typically only give a 

single remaining life prediction value, and it is hard to quantify the uncertainty associated 

with the predicted value; (2) simulation methods are generally used for evaluating the 

cost of the CBM policies, while more accurate and efficient numerical methods are not 

available. Therefore, we propose an ANN based CBM optimization approach and a 

numerical cost evaluation method to address those key challenges.  

It is observed that the prediction accuracy often improves with the increase of the age of 

the component. Therefore, we develop a method to quantify the remaining life prediction 

uncertainty considering the prediction accuracy improvements by modeling the 

relationship between the mean value as well as standard deviation of prediction error and 

the life percentage. An effective CBM optimization approach is also proposed to 

optimize the maintenance schedule.   

The proposed approaches are demonstrated using some simulated degradation data sets as 

well as some real-world vibration monitoring data set. They contribute to the general 

knowledge of CBM, and have the potential to greatly benefit various industries.  
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CHAPTER 1 INTRODUCTION 

 

1.1. Introduction to Condition Based Maintenance 

With the rapid growth of modern technology, maintenance plays a more and more 

important role in many industries. In some industries, such as aerospace industry and 

energy industry, reliability is one of the most critical issues since a tiny failure may result 

in inestimable loss even fatal disaster. In recent decades, people pay more attention to 

research in maintenance and reliability. Maintenance is defined as “all activities aimed at 

keeping an item in, or restoring it to, the physical state considered necessary for the 

fulfillment of its production function.” (Jardine and Tsang, 2006). Traditional 

maintenance technique is basically breakdown maintenance, also called corrective 

maintenance, reactive maintenance and unplanned maintenance. It is limited to repair 

actions or item replacement caused by failures. The predominant characteristic of such 

maintenance is reactive since it only reacts to faults or failures.  

A more recent maintenance technique is time-based preventive maintenance (PM, also 

called planned maintenance). It is proactive, which sets schedules to inspect or perform 

PM instead of just reacting to failures. One time-based PM method is constant-interval 

based preventive replacement method, in which failure replacements are performed 

immediately after failures occur and preventive replacements are performed at constant 

intervals, say every 6 months. The optimization problem is to find the optimal preventive 
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replacement interval to minimize the total expected replacement cost in the long run. 

Another time-based PM method is the age-based replacement method, in which 

preventive replacements are performed when the component reaches a pre-specified age, 

and the optimization problem is to find the optimal preventive replacement age. The 

time-based maintenance technique is an improvement compared to corrective 

maintenance techniques, but at the same time it makes the cost of preventive maintenance 

higher and higher. Eventually, preventive maintenance cost has become a heavy financial 

burden of many industrial companies. Therefore, more effective maintenance approaches 

such as condition based maintenance (CBM) are being adopted to solve the problem of 

high preventive maintenance cost, and to prevent unexpected failures at the same time.   

CBM is a maintenance process which decides maintenance actions using the information 

collected through condition monitoring. It is based on the understanding that a piece of 

equipment goes through multiple degraded states before failure. The health conditions 

can be monitored and predicted, and optimal maintenance actions can be scheduled to 

prevent equipment breakdown and minimize total operation and maintenance costs (Tian 

et al., 2009). CBM optimization attempts to avoid unnecessary maintenance tasks by 

taking maintenance actions only when there is evidence that the failure is approaching.   

CBM has been widely used in many fields, such as aerospace industry (Li and 

Nilkitsaranont, 2009, Joshi et al., 2012, Chen et al., 2012), mining industry (Hall et al., 

2000, Lin et al., 2006), automobile industry (Rabeno and Bounds, 2009, Zachos and 

Schohl, 2010, Grantner et al.,2010), petroleum industry (Srinivasan et al., 2005, Gao et 

al., 2010), and power generation industry (Gray and Watson, 2010, Byon and Yu, 2010, 

Tian et al., 2011, Ding et al., 2012).  CBM may use condition monitoring data collected 
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from oil analysis, vibration analysis, fuel consumption, environmental conditions, and so 

on, to make maintenance decisions. For example, oil analysis is the spectrometric 

analysis of metal particles in oil samples generally gathered from an engine’s or 

transmission’s lubricating oil, while vibration signals maybe collected at certain positions 

on rotating equipments, etc.  

There are three key steps in CBM process: data acquisition, data processing and 

maintenance decision making, as shown in Figure 1-1. Data acquisition is to collect the 

data related to system health. Data processing is to process and analyze the acquired data. 

In maintenance decision making step, effective maintenance policies will be obtained 

based on the analyzed information (Jardine et al., 2006). 

Data Acquisition Maintenance
Decision MakingData Processing

 

Figure 1-1 CBM process steps 

The data processing step consists of two main categories of maintenance techniques: 

diagnostics and prognostics. Diagnostics focus on faults detection, isolation and 

identification when they occur, while prognostics attempts to predict faults or failures 

before they occur. Prognostics endeavors to prevent faults or failures, or at least has 

prepared spare parts and planned human resources ready for the problems, and thus 

avoids additional unplanned maintenance cost. Diagnostic can help improving 

prognostics in the way that diagnostic information can be useful for preparing more 

accurate event data and hence building better CBM model for prognostics. In addition, 

diagnostic information can be used as valuable feedback information for system redesign. 
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A CBM program can be used to do both diagnostics and prognostics, or either one of 

them.  

1.2. Research Motivations 

In CBM optimization using Proportional Hazards Model (PHM), fitting PHM is a very 

important step since the accuracy of parameter estimation for PHM has a great influence 

on the effectiveness of the optimal maintenance policy. Previously actual condition 

monitoring measurements collected from the field are directly used to fit the PHM and 

the optimal maintenance policy is obtained based on the fitted PHM. However directly 

using the actual measurements as input may introduce external noise and bring 

unexpected disturbs to the model. Thus the optimal maintenance policy obtained based 

on this model may not be really optimal. To resolve this problem, a data processing 

method, where the actual measurements are fitted first using the Generalized Weibull-FR 

function, is proposed to remove the external noise from the actual measurements before 

using them as input to the PHM.  

Artificial Neural Network (ANN) based methods have been extensively investigated for 

equipment health condition prediction. However, effective CBM optimization methods 

utilizing ANN prediction information are currently not available due to two key 

challenges: (1) ANN prediction models typically only give a single remaining life 

prediction value, and it is hard to quantify the uncertainty associated with the predicted 

value; (2) simulation methods are generally used for evaluating the cost of the CBM 

policies, while more accurate and efficient numerical methods are not available, which is 

critical for performing CBM optimization. Therefore, we attempt to propose an ANN 
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based CBM optimization approach and a numerical cost evaluation method to address the 

above-mentioned key challenges.  

In many previous researches, it is assumed that the standard deviation of prediction error 

is always the same during the whole history. However, it is observed that the prediction 

accuracy often improves with the increase of the age of the component as it approaches 

the failure time. In Gebraeel (2006), this situation is discussed.  Prediction results based 

on our experimental data also show that prediction accuracy improves with time. 

Therefore, we endeavor to develop a method to quantify the remaining life prediction 

uncertainty considering the prediction accuracy improvements, and an effective CBM 

optimization approach to optimize the maintenance schedule.  

1.3. Research Contributions 

In this thesis, we concentrate on the research of CBM optimization using data driven 

methods such as PHM and ANN. The contributions of this thesis are summarized as 

follows. 

 We propose a data processing approach to fit the data before feeding it into the 

PHM model. In this approach, the external noise can be removed by fitting the 

actual measurements using the Generalized Weibull-FR function. Compared to 

the actual measurement, the fitted measurements can better represent the 

deterioration of the component or equipment. Two case studies using real-world 

vibration monitoring data are used to demonstrate the proposed approach. The 

data were collected from Gould pump bearings in a Canadian Kraft Mill company 

and from shear pump bearings in a food processing plant. The proposed approach 
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is validated to be effective and will save the average maintenance cost by 

increasing the average replacement interval and making better use of remaining 

useful life.  

 We propose a CBM optimization approach based on ANN remaining life 

prediction information. The CBM policy is defined by a failure probability 

threshold value. In this approach, the remaining life prediction uncertainty is 

estimated based on ANN lifetime prediction errors on the test data set during the 

ANN training and testing processes. A numerical method is developed to more 

accurately and efficiently evaluate the cost of the proposed CBM policy. 

Optimization can be performed to find the optimal failure probability threshold 

value corresponding to the lowest maintenance cost. The proposed approach can 

also be modified to utilize information obtained using other prognostics methods. 

The effectiveness of the proposed CBM approach is demonstrated using two 

simulated degradation data sets and a real-world condition monitoring data set 

collected from pump bearings. We compare the proposed approach with some 

benchmark maintenance policies, and the proposed approach is found to 

outperform the benchmark policies.  

 We propose a CBM optimization approach to quantify the remaining life 

prediction uncertainty considering the prediction accuracy improvements, and 

optimize the maintenance schedule. In this approach, by modeling the relationship 

between the mean value of prediction error and the life percentage, and the 

relationship between the standard deviation of prediction error and the life 

percentage, we can quantify the remaining life prediction uncertainty considering 
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the prediction accuracy improvements. Any type of prognostics methods can be 

used, including data-driven methods, model-based methods and integrated 

methods, as long as the prediction method can produce the predicted failure time 

distribution at any given inspection point. The proposed approach is demonstrated 

using vibration monitoring data collected from pump bearings in the field as well 

as simulated degradation data. The proposed policy is compared with two 

benchmark maintenance policies and is found to be more effective. 

1.4. Thesis Organization 

The rest of this thesis is organized as follows: 

 In Chapter 2, we conduct a detailed literature review on CBM and some data 

driven methods, such as PHM and ANN. 

 In Chapter 3, we propose a data processing method for CBM using PHM. We also 

conduct two real-world case studies to illustrate the approach. This approach is 

validated to be effective and will save the average maintenance cost by increasing 

the average replacement interval and making better use of remaining useful life.  

 In Chapter 4, we propose a CBM optimization approach based on ANN remaining 

life prediction information. A numerical method is also developed to more 

accurately and efficiently evaluate the cost of the proposed CBM policy. Two 

simulated degradation data sets and a real-world condition monitoring data set are 

used to illustrate the proposed approach. 
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 In Chapter 5, an improved approach, which is CBM optimization considering 

improving prediction accuracy, is proposed based on the previously proposed 

approach in Chapter 4. The proposed approach is demonstrated using vibration 

monitoring data collected from pump bearings in the field as well as simulated 

degradation data. 

 Finally, in Chapter 6, we draw a conclusion from our research and present several 

suggestions of future work. 
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CHAPTER 2  LITERATURE REVIEW 

 

Nomenclature 

t  : inspection time 

 : scale parameter 

 : shape parameter 

tzi  : value of covariate i at time t  

i  : coefficient for covariate i  

d  : risk threshold value 

C   : preventive replacement cost  

K  : penalty cost 

KC  : failure replacement cost 

)(d  : expected average cost per unit time at the risk threshold d  

dT   : preventive time at risk threshold d  

)(dW  : expected time until replacement at the risk threshold d . 

*d  : optimal risk threshold value 
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1it   : age of the component at the previous inspection point 1i  

it  : age of the component at the current inspection point i  

1
1iz  : measurement of covariate 1 at the previous inspection point 1i  

1
iz  : measurement of covariate 1 at the current inspection point i  

2
1iz  : measurement of covariate 2 at the previous inspection point 1i  

2
iz  : measurement of covariate 2 at the current inspection point i  

ip  : life percentage at current inspection point i  

 

CBM decides maintenance actions based on condition monitoring information. It has 

been discovered to be very efficient in maintenance scheduling and cost reduction. 

Numerous research works in CBM can be found. Wang (2007) developed a probability 

model to predict the initiation point of the failure delay period and the remaining life 

based on available condition monitoring information. Goodman, et al. (2011) proposed a 

new concept of nonparametric signal detection and classification technique and applied 

the proposed technique to real-world vibration data obtained from a dedicated CBM 

experimental test bed. An online adaptive CBM method with pattern discovery and fault 

learning capabilities for mechanical systems was proposed in Wu et al. (2010). This 

method can reduce local clusters from the same pattern and optimize the self-organizing 

map (SOM) architecture to further decrease the calculation cost in matching patterns in 

the neuron fitting process. Neves et al. (2011) proposed CBM policies by combing an 
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optimization model and input parameters estimation from empirical data. The proposed 

approach is demonstrated to be able to help managers to improve their decisions for 

similar cases. In Sun et al. (2012), a state space model (SSM) technique embedded with a 

sequential Monte Carlo (SMC) method was developed for system performance 

degradation prognostics. This method can provide an estimate of Remaining Useful Life 

(RUL) with uncertainty as well as other reliability indices of interest for operators to plan 

effective CBM. Prajapati and Ganesan (2013) evaluated five prediction approaches for 

CBM, using a case study for vehicle tire pressure monitoring as an example application. 

Gulledge et al. (2010) attempted to link CBM to Product Lifecycle Management (PLM) 

by converting prognostic and diagnostic information into actionable information which 

can be directed into a project-level PLM environment. Ambani et al. (2009) developed a 

continuous time Markov chain degradation model and a cost model to quantify the effects 

of maintenance and obtain optimal maintenance policies on a multiple machine system. 

Fouladirad and Grall (2011) proposed an adaptive maintenance model for a gradually 

deteriorating system. An optimal CBM policy for continuously monitored degrading 

systems with multiple failure modes was developed in Liu et al. (2013). This method 

considers multiple sudden failures that can occur during a system’s degradation. Niu et al. 

(2010) presented a new CBM system which uses reliability-centered maintenance 

mechanism to optimize maintenance cost, and employs data fusion strategy for improving 

condition monitoring, health assessment, and prognostics. The proposed system is 

demonstrated that optimized maintenance performance can be obtained with good 

generality. In Weide et al. (2010), the authors presented a discounted cost model to 

evaluate the reliability and optimize the maintenance of engineering systems that are 
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damaged by shocks or transients arriving randomly in time. This model provides a more 

realistic basis for optimizing the maintenance policies than those based on the asymptotic, 

non-discounted cost rate criterion. Based on long-term examinations, Kamei and Takai 

(2011) concluded that a special sensitivity and long-term stability performance of the 

CBM gas pressure sensor are very important for the reliable operation of power 

substations under the CBM strategy. Ciarapica and Giacchetta (2006) developed a CBM 

plan for a combined-cycle power plant to prevent sudden breakdown situations. Similarly 

Ghasemi et al. (2010) derived an optimal CBM replacement policy when the state of 

equipment is unknown but can be estimated based on observed condition. Chen and 

Trivedi (2005) applied Markov Decision Process (MDP) algorithm in determining the 

optimal maintenance policy for CBM. A joint optimization of inspection rate and its 

corresponding maintenance policy was also described in this paper. In Kim et al. (2010), 

Ghasemi et al. (2010), and Duan et al. (2012), parameter estimation problems for CBM 

models were solved, and numerical studies were used to illustrate the efficiency of the 

proposed algorithms. The approach proposed in Lu et al. (2007) can be applied on-line to 

provide economic and preventive maintenance solutions in order to maximize the profit 

of the ownership of a system. Flage et al. (2012) developed a model which can determine 

an optimal inspection and maintenance scheme for a deteriorating unit with a stochastic 

degradation process with independent and stationary increments.  

