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Abstract

Molar and Molecular Models of Performance for Rewarding Brain Stimu-

lation

Yannick-André Breton, Ph.D.

Concordia University, 2013

This dissertation reports analyses of performance for rewarding brain stimu-

lation in a three-part sequential task. A session of self-stimulation was composed of

three trial types, during which the strength and opportunity cost of electrical stim-

ulation were kept constant. Within a trial, a lever allowed animals to harvest brain

stimulation rewards as soon as the lever had been held for a set, cumulative amount

of time. When the time spent holding reached this criterion, the lever retracted and

a burst of rewarding electrical stimulation was delivered. A flashing house light and

10s inter-trial interval signalled the start of a new trial. Rats were presented with

strong/inexpensive/certain stimulation on one trial, a randomly selected strength,

cost and risk on the next trial, and weak/inexpensive/certain stimulation on the

third trial of a sequence. The sequence then repeated. Rewards during the second

trial of this sequence were delivered with cued probabilities ranging from 0.5 to 1.0.

The current thesis evaluates the ability of a previously published (molar) model of

performance during a trial to accurately detect the effect of risk on payoff but not

reward intensity. Although animals were less willing to work for stimulation trains

that may not be delivered than those delivered with certainty, risk did not change

the relative reward produced by stimulation. We also present evidence on a fine time

scale that self-stimulating rats develop a model of their world. The first pause made
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as a trial began was a function of the payoff the animal had yet to receive, indicat-

ing that rats had a model of the triad sequence. Analysis of the conditions under

which pauses were uncharacteristic also provides evidence of what this model might

be. Analysis of the fine scale of performance provides evidence that animals had a

model of the stability of trial conditions. Finally, we present a (molecular) model of

performance for brain stimulation rewards in real-time. Our results demonstrate that

rats develop a model of the testing paradigm and can adjust to changes in reward

contingencies with as few as one exemplar.
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Chapter 1

Background

A rat sits idly by the corner of his cage, carefully grooming his upper body in

comforting darkness. He licks one paw, then the other, running it along the mound of

acrylic atop his head. The implant has been part of his proprioception for some time.

Midway through his grooming bout, a large flashing light stops him in his tracks. As

the flashing stops, the rat leaps to the lever and begins patiently holding, periodically

tapping it. Nothing can tear him away from the manipulandum. He steadies the lever

down with his snout, teeth digging into the metal paddle, paws slipping. Soon, he

receives his reward. This rat is neither hungry, nor thirsty, nor in a position to gain

access to an oestrous female. The reward this animal receives can only be detected on

an oscilloscope: he is tirelessly working for a brief burst of cathodal pulses that will

be delivered via implanted electrodes to the lateral hypothalamic level of the medial

forebrain bundle.

The phenomenon of brain stimulation reward was first discovered by Olds &

Milner (1954). In their preparation, animals would quickly return to a location that

had been paired with the delivery of electrical stimulation. Before long, instrumental

methods were used to investigate the behavioural effects of electrical stimulation.

Electrical stimulation provides at least three distinct advantages over natural

rewards like food and water. First, there is no satiety for electrical stimulation (Olds,

1958). An animal may cease to be hungry, or cease to desire a specific type of food,

but they do not cease to seek out strong and easily acquired electrical stimulation

trains. Second, the electrode is implanted within a substrate that is identifiable in

principle and can compete with, summate with (Conover and Shizgal, 1994; Conover

et al., 1994), and act as an economic substitute for (Green and Rachlin, 1991) natural

rewards. Food, water, and sex may activate the circuitry of valuation at some point
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in the animal’s pursuit of each, but only electrical stimulation provides a probe into

a common evaluative circuitry. Finally, the rewarding effect produced by electrical

stimulation can be tightly controlled experimentally. Although more food may be

more valuable to a hungry animal than less food, the exact degree to which the

animal values every ounce of food is much less under experimental control than the

signal that is artificially injected into the medial forebrain bundle.

1.1 A brief history of the psychophysics of reward

Brain stimulation reward offers the exemplar par excellence of motivated be-

haviour. We can tightly control the subjective rewarding impact of the stimulation by

way of the current and pulse duration, which set the spread of activation, the pulse

frequency, which sets the induced firing rate, and the train duration, which sets the

activation period. There is no satiety, so animals will work tirelessly for many hours

without filling up on coulombs of electricity. The electrode is in an identifiable sub-

strate; as a result, it is possible to derive (at least in principle) some characteristics

of the neurons responsible for the rewarding effect of stimulation.

The first manipulations of intracranial self-stimulation simply assessed whether

the response rate was affected. The logic was simple: if a particular manipulation

boosted the value of rewards, it followed that animals would work more vigorously

for brain stimulation under those conditions. Although initial studies by Olds (1956)

mapping the rewarding effect across brain regions employed a rough estimate of the

percentage of session time spent responding, subsequent studies focused on changes

in self-stimulation rates that resulted from a particular manipulation. For example,

Brady (1957) measured response rates for brain stimulation reward as a function of the

duration of a food or water deprivation, and found significant increases the longer the

rat had been deprived. These types of measures may, at best, detect that a variable
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affects self-stimulation performance, and little else. At worst, rate measures fail to

reveal important effects or identify effects that may not be related to the motivation

for brain stimulation rewards.

