
COMMUNICATION AND PROTOCOL SATISFACTION IN

ERASMUS

Nima Jafroodi

A thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

July 2013

� Nima Jafroodi, 2013

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Nima Jafroodi

Entitled: Communication and Protocol Satisfaction in Erasmus

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Martin Pugh Chair

W. Du External Examiner

Mourad Debbabi Examiner

Constantinos Constantinides Examiner

Joey Paquet Examiner

Peter Grogono Supervisor

Approved
Chair of Department or Graduate Program Director

2013

Christopher Trueman,

Interim Dean of Engineering and Computer Science

Abstract

Communication and Protocol Satisfaction in Erasmus

Nima Jafroodi, Ph.D.

Concordia University, 2013

Over the last few years, the major chip manufactures have shifted from single core towards multicore

architectures, because they realized the difficulties of increasing the clock speed of processors. The

spread of multicore architectures have a pervasive effect on the performance of software. In the

past, application programs would effectively speed up by itself over time, but this free ride is over.

With the advent of multicore processors, enhancement in the performance of applications depends

upon making effective use of hardware parallelism. As a result, parallel programming has suddenly

become relevant for all computer systems.

Unfortunately, parallel programming is very hard. Instead of doing everything in a sequential

fashion, programmers need to ensure that their programs are designed in a way that is able to do

many tasks simultaneously. As an example, in a computer game, one can’t just put every game

character in a separate process, running on different CPUs. What if one processor is a little faster

than another, resulting in one game character moving faster than another? Somehow programmers

have to ensure that all the elements of their game are synchronized, even if they are running on

different threads, across multiple cores.

Programming languages can make it much easier for developers to write error free parallel pro-

grams. But the problem is that most mainstream languages do not provide suitable abstractions

for expressing and controlling concurrency. Specifically, object oriented programming languages, the

currently dominant paradigm, which provide concurrency through multi-threading. Object oriented

programming languages are already very complex. For instance, Java provides fourteen different

ways of controlling access to a variable. Adding concurrency to that makes it even harder for pro-

grammers to keep track of all concurrency issues such as shared variables, critical regions control,

data races, and

The primary parallel programming language with a strong and safe support for concurrency

is the Occam that is based on Tony Hoare’s CSP (Communicating Sequential Processes). CSP is

a process calculi that fully specifies process synchronization by mathematical notations. Despite

its simple formalism, CSP turned out to be hard to implement efficiently. Several programming

languages based on CSP appeared quickly, but they placed various restrictions on communication

protocols in order to make the implementation efficient.

iii

This thesis contributes to the Erasmus project. A process oriented programming language that

aims at making the CSP paradigm more practical. Erasmus addresses concurrency by providing

processes as the primary abstraction. Processes interact with one another through synchronous

channels. Channels and processes are associated with protocols that specify the interprocess com-

munication pattern. In this thesis we focus our attention on two problems. First, the efficient imple-

mentation of the CSP generalized alternative construct that allows a process to non-deterministically

choose between several possible communication. Second, the design and implementation of protocol

satisfaction that allows the Erasmus compiler to statically check the safety of interprocess commu-

nication, and hence the safety of a program.

iv

Acknowledgments

This thesis puts an end to twenty five years of my life as a student. Twenty five years filled with

wonderful memories. Memories that are identified with people who played a significant role in my

life.

Foremost, I would like to express my sincere gratitude to my advisor Prof. Peter Grogono for

giving me the opportunity to work with him. I am very grateful for his support of my Ph.D study

and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped

me in all the time of research and writing of this thesis. I am also grateful for his friendship and

concern for things not related to work. I am sure I would not have been able to finish this thesis

without his help and remarkable ideas.

Furthermore, I would like to thank the members of my thesis committee Drs. M. Debbabi, J.

Paquet, C. Constantinides, and W. Du for reading the thesis, and providing useful comments and

being present in my defense session. It is my privilege to have them in my thesis committee.

I would also like to highly thank Halina Monkiewicz, the graduate program advisor, for all her

helps throughout all these years. My roommate Ashkan for his warm company in the last year of

my studies. My childhood friends Amirali, Shahab, Alireza, Avideh, Azadeh, Farid, Mehrali and his

brother Alireza, the so called “Kafoo brothers”. My college friends Nima, Debbi, Siavash, Tamer,

Maryam, George, Hootan, Kaveh, Nader, Saman, Mohammad, Soudeh, Shauheen, Shahab, and

Yasaman. Thank you all very much!

My special thanks go to my girlfriend Mona Mehrandish whose constant supports have been so

heartwarming through many cold moments. This is certainly never forgotten!

Last but certainly not least comes my family: my lovely mom Fereshteh, my lovely dad Bahram,

and my lovely sister Nelia. I think that now, at the end of my PhD studies, would be the right

moment to express my deepest gratitude to them for their unconditional support, encouragement

and faith in me throughout my whole life and in particular, during the last few years. I can only

hope that one day I would be able to return, even if only in part, the love and kindness they have

extended to me. I dedicate this thesis to them, with love and gratitude.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 The Ugly Truth . 1

1.2 The CSP Paradigm . 2

1.3 Problem Statement . 3

1.3.1 Generalized Alternative Construct . 4

1.3.2 Client-server Protocol . 5

1.4 Contributions . 6

1.5 Thesis Overview . 6

2 Background 7

2.1 Overview . 7

2.2 The Erasmus Project . 7

2.3 Transition Systems . 13

2.4 Process Algebra . 15

2.4.1 Syntax of ACP . 18

2.5 The Modal μ-Calculus . 23

2.5.1 Hennessy-Milner Logic . 23

2.5.2 Regular Formulas . 24

2.5.3 Fixed Point Modalities . 26

2.6 mCRL2 Toolset . 28

3 Implementation of the Generalized Alternative Construct 31

3.1 Overview . 31

3.2 Related Work . 35

vi

3.3 Initial Design . 36

3.4 The design of the select construct . 37

3.4.1 The Channel Side . 37

3.4.2 The process side . 41

3.4.3 Validating the Model . 46

3.5 Closing of Synchronous Channels . 49

3.5.1 ACP Model . 50

3.5.2 Validating the Model . 55

3.6 Non-select Processes . 55

3.6.1 ACP Model . 56

3.6.2 Validating the Model . 57

3.7 Priority . 58

3.8 Implementation and Testing . 59

3.9 Summary . 60

4 Safety of Client Server Communications 62

4.1 Overview . 62

4.2 Related work . 64

4.3 Protocols . 64

4.4 Semantics of Programs . 68

4.4.1 Processes and Transition Systems . 68

4.4.2 Protocols and Transition Systems . 73

4.5 Deciding Safety of Programs . 76

4.6 Algorithms . 83

4.7 Problems and Solutions . 86

4.8 Summary . 90

5 Conclusion and Future Work 92

5.1 Conclusion . 92

5.2 Future Work . 93

Bibliography 94

A A Fair Protocol for Non-deterministic Message Passing 101

A.1 Overview . 101

A.2 The Distributed Protocol . 101

A.2.1 Analysis . 103

vii

A.3 The Fair Distributed Protocol . 104

A.3.1 Deadlock . 107

A.3.2 Starvation . 107

A.3.3 Cost . 108

A.4 Summary . 109

viii

List of Figures

1 High-level structure of the Hello World program . 8

2 The alternating bit protocol . 10

3 High-level structure of alternating bit protocol . 13

4 A beverage vending machine modeled by a transition system 14

5 Differences between diamond and box modalities . 24

6 Differences of the minimal and maximal fixed point operators 26

7 Differences between the last three formulas . 27

8 Labeled transition system generated by mCRL2 toolset for the vending machine program 30

9 The chain of responsibility pattern with processes . 33

10 Sequence diagram of the channel’s behavior . 38

11 Cooperation of processes P1 and P2 with their handlers 42

12 A simple configuration . 47

13 Safety and liveness properties . 48

14 Sequence diagram of an execution where divergence occurs 49

15 Sequence diagram of an execution where channel C1 is closed 49

16 Handler wakes up the main process when all channels are closed 50

17 Liveness property of the system in the μ-calculus . 55

18 A simple configuration . 57

19 Test configurations . 60

20 Client-server relationships between Erasmus processes 62

21 Client-server communications with protocols . 63

22 Syntax of Erasmus protocols . 65

23 Syntax of Erasmus statements . 68

24 The beverage vending machine of Listing 4.4 modeled by a transition system 71

25 Examples of Erasmus programs and their corresponding transition systems 74

26 Examples of Erasmus protocols and their corresponding transition systems 75

27 Examples of Erasmus protocols one the left that are satisfied by protocols on the right 77

ix

28 Examples of a reliable vending machine . 80

29 Examples of an unreliable vending machine . 81

30 Example of a fragile kind of safety . 82

31 Safety of program is obtained by replacing the process User by User2 83

32 Construction of satisfaction relation between two labelled transition systems 84

33 An example of an unsafe program . 86

34 Automatic conversion of the program given in Figure 33 87

35 Loop with implicit exit . 87

36 Loop with an explicit exit action . 88

37 Safety checking of processes with more than one ports 89

38 Renaming of communication actions on port q with the τ action 89

39 Codes on the left, and transformation done by the compiler on the right 90

40 Pseudocode for channels . 102

41 Knabe’s algorithm allows P2 to starve . 103

42 Data structure of a signal . 104

43 Pseudocode for processes . 106

44 Starvation avoided . 107

45 Starvation with the distributed protocol . 107

x

List of Tables

1 Axioms for the ACP operators defined in this section 21

2 Test results . 60

3 Inference rules for statements stmt ∈ {exit, x := expr, p.f := x, x := p.f} 71

4 Inference rules for sequential composition . 72

5 Inference rule for conditional statement . 72

6 Inference rule for select construct . 73

7 Inference rules for loop statement . 73

8 Protocol expressions on the left and the set of sub-expressions on the right 74

9 Inference rules for protocols . 75

xi

Chapter 1

Introduction

1.1 The Ugly Truth

Historically, desktop computing has been completely dominated by single core machines, but now

this is changing. Until recently, advances in technology meant advances in clock speed, so software

would effectively speed up by itself over time. While Moore’s law [Moo65] may still be technically

valid, but it is no longer true for all intents and purposes. It is still true that each year more and more

transistors are fit into the same space, but the performance enhancements that this has traditionally

led to has ceased years ago. Instead of increasing the clock speed, the major chip manufactures are

now turning into multi-core architectures, in which parallel processors communicate directly with

one another.

Multiprocessor architectures enhances performance by exploiting parallelism: allowing multiple

processors to work on a single task. Since parallelism involves substantial communication and

coordination among parallel components, the improvement in performance gained by it depends

very much on the software algorithms used and their implementations [HS08]. In particular, the

possible gains are limited by the fraction of the software that can be run independently in parallel.

This effect is described by Amdahl’s law, which formulates the maximum speedup that can be

achieved by using n processors based on the portion of the program that can be made parallel (p)

and the portion that can not be parallelized (1− p):

S(n) =
1

(1− p) +
p

n

Some problems are “embarrassingly parallel”: they can be easily divided into components that

can be simultaneously executed in parallel. Such problems, if executed on multi-core architectures,

realize speed up factors near the number of available cores. The ugly truth about Amdahl’s law is

1

that most problems are not accelerated so much, because they can not be completely parallelized.

For example, for a given problem and a 10-processor machine, if one manages to parallelize 90% of

the solution, but not the remaining 10%, then the speedup is:

S(10) =
1

(1− 90%) +
90%

10

� 5

The remaining 10% that wasn’t parallelized cut down the speed by half, because this part requires

substantial communication and coordination among parallel processes.

1.2 The CSP Paradigm

All the points explained in the previous section, suggest that in order to achieve true performance

gains software must be carefully written to take advantage of hardware parallelism. Instead of doing

everything in a sequential fashion, programmers need to ensure that their programs are able to do

several tasks concurrently. But concurrent programming is hard, specially for ordinary programmers.

Experts agree that parallel programming is hard, because mainstream programming languages do

not provide suitable abstractions for expressing and controlling concurrency [Lee06, Sut05].

Concurrency, if presented, has usually been provided by libraries, although this is known to

be unsafe [Boe05]. Two of the mainstream programming languages, C and C++, completely lack

any support for concurrency at the language level. Java provides support for parallel programming

through threads, monitors, sockets and Remote Method Invocation (RMI) classes, but there are

many concerns expressed about the way in which this support is provided. Improper implementation

of monitors and semaphores, and difficulty of programming with threads are examples of such

concerns [SHW00]. The primary language with strong and safe support for concurrency built-in is

Occam [Cor84] which is based on Hoare’s Communicating Sequential Processes (CSP) [Hoa78] model

that fully specifies process synchronization by mathematical notations.

The CSP model has three main advantages. First, it provides safe concurrency by allowing the

creation of large scale applications that are based on processes, compositions, and channel com-

munications. Thus, ordinary programmers can write efficient and trustworthy concurrent programs

without worrying about the correct use of concurrency primitives. Second, it provides network trans-

parency of channels and anonymity of the communications. Thus, processes can communicate in

the same way regardless of their locations, i.e., whether they are located on the same machine or

distributed around a network. Third, it provides a mathematical notation for describing patterns of

communication using algebraic expressions, and contains formal proofs for analyzing, verifying, and

eliminating undesirable conditions such as race hazards, deadlocks, livelocks, and starvations.

2

Despite its simple formalism, CSP turned out to be hard to implement efficiently. Several pro-

gramming languages based on CSP appeared quickly, but they placed various restrictions on commu-

nication protocols in order to make the implementation efficient: a process may only choose amongst

receive operations; only a single pair of processes can be connected to a channel; or the protocol

may be subject to deadlock or lack of fairness.

Joyce was developed by Brinch Hansen as a programming language for distributed systems [Han02].

It is based on Pascal and the principles of CSP. The program components are agents which exchange

messages via synchronous, typed channels. Polling statements of Joyce are based on CSP’s guarded

alternatives, but they only allow polling on input channel statements. Ada [Led83] is one of the few

industrial-strength languages that provides secure concurrency. It is an object oriented programming

language, which uses CSP primitives to provide concurrency. The selective wait of Ada is based on

CSP’s guarded alternatives (only input channel statements are allowed). Occam demonstrates the

possibility of efficient execution of many small processes. Occam-π [Pet05], Occam’s descendant,

provides mobile processes, which are processes that may be suspended, sent to another site, and

resumed. The alt construct of Occam implements the CSP’s guarded alternatives, which only allows

input operations.

Considerations such as those described above led us to undertake a research project with the goal

of designing a programming language that aims at making the CSP paradigm more practical. The

project and the programming language are both called Erasmus. Erasmus addresses concurrency by

providing processes as the primary abstraction. The process model provides a strong foundation and

is complemented by a structuring mechanism called cells. Cells provide structure while processes

define activities. Processes communicate by exchanging messages through synchronous channels.

Each channel and processes’ ports are associated with a protocol that determines the types of the

messages that may be sent through the channel and their allowed sequences. The compiler uses

protocols (protocol satisfaction) to analyze, verify, and eliminate undesirable conditions, e.g., safe

communication between processes.

1.3 Problem Statement

In order to prove that the approach taken by Erasmus is viable, we must show that it can be

implemented efficiently. In this thesis, we focus our attention on two areas:

1. The design and implementation of synchronous communication and the CSP generalized al-

ternative construct,

2. The design and implementation of the client-server protocol.

3

1.3.1 Generalized Alternative Construct

A CSP program consists of a collection of processes P1, P2, . . . Pn that interact by exchanging mes-

sages. These message passing primitives, called input and output commands, are synchronous:

a sender process performing an output primitive must wait until a receiver process executes the

corresponding input primitive.

An important feature of CSP is the alternative construct which is based on Dijkstra’s guarded

commands [Dij75]. This construct allows a process to non-deterministically choose between several

possible communications. For example, the CSP statement:

[P1?m→ S1 � P2?n→ S2]

means “either read m from process P1 and perform sequence S1, or read n from process P2 and

perform sequence S2.

In Erasmus, port names rather than process names are used for communication, and ports have

fields. Assuming that p and q are the appropriate ports, the corresponding statement would be:

select{
|| m := p.x; S1

|| n := q.x; S2

}

For uniformity, we will refer to statements of this kind as select statement (or alternative statement)

and the task they perform as selection (or alternation).

All of the languages mentioned place various restrictions on selection. One restriction is to allow

selection only for receiving. This restriction prevents a sender and a receiver from polling the same

channel simultaneously. However, it is an asymmetry and can lead to awkward code. Another

restriction is that, if one end of a channel is handled by selection, the other end of the channel must

be an unconditional communication. This is a natural restriction because it is difficult to find an

efficient implementation that allows selection at both ends of a channel. However, it is a serious

restriction for large-scale programming because it prevents independent compilation: in order to

compile a process, the compiler must inspect the code of other processes.

Buckley and Silberschatz [BS83] provide four criteria which can have a significant effect on the

efficiency of the select statements:

i) The number of processes contributing to a single communication should be small;

ii) Processes shouldn’t have too much information about the system and other processes they wish

to communicate with;

4

iii) The number of messages required to make a communication should be small;

iv) If two processes in the system have matching send and receive commands, and they are not

synchronized with any other processes, they should eventually synchronize.

The first two criteria ensure locality, the third ensures efficiency, and the last ensures progress.

One of the objective of this thesis is, therefore, to present a design and implementation for the

Erasmus select-construct that overcomes the above restrictions, and satisfies the criteria mentioned

by Buckley and Silberschatz.

1.3.2 Client-server Protocol

Similar to other process oriented languages, Erasmus follows the client-server relationships between

processes: Server processes usually offer some services to their environment, and may themselves

act as clients to other servers. Clients are processes that require some services and will obtain these

services by sending requests to server processes.

A client-server communication is called safe, if every message sent by the client can be received

by the server process, and vice-versa. Safety property allows the construction of client-server systems

of processes that are guaranteed to be free from deadlock and livelock properties. The problem is

to check programs for safety. As much safety checking as possible should be done at compile-time

(static-checking). Safety checking can also be done at run-time (dynamic-checking), but this is less

desirable.

To ensure safety, Erasmus channels and processes’ ports (channel ends) are augmented with pro-

tocols. Protocols define both the structure of messages and allow the patterns of communication

between processes to be specified. The compiler checks that each server satisfies its clients. Sat-

isfaction is defined as a relation on labeled transition systems (LTS). Given a server and a client

processes, their corresponding protocols, and a channel protocol, the compiler constructs the re-

spective LTSs and checks whether the server process satisfies the client process with respect to the

channel. A program is said to be safe if each of its client-server communications is safe. Otherwise,

it is said to be unsafe.

The second objective of this thesis is, therefore, to explore some general mechanisms and struc-

tures which can be used for specifying client-server communications in Erasmus language. Particu-

larly, we would like to define and implement satisfaction relation that can be served as a basis for

static safety checking of client-server communications.

5

1.4 Contributions

This thesis makes the following contributions to the Erasmus project:

� The design and implementation of the select-construct that overcomes the restrictions previ-

ously put by other CSP like programming languages. Two models have been proposed. The

first one, which we refer to as the initial design, presents a fair distributed protocol that can

be used for non-deterministic message passing between Erasmus processes (see Appendix A).

This work has been published in [GJ10]. The second one presents a more efficient design of

the select construct (see Chapter 3). The concepts of closing channels and priorities are also

considered within this model. This model has been validated using mCRL2 toolset: a model

checker that is based on ACP process algebra. This work has been accepted to be published

in [JG13].

� Defining protocol as a formalism to specify client-server communication in the Erasmus pro-

gramming language (see Chapter 4). Protocol satisfaction is also defined as a mean for stati-

cally safety checking of programs with respect to communications. Deciding safety of programs

is based on constructing a binary relation, called satisfaction relation, over the states of labeled

transition systems corresponding to processes and protocols.

1.5 Thesis Overview

The remainder of this thesis is organized as follows: Chapter 2 presents the background. Chapter 3

describes the communication problem of Erasmus in more details, explains our initial design, and

presents our final design and implementation of the select-construct. Chapter 4 describes our

approach for specifying the client-server communication in the Erasmus programming language, and

presents the definition and implementation of the satisfaction relation that can be served as a basis

for the static safety checking of Erasmus programs. Finally, Chapter 5 presents the conclusion and

the future work.

6

Chapter 2

Background

2.1 Overview

This chapter is organized as follows. Section 2.2 describes the Erasmus project in more details and

presents its syntax. Section 2.3 formally defines labeled transition systems that we will be using

to model Erasmus protocols and processes. Section 2.4 gives the history of process algebra, and

explains the syntax of the ACP process algebra that we will be using to design the CSP generalized

alternative construct. Section 2.5 describes the modal μ-calculus that we will be using to specify

safety and liveness properties of our system. Finally, Section 2.6 describes the mCRL2-toolset that

we will be using to validate our ACP models.

2.2 The Erasmus Project

Erasmus [GS08a, GS08b, GS08c] is a programming language that is being developed by Dr. Peter

Grogono at Concordia University and Brian Shearing at the Software Factory in England. Erasmus

is designed specifically for the development of concurrent systems, and is based on Communicating

Sequential Processes (CSP) process algebra.

A program in Erasmus is a collection of cells, processes, and protocols. Cells are first-class citi-

zens1 that define structure of programs. A cell may contain processes and other cells. Processes are

also first-class citizens that define activities. A process is always defined inside a cell. The code of an

individual process is sequential, but processes execute concurrently and communicate by exchang-

ing messages through synchronous channels. Protocols define interfaces of processes and specifies

the communication patterns: the type and allowable sequence of messages that can be transmitted

1A first-class citizen is a program entity that can be named, defined, used in expressions, and passed as an argument.

7

through a channel. As a simple example, consider the following code:

protocol prot = {word: Text}
process P = p:−prot{
p.word = ”Hello World!”;
}
process Q = q:+prot{
scrln(q.word);

}
cell main = {C:prot; P(C); Q(C);}
main();

The program prints the “Hello World!” to the standard output device. It comprises of a protocol

named prot, and two processes P and Q, followed by a cell definition and an instantiation of the cell.

When cell main is instantiated, it creates a synchronous channel C, connects the ports of processes

P and Q to channel C, and executes P and Q in parallel. Figure 1 shows the high-level structure of

the program.

P Q
C

main

Figure 1: High-level structure of the Hello World program

Similar to other process oriented languages, Erasmus follows the client-server relationships be-

tween processes, where servers provide some services and clients require some services. Server and

client processes are connected to each other using synchronous channels. In Erasmus a server process

with respect to a channel is a process that has a port with prefix ‘+’ before the name of the protocol

associated with the port, and a client is a process that has a port with prefix ‘-’ .

Communication betweem a client and a server processes is performed by message passing, which

in turn is controlled by assignment statements of the form v := e. Here v, or e (or both), may

be port expressions of the form p.f . Thus p.f := e illustrates a send of data e to another process

through field f of port p, and v := p.f illustrates a receive of data from another process. We can

also have expressions like p1.f1 := p2.f2, which illustrates a combined send and receive operation.

Each channel along with its processes’ ports are associated with a protocol that determines the

types of the message that may be sent through the channel, their directions, and their allowed

sequences. For example, the protocol

8

protocol prot = {start; �(query: Text; ↑reply : Integer); finish }

specifies that a client process can send a start signal to a server, followed by repeatedly send a query

message of type Text and receive a reply of type Integer from it, and then stop the conversation by

sending a finish signal to it. The same protocol, however, specifies that a server process can receive

a start signal from a client, followed by repeatedly receive a query message of type Text and send a

reply of type Integer to it, and then stop the conversation by receiving a finish signal.

Protocols define interfaces of processes and specify communication patterns. Complex proto-

cols can be defined using several operators (e.g, sequential composition, alternative composition,

repetition, and . . .). For example, a server that provides two services has the following protocol:

protocol prot = {start; �((q1: Text; ↑r1: Integer) | (q2: Text; ↑r2: Integer)); finish }

in which the operator | specifies a choice. Protocols do not have to match exactly. Compiler checks

the requirement that a server protocol satisfies a client protocol. Satisfaction ensures that the server

can do everything that the client needs, see Chapter 4.

Erasmus includes a CSP construct, called select-construct, to provide a choice between com-

municating on different channels. For example, a server process that provides two services to two

different clients (on two channels) can be defined by the following code:

process server = p1:+prot; p2:+prot{
select{
|| t :Text := p1.q; p1.r:=1;

|| t :Text := p2.q; p2.r:=2;

}
}

Processes and protocols can simulate functions and objects in OO languages. As an example, a

process can imitate a function by providing a protocol of the form:

protocol prot = {�(I1; I2; ...; Im; O1; O2; ...; On)}

in which the Is correspond to inputs and the Os correspond to outputs. Similarly, a process can

imitate an object by providing a protocol of the form:

protocol prot = {�(M1 | M2 | ... | Mn)}

in which the Ms specify the behavior of the object’s methods. (The choice is made by the client;

the server does whatever it is asked to do.)

9

Alternating Bit Protocol We illustrate the salient features of Erasmus with a program that

implements the specification of a communication protocol. This protocol is often referred to as

Alternating Bit Protocol (ABP) [Tel94] in the literature. ABP is concerned with the transmission

of data through an unreliable channel in such a way that no information will get lost.