CBM optimization is one of the most important techniques in CBM.  It attempts to find 

out optimal maintenance policy which can minimize the overall maintenance cost for the 

equipment or component based on the condition monitoring information. In CBM 

optimization, the widely used way of maintenance scheduling is to set a threshold value, 
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and once the health condition indicator exceeds the predefined threshold value, the 

equipment is shutdown for repair or a preventive replacement is performed (Jardine et al., 

2006). In Banjevic et al. (2001), a PHM based control-limit policy was proposed, in 

which once the monitoring measurement exceeds the threshold risk level, a preventive 

replacement should be performed, and otherwise the operation can be continued. In Lu 

and Meeker (1993), random coefficient models were developed to estimate the remaining 

life distribution of degrading components. Marseguerra et al. (2002) presented an 

optimization model to determine the optimal threshold value using Genetic Algorithm 

(GA) and Monte Carlo simulation . In Jardine and Anderson (1992), CBM policies for 

critical components of fossilfired power plants were developed. The plant was considered 

to be a system that fails once the cumulative damage of its components exceeds a 

predetermined managerial damage level. Wang (2000) built a model to determine the 

optimal critical level and the monitoring intervals in CBM. In this model, components 

were monitored at regular intervals until the measurement being monitored exceeds a 

predetermined level, when a preventive replacement is performed. Maillart and Pollock 

(2002) proposed a predictive maintenance policy to determine the frequency of condition 

monitoring. Yam et al. (2001) proposed the intelligent predictive decision support system 

for CBM, but their focus is mainly on the application of prognosis using recurrent neural 

networks. In Sun et al. (2006), a Proportional Covariate Model (PCM) for CBM is 

developed. This method can reduce the number of failure test histories, and works well 

when historical failure data are sparse or zero.  

 A key to the effective implementation of CBM optimization is the accurate prediction of 

the equipment health condition. Many health condition prediction methods can predict 
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the health condition of the component or equipment at certain inspection point and some 

methods can also give the associated prediction uncertainties. The reported health 

condition prediction methods can be roughly classified into model-based methods and 

data-driven methods.  

The model-based methods predict health condition using physical models of the 

components and damage propagation models (Inman et al., 2005, Tian et al., 2012), such 

as the bearing prognostics method proposed by Marble et al. (2006), and the gearbox 

prognostics methods developed by Kacprzynski et al. (2002) and also by Li and Lee 

(2005). However, for some components and systems, authentic physics-based models are 

very difficult to build because equipment dynamic response and damage propagation 

processes are very complex. Data-driven methods, such as PHM, ANN, etc., do not 

require physical models, and utilize the collected condition monitoring data for health 

condition prediction.  

2.1. Proportional Hazards Model 

2.1.1. Literature Review on PHM 

PHM was introduced in 1972 by D. R. Cox. At first it is widely used in the field of 

biomedicine. In 1980s, people started to investigate PHM applications in mechanical 

engineering field. From 1990s, interest in applications of the PHM in this field has 

greatly increased. PHM began to be adopted in maintenance in diverse areas, such as 

mining industry, automobile industry, power generation industry, semiconductor 

industry, papermaking industry, petroleum industry, aircraft engines industry (Jardine and 

Anderson, 1992), construction industry (Metal, 2004), electronic components industry 
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(Bendell et al., 1991), locomotive diesel engines industry (Jardine et al., 1989) and many 

other industries. These applications can be classified into two main categories: CBM 

optimization and reliability analysis. Applications in maintenance optimization combine 

the age data with the condition monitoring data in the PHM. In these applications the 

effects of different covariates influencing the time to failure of the components are 

considered, and thus the optimal maintenance policy can be determined to minimize the 

maintenance cost. In the applications in reliability analysis, PHM is used in the 

assessment and prediction of the reliability of component or equipment by using 

covariates to describe different operating conditions (Tian et al., 2009). 

A key reason that PHM is more effective than previous approaches is that it considers not 

only age data but also condition data, which influence the health of the component or 

equipment. In maintenance optimization, PHM can effectively estimate the risk of failure 

of the component under condition monitoring. For example, PHM takes into account the 

event data (failure data and suspension data) as well as inspection data (vibration data or 

oil analysis data such as the parts per million (PPM) of iron or lead found in lubrication 

oil sample). In reliability analysis, the reliability data is collected under different 

conditions. For instance, examples may be equipment being used by different operators 

or under different temperature and humidity. All the environment conditions may have 

influence on the reliability characteristics of the equipment and should be considered. 

These inspection data and environment conditions are called covariates and they cannot 

be ignored when we deal with the maintenance optimization and reliability analysis 

problems. PHM takes into account the age data as well as the condition monitoring data, 

and the effects of different covariates influencing the time to failure of a system can be 
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estimated in this model. CBM optimization approach using PHM can represent and 

predict the equipment health condition more accurately and it is able to reduce 

unnecessary scheduled preventive maintenance actions thus to reduce the overall 

maintenance costs.  

2.1.1.1. PHM Applications in CBM Optimization 

Jardine et al. (2008) described the development of an optimal predictive maintenance 

program for critical pump bearings in the food processing industry. Measurements are 

taken in three directions for the bearings under investigation: axial, horizontal and 

vertical. In each of these directions, the velocity spectrum was obtained in five frequency 

bands. In addition, overall velocity and acceleration are also measured in the three 

directions. Therefore there were altogether 21 covariates in this PHM model. 

Significance analysis was taken to reduce the covariates and three covariates were found 

out to be necessary: band 1 velocity in the axial direction, band 1 velocity in the vertical 

direction, and band 2 velocity in the axial direction. Assuming the inspection interval is 

20 days, the transition probability matrices for the three covariates were estimated. Based 

on all this information, the optimal CBM replacement policy was determined. The results 

showed that, comparing to the failure replacement only policy, the optimal policy could 

achieve 84.5% of cost savings. 

EXAKT (Makis and Jardine, 1992) is a commercial software widely used in industry for 

CBM decision making. It was developed by Optimal Maintenance Decision Inc. 

(OMDEC). Jardine et al. (2003) used the EXAKT software to build a CBM optimization 

model for the interpretation of inspection data from a nuclear reactor station. The data set 
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included the information of 11-year period from 1990 onwards. In the nuclear reactors, 

hydro-dyne seals perform a vital function, and they can prevent the leakage of heavy 

water from the reactor. So site engineers would like to optimize the preventive seal 

replacement intervals in order to minimize the overall failure and maintenance costs. 

Therefore PHM based statistical decision methodology was applied to determine the 

optimal moment at which to perform proactive maintenance.  In this case, two types of 

data were used to determine the optimal CBM policy: inspection data and events data. 

Inspection data is referred to as the condition monitoring data (called covariates), which 

affect the health of each hydro-dyne seal along with the date of inspection and the 

corresponding working age of the seal. The event data comprises the dates and working 

ages at particular events, including beginning event (the installation of a new seal), 

failure event (the failure of a seal), and suspension event (the replacement of a seal that 

has not yet failed). A PHM was fitted to the data by maximum likelihood method and the 

Leak Rate was found out to be the only significant covariate. Finally the optimal 

replacing policy was determined and around 52.5% saving may be realized over the 

current replace-on-failure policy.  

Lin et al. (2006) proposed the application of a principal components proportional hazards 

regression model in CBM optimization. They gave two examples to illustrate this 

application. The oil analysis data set of the first example was collected from 

transmissions on haul trucks in a mining company. After a series of analysis, the original 

11 covariates: sodium, potassium, iron, aluminum, titanium, phosphorus, zinc, calcium, 

magnesium, molybdenum and vanadium were reduced to six significant covariates: iron, 

aluminum, titanium, magnesium, molybdenum and vanadium. Three models (SW, PC_23 
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and PC_236) were built and compared. The final results suggested that the PHM PC_23 

and the corresponding optimal replacement policy performed better than the other two 

models for the transmissions in this example. The other example was vibration analysis 

data set taken from a pulp and paper company. This data set contains event records and 

vibration measurements collected from water pumps every month. The pumps basically 

work 24 hour per day, 7 days per week. Vibration signals were taken at seven different 

locations. For each vibration signal, the overall amplitude and the amplitude for six 

different frequency bands were recorded. So, altogether there are 49 covariates recorded.  

Preliminary correlation analysis (PCA) was applied to eliminate the covariates and the 49 

original covariates were transformed into 49 principal components. The final model 

included only one covariate, the fifth principal component (model PC_5). At the same 

time, a ‘simple’ Weibull model (model SW) without considering covariates was also built 

for comparative study purpose. The result of comparison of these two models indicated 

that the model PC_5 is more effective.   

PHM was also utilized by Vlok et al. (2002) to determine the optimal replacement policy 

for a vital item which is subject to vibration monitoring.  In their study they chose 

circulating pumps in a coal wash plant as the research case. The lifetime data was 

collected during a period of two years. Their study shows that, even with some problems 

in the collected data, vibration measurements can be used in proportional hazards 

modeling and that a useful decision policy can be obtained. 

In the research by Rao and Prasad (2001), the PHM was used to analyze failure data and 

plan maintenance intervals for material handling equipments in mining industry, such as 

loaders, trucks, dozers, dumpers and etc. In this paper, PHM was applied to model the 
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repairable equipment whose performance is affected by concomitant variables. Graphical 

methods were used to calculate maintenance intervals.  

Kobbacy et al. (1997) proposed a heuristic approach for implementing the PHM to 

schedule future preventive maintenance actions on the basis of the equipment’s full 

condition history. An example based on data for four similar pumps used in four different 

plants was taken to illustrate their approach. This approach can be applied to repairable 

systems and does not require any restrictive assumption such as renewal regarding the 

quality of corrective work or planned maintenance. The main assumption in this approach 

is that lives of components following preventive maintenance (PM) or corrective 

operation (CO) depend on covariates values measured at points in time just before the 

maintenance work, and that lengths of these lives are conditionally independent. There 

were altogether 8 covariates: (a) age (age), (b) average PM interval, (c) total number of 

failures, (d) total number of PMs, (e) total down time of all PMs, (f) total man hours of 

all PMs, (g) time since last corrective work, (h) time since last PM. After detailed 

analysis, three covariates, (c), (g), and (h), were selected to build a model for preventive 

maintenance; two covariates, (f) and (g), were selected to build a model for corrective 

operation. Their study results indicated a higher availability for the recommended 

schedule than the availability resulting from applying the optimal preventive maintenance 

intervals as suggested by using the conventional stationary models. 

2.1.1.2. PHM Applications in Reliability Analysis 

Elsayed and Chan (1990) used PHM to estimate thin oxide dielectric reliability and time-

dependent dielectric breakdown hazard rates. These models are distribution free since no 
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assumptions need to be made about the failure time distribution. However, there is a 

necessary assumption that the hazard rate functions for various devices when tested at 

various stress levels are proportional to one another. The need for proportionality can be 

relaxed by using time-dependent explanatory variables or stratified baseline hazard rates. 

In this approach, two groups of models are considered: group one ignores interactions 

between temperature and electric field while group two considers several forms of 

interaction.   

Elsayed et al. (2006) applied extended linear hazard regression (ELHR) model to study 

the time-dependent dielectric breakdown of thermal oxides on n-type 6H-SiC using 

laboratory data. The ELHR model was extended from the extended hazard regression 

(EHR) model by generalizing the EHR model and proportional hazard linear (PHL) 

model; here the PHL model expands the PHM in a way that it considers covariate 

interactions. Their results suggest that the reliability of oxides on 6H-SiC will be 

satisfactory for long-term operation only if the oxide field is kept below 5 MV/cm at 

temperatures up to 1500C. So their research effectively concluded SiC MOS (metal-

oxide-semiconductor) devices from many high-temperature applications although SiC has 

a high inherent temperature capability. 

Kumar et al. (1992) used PHM to examine the effects of two different designs and 

maintenance on the reliability of a power transmission cable of an electric mine loader. In 

this paper, 6 covariates were excluded out of 8 covariates and only the cable type and the 

first repair were found to have a significant effect on the hazard rate of the cable. The 

plotting of the estimated log-cumulative hazard rates showed that the hazard rate for the 
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cable type B is less than the cable type A . Based on these results they suggested that 

cable type B  be used so that unplanned interruption of production can be reduced.  

The study of Prasad and Rao (2002) involved failure data of an electro-mechanical 

equipment in an underground coal mine. The failures due to electrical problems, 

compressed air and cable fault were found to be significant. Maximum likelihood method 

was used to estimate the parameters and a PHM was built with the data set. The results 

indicated that the failure rate due to electrical problems was 19% more than compressed 

air problems and 42% more than cable fault problems. Thus additional attention should 

be paid to reduce the failures due to electrical problems. In this paper, they gave another 

example of thermal power unit to study the reliability of repairable systems considering 

the effect of operating conditions. In this case, the failure time data was collected through 

a long period of four years, and the failures due to boiler, electrical and turbine were 

selected as significant covariates. A PHM model was built with the data set to optimize 

preventive maintenance interval in the thermal power unit. 

Campean et al. (2001) presented a general PHM based methodology for automotive 

systems life prediction modeling. This approach aimed to establish a correlation among 

the degradation mechanism, the real-world customer usage profile and the rig life testing. 

An example of development of a life model for the camshaft-timing belt was given to 

illustrate this approach. In this example, tooth shear fatigue mechanism led to the 

common cause failure mode and the covariates were found to be the tooth deflection and 

belt operating temperature. The contribution of building this timing-belt model is that it 

can directly establish a correlation between damage accumulation in real-world 

conditions and belt life testing under laboratory conditions. Practically it can be used 
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either as a life prediction tool for different usage profiles, or as a risk assessment tool in 

establishing the service interval. 

In the paper by Eliashberg et al. (1997), PHM was utilized to calculate the reserve for a 

time and usage indexed automobile warranty. Purchased time and used mileage are 

selected as concomitant variables.  

The PHM is also used in multi-sample reliability modeling. In the paper by Mudholkar 

and Sarkar (1999), the analysis of multi-sample data was illustrated using the bus motor 

failure. Multi-sample reliability data are often found in the monitoring of repair-reuse 

systems. The PHM based multi-sample reliability model follows distributions with 

unimodal and bathtub hazard functions, yields a broader class of monotone hazard rates, 

and can be analyzed and computed in a simple way. Generally, it can be used for 

proportional hazards modeling in comparative studies of lifetime data from several 

populations.  

Gasmi et al. (2003) developed a PHM based statistical model of complex repairable 

systems. These systems are observed to operate in either loaded or unloaded mode. In 

most cases, a system is in loaded operation. But sometimes the system is placed in an 

unloaded status even though it is mechanically still running. It is assumed that the failure 

intensity of an unloaded operation is lower than loaded operation because the operating 

intensity is reduced in the unloaded mode. In their research, a PHM was used to capture 

this potential reduction in failure intensity due to switching of operating models. A case 

in the B. C. Hydro Power was used to illustrate this model. The data was collected from a 

specific turbine in this power station in a period of one year. Altogether 466 sojourns (the 
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time between two actions) were recorded, of which 142 ended with failure (140 in loaded 

mode and 2 in unloaded mode). There were also 60 major repairs, 88 minor repairs and 

the remaining data were minimal repairs (the unit was stopped due to being taken off line 

and was restarted when needed). The purpose of building this model is to quantify the 

impacts of performing these repair actions on the failure intensities.  

JoWiak (1992) developed an approach to utilize PHM in reliability analysis of 

microcomputer systems. In this approach, he examined the influence of two concomitant 

variables, temperature and mean daily user's exploitation time of the system, on system 

reliability and found that the PHM with Weibull baseline failure rate had considerable 

potential for estimating equipment failure rate in the presence of time-dependent and 

time-independent concomitant variables. He recommended that PHM should be used 

more frequently in this field of engineering reliability. The fully parametric PHM allows 

engineers to examine the relative influences of equipment age and covariates on 

equipment failure, including only those covariates which have a statistically significant 

effect on time to failure. 

