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ABSTRACT 

Simulation-Based Construction Productivity Improvement 
Using Neural-Network-Driven Fuzzy Reasoning System 

 
Seyedfarid Mirahadi 

Fuzzy-based models and Artificial Neural Network (ANN) based systems have provided 

effective tools for addressing uncertainties in decision-making. Uncertainty, as an 

ineradicable part of construction projects, justifies the utilization of such intelligent 

systems in the construction industry. In the past few years, these systems have been 

widely applied to develop forecasting models in the construction management area. The 

estimation of productivity of construction operations, as a basic element of project 

planning and control, has become a remarkable target for forecasting models. A glimpse 

into this interdisciplinary field of research exposes the need for a system, which 1) 

studies the effect of qualitative and quantitative variables on construction productivity, 2) 

improves the previous models in terms of accuracy of estimation, 3) is able to clearly 

illustrate the reasoning process, 4) considers the interdependence of input variables; and 

5) has the capability of dealing with both crisp and linguistic input variables.  

The main objective of this research is to develop a hybrid intelligent system for 

estimating productivity of construction operations based on several qualitative and 

quantitative factors. Among all models developed for productivity estimation, those 

established based on the functional relations and controlled by a specific number of 

control rules are more compatible with the human reasoning and logic. Neural-Network-

Driven Fuzzy Reasoning (NNDFR) structure, as one of such models, displays a great 
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potential for modeling datasets among which clear clusters are recognizable. The lack of 

compatibility between conventional NNDFR and fuzzy clustering algorithms together 

with the insufficient attention paid to the optimization of number of clusters in this 

model, created a potential area for further research. Thus, the main contribution of the 

proposed model is to develop a modified NNDFR system for modeling construction data. 

It forms a nonlinear multi-dimensional membership function, which internally combines 

all fuzzy variables via Fuzzy C-Means (FCM) clustering. An ANN is then trained based 

on the clustering process to automate this step. While the clustering step constitutes “IF” 

parts of the rules, “THEN” parts are built by another set of ANNs. In addition, the 

parameters of the proposed system are optimized by Genetic Algorithm (GA) to fine-tune 

the system for the highest possible level of accuracy. The model is also capable of 

dealing with a combination of crisp and linguistic input variables through the use of a 

Hybrid Modeling Approach, which is based upon the application of alpha-cut technique. 

The proposed model is further verified through simulating a construction operation 

considering qualitative and quantitative factors where a considerable improvement in the 

estimation accuracy is witnessed. Several models are developed using ANN, Adaptive 

Neuro-Fuzzy Inference System (ANFIS), conventional three-cluster NNDFR and the 

Genetically Optimized NNDFR. The proposed model showed 83%, 72% and 69% 

improvement over ANN, ANFIS and conventional NNDFR, respectively, in terms of 

Mean Squared Error (MSE). The developed model helps researchers and practitioners use 

historical data to forecast productivity of construction operations with a level of accuracy 

greater than what could be offered by traditional techniques. 
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CHAPTER 1: INTRODUCTION 

1.1 CHAPTER OVERVIEW 

Simulation is the imitation of the operation of a real-world process (Banks 2005). It can 

provide a probabilistic approach to handle the uncertainties of a problem. Simulation is a 

powerful tool that can be applied in different aspects of construction management, such as 

productivity estimation, risk management, scheduling, and resource planning. Most 

research in construction simulation has mainly focused on the simulation modeling with a 

little emphasis on the qualitative variables that affect the simulation process itself. 

However, over the past few years, a few researchers have employed different soft 

computing techniques to forecast productivity of construction operations based on several 

qualitative and quantitative factors. The productivity estimation of construction 

operations, as a decision criterion in project planning and control, has become an 

interesting target for forecasting models. Fuzzy-based models and Artificial Neural 

Network (ANN) based systems have evolved decision-making process by taking into 

account the uncertainty impact. Uncertainty, as an ineradicable part of construction 

projects, justifies the utilization of such intelligent systems in the construction industry. In 

the past few years, these systems have been widely applied to develop forecasting models 

in construction industry. 

The integration of basic soft computing techniques, such as ANNs, fuzzy logic, 

Evolutionary Algorithms (EAs), etc., has empowered researchers to create more efficient 
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forecasting models. In such integrative models, the limitations of one method are 

compensated for by other methods. This trend led to the development of a variety of 

hybrid intelligent structures. The selection of an appropriate structure which offers high 

accuracy is based on the application area and the inherent features of the data at hand.  

With the increasing volume of historical data provided to these kinds of models, the need 

for data analysis techniques has significantly grown. Data clustering can be regarded as 

the most well-known and prevalent technique in the exploratory data analysis. It provides 

a requisite data pre-processing step to identify homogeneous patterns in data, according 

to which consequent supervised models are built. Furthermore, the wide appeal and 

effectiveness of data clustering techniques have pushed researchers to combine them with 

other techniques, such as ANN and fuzzy reasoning. The recent trend has resulted in a 

diversity of cluster-aided models. Adaptive Neuro-Fuzzy Inference System (ANFIS) is a 

well-known example of such cluster-aided models, which have benefited from the 

intelligent partitioning of clustering algorithms.  

The more comprehensively we study the variables that affect the final modeling outputs, 

the more number of variables must be considered. As a result, it is very likely to have a 

combination of linguistic terms (qualitatively described factors) and crisp values 

(quantitatively described factors) in any modeling process (Guyonnet et al. 2002). These 

cases are also very common in the construction simulation where the limited data 

provided for some factors can only be explained by linguistic terms (Sadeghi et al. 2010). 

Many researchers tried to find a way to estimate the output of these generalized models 

using both types of input values. Therefore, the flexibility of a model in dealing with both 
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types of input variables can be considered as a requirement for an efficient forecasting 

model. 

1.2 PROBLEM STATEMENT 

This research is mainly motivated by the little emphasis placed on the factors that affect 

the simulation processes. The shortcomings of the commonly used intelligent systems in 

the construction area have provided the impetus for investigating the more efficient 

forecasting models. The limitations and drawbacks of current methods can be 

encapsulated as follows: 

1) Little emphasis is placed on the qualitative and quantitative factors that affect 

simulation process; 

2) Common soft-computing models do not show a satisfactory accuracy in estimation; 

3) ANN models do not explain the quality of input-output mapping process and act like 

a “black-box”; 

4) Conventional fuzzy reasoning is not able to consider the interdependence of 

variables during the process of membership function design; 

5) Most of the forecasting models only accept crisp values as inputs and do not accept a 

combination of linguistic terms and crisp values; 

6) There is a lack of comparison between different predictive models to show the 

strength of the proposed model over others. 
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1.3 RESEARCH OBJECTIVES 

With respect to the mentioned problems, the overall objective of this research is to 

develop a hybrid intelligent system for estimating the productivity of construction 

operations considering several qualitative and quantitative factors. Based on the 

decomposition of the main objective to several sub-objectives, this research is inspired to: 

1) Identify and study the shortcomings of fuzzy reasoning and ANN-based simulation; 

2) Develop a modified Neural Network Driven Fuzzy Reasoning (NNDFR) model with 

optimized parameters; 

3) Improve the developed model to deal with crisp values and linguistic terms 

simultaneously.  

1.4 SUMMARY OF THE RESEARCH METHODOLOGY 

The methodology of this research includes several steps as follows:  

1) Literature review: The literature review encompasses subjects including the state of the art 

in construction simulation, explorative data mining and statistical data analysis, hybrid 

intelligent systems and genetic optimization;  

2) Research Methodology and Model Development: A model will be proposed and developed 

to address the problems identified in the literature. The model development consists of three 

main sub-phases. The first phase comprises the concept and know-how about the 

implementation of the modified NNDFR. The model combines fuzzy models and ANN 

systems in such way that their integration will significantly improve the performance. In the 

second phase, the parameters of the assembled model are optimized using Genetic 
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Algorithm (GA). And finally, in the third phase, the Hybrid Approach of modeling is 

adopted in order to enable the model to work with both crisp and fuzzy variables; 

3) Case Study and Data Collection:  A case study will be introduced and its pertinent data will 

be gathered and analyzed to verify the outcomes generated by the developed model; 

4) Implementation and Results: The case study’s data will be implemented in the model 

and its results will be compared with the outcomes of other systems for the 

validation purpose.  

1.5 THESIS ORGANIZATION 

The thesis consists of six chapters. Chapter 1 includes the problem statement, research 

objectives, summary of the research methodology and the thesis organization. Chapter 2 

presents an elaborated literature review on subjects regarding the state-of-the-art in 

construction simulation, explorative data mining and statistical data analysis, hybrid 

intelligent systems and genetic optimization. In Chapter 3, a comprehensive description 

of the proposed framework is provided. Chapter 4 introduces the case study and presents 

the data collection source, procedure and preparation. Chapter 5 reviews the results of the 

implementing the proposed model in the case study and highlights the merits of the 

proposed framework over other systems. At the end, Chapter 6 is about conclusions and 

recommendations.  
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CHAPTER 2: LITRATURE REVIEW 

2.1 CHAPTER OVERVIEW 

This chapter aims at providing a comprehensive literature review about the current state 

of the productivity estimation in the construction industry and the techniques used for this 

purpose. Figure 2-1 illustrates an overview of this chapter. 

Literature Review

Exploratory Data Mining and 
Statistical Data Analysis

Hybrid Approach of 
Simulation

The State of The Art Review 
in Construction Simulation

Artificial Intelligence

Artificial Neural 
Network

Fuzzy Logic

Genetic 
Algorithm

Clustering

Summery and Limitations 
of the Literature

Neuro-Fuzzy 
Systems

 

Figure 2-1: An Overview of the Literature Review  

Section 2.2 reviews the literature related to the state of the simulation in construction 

management. Section 2.3 is related to the background and importance of the productivity 

assessment in the construction industry. Section 2.4 focuses on the literature related to 
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artificial intelligence including four subsections, namely, ANN, fuzzy reasoning, neuro-

fuzzy systems and GA. The literature regarding explorative data mining and statistical 

data analysis is summarized in Section 2.5. Section 2.6 describes the previous research on 

the hybrid approach for the simulation that deals with two types of uncertainties 

(probability and possibility). And finally, identified the shortcomings of the reviewed 

literature will be presented in Section 2.7. 

2.2 CONSTRUCTION SIMULATION  

Many construction and engineering projects consist of repetitive activities, such as 

earthmoving projects. A considerable amount of time, money and effort can be saved in 

any project if proper decisions are made at the planning stage. Because of the stochastic 

nature of cyclic construction processes, historical data gathered from previous projects 

can assist planning engineers in making a better estimation about the upcoming 

productivity rates (Graham and Smith 2004). In the traditional estimation methods, 

planning engineers manually adjust productivity records to establish the expected values. 

The estimation and understanding of the production aspects of projects have been a 

crucial task for researchers and practitioners in construction engineering and 

management. By increasing the complexity and size of projects, planning and decision 

making in this area is likely to be either impossible or very inaccurate. As a remedy, the 

computer simulation has been proposed to build an abstract model of a particular system 

and estimate the performance of the system in a virtual environment.  
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Simulation is one of the most widely used techniques in the operational and managerial 

research (Law and Kelton 2000). Construction simulation is the process of developing 

computer-based models that represent real-world construction systems in order to 

investigate their underlying behavior (AbouRizk 2010). Construction simulation is a 

powerful tool that can be used by a construction company for several tasks, such as 

productivity measurement, risk analysis, resource planning, and the design and analysis 

of construction methods (Sawhneyet al. 1998). Among all these applications, the 

productivity measurement might be considered as the most important factor in the 

construction planning and control. Most research in the construction simulation has 

mainly focused on the simulation modeling with limited emphasis on study of the 

qualitative variables that affect the simulation process itself (Elwakil 2011). Although 

some studies have investigated the effect of qualitative and quantitative factors on 

different aspects of construction processes, there is still a lack of research in this area.  

2.3 PRODUCTIVITY ASSESSMENT 

The fierce competition in the construction industry propels all stakeholders to improve 

the productivity. That is why the productivity estimation has caught such a significant 

attention in both industry and academia. Today, the productivity management is 

recognized as a major project management concern in the construction industry (Park et 

al. 2005). The rate of the construction productivity varies from one project to another due 

to different environmental and managerial conditions. The considerable impact of these 

project-specific factors on the productivity rate makes it of a cardinal importance to 
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consider them in the productivity estimation using simulation (Park 2006). These project-

specific factors can impact the productivity both positively and negatively.   

The scheduled overtime, change orders, materials management, weather and human 

factors were identifed by Perk (2006) as the main factors that influence the productivity 

rate. The identification of these factors is a preliminary step in creating a model for the 

productivity estimation. The very common approach for productivity estimation is to use 

the historical data from previous projects of like nature as a baseline for the new projects.  

For example, Moselhi et al. (1997) developed a decision support system called 

WEATHER to examine the impact of weather conditions on the productivity of 

construction operations. The developed model estimates the construction productivity, 

activity durations, and weather patterns in different modes to improve the accuracy of the 

planning and scheduling (Moselhi et al. 1997). Given that in this framework only weather 

factors are taken into account, other complementary models are needed for the 

consideration of other external factors. 

Moselhi et al. (1991) investigated 57 different construction projects in order to study the 

impacts of change orders on the productivity of construction projects. They discovered a 

direct correlation between the labor component of change orders and the productivity loss 

in all types of projects (Moselhi et al. 1991). 

Regression model is the most common statistical model for the productivity estimation 

when considering specific factors (Sanders and Thomas 1993; Smith 1999). Hanna et al. 

(1999) developed a regression model to investigate the effect of change orders on the 
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construction productivity. Koehn and Brown (1985) employed some non-linear equations 

to examine the effect of weather changes on the productivity rate. The learning curve is 

also an important theory in the productivity estimation. Based on the learning curve 

theory, the productivity of a repetitive process gradually increases  as a result of the 

greater familiarity with the process, improved management, and more efficient 

application of tools and equipment (Oglesby et al. 1989). In most cases, there is no pre-

identified functional relation between variables affecting the level of productivity and 

their outputs. Besides, there is no guarantee that simple models like linear regression can 

satisfy the expected accuracy of a forecasting model. In the wake of these limitations, 

researchers have considered the application of Artificial Intelligence (AI) systems that 

can be used to model complex relationships between a set of dependent and independent 

variables.  

2.4 ARTIFICIAL INTELLIGENCE (AI) 

There are several definitions of AI in the literature. For instance the below definitions are 

presented by some researchers: 

 “The branch of computer science that is concerned with the automation of intelligent 

behavior” (Luger and Stubblefield 1993). 

 “The study of the computations that make it possible to perceive, reason, and act” 

(Winston 1992). 

 “The art of creating machines that perform functions that require intelligence when 

performed by people” (Kurzweil 1992). 
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Therefore, AI can be concisely explained as the field of understanding and building 

intelligent systems. There are an increasing number of AI applications.  However, the 

most common AI applications are Game Playing, Speech Recognition, Understanding 

Natural Language, Computer Vision, Expert Systems (ESs) and Reasoning of Humans. 

Among all these applications, ES and Human Reasoning pay attention to the process of 

inferring new facts from knowledge and incoming data. Among the wide spectrum of AI 

applications and techniques, ANNs, Fuzzy Logic and EAs are the most well-known and 

frequently used ones. These techniques are elaborately explained in the following 

sections.  

2.4.1 Artificial Neural Network (ANN) 

ANN is a mathematical model used for finding patterns among the datasets where there 

are complex relationships between the inputs and outputs. ANN tries to simulate the 

structure and operation of human neural network system. An ANN structure comprises an 

interconnected set of artificial neurons that operate based on a connectionist approach of 

computation.   

Each one of these artificial neurons is a mathematical function, which gets a weighted 

sum of several inputs and passes them through a “transfer function”.  In this structure, the 

output of each artificial neuron is an input for the others and collectively they build an 

interconnected net of ANN. Figure 2-2 shows a schematic feed-forward ANN, which can 

be considered the most frequently used, and yet the simplest, type of ANN. All the 

connections of a feed-forward network only move forward, directed from input, i.e. 

http://en.wikipedia.org/wiki/Artificial_neuron
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independent, variables to output, i.e. dependent, variables.  In a feed-forward network, 

artificial neurons are divided to three layers, namely, input layer, hidden layer and output 

layer. All rows of artificial neurons between the input, the first layer, and the output, the 

last layer, are deemed as the hidden layer. A crude ANN is constituted of a set of 

unknown weights and biases, which can be delivered via several proposed algorithms of 

network training, such as backward propagation of errors, or in short Back-propagation.   

 

Figure 2-2: Schematic Diagram of a Multi-Layer Feed Forward  

ANN (Zhu Et Al. 2007) 

Back-propagation, as the most common learning algorithm for ANN, iteratively attempts 

to extract the hidden relationships between inputs and outputs of a set of data. In this 

method, weights and biases initially adopt random values. By feeding the historical data 

to the network, in each iteration, the estimation errors are calculated and the weights and 

biases are accordingly updated. This process stops until a predefined termination 
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condition is reached. At this point, the trained ANN can be applied to any future set of 

data in which the same relationships between inputs and outputs exists (Bryson and Ho 

1975; Werbos 1974; Alpaydin 2004; Rumelhart et al. 2002).  

Thus, ANN performs two main tasks: (1) learning and (2) recalling (Hegazy and Moselhi 

1994). Learning is the act of acquiring the suitable weights and biases of a row net to 

generate the nearest outputs according to defined targets (Zayed and Halpin 2005).  There 

are two types of training. Supervised training refers to the method where outputs are 

provided to ANN. On the other hand, unsupervised training does not require any output 

to accomplish the learning process. Recalling is the process of catching an input vector 

and generating an output based on the network parameters that have been trained during 

the learning phase (Zayed and Halpin 2005). Then, the estimated outputs are compared 

with actual targets to represent an index for the performance error. 

The ability to learn from examples made this technique a very useful tool in data 

modeling (Lawrence 1994).  This technique can develop a predictive model where the 

relationships between inputs and outputs are not sufficiently known. Patterns and 

relationships in the historical data are recognized to help acquire the ‘‘knowledge’’ 

required to predict the unknown output values for a given set of input values (Sawhney et 

al. 2002). Since ANN acts like a “black-box” and cannot explain the process of 

reasoning, it is well-suited to the problems where the underlying reasons and the quality 

of input-output relations are not studied (Elwakil 2011). 
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In the past few decades, ANN was extensively applied in forecasting models in the 

construction industry. Researchers applied this technique in many aspects of construction 

management in order to benefit from its advantages over the conventional modeling 

methods. The projects’ cash flow prediction, risk analysis, resource optimization, and the 

tendering outcomes prediction are only a few examples of ANN application in the 

construction industry (Boussabaine 1996; Li 1995).   

Kim et al. (2004) compared the accuracy of estimating construction cost through three 

different models, namely, Multiple Linear Analysis, ANN and case-based reasoning. 

ANN showed the best performance in terms of the estimation accuracy. Moselhi et al. 

(1992) highlighted the potential application of ANN for estimating the productivity rate 

of construction trades based on several specific attributes. Zayed and Halpin (2005) 

utilized ANN technique to assess the productivity, cost and cycle time of the piling 

process. In their study, seven inputs and 10 outputs were included to comprehensively 

capture the different aspects of piling process. Khan (2005) analyzed and selected nine 

input parameters as the factors, which cause short-term variations in labor productivity 

rate. In the research, the effect of input variables was modeled by different structures of 

ANN and finally the result of the best structure was compared with the regression 

modeling result. 