It was not long before critics of the non-parametric approach began voicing

concerns. In their seminal article, Hodos & Valenstein (1962) pointed out that rate

alone may not be an accurate measure of the rewarding impact of brain stimula-

tion reward. Although others had parametrically varied the degree of training on

self-stimulation (Bindra and Mendelson, 1962) and electrical stimulation parameters

(Ward, 1959), this paper provided a solid argument for parametrically varying the

strength of the stimulation, by way of the stimulation current, comparing perfor-

mance for septal and posterior hypothalamic stimulation. The road had been paved

for a parametric analysis of brain stimulation reward (Gallistel et al., 1974; Edmonds

et al., 1974; Edmonds and Gallistel, 1974), allowing researchers to determine whether

manipulations of the circuitry underlying reward valuation and action selection af-

fected how the injected signal was impacted by lesions (Murray and Shizgal, 1991;

Waraczynski, 2006) and pharmacological agents (Franklin, 1978; Hernandez et al.,

2008).

The paradigm that emerged from this approach, the curve-shift paradigm (Mil-

iaressis et al., 1986), was intended to allow researchers to determine whether a manip-

ulation has affected the circuitry that underlies an animal’s goal-directed behaviour.

By assessing the rate of responding at various stimulation strengths, varying either

the spread of activation via the current, or the injected spike rate via the pulse fre-

quency, a manipulation that simply reduces responding can be distinguished from a

manipulation that alters the animal’s motivation to seek out rewarding stimulation.

In essence, performance will vary from floor to ceiling levels along with a given stimu-

lation parameter (pulse current, pulse duration, pulse frequency, and train duration).

The stimulation parameter that drives half-maximal performance (often referred to
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as M50) provides a meaningful comparison to that collected under a different set of

conditions. For example, if cocaine reduces the pulse frequency that supports half-

maximal performance without affecting the rat’s maximum response rate (Hernandez

et al., 2008), then cocaine boosts the animal’s pursuit of non-maximal rewards at a

given programmed rate of reinforcement. If Pimozide-induced dopamine depletion

increases the pulse frequency that drives half-maximal performance without affect-

ing the rat’s maximum response rate (Phillips and LePiane, 1986), then Pimozide

reduces the animal’s motivation to seek out rewards. In the original study by Ho-

dos and Valenstein (1962), although the rate of responding for septal stimulation

was lower, overall, than posterior hypothalamic stimulation, the current required to

produce a threshold level of responding was also lower for septal stimulation than

posterior hypothalamic stimulation. Although rats responded less vigorously for sep-

tal stimulation, posterior hypothalamic stimulation required stronger stimulation in

order to drive performance to a similar level.

The curve-shift paradigm is not without its problems. Fouriezos et al. (1990)

evaluated the effect of increasing task difficulty (adding weight to the manipulandum)

on self-stimulation thresholds derived from parametrically varying the pulse frequency

of a 500ms stimulation train. The authors found that as lever loads increased from 0

to 45g, the rate of self-stimulation for the highest pulse frequencies decreased, but the

pulse frequency required to drive half-maximal performance increased. Consequently,

weighted levers, and possibly other challenges unrelated to reward valuation per se,

are capable of changing the stimulation strength required to drive a threshold level

of performance.

As a result of the inadequacies of the curve-shift paradigm in identifying the

stage of processing at which a manipulation acts to alter reward seeking, Shizgal

(Arvanitogiannis and Shizgal, 2008) developed a computational model of brain stim-

ulation. The proportion of time allocated to self stimulation activities was assessed
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as a function of the number of pulses delivered in a train of fixed duration and the

experienced rate of reinforcement. As a result, manipulations that affect the transla-

tion of injected pulse rate can be distinguished from those that affect the translation

of payoff into performance. The current thesis builds on this tradition by validat-

ing a molar computational model of performance for brain stimulation reward that

assesses performance, indexed by the proportion of time an animal invests in harvest-

ing rewards, as a function of the pulse frequency of the stimulation delivered and the

amount of time the animal must invest to obtain such a reward. Furthermore, we

propose a molecular model of performance and derive its molar predictions.

Although the psychophysics of brain stimulation reward have focused on mo-

lar measures of performance, collapsing performance across an entire trial or session,

concerns about the obscuring effect of molar measures were voiced early-on. In their

critique of response-rate measures, Hodos and Valenstein (1962) conceded that mea-

sures that preceded reinforcement rate, based on the proportion of session time spent

responding, were insensitive to the pattern of responding. Molar measures generally

cannot take into account the pattern and syntax of performance on every trial.

1.1.1 The patterning of behaviour

The tradition most obviously concerned with characterizing the molecular pat-

tern of behaviour is reinforcement learning. In this account, performance reflects the

learned value of various states and the actions that may be taken in those states. For

example, pressing a lever for some small period of time dt allows the rat to be that

much closer to a reward state that follows lever-pressing. Not pressing the lever for

that period of time does not bring it closer to a reward, but that non-pressing state

may have some value of its own. The rat implements a policy, or a probability of

selecting an action in a particular state, that will maximize the rate at which it will

be rewarded, based on the value of anticipated states and associated possible actions
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that it has learned over the course of the trial, session, and experiment. This thesis

takes inspiration from all these traditions in developing a molecular computational

model of performance for brain stimulation reward.

1.2 Action selection

The problem of how animals select actions among all those available, and how

this process may be implemented in the brain, has been approached most comprehen-

sively by learning theorists interested in problems of conditioning. A deep philosoph-

ical tradition exists indeed regarding the power of associative learning in directing

behaviour. From Aristotelian ideas describing the mind at birth of being a blank

slate, to John Locke’s conceptualization of human empiricism, associative learning

has provided a useful methodological framework for understanding how agents se-

lect actions. That said, it is simplistic to assume that all actions are selected solely

on the basis of conditioned associations between stimuli, responses, and outcomes.

Even if they were, their representation is not likely to involve only associations to

outcomes, and selection itself is not likely a reflexive system. Human phenomenology

certainly suggests that many actions are selected following protracted deliberation,

and it may not be particularly far-fetched to presume that similar, though much less

complex, deliberative processes are at work in non-human animals, even those with

continuously-growing upper and lower incisors.