Ansell and Phillips (1997) used PHM to represent the repairable data from the 

hydrocarbon industry. The data set consisted of two parts: (1) failure data in a pipeline 

arising from a set of different causes; (2) information supplied on a daily basis on average 

temperature and the stress the system was under. Using the two covariates, stress and 

temperature, several models were built to fit the data set. Residuals based diagnostic 

techniques using PHM and graphical methods were used in this paper to interpret these 

repairable data.  
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2.1.2. PHM Basic Model 

In CBM optimization process using PHM, the Weibull distribution function PHM is used 

to model the data. PHM is a valuable statistical procedure to estimate the risk of failure of 

a component or equipment when it is under condition monitoring. The most important 

advantage of PHM is that it considers the age data as well as the condition monitoring 

data thus optimal maintenance actions can be effectively scheduled. The PHM function 

combines the baseline hazard function and the covariates which affects the failure time. 

The age of the equipment is the main variable while the condition monitoring 

measurements can be considered as a series of covariates. The basic model of PHM is 

described as follows (Jardine et al., 2006):  

m

i
ii tz

ettzth 1
)(

1

))(,(                                                 (2-1) 

Where t  is the inspection time; and  denote scale parameter and shape parameter 

respectively. tzi  is value of covariate i at time t and i  is the coefficient for covariate i . 

In this model, ))(,( tzth is the conditional probability of failure at t , given the values of 

tzi . The first part of this model is a baseline hazard function 1t , which takes 

into account the age of the equipment at time of inspection, given the values of 

parameters. The second part
m

i
ii tz

1
)(exp  takes into account the covariates which may be 

considered as the key factors influencing the health of equipment and their associated 

weights.  
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2.1.3. Optimal Maintenance Policy for PHM 

CBM optimization method using PHM has been developed and the main objective is to 

determine an optimal replacement policy to minimize long-run replacement cost 

(Banjevic et al., 2001, Markis and Jardine, 1992). In this method, the maintenance cost is 

calculated based on PHM and a risk threshold control limit policy. CBM optimization 

using PHM can significantly decrease maintenance cost by reducing the number of 

unnecessary scheduled preventive maintenance operations (Jardine et al., 2006). A 

summary of this method is described as follows. 

Let ))(,( tzth be the hazard rate at time t and K  be the penalty cost. The basic theory of 

this approach can be described in the following way: if the observed risk ))(,( tzthK  at 

the given inspection point of time is greater than a certain risk threshold level d , 

preventive replacement action should be taken; otherwise operation can continue. 

Nevertheless, there is also possible that failure occurs between two inspection points of 

time. In that case, failure replacement will be performed. Thus, the objective of the CBM 

optimization using PHM is to find the optimal threshold value of the hazard rate to 

minimize maintenance cost. In this model, the expected long run average cost per unit 

time is a function of d , which is shown as follows: 
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                             (2-2) 

Here )(d is the expected average cost per unit of time and it is a function of risk 

threshold value d , C  is the preventive replacement cost and KC  is the failure 

replacement cost. )(dQ  is the probability that failure replacement will occur, and  
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)()( TTPdQ d                                                         (2-3) 

)})(,(:0inf{ dtztKhtTd                                            (2-4) 

where dT is the preventive time at the risk threshold d . )(dW denotes the expected time 

until replacement at the risk threshold d , regardless of whether it is a preventive action or 

a failure replacement, that is, }),(min{)( TTEdW d .  If the hazard rate is non-decreasing, 

for example, if 1 and all covariates are non-decreasing and covariate parameters are 

positive, the optimal risk threshold value *d , can be determined with the fixed-point 

iteration method to get *)(min*)( 0 ddd d . If the hazard rate is not monotonic, 

the fixed-point iteration does not work, and )(,min 0 dd  could be found by direct search. 

Numerically more convenient is a forward version of that procedure, which can be 

suitably adjusted for non-monotonic hazard rates. Once the optimal risk threshold value

*d is determined, the item is replaced at the first moment when 
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This optimal maintenance policy for PHM has been developed into the CBM 

optimization software EXAKT (Banjevic et al.,  2001). EXAKT has been successfully 

implemented in many industries, including mining industry, food processing industry, 

utility industry, manufacturing industry, and so on.  
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2.2. Artificial Neural Network 

2.2.1. Literature Review on ANN 

Among data-driven methods, ANN based methods have been considered to be very 

promising tools for component or equipment health condition and remaining life 

prediction. Research studies which focus on ANN applications in CBM optimization are 

summarized as follows:  

Lee et al. (2006) presented a neural network method for continuous assessment and 

prediction of a particular product’s performance. The proposed method is able to prevent 

machine from breakdowns by proactive maintenance. Several case studies were 

introduced to validate these developed technologies and tools. 

A neural network model for condition monitoring of milling cutting tools was developed 

by Saglam and Unuvar (2003). This model was used to describe the relationship between 

cutting parameters in a milling operation and the resulting flank wear and surface 

roughness. In selection of the network training patterns, the authors took tool life as a 

reference for a feature selection criterion and they also performed variance analysis for 

factor selection. The selected model had five input features and 10 nodes in one hidden 

layer. It was trained using 16 training patterns which were obtained under a variety of 

machining parameters. In this paper, ANN presents an alternative solution for a human 

operator who behaves subjectively and is not reliable in making a decision on the state of 

the tool. The results of neural network show close matching between the model output 

and directly measured flank wear and surface roughness. 
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Shao and Nezu (2000) developed a compound neural network model to predict the health 

of a roller bearing by modeling the root mean square vibration value as a time series. The 

proposed model utilizes linear and non-linear signal processing techniques and neural 

networks to determine the current state of the bearing and a future state forecasting 

technique to predict the time to failure. Therefore it is able to forecast a bearing defect 

development process and the exact remaining bearing life. It can also automatically adapt 

to changes in environmental factors. In addition, multi-step prediction is possible. The 

proposed approach improves the traditional prediction methods of remaining bearing life. 

Gebraeel et al. (2004) proposed neural-network-based models for predicting bearing 

failures. In this paper, two classes of models, single-bearing and clustered-bearing neural 

network models were developed. Degradation signals are required as inputs of these 

models to predict the failure time of a partially degraded bearing at any time during its 

service life. Therefore, the authors set up an experiment to perform accelerated bearing 

tests where vibration information was collected from a number of bearings that were run 

until failure. They used this information to train neural network models on predicting 

bearing operating times. Vibration data from a set of validation bearings were then 

applied to these network models and prediction results were used to estimate the bearing 

failure time. After that, they compared the predicted bearing failure times with the actual 

lives of the validation bearings and evaluated the effectiveness of each model. The 

compared results showed that models which used a weighted average of the exponential 

parameters coupled with the parameter updating algorithm to compute a bearing failure 

time prediction provided the best results. The results showed that 92% of the failure time 

predictions computed using validation bearings were within 20% of the actual bearing 
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life. In conclusion, the best estimate of bearing failure times are computed using a 

weighted average of the exponential parameters. 

In Gebraeel et al. (2005), the authors proposed ball bearing remaining life prediction 

methods where the output of the ANN models was a condition monitoring measurement. 

The presented methods combined two sources of information, which were the reliability 

characteristics of a device’s population and real-time sensor information from the 

functioning device, to periodically update the distribution of the device’s residual life. A 

Bayesian approach for updating the estimates of the stochastic parameters in exponential 

random-coefficient models was developed. These models with their updated parameters 

were then used to develop residual-life distributions for a partially degraded device. The 

proposed models were demonstrated using bearing degradation signals that were 

collected through accelerated testing. 

Gebraeel et al. (2008) proposed a neural-network-based degradation model which utilizes 

real-time sensory signals to estimate the failure time of partially degraded components. 

The proposed method is able to update a component’s remaining life distribution using 

real-time condition-based sensory signals. The sensory signals capture the latest 

degradation state of the component and the resulting updated distributions are directly 

linked to the physical degradation state of the component. The proposed model was tested 

and validated using thrust ball bearings as the test bed component. The authors used the 

vibration signals resulting from bearing degradation to estimate prior bearing failure time 

distributions with a neural network model. And then they updated the prior distribution 

with subsequent signals using a Bayesian approach and compute posterior residual life 
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distributions. The testing results were compared with results from two benchmark 

policies and the proposed model was validated to be more effective.  

Wu et al. (2007) proposed an integrated neural-network based decision support system 

for predictive maintenance of rotational equipment. In this paper, this artificial neural 

network model was used to estimate the life percentile and failure times of roller 

bearings. The proposed system was illustrated using vibration-based degradation database 

which consisted of a series of bearing vibration spectra associated with bearings that had 

been tested from the point of installation until bearing failure. It can be applied in various 

industries and different kinds of equipment that possess well-defined degradation 

characteristics. 

Tian proposed a more generalized ANN prediction model in (Tian, 2012), which can deal 

with multiple measurements inputs and data that are not equally spaced. The proposed 

model can achieve more accurate remaining useful life prediction of equipment subject to 

condition monitoring. The ANN model takes the age and multiple condition monitoring 

measurement values at the present and previous inspection points as the inputs, and the 

life percentage as the output. It is not necessary to define a failure threshold for this 

model, which is hard to clearly define in many practical applications. A condition 

monitoring data set collected in the field from bearings on a group of Gould pumps was 

used to demonstrate the proposed ANN prediction model. This model was also compared 

with the Modified Wu’s method (Wu et al., 2007), and it showed that the proposed 

approach can achieve more accurate predictions. 
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Tian et al. (2010) developed an ANN prediction method to utilize both failure and 

suspension data to improve prediction accuracy. Since the underlying relationship 

between the inputs and output of ANN is the same for all failure and suspension histories, 

the optimal life for a suspension history is the one resulting in the lowest ANN validation 

error. Based on this idea, Tian determined the optimal predicted life for suspension 

history by minimizing the validation mean square error in the training process using the 

suspension history and the failure histories. The proposed approach was validated to be 

able to produce more accurate remaining life prediction results using real-world vibration 

monitoring data collected from pump bearings in the field.  

Tian and Zuo (2010) also developed an extended recurrent ANN-based time series 

prediction method to deal with situations in which sufficient failure and suspension data 

are not available. The proposed approach was illustrated using vibration data collected 

from a gearbox experimental system. A comparative study based on the gearbox 

experiment data was performed between the proposed extended recurrent neural network 

model and the fully connected recurrent neural network model. The comparative results 

demonstrated the capability of the proposed approach for producing satisfactory health 

condition prediction results.  

2.2.2. ANN Prediction Model 

The ANN model used in our research is proposed by Tian et al. (2010). It is a feed 

forward neural network model and it consists of one input layer, two hidden layers and 

one output layer. The structure of the ANN model is shown in Figure 2-1. The inputs of 

the ANN include the age values and the condition monitoring measurements at the 
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current inspection point and those at the previous inspection point. Assume that there are 

totally I significant condition monitoring measurements to be considered in the ANN 

model, the total number of input nodes will be I22 . Based on experiments by 

comparing the option of using two time points and that using three time points, they 

found that ANN using two time points is able to produce slightly more accurate 

prediction results. In addition, it is more computationally efficient to use data at two time 

points. Figure 2-1 gives an example of ANN structure with two condition monitoring 

covariates. Specifically, it  is the age of the component at the current inspection point i , 

and 1it  is the age at the previous inspection point 1i . 1
iz and 1

1iz are the measurements of 

covariate 1 at the current and previous inspection points, respectively. 2
iz and 2

1iz  are the 

measurements of covariate 2 at the current and previous inspection points, respectively. 

The ANN model outputs the life percentage at current inspection time i , which is denoted 

by ip . As an example, suppose the failure time of a component is 850 days and, at an 

inspection point i , the age of the component is 500 days, and then the life percentage at 

inspection point i would be %82.58%100850/500ip .  

The ANN model utilizes suspension histories as well as failure histories. After being 

trained, the ANN prediction model can be used to predict the remaining useful life based 

on the age value of the component and the collected condition monitoring measurements. 

As mentioned above, the output of the ANN model is life percentage. Suppose, at a 

certain inspection point, the age of the component is 400 days and the life percentage 

predicted using ANN is 80%, then the predicted failure time will be 500 days.  
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Figure 2-1 Structure of the ANN model for remaining useful life prediction 
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CHAPTER 3  A DATA PROCESSING METHOD FOR 

CBM USING PHM 

 

Nomenclature 

)(ˆ tZ  : fitted measurement value 

k  : parameter introduced to scale the fitted measurement values to any ranges 

Y  : covariate value when the age is 0 

*C  : optimal maintenance cost 

 

3.1. Motivation 

In CBM using PHM, fitting the PHM is an important step and the effectiveness of the 

optimal maintenance policy greatly depends on the accuracy of parameter estimation. 

Usually actual condition monitoring measurement values are used as the inputs to the 

PHM model. However the actual measurements are often affected by external noise when 

they are collected as inspection points in the field. The example in Figure 3-1 shows an 

actual measurement series of a bearing failure history, which was collected from a pump 

in Canadian Kraft Mill. A history refers to the series of inspection data collected from the 
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beginning to the end of its life. A history can be a failure or a suspension history. This 

example is a failure history. It contains 23 inspection points and the bearing failed at the 

age of 591 days. In this figure, we can see that the actual measurement values do not 

show a monotonic increasing trend.  There are still a lot of fluctuations at various 

inspection points although its general trend is increasing. But as we all know, the 

deterioration of the health condition of a component or equipment, such as the 

propagation of a rolling element in a bearing or the propagation of a root crack in a gear 

tooth, is generally a monotonic process. Therefore, directly using the actual measurement 

values without any processing as input into the PHM model may introduce external noise 

into the model; thus the model built based on the actual measurement values may not 

represent the health condition of the component or equipment very accurately and the 

optimal maintenance policy obtained based on the PHM model may not be really optimal 

(Tian, 2012). To resolve this problem, we propose an approach to remove the external 

noise and fit the data before feeding it into the PHM model. Compared to the actual 

measurement, the fitted measurements can better represent the deterioration of the 

component or equipment.   
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Figure 3-1 An actual inspection measurements for a sample failure history 

3.2. Function for Fitting the Actual Inspection Measurement 

To better represent the deterioration process of the equipment or component, an 

appropriate function is proposed to fit the actual measurements before they are used as 

input of the PHM. The fitting function is extracted from the Weibull distribution failure 

rate function. In reliability analysis, the health condition of equipment or component at a 

specified time is usually indicated by its failure rate at the given time. Weibull 

distribution is widely used in representing various practical lifetime distributions, and it is 

very flexible to represent distributions with different scales and shapes (Kuo and Zuo, 

2003). Therefore, the following function generalized from the Weibull distribution failure 

rate function is used to fit the inspection measurements (Tian, 2012): 
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1)(ˆ tkYtZ                                                       (3-1) 

where )(ˆ tZ denotes the fitted measurement value and Y is the covariate value when the 

age of the component is 0. k is a parameter introduced to scale the fitted measurement 

values to any ranges. 1t is the failure rate function for the 2-parameter Weibull 

distribution.  

The function in Equation (3-1) is named as the “Generalized Weibull-FR function” 

(Tian., 2012). There are four parameters in the Generalized Weibull-FR function to be 

determined: , , k and Y . Usually the parameters can be estimated using least-square 

method or maximum likelihood method based on the inspection measurements. In our 

research, GA is used to find the optimal values for the four parameters because of the 

good global optimization performance of GA (Levitin, 2005, Levitin et al., 1998). After 

being tested using many actual inspection histories collected from the field, the 

Generalized Weibull-FR function is proved to have the capability of fitting all the tested 

measurement series very well. An example is given as follows to show how the 

Generalized Weibull-FR function works. 