2.4.2 Fuzzy Reasoning 

Fuzzy Reasoning is defined based on the theory of fuzzy sets and involves AI, 

information processing, logic to pure theories and applied mathematics, such as graph 
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theory, topology and optimization (Pappis and Siettos 2005). The basic definitions and 

concepts used in fuzzy reasoning are presented in the following sections.   

2.4.2.1 Concept of Fuzzy Logic 

Fuzzy logic (Zadeh 1977) was introduced as a response to the need for a systematic 

reasoning that better conforms to the human logic. The main goal of fuzzy logic is to 

connect an input space to an output space. This goal is achieved through the application 

of several if-then statements called fuzzy rules, as shown in Equation 1. Each fuzzy 

model has a rule base, which is the list of all fuzzy rules. The inference procedure is 

performed through the parallel evaluation of all defined fuzzy rules. In this approach, 

unlike ANN, interpretability of the inference procedure is at the center of attention. In 

contrast with the mathematical logic where variables only take numerical values, fuzzy 

logic often uses linguistic terms (fuzzy variables) to express rules and specifications 

(Zadeh 1996).  

IF x is A AND y is B, THEN z is C       Eq. (1) 

Where x and y are linguistic variables and A & B are linguistic terms represented by 

fuzzy sets.                                              

2.4.2.2 Fuzzy Sets 

A fuzzy set is a class of objects without a clearly defined boundary. While in the classical 

set theory, elements have a one-to-one membership relation to sets, i.e. an element 

belongs to one set only, Fuzzy Set theory permits the partial memberships of the elements 
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to multiple sets. The degree of membership to each set can be measured using 

membership functions.  

2.4.2.3 Fuzzification & Defuzzification 

Fuzzification is the process of converting crisp values of input variables to fuzzy values 

through applying the fuzzy membership functions. A membership function is a curve that 

reflects the degree of membership of each point in the input space, as shown in Figure 2-

3. Defuzzification is the process of converting membership values to crisp output values.  

 

Figure 2-3: A Sample of Membership Functions 

2.4.2.4 Possibility 

Possibility is an alternative representation of uncertainty and was first introduced in the 

possibility theory of Zadeh (1978). Possibility theory was an extension of his previous 

fuzzy logic and fuzzy sets theories. Dubois and Prade (1988) further developed this idea 

and presented a method to report the available knowledge in the variable X. In this 

method, the available information is represented by fuzzy numbers which are, in turn, 

defined by membership functions. The calculated membership value, which is a value 

between 0 and 1, indicates the possibility of a certain value for the variable under study. 
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The term ‘‘possibility’’ relates to the idea of “lack of surprise” proposed by Shackle 

(1961). The assumption is that “the more possible a value is, the less surprising it would 

be” (Guyonnet et al. 2002).  

∏    denotes the possibility of the specific event as shown in Equation 2  (Guyonnet et 

al. 2002). 

∏                      Eq. (2) 

Where      is the membership function for the variable X. 

2.4.2.5 Alpha-Cut 

The alpha-cut (α-cut) of a fuzzy set is the set of all crisp values with the membership 

values higher than or equal alpha (α). Figure 2-4 shows a fuzzy number representing the 

parameter P with the support of   . The crisp range that includes all the elements with 

the membership values greater than α is called the alpha-cut of this fuzzy number. At 

each level of α, the resultant fuzzy set has a support of    representing its alpha-cut 

(Abebe et al. 2000). 

 

Figure 2-4: Fuzzy Number and Alpha-Cut (Abebe Et Al. 2000) 
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In fuzzy logic, alpha cut is used to decompose a fuzzy set into a nested form of the 

classical sets based on the resolution identity principle (Xexéo). This principle states that 

each fuzzy set can be expressed by a weighted set of alpha-cuts, as shown in Equation 3 

(Kulik 2001). 

  ⋃      
       

 Eq. (3) 

 

Where    is the alpha-cut at the resolution level of   and A is the set of alpha-cuts. The 

resolution identity principle is the basis for the conversion of fuzzy sets to classical crisp 

sets. Because of this, it is considered as one of the most important principles in the fuzzy 

set theory.  

2.4.2.6 Fuzzy Inference Process 

There are five main steps for the interpretation of if-then rules as follows (MathWorks 

2012): 

1) Fuzzification: Fuzzifing all the inputs with the use of membership functions; 

2) Fuzzy Operations: Converting the multiple sections of the IF (antecedent) part of the 

rules, if there are more than one, to one single value using fuzzy operators. This value 

is called degree of support for the rule. Degree of support for the rules with only one 

antecedent part equals the degree of membership of that fuzzy set; 

3) Implication: Appling the degree of support to create the output fuzzy set. The 

consequent part of the rule presents a specific fuzzy set to the output. The output 
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membership function represents this output fuzzy set. If the antecedent is assigned a 

value less than one, then the fuzzy set is cut based on the implication method; 

4) Aggregation: Combining the output fuzzy sets coming from different rules into a 

single fuzzy set so that decisions can be made based on the evaluation of all fuzzy 

rules. In the context of fuzzy reasoning, this process is called aggregation. The inputs 

of this process are all the truncated output fuzzy sets coming from different rules, and 

the output is one fuzzy set per each output variable. There are different methods of 

aggregation, such as Maximum or Sum; 

5) Defuzzification: Defuzzifying all the aggregated fuzzy set. The input of this process 

is a fuzzy set and the output is a crisp output variable. 

Figure 2-5 illustrates a simple example of the fuzzy rules interpretation. 

2.4.2.7 Fuzzy Inference Types 

There are two main types of fuzzy inference systems. The most frequently used type, 

which has a greater conformity to the human’s intuition, is called Mamdani. It was first 

proposed by Ebrahim Mamdani in 1975 (Yager and Filev 1994). This type of fuzzy 

inference is comprised of all the afore-mentioned steps of inference, as shown in Figure 

2-5.  

Takagi-Sugeno-Kang, or so-called Sugeno, is the other type of fuzzy inference systems 

that was first proposed in 1985. The main difference between Mamdani and Sugeno 

systems is that based on the Sugeno method the consequent parts of the rules are either 

single values (singletons) or linear functions. These linear functions transform the inputs 
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to a crisp value. The final output of the system is the weighted average of all the crisp 

outputs of the rule. The weights are the same as the degree of support for each rule in 

Mamdani systems. Figure 2-6 illustrates the inference procedure of a singleton-output-

function Sugeno structure. 

 

2.4.2.8 Figure 2-5: Fuzzy Inference Process Diagram–Mamdani Type (Mathworks 

2012)Application of Fuzzy Reasoning in Construction 

Fuzzy reasoning concept has been applied in different areas of the construction 

management. For instance, Carr and Tah (2001) used fuzzy concepts to address the 

project risk assessment and analysis. Zhang et al. (2002) showed the application of fuzzy 

logic in discrete-event simulation in order to address the uncertainties in the resource 
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demands and durations of the processes. Chang et al. (1990) applied the integration of 

fuzzy systems and expert systems for the project resource allocation. Paek et al. (1992) 

applied a multi-criterion decision‐making methodology using a fuzzy‐logic system for the 

selection of the successful Design/Build proposal.  

 

Figure 2-6: Singleton-Output-Function Sugeno Inference System (Mathworks 2012) 

2.4.3 Neuro-Fuzzy Systems 

ANN and fuzzy logic are two complimentary technologies. ANN is capable of learning 

from the data; however, it cannot explain the quality of input-output mapping process. On 
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the other hand, fuzzy reasoning provides a systematic reasoning method which is more 

compatible with the human logic and intuition. However, the learning process of fuzzy 

models needs to adopt self-regulating techniques from other areas. The limitations of 

these two techniques led to the development of neuro-fuzzy systems. In the field of 

hybrid intelligent systems, the term neuro-fuzzy refers to the fusion of ANN and fuzzy 

logic (Jang 1993). In these structures, the shortcomings of each technique are offset by 

the other. Neuro-fuzzy systems automate the tuning process of the membership functions 

using the learning capability of ANN. 

2.4.3.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS is a structure of ANN that works based on the principles of Takagi–Sugeno 

fuzzy inference system (Jang 1993). This framework benefits from strengthens of both 

ANN and fuzzy logic by integrating the systematic reasoning of fuzzy logic with the 

learning ability of ANN. ANFIS is categorized as an adaptive network that function in 

the same way as fuzzy inference systems. This technology tries to embed the whole 

process of fuzzy reasoning in an ANN assembly.  

Figure 2-7 shows a schematic structure of ANFIS. This model represents a two-input 

first-order Sugeno fuzzy model with the following two rules:  

Assuming two inputs X and Y and one output Z: 

Rule 1: IF x is A1 and y is B1, THEN f1 = p1x + q1y +r1 

Rule 2: IF x is A2 and y is B2, THEN f2 = p2x + q2y +r2 
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Figure 2-7: ANFIS Equivalent for Two-Input First-Order Sugeno Fuzzy  

Model with Two Rules (Jang 1993) 

Input membership functions are also assumed as depicted in Figure 2-8.  

  

  
 

      

      

  

    

  

    

   

   

              

              

  
         

     
 

                
  

Figure 2-8: Inference Procedure of a Two-Input First-Order  

Sugeno Fuzzy Model with Two Rules (Jang 1993) 

As shown below, each layer of the ANFIS structure mimics a specific phase of the 

Sugeno inference procedure. 
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Layer 1: Every node in this layer is an adaptive node with a function that represents the 

membership function of a linguistic term; where x (or y) is the input to the node and Ai 

(or Bi) is a linguistic term. The output of this layer is the degree of membership (𝜇   or 

 𝜇  ) of the input (x or y) that is associated with that specific linguistic term Ai (or Bi). 

Parameters of the node function in this layer are called premise parameters. 

Layer 2: The output of this layer (  ) is the product of all incoming signals, Equation 4. 

             Eq. (4) 

Where 𝜇   ( 𝜇  ) is the degree of membership of the input x (or y) that is associated with 

that specific linguistic term Ai (or Bi). The output of each node states the firing strength 

of a rule. 

Layer 3: The ith node in this layer calculates the ratio of the firing strength of the ith rule 

to the summation of all the firing strengths, as shown in Equation 5.  

  
̅̅̅̅  

  

     
        Eq. (5) 

Where    is the firing strength of the ith rule. 

Layer 4: Every node in this layer is an adaptive node with a function shown in Equation 

6. 

Node function:     
̅̅̅̅      

̅̅̅̅                 Eq. (1) 

 



25 

 

Where x and y are given variables and    is the consequent relationship (function). 

Parameters of this node are referred to as consequent parameters. 

Layer 5: This single node calculates the summation of all the incoming signals, as shown 

in Equation 7. 

Final Output = ∑   
̅̅̅̅     Eq. (7) 

ANFIS utilizes a hybrid learning algorithm to identify the premise and consequent 

parameters. The hybrid approach of learning applies an integration of least-squares 

method and back-propagation gradient descent method to train the membership function 

parameters.  

2.4.3.2 Neural-Network-Driven Fuzzy Reasoning (NNDFR) 

NNDFR was the first application of ANNs in self-regulating design of membership 

functions. NNDFR was proposed by Takagi and Hayashi in 1992. It is categorized as a 

neuro-fuzzy model that has an accurate performance in the estimation of the output of the 

naturally clustered data spaces. In this structure, fuzzy logic controls the selection of the 

best inference process and ANN builds the inference system and membership functions.  

Figure 2-9 shows the schematic structure of NNDFR and the interaction of its constituent 

parts. The design procedure of NNDFR can be summarized in the following three steps: 

(1) Clustering the training dataset, (2) training the membership ANN (NNmem), and (3) 

training the consequent ANN (NN1-k) of each cluster.  
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Figure 2-9: The Structure of NNDFR System (W Is The Membership Value And Y* 

Is Final Estimated Output) 

In the first step, the input data space is partitioned into hard clusters through a clustering 

algorithm. In this neuro-fuzzy system, the number of rules equals the number of clusters.  

In the second step, NNmem is trained between each input vector and its corresponding 

cluster assignment vector, as illustrated in Figure 2-10, where m is the number of input 

variables, n is the number of observations, and k is the number of clusters. For example, 

the supervised part of the learning process for a vector which belongs to the cluster 3 is 

(0,0,1).

 

Figure 2-10: Second Step, Training the Membership ANN 
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In the third step, the consequent ANNs are trained between the members of each cluster, 

which were partitioned in the first step, and their corresponding outputs. 

The NNmem generates the membership functions of the premise, i.e. IF parts, of the rules 

and NN1-k prepare the consequent input-output relationships, i.e. THEN parts. This 

system calculates the final estimated output based on a weighted average of the output of 

THEN parts, such that the weights are the membership values produced by NNmem. The 

resulting fuzzy model is expressed by the following rules (Takagi and Hayashi 1991): 

                                                       
                                                       

  
  
  

                                                       
 
Where      denote the existing clusters. The final estimated values can be delivered 

through Equation 8 (Takagi and Hayashi 1991). 

  
  

∑       
 
          

∑       
 
   

 Eq. (8) 

Where k is the number of clusters,    is the input vector,    is the membership value, and  

   is the output of sth consequent ANN. 

This innovative fuzzification approach automatically considers the interdependence of 

the input variables, a capacity which has been missing in the conventional fuzzification 

process. This technique creates a (Neural-Network-Driven) NN-driven hyper-surface 

membership function, which combines all 2D membership functions of different 
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variables and results in a single multi-dimensional membership function. Membership 

functions dealing with the dependent variables must be curved hyper-surfaces with an 

axis representing the membership value of all variables. In this fashion, changes in one 

variable can alter the membership values of the others. The creation of these membership 

functions is possible only through the application of fuzzy clustering algorithms (Takagi 

and Hayashi 1991). 

The main limitations of this model are: 

1) Although the accuracy of its performance is highly sensitive to the number of 

clusters, and thus to the number of the consequent ANNs, no optimization has been 

performed to attain the optimum number of clusters; 

2) The resulting NNmem from the hard clustering algorithm provides a fuzziness that 

cannot be controlled or regulated. It is because the supervised part of the learning 

process is not flexible enough and only accepts the values 0 and 1. Consequently, the 

membership functions and the fuzziness of each point cannot be controlled. In other 

words, the system treats all the points in the same cluster indiscriminately and does 

not consider the distance from the centroids in the decision-making. 

2.4.4 Genetic Algorithm (GA) 

GA, developed by John Holland in 1975, is considered an AI-based optimization method 

that mimics the mechanism of natural evolution. In other words, GA solves problems 

with an evolutionary approach in which the best solutions are selected to produce the 



29 

 

potentially better solutions in future. Thus, the final solution can be named as the survivor 

(winner) over the whole evolution procedure.   

In GA, an initial population of randomly generated individuals is produced and it evolves 

toward better generations by altering and mutating the properties of the population. The 

performance or suitability of each member of the population is ranked based on some 

fitness criteria. A fitness criterion provides a basis for the selection and migration to next 

generation. This algorithm, as the most well-known EA, involves the following main 

steps (Haupt and Haupt 2004):  

1) Generate initial population (Initialization) 

2) Evaluate fitness of population  

3) Selection  

4) Crossover  

5) Mutation  

6) Generate new population and evaluate fitness.  

2.4.4.1 Coding 

Coding is the act of assigning parameters and values to genes. Real coding and binary 

coding are two main types of genetic coding. Binary coding was the original type of 

coding used in GA. The chromosome is expressed by a row of 0 and 1 genes. These 

binary codes are representatives for the real form of the genes converted through a pre-

identified mapping relationship. Thus, the search area turns into a binary domain and all 

genetic operators work with these binary values. Then, after the reproduction of each 
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generation, binary codes are decoded to their real form to evaluate the fitness function. 

On the other hand, real coding puts parameters as they are in the chromosomes without 

any conversion. Obviously, real coding is more efficient than binary approach in 

continuous optimization problems. 

2.4.4.2 Operators 

In a GA, a set of properties, i.e. genes, are assembled to make a candidate solution, i.e. 

chromosome. Based on the nature of the problem, firstly, a specific number of 

chromosomes, either randomly or biased over the more probable areas of optimal 

solution, is generated. After the selection of the fittest candidates in one generation, these 

better solutions will breed their offspring via selection, crossover and mutation operators.  

2.4.4.3 Selection  

Although there are different methods of selection between parent solutions, a generic 

selection procedure can be performed through following steps: 

1) Each individual is evaluated with the fitness function and the fitness value is then 

normalized; 

2) All individuals are sorted in descending order; 

3) The cumulative fitness value of each individual is calculated, which is the fitness value 

of the individual plus all former fitness values of the individuals in the ranking; 

4) A random number, between 0 to 1, is generated; 
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5) The first cumulative fitness value bigger than the generated random number is the 

selected parent. 

This procedure is repeated until an agreed number of individuals are selected for the 

process of reproduction. 

According to another type of selection called elitism, the best members of a generation 

are kept unchanged in the following generation. It usually works along with other 

selection techniques (Davis 1991). 

2.4.4.4 Crossover 

Crossover is the act of hiring more than one parent solution and reproducing a child 

based on a mixture of their properties. There are a plenty of crossover techniques, among 

which the one-point crossover can be pointed out as the most common and basic one. In 

this technique, a single point is located in both parent chromosomes. Then, all genes 

beyond this point are exchanged among the parents. The procedure is schematically 

illustrated in Figure 2-11. 

 

Figure 2-11: One-Point Crossover 
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2.4.4.5 Mutation 

Mutation is the process of altering the values of one or more genes in one chromosome. 

This mechanism can change one solution to an entirely different one, and thus allow a 

more comprehensive and diverse search in the domain. Mutation enables a better genetic 

search through avoiding the stagnating at the local optima. Mutation is implemented 

according to a user-defined rate of mutation. If this rate is too high, the number of 

mutated chromosomes will be extensively high and, subsequently, a directed search will 

be degraded to a random search. 

There are different types of mutation, each of which is suitable for a specific type of 

chromosome. The following mutation algorithms give us a clear understanding about the 

mutation process: 

Flip Bit: This mutation selects a random gene and flips the bit. For example, (1 1 1 0 1 0 

1) is reformed to (1 1 1 0 1 1 1). Bit string only applies to integer genes. 

Boundary: This technique mutates the randomly selected gene of the string into either a 

lower or upper bound of the chosen gene. This can be used for integer and float genes. 

Non-Uniform: The rate of mutation goes closer to 0 by advancing through the 

generations. In the early stages, it grants diversity to the population and thus prevents the 

search from stagnating. However as the algorithm moves toward the end, the rate of 

mutation goes down in order to enable a more delicate fine-tuning of the solution. This 

algorithm, also, can be used for both float and integer problems. 
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Uniform: First, the lower and upper bounds for each gene are defined. Then, a random 

gene is selected to adopt a random value between these user-defined bounds. The random 

value is the substitution for the original gene value. This algorithm is also suitable for 

both float and integer problems. 

Gaussian: This mutation algorithm selects a random gene and substitute a unit Gaussian 

distributed random value with specified bounds instead. 

2.5 EXPLORATORY DATA MINING AND STATISTICAL DATA ANALYSIS 

Data analysis is the task of applying statistical or logical techniques for inspecting, 

cleaning and modeling data sets. This process provides a platform for retrieving useful 

information, making conclusions and facilitating decision making.  

Data mining, as a data analysis technique, is mainly used for modeling and knowledge 

discovery purposes. From the statistical point of view, data analysis can be categorized 

into descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data 

Analysis (CDA). EDA tries to discover the new characteristics of data, while CDA 

evaluates the correctness of the existing hypotheses.   