The idea that two parallel systems compete for the selection of an action is

not new. Greek mythology describes a dichotomy between Apollonian (god of rea-

son) and Dionysian (god of intoxication) modes of thinking. William James (Boring,

1950) believed that a dual process governed behaviour, one which was purely asso-

ciative and one which relied on reasoning and insight. Others (Kahneman, 2011)

have since refined the distinction between a fast, automatized, habitual, intuitive and
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affect-dependent system, and a slow, flexible, deliberative, reasoned and cognition-

dependent system. The two systems may not be as unique to human experience as

might be supposed at first glance. Rats faced with a difficult decision will pause at a

choice point in a maze and move their heads back and forth (Tolman, 1948), implying

a deliberative process (Johnson et al., 2007); this back-and-forth movement is more

prominent early in training than later on and more prominent on early laps of a maze

than later laps (Johnson and Redish, 2007). The problem of action selection across

a wide range of animals is arguably likely to involve a dual process of habitual and

deliberative systems, both competing for action selection.

1.2.1 Classical conditioning

The simplest description of action selection involves classical (Pavlovian) con-

ditioning. In this paradigm, the animal learns an association between one stimulus—

the conditional stimulus (CS)—and another stimulus—the unconditional stimulus

(US)—thereby producing a conditional response (CR). Over multiple trials, an ani-

mal is presented with pairings between the CS, which has a neutral valence, and the

US, which induces a reflexive unconditional response (UR) on its own. Eventually,

the CS alone is capable of eliciting a CR.

It may be difficult to infer that an animal is “selecting” a response in this

case, as it would be easy to assume the conditional response is a reflexive behaviour.

Evidence to the contrary can be found in investigations of Pavlovian-to-instrumental

transfer. In this case, a CS, such as light, is paired with an appetitive US, such as

sucrose, and an instrumental action is subsequently paired with a different outcome.

General Pavlovian-to-instrumental transfer occurs when the presentation of the CS,

which had never before been presented in the instrumental setting, increases the rate

of responding for a reinforcer that was not paired with the CS (Estes, 1943). Moreover,

classically conditioned actions may compete with instrumental actions. For example,
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an animal may avoid a lever that shuts off a loud noise if it is physically close to a

cue that has been paired with the noise (Breland and Breland, 1961). These find-

ings suggest that the association learned during classical conditioning affects action

selection on a higher level than the simple reflex.

In fact, one can trace the birth of computational reinforcement-learning models

to classical conditioning. In an effort to explain the inability of a new stimulus, CS2,

to acquire the ability to produce a CR when the US had already been paired (pre-

conditioned) with a different CS1, Rescorla and Wagner (1972) developed a model of

classical conditioning based on violated expectation. When CS1 is pre-conditioned

with the US, the US is perfectly predicted by CS1; subsequent pairings of CS2 with

CS1 and the US fail to produce a learned association between CS2 and the US because

no expectation is violated. The Rescorla-Wagner model implies that the degree to

which new learning occurs depends on the level of learning that has already taken

place.

1.2.2 Instrumental conditioning

The most direct description of action selection occurs in free-operant instru-

mental conditioning, during which an animal learns the relationship between an ac-

tion and a desirable or undesirable consequence of that action. The animal chooses

to spend its time working for experimenter-programmed rewards or for the rewards

it derives from all other actions it may perform in the operant chamber. Normative

models of action selection assume that the partition of time the rat makes between

operant responding and everything else reflects a partition of time the rat deems op-

timal. The dimension along which the rat is optimizing is operationalized as utility;

if the rat spends half of its time lever-pressing, then the inference is that the rat de-

rives maximum utility from allocating 50% of his time to experimenter-programmed

rewards and 50% of his time to non-experimenter related rewards.
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The foundations for this analysis run deep in the behaviourist tradition in

psychology. Allison (1983) characterized operant performance as the result of an

economic contract between subject and experimenter. For example, the experimenter

will deliver one pellet of food for every three lever presses the rat makes, and the

rat is free to allocate its time to fulfilling that economic contract as it deems fit.

Similar microeconomic analyses are made of human behaviour: an individual is free

to allocate his or her time to pursuing the fruits of labour, or to pursuing the fruits of

leisure. The labourer balances the amount of time spent working with the amount of

time spent away from work such that the overall utility of a particular partitioning of

work and leisure is subjectively optimal. Just as a labourer cannot pursue both goals

at once, the rat must necessarily trade off time it would otherwise spend grooming

and resting for the time it must spend pursuing experimenter-programmed rewards.

As the rat can’t hold the lever and groom at the same time, it necessarily sacrifices

one for the other, and must select the action that maximizes the utility of a particular

partitioning of operant performance and everything else.

Microeconomic accounts of animal behaviour (Kagel et al., 1995) propose that

animals partition their time in an operant setting according to an underlying utility-

maximizing rule. Just as a graduate student with a fixed budget to buy bread and

peanut butter is presumed to maximize the best combination of these goods in their

shopping basket, a lever-pressing rat is thought to allocate their fixed “budget” of

lever presses to the goals of eating and drinking according to the subjectively optimal

combination of food and water (Green and Rachlin, 1991). In a single operant con-

text, because the goods that can be acquired by lever-pressing (for example, electrical

stimulation) are only partly substitutable for those that can be acquired from extra-

neous activities (like grooming), the rat’s “investment” into pursuit of experimenter-

controlled and extraneously-delivered rewards changes as the temporal and energetic

budget is manipulated. Assuming perfect information, were the two types of rewards
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completely fungible, the underlying utility-maximizing rule would have to be a step

function: as soon as one was even slightly better than the other, the rat would spend

its time pursuing one to the exclusion of the other. The same is true of any savvy

graduate student: if, while holding all other factors equal, the cost of one peanut

butter jar was even slightly lower than the cost of another, they would exclusively

buy that which drained the budget less.