Figure 3-1 is the plot of an actual inspection history which is collected from a pump 

bearing in the field. This history contains 23 inspection points and the bearing failed at 

the age of 591 days.  

Using GA, the four parameters in the Generalized Weibull-FR function can be estimated. 

With the global optimization ability of GA, the obtained function can best fit the 

inspection measurements, which is shown as follows: 
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143.4
43.42.610

43.465.9008.0)(ˆ ttZ                                                       (3-2) 

The fitted results for the actual inspection measurements (vibration magnitude in the 

horizontal direction in frequency band 5) in Figure 3-1 are plotted in Figure 3-2, 

represented by “*”. By removing the external noise from the actual inspection 

measurements, we can observe that the fitted measurements give a better indication of the 

degradation of the component.  

 

Figure 3-2 An actual inspection measurements and the fitted measurement series 

3.3. Case Studies 

To validate the proposed approaches, two case studies are conducted using real-world 

vibration monitoring data, which was collected from bearings on a group of Gould pumps 

at a Canadian Kraft Mill company and from shear pump bearings in a food processing 
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plant, respectively. The Gould pump bearings case can be found in Stevens (2006) and 

the shear pump bearings case was reported in Banjevic et al. (2001). The objectives of 

both cases are to find an optimal condition based replacement policy to minimize the 

long-run expected replacement cost per unit of time, and to improve reliability, given the 

condition monitoring data (vibration data) and replacement histories. 

3.3.1. Gould Pump Bearings Case 

In this case study, we use data collected from Gould pump bearings at a Canadian Kraft 

Mill company (Stevens, 2006). This case is presented to demonstrate the proposed 

approach. Pulp produced in this company is used to make facial tissues, paper towels and 

similar products. Facing tough competition in the pulp and paper market, the company 

has to focus on the key objectives of bringing costs down and production up. The 

company was confronted with a critical problem of high incidence of unpredicted failures 

among a small group of its fleet of Gould pumps. Hence eliminating or substantially 

reducing the frequency of pump failure was evidently the key objective. The units being 

examined were Gould 3175L pumps which were used 24/7, as shown in Figure 3-3. 

Bearings were critical components of these pumps, so failure of bearing definitely caused 

the pump failure. Figure 3-4 is an example of bearing failure.  
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Figure 3-3 Gould 3175L pump 

 

Figure 3-4 Bearing failure 

Important data including event data, operating starts, out-of-service intervals and failure 

dates were extracted from the work history database. After sorting up these data, two 

categories of data were obtained, that is, event data and inspection data. There were three 

types of event data: beginning event, failure event and suspension event. For inspection 

data, 56(=8*5+8*1+8*1) vibration measurements were recorded. For each pump, seven 

measurements were analyzed at 5 different vibration frequency bands (8*5), and the 

overall vibration reading (8*1) plus the bearing’s acceleration data (8*1). In this case, 33 

histories, including failure replacements (ended with failure) and preventive replacements 
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(ended with suspension), were collected from the 8 pump locations. The actual inspection 

measurements and the fitted measurements obtaind by the proposed approach will be 

used as input to the PHM respectively and their average toal maintenance cost will be 

compared. 

There are five steps to perform CBM optimization using PHM: significance analysis, 

parameter estimation, transition probability matrix development, cost data estimation and 

CBM optimization. 

Step1 – significant analysis 

Using the software EXAKT, we can perform the significance analysis for the 56 vibration 

measurements. Two covariates were identified to have significant influence on the health 

of bearings: P1H_Par5 (band 5 vibration frequency in pump location P1H), and 

P1V_Par5 (band 5 vibration frequency in pump location P1V).  

Step 2- parameter estimation 

 In this case, there are four parameters to be estimated: (scale parameter),  (shape 

parameter), 1  (covariate weight for P1H_Par5), 2 (covariate weight for P1V_Par5). 

Using the actual inspection measurements as input to the PHM, the four parameters are 

estimated as follows:  
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Next, the actual inspection measurements are fitted using the proposed fitting function. 

The parameters estimated based on the fitted measurement value are given as follows: 
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Step 3 – transition probability matrix development 

To calculate the maintenance cost we need to specify the transition probability matrix. 

The transition probability matrix indicates the probabilities of a covariate in different 

ranges at the next inspection time given its current range. EXAKT can be used to 

estimate the transition probability matrices for the two covariates. Assuming the 

inspection interval is 28 days, the transition probability matrices obtained based on the 

actual inspection measurements and fitted measurements are given respectively, in Table 

3-1, 3-2, 3-3 and 3-4: 

Table 3-1 Transition probability for covariate P1H_Par5 based on actual measurements 

P1H_Par5 0 0.00792 0.014256 0.05016 Above 
to 0.00792 to 0.014256 to 0.05016 to 0.136752 0.136752 

0 to 
0.00792 0.784755 0.199967 0.0150435 0.000228608 5.48137E-06 

0.00792 to 
0.014256 0.0460993 0.8281 0.122933 0.00277821 8.95293E-05 

0.014256 to 
0.05016 0.00344127 0.121984 0.835499 0.0372439 0.00183203 

0.05016 to 
0.136752 0.000157207 0.00828724 0.111961 0.797492 0.0821025 

Above 
0.136752 0 0 0 0 1 
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Table 3-2 Transition probability for covariate P1V_Par5 based on actual measurements 

P1V_Par5 0 0.00741 0.01404 to 0.048165 Above 
to 0.00741 to 0.01404 0.048165 to 0.13299 0.13299 

0 to 
0.00741 0.778123 0.209235 0.0124585 0.000180682 2.19389E-06 

0.00741 to 
0.01404 0.0453969 0.852736 0.0996783 0.00215347 3.49498E-05 

0.01404 to 
0.048165 0.00272389 0.100446 0.858878 0.037041 0.000911191 

0.048165 to 
0.13299 8.61624E-05 0.00473316 0.0807912 0.870673 0.0437164 

Above 
0.13299 0 0 0 0 1 

 

 

Table 3-3 Transition probability for covariate P1H_Par5 based on fitted measurements 

P1H_Par5 0 to 0.0084952 to 0.0153832 0.047068 Above 
0.0084952 0.0153832 to 0.047068 to 0.135234 0.135234 

0 to 
0.0084952 0.865102 0.132331 0.0025341 3.19206E-05 6.44605E-07 

0.0084952 to 
0.0153832 0 0.963069 0.0362363 0.000676333 1.81731E-05 

0.0153832 to 
0.047068 0 0 0.962856 0.0356956 0.00144835 

0.047068 to 
0.135234 0 0 0 0.923511 0.0764892 

Above 
0.135234 0 0 0 0 1 
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Table 3-4 Transition probability for covariate P1V_Par5 based on fitted measurements 

P1V_Par5 0 to 0.0081648 0.0151632 
to 0.0452952 Above 

0.0081648 to 0.0151632 0.0452952 to 0.132386 0.132386 
0 to 

0.0081648 0.879413 0.118227 0.0023298 3.00238E-05 3.37876E-07 

0.0081648 to 
0.0151632 0 0.961917 0.037356 0.000716413 1.07245E-05 

0.0151632 to 
0.0452952 0 0 0.962299 0.0368705 0.000830971 

0.0452952 to 
0.132386 0 0 0 0.956519 0.0434811 

Above 
0.132386 0 0 0 0 1 

 

Step 4 – maintenance cost determination 

After the transition probability matrices are obtained, we need to estimate the preventive 

replacement cost and failure replacement cost. Based on the expertise and previous 

experiences, the preventive replacement cost C is estimated to be $4,000, and the failure 

replacement cost C+K is $12,000 for this case. Thus the penalty cost K equals $8,000. 

Step 5 –maintenance policy optimization 

Now, the CBM optimization policy can be determined using the estimated parameters, 

transition probability matrices and cost data information. Using the parameters estimated 

based on the actual inspection measurements, which are:  

 16.57,05.21,394.3,2757 21                                (3-5) 

the optimal maintenance policy is obtained as: 

dayCdayd /$74.5*,/$23.7*                                (3-6) 
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In this policy, the optimal risk threshold level *d is obtained as 7.23$/day, which means 

it is time to perform preventive replacement when the observed risk )(,( tzthK is greater 

than 7.23$/day. With this optimal policy, the optimal maintenance cost *C  is around 

5.74$/day and the average preventive replacement interval is 867.2 days.  

Now we calculate the optimal policy based on the parameters obtained using fitted 

measurements as input, which are:  

01.72,41.17,936.3,2786 21                                (3-7) 

The optimal maintenance policy is determined as: 

dayCdayd /$06.5*,/$06.5*                                (3-8) 

The risk threshold level *d is calculated as 5.06$/day and the optimal maintenance cost

*C is shown as around 5.06$/day. Based on the optimal policy, the average preventive 

replacement interval will be 949.6 days. 

By comparing the optimized maintenance results before and after fitting the inspection 

measurements using the Generalized Weibull-FR function, we can see the average 

maintenance cost based on the actual inspection measurements will be 5.74$/day while 

the average cost based on the fitted measurements will be 5.06$/day, as shown in Table 

3-5. So using the proposed approach to fit the inspection measurements before applying 

to PHM will save the average maintenance cost around 11.81%. The average replacement 

interval is increased from 867.2 days to 949.6 days, which is around 9.5%. So we can 

conclude that fitting the actual measurements before using them as input to the PHM will 

save the average maintenance cost.  
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Table 3-5 CBM optimization results comparison before and after fitting the data 

Results 

Method 
Average Maintenance 

Cost  ($/day) 
Average Replacement 

Interval (days) 

Before 5.74 867.2 

After 5.06 949.6 

Changes 11.81% 9.5% 

 

3.3.2. Shear Pump Bearings Case 

The second case is shear pump bearings in a food processing company. Figure 3-5 is a 

shear pump used in the case and Figure 3-6 is one of the bearings in the shear pump. 

Totally 21 (3+3*5+3) vibration measurements were collected using accelerometers, 

including vibration data in axial, horizontal and vertical directions for the overall velocity 

(3), velocities in 5 bands (3*5=15) and acceleration in three directions (3). There are 25 

histories in the recorded data, including 13 failure replacements and 12 preventive 

replacements.  
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Figure 3-5 Shear pump  

 

Figure 3-6 Bearing 

 

Again, there are five steps to perform CBM optimization using PHM. 

Step1 – significant analysis 

Using the software EXAKT, the significance analysis was performed, and three 

significant covariates were identified: VEL#1A (band 1 velocity in the axial direction), 

VEL#1V (band 1 velocity in the vertical direction), and VEL#2A (band 2 velocity in the 

axial direction).  
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Step 2- parameter estimation: 

Since the proposed approach works well for those covariates which show increasing trend 

but not so well for decreasing covariates. By plotting the three covariates we found out 

only two covariates (VEL#1A and VEL#2A) showing increasing pattern. An example of 

failure history is given in Figure 3-7: 

 

Figure 3-7 Plots of VEL#1A, VEL#2A and VEL#1V 

Therefore we will use covariate VEL#1A and VEL#2A in this case to further 

demonstrate the proposed approach. So there are four parameters to be estimated: 

(scale parameter),  (shape parameter), 1  (covariate weight for VEL#1A), 2  

(covariate weight for VEL#2A). 

The parameter estimation result for actual inspection measurements is shown as follows: 
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After fitting the actual measurements, the parameters estimated are given as follows: 
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Step 3- transition probability matrices: 

Transition probability matrices obtained based on actual inspection measurements are 

shown in Table 3-6 and 3-7: 

Table 3-6 Transition probability for covariate VEL_1A based on actual measurements 

VEL_1A 0 0.035266 0.2519 1.08821 Above 
to 0.035266 to 0.2519 to 1.08821 to 2.51648 2.51648 

0 to 
0.035266 0.765522 0.214501 0.0187137 0.00123314 3.01141E-05 

0.035266 to 
0.2519 0.0419512 0.809202 0.134907 0.0134952 0.000445182 

0.2519 to 
1.08821 0.00436408 0.160862 0.683157 0.144277 0.00734044 

1.08821 to 
2.51648 0.000138356 0.00774194 0.0694142 0.838071 0.0846349 

Above 
2.51648 0 0 0 0 1 
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Table 3-7 Transition probability for covariate VEL_2A based on actual measurements 

VEL_2A 0 0.018036 0.047428 0.11356 Above 
to 0.018036 to 0.047428 to 0.11356 to 0.394788 0.394788 

0 to 
0.018036 0.579321 0.371903 0.0459901 0.00269327 9.27563E-05 

0.018036 to 
0.047428 0.0852781 0.731248 0.168793 0.0140551 0.000625567 

0.047428 to 
0.11356 0.0114118 0.182657 0.691931 0.10703 0.00696988 

0.11356 to 
0.394788 0.0023802 0.0541698 0.381196 0.499451 0.0628029 

Above 
0.394788 0.000559654 0.0164605 0.169477 0.428769 0.384734 

 

Following are the transition probability matrices obtained based on fitted measurements, 

as shown in Table 3-8 and 3-9: 

 

Table 3-8 Transition probability for covariate VEL_1A based on fitted measurements 

VEL_1A 0 to 0.064792 0.269136 1.089 Above 
0.064792 to 0.269136 to 1.089 to 2.48951 2.48951 

0 to 
0.064792 0.833298 0.156365 0.0095781 0.00074095 1.83627E-05 

0.064792 to 
0.269136 0 0.882027 0.105274 0.0122909 0.000408521 

0.269136 to 
1.089 0 0 0.796653 0.193536 0.00981047 

1.089 to 
2.48951 0 0 0 0.90844 0.0915605 

Above 
2.48951 0 0 0 0 1 
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Table 3-9 Transition probability for covariate VEL_2A based on fitted measurements 

VEL_2A 0 to 0.0262707 0.0501888 0.100378 Above 
0.0262707 to 0.0501888 to 1.089 to 0.391708 0.391708 

0 to 
0.0262707 0.822468 0.164492 0.0124907 0.00053343 1.53564E-05 

0.0262707 to 
0.0501888 0 0.861082 0.130274 0.00832373 0.000320528 

0.0501888 to 
0.100378 0 0 0.881023 0.112434 0.00654325 

0.100378 to 
0.391708 0 0 0 0.894211 0.105789 

Above 
0.391708 0 0 0 0 1 

 

Step 4 – specify the maintenance cost: 

Now the preventive replacement cost and failure replacement cost are estimated based on 

the expertise and previous experiences. The preventive replacement cost C  is estimated to 

be $1,800, and the failure replacement cost ( KC ) is $16,200, so K  is calculated to be 

$14,400. 

Step 5 – optimize maintenance policy 

In this case, the parameters estimated based on the actual inspection measurements are:  

 27.24,358.6,695.4,9.739 21                                 (3-11) 

Using the estimated parameters, transition probability matrices and cost data information 

the optimal maintenance policy is obtained as follows: 

dayCdayd /$34.12*,/$96.16*                                   (3-12) 
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So in this policy the optimal risk threshold level *d is 16.96$/day. In this case, we will 

perform preventive replacement once the observed risk )(,( tzthK exceeds 16.96$/day. 

By performing this optimal policy, the average preventive replacement interval is found 

to be 168.3 days, and the optimal maintenance cost *C is controlled to be around 

12.34$/day. 

Next we will calculate the optimal policy based on the parameters obtained using fitted 

measurements as input, which are: 19.28,688.6,226.5,7.765 21 . This time 

we have the optimal maintenance policy as: 

dayCdayd /$36.10*,/$36.10*                                (3-13) 

From function (3-13), we can see using fitted measurements, the risk threshold level *d is 

determined to be 10.36$/day and the optimal maintenance cost *C  obtained is 

10.36$/day. With this optimal policy, the average preventive replacement interval will be 

196.4 days. 