One major tasks of exploratory data mining and statistical data analysis is clustering 

which is used in the data processing stages of different areas such as, image processing, 

machine learning, information retrieval and computer simulation. The following section 

elaborates the literature related to clustering process.  

http://en.wikipedia.org/wiki/Descriptive_statistics
http://en.wikipedia.org/wiki/Exploratory_data_analysis
http://en.wikipedia.org/wiki/Confirmatory_data_analysis
http://en.wikipedia.org/wiki/Confirmatory_data_analysis
http://en.wikipedia.org/wiki/Data_mining
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2.5.1 Clustering 

Data clustering can be regarded as the most well-known and prevalent EDA technique 

(Beringer and Hüllermeier 2006). It is the process of organizing a dataset into different 

groups, such that the members of the same cluster have more similar attributes compared 

to those of other clusters. K-Means (MacQueen 1967, Hugo Steinhaus 1957, Stuart Lloyd 

1982) and Fuzzy C-Means (FCM) (Dunn 1973, Bezdek 1981) clustering can be 

considered as the dominant algorithms in both theoretical and practical applications of 

data mining.  

K-Means partitions the data in such way that each point belongs only to one cluster. This 

method is a well-known member of a big category of clustering algorithms called Hard 

Clustering. Hard clusters are fully separated subsets of the data space that do not have 

any overlaps with each other.    

On the contrary, FCM possesses a soft approach for reporting the memberships to 

different clusters. FCM is the dominant type of Fuzzy Clustering algorithms, which 

allows data points to be members of more than one cluster. Fuzzy clustering allows 

overlaps between clusters and signifies the extent to which data points are members of 

different clusters using an index known as “degree of membership”. Each data point 

holds a degree of membership to every cluster in the data set, with the summation of all 

its degrees of membership being 1. Fuzzy clustering accepts degrees of membership 

ranging from 0 to 1, while hard clustering only accepts crisp values of 0 and 1. 
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In this method, the performance is plotted against the number of clusters and the answer 

is located at the elbow of the graph, where the slope of the plot obviously changes. 

However, this "elbow" is not always clearly visible. 

Mountain clustering, proposed by Yager and Filev (1994), was an improved version of 

the earlier clustering methods. This heuristic technique is based on the density of data 

points. It applies a mountain function, i.e. density function, to the customized gridding of 

data space in order to find the grid point with the highest density value as the center of 

the first cluster, Figure 2-13 (a). This method continues by destructing the effect of each 

cluster mountain function to find the next greatest density value, Figure2-13 (b).While 

this approach is primarily considered as a stand-alone clustering technique, it can also 

function as a tool to obtain the initial number of clusters for other more complex 

techniques (Yager and Filev 1994). However, as the problem’s dimension grows, so does 

the computations for evaluating all grid points, a problem known as the “curse of 

dimensionality” (Bellman 1961).  

  
(a) (b) 

Figure 2-13: (A) Selecting the Highest Density Value as the First Cluster, And (B) 

Destructing the Effect of the First Cluster’s Mountain Function 

First Cluster Second Cluster 
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Chiu (1994) presented Subtractive Clustering to mitigate this problem. Subtractive 

Clustering only deems the data points as candidates for the center of clusters. In this way, 

computational complexity and effort grows proportionally to the size of the problem 

instead of its dimension (Hammouda and Karray 2000). However, this technique has 

some parameters, such as influence range, squash factor, accept ratio and reject ratio, 

which highly affects the results of the clustering. Thus, these parameters should be 

selected based on the inherent characteristics of the target data, which makes the analysis 

subjective. Table 2-1 compares different methods of clustering in terms of their strength 

and weakness. 

Table 2-1: Clustering Methods 

 

Method Strength Weakness 

K-Means • Robust partitioning 
• Accurate cluster centers 

• Initial  value must be provided 

FCM 
• Robust partitioning 
• Accurate cluster centers 
• Fuzzy approach 

• Initial  value must be provided 

Subtractive 

• No initial guess  for number of 
clusters is needed 

• Density based method 
• Low computational complexity 
• Computational complexity 

proportional to problem 
dimension 

• Inaccurate cluster centers 
• No basis for selecting the initial 

parameters, such as effective 
range and squash factor 

Mountain 

• No initial guess  for number of 
clusters is needed 

• Density based method 

• High  computational complexity 
in multi- dimensional data 
spaces, Computational 
complexity  proportional to data 
set dimension 

• Inaccurate cluster centers are 
proposed 
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2.5.3 Clustering Validation Index 

It is of a great necessity to compare different sets of clusters and evaluate the “goodness” 

of the clustering for the validation purposes. Clustering validation is the act of 

determining how well an algorithm can recognize the underlying patterns of data. Usually 

in 2D and 3D data spaces, visualization is used to empirically validate the clustering. 

However, in case of the large multidimensional data spaces, inapplicability of an 

effective visualization leads to the application of more formal approaches (Kovács et al. 

2005).  

There are three main approaches to evaluate the quality of clustering as follows (Halkidi 

et al. 2001): 

 Internal Validation: The clusters are assessed based on some data-oriented statistical 

metrics, which evaluates the inherent features of the data; 

 External Validation: The clusters are assessed based on some intuition-oriented 

statistical metrics, which uses the user-defined intuitions; 

 Relative Validation: The clusters are assessed based on the comparison between 

different clustering methods, which result from different clustering parameters. 

2.5.3.1 Internal Validation 

Internal validation is an approach to evaluate the clustered dataset based on the inherent 

features of the data itself (Halkidi et al. 2001). Different internal validity indices have 

been proposed as an assessment metrics for the compactness and separation among the 
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data distribution, such as Davies Bouldin index and Dunn index (Kovács et al. 2005). 

While the earlier examines the level of closeness of the members of each cluster to one 

another, the latter evaluates the extent to which the clusters are widely spaced (Berry and 

Linoff 1997). The main drawback of internal validation is that supreme values of an 

internal index do not necessarily lead us to the best information retrieval applications 

(Manning et al. 2008).  

2.6 INTEGRATION OF LINGUISTIC TERMS AND CRISP VALUES 

With the fuzzy and probabilistic approaches being both applicable to address 

uncertainties, it is usually the case that a combination of linguistic terms (fuzzy numbers) 

and crisp values needs to be considered for the modeling (Guyonnet et al. 2002). These 

cases are very likely in the construction simulation, where limited data is provided for 

many of the factors involved in the project (Sadeghi et al. 2010). Many researchers tried 

to find a way to estimate the output of these generalized models using both types of input 

values. Wonneberger et al. (1995) transformed all possibilities into probabilities in order 

to convert the problem to a pure probabilistic case (Figure 2-14)(Wonneberger et al. 

1995). However, possibility and probability refer to uncertainty with different approaches 

that seem not to be interchangeable. 
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Figure 2-14: Transformation-Based Approach of Simulation (Sadeghi Et Al. 2010) 

In 2003, Guyonnet et al. (2003) proposed a hybrid simulation approach as a solution for 

modeling both crisp inputs and linguistic terms. Hybrid method is able to handle the 

diversity of variables without any transformation processes from one to another. In this 

technique, each linguistic term is explained as a fuzzy number. Thus, the output can be 

expressed via an output membership function constructed by the alpha-cut technique. 

The schematic hierarchy of Hybrid Approach is presented in Figure 2-15 and Figure 2-

16. Figure 2-15 illustrates the model M that is fed by random numbers (           , as 

crisp values, and fuzzy numbers             , as linguistic terms. The random numbers 

are generated by the probability distributions.  
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Figure 2-15: “Hybrid Approach” of Simulation (Adopted from Sadeghi Et Al. 2010) 

To determine the output (Y) of the model, different sets of random numbers (w) are 

generated and assigned to crisp input variables, Figure 2-16 (a). In parallel, alpha-cut is 

performed for the fuzzy inputs at different levels of  , Figure 2-16 (b). In this manner, for 

each level of alpha and every set of random numbers, the model generates two outputs. 

         and          denote the minimum and maximum outputs of the model, 

respectively. Consequently, by keeping the crisp values as fixed numbers and performing 

alpha cut at different levels of alpha, the output fuzzy set is gradually constructed by the 

minimum and maximum outputs of the model, Figure 2-16 (c). 
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(a) Random Number Generation 

 
(b) Alpha-cut Technique 

 
 

(c) Gradual Construction of Output Fuzzy set 

Figure 2-16: Illustration of the hybrid approach of simulation (Guyonnet et al. 2002) 

The first model that applied this technique was a monotonic model which does not 

require any optimization algorithm to find the maximum and minimum outputs of the 

model. However, many of the developed models are not monotonic, and thus their 

extremum outputs cannot be easily retrieved without an appropriate optimization process. 

This method is considerably important since it enables the model to use Monte Carlo 

simulation while it has some fuzzy inputs.  
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In case the possibility of an output less than a certain threshold is desired, it can be 

calculated, based on the possibility theory, for the fuzzy set F, membership function 

      and threshold T through Equation 9 (Sadeghi et al. 2010): 

∏                  Eq. (9) 

2.7 SUMMARY AND LIMITATIONS OF PREVIOUS LITERATURE 

This chapter covered a wide continuum of topics to present an overview of the existing 

approaches to the application of soft computing techniques for the estimation of 

productivity in the construction industry. Since productivity rate is the best index for the 

progress assessment of construction projects, the productivity estimation has always been 

momentous for both academia and industry. As a result, practitioners and researchers are 

always trying to improve the productivity rate. This will not be materialized unless a 

comprehensive study of the factors affecting the construction productivity rate is 

conducted. As stated at the beginning of this chapter, most research in construction 

simulation has mainly focused on the simulation modeling without placing much 

emphasis on the study of the qualitative and quantitative factors that affect the features of 

each process, such as time and productivity. Weather conditions, managerial factors and 

work methods can be regarded as some of these factors. On the other hand, the limited 

research that has addressed these issues has solely concentrated on the study of the 

impact of some specific factors, without delving deep into the structure and evaluation of 

the model, and thus provides no generic solution or conceptual models.  
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Compared to other alternatives, AI is decisively dominant owing to its ability to mimic 

the intelligent behavior of human. AI facilitates the establishment of forecasting models 

that can predict the expected output of an activity through applying pattern recognition to 

historical data. Although the self-learning ability of ANN makes it an appropriate choice, 

its inability to explain the quality of input-output mapping or, in better words, reasoning 

process, renders it a black box. On the other hand, fuzzy reasoning, as another option, 

provides us with a systematic reasoning that is more tangible for human logic and 

intuition. However, the learning process of fuzzy models requires self-regulating 

techniques from other areas. Although neuro-fuzzy systems, where fuzzy reasoning and 

ANN are integrated and the shortcomings of one system are offset by the strengths of the 

other, seem to be an effective solution, there is no notable application of these types of 

models in the construction modeling. Moreover, there is a very strong bond between 

neuro-fuzzy systems and clustering algorithms, insofar as most of the neuro-fuzzy 

systems take advantage of clustering algorithms in their structure. Despite the fact that 

the main purpose of these cluster-aided systems is to provide an accurate and 

interpretable model, their performances are very sensitive to the proper definition of their 

constituent design parameters. It is shown that the improper determination of the number 

of clusters, as one of these parameters, can noticeably distort the fitness of such models. 

At the other end of the pendulum, most of the proposed forecasting models only deal with 

the crisp input values. However, there are some cases where a combination of crisp 

values and linguistic terms are desired. These problems demand a system that works with 

both types of uncertainties (probability and possibility). It seems that because of the 
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dissimilar natures of probability and possibility, transformative methods, which transform 

one form to another, do not work properly. On the other hand, “Hybrid Approach” of 

modeling, which compared to other approaches is more successful in this area, cannot be 

easily incorporated with non-monotonic models without an appropriate optimization 

process.   
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 CHAPTER OVERVIEW 

The generic flow diagram of the present research is presented in Figure 3-1. This research 

starts with a literature review on the area of soft computing and its application in the 

construction simulation. The review covered subjects such as the-state-of-the-art in 

construction simulation, explorative data mining and statistical data analysis, hybrid 

intelligent systems and genetic optimization. Following the literature review, the model 

development phase is dedicated to proposing a model that addresses all the shortcomings 

and weaknesses identified in the literature review and explained in the problem 

statement. Model development, in turn, consists of three main phases as follows: 1) the 

implementation of the modified NNDFR system, 2) the fine-tuning of the system, and 3) 

the implementation of a Hybrid Approach of modeling. Model development phase is then 

followed by a data collection phase, which is related to the data gathering and data 

analysis processes. In order to verify and validate the system, a case study will be 

conducted and, in this context, the performance of the proposed system will be compared 

to other existing systems. Finally, this research will be finalized with some conclusions 

and recommendations and also some proposed research areas for the future. 
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Figure 3-1: Flowchart of the Research Methodology 

3.2 LITERATURE REVIEW 

The literature review was presented in Chapter 2. It comprehensively covered the major 

research areas related to the application of soft computing in construction simulation. As 

shown in Figure 3-1, the literature review consists of four sub-sections as follows: 

1) Explorative data mining and statistical data analysis; 

2) Hybrid intelligent systems; 

3) Review of the-state-of-the-art in construction simulation; 

4) Genetic optimization. 
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The concepts, methods and applications of different approaches in each subject are 

elaborately discussed and the merits and shortcomings of each method as compared to its 

counterparts are presented.  

3.3 MODEL DEVELOPMENT 

This section aims at providing a detailed explanation of the model development process. 

The flowchart of techniques and actions that are required to implement the proposed 

framework is illustrated in Figures 3-2 and 3-3. This framework consists of three main 

phases: 1) the implementation of the modified NNDFR system, 2) the fine-tuning of the 

system, and 3) the implementation of a Hybrid Approach of modeling. The flow 

diagrams of the first and the second phases are provided in Figure 3-2. Section 3.3.1 

presents a comprehensive description of the structure of the proposed model. Section 

3.3.2 explores the fine-tuning of the model and elaborates the optimization process, 

which is performed to find the fittest model parameters. Third phase of the system 

development is elaborately discussed in Section 3.3.3 and its flow diagram is shown in 

Figure 3-3.  

As shown in Figure 3-2, GA generates a combination of parameters, which controls the 

number of clusters and fuzziness of the membership functions. Then, the structure of the 

modified NNDFR is formed in the training part of the system based on the inherent 

features of the data along with the current values of parameters. The latter process will be 

elaborated later in this chapter. The NNDFR Testing section provides the pre-defined 

model with a testing sample from the data and computes the estimated outputs. It, then, 
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measures the accuracy of the estimation by comparing the result with the actual targets. 

Subsequently, this loop reiterates in order to check the model for other values of 

parameters. Finally, the parameters corresponding to the best results are considered to be 

the optimum choice.  

Train NN-Membership 
between inputs and 

corresponding membership 
values 

IF 
MAX(C1,C2,…,Ck)=C1

IF 
MAX(C1,C2,…,Ck)=C2
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Figure 3-2: Model Development Flowchart (Phases I and II) 

According to Figure 3-3, Hybrid Approach starts with distinguishing the crisp and fuzzy 

variables. Next, alpha-cut is performed at each level of alpha, while other variables are 
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one reasoning strategy. By presenting the K-Means algorithm, this section provides a 

better understanding of this phase. 

K-means, as one of the simplest unsupervised clustering algorithms, partitions the data 

space in hard clusters. This iterative algorithm locates centroids via minimizing the 

objective function shown in Equation 10 (Matteucci 2006). 

  ∑ ∑ ‖  
   

   ‖
 

 
   

 
           Eq. (10) 

 

Where   
   

 is the ith measured data,    is the center of the jth cluster, and ||*|| is a kind of 

distance between the d-dimensional vector    
   

 and the d-dimensional vector   . The 

objective function can be minimized through the following steps (Matteucci 2006): 

1) Randomly place K points representing initial centroids in the data space; 

2) Assign each data point to the cluster that has closest centroid; 

3) Calculate the revised position of each centroid; 

4) If the positions of centroids didn’t change go to the next step, else to the step 2; 

5) End. 

3.3.1.2 Hyper-Surface (Multi-dimensional) Membership Functions 

The definite problem with the conventional fuzzification process is that it cannot deal 

with the problem of variables interdependency. Since each 2D membership function, that 

includes crisp and membership value, is designed separately, any changes in the value of 

one variable cannot alter the membership value of the other variable. For example, 
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humidity and temperature cannot be considered as completely independent factors. For 

such cases, a three dimensional membership function, e.g. two axes for the temperature 

and humidity and one for the degree of membership, is required. However, there is no 

way to tune this type of membership functions with intuition and experience.  

The solution to above-mentioned problem is to create hyper-surface membership 

functions. As described in the second step of the NNDFR design procedure, a hyper-

surface membership function can be produced by means of the pattern recognition ability 

of ANN. This innovative fuzzification approach automatically considers the 

interdependence of input variables, and thus mitigates the definite weakness of the 

conventional fuzzification process. In other words, this NN-Driven hyper-surface 

membership function combines all 2D membership functions of different variables and 

presents a single multi-dimensional membership function. The concept of hyper-surface 

membership function can be more clearly explained through the following example. 

Figure 3-4 plots a set of data points that can be visually categorized as two well-separated 

clusters. These data points are then clustered to two groups by K-Means algorithm. Table 

3-1 tabulates a sample of coordinates and cluster assignment vectors corresponding to 

each input. 

Next, an ANN with two inputs, i.e. X1 and X2, and two outputs, representing the 

associated cluster indices, is trained. This ANN simulates the clustering procedure 

through a pattern recognition mechanism. In other words, a surface fitting is done by the 

ANN. These surfaces are then visualized by feeding a large quantity of random numbers 

to the model in the desired domain and plotting the results. Figure 3-5 shows the 
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membership surfaces constructed by connecting all the ANN outputs against their input 

coordinates. The red surface represents the membership values related to the first cluster, 

i.e. the group of red points in Figure 3-4, and the blue surface represents the second 

cluster, i.e. blue points in Figure 3-4. 
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Figure 3-4: Two Well-Separated Clusters 

Table 3-1: A Sample of Data Fed to Membership ANN 

Input 1 (X1) Input 2 (X2) Output 1 (C1) Output 2 (C2) 
3.61 3.84 1 0 
3.85 3.90 1 0 
3.94 3.77 1 0 
3.98 3.21 1 0 
3.90 3.63 1 0 
3.03 3.71 1 0 
3.08 3.00 1 0 
7.53 7.88 0 1 
7.16 7.46 0 1 
7.02 7.27 0 1 
7.00 7.47 0 1 
7.50 7.03 0 1 
7.92 7.23 0 1 
7.95 7.54 0 1 
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Figure 3-5: 3D Membership Function Generated Via K-Means Algorithm 

3.3.1.3 Substituting FCM for K-Means 

The membership ANN, obtained from the results of the hard clustering algorithm, creates 

a degree of fuzziness in the overlapping area of the clusters. This transition zone is 

depicted by the gray ellipse in Figure 3-5. In fact, the transition zone is the result of the 

interpolation done by ANN between the two hard clusters. However, the resulted 

fuzziness in this part is not under control and cannot be regulated. It is only created 

because the supervised part of the learning process does not have enough flexibility and it 

only accepts the values 0 and 1. Thus, we cannot decide about the shape of membership 

functions and modify the fuzziness assigned to each point. Additionally, such a hard 

membership ANN does not allow the system respond to the deviations within a cluster. In 

other words, the system treats all the points in the same cluster similarly and does not 
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consider the distance from the centroids in the decision-making. Needless to say, this can 

affect the performance of the models that use these hyper-surface membership functions.  