Figure 2: The alternating bit protocol

Figure 2 illustrates the communication network that we will be using in this section. Here S is

the sender process that sends elements d ∈ Data to the receiver process R through the unreliable

channel K. Upon receiving a datum, R sends an acknowledgment back to S through another

unreliable channel L. (In practice K and L are usually physically the same medium.) Now, the

problem is to define processes S and R such that no information get lost.

A solution can be formulated as follows: The sender S reads a datum d at port i, and repeatedly

passes this datum with an appended bit 0 (e.g, d0) toK until it receives an acknowledgment 0 at port

ls (from L). Then the next datum is read, and sent on together with bit 1. The acknowledgment is

then the reception of a 1 at port ls. The process K denotes the data transmission channel. It either

passes data of the form d0, d1, d0, . . ., or may corrupt data by passing an error message instead.

Receiver R gets data of the form d0, d1, . . . from K, sends on d to port o (if d is not an error), and

sends acknowledgment 0 resp. 1 to L. The process L is the acknowledgment transmission channel,

and passes bits 0 or 1 that it receives from R, on to S. However, L may corrupt data by sending an

error message instead of 0 or 1.

We use the following simple protocols to specify the behavior of processes and their ports with

respect to channels.

protocol prot1 = { �(d:Data) }
protocol prot2 = { �(d:Data; b:Integer | error) }
protocol prot3 = { �(b:Integer | error) }

The following illustrates the Erasmus version of the sender process S, where it receives a datum from

port i, passes on this datum on port sk, and receives the acknowledgment (or error) on port ls.

10

process S = i:+prot1; sk:−prot2; ls:+prot3{
n:Integer:=0;
loop{
d : Data := i.d;
loop{
sk .d := d;
sk .b := n;
select{
|| m : Integer := ls .b;

if (m == n) then n:=(n+1) mod 2; exit;
|| ls .error ;

}
}
}
}

The following illustrates the code for process K, where it receives a datum followed by a bit from

S (on port sk), passes on both the datum and bit (or error message) on port kr (to R). Here the

variable random is used to make the choice non-deterministic: the decision whether or not the data

will be corrupted is internal to the channel K, and can not be influenced by the environment.

process K = sk:+prot2; kr:−prot2{
loop{
random : Integer := Random(0,1);
case{
|random == 0| kr.d:=sk.d; kr.b:=sk.b;
|random == 1| kr.error;

}
}
}

The following illustrates the code for the process R:

process R = o:−prot1; kr:+prot2; rl:−prot3;{
n : Integer := 1;
loop select{
|| kr .error ; rl .n := n;
|| d:Data:=kr.d; m:Integer:=kr.n;

case{
|m == n| rl.n := n;
|m == (1−n)| o.d:=d; n:=(n+1) mod 2; rl.n:=n;

}
}
}

Similar to K, process L uses a variable called random to make the choice non-deterministic:

11

process L = rl:+prot3; ls:−prot3;{
loop{
random : Integer := Random(0,1);
case{
|random == 0| ls.n := rl.n;
|random == 1| ls.error;

}
}
}

The next component of the program is the unreliableChannel, which is a cell that encapsulates

processes K and L, and defines appropriate arriving and leaving ports:

cell unreliableChannel = {
sk , kr : prot2 ; rl , ls : prot3 ;
K(sk, kr); L(rl , ls);
}

Next, we need two trivial processes. First, the process Generator that sends a sequence of data

elements (from a stack) to the sender process S. Second, the process Reporter that displays the

data elements that process R receives.

process Generator = i:−prot1{
while (not stack.empty()){
i .d = stack.top ();
stack .pop();

}
}

process Reporter = o:+prot1{
loop
scrln(o.d + �\n�);

}
The main program is a cell called ABP that encapsulates processes S, R, Generator, Reporter, and

the cell unreliableChannel.

cell ABP = {
i , o: prot1 ;
sk , kr : prot2 ;
rl , ls : prot3 ;
Generator(i);
S(i , sk , ls);
unreliableChannel(sk, kr , rl , ls);
R(o, kr , rl);
Reporter(o);
}

The final line of the program,

ABP();

creates an instance of the cell ABP, which in turn instantiates the other cells and processes. Figure 3

shows the high-level structure of the program.

12

K

L

unreliableChannel

S RGenerator Reporter

ABP

sk

kr

ls

rl

i o

Figure 3: High-level structure of alternating bit protocol

2.3 Transition Systems

The representation that we use to model protocols and processes are Transition Systems. Transition

systems are basically directed graphs where nodes represents states and edges models transitions.

States describe information about a system at a certain moment of its behavior. For instance, a

state of a traffic light indicates the color of the light (green, yellow, or red) the traffic light displays.

Similarly, a state of a sequential program indicates the current values of all program variables

together with the current value of the program counter that indicates the next program statement

to be executed.

Transitions, on the other hand, specify how the system can evolve from one state into another.

In the case of the traffic light, a transition typically corresponds to switches that make the light

to change from one color to another, whereas for the sequential program a transition typically

corresponds to the execution of a statement and may involve the change of some variables and the

program counter.

Definition 1. A transition system is a tuple L = (S, s0, F, Act, T) where,

� S is a set of states,

� s0 is the initial state,

� F is a set of final states,

� Act is a set of action names,

� T ⊆ S ×Act× S is a set of transitions.

13

The behavior of a transition system is defined by its initial state as well as its set of the transition

relations. The notation s
α−→ s′ is usually used as an abbreviation of (s, α, s′) ∈ T . If s is the current

state of a transition system, then a transition relation originating from the state s, s
α−→ s′, is chosen

by performing the action α which causes the transition system to evolve from state s into state s′.

This procedure is repeated in state s′ and finishes when no transition relation is left.

It is important to realize that in a case where a state has more than one outgoing transition, the

next transition is chosen in a purely non-deterministic manner, meaning that the outcome of this

selection is not known a priori, and no statement can be made about the certain transition that is

selected.

In this document, we use circles to depict states of a transition system. In addition, transitions

are defined by directed edges (arrows) connecting states, initial state is indicated by the state having

an incoming transition without a source state, and the final states are indicated by double cycles.

As an example, consider the transition system of a beverage vending machine depicted in Figure 4.

This transition system models a vending machine that upon the insertion of a coin it nondetermin-

istically dispenses either tea or coffee.

s0

s1 s2s3

coin

ττ

tea coffee

Figure 4: A beverage vending machine modeled by a transition system

The state space of the above example is S = {s1, s2, s3, s4}, the initial state is s0, the set of final

states is F = {s0}, and the set of action names is Act= {coin, coffee, tea} ∪ {τ}. The action coin

indicates the insertion of a coin by a customer, and the actions coffee and tea indicate the actions of

dispensing coffee or tea by the machine respectively. The action τ is a special action that represents

an internal activity of the vending machine.

A transition system L = (S, s0, F, Act, T) is called finite if S, and Act are finite, and infinite

otherwise. In this document, we assume that all the transition systems are finite.

Definition 2. Let L = (S, s0, F, Act, T) be a transition system. For s ∈ S and α ∈ Act, the set of

direct α-successors of s is defined as follows:

Post(s, α) = {s′ ∈ S | s α−→ s′}, and Post(s) =
⋃

α∈Act
Post(s, α)

14

Similarly, the set of α-predecessors of s is defined as follows:

Pre(s, α) = {s′ ∈ S | s′ α−→ s}, and Pre(s) =
⋃

α∈Act
Pre(s, α)

Definition 3. Let L = (S, s0, F, Act, T) be a transition system. L is called deterministic if for

any action α ∈ Act and any state s ∈ S the following holds:

|Post(s, α)| ≤ 1

Definition 4. A run of a transition system is an ordered and possibly infinite set of transition

relations:

σ = {s0 α0−→ s1, s1
α1−→ s2, s2

α2−→ s3 . . .}

An accepting run of a transition system is a finite run σ in which the final transition sn−1
αn−1−−−→ sn

has the property sn ∈ F .

Definition 5. A state s in a transition system is called reachable if and only if is there exists a

finite run σ such that:

σ = {s0 α1−→ s1, . . . , sn
αn−−→ sn = s}

A set of all reachable states Reach(L) denotes the set of all reachable states in L .

2.4 Process Algebra

This section describes the notion of process algebra, provides a brief history of it, and gives a review

of the syntax of the ACP algebra that we will be using to model concurrent systems in this thesis.

The term ‘process algebra’ refers to a field of study that studies the behavior of parallel systems.

Consider the word ‘process’. It refers to the behavior of a system. A system is anything showing

behavior, in particular the execution of a software system, the actions of a machine, or even the

actions of human being. Behavior is the total of events (or actions) that a system can perform, the

order of which they can be executed, and possibly other aspects of this execution such as timing.

Usually, the actions are thought to be discrete: occurrences of actions are at some moment in time,

and different actions can be distinguished in time. This is why a process is also called a discrete

event system [BBR10].

On the other hand, the term ‘algebra’, refers to the fact that the approach taken to reason about

behavior is algebraic and axiomatic. Indeed, process algebra has its root in universal algebra. A

process algebra is a mathematical structure that consists of a single universe of elements (processes),

a set of operators defined on this universe, and a set of axioms (laws) that allow calculations on the

elements of the universe.

15

Process algebra is usually considered to be an approach to concurrency theory. Concurrency

theory is the theory of interacting, parallel or distributed systems. Process algebra started in the

1970s, when the only part of concurrency theory that existed was the theory of Petri nets [Pet62].

At that time, three main style of formal reasoning about computer programs could be distinguished,

focusing on giving semantics (meaning) to programming languages.

1. Operational Semantics: A computer program is modeled as an execution of an abstract ma-

chine. A state of such a machine is a valuation of variables, and a transition between states is

an elementary program instruction. The pioneer of this field is McCarthy [Mca63].

2. Denotational Semantics : A computer program is modeled as a function transforming input

into output. This field was instrumental in the development of the automata theory. Pioneers

of this field are Scott and Strachey [SS71].

3. Axiomatic Semantics An axiomatic semantics emphasizes more on using proof methods to

prove the correctness of programs. Central notions are program assertions, proof triples con-

sisting of precondition, program statement, and postcondition, and invariants. Pioneers are

Floyd [Flo67] and Hoare [Hoa69].

Then the question was raised on how to give semantics to concurrent programs: programs con-

taining parallel operators. It was found that it is very hard to give semantics to concurrent or

distributed programs using only the methods of denotational, operational, or axiomatic semantics.

For this reason, process algebra was developed. However, there are two paradigm shifts that needed

to be made before a theory of parallel programs in terms of a process algebra can be developed.

First of all, the idea of a behavior as an input/output function needed to be abandoned. This is

because the interaction a process has between its input and output may influence the outcome,

disrupting the functional behavior. Second, the notion of global variables needed to be overcome.

This is because the independent execution of parallel processes makes it difficult to determine the

values of global variables at any given time. It turned out to be simpler to let each process to have

its own local variables, and to denote exchange of information explicitly via message passing.

CCS

The central person in the history of process algebra is without a doubt Robin Milner. He developed

his process theory CCS, the Calculus of Communicating Systems [Mil82], over the yeas of 1973

to 1982. In CCS, Milner introduced synchronization trees to model parallel systems. Transitions

were labeled with ports where a named port synchronizes with the port with its co-name. The

operators that he introduced for specifying parallel programs were sequential composition, parallel

16

composition, alternative composition, restriction (to prevent certain actions from happening), and

relabeling (for renaming ports). He also introduced some laws for these operators.

CSP

Another very important contributor to the development of process algebra is Tony Hoare who

developed the theory of Communicating Sequential Processes (CSP) [Hoa78]. The most important

step was that he put away the use of global variables, and adopted the message passing paradigm of

communication. CSP has synchronous communication and is a guarded-command language (based

on Dijkestra [Dij75]). The first model that was introduced in this theory was based on trace theory

(sequences of actions a process can perform). Later, it was found that deadlock behavior is not

preserved in the trace model, so a new model based on failure pairs (actions a process cannot

perform at each state) was introduced. CSP has an additional operator than those defined in CCS

to distinguish between internal and external non-determinism.

π-Calculus

The π-calculus is a process calculus that was developed by Robin Milner, Joachim Parrow and David

Walker [MPW92]. The theory can be seen as a continuation of Milner’s work on the process calculus

CCS (Calculus of Communicating Systems). The π-calculus allows channel names to be defined as

a mean for communication between components. Channels are mobile, meaning that channel names

can be communicated along the channels themselves. Mobile channels allow describing of concurrent

systems whose network configuration may change during their executions.

ACP

The Algebra of Communicating Processes (ACP) was initially developed by Jan Bergstra and Jan

Willem Klop [BK82, BK85], as a part of an effort to investigate the solutions of unguarded recursive

equations. They were the first who used the term ‘process algebra’, with exactly the two meanings

given in the first two paragraphs of this section. They first defined the theory with alternative,

sequential, and parallel composition, but without communication. A model was established based

on projective sequences, meaning that a process is given by a sequence of approximations by finite

terms. Later it was shown that all recursive equations, both guarded and unguarded, have a solution

in the model. The algebra was later extended with the communication operator to yield the theory

ACP.

17

2.4.1 Syntax of ACP

Algebra of Communicating Processes (ACP) is a process algebra that provides a way to describe sys-

tems in terms of algebraic process expressions. Processes can perform actions and can be composed

to form new processes using algebraic operators.

Atomic action ACP uses atomic actions as its primitives. As an example, the process term

P := a

illustrates a process that offers its environment the action ‘a’. Some actions have special meanings.

For example, the action δ represents a deadlocked process that can not perform any actions, the

action τ represents an internal action of a process that is not observable by the environment, and

the action ε represents the empty process that allows us to distinguish between successful and

unsuccessful termination. Actions can be parameterized with data elements. As an example, a

process that uses the atomic action send to send the data value d : D can be defined as:

P := send(d)

Sequential composition Actions can be combined to form processes using a variety of operators.

The simplest operator is probably the prefix operator (denoted by ‘.’). As an example, the process

term

P := a.P ′

illustrates a process that offers its environment the action ‘a’, and after performing the action,

it behaves as the process term P ′. The sequential composition operator (denoted by ‘·’) is the

generalization of the prefix operator. Given the process terms P and Q, the term P · Q denotes

the sequential composition of P and Q. The intuition of this operation is that upon the successful

termination of process P , process Q is started. If process P ends in a deadlock, then the sequential

composition P ·Q also deadlocks.

Alternative composition Another fundamental algebraic operator is the alternative operator

(denoted by ‘+’). The process term

P := a.δ + b.ε

illustrates a process that is willing to perform either action ‘a’ followed by the deadlock action,

or action ’b’ followed by the successful termination. Note that the choice is solely made by the

environment, and that the process doesn’t have any control over which choice will be chosen.

18

Abstraction The abstraction operator (denoted by ‘ τI ’) provides a way to hide certain actions

(actions in I), and treats them as events that are internal to the systems being modeled. As an

example, the process term P := τI(Q) acts like process Q, except that actions from I are hidden

(renamed to τ). That is:

P := τI(a.b.c) = a.τ.b where I = {b}

Encapsulation Unlike the abstraction operator, the encapsulation operator (denoted by ‘∂H ’)

provides a way to block certain actions (actions in H) from happening. As an example, the process

term P := ∂H(Q) acts like process Q, excepts that actions in H never happen (renamed to δ). That

is:

P := ∂H(a.b.c) = a.δ.b where H = {b}

Communication Interaction between processes is defined by the communication function (de-

noted by ‘γ’), and the merge operator (denoted by ‘|’). The communication function takes a pair

of communicating actions and returns the result of the communication, which is also an action. As

an example, consider the process term P := send(1) that can perform a send action, parameterized

with value 1, and assume that P is executing in parallel with the process term Q := receive(1) that

can perform a receive action, parameterized with data value 1. Now, suppose that an atomic action

comm(1) is the result of the simultaneous executions of these actions. Thus, communication between

P and Q can be achieved as follows:

(P | Q) =
(
send(1) | receive(1)

)
= comm(1), where γ(send(1), receive(1)) = comm(1)

If two actions do not communicate, then their communication function is not defined, and the result

of their merge is equal to the deadlock action. For example:

(
send(5) | receive(6)

)
= δ, where γ(send(5), receive(6)) = undefined

Choice quantifier In order to allow choices over range of a data type, the choice quantifier

(denoted by ‘
∑

’) is defined. As an example, consider the following

∑
d:Nat

a(d) = a(1) + a(2) + . . .+ a(n)

Having defined the choice quantifier, the following holds:

(
send(1) |

∑
d:Nat

receive(d)
)
= comm(1), where γ(send, receive) = comm

19

Parallel composition Another fundamental algebraic operator is the parallel operator (denoted

by ‘||’). The parallel operator illustrates the parallel composition of processes, where the individual

actions are interleaved. As an example, the process term (assuming that no communication can

occur)

P := (a.b) || (c.d)

illustrates a process that may perform the actions of a, b, c, d in any of the following sequences:

(a.b.c.d), (a.c.b.d), (a.c.d.b), (c.a.b.d), (c.a.d.b), and (c.d.a.b).

In order to express all the interleaving options given above, the parallel operator is defined in

terms of the left merge operator (denoted by �) and the merge operators. That is;

P || Q = P � Q+Q � P + P | Q

Here the P � Q denotes the parallel composition of P and Q with the restriction that the first

step comes from P , and P | Q (as defined earlier) denotes the parallel composition of P and Q

starting with a joint activity (communication). For example, the process term (assuming that no

communication can occur)

P := (a.b) � (c.d)

only performs the sequences (a.b.c.d), (a.c.b.d), and (a.c.d.b) since the left merge operator ensures

that the action ’a’ occurs first.

Guarded commands Conditional statements are specified in ACP by the unary operator called

guarded-command operator. As an example, ‘if (φ) then a’ can be specified by ‘(φ) :→ a’, and

‘if (φ) then a else b’ can be specified either by ‘(φ) :→ a+ (¬φ) :→ b’, or by ‘(φ) :→ a � b’.

We finish this section by giving the algebraic axioms for the operators defined in this section.

Table 1 illustrates the algebraic axioms for sequential composition, alternative composition, abstrac-

tion, encapsulation, left merge, communication merge, parallel composition, guarded commands, and

the choice quantifier operators.

The following is a brief explanation of the meaning of these axioms. Axioms A1−10 illustrate

the properties of the alternative composition and sequential composition operators. Axioms A1, A2,

and A3 express the fact that the alternative composition is commutative, associative, and idempotent

respectively. Axiom A4 describes the distribution of sequential composition over alternative compo-

sition from the right. Note that the sequential composition does not distribute over the alternative

composition from the left; that is: x · (y + z) 	= x · y + x · z. Axiom A5 states that the sequential

composition is associative. Axiom A6 expresses that in the context of a choice deadlock is avoided

as long as possible. Axiom A7 states that after a deadlock has been reached no continuation is

20

x+ y = y + x A1 x+ δ = x A6

(x+ y) + z = x+ (y + z) A2 δ.x = δ A7

x+ x = x A3 x · ε = x A8

(x+ y) · z = x · z + y · z A4 ε.x = x A9

(x · y) · z = x · (y · z) A5 a.x · y = a.(x · y) A10

∂H(ε) = ε D1 τI(ε) = ε TI1
∂H(δ) = δ D2 τI(δ) = δ TI2
∂H(a.x) = δ (if a ∈ H) D3 τI(a.x) = τ.τI(x) (if a ∈ I) TI3
∂H(a.x) = a.∂H(x) (if a 	∈ H) D4 τI(a.x) = a.τI(x) (if a 	∈ I) TI4
∂H(x+ y) = ∂H(x) + ∂H(y) D5 τI(x+ y) = τI(x) + τI(y) TI5

x || y = x � y + y � x+ x | y M x | y = y | x SC1

δ � x = δ LM1 x || ε = x SC2

ε � x = δ LM2 ε | x+ ε = ε SC3

a.x � y = a.(x || y) LM3 (x || y) || z = x || (y || z) SC4

(x+ y) � z = x � z + y � z LM4 (x | y) | z = x | (y | z) SC5

δ | x = δ CM1 (x � y) � z = x � (y || z) SC6

(x+ y) | z = x | z + y | z CM2 (x | y) � z = x | (y � z) SC7

ε | ε = ε CM3 x � δ = x · δ SC8

a.x | ε = δ CM4 x � τ.y = x � y SC9

a.x | b.y = c.(x || y) (if γ(a, b) = c) CM5 x | τ.y = x � y SC10

a.x | b.y = δ (if γ(a, b) is not defined) CM6

true :→ x = x GC1

∑
n x = x (if n not free in x) CQ1

false :→ x = δ GC2

∑
n x = x+

∑
n x CQ2

φ :→ δ = δ GC3

∑
n(x+ y) =

∑
n x+

∑
n y CQ3

φ :→ (x+ y) = (φ :→ x) + (φ :→ y) GC4

∑
n φ :→ x = φ :→ ∑

n x (if n not free in φ) CQ4

(φ ∨ ψ) :→ x = (φ :→ x) + (ψ :→ x) GC5

∑
n φ :→ x = ∃nφ :→ x (if n not free in x) CQ5

φ :→ (ψ :→ x) = (φ ∧ ψ) :→ x GC6

∑
n(n = v) :→ x =

∑
n(n = v) :→ x[v/n] CQ6

Table 1: Axioms for the ACP operators defined in this section

possible. Axioms A8 and A9 express that the empty process is an identity element with respect to

sequential composition.

Axioms D1−5 (resp. TI1−5) illustrate the properties of the encapsulation (resp. abstraction)

operator, that blocks (resp. skip) the execution of actions from H (resp. I) , Axiom D3 (resp. I3),

and leaves the other actions unchanged, Axiom D4 (resp. I4). Axioms D1 (resp. I1) and D2 (resp.

I2) express the fact that the actions ε and δ can not be blocked (resp. skipped).

Axioms M , and LM1−4 illustrate the properties of the parallel composition, and the left merge

operators respectively. Axiom M expresses the fact that the parallel composition can be broken up

into three alternatives, namely the part where the first step comes from x, the part where the first

step comes from y, and the part where x and y execute together. Axioms LM1 and LM2 express that

a (successfully or unsuccessfully) terminated process cannot perform a step, which implies that these

constants as the left operand of a left merge lead to the deadlock action. Axiom LM3 expresses the

fact that in the parallel composition of processes a.x and y where the first step is from a.x, this first

21

step must be an ‘a’. What remains is the parallel composition of x and y without any restrictions.

Axiom LM4 expresses that the moment of choice on both process terms (x+y) � z and x � z+y � z

is the same, because the choice is made by the execution of the first action.

Axioms CM1−6 illustrate the properties of the communication merge operator. Axioms CM1

expresses that the action δ on one side of a communication merge allows no joint activity. Axioms

CM2 expresses that the merge operator distributes over choice, because the communication merge

operator involves activity from both sides. Axiom CM4 expresses that communication-merge ex-

pressions combining an action prefix and an empty process (ε) lead to deadlock, because both a joint

action and synchronized successful termination are impossible. Axioms CM5 and CM6 illustrates

communication-merge expressions where both sides are action prefixes. In this case, the result is

based on the communication function γ. If γ is defined for the involved actions, then the com-

municating processes can perform the defined communication action, and then proceed as parallel

composition of the remaining behaviors of both operands of the communication. However, if γ is

undefined, the communicating processes cannot perform any action at all.

Besides the axiomsM , LM1−4, and CM1−6, ACP contains seven additional axioms called Axioms

of Standard Concurrency that denote properties of parallel composition operator. The commutativ-

ity and associativity of the merge operator, and the fact that ε is an identity element are captured

by Axioms SC1, SC4, and SC2 respectively. Axiom SC3 captures the fact that a communication

with the empty process either results in a successful termination or a deadlock. Axioms SC4−8 are

basic axioms of he theory of parallel processes, and they can not be derived by the other axioms.

Axioms SC9 and SC10 expresses the fact that communications with the silent step τ are always

assumed to be undefined.

Axioms GC1−6 express the properties of the guarded-commands, and are mostly self-explanatory.

Finally, Axioms CQ1−6 express the properties of the choice quantification. CQ1 is a generalization

of the Axiom A3. It considers the case where the variable n does not occur free in the term x. In

that case, all summands are equal and by idempotency, the sum is equal to one term. CQ2 deals

with separating out one summand. Axiom CQ3 states that the choice quantification distributes over

alternative construct. Axiom CQ4 gives distribution over guarded commands. Axiom CQ5 states

that a choice quantification over a conditional reduces to a boolean existential quantification in the

conditonal if the bound variable doesn’t occur in the guard term. Finally, Axiom CQ6 allows to

substitute a variable for any expression it is equal to.