The comparison result given in Table 3-10 shows that the average maintenance cost 

based on the fitted measurements is around 10.36$/day while the average cost based on 

the actual inspection measurements is around 12.34$/day. So it will bring a saving of 

16.36% in average maintenance cost by using the proposed approach to fit the inspection 

measurements before applying to PHM. At the same time, the average replacement 

interval is increased from 168.3 days to 196.4 days, which is around 16.72%. So we can 

draw a conclusion that by fitting the actual measurements using the Generalized Weibull-
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FR function will save the average maintenance cost and prolong the average replacement 

interval to make better use of remaining useful life.  

Table 3-10 CBM optimization results comparison before and after fitting the data 

Results 

 Method 

Average Maintenance 
Cost  ($/day) 

Average Replacement 
Interval (days) 

Before 10.36 168.3 

After 12.34 196.4 

Changes 16.36% 16.72% 

 

3.4. Concluding Remarks 

In CBM using PHM, the accuracy of parameter estimation for PHM has a great influence 

on the effectiveness of the optimal maintenance policy. Generally actual condition 

monitoring measurement values are directly used to estimate the parameters for the PHM 

model. Nevertheless, the existing of external noise will change the monotonic increasing 

trend of inspection measurements and brings fluctuations in the deterioration process. 

Therefore the model built based on the actual measurement values may not accurately 

represent the health condition of the equipment or component and the optimal 

maintenance policy obtained based on the PHM model may not be really optimal. In this 

research, an approach where the actual measurements are fitted first using the 

Generalized Weibull-FR function, is proposed to remove the external noise and fit the 

inspection measurements before feeding them into the PHM model.  
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Two case studies using real-world vibration monitoring data, collected from Gould pump 

bearing in a Canadian Kraft Mill company and from shear pump bearings in a food 

processing plant, respectively, are used to demonstrate the proposed approach. Our 

studies show that the proposed approach will save the average maintenance cost and 

increase the average replacement interval to make better use of remaining useful life.  

This research has been organized into a journal paper and has been published (Wu and 

Tian, 2012).  
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CHAPTER 4  CBM OPTIMIZATION USING ANN-

BASED HEALTH CONDITION PREDICTION 

 

Nomenclature 

tp  : ANN life percentage output at inspection point t  

pT  : predicted failure time considering prediction uncertainty    

 : mean of the prediction error. 

 : standard deviation of the prediction error; standard deviation of the predicted      

failure times 

T  : constant inspection interval 

Pr : failure probability threshold  

Pr* : optimal failure probability threshold  

conPr  : conditional failure probability during next inspection interval 

it  : failure time of unit i  

jt   : right censoring/suspension time of unit j 

En  : number of exact failure data 
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Rn  : number of right censoring/suspension data 

ectedCexp : expected replacement cost per unit of time 

mt  : actual failure time of a component 

nt  : predicted failure time of a component 

pAT  : predicted failure time with respect to mt  

)( nPR tt : preventive replacement time for nt  

)( mT tC : expected total replacement cost with respect to actual failure time mt  

)( mTP tC : expected preventive replacement cost with respect to actual failure time mt  

)( mTF tC : expected failure replacement cost with respect to actual failure time mt  

pC  : total cost of a preventive replacement 

fC  : total cost of a failure replacement 

)( mT tT  : expected total replacement time with respect to actual failure time mt  

)( mTP tT : expected preventive replacement time with respect to actual failure time mt  

)( mTF tT : expected failure replacement time with respect to actual failure time mt  

TAC  : expected total replacement cost with respect to failure probability threshold 

value Pr 

TAT  : expected total replacement time with respect to failure probability threshold 

value Pr 
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tS  : a continuous degradation signal with respect to time t  

 : a constant 

 : a lognormal random variable 

0  : mean of ln  

2
0  : variance of ln  

'  : a normal random variable with mean 1 and variance 2
1  

)(')( tWt  : a centered Brownian motion such that the mean of  )(t is zero and the 

variance of )(t  is t2'  

ln' : a normal random variable with mean 0  and variance 2
0  

2
''''
2

: a normal random variable with mean '
1  and variance 2

1'  

D  : failure threshold 

 

4.1. Motivation 

ANN based methods have demonstrated to be very effective in equipment remaining 

useful life prediction. However, effective CBM optimization methods that can take 

advantage of the more accurate ANN health prediction information are currently not 

available due to two key challenges. One challenge is that ANN prediction methods 

typically only give a single remaining life prediction value, and it is hard to quantify the 
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uncertainty associated with the predicted value. The remaining life prediction uncertainty 

is required for optimizing CBM activities. The other key challenge is that simulation 

methods are generally used for the cost evaluation of CBM policies which are based on 

ANN-based health condition prediction methods and model-based prediction methods 

(Marble and Morton, 2006, Kacprzynski et al., 2002, Li and Lee, 2005). They are also 

used in some CBM methods based on some other data-driven prediction methods (Kaiser 

and Gebraeel, 2009). More accurate and efficient numerical methods are not available, 

which is critical for performing CBM optimization. In our research, we propose a CBM 

optimization approach based on ANN remaining life prediction information, in which the 

above-mentioned key challenges are addressed. The CBM policy is defined by a failure 

probability threshold value. The remaining life prediction uncertainty is estimated based 

on ANN lifetime prediction errors on the test set during the ANN training and testing 

processes. A numerical method is developed to more accurately and efficiently evaluate 

the cost of the CBM policy. Monte Carlo simulation methods are also utilized to verify 

the cost calculation algorithm. Optimization can be performed to find the optimal 

threshold value corresponding to the lowest maintenance cost. 

4.2. The Proposed CBM Optimization Approach Using ANN-

Based Prediction 

In condition based maintenance, the objective of inspection is to determine the health 

condition of equipment or component. Indicators of inspection may be bearing wear, 

gauge readings, root crack of gear tooth, etc. Inspection interval is determined based on 

inspection costs and inspection benefits. Inspection costs include inspection tools and 
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other inspection materials, wages of inspection person, and loss of production due to 

scheduled downtime and so on. An example of inspection benefit may be detection and 

correction of minor defects before major breakdown occurs (Jardine and Tsang, 2006). In 

our research, the inspection cost is not considered in the maintenance optimization. 

However, in many applications, condition monitoring systems are already in place and 

condition monitoring data are being collected by the enterprise asset management 

systems, the inspection costs will be relatively low and will not affect the advantage of 

the proposed CBM method. It may be considered in a joint inspection/maintenance 

optimization problem in future investigation. 

In condition based maintenance, the objective of inspection is to determine the health 

condition of equipment or component. Indicators of inspection may be bearing wear, 

gauge readings, root crack of gear tooth, etc. Inspection interval is determined based on 

inspection costs and inspection benefits. Inspection costs include inspection tools and 

other inspection materials, wages of inspection person, and loss of production due to 

scheduled downtime and so on. An example of inspection benefit may be detection and 

correction of minor defects before major breakdown occurs. In our research, the 

inspection cost is not considered in the maintenance optimization. However, in many 

applications, condition monitoring systems are already in place and condition monitoring 

data are being collected by the enterprise asset management systems, the inspection costs 

will be relatively low and will not affect the advantage of the proposed CBM method. It 

may be considered in a joint inspection/maintenance optimization problem in future 

investigation. 
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The procedure of the proposed CBM approach is described in Figure 4-1, and is divided 

into three phases. A method for estimating the ANN remaining life prediction uncertainty 

is proposed to address the above-mentioned key challenge in using the existing ANN 

prediction methods, and the method is implemented in Phase 1 of the proposed CBM 

approach. The optimal CBM policy corresponding to the lowest long-run maintenance 

cost per unit of time is obtained in Phase 2 and in Phase 3. The optimal CBM policy is 

applied to components currently being monitored.  
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Train the ANN based on the
failure histories and suspension

histories

Obtain the set of ANN
prediction errors on the test

histories

Determine the ANN lifetime
prediction distribution

Phase 1
ANN Prediction

Model the lifetime distribution
for the components based on

the failure and suspension data

Determine the predicted failure
time distribution of the

component at the current
inspection point

Phase 2
Maintenance
Optimization

Phase 3
Maintenance

Decision Making

Find out the optimal failure
probability Pr*

Calculate the expected
maintenance cost per unit of
time given a specific failure

probability Pr

Inspect a component and obtain
the condition monitoring data at

time t

Predict the lifetime percentage
for that component using ANN

Yes

Calculate the failure probability
(Pr) during next

inspection interval

No

Perform preventive or
failure replacement

t=t+T t=0

 

Figure 4-1 Procedure of the proposed CBM approach 
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4.2.1. Estimation of the ANN Remaining Life Prediction Uncertainty  

The ANN prediction method in Tian et al. (2010) can only give the predicted failure time 

or remaining useful life. However, the uncertainty associated with the predicted failure 

time, in another word, the predicted failure time distribution, is required to implement a 

CBM policy and perform the CBM optimization. In this section, we propose a method for 

estimating the predicted failure time distribution based on the ANN lifetime prediction 

errors obtained during the ANN training and testing processes.  

In the ANN training process, the ANN model is trained based on the available failure 

histories and suspension histories. The ANN model inputs include the age data and the 

condition monitoring measurements at the current and previous inspection points. The 

output of the ANN model is the life percentage of the inspected component at the current 

inspection point. In the training process, the weights and the bias values of the ANN 

model are adjusted to minimize the error between the ANN output and the actual life 

percentage, as presented in Tian et al. (2010). After ANN training is completed, the 

prediction performance of the trained ANN model is tested using testing histories which 

are not used in the training process. Here, the ANN prediction error is defined as the 

difference between the ANN predicted failure time obtained at an inspection point and 

the actual failure time in the test histories. That is, the ANN prediction error at inspection 

point t  in a test history is equal to ( tpt - mt ), where tp  denotes the ANN life percentage 

output at inspection point t  and mt is the actual failure time of the component. Since a test 

history contains many inspection points, with several test histories, we can obtain a set of 

ANN lifetime prediction error values. In this research, it is assumed that the prediction 

accuracy does not improve over time.  
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In this study, it is assumed that the ANN lifetime prediction error is normally distributed, 

since the prediction uncertainty is mainly due to the capability of the ANN prediction 

model. With the obtained set of ANN prediction error values, we can estimate the mean 

and standard deviation  of the ANN lifetime prediction error. Thus the predicted 

failure time considering the prediction error at inspection point t , can be calculated as

tpt , and the standard deviation of the predicted failure time will also be . That is, 

the predicted failure time considering the prediction error, denoted by pT , follows the 

following normal distribution:  

2 ,~ tp ptNT .                                                      (4-1) 

4.2.2. The Proposed CBM Policy 

The component under consideration is being monitored and condition monitoring 

measurements can be collected at different inspection points. It is assumed that the 

component is inspected at a constant inspection interval, denoted by T , for example, 

every 20 days. At a certain inspection point, the predicted failure time distribution can be 

obtained. The conditional failure probability during next inspection interval, denoted by

conPr , can be calculated. By performing CBM optimization, an optimal threshold failure 

probability value can be obtained, which is denoted by Pr*. Thus, at each inspection 

point, a decision needs to be made on whether a replacement should be performed or the 

operation should continue without replacements.  

It is assumed that a preventive replacement can be carried out immediately upon 

requirement, i.e., no lead time is necessary for carrying out a preventive replacement. At 
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a certain inspection point, the proposed maintenance policy using ANN is summarized as 

follows:  

(1) Perform failure replacement if a failure occurs during the previous inspection interval. 

(2) Perform preventive replacement if the predicted failure probability conPr during next 

inspection interval exceeds the optimal failure probability threshold Pr*. Otherwise, 

the operation can be continued.  

Thus, the CBM policy is defined by the failure probability threshold value, denoted by 

Pr.  

4.2.3. Determination of the Optimal CBM Policy 

This section corresponds to Phase 2 in the proposed CBM approach shown in Figure 3-3. 

A numerical method is developed for accurate and efficient cost evaluation of the CBM 

policy given a specified failure probability threshold Pr. This phase can also be divided 

into three steps. 

In Step 1, the lifetime distribution of the components as a population is estimated based 

on the available failure data and suspension data. Age data including failure times and 

suspension times are used to model the lifetime distribution for the components. By 

performing distribution plot we can find out the type of lifetime distribution the 

components follow. Generally, Weibull distribution is adequate for modelling the 

component lifetime distribution, and it is assumed this way in our research (Jardine and 

Tsang, 2006). The maximum likelihood method can be used to estimate the lifetime 
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distribution parameters , . The likelihood function is expressed as follows (Jardine and 

Tsang, 2006):  

);();(
11

RE n

j
j

n

i
i tRtfL                                                       (4-2) 

where it  denotes the failure time of unit i and jt  is the right censoring/suspension time 

of unit j. En  denotes the number of exact failure data, and Rn  denotes the number of right 

censoring/suspension data. The first part of the likelihood function is the probability 

density function of the distribution and it is used to describe the failure data. The second 

part is the reliability function of the distribution and it is used for the suspension data. To 

simplify the calculation process, we can take logarithm of the likelihood function. After 

that optimization can be performed to find the optimal parameters set which can 

maximize the objective function LnL .  

In Step 2, the expected replacement cost per unit of time, denoted by ectedCexp , is 

calculated given a specific failure probability threshold Pr. This is the key step in the 

CBM optimization. In the reported studies, simulation methods were typically used for 

cost evaluation, because the collected condition monitoring data is used as input to 

predict the failure time and it is impossible to exhaust all the input combinations (Rausch 

and Liao, 2010, Tran et al., 2008). In our research, we develop an innovative numerical 

method for the cost evaluation of CBM policy given a specific failure probability 

threshold Pr. The condition monitoring data is used by ANN to compute the life 

percentage output and thus the predicted failure time. And the effect of the condition 

monitoring data, from the perspective of CBM decision making, is on the relationship 
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between the actual failure time and the ANN predicted failure time. This relationship, 

though, can be modeled using the ANN lifetime prediction error distribution obtained in 

the ANN testing process. The proposed algorithm is based on the observation above. 

The way to calculate the failure probability at a certain inspection point is given as 

follows. As shown in Figure 4-2, suppose the actual failure time of a component is 

800mt  days and the mean and standard deviation of the ANN lifetime prediction error 

is and , respectively. Then, the predicted failure time with respect to mt , denoted by 

pAT , follows the normal distribution 2 ,~ mpA tNT , that is, 2 ,800~ NTpA . For a 

certain possible predicted failure time using ANN, nt , which is equal to 600 days in 

Figure 4-2, the predicted failure time considering prediction uncertainty, denoted by pT , 

follows the normal distribution 2 ,~ np tNT , that is, 2 ,600~ NTp . Note that nt  is 

calculated based on , the current inspection time t, and the ANN life percentage output

tp , i.e., tpt . The failure probability during the next inspection interval is defined as 

the conditional failure probability as follows:  
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Pr                                                 (4-3) 

In Figure 4-2, 500t  days, the failure probability during the next inspection interval is 

equal to the area of the shaded region, which is on the numerator, divided by the area of 
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the region on the right side of 500t days, which is on the denominator of Equation (4-

3). It represents the conditional failure probability during the next inspection interval.  

 

Figure 4-2 Predicted failure time distribution and failure probability during next interval 

Thus, for a certain predicted failure time using ANN, nt , we can obtain a preventive 

replacement time )( nPR tt , which is the inspection time when the failure probability conPr  

exceeds the pre-specified failure probability threshold, denoted by Pr, for the first time. 