In order to overcome the limitations of a typical multi-dimensional membership function, 

a fuzzy clustering algorithm can be implemented in this structure. FCM, as a fuzzy 

version of K-Means, can serve towards this end. Applying FCM algorithm gives a fuzzy 

approach to the membership assignment procedure. As will be explained in the following 

section, FCM formula has an initial parameter, which regulates the relative weights of the 

membership values to all existing clusters and consequently controls the fuzziness of the 

subsequent membership functions. In this way, the model is able to compute the final 

estimated outcome based on an optimized contribution of all the consequent 

relationships. Next section describes FCM algorithm. 

FCM Algorithm 

FCM allows each data point to belong to more than one cluster. This iterative algorithm 

is performed through the minimization of the objective function shown in Equation 11 

(Matteucci 2006):  

    ∑ ∑    
 ‖     ‖

  
   

 
        Eq. (11) 

 

Where     is the degree of membership of    to the cluster j, m is any real number greater 

than 1,      is the ith measured data,    is the center of the jth cluster, and ||*|| is a type of 
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distance, among many others, between the d-dimensional vector     and d-dimensional 

vector    . 

The iterations of above-mentioned objective function optimization proceed through 

updating iju and jc  in each step using Equations 12 and 13 (Matteucci 2006): 
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         Eq. (13) 

 

The iterations will stop when the following condition is satisfied: 

     {|   
     

    
   

|}            
 

In the above inequality, k is the iteration step. 

Hyper-surface membership functions generated by FCM 

According to the FCM algorithm, the parameter m, which is called fuzzifier or weighting 

exponent, can greatly influence the performance of the system. When the fuzzifier is 

close to 1, the result of FCM is identical to that of k-means. When the fuzzifier 

approaches infinity, each cluster is only assigned to its centroid and the rest of the points 
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will have a membership value of 0. Therefore, FCM regulates the fuzziness of the 

clusters by adjusting this weighting exponent. Figure 3-6 illustrates the membership ANN 

that is trained by the FCM algorithm with different fuzzifiers. In this example, the data 

points presented in Table 3-1 are clustered via FCM for two different fuzzifiers, namely 

m=1.9 and m=2.9. Table 3-2 presents the results of this phase for both values of fuzzifier. 

Once FCM is applied to the generated data points, membership ANN is trained between 

the (X1, X2) coordinates and the corresponding FCM membership outputs.  

     Table 3-2: The Data Generated By FCM and Fed to Membership ANN  

Input 1 
(X1) 

Input 
2(X2) 

 m=1.9  m=2.9 

 
Output 1 

(C1) 
Output 2 

(C2) 
 Output 1 

(C1) 
Output 2 

(C2) 
3.61 3.84  0.99713 0.00287  0.94030 0.05970 
3.85 3.90  0.99356 0.00644  0.91521 0.08479 
3.94 3.78  0.99426 0.00574  0.91955 0.08045 
3.98 3.22  0.99517 0.00483  0.92620 0.07380 
3.90 3.63  0.99689 0.00311  0.93867 0.06133 
3.03 3.71  0.99438 0.00562  0.92024 0.07976 
3.09 3.00  0.99355 0.00645  0.91612 0.08388 
7.53 7.88  0.00253 0.99747  0.05603 0.94397 
7.16 7.46  0.00237 0.99763  0.05394 0.94606 
7.02 7.27  0.00656 0.99344  0.08466 0.91534 
7.00 7.47  0.00567 0.99433  0.07953 0.92047 
7.50 7.03  0.00404 0.99596  0.06812 0.93188 
7.92 7.23  0.00378 0.99622  0.06639 0.93361 
7.95 7.54  0.00289 0.99711  0.05911 0.94089 

 

By simulating a large number of input points within this area and plotting the outputs 

against corresponding (X1, X2) coordinates, the surfaces shown in Figure 3-6 will 

appear. As shown, when m is very close to 1, FCM acts as K-Means, and with the 

exception of a narrow overlapping area between clusters, all data points take the 

membership value of almost 1 to one cluster and 0 to the others. It means that, mostly, 
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only one consequent ANN is in effect. However, when any higher values of m are used, 

only the center of each cluster is assigned to that cluster and corresponding consequent 

ANN. In this case, any deviation from the center of cluster will result in the activation of 

other consequent relationships. 

 
(a) 

  
(b) (c) 

Figure 3-6: Illustration of Membership ANNs Trained  

by the FCM Algorithm for (A) M≈1, (B) M =1.9, And (C) M =2.9 

3.3.1.4 Separate Training Sets 

Due to the fuzzy nature of FCM, each data point belongs to all clusters, but with different 

degrees. However, consequent ANNs need separate training data sets. To mitigate this 
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problem, it is proposed to tag each data point to one cluster with the maximum 

membership value. For example, point A with the membership values of (0.15 0.2 0.65) 

will be separated as a member of NN3 training data set.  

3.3.1.5 Modified NNDFR 

Figure 3-7 shows the schematic structure of the proposed modified NNDFR. There are 

two types of ANNs in this assembly. First, several clusters are defined using FCM, and a 

membership ANN is trained based on FCM result in order to automate this process. In 

parallel, consequent ANNs are connecting the input data space to target data space in 

different parts of the domain (          ). The membership ANN generates some 

weights (  ) for each consequent ANN. The final output is calculated through the 

weighted average of the output of the consequent ANNs.  

3.3.1.6 Validation 

The goal of this step is to evaluate the accuracy of the model in output estimation. There 

are many mathematical indices for measuring the error of prediction. This error appears 

as a result of deviation from the actual targets of the model.  

Mean Square Error  

Mean Square Error (MSE) measures the average of the squares of the errors. This index 

is calculated as shown in Equation 14. 

    
 

 
∑        

  
            Eq. (14) 



60 

 

 

Where E is the estimated output, A is the actual target and n is the number of testing data 

points. To put this index in perspective, the closer the MSE to 0, the more accurate the 

model. 

 

Figure 3-7: Schematic Structure of the Modified NNDFR 

Average Invalidity Percentage (AIP) 

This index was first proposed by Zayed and Halpin (2005). The closer AIP to 0, the fitter 

the model, and correspondingly the further it deviates from 0, the more inaccurate the 

model is. Average Validity Percentage (AVP) equals the subtraction of AIP from 100. 

Obviously, a model with an AVP of 100 is the fittest. Equations  and  present the formula 

of these two indices. 
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             Eq. (16) 

Where E is the estimated output, A is actual target and n is the number of testing data 

points. 

3.3.1.7 Training Algorithm of ANN 

One common problem during the ANN training is what is called over-fitting. It is when 

the calculated error of estimation for the training sample is very small but the error for a 

new set of testing data is too large. It could be stated that the network memorized the 

training data points and it is not able to generalize the prediction for new cases. One 

method to improve the quality of the generalization in a trained net is called 

regularization. Regularization involves applying another performance measurement other 

than the sum of the squared output errors, which is usually selected as the performance 

indicator. Bayesian Regularization algorithm, as a regularization method, combines 

squared errors and weights in a mathematical relationship and minimizes them in order to 

find the best combination that has the best generalization ability. Bayesian Regularization 

allows the network have smaller weights and biases, which will, in turn, result in less 

susceptibility to over-fitting (MacKay 1992). 

A more detailed explanation of Bayesian Regularization algorithm is out of the scope of 

this research. All of the assembled ANNs in this model are trained based on this learning 

algorithm. This can highly improve the performance of model for future applications. The 
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command net.trainFcn = 'trainbr' changes the default learning function of 

the program to Bayesian Regularization. 

3.3.2 Fine Tuning The model 

3.3.1.8 Fuzzifier 

Following the previous discussion on the impact of fuzzifier on membership functions, it 

is understood that the desirable shape of the membership function could be reached via 

fine-tuning the fuzzifier. However, there is still no robust theoretical way to find the 

optimal value for this exponent. It seems that the determination of the fittest value is 

highly dependent on the characteristics of the problem. Here, an optimization process in 

which the performance of NNDFR is set as the target function can deliver the optimal 

value for the fuzzifier. First, the accuracy of the estimation is calculated via an error 

index. Then, the selected optimization technique changes the values of fuzzifier within a 

pre-defined range and measures the error for each case. And finally, the scenario with the 

least performance error is considered the final solution. 

3.3.2.1 Number of Clusters 

The other parameter required for the clustering is an initial value for the number of 

clusters. Given that in NNDFR the number of clusters defines the number of rules, an 

improper determination of the initial value can significantly distort the fitness of the 

model. Thus, an optimization on this parameter can make a reasonable compromise 

between the complexity and efficiency of the model. Similar to the fuzzifier, this 



63 

 

parameter, too, needs to be subject to optimization, within a pre-defined range, in order to 

find the best possible structure for NNDFR. 

3.3.2.2 Genetic Optimization 

Conceivably, separate optimizations of these two parameters, i.e. the fuzzifier and the 

number of clusters, may not lead to a global optimum. Thus, the global optimization 

requires a concurrent consideration of both parameters, for which purpose the genetic 

algorithm can be used. In this optimization process, each individual, i.e. chromosome, 

consists of two parameters, i.e. genes, namely “fuzzifier” and “the number of clusters”. 

Each member of the population assumes a combination of the parameters and accordingly 

forms the structure of NNDFR. All structures are trained with the same training data set 

and their finesses are evaluated comparatively, using the MSE of the NNDFR system as 

the evaluation metric. The GA iterates until the termination condition is satisfied. A 

specific number of generations can be used as the stopping criterion. In this case, once 

the maximum number of generations is reached, the highest ranked individual is adopted 

as the final solution. The final solution represents the best layout of the model based on 

the inherent features of the provided data. Figure 3-8 illustrates a schematic 

representation of a chromosome in this optimization process. 

Individual (Chromosome) 
Number of Clusters Fuzzifier 

Figure 3-8: Schematic Representation of a Chromosome 
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The following sections describe the selection, crossover, and mutation techniques that are 

used in this framework. 

Selection Algorithm 

Before the next generation is reproduced, a method must be selected to choose suitable 

parents. The raw fitness values cannot be used by the selection function. Thus, a fitness 

scaling is required to transform these fitness values to some scaled values that signify the 

importance of each individual in the selection process. The selection function works in a 

way that chromosomes with the greater scaled values have a higher chance of selection.  

(i) Rank Scaling 

The range of the scaled values has an important role in the efficiency of the genetic 

optimization. If this range is too wide, chromosomes with the higher scaled values 

dominate the reproduction process and prevent the optimization from searching other 

areas of the solution domain. On the contrary, if the range is too narrow, the chance of 

selection is almost equal, and consequently the optimization will be time-consuming 

(Mathworks 2012). “Rank Scaling” is the most common fitness scaling function method 

that scales the individuals based on their position in the sorted list of individuals after the 

fitness evaluation. This method (1) scales an individual with the rank n to a value 

proportional to  
√ 

; and (2) scales the entire population’s values such that the scaled 

values add up to the number of parents needed for reproduction 
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(ii) Stochastic Uniform 

Stochastic uniform is a selection function that assumes a line with different sections, each 

of which holding a length proportional to the scaled value of that parent (Mathworks 

2012). The algorithm, then, moves on the line with equal steps. At each step, the 

algorithm picks up the parent corresponding to the section it lands on. Figure 3-9 depicts 

this process clearly.  

 

Figure 3-9: Stochastic Uniform Selection 

F represents the total length of all scaled values, n represents the rank of each individual, 

and N represents the number of desired parents. Start is a random margin for the first 

selection. 

(iii) Crossover Algorithm 

The method employed for the crossover in this framework is called intermediate 

crossover. It reproduces children through a weighted combination of involved parents.  
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This method is only applicable to real populations. The offspring is produced based on 

the Equation 17. 

                                      Eq. (17) 

 

Where the ratio α is a random number chosen within the range [-i,1+i]. if i=0, then, all 

children lie between the parents. In better words, children are located inside a hypercube 

bounded by the parents on its corners. For α higher than 0, algorithm can go beyond the 

hypercube of parents and reproduces offspring in that area. 

 

Figure 3-10: Intermediate Crossover 

Mutation Algorithm 

The mutation algorithm that is selected in this framework is called Adaptive Feasible. 

This algorithm examines the success of mutation in the last generation, and thus directs 

the algorithm towards success-prone mutations. In this method, genes are mutated with 

different probabilities. These probabilities are set on a line, and then randomly generated 

numbers go through this line and select an agreed number of genes for the mutation. 

-i 

Area of Parents 
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Elite Transfer 

This option in genetic algorithm allows the best individuals in one generation migrate to 

the next generation without any changes to the structure of its chromosome. These 

individuals are called elite children. The parameter “elite count” defines the number of 

desired elite children in each generation. This value should be selected with discretion, as 

the  high values of elite count lead to the dominancy of fittest individuals, which, in turn, 

makes the search less effective (Mathworks 2012).  

3.3.3 Hybrid Approach of Modeling 

In this phase, the model is complemented by the “Hybrid Approach” technique, which 

enables the system to accept both crisp values and linguistic terms. In this method, first a 

set of fuzzy variables is defined for each variable that can be explained linguistically. 

These fuzzy sets are then designed based on the experts’ opinions. The developed model 

uses the given fuzzy sets whenever linguistic explanations are used for these variables.  

When system runs, linguistic terms are transformed to a set of intervals. These intervals 

can be converted to a finite number of discrete points which properly represent the 

intervals. The resulting discrete points, along with the crisp inputs, are fed to the model to 

build the output membership function as the system’s output. Figure 3-11 shows the 

required procedure for this section. 
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In this framework, each parameter’s intervals at each level of α are decomposed into a 

specific number of discrete points and then the model is run for all the possible 

combinations of the inputs. In this way, all the possibilities are checked and the output 

fuzzy set is approximated. Figure 3-12 shows this procedure schematically.    

 

 

Figure 3-12: Hierarchy Of Alpha-Cut Technique, Where Pi,j Is the Jth Discrete Point 

of the  Ith Fuzzy Input Variable 

3.3.3.2 Defuzzification 

It is necessary to interpret the output fuzzy set with a single crisp value that represents the 

result of the modeling. To this end, it is required to defuzzify this fuzzy set. The most 

common approach for the difuzzification is centroid. However, because of the nonlinear 

nature of most of the construction models, output fuzzy sets usually do not have a 

symmetric or known shape. This means that the final output cannot be acquired through a 

straightforward mathematical equation. The only way is to resort to the original concept 
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of finding the center of a generic shape. The centroid of a plane shape S can be calculated 

through (1) dividing the shape into smaller and easier-to-compute sections, e.g. S1, S2, …, 

Sn; (2) finding their respective centroids, e.g. C1, C2, …, Cn; and then (3) finding the final 

centroid using Equation 20. 

   
∑     

∑  
    

∑     

∑  
   Eq. (20) 

Where Cx and Cy denote the x-coordinate and y-coordinate, respectively. In the same 

manner, the trace produced by the alpha-cut technique can be divided into a finite number 

of trapezoids and its centroid can be measured using the aggregation. Figure 3-13 

illustrates this procedure and its corresponding equation. 
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Figure 3-13: Defuzzification Process 
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3.3.3.3 Output Possibility Calculation 

As explained in the literature review, based on the possibility theory,  ∏    denotes the 

possibility of a specific event A, where ∏    is defined as shown in Equation 21 

(Guyonnet et al. 2002). 

∏                 Eq. (21) 

Where      is the membership function of the variable X and A is a possible event. In this 

context, the possibility of having a productivity rate less than a specific threshold can be 

of interest. Regarding the previous equation, the possibility of an output (F) being less 

than the threshold T is calculated using Equation 22. 

                      Eq. (22) 

Where   (u) is the membership function of the variable u and T is an upper bound for 

variable u. Equation 22 indicates that the possibility of an output (F) being less than the 

threshold T, equals the maximum of the membership values for all productivities less 

than threshold T.  

3.4 VERIFY AND VALIDATE THE SYSTEM USING REAL DATA  

The developed model must be verified and validated through a real case study before put 

to the implementation. The accuracy of this innovative system can be assessed through 

comparing its outcomes with the other existing off-the-shelf models and techniques. For 

this purpose, a simple ANN, ANFIS, conventional NNDFR, and our Genetically 
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Optimized NNDFR will be fed with the same input data. The development procedure of 

the aforementioned systems will be briefly described and then, the reasons and the causes 

of any difference in the performance and the accuracy of their modeling will be analyzed 

and discussed. Furthermore, GA will check the efficiency and soundness of the model 

through testing dataset of the case study at the end of each fitness evaluation. This fitness 

evaluation will be executed by comparing the outcomes of the model and actual or 

expected outcomes.  

3.5 COMPUTATIONS  

The proposed model cannot be developed without the application of software that 

provides strong basis for both complex calculations and programming tasks.  MATLAB, 

as a fourth-generation programming language, is a numerical computing platform that 

can satisfy these requirements. Appendix B presents s a detailed account of all the codes 

and programming done in MATLAB. The written codes, in accordance with the 

hierarchy of system development, have three main phases. Phase I is related to the main 

structure of NNDFR, which, in turn, includes two sub-phases for training the ANN and 

implementing the Fuzzy Inference System. Phase II addresses the optimization of the 

system parameters through the application of GA. The most crucial task in this part is to 

match the first and second phases. This involves the definition of NNDFR parameters and 

evaluation of NNDFR fitness by GA. Phase III is dedicated to implementing the hybrid 

approach of modeling that consists of the codes for alpha-cut and difuzzification 

processes. 
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CHAPTER 4: DATA COLLECTION 

4.1 CHAPTER OVERVIEW 

This chapter aims at introducing the case study project, the data collection process and 

the description of the processed data. 

4.2 PROJECT DEFINITION 

The eighteen-month long construction of Engineering, Computer Science and Visual Arts 

Complex of Concordia University was monitored using field observations and data 

collection. This 17-storey building, with a surface area of 86,000 square meters, is 

located at the heart of downtown in Montreal. For the case study of this research, the 

concrete pouring operations are scrutinized. 

4.3 DATA COLLECTION PROCEDURE 

Data collection is the act of gathering information about certain variables in order to 

examine hypotheses, answer research questions, and evaluate results. A part of data, used 

in this chapter, was used by Khan (2005) and Wang (2005) for studying the labor 

productivity. These researchers analyzed and selected the factors that affect the 

productivity. The rest of data are extracted from data records of World Wide Websites: 

 Infrastructure Canada  

 The Weather Networks 
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 Weather Spark 

Figure 4-1 shows the selected variables and their classifications. The first group, i.e. 

weather, includes temperature, humidity, wind speed and precipitation. The second group 

is the crew variables and incorporates gang size and labor percentage. The project 

variables, which point out the operational details of construction process, are classified 

under the third group and include work type, floor level and work method. Several 

qualitative factors are also considered in each group so that their impacts on the 

productivity estimation can be studied along with the quantitative factors. The description 

and quantification method of all variables are presented in Table 4-1. 