1.2.3 Experimental control

In the traditional variable-interval schedule of reinforcement used to assess

instrumental conditioning, animals are rewarded following the first response after a

lever is armed. The levers are armed at intervals drawn from an exponential distribu-

tion, thereby providing no time signal about when they are likely to be armed, since

the probability they will be armed is constant over time. Such a schedule is more

likely to produce steady responding (Skinner et al., 1997), providing experimenters

with a large quantity of data.

However, animals may take advantage of the nature of these infinite-hold

variable-interval schedules of reinforcement. The animal can sacrifice a small number

of rewards by waiting sufficiently long, since the lever will continue to be armed for

so long as a reward has not been harvested. As a result, there will be little need for

the self-stimulating rat to trade off the time spent working for electrical rewards that

come at a low rate with that spent engaged in other activities. By simply waiting,

obtaining the fruits of leisure, the probability that a reward is waiting will increase,

and the rat can therefore almost guarantee that it can also obtain the fruits of lever-

pressing while it waits for rewards (Arvanitogiannis, 1997).

One way to control for this is to ensure that the rewards from self-stimulation

must be traded off with the rewards from other activities by enforcing a free-running,

zero-hold variable interval schedule (Conover and Shizgal, 2005; Breton et al., 2009).
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In this procedure, rewards are only delivered when the lever is depressed at the end of

the interval. If it is not, a new interval is drawn and the rat has missed an opportunity

to obtain rewards. As in the wild, unless the rat is actively foraging, the fruits of its

labours may spoil, but while the rat is foraging, it cannot pursue other goals. On this

view, the time spent in one activity truly imposes an opportunity cost that the rat

cannot avoid.

The nature of exponential distributions of latencies is such that a large number

of samples must be drawn before the mean of that exponential distribution can be

known with any confidence. However, previous work (Breton et al., 2009) has shown

that when the price (the reciprocal of the rate of reinforcement) is held constant

over long periods of time, its lower evaluability makes rats much more insensitive

to changes in price and produces inconsistencies in behavioural allocation. When

the price changes often, its value is much more salient, and no inconsistencies are

observed.

Experimental control over both the trade-off imposed by and the evaluability

of the rate of reinforcement—or more accurately, its reciprocal, the price—can be

achieved using a schedule of reinforcement inspired by behavioural ecology. In the

fixed cumulative handling time schedule, animals must invest a fixed amount of time,

accumulated over possibly many bouts, into acquiring the reward on offer. One

hallmark of such a schedule is that the number of rewards that can be harvested

is directly proportional to the amount of time spent engaged in the activity (unlike

traditional variable-interval schedules). Another is that the fixed time requirement

can, at least in principle, be extracted from a single exemplar (unlike free-running

variable interval schedules). As a result, eliminating the variability in price facilitates

measurement of the rate at which animals can learn the work requirement in effect

during a trial.
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1.2.4 “Cognitive” action selection

Not all action selection is the direct result of a learned association between

stimuli, responses, and rewards. Tolman famously proposed (Tolman, 1948) that

maze learning in the rat proceeded, not by a sequence of associative response-reward

pairings, but instead by the establishment of a cognitive map by which animals could

navigate. Using a metaphor that many today would read as quaint, Tolman likened

the learning of complex mazes to requests to a map control room rather than a

telephone switchboard. Rats that were free to explore a maze before it was baited

with food learned where the food was located much more quickly than rats without

this experience, suggesting that spatial navigation decisions can be based on non-

associative components. Furthermore, when sated but thirsty rats were free to explore

a Y-maze baited with food in one arm and water in the other, they approached the

water location quickly when they were subsequently made hungry but not thirsty.

Those that had not had the previous free exploration phase approached the food-

baited arm much more slowly. If a simple process had associated the location with

a representation of reward magnitude, one would expect pre-trained rats to make

incorrect responses when their homoeostatic state changed. Some process must have

occurred during the pre-training phase, above and beyond the reward magnitude to

be found at each baited end: a process mapping the identity of the reward to be

found to its spatial location.

What does spatial navigation have in common with instrumental conditioning?

While it may be natural to describe the solution of a spatial navigation task in terms

of maps, it is equally possible to describe instrumental conditioning tasks in terms

of maps, too. When an animal is afforded the opportunity to acquire rewards, some

process may map lever-pressing actions not only to the absolute reward intensity that

can be derived from that lever, but also to the identity of the reward. To wit, rats
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that are made ill from a food delivered in an operant setting may subsequently cease

responding for the food (Dickinson et al., 1995; Belin et al., 2009), suggesting there

is a representation of the identity of the reward to come.

This mapping may even be applicable to higher-level representations of the

task. In traditional studies employing brain stimulation reward as the operant rein-

forcement, trials are presented in a repeating sequential order, from those delivering

strong stimulation to those delivering weak stimulation. After a trial providing weak

stimulation, the sequence repeats, and a new trial of very strong stimulation begins.

Anecdotal evidence can be found for periodic, unexpectedly vigorous responding on

trials for which stimulation should not be particularly motivating, even when there

is no other cue. The trials have a fixed duration and follow a fixed sequence. When

the stimulation is sufficiently weak, and a sufficient amount of time has passed, the

reward on offer on the next trial will be very strong. By the end of a trial of fixed

duration delivering sufficiently weak stimulation, an animal may come to anticipate

the value of lever-pressing on the next trial. It may be possible—and we present for-

mal evidence here—that experimental subjects are at least capable of a higher-order

representation of how trials progress within a session. In other words, the control

over which actions to perform and how long for which to engage in them is not only

driven by strict associative learning, but also by a cognitive map of task demands

based on statistical regularities in the environment that can be detected.