We first look at the expected total replacement cost for a random actual failure time mt . 

The expected total replacement cost with respect to actual failure time mt , )( mT tC , can be 

calculated as follows:  
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where )( mTP tC  is the expected preventive replacement cost with respect to actual failure 

time mt  and )( mTF tC  is the expected failure replacement cost with respect to actual 

failure time mt . pC is the total cost of a preventive replacement, and fC is the total cost of 

a failure replacement.  is the standard deviation of the predicted failure times. 

1)( mnPR tttI  if mnPR ttt )( , and 0)( mnPR tttI  otherwise. Similarly, 

1)( mnPR tttI  if mnPR ttt )( , and 0)( mnPR tttI  otherwise. Equation (4-8) gives 

the expected preventive replacement time while Equation (4-9) gives the expected failure 

replacement time. The expected total replacement time, )( mT tT , can be calculated as 

follows:  

)()()( mTFmTPmT tTtTtT                                                      (4-7) 
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where )( mTP tT  is the expected preventive replacement time with respect to actual failure 

time mt and )( mTF tT  is the expected failure replacement time with respect to actual failure 

time mt .  
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Suppose the component population follows Weibull distribution with parameter and . 

Considering all the possible component actual failure times, the expected total 

replacement cost with respect to failure probability threshold value Pr, denoted by TAC , 

takes the form 

0

1

)(exp mmT
mm

TA dttC
tt

C                                      (4-10) 

and the expected total replacement time with respect to failure probability threshold value 

Pr, denoted by TAT , takes the form 

0

1

)(exp mmT
mm

TA dttTttT                                    (4-11) 

Finally, the expected total replacement cost per unit of time of the CBM policy with 

respect to failure probability threshold value Pr can be calculated as:  

TA

TA
ected T

CC (Pr)exp                                                             (4-12) 

In Step 3, optimization is performed to determine the optimal threshold failure 

probability Pr* with respect to the lowest cost. The optimization model can be briefly 

formulated as follows:  

0       Pr
s.t.

Pr  min expectedC

                                                            (4-13) 
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Pr is the only design variable in this optimization problem. The optimization functions 

built in Matlab can be used to solve this optimization problem, and find the optimal 

threshold failure probability Pr*.  

4.2.4. Implementation of the Optimal CBM Policy 

This section corresponds to Phase 3 in the proposed CBM approach shown in Figure 3-4. 

Once the optimal threshold failure probability Pr* is determined, the optimal CBM policy 

is determined. The procedure for implementing the optimal CBM policy is given as 

follows.  

 Step 1: Inspect a component and obtain the condition monitoring data at constant interval

T , say 20 days. Step 2: Predict the lifetime percentage at the current inspection time t, 

represented by tp ,using the trained ANN prediction model based on the age data and 

condition monitoring data at current and previous inspection points. Step 3: Build the 

predicted failure time distribution 2 ,~ tp ptNT , where  and are the mean and 

standard deviation of the ANN lifetime prediction error, respectively. Step 4: Calculate 

the failure probability during next inspection interval, conPr . Step 5: Make replacement 

decisions. If a failure occurs during the previous inspection interval, perform failure 

replacement. If the failure probability conPr  during next inspection interval exceeds the 

optimal threshold failure probability Pr*, perform preventive replacement. Otherwise, the 

operation can be continued. Repeat Step 1 to Step 5 at the next inspection interval.  
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4.3. Examples 

In this section, we first demonstrate the proposed CBM approach using two sets of 

simulated degradation signals. Then the proposed approach is demonstrated in details 

using a real-world condition monitoring data set collected from bearings in a group of 

Gould pumps (Stevens, 2006). 

4.3.1. Numerical Examples 

In this numerical example, simulated degradation signals are generated using the 

degradation model presented in Lu and Meeker (1993) and Gebraeel et al. (2005). The 

degradation model can be expressed as follows (Gebraeel et al., 2005): 

)
2
')('exp(
2 ttttS                                                   (4-14) 

where tS denotes a continuous degradation signal with respect to time t ,  is a 

constant, is a lognormal random variable, that is, ln has mean 0  and variance 2
0 , 

and ' denotes a normal random variable with mean 1 and variance 2
1 . )(')( tWt is 

a centered Brownian motion such that the mean of  )(t is zero and the variance of )(t  is 

t2' . It is assumed that , ' and )(t are mutually independent. It is more convenient to 

deal with the logarithm of the degradation signal, tL :  

)(
2
''ln
2

tttL                                                 (4-15) 
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Let  ln'  be a normal random variable with mean 0  and variance 2
0 , and 

2
''''
2

 also be a normal random variable with mean '
1  and variance 2

1' . So, 

Equation (3-14) can be simplified as 

)(''' tttL                                                        (4-16) 

4.3.1.1. Simulated Degradation Set 1 

We set the parameters in Equation (3-16) as: ,50  ,10  ,5'
1  ,5.1'

1  5.0' . 

And the failure threshold D  is set as 500. It is assumed that failure occurs when the 

degradation signal reaches D . Using the degradation model and the parameters, we 

generate 50 degradation paths as shown in Figure 4-3. 

 

Figure 4-3 Plot of 50 generated degradation paths in the simulated degradation set 1 
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From the 50 paths we randomly choose 20 failure histories to train the ANN and another 

10 failure histories as test histories. The inspection interval is set to be 5 days, that is

5T . Since the components are not likely to fail in the very early age, we start the 

inspection from the 6th inspection point for each test history. After training the ANN with 

20 failure histories, we apply the 10 test histories to the trained ANN and obtain 153 

ANN lifetime prediction error data points. The lifetime percentage prediction error 

follows normal distribution, according to the probability plot result. The mean and 

standard deviation of the ANN lifetime prediction errors are found to be: 1859.0

days, 5911.3  days. To calculate the expected total replacement cost per unit of time, 

we need to model the lifetime distribution for all the components first. By performing 

distribution plot and using maximum likelihood method (Jardine and Tsang, 2006), the 

lifetime of the components was identified to follow Weibull distribution with parameters

9624.4,0666.106 .  

The total cost of a preventive replacement pC is assumed to be $3000 and the total cost of 

a failure replacement fC is $16000. Using the developed algorithm, the optimal threshold 

probability Pr* is found to be 0.009 and the corresponding expected total replacement 

cost per unit of time is $35.09/day. Once the optimal threshold failure probability Pr* has 

been found, the optimal maintenance policy is also determined: inspect a new component 

at constant interval 5T days. If the conditional failure probability conPr during next 

interval exceeds the optimal threshold failure probability 0.009, perform preventive 

replacement. Otherwise, the operation can be continued. Perform failure replacement 

whenever a failure occurs.  
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We apply the obtained optimal CBM policy, with optimal threshold probability 0.009, to 

the available failure histories, so that the actual replacement times and the actual average 

replacement cost can be obtained. It is found that the actual average replacement cost 

when applying the optimal CBM policy is 35.28$/day, which is very close to the optimal 

replacement cost value 35.09 $/day. This further verifies the correctness of the proposed 

numerical algorithm for the CBM replacement cost evaluation.  

Next we compare the performance of our proposed CBM approach with two benchmark 

maintenance policies: constant interval replacement policy and age-based replacement 

policy (Rausch and Liao, 2010). In the constant interval replacement policy, preventive 

replacements are performed at fixed constant intervals, and failure replacement is 

performed when a failure occurs. The objective of this policy is to determine the optimal 

interval length between the preventive replacements to minimize the total expected 

replacement cost per unit of time. In the age-based replacement policy, a preventive 

replacement is performed when the component reaches a specified age, and a failure 

replacement is performed when a failure occurs. After any replacement, the age of the 

component is reset to 0. The objective of age-based replacement optimization is to find 

the optimal replacement age to minimize the long-run replacement cost.   

For the two benchmark maintenance policies, the lifetime distribution of the components 

has been identified to follow Weibull distribution with 9624.4,0666.106 . 

Performing replacement optimization and for the constant interval replacement policy, 

the optimal replacement interval is found to be 58 days and the expected total 

replacement cost is 65.18 $/day. For the age-based replacement policy, the optimal 

replacement age is determined to be 59.9 days and the average total maintenance cost is 
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63.07 $/day. The results are listed in Table 4-1, together with the optimal results using the 

proposed CBM approach. We can see that the proposed CBM approach results in the 

lowest cost, which is 35.09 $/day. It costs 46.16% less than constant interval replacement 

policy and 44.35% less than aged-based replacement policy, as shown in Table 4-1.  

Table 4-1 CBM optimization results comparison using the simulated data set 1 

Maintenance Policy 
Expected Total 

Replacement Cost per 
Unit of Time ($/Day) 

Optimal 
Replacement 
Time (Days) 

Constant interval replacement policy 65.18 58.0 

Age-based replacement policy 63.07 59.9 

The proposed CBM approach 35.09  

 

4.3.1.2. Simulated Degradation Set 2 

Now we investigate a set of simulated degradation signals with increased fluctuations in 

each degradation path. We did it by increasing the variance of the centered Brownian 

motion )(t  from 0.5 to 2 and decrease the failure threshold D  from 500 to 400. 50 

degradation paths are generated, as shown in Figure 4-4. The lifetime percentage 

prediction error follows normal distribution, according to the probability plot result. The 

mean and standard deviation of the ANN lifetime prediction errors are found to be: 

1505.1 days, 7469.6 days. And the lifetime of the components are determined 

to follow Weibull distribution with 7895.4,9373.106 . The optimal threshold 
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probability Pr* is found to be 0.009 and the corresponding expected total replacement 

cost per day is 38.17 $/day.  

 

Figure 4-4 Plot of 50 generated degradation paths in the simulated degradation set 2 

 

In Table 4-2, we can see the expected total replacement cost for the proposed CBM 

approach is still the lowest, which is 38.17 $/day. It saves 43.03% comparing to the 

constant interval replacement policy, and 40.24% comparing to the aged-based 

replacement policy.   
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Table 4-2 CBM optimization results comparison using the simulated data set 2 

Maintenance Policy 
Expected Total 

Replacement Cost per 
Unit of Time ($/Day) 

Optimal 
Replacement 
Time (Days) 

Constant interval replacement policy 67.00 63.0 

Age-based replacement policy 63.87 59.7 

The proposed CBM approach 38.17  

 

4.3.2. Case Study 

4.3.2.1. Case Study Introduction 

The proposed CBM approach is demonstrated using the real-world condition monitoring 

data collected from bearings on a group of Gould pumps at a Canadian Kraft Mill 

company (Stevens, 2006) which is introduced in Chapter 3. Based on the ANN approach 

developed in Tian et al. (2010), we trained the ANN model using 5 failure histories and 

10 suspension histories. Then we test the prediction performance of the trained ANN 

model using another 10 histories, and altogether there 156 inspection points at which the 

prediction performance is tested. The lifetime percentage prediction error follows normal 

distribution, according to the probability plot result. With this ANN lifetime prediction 

error dataset, it is found that the mean of prediction error is -246.8450 days and the 

standard deviation is 204.4521 days.  
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4.3.2.2. Maintenance Cost Calculation Using the Proposed Algorithm 

First of all, it is necessary to model the lifetime distribution of the components as a 

population based on the available failure data and suspension data. The fitness test is 

done for using Weibull distribution to model the reliability data. The estimated 

parameters of Weibull distribution are: 8.1,3.1386 . The total cost of a preventive 

replacement pC is estimated to be $3000 and the total cost of a failure replacement fC is 

$16000, based on input from industry. Using the developed algorithm, the total expected 

replacement cost per unit of time ($/day) can be calculated given a certain threshold 

failure probability. By performing optimization, the optimal threshold failure probability 

Pr* is found to be 0.005, and the corresponding total expected replacement cost is 

3.88$/day, as shown in Figure 4-5.  

 

Figure 4-5 Expected replacement cost with different threshold failure probability values 
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4.3.2.3. Maintenance Cost Calculation Verification Using the Simulation 

Method  

Simulation is an important way to verify the performance of maintenance policies (Wang 

and Pham, 1997). In this section, Monte Carlo simulation is utilized to verify the 

proposed algorithms for cost calculation. In the simulation, we first randomly generate 

10,000 actual failure time data points which follow Weibull distribution with the 

parameters 8.1,3.1386 . For each generated actual failure time mt , the predicted 

failure time nt follows normal distribution with the parameters mt and 4521.204  

So, we also randomly generate 10,000 predicted failure time which follow normal 

distribution with the parameters 4521.204,mt for each actual failure time mt . For 

each history, we will inspect the component at a constant interval of 20 days. At each 

inspection point, the conditional failure probability conPr  during next inspection interval 

is calculated and a maintenance decision will be made: if conPr  exceeds the failure 

probability threshold Pr, a preventive replacement is performed; otherwise the operation 

can be continued. If a preventive replacement occurs at the inspection time t , the 

preventive replacement time for that specific history is t  and it is suspension history. If 

there is no preventive replacement until actual failure time mt , that specific history is a 

failure history and the failure time is mt . After simulating the inspection processes for all 

the 10,000 histories, the expected total replacement cost per day can be achieved. In the 

previous section, the optimal failure probability threshold Pr* is determined to be 0.005, 

and the expected replacement cost is 3.8833 $/day. Using the simulation method, the 

average replacement cost is 3.8806 $/day given that the failure probability threshold Pr 
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equals 0.005, which is very close to the result achieved using the proposed numerical 

algorithm, and this demonstrates the correctness of the proposed numerical algorithm.   

4.3.2.4. Maintenance Decision Making 

Once the optimal threshold failure probability Pr* is determined, the optimal CBM policy 

is also determined: inspect a new component at constant interval, for example 20 days. If 

the conditional failure probability 
conPr during next interval exceeds the optimal threshold 

failure probability 0.005, perform preventive replacement. Otherwise, the operation can 

be continued. Perform failure replacement whenever there a failure occurs. We will use 

10 test histories to illustrate the implementation of the optimal maintenance policy.  

Consider one failure history as an example of the implementation of the optimal CBM 

policy. The first inspection point of the history to test is the 147th day. The inspection 

interval is assumed to be 20 days. Based on the trained ANN model, using the age data 

and condition monitoring measurements at 119th day and 147th day, which are the 

previous and the current inspection points, the predicted lifetime using ANN is obtained 

as 418.8 days. Based on Equation (3-1), the predicted lifetime is adjusted to be 665.6 

days. The standard deviation of the lifetime prediction error has been found to be 

204.4521 days. Thus, the parameters of predicted failure time distribution for this 

inspected component are 6.665nt days, and 4521.204 days. Using Equation (3-3), 

the failure probability during the next inspection interval is 0.0018, which is less than the 

threshold failure probability (Pr*) 0.005, as shown in Figure 4-6. So, the operation of the 

component can be continued at the age of 147 days and no replacements should be 

performed.  
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Similarly we can obtain the failure probability at each inspection point for all the 10 test 

histories. And the replacement decisions can be made for each history, as displayed in 

Table 4-3, where the replacement time according to the proposed CBM approach and the 

actual failure time are given each history. It can be seen that no failure replacement is 

performed for the components.  