 

Figure 4-1: Hierarchy of the Considered Variables  
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Table 4-1: Variable Descriptions 

 
Variables Description 

1 Temperature (ºC) Daily average of eight working hours 

2 Humidity (%) Daily average of eight working hours 

3 Precipitation Reported in terms of four numerical values: No precipitation = 0, Light rain = 1, 
Rain = 2, and Snow = 3 

4 Wind Speed 
(km/h) Daily average of eight working hours 

5 Gang Size 
(workers) Number of people in the gang 

6 Labor Percentage 
(%) The percentage of the labor (non-skilled workers) in the gang 

7 Work Type Reported in terms of activity type: Slabs= 1 and Walls = 2 

8 Floor Level The floor number 

9 Work Method Crane and bucket arrangement=1 and Pumping=2 

10 Daily Productivity 
(m3/man-hour) 

Total cubic meters done during the day divided  
by the gang size and working hours 

 

4.4 CONCRETE POURING PROCESS 

According to Table 4-1, there are six quantitative variables and three qualitative variables 

that affect the level of productivity in the concrete pouring process. The qualitative 

factors, i.e. precipitation, work type and work method, were converted to numbers based 

on the provided descriptions in Table 4-1. The quantification of the variables is based on 

the expert opinion. The quantitative variables, including temperature, humidity, wind 

speed, gang size, labor percentage and floor level, are used as measured at the site or 

gathered from referenced sources, such as the weather network. There are 131 data points 

that are used in the modeling and validation phases. Table 4-2 shows a sample of 

concrete pouring data points. 
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Table 4-2: A Sample of Concrete Pouring Data 

Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 
-8 87 2 14.2 22 36 1 3 1 1.27 
-8 87 2 14.2 23 30 2 3 1 1.14 

-12.5 54 0 5.2 21 38 1 3 1 1.17 
-12.5 54 0 5.2 20 30 2 3 1 1.04 
-16 55 0 6 23 35 1 3 1 1.16 
-15 51 2 18.7 17 29 2 4 1 1.99 
-15 51 2 18.7 20 40 1 4 1 1.1 
-8.5 58 0 26.5 18 33 2 4 1 1 
-4 87 2 3.6 22 36 1 4 1 1.55 

-14 42 0 10 23 35 2 4 1 1.26 
-14.5 42 0 7.5 19 33 2 4 1 1.14 
-14.5 42 0 7.5 16 37 1 4 1 1.27 
1.5 85 0 9.4 21 33 1 5 1 1.45 
-0.5 53 0 7.5 20 30 1 5 1 1.51 
-0.5 53 0 7.5 22 36 2 5 1 1.37 

 Precipitation: No precipitation = 0, Light rain = 1, Rain = 2, and Snow = 3 
 Labor Percentage: The percentage of the labor (non-skilled workers) in the gang 
 Work Type: Reported in terms of activity type: Slabs= 1 and Walls = 2 
 Work Method: Crane and bucket arrangement=1 and Pumping=2 

 

4.5 CLASSIFICATION 

In this part, the distribution of the data points in the data space is scrutinized. The data 

space is examined to find clear and well-identifiable clusters. For this purpose, the dataset 

is partitioned to different numbers of clusters and a set of validity indices are used to 

compare the resulting options. The values of the highest ranked options represent a better 

separation and compactness in the clusters. In other words, the number of clusters in the 

highest ranked options indicates the most natural and the clearest classification. The 

following indices are selected to assess the resulting clusters based on the internal 

criteria: 
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4.5.1 Dunn Index 

The Dunn index (Dunn 1974) is proposed to identify the compact and well-separated 

clusters. For each partitioning, the index can be defined according to Equation 23 (Dunn 

1973). 

              {             {
      

              
}}  Eq. (23) 

Where        represents any measures of distance between two clusters, such as the 

distance between the centroids of the clusters; and       represents any measure of 

distance within a cluster, such as the distance between any pair of elements in the 

cluster  . Based on the definition of the Dunn’s index, higher values of the index are 

more favorable. 

4.5.2 Davies-Bouldin Index 

The Davies-Bouldin index (Davies and Bouldin 1979) represents the average of 

similarity between each cluster and its most similar one. Equation 24 defines this index 

(Davies and Bouldin 1979). 

     
 

  
∑              (

     

        
)  

                                                        Eq. (24) 

Where     is the number of clusters and    is the centroid of the cluster x .    represents 

the average distance between all the elements in the cluster and the centroid   , and 

        indicates the distance between different centroids. Contrary to the Dunn index, 

the lower values of Davies-Bouldin index are more favorable. 
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4.5.3 Internal Validation 

Since Dunn and Davies-Bouldin validity indices are generally designed for hard clusters, 

the data set needs to be re-clustered by a k-means algorithm. The data space is divided to 

different number of clusters in a range between 2 to 10. Internal validity indices are 

calculated and then plotted as is shown in Figure 4-2. As shown in this Figure, the highest 

value for Davies-Bouldin and the lowest value for Dunn index are achieved when 3 

clusters are used. In other words, the desired separation and compactness among the 

dataset is attained by 3 clusters.  

 

 

Figure 4-2: Calculated Values for Internal Validity Indices 

4.6 DESCRIPTIVE DATA ANALYSIS 

In this section, statistical measures are used to put the distribution characteristics of the 

variables’ data into perspective. Table 4-3 presents a set of common statistical 

parameters, which help compare the variables’ data in the case study. Additionally, 
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parameters such as Mean, Median and Standard Deviation will be further used for the 

calculation of the indices like Mean Squared Error. 

Table 4-3: Statistical Measures of the Data 

Statistical 
Index 

Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang Size 
(workers) 

Floor 
Level 

Mean 5.16 66.37 13.35 17.16 34.85 10.60 
Standard 
Deviation 11.19 16.99 5.90 4.75 3.53 3.82 

Skewness 0.10 0.02 0.55 -0.60 0.48 -0.42 
Kurtesis 2.13 1.97 2.81 1.99 2.81 2.22 

Min -17 36 3 8 29 3 
1st Quartile -4 53 8.7 12 33 8 

Median 4.5 69 13 19 35 11 
3rd Quartile 14.75 78.75 18 21 37 13 

Max 25 97 29 24 44 17 
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CHAPTER 5: MODEL DEVELOPMENT AND 

IMPLEMENTATION 

5.1 CHAPTER OVERVIEW 

In this chapter, the methodology proposed in chapter 3 is implemented and applied to the 

case study in order to verify the developed model. As explained in the previous chapter, 

the dataset is gathered from the construction of Engineering, Computer Science and 

Visual Arts complex of Concordia University. The dataset consists of several quantitative 

and qualitative variables that affect the productivity of concrete pouring operations.  

With respect to the methodology, the implementation of the framework involves three 

main phases. The first phase is to train the model and then analyze and process the data 

points. Next, in the second phase, the proposed structure of the model needs to be fine-

tuned with the GA. The third phase is to implement the “hybrid approach” of modeling in 

the previously fine-tuned structure. Figure 5-1 illustrates these phases and how they are 

correlated to the defined objectives. 

The collected data is divided into two sections to be used separately for the training and 

validation. The bigger set, which is used for the training, shapes the main structure of the 

model. The structure of the system is defined based on the inherent features of the data. 

The validation set is, then, used to verify the accuracy of the model. 
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Figure 5-1: Model Development and Implementation Flowchart
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5.2 TRAINING NNDFR 

As explained in the chapter 3, the development and optimization stages are integrated in a 

single step so that the accuracy of the model is checked for each possible solution. Within 

this step, the optimization module generates several combinations of modeling 

parameters and for each one of these combinations a model is structured and trained. This 

section is dedicated to showing how the model is developed in a microcosm, i.e. using a 

small sample of parameters. 

Table 5-1 presents a sample of data points that include the independent variables, e.g. 

Temperature, Humidity, Wind Speed, etc., and the dependent variables, e.g. Daily 

Productivity. Complete data set can be found in the APPENDIX A. It is assumed that the 

daily productivity of the concrete pouring process is affected by all these variables. 

Therefore, the main idea is to develop a model to connect the input data space to the 

output data space based on the logical correlations driven from the historical data.  

5.2.1 Clustering  

Training procedure starts with the clustering. The essence of this concept is to split a 

domain into several sub-domains, and build separate functional relationships between 

these sub-domains and their corresponding targets. The rationale behind this approach is 

that “the points located in the same cluster are likely to be governed by a similar rule”. 

First, the data set is divided to two parts for training and validation, containing 117 (90 

%) and 14 (10 %) data points, respectively. This classification is shown in APPENDIX 
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A. Then, the training fragment is divided to three clusters using the FCM algorithm. The 

fuzzifier is set to “2.00”. 

Table 5-1: A Sample of Concrete Pouring Data 

Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

-8 87 2 14.2 22 36 1 3 1 1.27 
-8 87 2 14.2 23 30 2 3 1 1.14 

-12.5 54 0 5.2 21 38 1 3 1 1.17 
-12.5 54 0 5.2 20 30 2 3 1 1.04 
-16 55 0 6 23 35 1 3 1 1.16 
-15 51 2 18.7 17 29 2 4 1 1.99 
-15 51 2 18.7 20 40 1 4 1 1.1 
-8.5 58 0 26.5 18 33 2 4 1 1 
-4 87 2 3.6 22 36 1 4 1 1.55 

-14 42 0 10 23 35 2 4 1 1.26 
-14.5 42 0 7.5 19 33 2 4 1 1.14 
-14.5 42 0 7.5 16 37 1 4 1 1.27 
1.5 85 0 9.4 21 33 1 5 1 1.45 
-0.5 53 0 7.5 20 30 1 5 1 1.51 
-0.5 53 0 7.5 22 36 2 5 1 1.37 

 Precipitation: No precipitation = 0, Light rain = 1, Rain = 2, and Snow = 3 
 Labor Percentage: The percentage of the labor (non-skilled workers) in the gang 
 Work Type: Reported in terms of activity type: Slabs= 1 and Walls = 2 
 Work Method: Crane and bucket arrangement=1 and Pumping=2 

 
Table 5-2 and Table 5-3 show the result of the clustering. Table 5-2 presents the 

coordinates of the cluster centroids and Table 5-3 lists the index of each data point in 

relation to its corresponding degree of membership to the defined clusters. It is worth 

reiterating that the summation of all degrees of membership for a data point equals one.  

Table 5-2: Cluster Centers Generated by FCM 

Centers Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

C1 3 79 0 13 11 37 1 12 2 
C2 21 71 0 10 21 33 1 13 2 
C3 5.5 46 0 12 19 33 2 10 1 
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Table 5-3: The Result of FCM  

Index C1 C2 C3 Index C1 C2 C3 
1 7.91E-04 9.99E-01 2.39E-04 60 9.99E-01 2.30E-04 1.07E-03 
2 2.25E-03 9.97E-01 6.96E-04 61 9.92E-01 7.45E-03 3.73E-04 
3 1.41E-03 1.79E-03 9.97E-01 62 1.00E+00 4.63E-06 7.08E-06 
4 1.12E-03 1.26E-03 9.98E-01 63 9.98E-01 2.41E-03 4.12E-05 
5 2.35E-03 4.01E-03 9.94E-01 64 1.00E+00 1.81E-05 1.20E-05 
6 5.12E-04 4.91E-04 9.99E-01 65 1.00E+00 2.15E-04 1.52E-05 
7 7.83E-04 8.32E-04 9.98E-01 66 1.00E+00 3.49E-04 7.28E-05 
8 1.02E-02 9.66E-03 9.80E-01 67 1.00E+00 1.87E-05 1.73E-06 
9 1.08E-03 9.99E-01 1.99E-04 68 1.00E+00 6.46E-05 1.86E-04 

10 1.69E-04 8.29E-05 1.00E+00 69 1.00E+00 7.50E-05 3.00E-05 
11 1.83E-04 1.01E-04 1.00E+00 70 1.00E+00 1.53E-04 7.07E-05 
12 2.39E-04 1.47E-04 1.00E+00 71 9.99E-01 4.98E-04 3.76E-04 
13 4.41E-04 6.32E-05 9.99E-01 72 1.00E+00 6.63E-05 6.82E-06 
14 5.87E-04 8.91E-05 9.99E-01 73 1.00E+00 1.49E-04 1.92E-05 
15 3.36E-05 5.82E-06 1.00E+00 74 1.00E+00 9.97E-06 3.85E-05 
16 6.17E-04 9.99E-01 1.29E-04 75 1.00E+00 3.64E-05 2.14E-06 
17 5.28E-05 1.00E+00 1.19E-05 76 1.00E+00 1.98E-04 1.58E-05 
18 1.80E-03 9.98E-01 1.05E-04 77 9.94E-01 5.37E-03 2.79E-04 
19 4.41E-04 1.00E+00 2.63E-05 78 9.98E-01 2.24E-04 1.70E-03 
20 3.59E-04 1.00E+00 1.92E-05 79 1.00E+00 5.26E-06 1.38E-06 
21 1.13E-03 9.99E-01 4.55E-05 80 9.99E-01 1.38E-03 4.03E-05 
22 1.43E-03 9.99E-01 4.21E-05 81 9.99E-01 1.25E-03 1.00E-04 
23 5.01E-04 9.99E-01 1.37E-05 82 9.99E-01 8.99E-04 4.59E-05 
24 2.40E-09 4.59E-10 1.00E+00 83 1.00E+00 3.05E-04 7.82E-05 
25 1.97E-07 3.55E-08 1.00E+00 84 1.00E+00 1.90E-05 4.47E-05 
26 3.59E-04 1.84E-04 9.99E-01 85 2.79E-03 9.97E-01 2.13E-05 
27 2.95E-04 1.56E-04 1.00E+00 86 9.62E-01 3.31E-02 4.38E-03 
28 3.35E-05 4.32E-06 1.00E+00 87 1.00E+00 1.24E-04 1.92E-04 
29 3.31E-05 4.26E-06 1.00E+00 88 9.94E-01 5.41E-03 2.63E-04 
30 1.12E-04 2.02E-05 1.00E+00 89 9.91E-01 8.28E-03 4.75E-04 
31 2.65E-05 5.86E-06 1.00E+00 90 1.44E-02 9.85E-01 4.62E-04 
32 2.61E-05 5.78E-06 1.00E+00 91 4.97E-03 9.95E-01 1.83E-04 
33 1.39E-05 3.34E-06 1.00E+00 92 6.49E-03 9.93E-01 4.64E-04 
34 2.65E-03 7.91E-05 9.97E-01 93 1.97E-03 9.98E-01 1.02E-04 
35 7.79E-04 2.06E-05 9.99E-01 94 1.89E-02 9.81E-01 2.61E-04 
36 5.70E-04 1.73E-05 9.99E-01 95 9.99E-04 9.99E-01 4.02E-05 
37 2.79E-04 8.00E-06 1.00E+00 96 9.81E-01 1.83E-02 7.44E-04 
38 1.43E-03 9.99E-01 2.87E-05 97 2.89E-02 9.71E-01 5.34E-04 
39 1.05E-04 1.00E+00 2.02E-06 98 3.51E-04 1.00E+00 1.20E-05 
40 6.66E-04 2.58E-04 9.99E-01 99 1.24E-02 9.87E-01 2.03E-04 
41 6.57E-04 2.55E-04 9.99E-01 100 1.61E-04 1.00E+00 5.03E-06 
42 3.37E-04 2.51E-05 1.00E+00 101 1.51E-05 1.00E+00 3.78E-07 
43 3.28E-04 2.49E-05 1.00E+00 102 4.14E-04 1.00E+00 1.75E-05 
44 1.39E-03 9.99E-01 3.07E-05 103 2.38E-02 9.74E-01 1.73E-03 
45 1.05E-02 3.97E-04 9.89E-01 104 2.47E-03 9.97E-01 1.40E-04 
46 1.08E-02 3.84E-04 9.89E-01 105 1.09E-03 5.64E-04 9.98E-01 
47 1.84E-02 2.70E-04 9.81E-01 106 8.70E-03 9.83E-01 7.93E-03 
48 1.82E-02 2.83E-04 9.81E-01 107 5.45E-04 9.99E-01 1.96E-04 
49 2.91E-03 1.12E-04 9.97E-01 108 2.14E-05 1.00E+00 2.45E-06 
50 2.89E-03 1.12E-04 9.97E-01 109 1.09E-02 9.88E-01 7.32E-04 
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Index C1 C2 C3 Index C1 C2 C3 
51 2.50E-02 4.66E-04 9.75E-01 110 6.74E-05 1.00E+00 5.05E-06 
52 9.97E-01 3.52E-04 2.17E-03 111 2.78E-02 9.55E-01 1.69E-02 
53 1.00E+00 1.66E-04 4.44E-06 112 4.71E-03 9.91E-01 3.97E-03 
54 9.94E-01 1.46E-03 4.45E-03 113 7.72E-03 7.33E-03 9.85E-01 
55 1.00E+00 4.90E-05 5.50E-05 114 2.07E-02 9.78E-01 1.57E-03 
56 9.97E-01 4.64E-04 2.31E-03 115 4.92E-03 2.95E-03 9.92E-01 
57 9.96E-01 3.98E-04 3.36E-03 116 2.64E-02 1.39E-03 9.72E-01 
58 9.98E-01 1.70E-04 1.62E-03 117 2.28E-02 1.00E-03 9.76E-01 
59 9.98E-01 1.86E-03 1.99E-05     

 

5.2.2 Multi-dimensional Membership Function 

In this step, in order to automate the process of fuzzification, an ANN is trained between 

the input variables and the degrees of membership generated by the FCM. 80 percent of 

the data is used to train the network and the remaining 20 percent are used for testing, i.e. 

validation. The Bayesian Regularization is selected as the training algorithm. After 

several trial and errors, a network with three layers shows the best performance. The 

network consists of 9 neurons in the input layer, i.e. Hidden 1, 10 neurons in the hidden 

layer, i.e. Hidden 2, and 3 neurons in the output layer. Figure 5-2 schematically depicts 

this structure. 

 

Figure 5-2: Structure of the Membership ANN 
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Figure 5-3 shows the information related to the training task. According to the results, the 

training stops at the MSETrain of 1.8e-07 and the MSETest of 9.66e-04. The model is then 

saved to be later embedded in the fuzzification section of the NNDFR. So, each time 

used, this membership ANN generates some weights for the consequent ANNs and 

controls the accuracy of the estimation. 

 

Figure 5-3: Reported Information of the Training Procedure 
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5.2.3 Consequent Neural Networks 

A different set of ANN are assigned to transform the independent variables to dependent 

variables. These functional relationships are established using the learning ability of 

ANN. If the NNDFR is considered as a Takagi-Sugeno type fuzzy model, “Multi-

dimensional Membership Functions” and “Consequent Neural Networks” constitute the 

IF part and the THEN part of the fuzzy model, respectively. Duo to the fuzzy nature of 

FCM, each data point belongs to all the clusters, but with different degrees of 

membership. However, the consequent ANNs need separate training data sets. To resolve 

this problem, each data point will be tagged to the cluster in which it has the highest 

degree of membership. 

Table 5-4 separately tabulates the data provided to the different consequent ANNs. 

Bayesian Regularization is selected for the training of the consequent ANNs. After 

several trial and errors, a three-layer network shows the best performance. The network 

comprises 9 neurons in the input layer, i.e. Hidden 1, 10 neurons in the hidden layer, i.e. 

Hidden 2, and 1 neuron in the output layer. Figure 5-4 schematically shows this structure. 