22

2.5 The Modal μ-Calculus

In the previous section, we explained how to model parallel systems using ACP algebra. In this

section, we discuss how to specify properties of such systems. A property usually describes some

aspect of the behavior of a system. Freedom of deadlock, livelock, and the fact that every message

that is sent will eventually be received are typical examples of properties of a system. There are two

main reasons to formulate properties of a system:

1. In the early design stage, it is unclear what the behavior of a system will be. Therefore, writing

down basic properties can help us to establish some of the essential aspects of the system. For

example, use cases in UML are used for this purpose. They are examples of the potential run

of a system. In this section, we will describe a property language which not only allows us to

denote use cases, but also allows to denote properties which hold for all runs of a system.

2. It is very common that a system is designed or implemented incorrectly. Checking that the

behavior of a system satisfies its desirable properties, guarantees the correctness of its design

and implementation.

Two standard types of correctness properties that can be verified are the safety and liveness

properties. A safety property of a system establishes that “something bad never happens”. Exam-

ples are freedom from deadlock and system invariance (x is always less than y + 5). A liveness

property, on the other hand, establishes that “something good eventually happens”. An example

of liveness property is the responsiveness of a system (every request is eventually followed by an

acknowledgment). Formulating safety and liveness properties, and verifying these properties provide

a convenient and effective way to guarantee the correctness of a system. In the rest of this section,

we will introduce three ways of specifying the safety and liveness properties that we will be using in

this thesis.

2.5.1 Hennessy-Milner Logic

Hennessy-Milner logic [HM85] was introduced by Matthew Hennessy and Robin Milner in 1980 as

an approach to formulate logical correctness of a system. Logical correctness of a system determines

which design requirements could possibly be violated, not in how probable such violation might be.

The syntax of Hennessy-Milner logic is given by the following BNF grammar:

φ ::= true | false | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ

The modal formula true is true in each state of a process, and the modal formula false is always

false in each state of a process. The connectives ∨ (or), ∧ (and), and ¬ (negation) have their usual

23

meanings. The diamond modality 〈a〉φ is valid whenever an a action can be performed such that φ

becomes valid. An example of diamond modality is the formula:

〈send〉〈ack〉〈signal〉true

which expresses that it is possible for a process to do a send followed by an acknowledgment followed

by issuing a signal. The box modality [a]φ is valid whenever for every action a that can be done, φ

holds after doing that a. So, the formula

[send][ack]true

expresses that every send action is followed by an acknowledgment.

In order to clarify the differences between the diamond modality and the box modality, consider

the four transition systems given in Figure 5. The transition system at the left illustrates a situation

where 〈a〉φ is valid and [a]φ is not valid. This is because, from the initial state, there is an a action

to a state where φ holds, and one to a state where φ doesn’t hold. In the second transition system,

there is no a action at all, so certainly not one to a state where φ holds. Thus, 〈a〉φ is not valid.

However, all a-transitions (which are none) go to a state where φ is valid. Thus [a]φ is valid. The

third transition system illustrates a situation where both modal formulas are valid. Finally, the last

transition system illustrates a situation where neither 〈a〉φ nor [a]φ is valid.

s0 ¬φ

s1 ¬φs2φ

aa

s0 ¬φ s0 ¬φ

s1 φ

a

s0 ¬φ

s1 ¬φ

a

Figure 5: Differences between diamond and box modalities

2.5.2 Regular Formulas

Regular Formulas [J.F08, BK08] are useful to allow more than just a single action in modalities. For

example, we are interested in saying that after two arbitrary actions, a specific action must happen.

Regular formulas are based on action formulas. Action formulas are defined by the following BNF

grammar:

α ::= a1 | . . . | an
∣∣∣ true

∣∣∣ false
∣∣∣ α

∣∣∣ α1 ∩ α2

∣∣∣ α1 ∪ α2

24

Here the formula a1 | . . . | an defines a set with only the set of multi-actions a1 | . . . | an in it.

The formula true represents the set of all actions, and the formula false represents the empty set.

The connectives ∩ and ∪ represents the intersection and the union of sets of actions respectively.

For example, the formula 〈true〉〈a〉true expresses that an arbitrary action followed by the action ‘a’

can occur. Similarly, the formula [true]false expresses that no action can be done.

Regular formulas extend the action formulas to allow use of sequences of actions in modalities.

Regular formulas are defined by the following BNF grammar (α is an action formula):

R ::= ε | α | R1 ·R2 | R1 +R2 | R∗ | R+

In the above, ε is the empty sequence of actions. The formula R1 ·R2 represents the concatenation

of actions in R1 and R2. For example, 〈send · receive〉true is the same as 〈send〉〈receive〉true. Both

express that a sequence of a send followed by a receive can be performed. The formula R1 + R2

represents the union of actions in R1 and R2. For example, the formula [send · send + receive ·
receive]false expresses that neither the sequence send · send nor receive · receive can be performed.

The regular formula R∗ denotes zero or more repetitions of the sequences in R, and the formula R+

denotes one or more repetitions of the sequences in R. For example, 〈send∗〉true expresses that any

sequence of the send action is possible, and [send+]true expresses that the send action must be done

at least once.

Using regular formulas, we can formulate two commonly used modalities, namely always and

eventually. The always modality, denoted by �φ, expresses that φ holds in all reachable states. The

eventually modality, denoted by �φ, expresses that there is a sequences of actions that leads to a

state in which φ is valid. These two modalities can be written as follows:

�φ = [true∗]φ �φ = 〈true∗〉φ

Note that the always modality can be used to formulate safety properties of a system. For

example, the property “there exists no deadlock in any reachable states” can be formulated as:

[true∗]〈true〉true

Similarly, the safety property “it is impossible to do two send actions without a receive” can be

formulated as:

[true∗ · send · receive∗ · send]false

Liveness properties can be formulated using eventually modality. For example, the property

“after every send, the message can be eventually received” can be expressed as:

[true∗ · send]〈true∗ · receive〉true

25

2.5.3 Fixed Point Modalities

In the previous section, we have described regular expressions and showed how expressive and

suitable they are for expressing most behavioral properties. This section describes a much more

expressive language that is called modal μ-calculus [And94]. The modal language is obtained by

adding the minimal and maximal fixed point operators to Hennessy-Milner logic. The syntax of this

language is obtained by the following BNF grammar:

φ ::= true | false | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ | φ1 → φ2 | μX.φ | νX.φ | X

Here the first seven modalities are the Hennessy-Milner logic. The formula φ1 → φ2 is the same

as the formula ¬φ1 ∨φ2. The formula μX.φ is the minimal fixed point, and the formula νX.φ is the

maximal fixed point, where the variable X is the fixed point variable.

To explain the minimal and maximal modalities, let’s consider the fixed point variable X as a

set of states. We say that the formula μX.φ is valid, if for all those states in the smallest set X, the

equation X = φ is satisfied (X occurs in φ). For example, the formula μX.X denotes the smallest

set of states X that satisfies X = X, which is obviously the empty set. This means that μX.X is

not valid for any state. This is equivalent to saying that μX.X = false.

Unlike the minimal fixed point operator, the formula νX.φ is valid for all those states in the

largest set of states X that satisfies X = φ. As an example, the formula νX.X denotes the largest

set of states X that satisfies X = X, which is obviously the set X itself. This means that νX.X is

valid for all states. This is equivalent to saying that νX.X = true.

Another way of understanding minimal and maximal fixed points is by considering the formula

as a graph to be traversed, where the fixed point variables are states and modalities are seen as

transitions. A formula is true if it can be made true by passing a finite number of times through the

minimal fixed point variables, whereas it is allowed to traverse an infinite number of times through

the maximal fixed point variables.

s0

a

Figure 6: Differences of the minimal and maximal fixed point operators

As an example consider the transition system given in Figure 6. Here the formula μX.〈a〉X is

invalid, because the a transition can not be traversed finite number of times. Since the a transition

can be traversed infinite number of times, therefore, νX.〈a〉X is valid.

26

It is possible to translate regular formulas to modal μ-calculus. The following illustrates the

translation of regular formulas containing ‘∗’ and ‘+’:

〈R∗〉φ = μX.(〈R〉X ∨ φ) [R∗]φ = νX.([R]X ∧ φ)

〈R+〉φ = 〈R〉μX.(〈R〉X ∨ φ) [R+]φ = [R]νX.([R]X ∧ φ)

For example, the regular formula representing the eventually modality �φ = 〈true∗〉φ can be

formulated as follows:

μX.(〈true〉X ∨ φ)

Sometimes a stronger property is required, namely that φ will eventually become valid along every

path. This property can be formulated using the minimal fixed point operator as follows:

μX.([true]X ∨ φ)

Strictly speaking, this formula will also become true for paths ending in a deadlock, because in

such a state [true]X is also valid. To avoid this anomaly, the absence of deadlock must be explicitly

mentioned. That is:

μX.(([true]X ∧ 〈true〉true) ∨ φ)

A variation of this is the action ‘a’ must be unavoidably be done, provided that there is no

deadlock before the action a. That is:

μX.[a]X

In order to express that the action ‘a’ must be done anyhow, the possibility of deadlock must be

explicitly excluded. That is:

μX.([a]X ∧ 〈true〉true)

The last two formula is not valid for the transition system given in Figure 7. This is be-

cause, the action ‘b’ can occur infinite often which can avoid the action ‘a’ to occur. The formula

μX.[a ∨ 〈a〉true] is valid in this transition system. Therefore, Figure 7 distinguishes between the

last formula and the two before that.

s0 s1

b

a

Figure 7: Differences between the last three formulas

The minimal and maximal fixed point operators can be combined to express fairness properties.

Fairness properties can express that some action must happen, provided it is unboundedly often

27

enabled, or because some other action happens only a bounded number of times. For instance, the

formula:

μX · νY ([b]X ∨ [a]Y)

expresses that each sequence consisting of a and b actions ends in an infinite sequences of a’s. This is

because the X variable can only be traversed finitely, while the variable Y can be traversed infinitely

often.

Note that we can also use data in modal formulas. For example, the formula:

[true∗ · ∃n : N · error(n)]μX([shutdown]X∧ < true > true)

expresses that whenever an error with some number n is observed, a shutdown is inevitable.

2.6 mCRL2 Toolset

Micro Common Representation Language 2 [J.F08, GMR+07] (mCRL2) is the name of a specification

language that is used to specify and model check distributed and parallel systems. mCRL2 is based

on ACP algebra that is extended to include abstract data types and time. It uses algebraic operators

to construct systems containing very complex processes with lots of parallelism. The constructed

system can then be model checked by exploring all possible system states in a brute force manner.

This guarantees the system’s correctness. Correctness of a system involves showing that the modeled

system doesn’t exhibit undesirable properties (safety properties) or it does exhibit desirable ones

(liveness properties).

Around 1980 many specification languages were developed to model and verify the behavior of

reactive systems. The most well-known of all are LOTOS, FDR refinement checker, SPIN, and

μCRL. Language of Temporal Ordering Specification [BB87] (LOTOS) was initially developed by

Brinskma for the formal description of the OSI (Open Systems Interconnection), but later extended

to model concurrent systems. It is based on both CSP and CCS process algebras. Failure-Divergence

Refinement (FDR) [BR00] is a refinement checker based on CSP process algebra that was originally

developed by Formal Systems (Europe) Ltd. Instead of a model checker, the FDR toolset is called a

refinement checker, because it translates CSP process expressions into labeled transition systems, and

then determines whether one of the transition systems is a refinement of the other within the speci-

fied semantic model (traces, failure, failures divergence, and . . .). Simple Promela Interpreter [Hol03]

(SPIN) is a general model checker tool that was originally developed by Gerald Holzmann at Bell

Labs. Systems to be verified are written in Promela language which supports asynchronous dis-

tributed systems and non-deterministic automata. Linear Temporal Logics (LTL) [MP92, Pnu77]

are used to formulate system properties. The specification language μCRL [GP90] is a predecessor

28

of the mCRL2 language which was originally developed by Groote and Ponse. It is a specification

language based on ACP processes algebra, but without any support for abstract data types.

Unfortunately, the use of abstract data types made these languages hard to use when it came

to the specification of complex systems. To this reason μCRL was extended with those data types

that one would expect when writing specifications. Examples are boolean, numeric numbers, lists,

sets, bags, functions and functional data types. The central notion of mCRL2 is the linear process.

A linear process is a process expression from which all parallelism has been removed. Systems

containing hundreds of thousands process expressions can be translated into a single linear process,

which can then be used for analysis and verification. Model checking in mCRL2 is provided using

Parameterized Boolean Equation System (PBES). Given a modal μ-calculus formula that specifies

a desired behavior of a system, and a linear process, a PBES can be generated. The solution to this

PBES indicates whether a formula holds on the processes or not.

As an example of a mCRL2 program, consider the following program that specifies a vending

machine which dispenses a cup of tea for one inserted coin, or a cup of coffee for two inserted coins.

act

insCoin, accCoin, coin;
insTea, accTea, tea ;
insCoffee , accCoffee, coffee ;

proc

CS = (insCoin . accTea + insCoin . insCoin . accCoffee) . CS;
VM = accCoin . (insTea + accCoin . insCoffee) . VM;

init

allow({coin, tea , coffee },
comm({insCoin|accCoin→ coin, insTea|accTea→ tea, insCoffee|accCoffee→ coffee},
CS || VM));

The above specification defines nine atomic ACP actions representing payments and dispensing

tea and coffee, two process expressions (CS and VM) representing a customer and the vending

machine, and a parallel composition of these processes (CS || VM) representing the whole system.

The keyword allow specifies those actions that are not going to be blocked (actions not in H for the

ACP operator ∂H), and the keyword comm defines the communication function (γ).

A visualization of the specified system can also be obtained in mCRL2 by converting the linear

process into a labeled transition system. Figure 8 illustrates the labeled transition system of the

vending machine program given above.

29

01 2

3

coin

coin

tea

coincoffee

Figure 8: Labeled transition system generated by mCRL2 toolset for the vending machine program

30

Chapter 3

Implementation of the Generalized

Alternative Construct

3.1 Overview

This chapter describes the design and implementation of the generalized alternative construct for

Erasmus programming language. Erasmus is a CSP-like programming language that is based on

processes and their interactions using synchronous channels. Synchronous channels ensure that the

execution of a write action by a sender process is synchronized with the execution of the correspond-

ing read by a receiver process. As an example, consider the following code:

protocol prot = {x:Integer; y: Integer ; ↑sum:Int}

process adder = p:+prot{
x: Integer := p.x;
y: Integer := p.y;
p.sum := x+y;
}
process user = q:−prot{
q.x := 54;
q.y := 66;
scrln(q.sum);

}
cell main = {C:prot; adder(C); user(C);}
main();

The first line defines a protocol which illustrates the structure of messages that can be transmitted

between a client and a server process (see Chapter 4). The protocol prot defines a message with three

fields: x, y, and sum. The above code also defines two processes (user and adder) that communicate

with one another through their ports (channel ends). A process is either a client or a server with

31

respect to a channel. A process having the port with sign “−” is called a client process (e.g., user),

and with sign “+” is called a server process (e.g., adder). Direction of messages with no symbols

(e.g., x and y) are from clients to servers, and with the symbol “↑” (e.g., ↑sum) are from servers to

clients. The code also defines a cell where the synchronous channel C is constructed, the ports of

the two processes are linked, and the two processes are executed in parallel.

Erasmus includes a construct, called select-construct, to provide a choice between communicating

on different channels. The select construct – inspired by CSP-alternative construct[Bro84] – is a

generalization of the familiar if-then-else statement which provides a process to non-deterministically

choose between several different communicating actions (send or receive). As an example, the

process:

process P = q1:+prot; q2:+prot{
x : Integer ;
select{
|| x := q1.x; ...
|| x := q2.x; ...

}
}

tests whether the environment is willing to send to this process a value on port q1, or a value on

port q2. Each select construct may have several branches (separated by ||), and a branch is chosen

according to which communication takes place. In case where the environment offers more than one

communication, the select construct ensures that only one is chosen.

Each branch of the select construct may have a boolean guard. As an example, in the following

code:

select{
|n≥ 0| x := q1.x;
|n≤ 0| x := q2.x;

}
communication on port q1 is enabled if the value of n is greater than or equal to zero. Similarly,

communication on port q2 is enabled if the value of n is less than or equal to zero.

In addition, a select-construct may also have an orelse branch which is executed when all the

guards of other branches are disabled, or all the channels for which the process is selecting are

terminated. For example, a process performing:

select{
|n>0| x := q1.x;
|n<0| x := q2.x;
| orelse | scrln(”Error: the value of n is zero”)

}
selects the orelse branch if and only if either the value of n is equal to zero, or the channels connected

to port q1 and q2 are both terminated. In the case where all of the guards are disabled, and there

is no orelse branch, the select-construct throws an exception.

32

In the original CSP, each alternative could only perform receive operations on channels, and only

one end of a channel could participate in alternation. These restrictions make the implementation

of the select construct considerably easy. However, it can be useful in a number of situations

to combine both inputs and outputs at the same time, and to allow both ends of a channel to

participate in an alternation. As an example, Figure 9 shows a system of processes, intended to

implement the Chain of Responsibility pattern[GHJV95]. At the left, process G is a generator that

generates problems and sends them to a sequence of solvers, S1;S2; . . . , Sn. A solver Si receives a

problem on its query port (upper left). If it solves the problem, it sends the answer back to the

generator on its answer port (lower left). If it cannot solve the problem, it forwards it to the next

solver using its upper right port. At the end of the chain, there is a terminator process, T , which

receives a message only when all of the solvers have failed; it sends a “failed” message back to the

generator.

G S1 S2 S3 T

Figure 9: The chain of responsibility pattern with processes

The following code shows an Erasmus version of the chain of responsibility. The generator main-

tains a collection of problems (Integer IDs of the problems) in a stack to be passed to solver processes.

Similarly, the terminator maintains a collection of failed problems in a stack to be passed to the

generator.

33

protocol prot={pId:Integer; solved:Integer ; failed : Integer}

process generator = upR:−prot; lowR:+prot{
counter: Integer:=0;
loop select{
|not stackA.empty()| upR.pId:=stackA.pop(); counter+=1;
|counter>0| scrln(lowR.solved+”solved”); counter−=1;
|counter>0| scrln(lowR. failed+”failed”); counter−=1;
}

}
process solver = upL:+prot; lowL:−prot; upR:−prot; lowR:+prot; id:Int{
loop select{
|| p: Integer := upL.pId;

if p % 2=0
then lowL.solved := p;
else upR.pId := p;

|| lowL.solved := lowR.solved;
|| lowL. failed := lowR.failed ;
}
}
process terminator = upL:+prot; lowL:−prot{
loop select{
|| stackB.push(upL.pId);
|not stackB.empty()| lowL.failed :=stackB.pop();
}
}
cell controller = {
q0,q1,q2,q3,a0,a1,a2,a3 : prot ;
generator(q0,a0);
solver (q0,q1,a0,a1 ,2);
solver (q1,q2,a1,a2 ,3);
solver (q2,q3,a2,a3 ,5);
terminator(q3,a3);
}

Unfortunately, it is difficult to find an efficient implementation for the select construct that

overcomes the above restrictions. Inefficient implementations include those that use global informa-

tion (a central coordinator), require an unbounded amount of time, or use an unbounded amount of

communication [BS83].

The goal of this chapter is, therefore, to present a design and an implementation for the select

construct that overcomes the above restrictions. Particularly, we are aiming for a design with no

central controller, and that doesn’t employ additional channels internally. In order to come up with

a correct design, we use process algebra to model and validate our design. In particular, we use

ACP algebra (Algebra of Communicating Processes) to design our models, and we use mCRL2 model

checker to validate the correctness of our design. Using ACP and mCRL2 for modeling and validating

is important for two main reasons. First, ACP models are more abstract and we believe that they

are easier to understand than codes. Second, mCRL2 performs exhaustive state space exploration,

34

and so detects all errors in the design. In addition, when errors are found, mCRL2 generates counter

examples of minimal length showing how the correctness of the model is violated.

The rest of this chapter is structured as follows. Section 3.2 describes the related work. In

Section 3.3 we give a quick overview of our initial design. Section 3.4 describes the final design

of the select construct. Particularly, in Section 3.4.1 we describe the design for the bi-directional

synchronous channels, and in Section 3.4.2 we describe the design of processes performing selection.

Section 3.5 extends our model to include closing of synchronous channels. Section 3.6 describes the

model of non-select processes (processes performing regular send or receive operations). Section 3.7

discusses the priorities that may be imposed on the select-construct. Section 3.8 explains the

implementation of the select-construct, and provides test cases. Finally, Section 3.9 summarizes.

3.2 Related Work

Buckley and Silberschatz [BS83] were the first to propose a protocol that avoids all three of the

inefficiencies above, but their protocols are prone to deadlock for cyclic communication patterns

[Kna92].

Knabe was the first to discover a deadlock-free protocol [Kna92]. His solution was based on a

two-phase algorithm which uses asynchronous (buffered) messages to implement the (synchronous)

generalized alternative construct for many-to-many channels. His protocol requires six or seven

control messages in the general case, and creates an extra process for each channel.

Demaine proposed a deadlock-free protocol for implementing the generalized alternative con-

struct that can achieve optimal number of message cycle per user-level communication [Dem98]. He

proposed fan channels as a mean for one-to-many (or many-to-one) communications. Fan channels

allow much higher efficiency than general many-to-many communications. Many-to-many channels,

however, can be implemented using two fan channels, but they require an extra process in between.

Welch et al. [Wel10] implemented the select construct, within the JCSP library (CSP for

Java) [Wel00]. Their implementation makes use of a single (system-wide) Oracle server process that

includes a barrier branch to allow multi-way synchronization. Alts that use only input branches can

be implemented without the Oracle. This is a pragmatic solution, but has the disadvantage of the

Oracle potentially being a bottleneck.

Brown et al. [Bro07] developed a library for C++, called C++CSP, that provides easy mechanisms

for concurrent C++ programming using CSP primitives. C++CSP follows the model captured by

Occam and JCSP, with an API similar to the latter [OB04]. C++CSP was the first that introduced

poisonable channels for the simple and safe shutdown of networks or sub-networks. These channels

were later implemented also in JCSP.

35

Lowe [Low11] implemented the generalized select construct within the Scala programming lan-

guage [Suf08]. His solution was based on passive uni-directional channels where active processes

use to synchronize. His algorithm, however, is subject to the following two restrictions: 1. If a

shared channel is involved in selection, it must not simultaneously be read or written by a non-select

process. 2. A selection may not have two simultaneously enabled branches using the same channel.

3.3 Initial Design

Our initial design [GJ10] for the synchronous channels and the select-construct was based on Kn-

abe’s protocol in the sense that we used asynchronous (buffered) messages to implement synchronous

channels and the select construct. In the later stage of our research, it turned out that our design

is not an appropriate model for the following reasons:

1. We considered channels as active-entities that can take active roles in performing communi-

cations. For this reason, at least three processes were required for a single communication.

We believe that considering channels as passive-entities can have a significant effect on the

efficiency of the select construct.

2. For particular cases, e.g., cyclic communication patterns, our algorithm required extensive

handshaking. This has a negative impact on the efficiency of our protocol in general.

3. Our algorithm was designed specifically for communication between distributed processes

through network channels. However, we believed that for processes located on the same ma-

chine a more efficient algorithm can be obtained.

4. We didn’t consider the closing of channels within this model. Considering the closing of

channels is essential in the implementation of the select construct.

5. For configurations consisting of several processes, an existence of one slow process, treated

fairly, can slow down the entire system.

For the above reasons, we developed another model for both the synchronous channels and the

select construct that we will be presenting in this chapter. For readability reason, we present our

initial model in the Appendix A, which is given at the end of this thesis.

36

3.4 The design of the select construct

Let us begin clarifying our assumptions. In most of the communication models cited previously,

channels are usually viewed as active objects which can meditate between input and output requests.

Our aim in the Erasmus implementation is, however, to implement channels as passive objects which

serve as rendezvous points and can be transmitted from one process to another. In addition, since

a process doesn’t leave a selection until at least one communication is possible (or all channels are

closed), it is possible for processes to deadlock or starve depending on how the programmer has

structured use of the select.

We now present the structure of the design. We show first the design of synchronous bi-directional

channels, and then turn into the role of processes.

3.4.1 The Channel Side

In this section we present the design for synchronous channels. For simplicity, we do not consider

the closing of channels within this model. We begin by describing the model informally, before

presenting the ACP model and the analysis.

Channels are passive-objects that accept procedure calls from processes and proceed through

various states. Channels are connected to two or more processes, and their task is to recognize

when they have received two complementary matches. A process that is willing to communicate

sends a request to one or more of its channels. The channel maintains a list of requests it receives

from processes. Upon receiving a request from a process, P1 say, the channel, C say, tries to find a

match. A match for a request of a process is a request of another process that is willing to perform

a complementary action over the same field of the channel. Depending on the match, the channel

C performs the following actions:

� If C doesn’t find any matches, it responds to P1 with a ‘No’, but saves P1’s request before

going back to its initial state.

� If C finds a match that is sent by a process performing regular send or receive operation (a

committed match), C responds to P1 with a ‘Yes’, and removes the matching request from its

list before going back to its initial state.