1.3 Computational models

In order to forage efficiently, animals must balance the anticipated costs and

benefits of pursuing one option with those involved in pursuing all others. The basic

question of action selection in this sense regards how animals make the trade-off and

what the key determinants are that affect the goal to be pursued.
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Quantitative models allow precise predictions about the effect of manipulations

on performance. These models can come from the normative tradition, deriving what

action should be selected from first principles, or from a more descriptive tradition,

deriving what action will be selected from experimental findings. Of course, there

is considerable overlap between these two approaches, because it is important first

to identify what animals should do in order to determine where they stray from

optimality.

At shorter time scales, the most common normative description of action se-

lection is provided by temporal difference reinforcement learning models. The agent

is conceived as an integrated pair consisting of a “critic,” which determines the map-

ping of trial states to the total temporally-discounted sum of future rewards, and

an “actor,” which determines the optimal policy to implement and the sequence of

actions that will bring about the greatest discounted sum of rewards at the greatest

rate. Furthermore, two types of reinforcement learning are possible: learning about

the temporally discounted value that is associated with a trial state (model-free learn-

ing), and learning about the mapping between trial states themselves (model-based

learning). In one case, the rat maintains only a representation of the common cur-

rency required to judge the desirability of actions in particular states, while in the

other, the rat maintains both the value of the state and qualitative aspects of how

states and actions are interrelated. The relevant time scale for these paradigms is

on an action-state pair level, and temporal difference reinforcement learning models

usually describe the action selection problem in terms of punctate events: if the rat

is in trial state S at time t, the action to be selected is that which will lead to a state

S ′ at time t + 1 that will bring about a larger net total reward in the long run.

Behaviour on an operant task can be parsed on multiple time scales. The

Matching Law (Herrnstein, 1974), for example, states that the ratio of rates of re-

sponding on one operant compared to another will match the ratio of the rates of
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reinforcement on each. If pecking a key delivers rewards at a rate of one grain per

second, and another at a rate of one grain per four seconds, pigeons will peck at

the first key at four times the rate of its responding at the second, and vice-versa

for the second key. This phenomenon was described by Herrnstein (1961) in pigeons

responding on concurrent variable interval schedules, and was soon generalized to the

single-operant case. Assuming a constant amount of behaviour to allocate between a

single operant and extraneous activities, the rate of operant responding is a function

of only the rate at which it provides rewards and the rate at which extraneous activ-

ities provide rewards. Thus, the matching law provides a means of scaling the value

of rewards by assuming that the rate of reinforcement from extraneous activities is

constant and there is a constant amount of behaviour to be allocated to each. If a

manipulation has altered the perceived rate of reinforcement, it will also change the

response rate, such that a rate of reinforcement required to drive performance to a

given level will be altered. The assumptions have not gone unchallenged in the case

of brain stimulation rewards (Conover et al., 2001a) and although a change in rein-

forcement rate will produce a change in response rate, the converse cannot be said:

changes in threshold rates of reinforcement required to drive performance to a given

level are not necessarily the product of altered perception of the rate of reinforcement.

Such a description of action selection is intrinsically molar, and does not ex-

plain how time is partitioned among competing goals in an ongoing sense. Melioration

is one attempt at explaining the first principle that guides ongoing action selection,

though it has not been uncontroversial (Williams and Royalty, 1989; Vaughan, 1981).

Maximization is another attempt (Green et al., 1983), though it, too, has had its

detractors. Neither has been entirely successful in unequivocally explaining perfor-

mance in a wide range of operant schedules of reinforcement. One proposal (Gallistel

et al., 2001) has been that feed-forward mechanisms provide the self-stimulating rat

with an interval over which to compute the expected rate of reinforcement, which,
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when combined with the subjective reward magnitude, provides an expected income.

Stay durations at each option—and therefore the selected action—are stochastic re-

alizations of a stay-termination process that depends on the expected income from

each option.

The following sections will elaborate on these two different accounts of per-

formance for rewards in the context of brain stimulation rewards: normative models,

based on temporal-difference reinforcement learning, and a descriptive model, based

on Herrnstein’s Matching Law.

1.3.1 Markov decision processes

Typical temporal-difference reinforcement learning (TDRL) models boil the

problem of action selection down to a Markov decision process (MDP) in which the

rat attempts to maximize its total net reward, subject to costs it incurs by selecting

one action in a given state of the world rather than all others. Strictly speaking,

a MDP refers to any control process—such as action selection—in which the only

relevant state to consider is the current state. In other words, the probability of

moving from one state to any other state is independent of any previous state. In

its discrete formulation, a MDP simply requires that the probability of moving from

state S at time t (St) to state S ′ at time t + 1 (S ′
t+1) depends only on St, or

P [St|St−1, St−2, . . . , S0; at−1, at−2, . . . , a0] = P [St|St−1, at−1].