 

Figure 5-4 : Structure of Consequent Neural Networks 
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Table 5-4: Separate Sets of Training Data Fed To Consequent Neural Networks 

In
de

x   NN1  

In
de

x NN2 

In
de

x NN3 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

52 9.97E-01 3.52E-04 2.17E-03 1 7.91E-04 9.99E-01 2.39E-04 3 1.41E-
03 1.79E-03 9.97E-01 

53 1.00E+00 1.66E-04 4.44E-06 2 2.25E-03 9.97E-01 6.96E-04 4 1.12E-
03 1.26E-03 9.98E-01 

54 9.94E-01 1.46E-03 4.45E-03 9 1.08E-03 9.99E-01 1.99E-04 5 2.35E-
03 4.01E-03 9.94E-01 

55 1.00E+00 4.90E-05 5.50E-05 16 6.17E-04 9.99E-01 1.29E-04 6 5.12E-
04 4.91E-04 9.99E-01 

56 9.97E-01 4.64E-04 2.31E-03 17 5.28E-05 1.00E+00 1.19E-05 7 7.83E-
04 8.32E-04 9.98E-01 

57 9.96E-01 3.98E-04 3.36E-03 18 1.80E-03 9.98E-01 1.05E-04 8 1.02E-
02 9.66E-03 9.80E-01 

58 9.98E-01 1.70E-04 1.62E-03 19 4.41E-04 1.00E+00 2.63E-05 10 1.69E-
04 8.29E-05 1.00E+00 

59 9.98E-01 1.86E-03 1.99E-05 20 3.59E-04 1.00E+00 1.92E-05 11 1.83E-
04 1.01E-04 1.00E+00 

60 9.99E-01 2.30E-04 1.07E-03 21 1.13E-03 9.99E-01 4.55E-05 12 2.39E-
04 1.47E-04 1.00E+00 

61 9.92E-01 7.45E-03 3.73E-04 22 1.43E-03 9.99E-01 4.21E-05 13 4.41E-
04 6.32E-05 9.99E-01 

62 1.00E+00 4.63E-06 7.08E-06 23 5.01E-04 9.99E-01 1.37E-05 14 5.87E-
04 8.91E-05 9.99E-01 

63 9.98E-01 2.41E-03 4.12E-05 38 1.43E-03 9.99E-01 2.87E-05 15 3.36E-
05 5.82E-06 1.00E+00 

64 1.00E+00 1.81E-05 1.20E-05 39 1.05E-04 1.00E+00 2.02E-06 24 2.40E-
09 4.59E-10 1.00E+00 

65 1.00E+00 2.15E-04 1.52E-05 44 1.39E-03 9.99E-01 3.07E-05 25 1.97E-
07 3.55E-08 1.00E+00 

66 1.00E+00 3.49E-04 7.28E-05 85 2.79E-03 9.97E-01 2.13E-05 26 3.59E-
04 1.84E-04 9.99E-01 

67 1.00E+00 1.87E-05 1.73E-06 90 1.44E-02 9.85E-01 4.62E-04 27 2.95E-
04 1.56E-04 1.00E+00 

68 1.00E+00 6.46E-05 1.86E-04 91 4.97E-03 9.95E-01 1.83E-04 28 3.35E-
05 4.32E-06 1.00E+00 

69 1.00E+00 7.50E-05 3.00E-05 92 6.49E-03 9.93E-01 4.64E-04 29 3.31E-
05 4.26E-06 1.00E+00 

70 1.00E+00 1.53E-04 7.07E-05 93 1.97E-03 9.98E-01 1.02E-04 30 1.12E-
04 2.02E-05 1.00E+00 

71 9.99E-01 4.98E-04 3.76E-04 94 1.89E-02 9.81E-01 2.61E-04 31 2.65E-
05 5.86E-06 1.00E+00 

72 1.00E+00 6.63E-05 6.82E-06 95 9.99E-04 9.99E-01 4.02E-05 32 2.61E-
05 5.78E-06 1.00E+00 

73 1.00E+00 1.49E-04 1.92E-05 97 2.89E-02 9.71E-01 5.34E-04 33 1.39E-
05 3.34E-06 1.00E+00 

74 1.00E+00 9.97E-06 3.85E-05 98 3.51E-04 1.00E+00 1.20E-05 34 2.65E-
03 7.91E-05 9.97E-01 

75 1.00E+00 3.64E-05 2.14E-06 99 1.24E-02 9.87E-01 2.03E-04 35 7.79E-
04 2.06E-05 9.99E-01 

76 1.00E+00 1.98E-04 1.58E-05 100 1.61E-04 1.00E+00 5.03E-06 36 5.70E-
04 1.73E-05 9.99E-01 

77 9.94E-01 5.37E-03 2.79E-04 101 1.51E-05 1.00E+00 3.78E-07 37 2.79E-
04 8.00E-06 1.00E+00 

78 9.98E-01 2.24E-04 1.70E-03 102 4.14E-04 1.00E+00 1.75E-05 40 6.66E-
04 2.58E-04 9.99E-01 

79 1.00E+00 5.26E-06 1.38E-06 103 2.38E-02 9.74E-01 1.73E-03 41 6.57E-
04 2.55E-04 9.99E-01 

80 9.99E-01 1.38E-03 4.03E-05 104 2.47E-03 9.97E-01 1.40E-04 42 3.37E-
04 2.51E-05 1.00E+00 

81 9.99E-01 1.25E-03 1.00E-04 106 8.70E-03 9.83E-01 7.93E-03 43 3.28E-
04 2.49E-05 1.00E+00 
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82 9.99E-01 8.99E-04 4.59E-05 107 5.45E-04 9.99E-01 1.96E-04 45 1.05E-
02 3.97E-04 9.89E-01 

83 1.00E+00 3.05E-04 7.82E-05 108 2.14E-05 1.00E+00 2.45E-06 46 1.08E-
02 3.84E-04 9.89E-01 

84 1.00E+00 1.90E-05 4.47E-05 109 1.09E-02 9.88E-01 7.32E-04 47 1.84E-
02 2.70E-04 9.81E-01 

86 9.62E-01 3.31E-02 4.38E-03 110 6.74E-05 1.00E+00 5.05E-06 48 1.82E-
02 2.83E-04 9.81E-01 

87 1.00E+00 1.24E-04 1.92E-04 111 2.78E-02 9.55E-01 1.69E-02 49 2.91E-
03 1.12E-04 9.97E-01 

88 9.94E-01 5.41E-03 2.63E-04 112 4.71E-03 9.91E-01 3.97E-03 50 2.89E-
03 1.12E-04 9.97E-01 

89 9.91E-01 8.28E-03 4.75E-04 114 2.07E-02 9.78E-01 1.57E-03 51 2.50E-
02 4.66E-04 9.75E-01 

96 9.81E-01 1.83E-02 7.44E-04     
10
5 

1.09E-
03 5.64E-04 9.98E-01 

        11
3 

7.72E-
03 7.33E-03 9.85E-01 

        11
5 

4.92E-
03 2.95E-03 9.92E-01 

        11
6 

2.64E-
02 1.39E-03 9.72E-01 

        11
7 

2.28E-
02 1.00E-03 9.76E-01 

 

Similar to the membership ANNs, 80 percent of the data is used to train the network and 

the remaining 20 percent are used the testing, i.e. validation. Table 5-5 shows the 

performance of the trained networks for both the training and testing sets in terms of 

MSE. 

Table 5-5: Report of the Consequent ANN Training Algorithm 

 NN1 NN2 NN3 
Training Algorithm Bayesian Regularization 

MSETrain 2.23e-08 2.22e-3 1.09e-05 
MSETest 2.53e-2 5.16e-2 1.8e-2 

5.2.4 Validation 

At this point, the remaining 14 data points, which were reserved for the validation, are 

fed to the model. Each data point is separately injected to the consequent ANNs and the 

membership ANN as a vector. Each output of the membership ANN defines the 

effectiveness of the consequent ANN that is related to that cluster. Therefore, the output 
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of the model is a weighted average of all consequent ANNs. After forecasting the outputs 

based on the developed NNDFR model, the error of estimation should be calculated. The 

calculation method for the first data point of the testing sample is illustrated in the Figure 

5-5. In addition, the outcomes of the model are tabulated against the actual values of the 

productivity in Table 5-6.  

 

    
                                  

                    
       

 3

      
  

Figure 5-5: The Calculation Method in the Modified NNDFR Model 

5.3 GENETIC OPTIMIZATION 

Section 5.2 presented the NNDFR training process for a defined set of parameters, i.e. 

clustering number, fuzzifier. However, the best combination of the parameters that result 

in the lowest MSE needs to be identified. For this purpose, the GA searches the solution 

domain and evaluates all the combinations of the parameters for the best answer. In each 

generation and for each member of the population the training process is repeated and a 

NNDFR structure is created. Finally, the created sets of NNDFR structure are tested 
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through comparing their estimated outputs with the actual targets using MSE as the 

measure of the accuracy of the model.    

Table 5-6: Result of the Three-Cluster NNDFR Model 

Index 
Actual Daily 
Productivity 

(m3/man-hour) 

Estimated Daily 
Productivity 

(m3/man-hour) 
1 1.450 1.542 
2 1.250 1.411 
3 1.220 1.443 
4 1.350 1.393 
5 1.750 1.879 
6 1.730 1.804 
7 1.800 2.035 
8 1.970 2.193 
9 1.770 1.971 
10 1.340 1.426 
11 1.380 1.380 
12 1.440 1.501 
13 1.470 1.619 
14 1.360 1.566 

Within the optimization part, searching bounds for the number of clusters and fuzzifier 

are defined. The fuzzifier ranges from 1 to 3 and the number of clusters varies between 2 

to 10. The parameters used in the GA are shown in Table 5-7. 

Table 5-7: The Parameters of the GA 

Parameter Value/Type 
Fitness function MSE of NNDFR output 
Population size 30 
Number of generations 20 
Selection function Stochastic Uniform 
Elite count 2   
Crossover fraction 0.8 
Crossover function Intermediate Crossover (Ratio=1) 
Mutation function Adaptive Feasible 
Search bounds The number of clusters: [2,10]; Fuzzifier: (1,3] 
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Table 5-8 presents the winners of each generation based on the MSE, which was chosen 

as the fitness criterion. According to the table, from the fourth generation onward the 

algorithm has fixed the number of clusters and only modified the value of the fuzzifier. 

This indicates how the fuzziness of a hyper-surface membership function can influence 

the accuracy of the model. These optimized parameters result in the best fitness in terms 

of MSE, which is improved by 52 percent compared to the winner of first generation. The 

algorithm is terminated when maximum number of generations is reached, proposing 3 

clusters and a fuzzifier equivalent to 1.2513. The final winner with m=1.2513 implies that 

a typical NNDFR structure made up of K-Means algorithm (m=1) cannot deliver the best 

possible solution. 

Moreover, the optimum number of clusters attained by GA is confirmed by the best 

choice from the internal validation explained in Section  4.5.3. It can be concluded that 

the data points having more separate and compact clusters are more likely to follow the 

same functional relationship. In other words, the greater the resemblance of data points in 

a cluster, the better the system. Figure 5-6 plots the best and the mean penalty of different 

generations during the evolution process. This plot helps better comprehend the 

minimization trend. Table 5-9 encapsulates the detailed results of the Modified NNDFR 

model whose parameters are genetically optimized. According to the results, performance 

indices are calculated as shown in the set of Equations 25. 
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Table 5-8: The Results of GA 

 

 

 

Figure 5-6: The Lowest and Mean Penalty Values (MSE) Over Different 

Generations 

Generations 
Individuals 

MSE Clustering 
Number Fuzzifier 

1 3 1.8516 0.01954 
2 4 1.3957 0.01949 
3 4 1.3957 0.01949 
4 3 1.7288 0.01734 
5 3 1.4151 0.01484 
6 3 1.4151 0.01484 
7 3 1.4151 0.01484 
8 3 1.4151 0.01484 
9 3 1.4151 0.01484 
10 3 1.4687 0.01221 
11 3 1.4687 0.01221 
12 3 1.5054 0.00976 
13 3 1.5054 0.00976 
14 3 1.2513 0.00932 
15 3 1.2513 0.00932 
16 3 1.2513 0.00932 
17 3 1.2513 0.00932 
18 3 1.2513 0.00932 
19 3 1.2513 0.00932 
20 3 1.2513 0.00932 
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Table 5-9: Result of the Modified NNDFR Model  

(Fuzzifier=1.2513, Clustering Number=3) 

Index 
Actual Daily 
Productivity 

(m3/man-hour) 

Estimated Daily 
Productivity 

(m3/man-hour) 
1 1.450 1.466 
2 1.250 1.356 
3 1.220 1.243 
4 1.350 1.418 
5 1.750 1.874 
6 1.730 1.846 
7 1.800 1.894 
8 1.970 2.058 
9 1.770 1.793 
10 1.340 1.439 
11 1.380 1.476 
12 1.440 1.544 
13 1.470 1.586 
14 1.360 1.466 

 
 

        
∑          

   
   

  
        

  

         
∑          
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5.4 COMPARISON WITH OTHER METHODS 

The merits and superiority of the proposed model is more visible when its results are 

compared with the results of other common forecasting models. To this end, separate 

models with different logics were developed. A plausible comparison can be expected 

only when all the models are trained and tested with the same data. Thus, the same set of 

data used in case study, with the similar training and testing partitions, was fed to all the 

alternative models. In this section, the alternative models used are a simple feed-forward 

ANN, ANFIS and a conventional NNDFR.  

5.4.1 ANN 

This model is a typical feed-forward net that catch all independent variables and directly 

generates the productivity. To have an acceptable bed for the comparison, the model must 

be developed with its best performance. After several trial and errors, the best structure 

was found to be a three-layer feed-forward net, which has 9 neurons in the input layer, 11 

neurons in the hidden layer and 1 neuron in the output layer. Bayesian Regularization 

was selected as the learning algorithm. Since this algorithm increases the generalization 

ability of the network, a more accurate prediction is observed in the testing sample. 

Table 5-10 illustrates all the information regarding the trained ANN. The most important 

criterion in the comparison is MSETest, which indicates the level of accuracy of the 

model. However, in order to make any decisions, all the indices representing the 

efficiency of the model in both testing and training phases must be considered.  



96 

 

        Table 5-10: Result of Modeling with A Three-Layer Feed-Forward Net [9 11 1] 

 

Index 
Actual Daily 
Productivity 

(m3/man-hour) 

Estimated Daily 
Productivity 

(m3/man-hour) 
1 1.450 1.572 
2 1.250 1.559 
3 1.220 1.494 
4 1.350 1.515 
5 1.750 1.832 
6 1.730 1.984 
7 1.800 2.010 
8 1.970 2.100 
9 1.770 2.031 

10 1.340 1.533 
11 1.380 1.660 
12 1.440 1.666 
13 1.470 1.784 
14 1.360 1.514 

 

Index Value 

MSETrain 0.032 

MSETest 0.054 

MSEAverage 0.034 

AVP (%) 85.23 

AIP (%) 14.77 

 

5.4.2 ANFIS 

In this section, ANFIS is employed to model the data. MATLAB ANFIS TOOLBOX is 

used for the implementation of the model. Figure 5-7 shows a screenshot of the main 

window of ANFIS TOOLBOX. After loading the data, Fuzzy Inference System (FIS) 

must be generated through either Grid Partitioning or Subtractive Clustering. Within this 

stage, the number of clusters, or better say the number of fuzzy rules, is defined. 

Subtractive Clustering is selected as the operator and its parameters are presented in 

Table 5-11. Based on the defined parameters, Subtractive Clustering detected 63 clusters 

as the most appropriate number of clusters. In this neuro-fuzzy system, the number of 

rules is equal to the number of clusters, i.e. 63. Supplementary plots including the ANFIS 

structure and generated fuzzy rules are presented in APPENDIX A. As is shown in 

Figure 5-7 the model reaches a training MSE of 0.021 after 1000 epochs. Table 5-12 
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shows the estimated daily productivities against their corresponding actual values and the 

significant performance indexes. 

        Table 5-11: The Parameters of the Subtractive Clustering 

Parameter Value 

Influence Range 0.5 

Squash Factor 1.25 

Accept Ratio 0.5 

Reject Ratio 0.15 

 

 

Figure 5-7: Screenshot from the ANFIS Editor of MATLAB during Training 

Procedure 
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Table 5-12: Results of Modeling with ANFIS 

  

Index 
Actual Daily 
Productivity 

(m3/man-hour) 

Estimated Daily 
Productivity 

(m3/man-hour) 
1 1.450 1.508 
2 1.250 1.463 
3 1.220 1.370 
4 1.350 1.532 
5 1.750 1.906 
6 1.730 1.813 
7 1.800 2.021 
8 1.970 2.170 
9 1.770 1.995 

10 1.340 1.569 
11 1.380 1.422 
12 1.440 1.657 
13 1.470 1.637 
14 1.360 1.470 

 

Index Value 

MSETrain 0.021 

MSETest 0.032 

MSEAverage 0.022 

AVP (%) 89.06 

AIP (%) 10.94 

5.4.3 Conventional NNDFR 

This section presents the results of implementing a conventional NNDFR with three 

clusters. The idea behind the development of this model is to have another baseline for 

the comparison. This model has the same number of clusters as the proposed genetically 

optimized NNDFR but the fuzziness of its membership function is not controllable. The 

hyper-surface membership functions are trained based on K-Means clustering algorithm. 

In this structure, all the embedded ANNs have the same number of layers and neurons as 

the proposed modified NNDFR. In order to lay a fair ground for the comparison, the 

training algorithm is chosen to be Bayesian Regularization. Table 5-13 summarizes the 

results of this model. 
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Table 5-13: Result of Modeling with a Three-Cluster Conventional NNDFR 

 

Index 
Actual Daily 
Productivity 

(m3/man-hour) 

Estimated Daily 
Productivity 

(m3/man-hour) 
1 1.450 1.508 
2 1.250 1.250 
3 1.220 1.433 
4 1.350 1.529 
5 1.750 1.979 
6 1.730 1.825 
7 1.800 2.039 
8 1.970 2.121 
9 1.770 1.837 

10 1.340 1.593 
11 1.380 1.582 
12 1.440 1.619 
13 1.470 1.518 
14 1.360 1.467 

 

Index Value 

MSETrain 0.029 

MSETest 0.029 

MSEAverage 0.030 

AVP (%) 90.21 

AIP (%) 9.79 

5.4.4 Results and Comparison  

Figure 5-8 and Figure 5-9 demonstrate the comparison of the results of all models. As can 

be seen, the genetically optimized NNDFR has a clear edge in terms of performance, both 

in training and testing phase. Another considerable observation is that the error of this 

model in the learning and validation are very close to each other. This indicates how 

successful this model is in the generalization. In other words, the model refrains from 

memorizing the input-output mapping process and is able to perform an accurate 

generalization based on the learned relations. 

Although the three-clustered conventional NNDFR shows a satisfactory result in terms of 

generalization, it still has a lower accuracy compared to the modified NNDFR. It can be 

concluded that NNDFR models generally perform well in generalizing the recognized 

patterns.  
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*C-NNDFR3: Three-Clustered Conventional NNDFR 
*G-NNDFR: Modified NNDFR With 3 Clusters And The Fuzzifier=1.2513 

Figure 5-8: Comparison of Performances of Different Models In Terms Of MSE 

Figure 5-9 compares different models with respect to their Average Validity Percentage 

and Average Invalidity Percentage. AVP results substantiate the verdict made based on 

the MSE comparison, indicating the better performance of the modified NNDFR.  

 

*C-NNDFR3: Three-Clustered Conventional NNDFR 
*G-NNDFR: Modified NNDFR With 3 Clusters And The Fuzzifier=1.2513 

Figure 5-9: Comparison of Performances of Different  

Models in Terms of AVP & AIP 
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It is of importance to state that the same case study was used by Khan in 2005. In the 

research, the potential factors affecting the labor productivity of the concrete pouring 

operation were analyzed, ranked and selected. Different assemblies of ANN were 

established and tested to find the best structure with the highest performance. 221 data 

points were used in the research divided to two portions of testing (44 points) and 

training (77 points) sets. Based on the original manuscript, MSE of the best model for the 

whole dataset including training and testing sets is 0.0086. The modeling was also 

accomplished by regression method, which showed an MSE of 0.0642. Here, the main 

obstacle is that the testing sample error is not reported separately. As a result, comparison 

between the generalization ability of the aforementioned model and our Genetically-

Optimized-NNDFR is not possible. 