� If there exists a match that is sent by a process, say P2, performing selection (a half-committed

match), C sends a commit message to P2, requesting the process to permanently commit itself

to this communication and cancel others. The channel then waits for a reply. If P2 replies

with a ‘Yes’, C removes P2’s request from its list, and responds with a ‘Yes’ to P1. If P2 replies

with a ‘No’, C removes P2’s request, saves P1’s request, and replies to P1 with a ‘No’. Finally,

37

if P2 replies with a ‘TryAgain’, C responds to P1 with a ‘TryAgain’ and goes back to its initial

state.

Processes performing selection may also release their half-commitments from channels. Releasing

a half-commitment illustrates that the half-committed process has successfully synchronized with

another channel. This is done by receiving the release signal. When a channel receives a release

signal from a process, it removes all the requests that it has received by that process, before going

to its initial state.

2 3 4P1 C P2

request

No
request

commit

TryAgain
TryAgain

release
request

No

Figure 10: Sequence diagram of the channel’s behavior

Figure 10 demonstrates a scenario where channel C connects process P1 (performing selection)

to process P2 (performing regular send or receive). Since process P1 is first at rendezvous, it receives

a ‘No’ from channel C to its request. When C receives the request of P2 (second at rendezvous), it

sends a commit signal to P1 to check whether or not P1 can commit itself to this channel. When

P1 releases its half-commitment, channel C responds with a ‘No’ to the request of P2, because there

exists no match for P2’s request anymore.

ACP Model

We now present the ACP model (using mCRL2 syntax) that captures the behavior of channels in-

formally described above. We define the following data types to indicate the identities of processes,

channels, branches, and field numbers:

sort −− defining mCRL2 datatypes
pID = p(1)|· · · |p(n) −−IDs of processes
fID = f(1)| · · · | f(n) −−IDs of fields
chID = ch(1)|·· · |ch(n) −−IDs of channels
brID = br(1)|· · · |br(n) −−IDs of branches

38

We can further define the following data types to indicate the status of channels, responses, and the

type of operations (regular send or receive, or select construct) processes may perform:

sort

chStatus = ACTIVE | TERMINATED
Resp = YES | NO | TRYAGAIN | CLOSED
Opr = SEND | RECEIVE | SELECT_SEND | SELECT_RECEIVE

A request message is a fixed-size block of data containing five fields:

1. The unique ID of the process sending the request

2. The ID of the branch within the select statement

3. The ID of the channel the request is sent to

4. The field number for which the process is willing to communicate

5. The type of operation the process is willing to perform.

For this reason, we define the following data type to illustrate the structure of request messages:

sort MSG = struct msg(pId:pID, brId:brID, chId:chID, fId:fID, opr:Opr)

As an example, the following:

r = msg(p(1), br(1) , ch(1), f(1) , SELECT_SEND)

indicates a request message that is sent from process P1 which is willing to send a value (by per-

forming selection) through field f1 of channel C1. Having r defined above, the following holds:

pId(r) = p(1), brId(r) = br(1) , chId(r) = ch(1), fId(r) = f(1),

opr(r)=SELECT_SEND

The following defines the ACP channels that models communication between components (Erasmus

channels and processes). Every ACP channel is defined by three parameterized actions with the

same action name: a send action (ending with !) that represents a send to the channel, a receive

action (ending with ?) that represents a receive from the channel, and an atomic action that repre-

sents the synchronized execution of the shriek and the query actions.

39

act

request!, request?, request: chID×MSG
reqResp!, reqResp?, reqResp: chID× Resp

commit!, commit?, commit: pID×chID×MSG
commitResp!, commitResp?, commitResp: pID×Resp
release!, release?, release: chID×MSG
notify!, notify?, notify: pID×chID

We now consider the definition of a channel. Listing 3.1 illustrates the ACP process Channel(me,

reqList, status) that represents a channel with identity me, where reqList and status are a list for

storing requests and the channel’s status respectively. In its initial state, a channel either receives

a request, or a release signal. In case of a request signal, the channel goes through different states

depending on its status and the match it may find. The channel responds with a ’No’ if it can’t

find any matches, and responds with a ’Yes’ if it finds a committed match. When a channel finds

a half-committed match, it proceeds as the ACP process ChannelCommit to decide whether or not

the matching process can commit itself to this communication. When a channel receives a release

signal, it removes the requests of the querying process before returning to its initial state.

Listing 3.1: ACP specification of the Erasmus channel

Channel(me:chID, reqList:List(MSG), status:chStatus) =∑
req:MSG · request?(me, req)·

(status == ACTIVE) → (
Let match = findMatch(reqList, req)·
(match == null)→

reqResp!(pId(req), NO)·
Channel(me, add(reqList,req), status)

�(opr(match) == SEND || opr(match) == RECEIVE) →
reqResp!(pId(req), YES)·
notify!(pId(match), me)·
Channel(me, remove(reqList,match), status)

�(opr(match) == SELECT_SEND || opr(match) == SELECT_RECEIVE) →
ChannelCommit(me, reqList, status, req , match))

�(status == TERMINATED) → (···To be implemented ···)
+∑

req:MSG · release?(me, req)·
Channel(me, remove(reqList,req), status)

Listing 3.2 captures the behavior of the process ChannelCommit. When this process is executed, it

sends the matching process a commit signal, asking whether the process can commit itself to this

channel and ignore the rest.

40

Listing 3.2: ACP specification of Channel Commit

ChannelCommit(me:chID, reqList:List(MSG), status:chStatus, req:MSG,
match:MSG) =

commit!(pId(match), match)·∑
resp:Resp · commitResp?(me, resp)·

(resp == YES) →
reqResp!(pId(req), YES)·
Channel(me, remove(reqList, match), status)

�(resp == NO) →
reqResp!(pId(req), NO)·
Channel(me, add(reqList, req)) , status)

�(resp == TRYAGAIN) →
reqResp!(pId(req), TRYAGAIN)·
Channel(me, reqList, status)

� error· δ;
Note that in the above listings findMatch, add, and remove are helper functions to find a match,

to add an element to a list, and to remove an element from a list. The action error followed by

deadlock action is defined and used only for specification purposes.

3.4.2 The process side

The process protocol is somewhat different in structure from the channel side. Each process is

composed of two components: the main process and the handler. The main process is an active-

object that will be executing the user code (including the code of the select statement), and its role

is to send requests to the channels of its branches and execute the selected branch. The handler is

a passive-object that helps the main process to select a particular branch, and its role is to handle

commit signals.

Main process A main process P controls the execution of the program, and follows a procedure

when it enters a selection. Its first step is to select a branch, say bi, and send a send or receive request

(half-committed request) to the channel involved in bi; then it waits for the channel’s response. The

channel may reply with a ‘No’, ‘TryAgain’, or a ‘Yes’, depending on its status and the match it may

find. If P receives a ‘No’ or a ‘TryAgain’, it continues sending request to the remaining channels

involved in selection, but keeps the request it has just sent. If P receives a ‘Yes’ from the channel, it

sends release to all of the channels it has received ‘No’ (releasing its half-commitment), and executes

the branch bi.

If P receives ‘No’ or ‘TryAgain’ from all of the channels involved in selection, it enters the second

phase of its protocol. In the second phase, P pauses for a short while before resending requests to

those channels it has received ‘TryAgain’. P repeats this procedure until it either receives a ‘Yes’

from a channel, or ‘No’ from all channels. In case of the former, P releases its half-commitments

41

from channels it has received ‘No’, and performs the actual data transfer. In case of the later, P

waits until it is awoken by its handler.

Handler The task of a handler is to help the main process to perform a selection. A handler keeps

track of the status of the main process, and accepts commit signals from channels. When a handler

receives a commit signal from a channel, say C, it enters a procedure to appropriately respond to it.

If the main process is sending requests, the handler responds to C with a ‘TryAgain’. A ‘TryAgain’

message indicates that the process is busy right now, and the channel can try again later. If the

main process is waiting or pausing, the handler responds to C with a ‘Yes’, and awakes the main

process, passing the identity of channel C (along with the identity of the branch associated with

C). At this time, the main process releases its half-commitment from other channels, and performs

actual data transfer through channel C.

P1 P2Handler1 Handler2C1 C2

REQUESTING

request

NO

REQUESTING

request

NO

request

request

commitcommit

TRYAGAINTRYAGAIN
TRYAGAIN

TRYAGAIN
PAUSING

PAUSINGwakeUp
request

commit

YES

wakeUp(C2)
release

YES

release
DONE DONE

Actual Data Transfer(C2)

Figure 11: Cooperation of processes P1 and P2 with their handlers

Figure 11 illustrates an example of how processes cooperate with their handlers in order to select

a particular branch. In this example, both processes P1 and P2 are willing to perform selection on

both channels C1 and C2. Both processes receive negative responses from the first channel to which

they send request. Since they both receive ‘TryAgain’ responses from the second channel to which

they send request, they both pause for a short while before trying again. Assuming that the pausing

time for P1 is shorter than P2, P1 receives a positive response from channel C2 (after trying again),

42

and hence, both process will agree upon communicating on channel C2.

ACP Model

We now present the ACP model that captures the behavior of the main process and the handler

informally explained above. We start by defining the following data types representing the status of

processes and the type of messages for which the handler wakes up the main process.

sort

pStatus = REQUESTING | WAITING | PAUSING | DONE
wakeUpFlag = PAUSEOVER | SELECTED

The following defines the ACP channels that processes and their handlers use to change the status

of the process and to wake up the main process.

act

setStatus!, setStatus?, setStatus: pID×pStatus
wakeUp!, wakeUp?, wakeUp: pID×MSG×wakeUpFlag

Model of the main process We now consider the definition of the main process. Listing 3.3

illustrates the ACP process select(me, branches) that represents a process with identity me, where

branches is a list of request messages1 for which the process is performing selection. In its initial

state, the select process informs its handler by changing its status to ‘Requesting’, and then behaves

as the process SelectRequest to send requests to the channels involved in selection.

Here, toRequest is a list of branches for which the process hasn’t sent requests yet, toTryAgain is

a list of branches for which the process has received ‘TryAgain’, and toRelease is a list of branches

for which the process has received ‘No’. The process select request starts its execution by sending

request messages (half-commitment) to each of the channels of its branches, and depending on the

response it may receive it goes through different states. When a response to a request is a ‘Yes’,

the process behaves as the ACP process SelectDone (after changing its status to ‘Done’) to release

its half-commitment from other channels and perform the actual data transfer. When a response

to a request is a ‘No’, the process keeps the request in the toRelease list and continues sending

requests to other channels. When a response to a request is a a ‘tryAgain’, the process keeps the

request in the toTryAgain list and continues with other branches. In a case, where the process is not

matched with any other processes (to request is empty and to tryAgain is not empty), it behaves as

the process selectTryAgain to pause for a short time before resending the request messages. Finally,

if all the channels respond with NO, the process then acts as the process selectWait to perform the

wait command until it hears back from its handler.

1Recall that each message contains the following five fields: process ID, branch ID, channel ID, field ID, and the
type of operation the process is willing to perform.

43

Listing 3.3: ACP specification of select construct

Select(me: pID, branches: List(MSG)) =
setStatus!(me, REQUESTING)· SelectRequest(me, branches, branches, [], []);

SelectRequest(me:pId, branches:List(MSG), toRequest:List(MSG),
toTryAgain:List(MSG), toRelease:List(MSG)) =

(toRequest·size() != 0) :→ (
Let req := toRequest [0] ·
request!(chId(req), req) ·∑

resp:Resp · reqResp?(chId(req), resp)·
(resp == YES) :→

setStatus!(me, DONE)·
SelectDone(me, req, toRelease)

� (resp == NO) :→
SelectRequest(me, branches, remove(toRequest,req), toTryAgain,

add(toRelease,req))
� (resp == TRYAGAIN) :→

SelectRequest(me, branches, remove(toRequest,req),
add(toTryAgain,req), toRelease)

� error· δ)
� (toTryAgain·size() != 0) :→

SelectTryAgain(me, branches, toTryAgain, toRelease)
� SelectWait(me, branches, toRelease);

Listing 3.4 illustrates the definition of ACP processes SelectDone and Execute. The main process

releases its half-commitments from other channels, before performing the actual data transfer. When

a process is about to perform the actual data transfer, it signals the environment that it is executing

a particular branch. This is illustrated by the ACP actions send signal and receive signal. Like the

error action, ACP actions send signal and receive signal are used for specification purposes.

Listing 3.4: ACP specification of the SelectDone and Execute

SelectDone(me:pID, toRelease:List(MSG), selectedBranch:MSG) =
(toRelease ·size()!=0) :→

Let req:=toRelease[0] ·
release!(chID(req), req) ·
SelectDone(me, remove(toRelease, req))

� Execute(me, selectedBranch);

Execute(me:pID, selectedBranch:MSG)=
(opr(selectedBranch)==SEND || opr(selectedBranch)==SELECT_SEND) :→
send_signal(me, chId(selectedBranch), fId(selectedBranch))·
transfer!(chID(selectedBranch))

� transfer?(chId(selectedBranch))·
receive_signal(me, chId(selectedBranch), fId(selectedBranch));

Listing 3.5 illustrates the behavior of the main process when it is willing to resend requests to

those channels it has received ‘TryAgain’. The parameterized action pause is defined to illustrate

the pausing act of a process. When a process pauses, it receives from its handler either a signal

indicating that the pausing time is over, or a signal indicating that a particular branch has been

44

selected.

Listing 3.5: ACP specification of the SelectTryAgain

SelectTryAgain(me:pID, branches:List(MSG), toTryAgain:List(MSG),
toRelease:List(MSG)) =

setStatus!(me, PAUSING)·
pause(me)·(

wakeUp?(me, null, PAUSEOVER)·
selectRequest (me, branches, toTryAgain, [], toRelease)

+∑
selectedBranch:MSG · wakeUp?(me, selectedBranch, SELECTED)·

selectDone(me, selectedBranch, toRelease)
) ;

Finally, when the main process receives negative responses from all of the channels, it waits until it

hears back from its handler. Listing 3.6 illustrates this idea:

Listing 3.6: ACP specification of select construct

SelectWait(me:pID, branches:List(MSG), toRelease:List(MSG)) =
setStatus!(me, WAITING)·∑

selectedBranch:MSG · wakeUp?(me, selectedBranch, SELECTED)·
SelectDone(me, selReq);

Model of the handler We now consider the definition of the handler. Listing 3.7 illustrates the

processHandler with identity me, where status is the status of the main process. In its initial state,

a handler can receive either a setStatus from the main process, or a commit signal from a channel.

In case of the former, the handler goes through different states, depending on the status of the

process. In case of the later, the handler responds appropriately as follows: If the main process is

busy sending requests, the handler responds with a ‘TryAgain’ to the commit signals it may receive.

If the main process is pausing or waiting, the handler responds with a ‘Yes’ to the first commit

signal, wakes up the the main process, and sends ‘No’ to subsequent commit signals. Finally, if the

main process is done selecting a branch, the handler then responds with a ‘No’ to every commit

signals it may receive.

45

Listing 3.7: ACP specification of handler

processHandler(me: pID) = Handler(me, null);

Handler(me:pID, status:pStatus) =∑
st:pStatus · setStatus?(me, st)·

(st == REQUESTING || st == DONE) :→ Handler(me, st)
�(st == PAUSING) :→ handlerPause(me)
�(st == WAITING) :→ handlerWait(me)
� error· δ

+∑
req:MSG,ch:chID · commit?(me, ch, req)·

(status == REQUESTING) :→
commitResp!(chId(req), TRYAGAIN)·
Handler(me, st)

�(status == DONE) :→
commitResp!(chId(req), NO)·
Handler(me, status)

� error· δ;
If the main process is pausing, the handler sends to the main process either a signal indicating that

the pausing time is over, or a signal indicating that a branch is selected due to a commit signal.

Listing 3.8 captures this idea:

Listing 3.8: ACP specification of handlerPause

handlerPause(me: pID) =
wakeUp!(me, null, PAUSEOVER)·
Handler(me, REQUESTING)

+ ∑
selectedBranch:MSG · commit?(me, selectedBranch)·

commitResp!(chId(selectedBranch), YES)·
wakeUp!(me, selectedBranch, SELECTED)·
Handler(me, DONE);

Finally, when the main process is waiting, the handler sends to it either a signal indicating that a

branch is selected, or a signal indicating that all the channels for which the process is waiting are

closed. Listing 3.9 captures this idea:

Listing 3.9: ACP specification of handlerWait

handlerWait(me: pID) =∑
selectedBranch:MSG · commit?(me, selectedBranch)·

commitResp!(chId(selectedBranch), YES)·
wakeUp!(me, selectedBranch, SELECTED)·
Handler(me, DONE);

3.4.3 Validating the Model

This section considers a configuration of processes and channels, and analyzes them using mCRL2

to make sure that they behave as the way we expect.

46

Figure 12 illustrates a configuration of processes P1 and P2 that are connected to each other

through channels C1 and C2. Both processes are performing selection (each with four branches) on

the two channels; that is: P1 is willing to either send through fields f1 of C1 (or field f2 of C2), or

to receive from fields f2 of C1 (or field f1 of C2). Similarly, P2 is also willing to either send through

fields f2 of C1 (or field f1 of C2), or to receive from fields f1 of C1 (or field f2 of C2). The arrows

indicates the direction of data flows.

C1

C2

P1 P2

f1

f2

f2

f1

f1

f2

f1

f2

Figure 12: A simple configuration

Listing 3.10 illustrates the ACP specification of the whole system. In this specification, set H

(actions to be blocked) contains all the send and receive actions (actions ending in “!” and “?”),

and set I (actions to be hidden) contains all actions except send signal, receive signal, pause and

error. In addition, the communication function for all shriek and query actions are defined as:

γ(action name!, action name?) = action

Listing 3.10: ACP specification of the configuration given in Figure 12

Process(me:pID, ch1:chID, ch2:chID) =
Select(me,

[msg(me, SELECT_SEND, f(1), br(1), ch1),
msg(me, SELECT_RECEIVE, f(2), br(2), ch1),
msg(me, SELECT_SEND, f(2), br(3), ch2),
msg(me, SELECT_RECEIVE, f(1), br(4), ch2)]) ·

Process(me, ch1, ch2);

System = τI(∂H(
Channel(ch(1), [], ACTIVE) ||
Channel(ch(2), [], ACTIVE) ||
Process(p(1), ch(1), ch(2)) || processHandler(p(1)) ||
Process(p(2), ch(2), ch(1)) || processHandler(p(2))));

Processes should repeatedly agree upon which field of a channel to communicate, and no error action

should occur. Figure 13 illustrates the safety and liveness properties in modal formulas written in

mCRL2. The first two properties illustrate that the System shouldn’t deadlock and no error actions

should occur. The third property illustrates that every send message by a process, should eventually

be received by another process. Finally, the last property illustrates that a process should not pause

47

for ever.

1.Absence of deadlock:

[true∗]<true> true

2.Absence of error:

[true∗.error] false

3.Every send can eventually be received :

nu X.[true] X &&

(forall p:pID, c:chID, f :fID. [send_signal(p, c, f)] mu Y. <true>true &&

exists q:pID. val(q!=p) ⇒!receive_signal(q, c, f)] Y)

4.After every pause, the process eventually performs a communication:

nu X.[true]X &&

(forall p:pID.[pause(p)] mu Y. <true>true && <!pause(p)>Y)

Figure 13: Safety and liveness properties

When we use mCRL2 to test if System satisfies all the properties given in Figure 13, the test

succeeds for all properties except for the last one. Failure of the last property indicates that System

can diverge. Divergence can happen, because process P1 and P2 can perform actions at about the

same time. Figure 14 illustrates a scenario where the system diverges. In this scenario both P1 and

P2 send their half-commitment requests, receive tryAgain messages, and pause at the same time (for

the same amount of time), and this pattern is repeated. In the implementation, the pause will be of

a random amount of time, to ensure that the symmetry is eventually broken (with probability 1).

48

P1 P2Handler1 Handler2C1 C2

REQUESTING

request

NO

REQUESTING

request

NO

request

request

commitcommit

TRYAGAINTRYAGAIN
TRYAGAIN

TRYAGAIN
PAUSING PAUSING

wakeUpwakeUp
request

request

commitcommit

TRYAGAINTRYAGAIN

Figure 14: Sequence diagram of an execution where divergence occurs

3.5 Closing of Synchronous Channels

The previous sections explained the design and presented the model for the select construct by

explaining the main functionality of processes and synchronous channels. This section extends our

model to capture the feature of closing of channels. We start by describing the model informally,

and then we present the ACP model and the analysis.

C1

request(P1)

reqResp(P1, NO)

close(P2)

terminated(P1, C1)

request(P3)

reqRes(P3, CLOSED)

Figure 15: Sequence diagram of an execution where channel C1 is closed

Each channel has a status which is set to either active or terminated. A channel can be terminated

by sending to it a close signal. When a channel receives a close signal, it notifies all processes (their

handlers to be exact) that are waiting for it, and responds with a ‘Closed’ signal to the subsequent

49

requests it may receive. Figure 15 illustrates this idea.

Each handler also keeps track of the number of closed channels. When a main process is about

to do a wait, it sends its handler a list of channels for which the process is about to wait. The

process then waits for a response. The handler responds with a boolean that indicates whether or

not all the channels have been terminated. If not, the process waits, otherwise the process either

executes the orelse branch (if there is one), or throws an exception. Note that channels can also

be closed while the main process is waiting. In this case, the handler wakes up the main process,

and informs it about the termination of all channels. Figure 16 clarifies this idea by illustrating an

example where process P is willing to perform selection on channels C1 and C2. Since both channels

become terminated, the process should executed its orelse branch or throws an exception.

P handler

REQUESTING

request(C1)

reqResp(C1, NO)

request(C2)

reqResp(C2, CLOSED)

waitFor({C1})

false

commit(C1)

commitResp(C1, TRYAGAIN)

terminated(C1)

wakeUp(ALLCLOSED)

Figure 16: Handler wakes up the main process when all channels are closed

3.5.1 ACP Model

We now present the ACP model that captures the feature of closing of channels that was explained

informally above. We first extend the data types to capture the status of channels, responses, and

the type of messages for which the handler wakes up the main process.

sort

chStatus = ACTIVE | TERMINATED
Resp = YES | NO | TRYAGAIN | CLOSED
wakeUpFlag = PAUSEOVER | SELECTED | ALLCLOSED

Further we define the ACP channels (communicating actions) that the main process uses to close a

channel, the channel uses to inform processes that it is terminated, and the main process and the

handler use to interact with one another.

50

act

close!, close?, close : chID ×pID
terminated!, terminated?, terminated: pID ×MSG
waitFor!, waitFor?, waitFor: pID ×Set(chID)
waitForResp!, waitForResp?, waitForResp: pID ×Bool

Listing 3.11 illustrates the ACP specification of the channel. The definition of the Channel is mostly

similar as before, so we just describe the main differences here. In its initial state, a channel can

receive a request signal, a release signal, or a close signal. The channel responds with a ‘CLOSED’

to every request it receives, if and only if its status is set to ‘TERMINATED’.

Listing 3.11: ACP specification of Channels

Channel(me:chID, reqList:List(MSG), status:chStatus) =∑
req:MSG · request?(me, req)·

(status == ACTIVE) :→ (··· Same As Before ···)
�(status == TERMINATED) :→

reqResp!(pId(req), CLOSED)·
Channel(me, reqList, status)

+∑
req:MSG · release?(me, req)·

Channel(me, remove(reqList, req), status)
+∑

p:pID · close?(me, p)·
ChannelClose(me, reqList);

When a channel receives a ‘close’ signal, it behaves as the process ChannelClose to notify all the

processes waiting for this channel before setting its status to ‘TERMINATED’. Listing 3.12 illustrates

the ACP specification of the process ChannelClose.

Listing 3.12: ACP specification of ChannelClose

ChannelClose(me:chID, reqList:List(MSG)) =
(reqList ·size() != 0) :→

terminated!(pId(reqList·0), me)·
ChannelClose(me, remove(reqList, reqList·0))

� Channel(me, [], TERMINATED);

Listing 3.13 illustrates the ACP specification of the processes Select and SelectRequest. The definition

of these processes are same as before. The only difference is that after sending a request signal, the

main process may receive a ‘CLOSED’ signal from a channel. At this point, the process ignores this

channel (because it is terminated), and continues sending requests to other channels.