The original problem was formulated by Richard Bellman (1957) in solving his

shortest path problem. Suppose there are multiple roads that lead from location A

(New York) to location Z (Los Angeles), which may each pass through intermediate

destinations. The problem is to find the shortest path from A to Z. Each point on

the map is connected by roads of varying length. Although an individual may collect
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some amount of reward (R) immediately upon visiting a point on the map (a state

S), taking a particular road (an action) will incur a cost (C) related to how long the

road is. The net reward from travelling from point A to Z on the map, assuming a

sequence of actions given by π, will be the sum of the net rewards (R − C) obtained

by following that particular route. The task, then, is to find the policy π which will

maximize the expected total net reward from visiting all the states and completing

all the actions inherent in the policy. Starting at state S0, the policy will tell the

decision-maker to take action a0, which brings it to state S1, where the policy will tell

the decision-maker to take action a1, which brings it to state S2, and so on, until we

reach the desired absorbing state Sn. The total expected net reward from following

policy π in state S0 will be the sum of all the rewards and costs incurred by visiting

all the states and implementing all the actions in the sequence:

Vπ(S0) = R(S0) − C(a0) + R(S1) − C(a1) + . . . + R(Sn) − C(an).

This sum can be re-written recursively. The total expected net reward from following

policy π in any state S will be the immediate net reward, summed with the total

expected net reward from following policy π in the state that follows it from taking

action a. Following policy π in state S0 will lead to state S1; supposing we were to

start in state S1 rather than S0, the total net reward from following policy π is

Vπ(S1) = R(S1) − C(a1) + R(S2) − C(a2) + . . . + R(Sn) − C(an),

so the total net reward from following policy π in any given state is

Vπ(S) = R(S) − C(a) + Vπ(S ′),

where S ′ is, in this deterministic case, the state that results from executing policy π
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(taking action a in state S). This recursively formulated objective can be expressed

as a set of linear equations: there is one Vπ for each possible state S that can be

visited, which imposes a set of linear constraints on what Vπ could be. By solving for

the system of n linear equations (for each Vπ(S)) with n unknowns (for each S), it is

possible to solve the total net rewards that arise from executing policy π.

The solution to the problem, then, is to find the policy for which this re-

cursively defined “value function” (the total net rewards obtained by executing the

policy) is maximal. In other words, if we define V ∗(S) as the value of state S when

executing an optimal policy, then

V ∗(S) = max
π

{Vπ(S)} .

The value function for state S, when executing the optimal policy, will provide an

immediate net reward, and will tell the agent to execute the action that leads to a

future state with maximal expected net reward when taking the cost into account.

In other words,

V ∗(S) = max
a

{R(S) − C(a) + V ∗(S ′)}

or the value of a state S when using an optimal policy is the maximum, over all

potential actions a that can be performed, of the immediate net reward and future

net rewards. This is usually called “Bellman’s equation,” and leads to the definition

of the optimal policy: if a decision-maker is in a state S, which delivers a reward and

imposes a cost as soon as it is entered, the optimal policy for state S, π∗(S), will be

π∗(S) = arg max
a

{R(a) − C(a) + V ∗(S ′)}

or the action that will lead to the highest future net rate of reward when taking its

cost into account, assuming the agent implements an optimal policy from that point
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forward.

The original problem dealt with deterministic transitions; that is, when a

decision-maker takes action a in state S, it leads unequivocally to state S ′. The

problem can be extended to non-deterministic state transitions by introducing the

state-transition probability function T = P [S ′|S, a], which gives the probability of

entering state S ′ when taking action a in state S. The value function therefore

becomes,

V ∗(S) = max
a

{
R(S) − C(a) +

∑
S′

(T V ∗(S ′))
}

where the expected net reward over future states involves the sum over the random

variable S ′, and the optimal policy becomes

π∗(S) = arg max
a

{
R(S) − C(a) +

∑
S′

(T V ∗(S ′))
}

as a consequence of that expectation.

The shortest path problem is isomorphic to a rat working for electrical stimu-

lation. The normative solution is for the rat to find the shortest sequence of actions

that will lead to the greatest net reward. It may engage in lever pressing, which will

come at some opportunity and effort cost, but will eventually provide it with a brain

stimulation reward; or it may engage in other activities, which will bring about their

own intrinsic rewards but will not lead to electrical brain stimulation.

The original problem contains an absorbing state—Z—from which no further

action is possible. In this case, calculating V ∗ is trivial, because there is a finite num-

ber of locations that will be visited before reaching this state. If, on the other hand,

there is no absorbing state, there will be infinitely many locations visited following

the current state, including (possibly) the current state again. As a result, the value

of any given state could become infinite, because it sums the values of infinitely many

future states. This is what is meant by the infinite-horizon problem. Since a rat
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working for electrical rewards may not know the duration of a trial when it begins,

and can revisit certain trial states arbitrarily often, the problem of action selection

has, for all intents and purposes, an infinite horizon. If the trial state represented by

the rat includes a measure of how much trial time is left, there is once again an ab-

sorbing state (the end of the trial), and action selection reduces to Bellman’s original

shortest-path problem.

In the absence of an absorbing state, the rat must discount rewards it expects

to receive some time in the distant future. Without this discount factor, the MDP

cannot be solved. Commonly, this is accomplished with an exponential discounting

function. Rather than maximize the total net rewards, the solution requires maxi-

mizing the total net discounted rewards, where rewards in the future are less valuable

than those that can be obtained immediately, and costs in the future loom less than

those that must be incurred right away. Future rewards (and costs) are exponentially

discounted by a factor of γ, where γ = 0 would indicate a decision-maker for whom

future rewards and costs are irrelevant, and γ = 1 would indicate a decision-maker

for whom all future rewards are as valuable as immediate rewards. The recursive

expression of Bellman’s equation becomes

V ∗(S) = max
a

{
R(S) − C(a) + γ

∑
S′

(T V ∗(S ′))
}

in this case, and the task is to find the optimal policy according to

π∗(S) = arg max
a

{
R(S) − C(a) + γ

∑
S′

(T V ∗(S))
}

.