 

Figure 4-6 Failure probability value at age 147 days 
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Table 4-3 Test results using the proposed CBM approach 

History Replacement Age (days) Prcon Actual Failure Time (days) 

1 286 0.0061 473 

2 233 0.0051 283 

3 477 0.0085 601 

4 370 0.0060 511 

5 521 0.0074 692 

6 944 0.0118 986 

7 516 0.0059 1402 

8 785 0.0052 1246 

9 803 0.0058 1468 

10 778 0.0086 964 

 

4.3.2.5. Comparison between Proposed Approach and Benchmark 

Replacement Policies 

Firstly, we compare the performance of the proposed CBM approach with two 

benchmark maintenance policies: constant interval replacement policy and age-based 

replacement policy. Again the Weibull distribution parameters are 8.1,3.1386 , and 
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the cost data is kept as the same: 3000$pC , 16000$fC . For the constant interval 

replacement policy, the optimal replacement interval is found to be 777 days, and the 

corresponding expected cost is 10.46 $/day. For the age-based replacement policy, the 

optimal replacement age is found to be 715.4 days, and the corresponding expected 

replacement cost is 9.94 $/day. As discussed previously, the optimal expected cost using 

the proposed CBM approach is 3.88 $/day. Thus, comparing to the two benchmark 

maintenance policies, the proposed CBM approach can achieve a cost saving of 62.86% 

comparing to the constant interval replacement policy, and 60.95% comparing to the 

aged-based replacement policy. The comparison results are shown in Table 4-4.   

Table 4-4 CBM optimization results comparison using bearing condition monitoring data 

Maintenance policy 
Expected Total 

Replacement Cost per 
Unit of Time ($/day) 

Optimal 
Replacement Time 

(days) 

Constant interval replacement policy 10.46 777.0 

Age-based replacement policy 9.94 715.4 

The proposed CBM approach 3.88  

 

The comparison performed above is based on the maintenance optimization results. Next 

we apply the three optimal maintenance policies to the 10 test histories respectively, and 

investigate how they perform when applying to real condition monitoring and 

replacement histories. The results are shown in Table 4-5, where for each history, the 
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calculated replacement times, replacement types and replacement costs are listed for all 

the three maintenance policies. The average replacement cost using the proposed CBM 

approach is again the lowest, which is 5.28 $/day. It is around 58.39% lower than 

constant interval replacement policy and 65.89% lower than aged-based replacement 

policy. The results further demonstrate the advantage of the proposed CBM approach 

over the two benchmark maintenance policies.  
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Table 4-5 CBM optimization results comparison when applying to the 10 test histories 

No. 

Actual 
Failure 
Time 

(days) 

Constant Interval 
Replacement 

policy 

Age-based  
Replacement Policy 

The Proposed 
CBM Approach 

Time 
(days) 

T 
y 
p 
e 

Cost 
($) 

Time 
(days) 

T 
y 
p 
e 

Cost 
($) 

Time 
(days) 

T 
y 
p 
e 

Cost 
($) 

1 473 473 F 16000 473 F 16000 286 P 3000 

2 283 283 F 16000 283 F 16000 233 P 3000 

3 601 21 P 3000 601 F 16000 477 P 3000 

4 511 511 F 16000 511 F 16000 341 P 3000 

5 692 266 P 3000 692 F 16000 521 P 3000 

6 986 777 P 3000 715 P 3000 944 P 3000 

7 1402 777 P 3000 715 P 3000 516 P 3000 

8 1246 777 P 3000 715 P 3000 785 P 3000 

9 1468 777 P 3000 715 P 3000 803 P 3000 

10 964 777 P 3000 715 P 3000 778 P 3000 

Total 5439  69000 6135  95000 5684  30000 

Average 
Replacement 
Time (days) 

543.9 613.5 568.4 

Average Cost 
($/day) 12.69 15.48 5.28 

    F: Failure replacement; P: Preventive replacement. 

We also compare the proposed CBM approach with the widely used PHM method 

(Banjevic et al., 2001) using the data in this case study. The same cost data are used, and 
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the same 5 failure histories and 10 suspension histories are used to optimize the PHM 

policy. For this set of data, the PHM parameters estimated using EXAKT are found to be 

the following: the scale and shape parameters are 7,934 and 1, and the covariate 

coefficients are 36.73 and 0, respectively. The obtained optimal risk threshold is 12.76 

$/day, and the corresponding optimal cost is 6.45 $/day. Then, similarly, we apply the 

optimal policy to the 10 test histories, and the actual average replacement cost is found to 

be 8.35 $/day. It can be observed that the proposed CBM approach also outperforms the 

PHM method in this case study.  

4.4. Concluding Remarks 

In this research, we develop a CBM optimization approach based on ANN remaining life 

prediction information, in which two key challenges are addressed. Firstly, the remaining 

life prediction uncertainty is estimated based on ANN lifetime prediction errors on the 

test set during the ANN training and testing processes. Secondly, a numerical method is 

developed to more accurately and efficiently evaluate the cost of the CBM policy, which 

provides clear advantages over the simulation methods which are currently generally 

used. The effectiveness of the proposed CBM approach is demonstrated using two 

simulated degradation data sets, and a real-world condition monitoring data set.  

This research has been organized into a journal paper and has been accepted (Wu et al., 

2012).  
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CHAPTER 5  CBM OPTIMIZATION CONSIDERING 

IMPROVING PREDICTION ACCURACY 

 

Nomenclature 

 : predicted failure time at time t 

 : prediction error at time t 

 : mean of  

  : function coefficient 

  : function coefficient 

 : adjusted predicted failure time 

  : standard deviation of the life prediction percentage error                                                    

  : standard deviation of  

 : function coefficient 

  : function coefficient 
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5.1. Motivation 

In our previous research in Chapter 4 (Wu et al, 2012), the proposed ANN based 

replacement policy uses prediction error to estimate the prediction uncertainty. It assumes 

that the standard deviation of prediction error is always the same during the whole 

history. That is, the prediction accuracy does not improve during the history of a 

component. This is also the situation considered in other reviewed previous work 

(Banjevic et al, 2001, Castanier et al, 2005, Lugtigheid et al, 2008, Tian and Liao, 2011). 

However, as discussed in Gebraeel (2006), the prediction accuracy often improves with 

the increase of the age of the component as it approaches the failure time. Prediction 

results based on our experimental data also show that prediction accuracy improves with 

time. Therefore, we attempt to propose a CBM optimization approach, in which the 

prediction uncertainty of health condition is estimated based on prediction errors. We 

assume that the prediction accuracy improves with time. By modeling the relationship 

between the mean value of prediction error and the life percentage, and the relationship 

between the standard deviation of prediction error and the life percentage, we can 

quantify the remaining life prediction uncertainty considering the prediction accuracy 

improvements.  

5.2. The Proposed CBM Approach  

The proposed CBM approach utilizes the health condition prediction information to 

optimize the maintenance schedules. Any type of prognostics methods can be used, 

including data-driven methods, model-based methods and integrated methods, as long as 

the prediction method can produce the predicted failure time distribution at any given 

inspection point. This approach makes vital improvements based on the approach 
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proposed in Chapter 4 (Wu et al, 2012). The key differences are that the prediction 

accuracy improvement is considered, and the predicted failure time distribution 

quantification is different. The procedure of the proposed CBM method is shown in 

Figure 5-1. Compared with the procedure in the proposed approach in Chapter 4 (Wu et 

al, 2012), the improvements are mainly shown in phase one. 
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Predict the life percentage by
certain prediction method
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Phase 2
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Phase 3
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for that component
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(Pr) during next

inspection interval

No
Perform preventive or failure

replacement

t=t+T t=0

 

Figure 5-1 Procedure of the proposed CBM approach 
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Since the CBM decision process and cost evaluation and optimization are similar with the 

proposed approach in Chapter 4 (Wu et al, 2012), in this chapter we mainly focus on the 

prediction accuracy and uncertainty modeling.  

Suppose at a certain inspection point , the predicted failure time is . Here "n" is used 

to indicate that it is the "predicted" failure time value. As mentioned previously, the 

actual failure time of the component is . Thus the prediction error at time t is defined 

as . We also define the life percentage as . The 

prediction error indicates the prediction accuracy in some way. According to our 

assumption regarding the prediction accuracy, the standard deviation of  decreases 

with the increase of life percentage , which represents how close it is to the failure time 

of the component. To model prediction accuracy, the prediction error values at the 

inspection points in the test histories are used. The general idea proposed in this research 

is to model the relationship between the mean value of the prediction error  and the 

life percentage , and the relationship between the standard deviation of the prediction 

error  and life percentage . We don’t use the absolute value of  because the trend 

in  can be more clearly modeled by using the original value itself.  

To model the relationship between the mean value of the prediction error  and the life 

percentage , we can first plot the prediction error data points, and select an appropriate 

function type to fit the points. Generally a polynomial function will be sufficient. As an 

example, in the case study to be presented in this paper, it is observed that a linear 

function is suitable. After fitting the data points, the mean value of the prediction error, 

denoted by , can be calculated as:  
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,                                                         (5-1) 

where  are function coefficients. This formula is used in the health condition 

prediction process to adjust the predicted failure time. That is, suppose at inspection point 

, the predicted failure time is , and the adjusted predicted failure time, due to the 

existence of the prediction error, is denoted by . Based on the definition of the 

prediction error and Equation (5-1), we have:  

  ,                                                  (5-2) 

and thus 

  .                                                           (5-3) 

To model the relationship between the standard deviation of the prediction error  and 

the life percentage , we need to first divide the prediction error data points into 

different ranges in order to estimate the standard deviation value for each range. For 

example, we may divide it into 10 ranges: 0-0.1, 0.1-0.2, 02.-0.3, …, 0.9-1.0. Using the 

standard deviation values estimated in these ranges, similarly, we can select an 

appropriate function type based on observation, fit these values and build the relationship 

between the prediction error standard deviation and the life percentage. Again in our case 

study, it is observed that a linear function is a suitable choice, and the function can be 

represented as:  

,                                                    (5-4) 
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,                                                    (5-5) 

where  is the standard deviation of the life prediction percentage error, and  

are function coefficients. Suppose the prediction error corresponding to inspection point t 

follows normal distribution with standard deviation , the predicted failure time 

corresponding to inspection point t also follows normal distribution with the same 

standard deviation. So  is the standard deviation of the predicted failure time 

corresponding to inspection point t. Since the prediction accuracy is measured by the 

prediction error, the standard deviation of prediction error is the key measure of the 

prediction accuracy. The decrease in  means the increase of prediction accuracy. 

Since it is assumed that the prediction accuracy improves over time,  should decrease 

with time. Thus, at inspection point t, the predicted failure time distribution can be 

represented by 

2
,,  ,~ tnatn TNT .                                                      (5-6)  

For other applications, higher order polynomial functions may be needed to model the 

relationship between the mean value and the standard deviation of the prediction error 

 and the life percentage . A similar procedure can be used to build those 

relationships.  

As can be noted, it is assumed that the predicted failure time of a specific unit based on 

the health condition prediction at a certain inspection time follows Normal distribution. 

For a specific unit being monitored, it has specific material and geometry parameters. 

Although these specific parameters are unknown, they can be considered using the 
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condition monitoring and prediction information from the specific unit. The uncertainty 

in the predicted failure time can be summarized in the prediction error from the data-

driven perspective. Thus, we assume that the predicted failure time distribution for a 

specific unit, based on condition monitoring data, follows Normal distribution. Such 

assumptions are also used in many studies in the literature review (Kacprzynski et al, 

2002, Marble and Morton, 2006, Gebraeel, 2006). 

5.3. Examples 

In this section, we will demonstrate the proposed CBM approach using one real-world 

condition monitoring data set collected from bearings in a group of Gould pumps 

(Stevens, 2006), and one simulated degradation data set. 

5.3.1. Case Study 

The proposed CBM optimization approach is demonstrated using a real-world case. This 

condition monitoring data was collected from bearings on a group of Gould pumps at the 

Canadian Kraft Mill company (Stevens, 2006), as introduced in Chapter 3. In this case, 

two measurements were identified to be significantly correlated to the health of bearings: 

P1H_Par5 (band 5 vibration frequency in pump location P1H), and P1V_Par5 (band 5 

vibration frequency in pump location P1V).  

5.3.1.1. Prediction Accuracy and Uncertainty Modeling 

As discussed previously, any type of prognostics methods which can produce the 

predicted failure time distribution at any given inspection point can be used to obtain 
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prediction results for the proposed approach. Because of its great promise in achieving 

accurate remaining useful life, ANN is selected as prediction method in this case study. 

In this case, 5 failure histories and 10 suspension histories are used to train the ANN 

model. And then another 5 test histories are used to test the prediction performance of the 

trained ANN model and the test process is repeated for three times. Altogether there are 

468 inspection points at which the prediction performance is tested. Based on the 

probability plot result, prediction error  follows normal distribution. Next we will 

model the relationship between the mean value of prediction error  and the life 

percentage , and the relationship between the standard deviation of prediction error  

and life percentage .  

To model the relationship between the mean value of prediction error  and the life 

percentage , firstly we plot the obtained 468 points, and it is observed that a linear 

function is good enough to describe the relationship between the mean value of 

prediction error  and the life percentage , After fitting the data points using 

Equation (4-1), the relationship between mean value of prediction error and the life 

percentage can be modeled as:  

                                                   (5-7) 

As discuss beforehand, to model the relationship between the standard deviation of 

prediction error   and the life percentage , we need to first divide the prediction 

error data points into different ranges in order to estimate the standard deviation value for 

each range. In this case, we can divide the 468 points into 10 ranges: 0-0.1, 0.1-0.2, 02.-
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0.3,…, 0.9-1.0. Again by plotting these standard deviation values, it is observed that a 

linear function is sufficient to model the relationship between the standard deviation of 

the prediction error and the life percentage as follows:   

                                            (5-8) 

5.3.1.2. Cost Evaluation and Optimization of the CBM Policy 

In this section, we will evaluate the total expected maintenance cost for each possible 

failure probability threshold and find the optimal threshold Pr* using the proposed 

algorithms in Chapter 4. Based on Equations (4-10) and (4-11), we need to model the 

lifetime distribution of the components as a population based on the available failure data 

and suspension data. Generally the lifetime distribution of bearings follows Weibull 

distribution and in this case the parameters of Weibull distribution are estimated as: 

8.1,3.1386 . Based on expertise and experience the total cost of a preventive 

replacement pC is estimated to be $3000 and the total cost of a failure replacement fC is 

$16000. By performing optimization, the optimal threshold failure probability Pr* is 

found to be 0.1096, and the corresponding total expected replacement cost is 2.65 $/day, 

as shown in Figure 5-2.   
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Figure 5-2 Expected replacement cost corresponding to different threshold values 

5.3.1.3. Maintenance Decision Making 

After obtaining the optimal threshold failure probability Pr*, we can determine the 

optimal CBM policy. To perform the optimal CBM policy, firstly we inspect a new 

component at constant interval. At each inspection point, the conditional failure 

probability conPr  during next interval is calculated and compared with the optimal 

threshold failure probability Pr*. Perform preventive replacement when conPr  exceeds Pr* 

and continue to use the component if it doesn’t exceed the threshold. Whenever a failure 

occurs, we have to perform a failure replacement. In this case, 5 test histories are used to 

demonstrate the proposed CBM optimization approach. These data were collected at 

unequally spaced inspection points but the ANN model in the policy can handle this 

situation.  

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5
Total Expected Cost Per Day

Probability(Pr)

C
os

t($
)/D

ay



98 
 

Next an example is given to illustrate the implementation of the optimal CBM policy. 