51

Listing 3.13: ACP specification of select construct

Select(me: pID, branches: List(MSG)) = ·· ·

SelectRequest(me:pId, branches:List(MSG), toRequest:List(MSG),
toTryAgain:List(MSG), toRelease:List(MSG)) =

(toRequest·size() != 0) :→ (
Let req := toRequest [0] ·
request!(chId(req), req) ·∑

resp:Resp · reqResp?(chId(req), resp)·
(resp == YES) :→ ···
� (resp == NO) :→ ···
� (resp == TRYAGAIN) :→ ···
� (resp == CLOSED) :→

SelectRequest(me, branches, remove(toRequest, req), toTryAgain,
toRelease)

� error· δ)
� (toTryAgain·size() != 0) :→ ···
� SelectWait(me, branches, toRelease);

Listing 3.14 illustrates the ACP specification of the process SelectWait that captures the behavior

of the main process before performing a wait. When a main process is about to do a wait, it sends

its handler a list of channels for which the process is about to wait. This list contains only the

address of those channels from which the process has received a negative response. The process then

waits for a response. The true response means that all the channels for which the process is willing

to communicate have been closed, so the process signals the environment by performing the atomic

action allclosed signal and terminates its execution. However, if the process receives a false, it then

waits until it is awoken by the handler. During waiting, the process may receive either a wakeUp

signal with the ‘SELECTED’ flag, or a wakeUp signal with the ‘ALLCLOSED’ flag. In case of the

former, the process has been successfully synchronized with another process, so it behaves as the

ACP process SelectDone to finish its execution and perform the actual data transfer. In case of the

later, the process signals the environment about the termination of all the channels. Note that like

error action, the atomic action allclosed signal is defined and used only for specification purposes.

52

Listing 3.14: ACP specification of select construct

SelectWait(me:pID, branches:List(MSG), toRelease:List(MSG)) =
waitFor!(me, toRelease)·∑

b:Bool · waitForResp?(me, b)·
(b == false):→
setStatus!(me, WAITING)·∑

selectedBranch:MSG · (
wakeUp?(me, selectedBranch, SELECTED)·
SelectDone(me, selectedBranch)

+
wakeUp?(me, null, ALLCLOSED)·
allclosed_signal(me))

� allclosed_signal(me);

Figure 3.15 illustrates the definition of the handler. Here, waitForCHS is a list of channels the

main process waits for, and closedCHS is a list of all closed channels. In its initial state, a handler

can now receive four messages: a setStatus and a waitFor from the main process, or a commit and a

terminated message from a channel. We have already explained the behavior of the handler when it

receives a setStatus or a commit message. When it receives a waitFor message, the handler returns

a boolean indicating whether all the channels for which the main process is going to wait have been

already terminated or not. When a handler receives a terminated signal from a channel, it saves

the address of this channel (in closedCHS), and either wakes up the main process (if all channels

are closed and the main process is waiting), or goes back to its initial state until it receives another

signal.

The behavior of the handlerPause is exactly the same as in Figure 3.8, so we won’t explain it here

anymore. The definition of the handlerWait is slightly different. When the handler is behaving as

the ACP process handlerWait, it can receive either a commit signal, or a terminated signal from

a channel. In case of the former, the handler replies with a ‘Yes’ and wakes up the main process

passing the address of the selected channel. In case of the later, the handler saves the address of the

terminated channel, and either wakes up the main process if all the channels have been closed, or

waits until it receives another commit or terminated signal.

53

Listing 3.15: ACP specification of handler

processHandler(me:pID) = Handler(me, null, {}, {});

Handler(me:pID, status:pStatus, waitForCHS:Set(chID),
closedCHS:Set(chID)) =∑

st:pStatus · setStatus?(me,st)·
(st==REQUESTING || st==DONE) :→ Handler(me,st, waitForCHS, closedCHS)
�(st == PAUSING) :→ handlerPause(me, waitForCHS, closedCHS)
�(st == WAITING) :→ handlerWait(me, waitForCHS, closedCHS)
� error· δ;

+∑
S:Set(chID) · waitFor?(me, S)·

waitForResp!(me, (S == closedCHS))·
Handler(me, status, S, closedCHS)

+∑
req:MSG,ch:chID · commit?(me, ch, req)·

(status == REQUESTING) :→
commitResp!(chId(req), TRYAGAIN)·
Handler(me, status, waitForCHS, closedCHS)

�(status == DONE) :→
commitResp!(chId(req), NO)·
Handler(me, status, {}, {})

� error·δ;
+∑

ch:chID · terminated?(me, ch)·
(waitForCHS == (closedCHS ∪{ch}) && (status==PAUSING ||

status==WAITING)) :→
wakeUp!(me, null, ALLCLOSED)·
Handler(me, status, waitForCHS, add(closedCHS,ch))

� Handler(me, status, waitForCHS, add(closedCHS,ch))

handlerPause(me:pID, waitForCHS:Set(chID), closedCHS:Set(chID)) =
wakeUp!(me, null, PAUSEOVER)·
Handler(me,REQUESTING,waitForCHS, closedCHS)

+ ∑
req:MSG · commit?(me, req)·

commitResp?(chId(req), YES)·
wakeUp!(me, req, SELECTED)·
Handler(me, DONE, reqCHS, closedCHS);

handlerWait(me:pID, waitForCHS:Set(chlID), closedCHS:Set(chID)) =
(waitForCHS == closedCHS) :→

wakeUp!(me,null,ALLCLOSED)·
Handler(me,DONE,waitForCHS,closedCHS)

�(
∑

req:MSG · commit?(me, req)·
commitResp!(chId(req), YES)·
wakeUp!(me, req, SELECTED)·
Handler(me, DONE, waitForCHS, closedCHS)

+∑
ch:chID · terminated?(me, ch)·

handlerWait(me,waitForCHS,add(closedCHS,ch)));

54

3.5.2 Validating the Model

We now analyze the model of closing channels. We use the same configuration as in Figure 12 with

only one difference. The process Terminator is added to the System, which terminates channels C1

and C2 after a short period (1 second). The whole System is defined in Listing 3.16.

Listing 3.16: ACP specification of a system with a Terminator process

Process(me:pID, ch1:chID, ch2:chID) =
Select(me,

[msg(me, SELECT_SEND, f(1), br(1), ch1),
msg(me, SELECT_RECEIVE, f(2), br(2), ch1),
msg(me, SELECT_SEND, f(2), br(3), ch2),
msg(me, SELECT_RECEIVE, f(1), br(4), ch2)]) ·

Process(me, ch1, ch2);

Terminator(me:pID, ch1:chID, ch2:chID) =
pause(me)@1· close!(ch1, me)· close!(ch2, me);

System = τI(∂H(
Channel(ch(1), [], ACTIVE) || Channel(ch(2), [], ACTIVE)
|| Process(p(1), ch(1), ch(2)) || processHandler(p(1))
|| Process(p(2), ch(2), ch(1)) || processHandler(p(2))
|| Terminator(p(3), ch(1), ch(2))

)) ;

Here, set I also contains the action allclosed signal. Therefore, processes should repeatedly agree

upon which field of a channel to communicate, and eventually they should signal the environment

that all the channels are closed. This is captured by the following modal formula:

mu Y. nu X.([true]Y ||
(<allclosed_signal(p(1))>X && <allclosed_signal(p(2))>)X))

Figure 17: Liveness property of the system in the μ-calculus

Using mCRL2 shows that the System satisfies the above property, and thus, it behaves as we

expect.

3.6 Non-select Processes

The previous sections explained the design of the select construct, where processes chooses between

different available communications. This section explains the behavior of processes performing

regular send or receive operations.

55

A process P performing regular send or receive operation, starts its execution by sending a fully-

committed request to the channel, say C, it is willing to communicate. P then waits for a response.

If C replies with a ‘Yes’, then P performs the actual data transfer. If C replies with a ‘No’, then P

waits until the communication takes place by another process. If C replies with a ‘TryAgain’, then

P pauses for a short while before trying again. Finally, if C replies with a ‘Closed’, then P throws an

exception. Note that processes performing non-select communication never receive commit signals,

and therefore do not have handlers.

3.6.1 ACP Model

We now present the ACP model that captures the behavior of non-select processes that was explained

informally in the previous section.

Listing 3.17 illustrates the ACP process nonSelect that captures the behavior of non-select

processes. The process starts its execution by sending a request to the channel it is willing to

communicate. The process then waits for the reply. If the channel replies with a ‘Yes’, then the

process behaves as the ACP process Execute to perform the actual data transfer. If the channel

replies with a ‘No’, then the process behaves as the ACP process processWait to wait until it is

awoken by the channel. When the process waits, it either receives a notify signal, or a wakeUp

signal from the channel. In case of the former, the process is successfully synchronized with another

process, so it continues to perform the actual data transfer. In case of the later, the process is

notified because the channel has been closed. Therefore, it signals the environment by performing

the atomic action allclosed signal, and terminates its execution.

Listing 3.17: ACP specification of non-select processes

nonSelect(me:pID, req:MSG) =
request!(chId(req), req) ·∑

resp:Resp : reqResp?(me, resp)·
(resp == YES) :→ Execute(me, req)
�(resp == NO) :→ processWait(me, req)
�(resp == TRYAGAIN) :→ pause(me)· nonSelect(me, req)
�(resp == CLOSED) :→ allclosed_signal(me)
�error· δ;

processWait(me:pID, req:MSG) =
notify?(me, chId(req))· Execute(me, req)
+
wakeUp?(me, null, ALLCLOSED)· allclosed_signal(me);

Note that in order to capture the notion of closing of channels properly, we need to modify the

definition of synchronous channels. Listing 3.18 illustrates the modified version of the process chan-

nelClose. A closed channel always sends the closed notification to the main process of a non-select

56

process, not to its handler.

Listing 3.18: ACP specification of ChannelClose

ChannelClose(me:chID, reqList:List(MSG)) =
(reqList ·size() != 0) :→

(opr(reqList ·0) == SELECT_SEND || opt(reqList·0) ==
SELECT_RECEIVE) →

terminated!(pId(reqList·0), me)·
ChannelClose(me, remove(reqList, reqList·0))

�

wakeUp!(pId(reqList·0), null , ALLCLOSED)·
ChannelClose(me, remove(reqList, reqList·0))

� Channel(me, [], TERMINATED);

3.6.2 Validating the Model

In this section we validate the model of non-select processes. Figure 18 illustrates a simple configu-

ration of processes, where the client processes P2 and P3 are willing to repeatedly communicate with

the server process P1 through channels C1 and C2 respectively. The server process is performing

selection on the two channels. There is also a terminator process that terminates both channels after

a short period (1 millisecond).

C1

C2

P1

P2

P3

f1

f1

f1

f1

Figure 18: A simple configuration

Listing 3.19 illustrates the ACP specification of the whole system. Using mCRL2 shows that the the

three processes communicate with one another, and all will issue the allclose signal. The System

indeed satisfies the properties given in Figure 13 and Figure 17. Therefore, the whole system behaves

as expected.

57

Listing 3.19: ACP specification of a simple configuration

Client(me:pID, ch:chID) =
nonSelect(me, msg(me, br(1), ch, f(1), SEND))· Client(me, ch);

Server(me:pID, ch1:chID, ch2:chID) =
Select(me, [

msg(me, br(1), ch1, f(1) , SELECT_RECEIVE),
msg(me, br(1), ch2, f(1) , SELECT_RECEIVE)
]) · Server(me, ch1, ch2);

Terminator(me:pID, ch1:chID, ch2:chID) =
pause(me)@1· close!(ch1, me)· close!(ch2, me);

System = Channel(ch(1), [], ACTIVE) || Channel(ch(2), [], ACTIVE)
|| Client(p(2), ch(1)) || Client(p(3), ch(2))
|| Server(p(1), ch(1), ch(2)) || ProcessHandler(p(1))
|| Terminator(p(4), ch(1), ch(2)) ;

3.7 Priority

In this section we investigate the priorities that may be imposed on the select construct. Eras-

mus allows each select construct to select its branches according to three different policies: fair,

random, and ordered. The fair policy ensures that the branches of a loop select construct to be

chosen fairly. The random policy doesn’t put any restrictions on the selection, and the ordered policy

ensures that the branches of a loop select construct to be chosen according to the order written

by the programmer. As an example consider the following Erasmus code where the server process

performs selection with the ordered policy:

protocol prot = {signal}
process client = p: −prot{
loop{
p. signal ;

}
}
process server = p:+prot, q:+prot{
loop select ordered {
|| p. signal ;
|| q. signal ;

}
}
cell main = {
c1: prot ; c2: prot ;
client (c1); client (c2);
server(c1, c2);
}
main()

58

Now, consider the implementation of the select construct presented in this chapter. Suppose that

the two client processes run first: they both send their requests to channels C1 and C2 before the

server process runs. When the server process runs, it first sends a request to C1 (on port p), and

receives a ‘Yes’. Thus, the server chooses to communicate on port p, and therefore, server’s priority

is followed. However, if the server process runs first, then the choice is chosen depending on the

client which sends its request message first.

The example above shows that the server process tries to follow its priority as much as possible by

sending its first request to the branch that has the highest priority. To this reason, we provide each

select construct with a sorting mechanism that sorts the branches (before sending requests) with

respect to the given policy. That is: each branch is associated with an integer value representing the

priority of the branch (lowest value represents highest priority). Before sending requests, the select

construct associates and sorts the priorities as follows:

� Ordered policy: the priority of the first branch is set to 0, and the priority of the n’th branch

is set to n. The process then sorts the branches only once in increasing order.

� Random policy: the priorities of all branches are set to 0. No sorting is required.

� Fair policy: the priorities of all the branches are set to 0. When a branch is selected, its

priority will be increased by one. This allows the sort mechanism to put this branch at the

end of the list, causing the select construct to send a request to the channel of this branch

after all the other branches.

3.8 Implementation and Testing

We have implemented the behavior of the select construct, processes, and synchronous channels,

explained in this chapter using the Java programming language. In our implementation, processes

are threads that will be executing the code of the select construct, although at some point these

threads will be within procedure calls to other components. Unlike processes, channels and handlers

are implemented as passive objects (with one monitor each) that are willing to receive procedure

calls from active processes.

The message passing between processes, handlers, and channels is implemented as procedure

calls and their returns. For example, the request signal is implemented by a procedure called request

and its response (reqResp) is implemented by the value returned from that procedure. Similarly, the

pausing phase of processes is implemented as a procedure called pause with no return value, which

causes the invoking process to sleep for a random amount of time (between 1 to 3 milliseconds in

our implementation).

59

P1

C1

P2

(A)

P3

P2

P1

C3

C2

C1

(B)

P1 C2 P3

P2 C3 P4

C1

C4

(C)

Figure 19: Test configurations

We have tested the implementation of the select construct on different configurations. The

implementation seems robust and efficient. For example, the configuration given in Figure 12 with

fair policy achieves more than 168,000 communications per second on a standard quad-core PC. In

this configuration, processes are more likely to send their requests at the same time, leading to more

pausing than in most other configurations. In this test, about 15% of the total time was spent in

pausing phase.

We have built other configurations, including those in Figure 19. For each, we have used mCRL2

model checker to check that the system behaves as the way we expected. We have also tested the

implementation for each of these configurations. Table 2 illustrates the results of such tests.

Configuration Total messages (1 sec) P1 P2 P3 P4 C1 C2 C3 C4 avg. pause

Fig 19.(A) 235,872 235,872 235,872 – – 235,872 – – – 0%

Fig 19.(B) 299,158 190,439 204,989 202,887 – 92,270 108,718 94,169 – 13.3%

Fig 19.(C) 203,660 29,009 174,652 28,423 175,237 11,735 17,274 16,689 157,963 17.8%

Fig 12 167,846 167,846 167,846 – – 167,450 396 – – 14.8%

Fig 18 265,281 265,281 122,756 142,525 – 122,756 142,525 – – 1%

Table 2: Test results

3.9 Summary

In this chapter we have described the implementation of the generalized alternative construct for the

Erasmus programming language, using ACP models and mCRL2 model checker to develop a design

that has all of the desired properties. The use of ACP and mCRL2 is invaluable in this work, and

we believe that we would not have ended up with a correct design without them.

60

Our models remove previous restrictions on the use of alternative construct by allowing branches

of an alternation to be guarded by both send and receive operations. Our models also remove the

restriction that prevented both ends of a synchronous channel to participate in an alternation. In

addition, we have also considered closing of channels, the orelse branch, and priorities that can be

imposed on the select construct. We also performed several tests on different configurations. The

test results gave very acceptance performance to our implementation, and greatly increased our

confidence in our design.

We also have plans for developing the implementation of the alternative construct further. We

would like to change the semantics of the alternative construct to also cover network channels, as

is done in JCSP [Wel10] and CTJ [SHW00] (Communicating Threads in Java). Network channels

allow processes to communicate with one another across the network. We believe that the extension

to network channels would be very straight forward: the same design can be used with messages

being sent across the network through a broker process. A broker will be a process that records the

location of channel ends, the socket number of ports, In addition, we would like to extend the

model to include timeouts, as is done in Scala programming language [Low11]. A Timeout branch

is very similar to the orelse branch with the difference that this branch is selected if and only if

the select construct won’t choose a branch the in the specified time. Moreover, we would like to

extend our design to also cover barrier synchronizations, as is done in JCSP [Wel10]. A barrier

synchronization allows n processes to synchronize together, for arbitrary n.

61

Chapter 4

Safety of Client Server

Communications

4.1 Overview

Similar to other process oriented languages, Erasmus follows the client-server relationships between

processes: server processes usually offer some services to their clients, and may themselves act as

clients to other servers. Similarly, client processes require some services and will obtain these services

by sending requests to server processes. Figure 20 illustrates this idea by indicating a configuration

where server processes P2 and P3 offer services to client processes P1 and P2 through synchronous

channels C1 and C2 respectively.

P1 P2 P3− + +−C1 C2

Figure 20: Client-server relationships between Erasmus processes

The client-server pattern has proved extremely useful when building complex process-oriented

systems [MW97]. Server processes actually play the same role as objects in object oriented languages.

Indeed, OO languages such as Smalltalk use message passing terminology to describe method calls

between objects. However, process oriented servers avoid many of the concurrency problems en-

demic in OO languages, and their interfaces are more powerful: a client-server communication is a

conversation consisting of several messages in both direction, not just a single request-response pair.

A client-server communication is said to be safe, if every message sent by the client is eventually

received by the server process, and every response sent by the server is eventually received by

the client. Safety property allows the construction of client-server systems of processes that are

62

guaranteed to be free from deadlock and livelock properties. The problem is to check programs for

safety. As much safety checking as possible should be done at compile-time (static-checking). Safety

checking can also be done at run-time (dynamic-checking), but this is less desirable.

In the Erasmus programming language, the client-server communication pattern is implemented

using a bidirectional synchronous channel. To ensure safety, channels and processes’ ports (channel

ends) are augmented with protocols. Protocols define the structure of messages and allow the

patterns of communication between processes to be specified. Figure 21 illustrates a configuration

where processes P1, P2, and the channel C1 are augmented with protocols π1, π2, and πc respectively.

P1 P2− +
π1 π2

C
πc

Figure 21: Client-server communications with protocols

Figure 21 identifies four positions at which safety checking is required. We say that safe commu-

nication is ensured if message sequences, or their descriptions in terms of protocols, are compatible;

that is the program in Figure 21 is safe with respect to communications on channel C if:

1. The code implementing P1 is compatible with protocol π1,

2. The code implementing P2 is compatible with protocol π2,

3. π1 is compatible with πc.

4. π2 is compatible with πc.

The aim of this chapter is, therefore, to explore some general mechanisms and structures which

can be used for specifying the client-server communications in Erasmus language. Particularly, we

would like to define and implement protocol compatibility that can be served as a basis for static

safety checking of client-server communications.

The rest of this chapter is structured as follows. Section 4.2 discusses the related work. Section 4.3

briefly describes the protocol specification facilities, and how they can be used to specify client-server

interfaces. Section 4.4 gives operational semantics for Erasmus syntaxes and protocols in terms of

labeled transition systems. Section 4.5 introduces the notion of protocol satisfaction as a mean

to ensure protocol compatibility, and explains how safety of programs can be obtained using the

satisfaction relation. Section 4.6 illustrates an algorithm that implements the satisfaction relation.

Section 4.7 discusses the problems and solutions that we have encountered in designing Erasmus

language. Finally, Section 4.8 summarizes.

63

4.2 Related work

Facilities for specifying client-server communications are presented in some other process oriented

languages.

Client-server communications in occam-π [Pet05, Sam08] are implemented using a pair of un-

buffered and unidirectional channels: one carries requests from the client to the server, and the other

carries responses from the server to the client. The two channels are packaged inside a channel bun-

dle. The order of messages permitted over each channel is specified using a protocol, but there exists

no facilities for specifying the relationship between the two protocols in a client-server interface.

The draft occam 3 language specification [Geo98] described a call channels mechanism built on

top of channel bundles. The declaration of call channels implicitly define protocols to carry the

parameters and results of a procedure. Call channels make clients look like procedure calls, and

servers look like procedure declarations. They are a useful abstraction for programmers switching

from object oriented world, because they make calls to servers look like method calls upon objects.

However, they only allow a single request and response, and they do not allow richer conversations

between components.

The Honeysuckle language design provides facilities for easily compromising client-server systems,

with interfaces being defined as services [Eas05]. Services provide a convenient and flexible way of

specifying client-server interfaces. Of particular interests are compound services, which allow a

server’s behavior to be specified using a subset of Honeysuckle communication including sequence,

choice, and repetition. However, it is possible to specify a protocol that cannot be statically verified

by using repetition. Such protocols may require run-time checks to be inserted by the compiler.

There are some programming languages such as Haskell and Scala that use session types [Sim03,

ADZ+12] to specify client-server interfaces. Session types provide a formal approach to the problem

of specifying the interactions between multiple processes. They allow communication to be defined

as types. The type of a communication channel, therefore, describes the sequence of messages that

may be sent across it. Neubauer and Thiemann [Mat04, SE08] describe an encoding of session

types in Haskell’s type system, representing communication operations using a continuation-passing

approach. The specifications are applied to sequence of IO operations, such as communications on

a network socket. However, there is no discussion of their application to local communication.

4.3 Protocols

Client-server communications are implemented in Erasmus using channels that are augmented with

protocols. Channels are synchronous and bidirectional. Processes use ports to connect to channels.

The signs + and − in the ports indicate whether the process is a client or a server with respect to

64

a channel. A process having the port with sign − is called a client and a process having the port

with sign + is called a server.

Data is sent through channels in the form of messages. A message has a field name and a type.

In programs, messages are defined as f : T where f is the field name and T is the type. The type

of fields may be omitted, in which case the message is called a signal.

P ::= s
∣∣∣ r̂

∣∣∣ q : T
∣∣∣ q̂ : T

∣∣∣ P1;P2

∣∣∣ P1|P2

∣∣∣ P1 + P2

∣∣∣ ∗ P
∣∣∣ #P

∣∣∣ (P)

Figure 22: Syntax of Erasmus protocols

The allowable sequence of messages that can be transmitted over a channel is specified by using

protocols. Figure 22 illustrates the syntax of Erasmus protocols. Protocols are defined recursively.

The base cases are signals and messages. The protocol s defines a query signal that is sent from

a client to a server, and the protocol r̂ defines a reply signal that is sent from a server to a client.

Similarly, q : T and q̂ : T specify a query message and a reply message respectively, both of type

T . The protocol P1;P2 specifies sequential composition, which illustrates a communication pattern

that is defined by P1 followed by P2. The protocol P1|P2 specifies a deterministic choice, a visible

choice that is made by the environment. The protocol P1 + P2 denotes a non-deterministic choice,

an invisible choice that is made internally by the process. The protocol ∗P denotes the “Kleene

star” operator, and specifies a communication defined by P that can be performed zero or more

times. Similar to the Kleene star, the protocol #P specifies a communication defined by P that

can be performed any number of time, but at least once. Finally, (P) denotes grouping and shows

that parentheses can be used in the usual way to override precedences. Without parentheses, the

precedences go from “|” and “+” (lowest), “;”, to “∗” and “#” (highest).

As an example of protocols, consider the following code that specifies and implements a client-

server interface to a random-number generator, which will attempt to roll an N -sided die for you,

and either succeed or drop it on the floor.

65

Listing 4.1: The code of a random generator number

protocol DIE = {#(roll:Integer; (↑rolled:Integer | ↑dropped))}

process Person = p:−DIE{
p. roll := 6;
n: Integer ;
select{
|| n := p. rolled ; scrln(”rolled an �n�”);
|| p.dropped; scrln(”dropped the die”);
}

}
process Generator = p:+DIE{
loop{
n:Integer := p. roll ;
select{
|| p. rolled := random(1,n);
|| p.dropped; exit;
}
}
}
cell main = c:DIE; Person(c); Generator(c);

Listing 4.1 illustrates an example where both processes’ ports and the channel are augmented

with the same protocol. The DIE protocol allows any client process (e.g., Person) to send the integer

message roll, followed by a receive of either an integer message rolled or the signal dropped. Thus,

in the perspective of a client process, one valid conversation would be !roll;?rolled and another one

would be !roll; ?dropped, where the exclamation mark before a field name denotes a send operation,

and the question mark denotes a receive operation. The same protocol, however, allows any server

process (e.g., Generator) to receive the message roll, followed by a send of either the message rolled

or the signal dropped. Therefore, in the perspective of a server, one valid conversation would be

?roll;!rolled, and another would be ?roll; !rolled; ?roll; !dropped.

Channels and processes’ ports may also have different protocols. This approach is useful for

two reasons. First, standard engineering practice is to separate specification and implementation:

programmers are likely to be writing codes of clients (or servers) to somebody else’s servers (or

clients). Since each protocol specifies how a process interacts with respect to a channel, programmers

should be able to write their codes without any knowledge of how the other programmers’ code is

written. Second, it enables us to decide when two processes can safely communicate using only their

specifications.