A large literature on inter-temporal choice generally contradicts this normative

model. Exponential discounting would predict that an outcome is devalued at a

constant rate across time: with a discount rate of 10% per day, a dollar tomorrow is

worth 90 cents today, and a dollar in two days is worth 81 cents today. If two options
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are presented—a small amount sooner (42$ in one day) or a larger amount (52$ in

10 days) later—seemingly impulsive Harvard undergraduates will tend to prefer the

smaller/sooner option (Kirby and Herrnstein, 1995). This preference implies that the

additional 10$ cannot overcome the temporal discount factor: a dollar in 10 days

is worth less than 81 cents tomorrow, so it is preferable to select the sooner option

to the later one. The finding itself is perfectly valid and ecologically reasonable. A

resource that can be obtained now is preferable to one that can only be reaped later

and which may no longer be available. As a result, a reasonable forager will discount

future rewards compared to their value when immediately available. It would be

foolish indeed for a restaurant owner to accept payment for a meal in six decades,

or for a hungry diner to accept a wait of many days before being served. Temporal

discounting is made explicit in temporal-difference reinforcement learning algorithms

by giving exponentially less weight to future rewards as a function of time.

The important test of exponential discounting is whether displacing the two

options by the same lag will reverse the preference. If the rate of discounting is con-

stant, when a dollar tomorrow is only worth 81 cents in 10 days, a dollar in one week

and 10 days is worth 81 cents in one week. In other words, Harvard undergraduates

should also prefer 42$ in 6 days to 52$ in 16 days, and certainly to 52$ in 27 days.

Alas, impulsive undergraduates (Kirby and Herrnstein, 1995), pigeons (Ainslie and

Herrnstein, 1981) and rodents (Logan and Spanier, 1970) all appear to discount at

a time-varying rate that has often been approximated by a hyperbolic curve. The

19 year-old Harvard undergraduate, for whom a dollar tomorrow was worth under

81 cents in 10 days, prefers an offer of 52$ in 27 days equally to 42$ in 6 days. In

other words, although a constant discount rate implies that the smaller-sooner reward

should be preferred when both options are displaced in time, the preference reverses

(thereby suggesting a time-varying, hyperbolic discount rate) when the options are

displaced by a median of 6 days. Some reformulations of reinforcement learning have
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incorporated hyperbolic temporal discounting (Kurth-Nelson et al., 2012), but even

these models fail to account for other features of the data that will be presented here.

1.3.2 Unsupervised learning

The problem of action selection faced by a rat lever-pressing for brain stimu-

lation rewards, re-cast in terms of a MDP, is to find a policy (π∗) to follow in order to

maximize the net rate of reward. The policy gives the action to perform in a particular

state, for some known transition function that maps the current state to the next state

when an action is taken. The rat receives a particular reward, R(S), when it reaches

state S, incurs cost C(S), and transitions according to a state-transition function from

state S to state S ′ when action a is taken with probability T (S, S ′, a) = P [S′|S, a].

The rat then receives a different reward R and incurs a different cost C for taking

action a′ in state S ′, and so on. The rat does not know, a priori, the value of each

action in each state. As a result, the problem of action selection is compounded by

the problem of unsupervised learning. What is learned will determine how an animal

selects actions.

When the value of all state-action pairs is known, the rat only needs to iden-

tify the policy that will result in the greatest net rate of reward. When the value of

all state-action pairs is not known, the rat must learn the values by trial and error.

If there is an absorbing state the rat only needs to look ahead through every possi-

ble series of states and actions and identify the sequence that will bring about the

greatest net reward at the lowest cost by the end of the trial. Although the solution

is straightforward, as we will demonstrate, implementing it in neural circuitry with

limited resources is intractable and unlikely.

Instead of an animal working for rewards, we can imagine two chess players

competing against each other. In this scenario, there is, indeed, an absorbing state:

the game will necessarily end in a win, loss, or draw for the two players. Beginning
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with some initial state of the world—the pieces in their arrangement at the start of

the game—it would be possible, given sufficient time and resources, to enumerate

every single sequence of moves that each player can possibly make. The move a

player should make given any arrangement of pieces ought to be the one which leads

to more wins than losses or draws down the line. The grandmaster-in-training must

keep track of not only the rewards that can be reaped from moving a piece to a

location (an action) when the board is in a particular configuration (a state), but

also the distribution of possible board configurations that will result when it will be

their turn once again. As very few board configurations are one move away from

a win, loss or draw, the prediction of board configurations must also be projected

arbitrarily into the future. Naturally, no human player actually looks arbitrarily far

ahead to every possible absorbing state before evaluating which piece to move. Such

a procedure would require searching through what are pragmatically infinitely many

decision trees of infinite length.

This description of the solution to the action-selection problem is called “model-

based,” because it relies on the decision-maker to hold in memory a model of the

function that maps previous states (like the position of both sides’ pieces on the

chess board when it will be their turn it is at time t) to subsequent states (like the

distribution of piece positions at time t + 1) in terms of an action taken at time t

(the identity and location of the moved piece). Action selection is trivially solved by

searching through each possible sequence, and selecting the sequence of actions (the

policy) that will maximize the net rate of rewards. However, the trivial solution may

involve a search through a non-trivial state space requiring a non-trivial amount of

time to compute.

Rather than searching through a stored decision tree of all possible sequences,

thereby selecting that which is optimal, it is possible to store only the value of taking

a particular action in a particular state, without representing how states transition
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to each other (the state transition function). A mediocre chess player might simply

have learned that moving a pawn when the board is in a particular configuration is

more desirable than moving the queen, without necessarily knowing why, or what

the resulting configuration will be. Since all that is learned is the value of taking an

action in a particular state, without any representation of what future states may

be, there is no need to engage in a time- and resource-consuming search through an

extensive decision tree. In the case of self-stimulating rats, during training, the rat

would learn that lever-pressing leads to an electrical reward of magnitude Ibsr, after

pressing for Po seconds.