The selected inspection point is the 567th day in a failure history. In this case the 

inspection interval is assumed to be 20 days. Using the age data and condition monitoring 

measurements at the previous inspection point 545th day and the current inspection point 

567th day as input into the trained ANN model, the lifetime of this bearing is predicted as 

616.10 days. Considering the prediction error, the predicted failure time is adjusted as 

612.57 days using Equation (5-2) and (5-3). And using Equation (5-4) and (5-5), the 

standard deviation of the lifetime prediction error is calculated as 26.03 days. Thus, at 

inspection point 567th day, the predicted failure time follows the following normal 

distribution: 

203.26,57.612~ NTp                                                       (5-9) 

So the failure probability during the next inspection interval can be obtained as 0.1329, as 

shown in Figure 5-3. Since this failure probability exceeds the optimal failure probability 

threshold 0.1096, we need to perform a preventive replacement to avoid a very highly 

possible failure during next inspection interval.  
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Figure 5-3 Failure probability value at age 567 days 

Using the same procedure we can calculate the failure probability at each inspection point 

for all the test histories. And the replacement decisions can be made for each history, as 

shown in Table 5-1. In this table, the replacement time according to the proposed CBM 

approach and the actual failure time are given for each history. From this table we can see 

all the 5 histories are preventive replacements.  
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Table 5-1 Test results using the proposed CBM approach 

History Replacement Age 
(days) Prcon Actual Failure Time 

 (days) 

1 945 0.1869 986 

2 1062 0.2463 1402 

3 1049 0.1792 1246 

4 1177 0.1531 1468 

5 958 0.6507 964 

 

5.3.1.4. Comparison between Proposed Approach and Benchmark 

Replacement Policies 

For individual component, age-based replacement policy usually performs better than 

constant interval replacement policy. So in this paper, we will compare the performance 

of the proposed approach with the age-based replacement policy, and the ANN based 

replacement policy which is developed by Wu et al. (2012) where prediction accuracy 

improvement is not considered. The comparison is performed both in optimization results 

and in practical implementation results. The lifetime distribution parameters and the cost 

information have already been obtained in the previous section, which are 

8.1,3.1386 , 3000$pC , 16000$fC . By performing optimization, the optimal 

replacement interval is found to be 715.40 days for the age-based replacement policy, and 
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the corresponding expected cost is 9.94 $/day. For the ANN based replacement policy, 

the expected replacement cost is 3.88 $/day. In Section 5.3.1.2., we can find the optimal 

expected total maintenance cost for the proposed CBM approach is 2.65$/day. Thus by 

implement the proposed CBM approach we can achieve a cost saving of 74.67% 

comparing to the age-based replacement policy, and 31.80% comparing to the ANN 

based replacement policy reported in Wu et al. (2012). The comparison results can be 

found in Table 5-2.   

Table 5-2 Comparison between the proposed approach and two benchmark policies 

Maintenance Policy Expected Total Replacement 
Cost per Unit of Time ($/day) 

Optimal Replacement 
Time (days) 

Age-based replacement policy 9.94 715.4 

ANN based replacement policy  
(Wu et al, 2012)  3.88  

The proposed CBM approach 2.65  

 

Next we will apply the three maintenance policies to 5 test histories respectively, and 

investigate how they perform when applying to real inspection histories. Using the same 

procedure illustrated in Section 5.3.1.3., the implementation results for the 5 histories are 

shown in Table 5-3. In this table, for each history and for all the three maintenance 

policies, the replacement times, replacement types and replacement costs are listed. The 

average replacement cost using the proposed CBM approach considering prediction 

accuracy improvement is again the lowest, which is 2.89 $/day. It is around 31.13% 
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lower than age-based replacement policy and 26.30% lower than the ANN based 

replacement policy in Wu et al. (2012). The results further demonstrate the advantage of 

the proposed CBM approach over the two benchmark maintenance policies. 

Table 5-3 CBM optimization results comparison when applying to the 5 test histories 

No. 
Actual 
Failure 
Time 

Age-based  
Replacement 

Policy 

ANN based  
Replacement Policy 

(Wu et al, 2012) 

The Proposed 
CBM Policy 

Time 
(days) Type Cost 

($) 
Time 
(days) Type Cost 

($) 
Time 
(days) Type Cost 

($) 

1 986 715 P 3000 944 P 3000 945 P 3000 

2 1402 715 P 3000 516 P 3000 1062 P 3000 

3 1246 715 P 3000 785 P 3000 1049 P 3000 

4 1468 715 P 3000 803 P 3000 1177 P 3000 

5 964 715 P 3000 778 P 3000 958 P 3000 

Total 3575   15000 3826   15000 5191   15000 

Average 
Replacement 

Time 
715 765.2 1038.2 

Average 
Cost per 

Day 
$4.20 $3.92 $2.89 

P: Preventive replacement. 



103 
 

5.3.2. Simulated Degradation Data Set 

In this example, the simulated degradation data set is the same with the one in Section 

4.3.1.2 in Chapter 4 (Wu et al, 2012) and (Gebraeel et al, 2005). 

Same as the case study, ANN is selected as prediction method in this example. 20 failure 

histories and 10 failure histories are selected randomly from the 50 generated degradation 

paths as training histories and testing histories, respectively. Altogether there are 154 

lifetime prediction error data points for the 10 test histories. Using probability plot, the 

prediction error   is found to follow normal distribution. Same as the case study, next 

we can model the relationship between the mean value of prediction error   and the 

life percentage , and the relationship between the standard deviation of prediction error 

 and the life percentage .  

After plotting the obtained data points, it is found that 4th order polynomial function is 

suitable to model the relationship between the mean value of prediction error tne ,  and the 

life percentage  as follows: 

54
2

3
3

2
4

1,
apapapapa tttte tn                                     (5-10) 

By fitting the 154 data points, the relationship between mean value of prediction error 

and the life percentage can be modeled as:  

1042.09814.10164.85624.114775.5 234
, tttte pppp
tn                  (5-11) 

For the relationship between the standard deviation of prediction error  and the life 

percentage , the 154 points in this case can be divided into 9 ranges: 0.1-0.2, 0.2-0.3, 



104 
 

… , 0.9-1.0 to estimate the standard deviation. By plotting these standard deviation 

values, it is observed that a linear function is good enough to model the relationship 

between the standard deviation of the prediction error and the life percentage as follows:  

0748.00382.0, t
p

tn p                                                    (5-12) 

The total cost of a preventive replacement pC is assumed to be $3000 and the total cost of 

a failure replacement fC is $16000. And the lifetime of the components is determined to 

follow Weibull distribution with 7895.4,9373.106 . The inspection interval is set 

to be 5 days, that is 5T . After performing optimization, the optimal threshold 

probability Pr* is found to be 0.1995 and the corresponding expected total replacement 

cost per day is 32.97 $/day, as shown in Figure 5-4.  

By applying the two benchmark policies to the degradation signal data respectively, we 

can obtain the comparison results as shown in Table 5-4. Again we can see the expected 

total replacement cost for the proposed CBM approach is still the lowest, which is 32.97 

$/day. It saves 48.37% comparing to the age-based replacement policy, and 13.60% 

comparing to the ANN based replacement policy reported in Wu et al. (2012) considering 

constant prediction accuracy.   
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Figure 5-4: Expected replacement cost corresponding to different threshold values 

Table 5-4 Comparison between the proposed approach and two benchmark policies 

Maintenance Policy Expected Total Replacement 
Cost per Unit of Time ($/day) 

Optimal Replacement 
Time (days) 

Age-based replacement policy 63.87 59.7 

ANN based replacement policy 
(Wu et al, 2012) 38.17  

The proposed CBM approach 32.97  

 

Next we will apply the three maintenance policies to 10 test histories respectively to 

investigate the practical implementation results. In this example, the inspection interval is 

set to be 5 days. But since the lifetime is relatively short, we reduce the inspection 
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interval from 5 days to 1 day when approaching the end of the history. Table 5-5 is the 

practical implementation results for each maintenance policy.  

Table 5-5 CBM optimization results comparison when applying to the 10 test histories 

No. 
Actual 
Failure 
Time 

Age-based  
Replacement 

Policy 

ANN based 
Replacement 

Policy (Wu et al, 
2012) 

The Proposed  
CBM Policy 

Time 
(days) Type Cost 

($) 
Time 
(days) Type Cost 

($) 
Time 
(days) Type Cost 

($) 

1 86 60 P 3000 76 P 3000 81 P 3000 

2 111 60 P 3000 101 P 3000 107 P 3000 

3 126 60 P 3000 106 P 3000 117 P 3000 

4 91 60 P 3000 81 P 3000 87 P 3000 

5 101 60 P 3000 81 P 3000 87 P 3000 

6 101 60 P 3000 86 P 3000 92 P 3000 

7 66 60 P 3000 56 P 3000 62 P 3000 

8 86 60 P 3000 67 P 3000 76 P 3000 

9 66 60 P 3000 52 P 3000 57 P 3000 

10 146 60 P 3000 116 P 3000 132 P 3000 

Total 600   30000 822   30000 898  30000 

Average 
 Replacement 

Time 
60 82.2 89.8 

Average 
 Cost per  

Day 
$50.00 $36.50 $33.41 

             P: Preventive replacement. 



107 
 

From the comparison results we can see that the average replacement cost using the 

proposed CBM approach considering prediction accuracy improvement is the lowest, 

which is $33.41/day. It results in 33.18% cost savings comparing to the age-based 

replacement policy, and 8.46% cost savings comparing to the ANN based replacement 

policy considering constant prediction accuracy (Wu et al, 2012). The results further 

demonstrate the advantage of the proposed CBM approach over the two benchmark 

maintenance policies.  

5.4. Concluding Remarks 

In this research, we propose a CBM optimization approach considering improved 

prediction accuracy.  In this approach, we quantify the remaining life prediction 

uncertainty by modeling the relationship between the mean value of prediction error and 

the life percentage, and the relationship between the standard deviation of prediction 

error and the life percentage.  We demonstrate the effectiveness of the proposed approach 

using vibration monitoring data collected from pump bearings in the field and another 

data set from simulated degradation. For mechanical components such as bearings and 

gears, it is true that the prediction accuracy improves over time. However, for other 

components, the prediction accuracy improvement may not be obvious. Thus, we need to 

study the historical data first to determine if the prediction accuracy does improve 

significantly with age by applying the prediction models, and decide if it is necessary to 

explicitly consider this effect. The proposed approach is compared with two benchmark 

maintenance policies: age-based maintenance policy and an ANN based maintenance 

policy considering constant prediction accuracy, and it has been found to be more 

effective. 
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This research has been combined with another research and organized into a journal 

paper and this paper has been accepted (Tian et al., 2013).  
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CHAPTER 6  CONCLUSIONS AND FUTURE WORK 

 

6.1. Conclusions 

In CBM optimization, the effectiveness of the optimal maintenance policy greatly 

depends on the accuracy of the equipment health condition prediction. The reported 

health condition prediction methods can be roughly classified into model-based methods 

and data-driven methods. Our research mainly focuses on CBM optimization using data 

driven methods such as PHM and ANN. 

In this thesis, we proposed three approaches: the data processing method for CBM using 

PHM, the CBM optimization using ANN based health condition prediction and the CBM 

optimization considering improving prediction accuracy.  

The data processing method for CBM using PHM 

In CBM optimization using PHM, to use actual condition monitoring measurement 

values directly as input may introduce external noise to the model. Therefore the built 

model may not accurately represent the health condition of the equipment or component 

and the optimal maintenance policy obtained based on the PHM model may not be really 

optimal. In this research, we propose an approach to remove the external noise and fit the 

inspection measurements before feeding them into the PHM model. The proposed 

approach is fitting the actual measurements using the Generalized Weibull-FR function. 
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Two case studies using real-world vibration monitoring data, collected from Gould pump 

bearing in a Canadian Kraft Mill company and from shear pump bearings in a food 

processing plant, respectively, are used to demonstrate the proposed approach. The 

validation result is that the proposed approach will save the average maintenance cost and 

increase the average replacement interval to make better use of remaining useful life.  

The CBM optimization using ANN based health condition prediction  

ANN based methods are believed to be very promising tools to predict equipment health 

condition and remaining useful life. Therefore, we develop a CBM optimization approach 

based on ANN remaining life prediction information and a numerical method for cost 

evaluation. The proposed approach can deal with two key challenges: (1) ANN prediction 

models typically only give a single remaining life prediction value, and it is hard to 

quantify the uncertainty associated with the predicted value; (2) simulation methods are 

generally used for evaluating the cost of the CBM policies, while more accurate and 

efficient numerical methods are not available, which is critical for performing CBM 

optimization.  

The proposed approach has been demonstrated to be effective using two simulated 

degradation data sets, and a real-world condition monitoring data set collected from 

pump bearings. This approach can also be modified to utilize information obtained using 

other prognostics methods such as model-based methods and integrated prediction 

methods, as long as the predicted component failure time and the associated uncertainty 

can be determined.    

The CBM optimization considering improving prediction accuracy 
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It is observed that the prediction accuracy often improves with the increase of the age of 

the component. Therefore, we develop an approach to quantify the remaining life 

prediction uncertainty considering the prediction accuracy improvements. In this 

approach, we quantify the remaining life prediction uncertainty by modeling the 

relationship between the mean value of prediction error and the life percentage, and the 

relationship between the standard deviation of prediction error and the life percentage. 

An effective CBM optimization approach is also proposed to optimize the maintenance 

schedule. 

The proposed approach is illustrated using vibration monitoring data collected from 

pump bearings in the field and another data set from simulated degradation. This 

approach is compared with two benchmark maintenance policies: age-based maintenance 

policy and the ANN based maintenance policy considering constant prediction accuracy, 

and it has been found to be more effective. 

6.2. Future Work 

Based on the researches elaborated in this thesis, further studies can be conducted in the 

following directions. 

 Develop a CBM optimization approach using bi-variate PHM to determine the 

optimal maintenance policy for different types of components simultaneously. 

Currently in the research of CBM optimization using PHM, univariate PHM are 

often used to analyze the covariates and determine the optimal maintenance 

policy. In that case, only one variate is considered, that is, we only consider the 

affect that the covariate brings to one single type of component. And the 
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maintenance policy is also determined for that specific type of component. But 

usually, a piece of equipment consists of many components and the covariate may 

have influence on most of the component. In the future, we may investigate to 

implement a bi-variate PHM using vector hazard rate in maintenance 

optimization. The influence that the covariates bring to two different types of the 

components, for example gear and bearing, will be incorporated in this model. 

The optimal maintenance policy for both components can be determined based on 

the bi-variate PHM.   

 Investigate the application of Accelerated Life Testing (ALT) in CBM 

optimization due to the reason that it is very costly and time-consuming to 

conduct a lifetime test. In the application of maintenance optimization using data 

driven methods, a certain number of failure histories or suspension histories are 

required to determine the optimal maintenance policy. In practice it is very costly 

and time-consuming to conduct a lifetime test because of the long lifetimes of 

most of the components and the challenge of testing components that are used 

continuously under normal conditions. Accelerated life testing (ALT) is an 

effective approach to accelerate lifetime test and obtain failure or suspension data 

of a component or equipment in a much faster manner. By subjecting the tested 

component to conditions (stress, strain, temperatures etc.) in excess of its normal 

service parameters, faults and potential modes of failure will be revealed in a 

short amount of time. In the future research, we may try to apply ALT in 

maintenance optimization. By increasing the stress loading to the bearing we can 

accelerate the failure of the bearing and obtain a certain number of bearing failure 
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histories. Based on the failure histories data we can determine the optimal 

maintenance policy for the bearing using accelerated life testing model. 

 Conduct more experiments to further test the approaches proposed in this thesis, 

which are the data processing method for CBM using PHM, the CBM 

optimization using ANN based health condition prediction and the CBM 

optimization considering improving prediction accuracy.  

 Apply the developed approaches to address CBM problems in various engineering 

systems, such as aircraft systems and wind energy systems.    
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