As an example, consider the code of Listing 4.2 that specifies a client-server interface to a vending

machine that provides its customers with a cup of tea for one inserted coin, or with a cup of coffee

for two inserted coins.

66

Listing 4.2: The code of a vending machine with several protocols

protocol protCS1 = {coin; ↑tea}
protocol protCS2 = {coin; coin; ↑coffee}
protocol protVM = {#(coin; (↑tea | coin; ↑coffee))}

process CS1 = p:−protCS1{
p.coin ; p. tea ;
}
process CS2 = p:−protCS2{
p.coin ; p.coin ; p. coffee ;

}
process VM = p:+protVM{
loop{
p.coin ;
select{
|| p. tea ;
|| p.coin ; p. coffee ;
}
}
}
cell main = c:protVM; VM(c); CS1(c); CS2(c);

In the above example, the behavior of processes CS1, CS2, and VM are specified by the protocols

protCS1, protCS2, and protVM respectively. In addition, the behavior of the synchronous channel

is specified by the protocol protVM. Although, the customer processes CS1 or CS2 do not use all

of the fields specified by the channel’s protocol (protVM), but the communications between the two

clients and the vending machine are safe. Safety is obtained because every request that is sent by

each customer can be received by the vending machine, and vice-versa.

Safety of client-server communications, however, can be violated in various situations. As an

example, consider a case where the vending machine in Listing 4.2 is replaced by the process given

in Listing 4.3.

Listing 4.3: The code of a vending machine with several protocols

process VM2 = p:+protVM{
loop select{
|| p.coin ; p. tea ;
|| p.coin ; p.coin ; p. coffee ;

}
}

Replacing the process VM with VM2 results in an unsafe communication, because the process

VM2 may deadlock: after the insertion of a coin by the customer CS1, the vending machine may

choose its second branch. At this point the customer waits for a cup of tea while the vending machine

67

waits for another coin to provide the customer with a cup of coffee.

4.4 Semantics of Programs

The previous section introduced the syntax of Erasmus programs and protocols, and explained how

they can be used to specify client-server communications. To proceed further, we need some formal

representation of processes and protocols. We assume that the behavior of processes and proto-

cols are specified by labeled transition systems, which can fairly be described as the workhorses of

concurrency theory.

Recall that a labeled transition system (Section 2.3) on a set of labels L is a structure L =

〈S, s0, F, L, T 〉 where S is a set of states, s0 is the initial state, F is the set of final states, and

T ⊆ S × L × S is the transition relation. We write si
α−→ sj for (si, α, sj) ∈ T . We assume, in

standard fashion, that L contains the silent or internal action τ ; transition si
τ−→ sj represents

internal computational steps of a system, without reference to its environment.

4.4.1 Processes and Transition Systems

There is a procedure, described below, for constructing the transition system corresponding to the

code of a process. The code of a process consists of simple and structured statements. States of

the transition system corresponding to the code of a process are defined by Erasmus statements

and sub-statements. Transition relations are defined by inference rules, showing how the program

evolves from one state into another.

The main ingredient of statements that formalizes the behavior of processes are the atomic action

exit, variable assignments, send and receive communication actions, conditional commands, loops,

and non-deterministic choices. Figure 23 illustrates the formal syntax of the statements that specify

the behavior of Erasmus processes.

stmt ::= exit
∣∣∣ x := expr

∣∣∣ p.f := expr
∣∣∣ x := p.f

∣∣∣ stmt1; stmt2
∣∣∣

case |b1| → stmt1 . . . |bn| → stmtn end
∣∣∣

select |b1| → p1.f1 := x1 . . . |bn| → xn := pn.fn . . . |orelse| → stmt end
∣∣∣

loop stmt end

Figure 23: Syntax of Erasmus statements

68

Before presenting the formal semantics, let us give some informal explanations on the meaning

of the commands. The intuitive meanings of an assignment x := expr is conventional: variable x is

assigned the value of the expression expr. The meaning of send and receive operations is as follows:

action p.f := expr represents sending the value of the expression expr over the field f of port p.

Similarly, action x := p.f represents receiving a value (and assigning it to x) over the field f of port

p. The statement stmt1; stmt2 denotes sequential composition. That is, stmt1 is executed first and

after its termination stmt2 is executed.

The statement:

case |b1| → stmt1 . . . |bn| → stmtn end

stands for a non-deterministic choice between statements stmt1, . . . , stmtn. That is, stmt1 is exe-

cuted if b1 holds, or else stmt2 is executed if b2 holds, . . . , or else stmtn is executed if bn holds. This

kind of choice is called non-deterministic, because the decision is made internally by the process and

that the environment can neither control nor detect which branch is chosen by the process.1

Unlike the case statement, the statement:

select |b1| → p1.f1 := x1 . . . |bn| → xn := pn.fn . . . |orelse| → stmt end

stands for a deterministic choice between communication actions pi.fi for which the guard bi is

satisfied in the current state. It is called a deterministic choice, because the environment can control

the behavior of the process. That is; if more than one guard is satisfied in the current state, then

the select construct chooses a branch (pi.fi := xi or xj := pj .fj where bi or bj is satisfied) according

to which communication takes place. Note that if none of the guards b1, . . . , bn is satisfied in the

current state, then the select construct chooses its orelse branch, if there is one, or throws an

exception otherwise.

The statement:

loop stmt end

models repetitive command which terminates upon executing the exit command. Note that a loop

without the exit command doesn’t terminate.

As an example of the statements introduced above, consider the vending machine given in List-

ing 4.4. The vending machine counts the number of cups available, and provides its customers with

tea or coffee if and only if the number of cups are greater than zero. The machine returns the

inserted coins and terminates its execution if no cups is left.

1We use deterministic in the sense of CSP, to mean a choice that is made by the environment on behalf of
the process. Similarly, a choice is non-deterministic if it is made internally by the process, independently of the
environment.

69

Listing 4.4: A vending machine that counts the number of available cups

protocol prot = { �(coin; (↑tea | coin ; ↑coffee | ↑coin)) }

process VM = p:+prot; max: Integer {
ncup : Integer := max;
loop{
p.coin ;
case{
|ncup>0|
select{
|| p. tea ;
|| p. coffee ;

}
ncup := ncup − 1;
|ncup=0|
p.coin ; exit;

} } }

Figure 24 illustrates the transition system of the vending machine given in Listing 4.4. In the

starting location, the variable ncup is assigned the value associated with the variable max. The

assignment is illustrated by the edge labeled with action τ that connects the state VM into the

state loop. In the state loop, only one option is available and that is the insertion of a coin. This is

illustrated by the edge labeled with the receive action p?coin that connects the state label to state

case. In the state case, two options are available, depending on the value of ncup. If ncup is equal

to zero, the transition system evolves into the state select. Otherwise, it evolves to state p!coin;exit.

In the location select, two options are available which are illustrated by two edges labeled with

send actions p!tea and p!coffee. From these two locations, controls goes back to the location loop.

The location p!coin;exit explains the behavior of sequential composition. Thus, only one option is

available, and that is the execution of p!coin. Upon the execution of the exit command the loop

terminates. This is illustrated by the edge labeled with exit that connects the location exit to the

location terminate where no other options is available.

The goal is, therefore, to formalize the idea sketched above. We start with a formal definition

of sub-statements that are the potential locations of intermediate states during the execution of a

program. For each set of sub-statements, we also define the inference rules that explains how a

transition system evolves from one state into another.

Atomic Actions The set of sub-statements of a Erasmus-statement stmt is defined recursively.

For statements stmt ∈ {exit, x := expr, p.f := x, x := p.f}, the set of sub-statements is:

sub(stmt) = {stmt, terminate}

70

VM loop case select ncup− 1

p.coin;exit

exit terminate

τ p?coin τ p!tea

p!coffee

τ

τ

p!coin

exit

Figure 24: The beverage vending machine of Listing 4.4 modeled by a transition system

The operational semantics of the above statements is defined by the inference rules given in Table 3

below. These inference rules indicate that the execution of the exit command, variable assignment,

and communication actions terminates in one step.

exit
exit−−−→ terminate

(I1) x := expr
τ−→ terminate

(I2)

x := p.f
p?f−−→ terminate

(I3) p.f := expr
p!f−−→ terminate

(I4)

Table 3: Inference rules for statements stmt ∈ {exit, x := expr, p.f := x, x := p.f}

Sequential composition For the sequential composition, the set of sub-statements is defined as

follows:

sub(stmt1; stmt2) =
{
stmt1; stmt

′
2 | stmt′2 ∈ sub(stmt2)\{terminate}

}⋃
sub(stmt2)

The operational semantics of the sequential composition is defined by the inference rules given in

Table 4 below.

Operational semantics of sequential composition stmt1; stmt2 is defined by two inference rules

to distinguish whether or not stmt1 terminates in one step. If the first step of stmt1 leads to a

statement different from terminate, then the inference rule on the left applies (I5). However, if the

computation of stmt1 terminates in one step by executing the action α, then stmt1;stmt2 moves to

state stmt2 after executing α. This is explained by the inference rule on the right (I6).

71

stmt1
α−→ stmt′1 	= terminate

stmt1; stmt2
α−→ stmt′1; stmt2

(I5)
stmt1

α−→ terminate

stmt1; stmt2
α−→ stmt2

(I6)

Table 4: Inference rules for sequential composition

Conditional statement For conditional statements, non-deterministic choice, the set of sub-

statements is defined as the set consisting of the conditional statement itself, cond stmt and sub-

statements of its guarded statements. That is, for:

cond stmt = case |b1| → stmt1 . . . |bn| → stmtn end

the set of sub-statements is:

sub(cond stmt) = {case stmt} ∪
⋃

1≤i≤n

sub(stmti)

The operational semantics of the conditional statement is defined by only one rule (see Table 5).

This inference rules explain that the conditional statement has a τ -transition to each branch of

the statement. The significance of the τ -transition is that the environment can neither control nor

detect which branch is taken. The choice is made internally by the process and is hidden from the

environment.

cond stmt = case |b1| → stmt1 . . . |bn| → stmtn end

cond stmt
τ−→ stmti

(I7)

Table 5: Inference rule for conditional statement

Select construct For the deterministic choice statement in the form of:

select = select |b1| → stmt1 . . . |bn| → stmtn end

the set of sub-statements is defined as follows:

sub(select) = {select, terminate} ∪
⋃

1≤i≤n

sub(stmti),

The transition system for the select statement has the same general appearance as the transition

system of the case statement but its behavior is very different. Table 6 illustrates the only inference

rule for the select construct. This rule explains that the select construct is able to deterministically

choose one of its branches for which the environment offers communication.

72

stmti
α−→ stmt′i

select
α−→ stmt′i

(I8)

Table 6: Inference rule for select construct

Repetitive statement For the loop statement in the form of loop = loop stmt end, the set of

sub-statements are defined as follows:

sub(loop) = {loop, terminate}
⋃{

stmt′; loop | stmt′ ∈ sub(stmt)\{terminate}
}
,

stmt
α−→ stmt′ ∧ stmt′ 	= terminate ∧ α 	= exit

loop
α−→ stmt′; loop

(I9)

stmt
α−→ stmt′ ∧ stmt′1 = terminate ∧ α 	= exit

loop
α−→ loop

(I10)

stmt
exit−−→ terminate

loop
exit−−→ terminate

(I11)

Table 7: Inference rules for loop statement

For loops, we deal with three inference rules (see Table 7). The first rule explains that if the

statement stmt doesn’t terminate in one step, then the loop executes the statement stmt, and after

the execution has been terminated the control moves back to the loop. The second rule explains the

case where the statement stmt terminates in one step. In this case, the control moves back to the

loop after the execution of stmt has been completed. The third rule, explains the execution of the

explicit exit command inside the loop construct which causes the loop to terminate.

Figure 25 summarizes this section by illustrating some examples of Erasmus syntax on the left

and their corresponding transition systems on the right. Note that for readability reason, the state

names of transition systems are labeled with si instead of location names.

4.4.2 Protocols and Transition Systems

The previous section introduced the syntax of Erasmus programs, and explained how they can be

modeled by means of transition systems. This section introduces the semantics of protocols, and

explains how they can be modeled by transition systems.

Similar to processes, operational semantics of each protocol is defined as a transition system

where states are protocol expressions and sub-expressions, and transition relations are defined by

73

x:=expr
s1 s2

τ

p. f:=expr
s1 s2

p!f

x:=p.f
s1 s2

p?f

case{
|b1|p. f1:=x1;
...
|bn|p.fn:=xn;
}

ss

s1

sn

sf

τ

τ

τ p!fi

p!f1

p!fn

select{
|| x1:=p.f1;
...
|| xn:=p.fn;

}
s1 s2

p?f1

p?fi

p?fn

loop{
p. f1:=x;
... exit;
x:=p.f2 ;
}

s1 s2

s3

p!f1

p!f2

exit

Figure 25: Examples of Erasmus programs and their corresponding transition systems

inference rules. For each protocol expression, the set of sub-expressions are defined recursively (see

Table 8).

P ∈ {s, r̂, q : T, q̂ : T} sub(P) = {P, terminate}
P = P1;P2 sub(P) =

{
P1;P

′
2 | P ′

2 ∈ sub(P2)\{terminate}
}⋃

sub(P2)

P = P1 + P2 sub(P) = {P1 + P2} ∪ sub(P1) ∪ sub(P2)
P = P1 | P2 sub(P) = {P1 | P2} ∪ sub(P1) ∪ sub(P2)

P = ∗P1 sub(P) = {∗P1, terminate}
⋃{

P ′
1; ∗P1 | P ′

1 ∈ sub(P1)\{terminate}
}

P = #P1 sub(P) = {#P1} ∪ sub(∗P1)

Table 8: Protocol expressions on the left and the set of sub-expressions on the right

Table 9 provides inference rules for the Erasmus protocols. The inference rules for communication

messages, sequential composition, deterministic and nondeterministic choice, and repetitive protocols

give rise to the edges of a large transition systems, where the set of states agree with the set of

protocol statements and sub-statements that are defined in Table 8. Thus the edges have the form

74

P
α−→ P ′, where P is a protocol expression, P ′ a protocol subexpression, and α an action. Actions

can be communication actions (representing send or receive), τ action (representing internal action),

or the exit action (representing termination of loops).

s
p!s−−→ terminate

(IP1)
r̂

p?r−−→ terminate

(IP 2)

q : T
p!q−−→ terminate

(IP3) q̂ : T
p?q−−→ terminate

(IP4)

P1
α−→ P ′

1 ∧ P ′
1 	= terminate

P1;P2
α−→ P ′

1;P2

(IP5)
P1

α−→ P ′
1 ∧ P ′

1 = terminate

P1;P2
α−→ P2

(IP 6)

P1
α1−→ P ′

1

P1|P2
α1−→ P ′

1

(IP7)
P2

α2−→ P ′
2

P1|P2
α2−→ P ′

2

(IP 8)

P1 + P2
τ−→ P1

(IP 9) P1 + P2
τ−→ P2

(IP 10)

P
α−→ P ′ ∧ P ′ 	= terminate

∗P α−→ P ′; ∗P
(IP 11)

P
α−→ P ′ ∧ P ′ = terminate

∗P α−→ ∗P
(IP 12)

∗P exit−−→ terminate
(IP 13)

P
α−→ P ′ ∧ P ′ 	= terminate

#P
α−→ P ′; ∗P

(IP 14)
P

α−→ P ′ ∧ P ′ = terminate

#P
α−→ ∗P

(IP 15)

Table 9: Inference rules for protocols

Figure 26 summarizes this section by illustrating some examples of protocol terms (on the left)

and their corresponding transition systems (on the right).

p := u+ v s1

s2

s3

s4

τ

τ

p!u

p!v

p := u|v s1 s2

p!u

p!v

p := s; r̂
s1 s2 s3

p!s p?r p := s; (r̂1|r̂2) s1 s2 s3
p!s

p?r1

p?r2

p := s; r̂1|s; r̂2 s1

s2

s3

s4

p!s

p!s

p?r1

p?r2

p := ∗s
s1 s2

p!s

exit

p := #s;
s1 s2 s3

p!s

p!s

exit

Figure 26: Examples of Erasmus protocols and their corresponding transition systems

75

4.5 Deciding Safety of Programs

The previous sections introduced the syntax of Erasmus programs and protocols, and explained

how they can be used to specify client-server communications. This section introduces the protocol

satisfaction as a solution for compatibility of components that can be used for safety checking of

programs at compile time.

Checking that a process code is compatible with its protocol, or a protocol is compatible with

another one is straightforward: each input or output operation must always perform the complete

sequence of communications that the protocol describes. Since, protocols and processes can be

represented as labeled transition systems, we define the following relation to check the compatibilities

between labeled transition systems.

Definition 6. Let L1 = (S1, s1,0, F1, L1, T1) and L2 = (S2, s2,0, F2, L2, T2) be two transition sys-

tems. A binary relation R over the set of states S1 and S2 is called a satisfaction relation if and

only if 〈s1,0, s2,0〉 ∈ R, and whenever 〈s, t〉 ∈ R then:

1. For all actions α ∈ (L1 ∪ L2)\{τ} and all states s′ and t′ such that s′ ∈ Post(s, α) and

t′ ∈ Post(t, α), then 〈s′, t′〉 ∈ R,

2. For all states s′ such that s′ ∈ Post(s, τ), then 〈s′, t〉 ∈ R,

3. For all states t′ such that t′ ∈ Post(t, τ), then 〈s, t′〉 ∈ R.

We say that L2 satisfies L1, or L1 is satisfied by L2, written L1 � L2, if and only if there

exists a satisfaction relation R over S1 × S2.

One can think of the notion of satisfaction relation in terms of a two-person game. Suppose

that there are two players which have their own behavior, modeled by means of transition systems.

The game is played as follows: The first player makes a visible move (probably after some invisible

moves) from its initial state. The role of the other player is to match this move precisely (probably

after performing some invisible moves), also starting from its initial state. Next, again the first

player makes another visible move and the other player must match this move, and so on. If the

second player can play in such a way that at each point in the game it can match all the visible

moves of the first player, then the second player satisfies the behavior of the first player. Otherwise,

it doesn’t.

76

Figure 27 illustrates examples of protocols (on the left) that are satisfied by protocols (on the

right). The satisfaction relation, R, is also shown at the bottom of each pair of protocols.

s1 s2 s3
p!s p?r

t1 t2 t3
p!s p?r

R = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉} =⇒ p!s; p?r � p!s; p?r

s1

s2

s3

s4

τ

τ

p!u

p!v

t1 t2

p!u

p!v

R = {〈s1, t1〉, 〈s2, t1〉, 〈s3, t1〉, 〈s4, t2〉} =⇒ p!u+ p!v � p!u | p!v

s1 s2 s3
p!s

p!s

exit
t1 t2

p!s

exit

R = {〈s1, t1〉, 〈s2, t1〉, 〈s3, t2〉} =⇒ #p!s � ∗p!s

s1 s2 s3 s4
p!s p!s exit

t1 t2 t3
p!s

p!s

exit

R = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t2〉, 〈s4, t3〉} =⇒ p!s; p!s; exit � #p!s

s1 s2 s3 s4
p!s p!s exit

t1 t2

p!s

exit

R = {〈s1, t1〉, 〈s2, t1〉, 〈s3, t1〉, 〈s4, t2〉} =⇒ p!s; p!s; exit � ∗p!s

s1 s2

s3

p!s1

p?r1

exit

t1

t2

t3

t4
p!s1

p?r1

p!s2

p?r2

exit

R = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉} =⇒ ∗(p!s1 | p?r2) � ∗(p!s1; p?r1 | p!s2; p?r2)

Figure 27: Examples of Erasmus protocols one the left that are satisfied by protocols on the right

The following examples illustrate some cases where satisfaction relation doesn’t hold.

Example 1. This example shows that p!u | p!v 	� p!u + p!v. Consider the transition systems of

p!u+ p!v and p!u | p!v that are given as follows:

77

s1

s2

s3

s4

τ

τ

p!u

p!v

t1 t2

p!u

p!v

p!u+ p!v p!u | p!v

We start by constructing the satisfaction relation R over the states of the transition systems of

p!u + p!v and p!u | p!v . First, we add the pair of initial states; that is: R = {〈t1, s1〉}. Having

〈t1, s1〉 ∈ R implies that the pairs 〈t1, s2〉 and 〈t1, s3〉 should also be added to R (third rule of

definition 6). Having both 〈t1, s2〉 ∈ R and 〈t1, s3〉 ∈ R implies that (first rule of definition 6)

whatever transitions t1 has, s2 and s3 should have. This is, however, not true: t1 has the transition

t1
p!u−−→ t2, but s3 doesn’t have this transition. Similarly, t1 has the transition t1

p!v−−→ t2, but s2

doesn’t have this transition. Thus, p!u | p!v 	� p!u+ p!v.

Example 2. This example illustrates that p!u + p!v 	� p!u + p!v. We construct the satisfaction

relation R over the states of the following transition systems:

s1

s2

s3

s4

τ

τ

p!u

p!v

t1

t2

t3

t4

τ

τ

p!u

p!v

First, we add the pair of initial states, that is: R = {〈s1, t1〉}. Since 〈s1, t1〉 ∈ R, it should be clear

that 〈s2, t3〉 is also in R (rules 2 and 3 of definition 6). This implies that whatever transition relations

s2 has, t3 should also have. This is, however, not true, because s2
p!u−−→ s4 and |Post(t3, p!u)| = φ.

Therefore, p!u+ p!v 	� p!u+ p!v.

Example 3. This example shows that ∗p!s 	� #p!s. We construct the satisfaction relation R on the

following transition systems:

t1 t2

p!s

exit
s1 s2 s3

p!s

p!s

exit

∗p!s #p!s

78

First, we add the pair of initial states; that is: R = {〈t1, s1〉}. Having 〈t1, s1〉 ∈ R implies that

whatever transition relations t1 has, s1 should also have. This is, however, not true, because t1
exit−−→

t2, while |Post(s1, exit)| = φ. Therefore, ∗p!s 	� #p!s.

Theorem 4.5.1. The satisfaction relation has the following properties:

i) It is not reflexive: P 	� P ,

ii) It is not symmetric: P � Q does not imply that Q � P ,

iii) It is transitive: P � Q and Q � R implies that P � R.

Proof. For reflexivity, it is enough to show a counter example. Example 2 illustrates such an example,

that is: a+ b 	� a+ b. For symmetry, similar to reflexivity, it is enough to show a counter example.

Let P = a+ b and Q = a | b be two protocol expressions. It is clear from Figure 27 and Example 1

that P � Q, and Q 	� P .

For transitivity, we must show that if S1 and S2 are satisfaction relations, then so is their

relational composition

S1S2 = {〈p, r〉 | ∃q. 〈p, q〉 ∈ S1 and 〈q, r〉 ∈ S2}

It is enough to show that this is a satisfaction relation. Let 〈p, r〉 ∈ S1S2, and α be an action such

that p
α−→ p′. Since there exists q such that 〈p, q〉 ∈ S1 and 〈q, r〉 ∈ S2, there exists also q′ such that

q
α−→ q′, and 〈p′, q′〉 ∈ S1, and therefore r′ such that r

α−→ r′ and 〈q′, r′〉 ∈ S2. Thus, 〈p′, r′〉 ∈ S1S2,

and we have established the satisfaction condition for S1S2.

Note that the syntax of protocols do not illustrate the direction of messages for both client and

server processes. Indeed they define the direction of messages from the client perspective only. As

an example, consider the following protocol:

prot = s1; ↑ r1 | s2; ↑ r2

in the perspective of the client valid conversations are s1; ↑ r1 and s2; ↑ r2. However, for a server

process valid conversations are ↑ s1; r1 and ↑ s2; r2. When comparing a protocol with a server

process using protocol satisfaction relation, we should also take the direction of messages into our

consideration. For this reason the following notation is used.

Notation 1. Let P be a process expression, and let L (P) be its corresponding transition system.

The transition system L (P) is called the dual of L (P) and is obtained by replacing all send

operations in L (P) by receive operations and vice-versa. That is: all q!s actions are replace by q?s,

and all q?r actions are replaced by q!r (for all ports q in P).

79

Having defined the satisfaction relation, we are still left with the problem of deciding safety of

programs with respect to communication. We define safety of programs as follows:

Definition 7. Let Pcl and Ps be the client and the server processes that are connected through

channel C, and let πcl, πs, and πc be the protocols associated with the client process, server process,

and the channel respectively.

We say that the client and the server processes can be connected safely through channel C if and

only if the following satisfaction relations hold:

L (Pcl) � L (πcl) � L (πc) � L (πs) � L (Ps)

A program is called safe with respect to communication if every pair of communicating processes in

the program can be safely connected to one another.

In the rest of this section, we illustrate some examples of safe and unsafe programs. These

examples demonstrate how the static analysis can be used to determine whether or not a program

is safe with respect to communication.