5.5 HYBRID APPROACH OF MODELING 

Regarding the data gathered for the case study, there is a possibility to express some of 

the independent variables, e.g. Temperature, Humidity, Wind Speed, Gang Size, Labor 

Percentage and Floor Level, by linguistic terms. The only way to convert these linguistic 

terms to crisp values is to use fuzzy sets. Definitions of the fuzzy sets are subjective and 

case-dependent. In fact, different ranges must be defined for each variable in order for it 

to be presentable as a fuzzy set. The assumption made in this research is that all variables 

are following a triangular fuzzy set. As a result, any fuzzy variable can be defined by 

three values of minimum, maximum and most probable. With the consideration of the 

construction location, i.e. Montreal, and the involved activities, experts’ opinions were 

used to develop the fuzzy sets. In this framework, climatic variables are defined based on 
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the common terms and ranges used in aerology. Variables related to the construction area 

are characterized based on the common construction terminology. Figure 5-10 (a) and (b) 

demonstrate the fuzzy sets for the temperature and humidity, respectively. The fuzzy sets 

related to the other factors are presented in Figure 5-10 (c) to (f).  
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(e) Labor Percentage 

 
(f) Floor Level 

Figure 5-10: Fuzzy Sets of Different Variables 

In order to show the functionality of the hybrid approach of modeling an example is 

presented. It is assumed that moderate temperature and high humidity are reported as 

fuzzy inputs, while other factors are given as crisp values. Such scenarios might happen 

when some variables are missing or they have not been supposed to be measured. In such 

cases, variables cannot be explained but in a range. Table 5-14 shows the data point that 

is selected to be modeled by hybrid approach. 

Table 5-14: A Fuzzy-Crisp Data Point to Be Modeled By Hybrid Approach 

Parameter Value 
Temperature Fuzzy Set (Moderate) 
Humidity Fuzzy Set (High) 
Precipitation 0 
Wind Speed 16.6 
Gang Size 18 
Labor Percentage 33 
Work Type 2 
Floor Level 10 
Work Method 1 
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To attain the output fuzzy set, alpha-cut is performed for different α-levels of fuzzy 

variables while other factors maintain their fixed values. In this example, alpha-cut 

technique is executed at intervals of 0.05. At each level of alpha, the temperature and 

humidity fuzzy sets are trimmed. Then, 100 equally spaced points are selected along each 

one of these two ranges. For instance, Figure 5-11 illustrates the trimmed fuzzy variables 

of the temperature and humidity at the α-level of 0.5. These α-level cuts the fuzzy 

variables such that the temperature and humidity alter within the ranges of [10, 20] and 

[85, 95], respectively. The model runs 100×100 times for any possible pair of the 

temperature and humidity from those 100 data points, while the other variables are fed to 

the model with their respective crisp values.  

  

Figure 5-11: Alpha-Cut at the Level of Α=0.5 

Next, the maximum and minimum outcomes of the model are extracted at each level, 

using the following algorithm: 

precip=0; wind=16.6; gang=18; labor=33; w_type=2; floor=10; w_method=1 
  for temp=10 to 20 stepping by 0.1 
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        for humd=85 to 95 stepping by 0.1 
                input=[temp,humd,precip,wind,gang,labor,w_type,floor,w_method] 
  Run output=NNDFR(input) 
  If output>max then  
                                   max=output 
               end if 
 If output<min then  
                                   min=input 
              end if 

        end 

  end 

The entire list of the maximum and minimum outcomes for different levels of α can be 

found in Table 5-15. Plotting and connecting those max and min values can reach us to 

a fuzzy set, which is shown in Table 5-12.  

 

Table 5-15: Maximum and Minimum Values of Alpha-Cut Technique 

Alpha 
Level 

Min 
(m3/man-hour) 

Max 
(m3/man-hour) 

0 1.429689 2.0087 
0.05 1.452947 2.0039 
0.1 1.480459 1.9988 

0.15 1.501737 1.9935 
0.2 1.523673 1.9878 

0.25 1.546778 1.9820 
0.3 1.56657 1.9763 

0.35 1.607938 1.9700 
0.4 1.636615 1.9633 

0.45 1.656327 1.9561 
0.5 1.675664 1.9489 

0.55 1.694613 1.9412 
0.6 1.713165 1.9331 

0.65 1.731311 1.9247 
0.7 1.749042 1.9159 

0.75 1.766351 1.9066 
0.8 1.783227 1.8969 

0.85 1.799657 1.8861 
0.9 1.81562 1.8737 

0.95 1.831083 1.8603 
1 1.8501 1.8501 
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Figure 5-10: Output Fuzzy Set Traced By Alpha-Cut Technique 

 

The output fuzzy set should be defuzzified to make it possible to represent the results 

with only one number. As expected, the output fuzzy set does not have a known 

geometric shape. Thus, the plot is divided to 40 back-to-back trapezoids in order to find 

the centroid based on the Equation 20. The detailed method of calculations is presented in 

Table 5-16. Based on these calculations, a productivity of 1.7602 is attained. Also, 

according to Equation 9, the possibility of having a productivity rate less than a specific 

value is equal to the maximum degree of membership in that range. For example, the 

possibility of a productivity rate less than 1.55 in this case study is: 

                                 𝜇              
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Table 5-16: Centroid Calculation 

Shape S (area) C (centroid) = S * C 
1 0.00058 1.41418 0.00082 
2 0.00206 1.43766 0.00297 
3 0.00266 1.46911 0.00391 
4 0.00384 1.49025 0.00572 
5 0.00520 1.51169 0.00786 
6 0.00544 1.53658 0.00836 
7 0.01344 1.54536 0.02078 
8 0.01075 1.59328 0.01713 
9 0.00838 1.62657 0.01363 
10 0.00918 1.64649 0.01512 
11 0.00995 1.66604 0.01657 
12 0.01067 1.68520 0.01798 
13 0.01134 1.70397 0.01932 
14 0.01197 1.72234 0.02061 
15 0.01255 1.74029 0.02184 
16 0.01308 1.75782 0.02299 
17 0.01355 1.77493 0.02406 
18 0.01397 1.79160 0.02502 
19 0.01430 1.80782 0.02586 
20 0.01854 1.82149 0.03377 
21 0.00991 1.84506 0.01828 
22 0.01246 1.85359 0.02309 
23 0.01084 1.86759 0.02025 
24 0.00893 1.88076 0.01680 
25 0.00749 1.89216 0.01418 
26 0.00672 1.90203 0.01278 
27 0.00596 1.91152 0.01139 
28 0.00522 1.92058 0.01002 
29 0.00471 1.92902 0.00909 
30 0.00401 1.93749 0.00777 
31 0.00343 1.94534 0.00667 
32 0.00306 1.95257 0.00597 
33 0.00252 1.96001 0.00494 
34 0.00203 1.96697 0.00399 
35 0.00158 1.97347 0.00313 
36 0.00129 1.97926 0.00256 
37 0.00100 1.98507 0.00198 
38 0.00067 1.99096 0.00134 
39 0.00038 1.99659 0.00076 
40 0.00012 2.00233 0.00024 
Sum 0.28379  0.49955 
Centroid 1.7602 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 SUMMARY AND CONCLUSION 

The present research proposes a hybrid intelligent model to enhance the accuracy of the 

productivity estimation for construction operations. The current research is a response to 

the shortcomings of fuzzy reasoning and ANN based modeling in the construction 

management. The proposed framework models the effect of the qualitative as well as 

quantitative variables on the construction productivity and optimizes its dynamic 

structure according to the inherent characteristics of the data. 

First, a thorough literature review was conducted to scrutinize the shortcomings in the 

current area of research. It was understood that the AI systems introduced to construction 

management do not display a satisfactory accuracy for the estimation. In addition, most 

of these forecasting models are only able to work with the crisp input variables. However, 

it is most likely to have a combination of crisp values and linguistic terms in a single 

modeling framework. 

In light of the strengths and drawbacks of ANN and fuzzy systems, neuro-fuzzy 

structures appeared to be a promising solution domain. Investigation of the construction 

databases revealed that the data points have a tendency to be aggregated in particular 

areas. With respect to this fact, a Neural-Network-Driven Fuzzy Reasoning (NNDFR) 

structure with a high performance of estimation in the naturally clustered data spaces was 
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selected. It was then fine-tuned and further enhanced by a technique which allows the 

model deal with both types of input variables, i.e. crisp and fuzzy.  

The methodology of current research encompassed three main phases, (1) modifying and 

training NNDFR; (2) optimizing the parameters; and (3) incorporating the hybrid 

approach of modeling. Given that in the conventional NNDFR membership functions are 

resulting from the hard clustering algorithms, the provided  fuzziness is not under control 

and cannot be regulated. Thus, the first part of the methodology concentrated on the 

modification of NNDFR structure such that the fuzziness of the membership functions is 

adjustable. This was achieved through substituting the standard hard clustering algorithm 

with FCM. In the second part, model parameters that characterize the layout of model are 

optimized through GA. In the third part, a technique called hybrid approach is employed 

to simultaneously model the data sets that consist of both linguistic terms and crisp 

values. Hybrid approach is based on performing alpha-cut technique for the different α-

levels of fuzzy variables and generating the output in form of fuzzy set. 

The proposed methodology was further verified through the simulation of a construction 

operation in which several qualitative and quantitative factors affect the daily 

productivity of a concrete pouring process. The data was adopted from the construction 

of Engineering, Computer Science and Visual Arts complex of Concordia University. 

The data set, which included 131 data points, was partitioned into two sets of 117, i.e. 

90% of the total, and 14, i.e. 10% of the total, data points for the training and 

validation/testing, respectively. Empirical results showed that the model performance in 

terms of testing MSE is improved by 52 percent as a result of the optimization. The same 
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data point were modeled by a simple ANN, ANFIS, conventional three-cluster NNDFR 

and the proposed Genetically Optimized NNDFR. The proposed model showed 83%, 

72% and 69% improvement respectively over ANN, ANFIS and conventional NNDFR in 

terms of MSE. The present research helps researchers and practitioners to more 

effectively model construction operations using the inherent features of the data for fine-

tuning the model. 

6.2 RESEARCH CONTRIBUTIONS 

The contributions of the present research to the AI modeling in construction are to: 

1) Develop a modified NNDFR model to forecast the characteristics (productivity, time 

and, etc.) of construction operations; 

2) Develop tunable hyper-surface membership functions enjoying both FCM and 

learning ability of ANN. These multi-dimensional membership functions consider 

interdependence of input variables; 

3) Optimize the fuzziness of membership functions via GA; 

4) Determine the optimum number of clusters in a specific data space using GA; 

5) Develop a framework which lets us model a combination of crisp values and 

linguistic terms simultaneously through NNDFR model. 

6.3 RESEARCH LIMITATIONS 

The developed framework has the following limitations: 
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1) The research does not perform a variable selection on the parameters to neglect 

neutral or ineffective variables; 

2) In the hybrid approach of modeling, alpha cut technique must be performed for all the 

possible combinations of the fuzzy variables at all levels of alpha. This demands a 

huge computational time and effort, especially in higher dimensions; 

3) Although GA shows a great capability to prevent local minima, there is still a 

possibility for the algorithm to terminate without reaching to the global optimum 

parameters; 

4) Since the model is constituted from several independent ANNs, it needs more 

historical data points to feed each network with a portion of the data set. 

6.4 FUTURE RECOMMENDATIONS AND WORKS 

The present research can be further enhanced through the following steps:  

1) More variables, such as managerial conditions and the exact time of the work during 

the daytime, should be incorporated into the model to improve the efficiency of 

prediction. The more comprehensive and thorough the set of variables are, the better a 

model can mimic the behavior of the system. Then, a variable selection algorithm is 

required to select the most relevant variables that can improve the efficiency of the 

model. 

2) The forecasting model can be validated by a greater number of testing data points to 

verify its generalization ability. The current model is trained by a limited number of 

data points and obviously the model responds better to the testing data points that are 
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more similar to the training set. Thus, the testing data set must be rich enough to 

cover the entire problem domain and be an indicator of the generalization ability of 

the model. 

3) The optimization of the model’s parameters should be executed by another algorithm 

that can completely eliminate the chance of local minima. Although, GA can lower 

the chance of falling in local minima by increasing the number of generations and 

population, still it cannot be guaranteed. 

4) Maximum and minimum outputs of the model for each level of alpha-cut can be 

found by a time-efficient EA instead of the provided exhaustive search. In case of 

having too many fuzzy variables, all possible combinations of the input variables 

must be tested. This process demands a considerable amount of time and 

computational efforts. 

The present research can be also be further extended through the investigation of the 

following areas:  

1) It is recommended to work on finding a method which is able to visualize the hyper-

surface membership functions. In this way, the multi-dimensional membership 

functions are more tangible and practical for the users. 

2) A Graphic User Interface (GUI) can be developed in order to automate and visualize 

the reasoning mechanism of the presented model. In addition, the GUI can be 

connected to an updating database, which lets the model work in real-time mode. 

3) The developed productivity estimation model should be integrated with other cost and 

time forecasting models. This will establish an integrated framework where all of the 
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interactions between the main decision criteria of project planning and control can be 

studied. 
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APPENDIX A 

Data Points 

Table A - 1: All Data Points 

Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

-8 87 2 14.2 22 36 1 3 1 1.27 

-8 87 2 14.2 23 30 2 3 1 1.14 

-12.5 54 0 5.2 21 38 1 3 1 1.17 

-12.5 54 0 5.2 20 30 2 3 1 1.04 

-16 55 0 6 23 35 1 3 1 1.16 

-15 51 2 18.7 17 29 2 4 1 1.99 

-15 51 2 18.7 20 40 1 4 1 1.1 

-8.5 58 0 26.5 18 33 2 4 1 1 

-4 87 2 3.6 22 36 1 4 1 1.55 

-14 42 0 10 23 35 2 4 1 1.26 

-14.5 42 0 7.5 19 33 2 4 1 1.14 

-14.5 42 0 7.5 16 37 1 4 1 1.27 

1.5 85 0 9.4 21 33 1 5 1 1.45 

-0.5 53 0 7.5 20 30 1 5 1 1.51 

-0.5 53 0 7.5 22 36 2 5 1 1.37 

-3.5 47 0 20 17 29 1 5 1 1.38 

-3.5 47 0 20 22 36 2 5 1 1.25 

-4 81 1 11.9 22 36 1 5 1 1.49 

-4 81 1 11.9 16 38 2 5 1 1.34 

3 97 0 8 22 36 1 5 1 1.36 

3 97 0 8 15 40 2 5 1 1.22 

2.5 92 0 6.2 19 42 1 6 2 1.34 

2.5 92 0 6.2 18 33 2 6 1 1.2 

3.5 88 1 7.6 24 38 1 6 2 1.39 

4.5 86 1 9.1 24 38 1 6 2 1.41 

4.5 86 1 9.1 22 36 2 6 1 1.26 

-4.5 48 0 14.1 19 33 1 7 2 1.36 

-4.5 48 0 14.1 20 30 2 7 1 1.21 

-6.5 56 0 10.5 20 30 1 7 2 1.34 

-6.5 56 0 10.5 21 33 2 7 1 1.09 

-2.5 39 0 10 20 30 1 7 2 1.32 
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Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

-2.5 39 0 10 20 30 2 7 1 1.37 

-6 37 0 19.9 19 33 1 8 2 1.23 

-7 41 0 7.9 20 30 1 8 2 1.47 

-7 41 0 7.9 20 30 2 8 1 1.34 

-4.5 53 2 13.1 21 33 1 8 2 1.49 

-4.5 53 2 13.1 18 33 2 8 1 1.35 

6.5 45 0 11.3 24 38 1 9 2 1.67 

6.5 45 0 11.3 21 33 2 9 1 1.51 

5.5 46 0 12 22 36 1 9 2 1.65 

5.5 46 0 12 19 33 2 10 1 1.48 

4.5 84 1 8.7 20 30 1 10 2 1.57 

4.5 84 1 8.7 18 33 2 10 1 1.41 

-5 57 0 15.8 19 33 1 10 2 1.56 

-5 57 0 15.8 19 33 2 10 1 1.4 

2 36 0 16.6 19 33 1 10 2 1.63 

2 36 0 16.6 18 33 2 10 1 1.46 

7 90 1 5.4 16 31 1 10 2 1.73 

3 56 0 13.4 18 33 1 11 2 1.74 

3 56 0 13.4 19 33 2 11 1 1.55 

11 44 0 13.4 16 31 1 11 2 1.87 

11 44 0 13.4 15 33 2 11 1 1.68 

7.5 40 0 8 16 31 1 11 2 1.67 

7.5 40 0 8 16 31 2 11 1 1.52 

12 40 0 18 18 33 3 12 1 1.1 

18 59 0 23 20 35 2 12 1 1.45 

16 73 1 14 21 33 1 12 1 1.54 

16 61 0 3 22 36 1 13 1 2.4 

15 64 1 19 19 37 1 13 1 1.49 

16 60 0 6 22 36 1 13 1 2.25 

18 58 0 6 21 33 1 13 1 2.2 

20 57 0 10 23 35 2 13 1 1.62 

17 75 1 16 19 37 2 13 1 1.33 

22 56 0 10 22 36 2 13 1 1.75 

25 57 1 11 19 37 1 13 1 1.43 

25 77 0 24 20 30 1 14 1 1.65 

21 63 0 16 20 30 1 12 2 1.55 

23 77 0 13 18 33 2 12 1 1.49 

24 65 0 19 18 33 2 12 1 1.52 

24 73 0 11 23 35 1 13 2 1.76 
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Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

25 69 0 6 22 36 1 13 2 1.75 

25 71 0 21 21 33 1 13 2 1.73 

21 71 0 10 21 33 1 13 2 1.91 

23 60 0 19 22 36 2 13 1 1.79 

25 66 0 18 16 38 2 13 1 1.77 

25 65 0 13 15 40 2 13 1 1.8 

25 65 0 24 17 29 2 13 1 1.42 

18 71 0 19 20 30 1 14 2 2 

14 70 0 14 23 30 2 14 1 1.78 

17.61 61 0 16 22 32 1 14 2 2.42 

17 72 0 16 22 32 1 14 2 2.31 

21 72 1 21 20 35 1 14 2 2.09 

17 73 0 13 20 35 2 15 1 1.8 

14 71 0 5 20 35 2 15 1 1.85 

13 60 0 13 19 37 2 15 1 1.88 

15 67 0 14 19 37 2 15 1 1.78 

21 75 0 8 21 33 1 15 2 2.33 

20 73 0 23 20 30 1 15 2 2.09 

16 72 0 8 20 30 1 15 2 2.32 

17 68 0 6 20 30 1 15 2 2.34 

21 61 0 18 18 33 2 16 1 1.88 

6 82 1 13 19 37 2 16 1 1.65 

7 69 0 18 22 37 1 16 2 2.33 

13 64 0 19 21 33 1 16 2 2.38 

14 70 0 11 12 33 1 10 2 2.53 

13 70 0 18 12 33 1 10 2 2.5 

5 75 0 10 10 40 1 10 2 2.34 

4 76 0 14 10 40 1 10 2 1.98 

3 96 1 27 8 38 1 10 2 1.74 

6 96 1 6 9 44 2 10 1 1.5 

6 76 0 16 11 37 2 10 1 1.74 

6 94 1 14 9 44 1 11 2 1.82 

12 70 0 10 12 33 1 11 2 2.1 

5 75 0 10 12 33 1 11 2 2.02 

6 96 0 14 12 33 1 11 2 1.97 

3 78 0 13 11 37 1 11 2 2 

3 77 0 21 10 40 2 11 1 1.77 

8 79 0 13 9 44 2 11 1 1.83 

3 79 0 13 11 37 1 12 2 1.96 
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Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