Example 4. This example is a variation of an earlier example of the vending machine. Figure 28

shows the complete program which consists of a protocol, a vending machine process, and a customer

process. Transition systems of processes and the protocol are shown beside their code. Note that

the transition system beside the vending machine corresponds to L (VM).

protocol prot={coin;(↑tea|coin;↑coffee)}
s1 s2 s4

s3

p!coin

p?tea

p!coin p?coffee

process CS = p: −prot{
p!coin ; p?tea ;
} s′1 s′2 s′3

p!coin p?tea

process VM = p: +prot{
p?coin;
select{
|| p?coin; p! coffee ;
|| p! tea ;

}
}

t1 t2 t4

t3

p!coin

p?tea

p!coin p?coffee

Figure 28: Examples of a reliable vending machine

We conclude from the following satisfaction relations that the program is safe with respect to

communications:

80

1. L (CS) � L (prot): Let R1 = {〈s′1, s1〉, 〈s′2, s2〉, 〈s′3, s4〉}

2. L (prot) � L (prot): Let R2 = {〈s1, s1〉, 〈s2, s2〉, 〈s3, s3〉, 〈s4, s4〉}

3. L (prot) � L (VM): Let R3 = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉, 〈s4, t4〉}

Relations R1, R2, and R3 imply that: L (CS) � L (prot) � L (VM). Therefore, the customer

process can safely be connected to the vending machine, and the program is safe.

Example 5. This example shows an unsafe program with respect to communication. Suppose that

the vending machine given in the previous example is replaced by the vending machine given in

Figure 29. Figure 29 illustrates the code of VM2 (on the left) and the transition system of VM2 (on

the right).

process VM2 = p: +prot{
select{
|| p?coin; p?coin; p! coffee ;
|| p?coin; p! tea ;

}
}

t1 t2 t5

t3 t4

p!coin p?tea

p!coin p!coin p?coffee

Figure 29: Examples of an unreliable vending machine

This program is considered to be unsafe, because the communication between the vending ma-

chine and the channel is unsafe: After the insertion of a coin, the vending machine may choose the

first branch of its select construct, which forces the customer to insert another coin for a cup of

coffee.

We show this by constructing the satisfaction relation R over the states of L (prot) and L (VM2).

At the first step, we add the 〈s1, t1〉 (pair of initial states) into R. Having s1 p!coin−−−−→ s2, t1
p!coin−−−−→ t2,

and t1
p!coin−−−−→ t3 imply that we should also add 〈s2, t2〉 and 〈s2, t3〉 into R. Having both 〈s2, t2〉 ∈ R

and 〈s2, t3〉 ∈ R implies that whatever transitions s2 takes, both states t2 and t3 should match it.

This is, however, not true: state s2 has the transition s2
p?tea−−−→ s4 but |Post(t3, p?tea)| = φ. Thus,

L (prot) 	� L (VM2), and the communication between the vending machine and the channel is not

safe.

Example 6. Figure 30 demonstrates an example in which the program is carefully designed to be

safe, but static analysis doesn’t demonstrate this. In this program, the process Chooser (client)

picks a random value (true or false) for the boolean variable start, and sends the value to the server

process User. Both the client and server processes, therefore, use the same value of start to choose

the branch of case statement, and the communication between them should be safe. However, it is

81

clear that this is a fragile kind of safety, which would be destroyed by a small change in the program

logic.

protocol prot={s:Boolean;(u:Integer|↑v:Int)} s1 s2 s3
p!s

p!u

p?v

process Chooser = p: −prot{
w : Integer ;
start : Boolean := random()>0.5;
p.s := start ;
case{
| start | p.u := 42;
|| w := p.v;

}
}

s′1 s′2 s′3

s′4

s′5

s′6
τ p!s

τ

τ

p!u

p?v

process User = p: +prot{
w : Integer ;
start : Boolean := p.s ;
case{
| start | w := p.u;
|| p.v := 55;

}
}

t1 t2

t3

t′4

t5
p!s

τ

τ

p!u

p?v

Figure 30: Example of a fragile kind of safety

Checking the program for safety, we get:

L (Chooser) � L (prot), and L (prot) 	� L (User)

This example demonstrates that there is nothing intrinsically wrong with the process Chooser

and the protocol prot. Its is linking of the process User and the channel that creates the problem.

To make this program safe, we replace the process User with the process User2, given in Figure 31.

The select statement in User2 makes the choice dependent on the environment (on the messages

received) rather than the process’s own logic. Now, it can be easily shown that L (prot) � L (User2),

and that the program is safe.

82

process User2 = p: +prot{
w:Integer ;
start :Boolean := p.s;
select{
|| w := p.u;
|| p.v := 55;

}
}

s1 s2 s3
p!s

p!u

p?v

Figure 31: Safety of program is obtained by replacing the process User by User2

4.6 Algorithms

The Erasmus compiler constructs transition systems from the code of processes and protocols as-

sociated with processes’ ports and channels. Construction of these transition systems are briefly

explained in sections 4.4.1 and 4.4.2. The compiler then uses the algorithm given in Figure 32 to

construct the satisfaction relation on each connected pair of transition systems to determine whether

or not they can be safely connected. That is:

1. L (client) � L (πclient) (client code is satisfied by its protocol)

2. L (πclient) � L (πchannel) (client protocol is satisfied by channel protocol)

3. L (πchannel) � L (πserver) (channel protocol is satisfied by server protocol)

4. L (πserver) � L (server) (server protocol is satisfied by server code)

The algorithm can be realized by performing depth-first-search on the given labelled transition

systems (L1 = 〈S, s0, F, T 〉 and L2 = 〈S′, s′0, F
′, T ′〉). It starts with the initial states, and returns

true if it can construct a satisfaction relation over the states of S×S′, or false otherwise. Two data

structures are required:

� A set R that stores all the visited pair of states.

� A stack ST that stores the states being analyzed in the current execution sequence. Each

element of ST is a tuple 〈s, α, t〉, where s and t are states of L1 and L2 respectively, and α

is an action that indicates how the previous element of the stack is evolved into the current

states.

The set R becomes the satisfaction relation if and only if the algorithm returns true; that is:

L1 � L2. In case of a false, counter examples are obtained by retrieving the elements of the stack,

from bottom to top. These examples demonstrate those runs of the program (see Definition 4), that

cause the violation of the safety property.

83

Require: L1 = 〈S, s0, T 〉 and L2 = 〈S′, s′0, T
′〉

Ensure: True if L1 � L2, or false + counter example(s).
1: procedure Start()

2: Stack ST ← φ;
3: R ← φ;
4: satisfy ← true;
5: PushStack(ST, 〈s0, τ, s′0〉);
6: Add(R, 〈s, s′〉);
7: Compare();
8: return satisfy;

9:

10: procedure Compare()

11: 〈s, α1, t〉 ← TopStack(ST);
12: for all 〈s, α2, s

′〉 ∈ T do
13: if α2 = τ then � Rule 2 of Definition 6
14: Insert(〈s′, τ, t〉);
15: else
16: match flag ← false;
17: for all 〈t, α3, t

′〉 ∈ T ′ do
18: if α3 = α2 then � Rule 1 of Definition 6
19: match flag ← true;
20: Insert(〈s′, α3, t

′〉);
21: else if α3 = τ then � Rule 3 of Definition 6
22: match flag ← true;
23: Insert(〈s, α3, t

′〉);
24: if match flag = false then
25: � Safety Violation! Counter example is elements of the stack (from bottom to top)
26: PrintStack(ST);
27: satisfy ← false;

28: PopStack(ST);
29:

30: procedure Insert(〈s, α, t〉)
31: if 〈s, t〉 �∈ R then
32: PushStack(ST, 〈s, α, t〉);
33: Add(R, 〈s, t〉);
34: Compare();

Figure 32: Construction of satisfaction relation between two labelled transition systems

Proposition 1. Algorithm given in Figure 32 terminates, and it returns true if and only if L1 � L2.

Proof. We use the following notations: let COMPARE i representing the ith execution of the pro-

cedure COMPARE, and let Ri (resp. STi) representing the set R (resp. stack ST) at the end

of COMPARE i. In addition, let 〈si, αi, ti〉 representing the top element of the stack during the

execution of COMPARE i, and ni (resp. mi) representing the number of states (resp. number of

transitions) of Li.

Termination To show that the algorithm will eventually terminate, it is sufficient to find an upper

bound for the number of times the COMPARE function is called. The upper bound is n ≤ n1 ×n2-

times, because there exists n1×n2 distinct pairs over S1×S2. Thus, the COMPARE function is called

84

maximum n times by the INSERT function, which guarantees the termination of the algorithm.

Correctness To show the correctness of the algorithm, it is sufficient to show that the set R is the

satisfaction relation over S1 × S2 if and only if L1 � L2. When COMPARE i terminates, exactly

one of the following properties hold:

i) satisfy = false ⇔ ∃α ∈ ACT. si
α−→ s′i ∧ 	 ∃t′i.(ti α−→ t′i ∨ ti

τ−→ t′i)

ii) satisfy = true ⇔ ∀α ∈ ACT ∪ {τ}. si α−→ s′i ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α = τ

∨
∃t′i. (ti α−→ t′i ∨ ti

τ−→ t′i)

From (i) we impliy that, there exists a pair of states 〈si, ti〉 ∈ Ri such that si has a transition (α 	= τ),

but ti can not match it. Therefore, R =
⋃n

i=1Ri is not a satisfaction relation and L1 	� L2. However,

if (ii) holds for all executions of COMPARE i, we imply that for R =
⋃n

i=1Ri whenever 〈s, t〉 ∈ R,

then:

∀α ∈ ACT ∪ {τ}. s α−→ s′ ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α = τ ∧ 〈s′, t〉 ∈ R

∨
t

τ−→ t′ α−→ t′′ ∧ 〈s′, t′′〉 ∈ R ∧ 〈s, t′〉 ∈ R

Having 〈s0, s′0〉 ∈ R, implies that R is indeed the satisfaction relation, and that L1 � L2.

The time requirement for the function COMPARE i is O(m1 × m2) in the worst case. Since

we have maximum n recursive calls, the worst theoretical time requirement for the algorithm is

O(n×m1 ×m2). The memory requirement for the algorithm is O(n).

85

4.7 Problems and Solutions

Our description of the analysis of safety of Erasmus programs in the previous sections glossed over

some difficult issues which we will address in this section.

Successful Termination Figure 33 demonstrates an example where the communication between

processes is unsafe, but the static analysis cannot demonstrate this. Static analysis of these transition

systems implies that:

L (client) � L (prot) � L (server)

protocol prot = {s;↑r1;↑r2}
s1 s2 s3 s4

p!s p?r1 p?r2

process client = p: −prot{
p!s ; p?r1;
} s′1 s′2 s′3

p!s p?r1

process server = p: +prot{
p?s; p!r1; p!r2;
} t1 t2 t3 t4

p!s p?r1 p?r2

Figure 33: An example of an unsafe program

However, the problem is that, after receiving r1, the client process terminates while the server

process (on the other side of the channel) hangs sending the signal r2.

The solution that we have adopted is to include an exit action for processes and protocols that

do not reach their final states with an explicit exit action. On the basis of examples of this kind, we

have considered an automatic transformation, performed by the compiler, that would, for example

generate code for code in Figure 33 as if it was written like the code in Figure 34. Now, static

analysis of the three transition systems imply that:

L (client) 	� L (prot) � L (server)

Unreachable Final States Figure 35 illustrates a problem that we have encountered in designing

Erasmus programs. The code contains two processes Looper and Catcher that are linked together.

Process Looper performs 10 iterations and then terminates. Unfortunately, process Catcher has no

way of knowing that Looper has terminated, and “hangs”, waiting for another message.

86

protocol prot = {s;↑r1;↑r2; exit}
s1 s2 s3 s4 s5

p!s p?r1 p?r2 exit

process client = p: −prot{
p!s ; p?r1; exit;
} s′1 s′2 s′3 s′4

p!s p?r1 exit

process server = p: +prot{
p?s; p!r1; p!r2; exit;
} t1 t2 t3 t4 t5

p!s p?r1 p?r2 exit

Figure 34: Automatic conversion of the program given in Figure 33

protocol prot = {�s}
s1 s2

p!s

exit

process Looper = p: −prot{
count: Int := 10;
loop{
|count = 0| exit;
|| p!s ; count −=1;

}
}

s′1 s′2

s′3 s′4

s′5 s′6
τ

τ

exit

τ p!s

τ

process Catcher = p: +prot{
loop{
p?s;
}
} t1

p!s

Figure 35: Loop with implicit exit

The program should be safe, because all the messages sent by Looper can be received by the

Catcher, and vice-versa. However, when we check safety of the program, we get:

L (Looper) � L (prot) 	� L (Catcher)

This is because the final state of Catcher is unreachable; there is no exit statement in the loop.

The solution that we adopted is to include a close (Recall that the close signals is used by processes

to terminate channels. Any attempt from a process to perform a communication on a closed channel

fails.) signal in the Looper process, and to use the select construct in the Catcher process (see

Figure 36).

In this way, the Looper process closes the channel before it terminates, and forces the Catcher

to choose the orelse branch of the select construct (Recall that a select construct performs the

87

orelse branch if all of the channels are closed.). The communication is now safe, and the following

satisfaction relations hold:

L (Looper) � L (prot) � L (Catcher)

protocol prot = {�s}
s1 s2

p!s

exit

process Looper = p: −prot{
count: Int := 10;
loop{
|count = 0| exit;
|| p!s ; count −=1;

}
p.close ;
}

s′1 s′2

s′3 s′4 s′5

s′6 s′7
τ

τ

exit τ

τ p!s

τ

process Catcher = p: +prot{
loop select{
|| p?s;
| orelse | exit;

}
}

t1 t2

p!s

exit

Figure 36: Loop with an explicit exit action

Similar to the previous example, the compiler performs automatic transformation for programs

based on this kind of example.

Processes with multiple ports Figure 37 demonstrates an example of a process that has two

ports. In this example, process A receives signal s from its server port q, and communicates with

its client port p before replying back to its server port q. The problem here is that when we check

safety of the program with respect to communication on port p, we get:

L (A) 	� L (prot)

Similarly, when we check safety of the program with respect to communication on port q, we get :

L (prot) 	� L (A)

This is because the transition system of process A contains communication actions of both p and

q. However, when we check the safety of the program with respect to communication on a specific

88

protocol prot = {s;↑r}
s1 s2 s3

p!s p?r

process A = p:−prot; q:+prot{
q?s ; p!s ; q!r ; p?r;
} s′1 s′2 s′3 s′4 s′4

q?s p!s q!r p?r

Figure 37: Safety checking of processes with more than one ports

port, say p, we would like to perform safety checking solely on port p and skip those on port q.

Therefore, the solution that we adopted is to rename communication actions on port q with the

τ action when we check the safety of the program with respect to port p. The same approach is

performed when we check the safety of communication on port q (see Figure 38).

process A = p:−prot;
q:+prot{

q?s ; p!s ; q!r ; p?r;
} s′1 s′2 s′3 s′4 s′4

τ p!s τ p?r

Figure 38: Renaming of communication actions on port q with the τ action

Cyclic Communication Pattern Safety of programs with respect to communications doesn’t

always imply freedom of deadlock. Programs can be easily written in such a way that results in

deadlock states. As an example, consider the following code:

protocol prot = {x: Integer}

process A = p:−prot, q:+prot{
p.x := q.x;
}
process B = p:+prot, q:−prot{
q.x := p.x;
}
cell main = c1:prot; c2:prot ; A(c1,c2); B(c1,c2);

The above code illustrates an example where processes A and B are linked together in a cyclic

fashion through channels c1 and c2. In this configuration, process A receives an integer value from

its server port q, and passes this value to its client port p. Similarly, process B receives an integer

value from its server port p, and passes this value to its client port q. The program is safe with

respect to communications on both channels, but the system as a whole deadlocks because both

89

processes wait to receive from their server ports.

It is not possible to statically check the presence of deadlock in cyclic communications using

the protocols and the satisfaction relation introduced in this chapter. Our experience in designing

Erasmus programs shows that a cyclic program usually turns out to be a design error, and well con-

structed programs are acyclic. We don’t prohibit cycles, but rather discourage them. For this reason,

for cyclic communication configurations the compiler generates warnings, and allow programmers to

invoke either the model-checker (based on mCRL2 [J.F08]), or a dynamic debugger (as it is done in

Scala programming language [BL12]).

Figure 39 summarizes this section by illustrating the automatic transformations (on the right)

of some Erasmus codes (on the left) that is performed by the compiler.

process A1 = p1: −prot; ..., pn: −prot{
p1! f ;
...
pn!f ;
}

process A2 = p1: −prot; ..., pn: −prot{
p1! f ; ...; pn!f ;
p1.close ; ... pn.close ;
exit;
}

process B1 = p: +prot; {
loop{
...; p?f ; ...;

}
}

process B2 = p: +prot; {
loop select{
|| p?f ; ...;
| orelse | exit;

}
}

process C1 = p: +prot; q: +prot{
loop select{
|| p?f ; ...
|| q?f ; ...
| orelse | scrln(”Error”);

}
}

process C2 = p: −prot; q: −prot{
loop select{
|| p?f ; ...
|| q?f ; ...
| orelse | scrln(”Error”); exit;

}
}

Figure 39: Codes on the left, and transformation done by the compiler on the right

4.8 Summary

We have proposed an extension to the Erasmus programming language that would significantly

extend the expressive power of client-server communications by allowing the communication pattern

on channels to be specified using protocols. Protocols allow communications between client and

server processes to be defined as conversations consisting of several messages in both directions,

hence going beyond the traditional request-response message exchange pattern.

In addition, we have defined the protocol satisfaction relation, and shown how it can be used to

check safety of inter-process communications at compile-time. Safety of communications guarantees

that every messages is correctly received by the destination process. Safety of a program is then

90

obtained by constructing a chain of satisfaction relations on the labelled transition systems of pair

of communicating processes and their associated protocols. Satisfaction relation not only ensures

that communications between any two-connected processes proceed in a consistent manner, but also

allows the compiler to detect the following program errors at compile-time:

� Starvation: The client process waits for a message that the server process never sends (or

vice-versa).

� Type conflict: The client process expects a message of type T1 but the server process offers a

message of type T2 (or vice-versa).

� Sequence error: The client process sends x followed by y, but the server process expects y

followed by x (or vice-versa).

We have also discussed some problems (and provided solutions) that we encountered developing

Erasmus language, particularly the problems of protocol termination, reachability of final states, pro-

cesses with multiple ports, and cyclic communication patterns. Although protocols and satisfaction

relation allow the compiler to detect several program errors, but they do not guarantee that the

system as a whole never deadlock. Detecting deadlocks at compile-time is known to be a difficult

problem to solve [RT85], and is out of scope of our work.

We also have plans to develop the Erasmus client-server interface further. We would like to add

the idea of protocol inheritance, which allows the fields from one or more existing protocols to be

incorporated into a new protocol. Protocol inheritance which was first introduced by Occam-π would

simplify many programs. As an example, we would like to be able to write codes similar to the code

in Listing 4.5.

Listing 4.5: Protocol Inheritance

protocol A = {coin; ↑tea}
protocol B = {coin; coin; ↑coffee}
protocol C = {#(A | B)}

process P = p:+C{
loop select{
|| p.coin ; p. tea ;
|| p.coin ; p.coin ; p. coffee ;

}
}

91

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The spread of multicore architectures has a huge effect on the performance of software. The increase

in the performance depends on how programmers make effective use of hardware parallelism. In

order to get the true performance gains, programs need to be parallelized completely. But parallel

programming is hard, mainly because mainstream programming languages do not provide suitable

abstractions for expressing and controlling concurrency.

In this thesis we introduced the Erasmus project. A process oriented programming language that

is based on Hoare’s Communicating Sequential Processes (CSP) that fully specifies thread synchro-

nization by algebraic notations. The goal is to make the CSP paradigm more practical. Erasmus

addresses concurrency by providing processes as the primary abstraction. Processes interact with

one another through synchronous channels. Channels and processes are associated with protocols

that specify the interprocess communication pattern.

This thesis focused on two problems:

1. In Chapter 3 we presented an efficient implementation of the CSP generalized alternative

construct that allows a process to non-deterministically choose between several possible com-

munication. Particularly, we used ACP process algebra to model our design (Section 3.4 and

Section 3.6), and we used mCRL2 model checker to verify the correctness of it (Section 3.4.3,

Section 3.5.2, and Section 3.6.2). The use of ACP and mCRL2 is invaluable in this work, and

we believe that we would not have achieved a correct design without them. The proposed

model removes previous restrictions on the use of this construct by allowing branches of an

alternation to be guarded by both send and receive operations, and by allowing both ends of

a synchronous channel to participate in an alternation. In the model, we have also considered

92

the concepts of closing of channels (Section 3.5), and priorities that can be imposed on the

alternative construct (Section 3.7). Several tests on different configurations have been also

given (Section 3.8). The test results gave very acceptable performance, and greatly increased

our confidence in our design.

2. In Chapter 4 we have proposed an extension to the Erasmus programming language that would

significantly extend the expressive power of client-server communications. We introduced pro-

tocols and explained how they can be used to specify communication pattern between client

and server processes (Section 4.3). The client-server communication pattern was defined as

conversations consisting of several messages in both directions, hence going beyond the tradi-

tional request-response message exchange pattern. The notion of protocol satisfaction was also

defined (Section 4.5), allowing us to perform safety checking of inter-process communications

at compile-time. Safety of communications guarantees that every messages is correctly received

by the destination process. Safety of a program is then obtained by constructing a chain of

satisfaction relations on the labelled transition systems of pair of communicating processes and

their associated protocols (Section 4.4 and Section 4.6). Satisfaction relation not only ensures

that communications between any two-connected processes proceed in a consistent manner,

but also allows the compiler to detect program errors such as starvation, sequence errors, and

deadlocks. We have also discussed several problems (and solutions) that we encountered during

development of Erasmus language (Section 4.7).

5.2 Future Work

In the following, several issues are mentioned which are interesting to investigate.

� In Chapter 3 a model for the CSP generalized alternative construct is proposed. The pro-

posed model assumes that processes and channels are running on the same computer in the

same memory space. The same model can be extended to cover network channels that allow

processes to communicate around networks. We believe that the standard implementation for

this case uses a broker on each computer. A process communicates with its broker to set up

communication with components on other computers.

� It would be also interesting to extend the select-construct model to include timeouts. When

no channels become ready in a specified time, then the select-construct executes the timeout

branch.

� It would be also interesting to extend the model to include barrier synchronization that allows

multiple processes (not just two) to synchronize together.

93

� In Chapter 4, we proposed protocols as a means to specify client-server communication. It

would be interesting to add the idea of protocol inheritance that allows the fields from one

existing protocols to be incorporated into a new protocol. This idea, which was first introduced

in Occam-π, would simplify many programs.

� In Section 4.7, we discussed several problems (and solutions) that we encountered during the

development of Erasmus language. Particularly, we discussed that our approach is not suitable

to find deadlocks in cyclic communication patterns. Static detection of deadlock is a difficult

task mainly because of the state-explosion problem. Thus, it would be useful to develop at

least one of the following:

– A translator that translates Erasmus programs into mCRL2 programs in case of cyclic con-

figurations, as is implemented in [HSMG07]. This would allow programmer to statically

check their programs in a brute force manner.

– A dynamic debugger that allows programmer to dynamically detect deadlock, as is de-

veloped in [BL12].

The above list of research topics emphasizes the further development of techniques for the Erasmus

programming language, for which this thesis provides a starting point.

94

Bibliography

[ADZ+12] Torben Amtoft, Josiah Dodds, Zhi Zhang, Andrew Appel, Lennart Beringer, John Hat-

cliff, Xinming Ou, and Andrew Cousino. A Certificate Infrastructure for Machine-

Checked Proofs of Conditional Information Flow. In Pierpaolo Degano and Joshua

Guttman, editors, First conference on Principles of Security and Trust (part of ETAPS

2012), volume 7215 of LNCS, pages 369–389. Springer-Verlag, 2012.

[And94] Henrik Reif Andersen. A Polyadic Modal μ-Calculus, 1994.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to The ISO Specification Language

LOTOS. Comput. Netw. ISDN Syst., 14(1):25–59, March 1987.

[BBR10] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theo-

ries of Communicating Processes (Cambridge Tracts in Theoretical Computer Science).

Cambridge University Press, December 2010.

[BK82] J. A. Bergstra and J. W. Klop. Fixed Point Semantics In Process Algebra. 1982.

[BK85] Jan A. Bergstra and Jan Willem Klop. Algebra of Communicating Processes with Ab-

straction. Theor. Comput. Sci., 37:77–121, 1985.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation

and Mind Series). The MIT Press, 2008.

[BL12] Andrew Bate and Gavin Lowe. A Debugger for Communicating Scala Objects. In

Peter H. Welch, Frederick R. M. Barnes, Kevin Chalmers, Jan Baekgaard Pedersen, and

Adam T. Sampson, editors, Communicating Process Architectures 2012, pages 135–154,

August 2012.

[Boe05] Hans-J. Boehm. Threads Cannot Be Implemented As a Library. SIGPLAN Not.,

40(6):261–268, June 2005.