5 88 0 11 11 37 1 12 2 2.03 

3 80 0 6 11 37 1 12 2 1.99 

3 74 0 6 12 42 1 12 2 1.98 

3 97 0 21 9 33 2 12 1 1.64 

-7 53 0 19 9 33 2 12 1 1.24 

-7 74 0 18 8 37 2 12 1 1.22 

-10 87 0 6 12 42 1 13 2 1.31 

-3 84 0 16 11 37 1 13 2 1.73 

3 97 1 29 11 37 1 13 2 1.29 

-5 90 3 26 11 37 1 13 2 1.34 

-8 90 0 11 12 42 1 13 2 1.38 

-1 93 1 14 11 37 1 13 2 1.23 

-6 75 0 26 8 37 2 13 1 1.28 

-9 76 0 18 11 37 1 14 2 1.45 

-17 48 0 29 8 37 2 14 1 1.11 

2 76 0 5 9 33 2 16 1 1.51 

3 79 0 14 8 37 2 16 1 1.44 

-6 41 0 3 11 37 1 17 2 1.47 

-1 71 0 16 8 37 2 17 1 1.36 

-12 49 0 26 9 33 2 17 1 1.18 

5 48 0 19 12 42 1 17 2 1.52 

8 42 0 11 12 42 1 17 2 1.67 

 

Table A - 2: Training Data Set 

Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

-8 87 2 14.2 22 36 1 3 1 1.27 

-8 87 2 14.2 23 30 2 3 1 1.14 

-12.5 54 0 5.2 21 38 1 3 1 1.17 

-12.5 54 0 5.2 20 30 2 3 1 1.04 

-16 55 0 6 23 35 1 3 1 1.16 

-15 51 2 18.7 17 29 2 4 1 1.99 

-15 51 2 18.7 20 40 1 4 1 1.1 

-8.5 58 0 26.5 18 33 2 4 1 1 

-4 87 2 3.6 22 36 1 4 1 1.55 
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Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

-14 42 0 10 23 35 2 4 1 1.26 

-14.5 42 0 7.5 19 33 2 4 1 1.14 

-14.5 42 0 7.5 16 37 1 4 1 1.27 

-0.5 53 0 7.5 20 30 1 5 1 1.51 

-0.5 53 0 7.5 22 36 2 5 1 1.37 

-3.5 47 0 20 17 29 1 5 1 1.38 

-4 81 1 11.9 22 36 1 5 1 1.49 

-4 81 1 11.9 16 38 2 5 1 1.34 

3 97 0 8 22 36 1 5 1 1.36 

2.5 92 0 6.2 19 42 1 6 2 1.34 

2.5 92 0 6.2 18 33 2 6 1 1.2 

3.5 88 1 7.6 24 38 1 6 2 1.39 

4.5 86 1 9.1 24 38 1 6 2 1.41 

4.5 86 1 9.1 22 36 2 6 1 1.26 

-4.5 48 0 14.1 19 33 1 7 2 1.36 

-4.5 48 0 14.1 20 30 2 7 1 1.21 

-6.5 56 0 10.5 20 30 1 7 2 1.34 

-6.5 56 0 10.5 21 33 2 7 1 1.09 

-2.5 39 0 10 20 30 1 7 2 1.32 

-2.5 39 0 10 20 30 2 7 1 1.37 

-6 37 0 19.9 19 33 1 8 2 1.23 

-7 41 0 7.9 20 30 1 8 2 1.47 

-7 41 0 7.9 20 30 2 8 1 1.34 

-4.5 53 2 13.1 21 33 1 8 2 1.49 

6.5 45 0 11.3 24 38 1 9 2 1.67 

6.5 45 0 11.3 21 33 2 9 1 1.51 

5.5 46 0 12 22 36 1 9 2 1.65 

5.5 46 0 12 19 33 2 10 1 1.48 

4.5 84 1 8.7 20 30 1 10 2 1.57 

4.5 84 1 8.7 18 33 2 10 1 1.41 

-5 57 0 15.8 19 33 1 10 2 1.56 

-5 57 0 15.8 19 33 2 10 1 1.4 

2 36 0 16.6 19 33 1 10 2 1.63 

2 36 0 16.6 18 33 2 10 1 1.46 

7 90 1 5.4 16 31 1 10 2 1.73 

3 56 0 13.4 18 33 1 11 2 1.74 

3 56 0 13.4 19 33 2 11 1 1.55 

11 44 0 13.4 16 31 1 11 2 1.87 

11 44 0 13.4 15 33 2 11 1 1.68 



131 

 

Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

7.5 40 0 8 16 31 1 11 2 1.67 

7.5 40 0 8 16 31 2 11 1 1.52 

12 40 0 18 18 33 3 12 1 1.1 

18 59 0 23 20 35 2 12 1 1.45 

16 73 1 14 21 33 1 12 1 1.54 

16 61 0 3 22 36 1 13 1 2.4 

15 64 1 19 19 37 1 13 1 1.49 

16 60 0 6 22 36 1 13 1 2.25 

18 58 0 6 21 33 1 13 1 2.2 

20 57 0 10 23 35 2 13 1 1.62 

17 75 1 16 19 37 2 13 1 1.33 

25 57 1 11 19 37 1 13 1 1.43 

25 77 0 24 20 30 1 14 1 1.65 

21 63 0 16 20 30 1 12 2 1.55 

23 77 0 13 18 33 2 12 1 1.49 

24 65 0 19 18 33 2 12 1 1.52 

24 73 0 11 23 35 1 13 2 1.76 

25 69 0 6 22 36 1 13 2 1.75 

21 71 0 10 21 33 1 13 2 1.91 

23 60 0 19 22 36 2 13 1 1.79 

25 66 0 18 16 38 2 13 1 1.77 

25 65 0 13 15 40 2 13 1 1.8 

25 65 0 24 17 29 2 13 1 1.42 

18 71 0 19 20 30 1 14 2 2 

14 70 0 14 23 30 2 14 1 1.78 

17.61 61 0 16 22 32 1 14 2 2.42 

17 72 0 16 22 32 1 14 2 2.31 

21 72 1 21 20 35 1 14 2 2.09 

14 71 0 5 20 35 2 15 1 1.85 

13 60 0 13 19 37 2 15 1 1.88 

15 67 0 14 19 37 2 15 1 1.78 

21 75 0 8 21 33 1 15 2 2.33 

20 73 0 23 20 30 1 15 2 2.09 

16 72 0 8 20 30 1 15 2 2.32 

17 68 0 6 20 30 1 15 2 2.34 

21 61 0 18 18 33 2 16 1 1.88 

6 82 1 13 19 37 2 16 1 1.65 

7 69 0 18 22 37 1 16 2 2.33 

13 64 0 19 21 33 1 16 2 2.38 
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Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

14 70 0 11 12 33 1 10 2 2.53 

13 70 0 18 12 33 1 10 2 2.5 

5 75 0 10 10 40 1 10 2 2.34 

4 76 0 14 10 40 1 10 2 1.98 

3 96 1 27 8 38 1 10 2 1.74 

6 96 1 6 9 44 2 10 1 1.5 

6 76 0 16 11 37 2 10 1 1.74 

6 94 1 14 9 44 1 11 2 1.82 

12 70 0 10 12 33 1 11 2 2.1 

5 75 0 10 12 33 1 11 2 2.02 

3 78 0 13 11 37 1 11 2 2 

8 79 0 13 9 44 2 11 1 1.83 

3 79 0 13 11 37 1 12 2 1.96 

5 88 0 11 11 37 1 12 2 2.03 

3 80 0 6 11 37 1 12 2 1.99 

3 74 0 6 12 42 1 12 2 1.98 

3 97 0 21 9 33 2 12 1 1.64 

-7 53 0 19 9 33 2 12 1 1.24 

-7 74 0 18 8 37 2 12 1 1.22 

-10 87 0 6 12 42 1 13 2 1.31 

-3 84 0 16 11 37 1 13 2 1.73 

3 97 1 29 11 37 1 13 2 1.29 

-1 93 1 14 11 37 1 13 2 1.23 

-6 75 0 26 8 37 2 13 1 1.28 

-9 76 0 18 11 37 1 14 2 1.45 

-17 48 0 29 8 37 2 14 1 1.11 

2 76 0 5 9 33 2 16 1 1.51 

-12 49 0 26 9 33 2 17 1 1.18 

5 48 0 19 12 42 1 17 2 1.52 

8 42 0 11 12 42 1 17 2 1.67 
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Table A - 3: Testing Data Set 

Temperature 
(ºC) 

Humidity  
(%) Precipitation 

Wind 
Speed 
(km/h) 

Gang 
Size 

(workers) 

Labor 
Percentage  

(%) 

Work 
Type 

Floor 
Level 

Work 
Method 

Daily 
Productivity 

(m3/man-hour) 

1.5 85 0 9.4 21 33 1 5 1 1.45 

-3.5 47 0 20 22 36 2 5 1 1.25 

3 97 0 8 15 40 2 5 1 1.22 

-4.5 53 2 13.1 18 33 2 8 1 1.35 

22 56 0 10 22 36 2 13 1 1.75 

25 71 0 21 21 33 1 13 2 1.73 

17 73 0 13 20 35 2 15 1 1.8 

6 96 0 14 12 33 1 11 2 1.97 

3 77 0 21 10 40 2 11 1 1.77 

-5 90 3 26 11 37 1 13 2 1.34 

-8 90 0 11 12 42 1 13 2 1.38 

3 79 0 14 8 37 2 16 1 1.44 

-6 41 0 3 11 37 1 17 2 1.47 

-1 71 0 16 8 37 2 17 1 1.36 
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GA Charts 

 

Figure A - 1: GA Fitness Scaling Chart 

 

Figure A - 2: GA Score Histogram 
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Figure A - 3: GA Best, Worst And Mean Scores 
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ANFIS Screenshots 

 

Figure A - 4: Setting Subtractive Clustering Parameters In ANFIS 
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Figure A - 5: ANFIS Structure 
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Figure A - 6: ANFIS Rule Viewer 
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Figure A - 7: ANFIS Membership Functions 
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APPENDIX B 

Main Script: Genetic Algorithm 

 

clc 
clear 
clearvars -global 
close all 

  
%% Parameters 

  
global TestResult  
global TrainResult 
global Pop_Cost 
global PopCounter 

  
Pop_Cost=zeros(1,6); 
PopCounter=0; 

  
%% Run GA 
HandleFunction=@(x) NNDFR(x) % define fitness function fo GA 
opt=gaoptimset('Generations',20,'PopulationSize',30,'Display','iter'); 

% set options for GA 
[FinalClusExp,fval,exitflag,output,population,scores]=ga(HandleFunction

,2,[],[],[],[],[2 1.001],[10 3],[],[1],opt) % run GA 

  
%% Result 
Pop_Cost=sortrows(Pop_Cost,3); 
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Function: NNDFR 

 

function MSE=NNDFR(ClusExp) 
%% Reset Random Stream 
RandStream.setGlobalStream(RandStream('mt19937ar','Seed',1)); 

  
%% Check availability of the individual in past generations 
global Pop_Cost % matrix of individuals together with the cost of 

the fitness function 

  
FindInd=find(ismember(Pop_Cost(:,1:2),ClusExp,'rows')); 
if FindInd~=0  
    MSE=Pop_Cost(FindInd,3) 
else 
%% Data 
% Insert data here 

  
%% Parameters 

  
global TestResult 
global TrainResult 
global PopCounter % number of populations 

  
IterK=1; %Number of iterations for training consequent neural 

networks 
IterMem=1; %Number of iterations for training membership neural 

networks 
TestPercentage=10;  

  
% 
ClusterNumber=ClusExp(1); %Number of clusters 
Exponent=ClusExp(2); %Fuzzifier 

  
[r c] = size(DATA); %r=number of data points, c=number of 

variables 
p=ceil(TestPercentage/100*r); 

  
TestIndices=sort(randsample(r,p)); 

  
%% Train and test Partitioner 

  
TestSample=DATA(TestIndices,:); 
TrainIndices=setxor(1:r,TestIndices')';      %Complement Matrix 

of the TestIndices 
TrainSample=DATA(TrainIndices,:); 

  
%% Fuzzy Clustering 
[centerfcm,U,obj_fcn] = fcm(TrainSample(:,1:(c-

1)),ClusterNumber,[Exponent 100 1e-5 0]); %FCM algorithm 
U=U'; %invert membership degrees 
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[TrainSize ~]=size(TrainSample); 

  
%% Seperate training samples for different consequent neural 

networks seved in "trains" cell 
for k=1:ClusterNumber 
c1=1; 
for i=1:TrainSize 

     
if U(i,k)==max(U(i,:)) 
trains{1,k}(c1,:)=TrainSample(i,:); 
c1=c1+1; 
end 

  
end 
end 

  
%% Train Consequence Neural Networks 

  
for i=1:ClusterNumber 
[NNK(i).net TRK(i).tr PerfK(i)]=NeuralNetwork(trains{1,i}(:,1:(c-

1)),trains{1,i}(:,c),IterK); 
end 

  
%% Train Membership Neural Networks 

  
[NNmem TRmem Perfmem]=NeuralNetwork(TrainSample(:,1:(c-

1)),U,IterMem); 

  
%% Outcome Computation 

  
Weights=[sim(NNmem,DATA(:,1:(c-1))')]'; % calculate weights for 

different consequent neural networks 

  
for i=1:r 
    Est(i,:)=0; % Est: matrix of estimated productivities 
  for l=1:ClusterNumber   

      
    Est(i,:)=Est(i,:)+Weights(i,l)*sim(NNK(1,l).net,DATA(i,1:(c-

1))'); 

    
  end 
  Est(i,:)=Est(i,:)/sum(Weights(i,:)); 
end 

  
%% Error Computation 

  
MSE=mse(DATA(:,c)-Est) % mse average (all) 
mse_test=mse(TestSample(:,c)-Est(TestIndices,:)); 
mse_train=mse(TrainSample(:,c)-Est(TrainIndices,:)); 
aip=sum(abs(1-Est(TestIndices,:)./TestSample(:,c)))*100/p; 

%average invalidity percentage 
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%% Save Population 

  
PopCounter=PopCounter+1; 
Pop_Cost(PopCounter,:)=[ClusExp MSE mse_train mse_test aip]; 

  
%% Save Samples 

  
TrainResult{PopCounter,1}=[TrainIndices TrainSample(:,c) 

Est(TrainIndices,:)]; 
TestResult{PopCounter,1}=[TestIndices TestSample(:,c) 

Est(TestIndices,:)]; 
end 

  
end 
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Function: Training Code for Neural Network 

 

function [Net,Tr,Performance]=NeuralNetwork(x,y,it) 
%% Iterations 

  
for i=1:it 

  
inputs = x'; 
targets = y'; 

  
% Create a Fitting Network 
hiddenLayerSize = [9 10]; 
net = fitnet(hiddenLayerSize); 

  
% Choose Input and Output Pre/Post-Processing Functions 
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

  
% Setup Division of Data for Training, Validation, Testing 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 80/100; % Train Sample 
net.divideParam.testRatio = 20/100; % Validation Sample 

  
net.trainFcn = 'trainbr';  % Bayesian Regularization 

  
% Choose a Performance Function 
net.performFcn = 'mse';  % Mean squared error 

  
% Choose Plot Functions 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
  'plotregression', 'plotfit'}; 

  
net.trainParam.showWindow=0; % Not to show training precedure 
net.trainParam.epochs=100;  % Number of training epochs 

  
% Train the Network 
[net,tr] = train(net,inputs,targets); 

  
% Test the Network 
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs); 

  
% Recalculate Training, Validation and Test Performance 
trainTargets = targets .* tr.trainMask{1}; 
valTargets = targets  .* tr.valMask{1}; 
testTargets = targets  .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,outputs); 
valPerformance = perform(net,valTargets,outputs); 
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testPerformance = perform(net,testTargets,outputs); 

  
% View the Network 
view(net) 

  
% Save all the Networks and Trs and Performances 
TR(i).net=tr; 
NN(i).net=net; 
PERFORMANCE(i)=performance; 

  
clearvars -except TR NN PERFORMANCE x y it i 
end 

  
%% Find the best Network among all iterations 
[Performance,idx]=min(PERFORMANCE); 
Net=NN(idx).net; 
Tr=TR(idx).net; 

  
end 
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Script: Alpha-Cut 

 

 
j=1; 
for alpha=0:0.05:1 % alpha levels, interval=0.05 

     
    % line equation of moderate temperature fuzzy variable 
    x1=(alpha+0.5)/0.1;  
    x2=(alpha-2.5)/-0.1; 
    % line equation of high temperature fuzzy variable 
    y1=(alpha+8)/0.1; 
    y2=(alpha-10)/-0.1; 

     
    i=1; 
    for fuzz_input1=x1:(x2-x1)/10:x2 % devide the range of alpha cut to 

descrete points 
        for fuzz_input2=y1:(y2-y1)/10:y2 % devide the range of alpha 

cut to descrete points 

                     
    data=[fuzz_input1 fuzz_input2 0 16.6    18  33  2   10  1]; % 

combine with crisp inputs 

     
    %% Model the data with Genetically Optimized NNDFR 
    Weights=[sim(NNmem,data')]'; 
    Est(i,:)=0; 
         for l=1:3    
         Est(i,:)=Est(i,:)+Weights(1,l)*sim(NNK(1,l).net,data');   
         end 
    Est(i,:)=Est(i,:)/sum(Weights(1,:)); 
    i=i+1; 
        end 
    end   

    
    %% Save max and min outputs 
    infsup(j,:)=[min(Est) max(Est)]; 
    clearvars Est 
    j=j+1; 

     
end 

     
%% Plot  
plot(infsup(:,1),0:0.05:1); 
hold on 
plot(infsup(:,2),0:0.05:1); 
hold on 
scatter(infsup(:,1),0:0.05:1); 
hold on 
scatter(infsup(:,2),0:0.05:1); 
hold off 
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Script: Centroid Defuzzification 

 

[r c]=size(infsup); 
alpha=linspace(0,1,r)'; 

  
%% for trapazoid before the peak (related to min outputs) 
for i=1:(r-1) 
    % coordinate of the center of the trapazoid 
    dis(i,1)=infsup(i,1)+(infsup(i,1)-

infsup(i+1,1))/3*(alpha(i,1)+2*alpha(i+1,1))/(alpha(i,1)+alpha(i+1,1)); 
    % area of the trapazoid 
    area(i,1)=(alpha(i,1)+alpha(i+1,1))*(infsup(i,1)-infsup(i+1,1))/2; 
end 

  
%% for trapazoid after the peak (related to max outputs) 
flip_infsup=flipud(infsup(:,2)); 
flip_alpha=flipud(alpha(:,1)); 
for i=1:(r-1) 
    % coordinate of the center of the trapazoid 
    dis(r-1+i,1)=flip_infsup(i,1)+(flip_infsup(i,1)-

flip_infsup(i+1,1))/3*(flip_alpha(i,1)+2*flip_alpha(i+1,1))/(flip_alpha

(i,1)+flip_alpha(i+1,1)); 
    % area of the trapazoid     
    area(r-

1+i,1)=(flip_alpha(i,1)+flip_alpha(i+1,1))*(flip_infsup(i,1)-

flip_infsup(i+1,1))/2; 
end 

  
%% centroid 
defuzz=sum(dis.*area)/sum(area) % defuzzified value(productivity) 

 

 

 