95

[BR00] Philippa J. Broadfoot and A. W. Roscoe. Tutorial on FDR and Its Applications. In Pro-

ceedings of the 7th International SPIN Workshop on SPIN Model Checking and Software

Verification, pages 322–323, London, UK, UK, 2000. Springer-Verlag.

[Bro84] Brookes, S. D. and Hoare, C. A. R. and Roscoe, A. W. A Theory of Communicating

Sequential Processes. J. ACM, 31(3):560–599, 1984.

[Bro07] Neil C. C. Brown. C++CSP2: A Many-to-Many Threading Model for Multicore Archi-

tectures. In Alistair A. McEwan, Wilson Ifill, and Peter H. Welch, editors, Communi-

cating Process Architectures 2007, pages 183–205, July 2007.

[BS83] G. N. Buckley and Abraham Silberschatz. An Effective Implementation for the General-

ized Input-Output Construct of CSP. ACM Trans. Program. Lang. Syst., 5(2):223–235,

April 1983.

[Cor84] Corp, Inmos. Occam Programming Manual. Prentice Hall Trade, 1984.

[Dem98] Erik D. Demaine. Protocols for Non-Deterministic Communication over Synchronous

Channels. In In Proceedings of the 12th International Parallel Processing Symposium

and 9th Symposium on Parallel and Distributed Processing (IPPS/SPDP98, pages 24–

30. IEEE Press, 1998.

[Dij75] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of

Programs. Commun. ACM, 18(8):453–457, August 1975.

[Eas05] Ian R. East. Interfacing with Honeysuckle by Formal Contract. In Jan F. Broenink,

Herman Roebbers, Johan P. E. Sunter, Peter H. Welch, and David C. Wood, editors,

Communicating Process Architectures 2005, pages 1–11, September 2005.

[Flo67] R. W. Floyd. Assigning Meanings to Programs. Mathematical Aspects of Computer

Science, 19(19-32):1, 1967.

[Geo98] Geoff Barrett. Occam 3 Reference Manual. Technical report, Inmos Limited, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995.

[GJ10] Peter Grogono and Nima Jafroodi. A Fair Protocol for Non-deterministic Message Pass-

ing. In Proceedings of the Third C* Conference on Computer Science and Software

Engineering, C3S2E ’10, pages 53–58, New York, NY, USA, 2010. ACM.

96

[GMR+07] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck Van

Weerdenburg. The Formal Specification Language mCRL2. In In Proceedings of the

Dagstuhl Seminar. MIT Press, 2007.

[GP90] J.F. Groote and A. Ponse. The Syntax and Semantics of mCRL. Centrum voor Wiskunde

en Informatica, 1990.

[GS08a] Peter Grogono and Brian Shearing. Concurrent Software Engineering: Preparing for

Paradigm Shift. In Canadian Conference on Computer Science & Software Engineering

(C3S2E), pages 99–108, May 2008.

[GS08b] Peter Grogono and Brian Shearing. MEC Reference Manual. Technical Report TR E-06,

February 2008.

[GS08c] Peter Grogono and Brian Shearing. Modular Concurrency: A New Approach to Man-

ageable Software. In 3rd International Conference on Software and Data Technologies

(ICSOFT 2008), pages 47–54, July 2008.

[Han02] Per Brinch Hansen. The Origin of Concurrent Programming. chapter Joyce: A Pro-

gramming Language for Distributed Systems, pages 464–492. Springer-Verlag New York,

Inc., New York, NY, USA, 2002.

[HM85] Matthew Hennessy and Robin Milner. Algebraic Laws for Nondeterminism and Concur-

rency. J. ACM, 32(1):137–161, January 1985.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of

The ACM, 12(10):576–580, 1969.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications of The ACM,

21(8):666–677, August 1978.

[Hol03] Gerard Holzmann. Spin Model Checker, The Primer and Reference Manual. Addison-

Wesley Professional, 2003.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[HSMG07] H. Hojjat, M. Sirjani, M. R. Mousavi, and J. F. Groote. Sarir: A Rebeca to mCRL2

Translator. In Proceedings of the Seventh International Conference on Application of

Concurrency to System Design, ACSD ’07, pages 216–222, Washington, DC, USA, 2007.

IEEE Computer Society.

97

[J.F08] J.F. Groote and J. Keiren and A. Mathijssen and B. Ploeger and F. Stappers and C.

Tankink and Y. Usenko and Weerdenburg, M. van and W. Wesselink and T. Willemse

and Wulp, J. van der. The mCRL2 toolset. In Proceedings of the International Workshop

on Advanced Software Development Tools and Techniques (WASDeTT 2008), 2008.

[JG13] Nima Jafroodi and Peter Grogono. Implementing Generalized Alternative Construct for

Erasmus Language. In Proceedings of the 16th ACM SIGSOFT Symposium on Compo-

nent Based Software Engineering, CBSE 2013, part of Comparch ’13 Federated Events on

Component-Based Software Engineering and Software Architecture, Vancouver, Canada,

June 17-21 2013. ACM.

[Kna92] Frederick Knabe. A Distributed Protocol for Channel-Based Communication with

Choice. In Proceedings of the 4th International PARLE Conference on Parallel Ar-

chitectures and Languages Europe, PARLE ’92, pages 947–948, London, UK, UK, 1992.

Springer-Verlag.

[Led83] Henry Ledgard. Reference Manual for the ADA Programming Language. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1983.

[Lee06] Edward A. Lee. The Problem with Threads. Computer, 39(5):33–42, May 2006.

[Low11] Gavin Lowe. Implementing Generalised Alt. In Peter H. Welch, Adam T. Sampson,

Jan Baekgaard Pedersen, Jon Kerridge, Jan F. Broenink, and Frederick R. M. Barnes,

editors, Communicating Process Architectures 2011, pages 1–34, June 2011.

[Mat04] Matthias Neubauer and Peter Thiemann. An Implementation of Session Types. In In

PADL, volume 3057 of LNCS, pages 56–70. Springer, 2004.

[Mca63] John Mcarthy. A Basis for a Mathematical Theory of Computation. In Computer

Programming and Formal Systems, pages 33–70. North-Holland, 1963.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1982.

[Moo65] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics,

38(8):114–117, April 1965.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I.

Inf. Comput., 100(1):1–40, 1992.

98

[MW97] J. M. R. Martin and P. H. Welch. A Design Strategy for Deadlock-Free Concurrent

Systems. Transputer Communications, 3(4):215–232, 1997.

[OB04] B. Orlic and Dr.ir. J.F. Broenink. Redesign of the C++ Communicating Threads Li-

brary for Embedded Control Systems. In F. Karelse, editor, 5th Progress Symposium

on Embedded Systems, Nieuwegein, The Netherlands, pages 141–156. STW Technology

Foundation, 2004.

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle

Mathematik, Bonn, 1962.

[Pet05] Peter H. Welch and Frederick R. M. Barnes. Communicating Mobile Processes: Intro-

ducing Occam-π. In In 25 Years of CSP, pages 175–210. Springer Verlag, 2005.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sym-

posium on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington, DC,

USA, 1977. IEEE Computer Society.

[RT85] Thomas Räuchle and Sam Toueg. Exposure to Deadlock for Communicating Processes

is Hard to Detect. Inf. Process. Lett., 21(2):63–68, 1985.

[Sam08] Adam T. Sampson. Two-Way Protocols for Occam-π;. In Peter H. Welch, S. Stepney,

F.A.C Polack, Frederick R. M. Barnes, Alistair A. McEwan, G. S. Stiles, Jan F. Broenink,

and Adam T. Sampson, editors, Communicating Process Architectures 2008, pages 85–

97, September 2008.

[SE08] Matthew Sackman and Susan Eisenbach. Session Types in Haskell: Updating Message

Passing for the 21st Century. Technical report, June 2008.

[SHW00] Nan C. Schaller, Gerald H. Hilderink, and Peter H. Welch. Using Java for Parallel

Computing: JCSP versus CTJ, a Comparison. In Peter H. Welch and Andrè W. P.

Bakkers, editors, Communicating Process Architectures 2000, pages 205–226, 2000.

[Sim03] Simon Gay and Vasco Vasconcelos and Antonio Ravara and Simon Gay and Vasco Vas-

concelos and Antnio Ravara. Session Types for Inter-Process Communication, 2003.

[SS71] Dana Scott and Christopher Strachey. Toward A Mathematical Semantics for Computer

Languages. In Jerome Fox, editor, Proceedings of the Symposium on Computers and

Automata, volume XXI, pages 19–46, Brooklyn, N.Y., April 1971. Polytechnic Press.

[Suf08] Bernard Sufrin. Communicating Scala Objects. In Peter H. Welch, Susan Stepney, Fiona

Polack, Fred R. M. Barnes, Alistair A. McEwan, Gardiner S. Stiles, Jan F. Broenink,

99

and Adam T. Sampson, editors, CPA, volume 66 of Concurrent Systems Engineering

Series, pages 35–54. IOS Press, 2008.

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in

Software. Dr. Dobb’s Journal, 30(3), 2005.

[Tel94] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, New

York, NY, USA, 1994.

[Wel00] Welch, Peter H. and Martin, Jeremy M. R. A CSP Model for Java Multithreading. In

Proceedings of the International Symposium on Software Engineering for Parallel and

Distributed Systems, PDSE ’00, pages 114–122, Washington, DC, USA, 2000. IEEE

Computer Society.

[Wel10] Welch, Peter and Brown, Neil and Moores, James and Chalmers, Kevin and Sputh,

Bernhard. Alting Barriers: Synchronisation With Choice in Java Using JCSP. Concurr.

Comput. : Pract. Exper., 22(8):1049–1062, 2010.

100

Appendix A

A Fair Protocol for

Non-deterministic Message Passing

A.1 Overview

This appendix describes our initial design of the generalized alternative construct of the Erasmus pro-

gramming language. Our algorithm [GJ10] is similar to Knabe’s algorithm [Kna92] in the sense that

we use asynchronous (buffered) messages to implement the (synchronous) generalized alternative

construct, but has significant extensions.

The rest of this appendix is structured as follows. Section A.2 describes the Knabe’s algorithm.

Section A.3 describes our fair distributed protocol, and presents the analysis of the algorithm.

Finally, Section A.4 summarizes.

A.2 The Distributed Protocol

The protocol described in this section is essentially Knabe’s algorithm [Kna92]. We describe it to

provide background for our protocol, which is similar but has significant extensions.

Processes communicate with one another via channels. Each process is connected to any number

of channels and each channel is connected to at least two processes. In order for processes P1 and

P2 to communicate via channel C, there must be a match. A match occurs if either: P1 is ready to

send a message with tag T and P2 is ready to receive a message with tag T , or vice versa (i.e., P1

receives and P2 sends). The tag of a message specifies its type and possibly other characteristics;

the important point is that matched tags ensure meaningful communication. The protocol requires

an ordering on processes; we will assume that each process has a unique identifier (UID) and that,

101

if u1 and u2 are UIDs of distinct processes, then either u1 < u2 or u1 > u2.

A channel is an active process that executes as a single, non-terminating loop. The task of a

channel is to find matches between pairs of processes. A process that is ready to communicate sends

a request to one or more of its channels. The channels maintain two FIFO queues, one for send

requests and the other for receive requests from processes. A channel remains idle as long as either

queue is empty and becomes active when both of its queues are non-empty, at which point it enters

a synchronization sequence with two phases, see Figure 40.

1: procedure Channel()
2: step ← Phase 1;
3: Phase 1:
4: (P<, P>) ← findMatch(Queue1, Queue2);
5: query ← generateQuery(P<, P>));
6: query.ReqType ← L;
7: send(P<, query);
8: reply = receive();
9: if reply = Yes then

10: step ← Phase 2; � A potential match
11: else
12: Put P> back in the Queue;
13: step ← Phase 1;

14: Phase 2:
15: query.ReqType ← H;
16: send(P>, query);
17: reply ← receive();
18: if reply = Yes then � Match found
19: inform(P<, P>);
20: step ← Phase 1;
21: else � Match failed
22: query.ReqType = Abort;
23: send(P<, query);
24: Put P< back in the Queue;
25: step ← Phase 1;

Figure 40: Pseudocode for channels

During the first phase, the channel, C say, chooses two complementary processes: that is, a

process that wishes to send a message of type T and another processes that wishes to receive a

message of type T . First, C picks the process P< with lower UID, regardless of whether it is the

sender or the receiver. It sends the message L to P<, requesting P< to temporarily commit to this

communication and defer other signals it might receive. Then the channel waits for a reply.

If P< replies with No, C returns to its waiting state. If P< replies with Yes, C enters the second

phase of the synchronization sequence. It sends the message H to the other process of the pair, P>,

requesting it to commit to this communication and reject all other signals. Again, C waits for a

reply.

102

If P> replies Yes, C sends a Ready signal to P< and P>, informing them that they can com-

municate, removes the corresponding entries from its queues, and returns to its waiting state. If

P> replies No, C discards P>’s request and sends a Release message to P<, releasing it from its

commitment. However, P<’s request remains in C’s channel.

A process P must also follow a procedure when it enters a selection. Its first step is to send a

send or receive request to each of the channels involved in the selection; then it waits. A channel

may reply with either H or L, depending on whether the process has the higher or lower UID of the

proposed communication. If P receives H, it replies Yes to this channel, sends No to all of the other

candidates for communication, and starts to transfer data.

If P receives L from C, it replies Yes and waits. Any signals that it receives from channels other

than C are queued. Eventually, P will receive either a Ready message or a Release message. If

the message is Ready, P sends No to all the losing channels and communicates. If the message is

Release, P processes the first message on its queue, if there is one, otherwise waits for a message.

The procedure ensures that exactly one communication occurs each time the selection is processed.

A.2.1 Analysis

Knabe proves that the distributed protocol cannot deadlock [Kna92]. The essence of the proof is

that deadlock requires symmetry and that the ordered UIDs break the symmetry. However, the

protocol does not ensure fairness. Although the whole system cannot become blocked, an individual

process may wait indefinitely to communicate. This is called starvation.

P1 P2P3P4

P5

C1 C2 C3

Figure 41: Knabe’s algorithm allows P2 to starve

To clarify it, consider a group of connected processes Figure 41, in which the Pi are processes

and the Cj are channels. A directed edge from a channel to a process denotes an outstanding receive

request, and similarly a directed edge from a process to a channel denotes an outstanding send

request. With the distributed protocol, it is possible for P2 to be starved. All three channels will

each start by attempting to acquire their low-numbered process. Without loss of generality consider

a case in which C1, C2, and C3 win to acquire processes P1, P3, and P2 respectively. Now all three

channels will attempt to acquire their high-numbered process. Lets assume that C1 acquires P4 and

C2 acquires P5. C3 cannot acquire P3 since it is being held by C2. This leads to a situation in which

C1 and C2 end up finding matches (P1, P4), and (P3, P4) respectively.

103

If this cycle happens repeatedly;that is P1 and P4 communicate frequently using C1 and P3 and

P5 communicate frequently using C2, then signals from C3 will always be discarded, starving P2.

A.3 The Fair Distributed Protocol

We describe an implementation of the select statement that provides nondeterministic choice, avoids

deadlock, and treats all processes fairly. A select statement may have several branches that are a

mixture of sends and receives. Channel behavior is a bit different from the distributed protocol

described in the previous. The only difference is that each channel piggybacks the attributes of the

other process in the match along with the signal it is about to send to a process. These attributes

are shown in Figure 42.

Field name Description

messageId Unique identifier for this signal

messageTag The tag/type associated with the message

thisBranchNum

otherbranchNum

The numbers of the branches within the select statement

thisBranchWeight

otherBranchWeight

The weights of the branches

thisMinWeight

otherMinWeight

The minimum weights of the branches

thisProcessId

otherProcessId

The UIDs of the processes

Figure 42: Data structure of a signal

The additional feature of the protocol is a weight attached to each branch of a select statement.

The weight may be an integer counter or a time-stamp; the important point is that it increases

monotonically as the program runs. A counter is easier to implement but may overflow. A timestamp

is preferable, but must be fine-grained because communications may occur very frequently.

Each process must follow a procedure when it enters a selection (see Figure 43). Its first step

is to send a send or receive request to each of the channels involved in the selection; then it waits.

These requests carry all the attributes of the requesting process such as the weight of the branch,

minimum weight of all the branches in the select statement, and etc. Unlike Knobe’s algorithm

in which all processes always respond Yes to the very first signal they receive, our implementation

takes a different approach.

104

To clarify this, let’s consider the case in which the process P< with lower UID has received its

first signal from a channel. This signal indicates that if P< can commit itself temporarily to the

signaling channel and delay others. Process P< examines the weights W of the branches that will

be used to communicate; that is if W< is the lowest weight in the branches of P<’s select statement,

and the chosen branch of P>’s select statement, say W>, also has the lowest weight, then P< replies

Yes and waits; otherwise it replies No.

If P< replies No, it has nothing further to do: the attempted match has failed, and P< continues

to wait in its select statement. However, if P< replies Yes, it waits for another signal. If it receives

Ready, it should have been sent by the higher UID process, so it sends No to any other waiting

channels and proceeds with communication. It finally increases the weight of the branch of the

select statement that was used in the communication.

But if it receives Abort, it should have been sent by the channel indicating that the match has

failed; P< remains in its select statement, considering requests from other channels. The other case

in which P> has received its first signal from a channel is almost same as above. In this case, process

P> examines the weights W of the branches that will be used to communicate; that is if W> is

the lowest weight in the branches of P>’s select statement, and the chosen branch of P<’s select

statement also has the lowest weight, then P> replies Yes to the signaling channel, it then sends

an abort signal to any other pending channels followed by a Ready signal to the lower UID process

for the actual data communication, and finally it increases the weight of the branch of the select

statement that was used in the communication. Otherwise it replies No to the signaling channel and

proceeds with any other signals it receives.

The foregoing discussion has a few gaps in it that we will now fill. First, each process makes

send or receive requests only to channels of those branches having the lowest weights. Each process

can have more than one branch having the lowest weight. By doing so each process avoid sending

extra requests which are guaranteed to be responded with No. This results in receiving less signals

which reduces the number of messages needed to find a match.

Second, in the case where there is a sender or a receiver process with no select statement, the

requesting process only sends a committed send or a committed receive request to the channel

and waits for the actual data communication. These committed requests inform channels that the

requesting process has already pre-committed itself and that there is no need for the channel to ask

for it.

Third, a process executing a select statement may receive Abort signals from all of its branches.

If this happens, it simply starts everything all over again by sending new requests. Failing to do

this could lead to deadlock.

Finally, it is clear that signals contain more information than just the type of the data. In fact,

105

a signal is a fixed-size block of data containing the fields shown in Figure 42. Fields after the first

two come in pairs with a this field referring to the initiating process, and a other field referring

to the responding process. Using the names in this table, each process needs to check the fairness

condition by performing —fair(signal) before replying to any queries. The body of this function is

also given in Figure 43.

1: procedure process()

2: step ← STEP 1;
3: STEP 1:
4: for all C ∈ branches do
5: send(C, req) � req ∈ {send, receive}
6: step ← STEP 2;

7: STEP 2:
8: query ← receive();
9: if fair(query) = true then

10: step ← query.ReqType; � ReqType ∈ {L,H}
11: else
12: send(query.QueryingChannel, NO);
13: branch[query.branchNO] ← Aborted;
14: step ← STEP 2;

15: STEP L:
16: send(query.QueryingChannel, Yes);
17: reply ← receive(); � reply ∈ { Ready, Abort }
18: if reply = Ready then
19: **Actual Data Transfer**
20: ++Weight[reply.branchNo];
21: abortOtherChannels()
22: else if reply = Abort then
23: branch[reply.branchNO] ← Aborted;
24: if branch[i:0 to n] = Aborted then
25: step ← STEP 1; � Start from scratch
26: else
27: step ← STEP 2; � Continue processing other queries

28: STEP H:
29: send(query.QueryingChannel, Yes);
30: send(query.P< , Ready); � P< = process having lower UID
31: **Actual Data Transfer**
32: ++Weight[query.branchNO];
33: abortOtherChannels();

34:

35: procedure fair(signal: query)
36: if signal.thisBranchWeight=signal.thisMinWeight &&
37: signal.otherBranchWeight=signal.otherMinWeight then
38: return true
39: return false;

Figure 43: Pseudocode for processes

106

A.3.1 Deadlock

We show that deadlock cannot occur if there is a feasible match. Assume the contrary: there is a

feasible match and that deadlock has occurred. This would imply that some processes have received

a phase-one signal from one of their channels but have failed to find a match. However, this cannot

happen because the process UIDs are ordered and only the low-numbered process of a pair receives

a request during the first phase. Therefore, there must be at least one process, the one with the

highest UID in the system, that has not received a phase-one signal and is available for matching.

A.3.2 Starvation

There are two situations in which starvation might occur. As an example of the first situation,

consider a system in which a channel connects a single server P0 to multiple clients P1, P2, . . . , Pn,

as shown in Figure 44. Client requests are stored in the FIFO queue of the channel. There is a

possibility that one or more of the clients might be starved. However, provided that the server

continues executing, the protocol ensures that every request from a client will eventually be served.

In this example, our protocol behaves in exactly the same way as Knabe’s protocol.

P0

P1

P2

Pn

C

Figure 44: Starvation avoided

Figure 45 shows the other situation. With the distributed protocol, P2 may be starved. P0 is

the process with lowest UID and the protocol allows it to send Yes to all signals from C1 but none

from C2, thereby starving P2. With our protocol, the weights on the branches prevent starvation.

After P0 and P1 have communicated once, W (P0, C1) = 1 and W (P0, C2) = 0. This ensures that

the next time P0 communicates, it will be with P2. Neither P1 nor P2 can starve.

P0P1 P2C1 C2

Figure 45: Starvation with the distributed protocol

107

In the form described, the fair distributed protocol would have a serious problem: one slow pro-

cess, treated fairly, could slow down the entire system. The select statement in Erasmus, however,

provides for the declaration of a policy. Communication is implemented as above for select state-

ments that specify the policy fair. If fair is not specified, the process is not obliged to use branch

weights in channel selection.

A.3.3 Cost

The cost of the algorithm is measured by the number of messages required to establish a communica-

tion. These messages include initial send or receive requests by processes, channels signals, responses

to the signals, actual data communication, abort messages, and finally the wake-up signal from the

sender to the receiver process.

To compute the cost of our algorithm several cases should be considered. The easiest and

simplest case is where there are only two processes connecting through a channel, without any

select statements. The total cost of the algorithm is 5 messages; two committed send and receive

requests, a Ready message to the sender process, actual data transmission, and a Ready message to

the receiver process.

The other case is where both processes execute their select statements. For this case we can

define a lower and a higher bound for the cost. The lower bound is achieved when the process is

the one with the highest UID in the system. This process responds Yes to the first signal it receives

from one of its channels. Without loss of generality assume that this process, the one with the

highest UID, has n branches and that the other communicating process has m branches; So, the

lower bound on the cost is: n + m requests, two signals, two Yes messages, a Ready message to

the sender process, actual data transmission, and a Ready message to the receiver process, followed

by n +m − 2 Abort messages to the losing channels leading to the following formula for the lower

bound, L:

L = 2(n+m) + 5.

Deriving an upper bound for the number of messages is difficult. As we have seen, it is possible for

a process to continuously receives Abort or No messages from all of its branches for a while forcing

the process to resend all of its requests again. The question is that for how many times would a

process have to resend its requests? Equivalently, what is the maximum number of times that a

process receives Abort messages from all of its branches?

To answer the above questions let’s consider a process P having the lowest UID in the system.

Without loss of generality, assume that P has n branches and P1, , Pn are n distinct processes which

are connected to these branches. If bi is the number of branches of Pi, and if all processes are

108

executing their select statements for the first time then after exactly B − 1 times failing where

B = min{b1, . . . , bn} the process P eventually communicates with a process.

Therefore, in each round process P makes n requests, followed by n signals, n Yes messages,

followed by n Abort messages. Eventually, in round B, there are n requests, n signals, two Yes

signals, a Ready message to the sender process, actual data transmission, and a Ready message to

the receiver process. This leads us to the following formula for the upper bound, U :

U = 4n(B − 1) + 2n+ 5.

Finding an upper bound in the case where channels supports many to many communications is

similar to the above. The upper bound of messages is calculated separately for each process in the

system depending on the number of channels it has, the number of processes sharing channels, and

the number of branches its communicating processes have.

A.4 Summary

We have described a fair, distributed protocol that allows an arbitrary network of processes linked

by channels to communicate fairly and without deadlock. Processes may perform selection on

both sends and receives and may be connected to an arbitrary number of channels. Conversely, a

channel may be connected to an arbitrary number of processes. The general case requires extensive

handshaking, but run-time analysis might allow more specialized and efficient techniques to be used

in particular cases. For example, a JIT compiler could determine the number of processes connected

to a channel and generate simplified code for the probably common case in which only two processes

are involved. Since global static analysis is not required, processes may be compiled independently

and linked dynamically. This last feature is essential for the construction of large-scale, distributed

systems.

109