This type of scheme is called “model-free” because all that is kept in memory

is a record of the net amount of reward subject to costs, rather than the rat’s model

of the world instantiated by a state-transition function. While “model-based” rein-

forcement learning requires the rat to store state-related information (such as reward

identity) along with magnitude information, “model-free” reinforcement learning re-

quires the rat to store only the net reward.

For example, one may train a rat that lever pressing will deliver an amount of

food pellets giving rise to reward R, having flavour F . The food pellet with flavour F

may subsequently be devalued by pairing it with lithium chloride. A rat employing

a model-based learning system will learn not only that lever pressing results in R

units of reward, but that lever pressing results in the delivery of food pellets with

flavour F . If the model-based system has control over the rat’s performance after F

is paired with illness, the rat will cease to lever press. In essence, the rat is looking

ahead to the world state that will result from lever-pressing, and making its decision

based not only the reward that was paired with the action of lever pressing, but also

on what lever-pressing does to change the state of the world. In contrast, a rat using

a completely model-free learning mechanism will only have stored the value of the

state that is produced by lever-pressing, and thus will continue to lever-press as it
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did before the food reward was paired with illness. Whereas model-free systems are

insensitive to changes in underlying motivational states, model-based systems allow

the decision-maker to flexibly alter what policy to implement at any given time, at

the cost of increased representation.

Neither model-based nor model-free reinforcement learning models can account

for all performance in all settings. When a rat has only been moderately trained,

its performance following reinforcer devaluation operates as though it had a world

model of lever-pressing: namely, the rat behaves as though it knows that pressing

the lever will lead to a reward of not only a particular magnitude but also of a

particular identity. When that reward is devalued, the rat will cease to lever-press.

In contrast, following extensive training, a rat’s performance appears to follow a

model-free algorithm: the rat behaves as though lever-pressing is associated only

with a reward magnitude. While the rat will not consume the devalued reward, it will

continue to press the lever because it has not maintained a state-related representation

of the identity of the reward that is produced by lever-pressing.

When the model-free reinforcement system is in control of behaviour, the rat

still selects actions that maximize its net rate of reward. The critical difference

between model-free and model-based systems is that performance can only depend

on cached values of the next state when using model-free systems. If all that is learned

is that lever-pressing leads to a state with value V (bsr), then un-cued but predictable

changes in V (bsr) will have to be learned on-line, as a function of the discrepancy

between the old and new values. If the rat also acquires a model of the world, as

is the case with model-based reinforcement learning, then un-cued but predictable

changes in V (bsr) will not have to be learned. The change in V (bsr) is presumably

already extant in the model of the world the rat has learned. What is learned by

the rat—be it both reward and state-transition information or reward information

alone—will dictate the actions the rat selects following training.
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1.3.2.1 Model-based TDRL

In model-based reinforcement learning, the rat acquires a world model that

includes more than merely the value of rewards it can expect to receive. More specif-

ically, a rat acting based on a model of the world will act as though it is thinking

ahead about how its actions will alter the world within which it lives, rather than just

the amount of reward that has been associated with that action. The rat acquires, in

some sense, a state-transition function that maps a state S to a future state S ′ when

it takes action a. That state-transition function essentially allows a feed-forward

mechanism to inform behaviour.

In the case of electrical rewards, it may be unclear how model-based systems

are involved with driving performance. After all, the task is simple, and the reward

may not be identifiable. Nonetheless, there is still a state-transition function that can

be learned in principle. In traditional two-dimensional parametric procedures, where

the reward is delivered following every lever press, the strength of the stimulation

changes predictably (usually in descending fashion) from cued trial to cued trial, in

a repeating sequence. In the inter-trial interval that precedes every trial, priming

stimulation is delivered of identical strength to the stimulation the rat will receive

in the upcoming trial if it fulfils the work criterion, accompanied by a flashing house

light. Throughout the trial period, the stimulation strength and cost will remain

constant. These may all provide cues about what state of the world the rat is in,

and the rat may learn that a trial delivering weaker stimulation will follow one with

all but negligible strength, and a trial delivering excessively weak stimulation will be

followed by one delivering very strong stimulation. Furthermore, the rat may learn

that following the flashing house light, the strength and cost of brain stimulation

rewards will remain constant. In both of these cases, the rat does not learn exclusively

the value of lever-pressing. Instead, it learns a rule about which states are likely to

follow others.
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Using exclusively model-based systems, the rat either searches through an ex-

tensive tree of which states follow which other states when taking particular actions,

or else it “fills in” the key determinants of its decision to press and bases its perfor-

mance on a rule for identifying which state it is currently in and, therefore, which

policy is optimal. In any case, the rat must construct a model of how the next trial in

a session is related to the current one, or the next trial state is related to the current

trial state, and base its policy on that model. Ultimately, model-based reinforcement

learning models require the rat to learn T = P [S ′|S, a] for an arbitrarily large state

space, which may include the total net reward it obtained, the action it just took, the

running session time, its current position in the sequence of trials, whether there has

been an inter-trial interval, and more. On the basis of this model of T , the rat must

then implement the policy that will maximize its total net reward, bearing in mind

all the attributes of the state space which may or may not be relevant to the task.

With a sufficiently extensive model of how one state leads to the next, the rat could

(at least in principle) determine the optimal policy from the time it is placed in the

operant chamber. Although the horizon is not infinite—with a sufficiently complete

model, the rat can implement an optimal policy from beginning to end—the decision

space grows exponentially with the size of the state space and the number of possible

actions. As a result, it is unlikely that rats use a completely model-based system.

A much simpler, though equally imperfect, algorithm for learning which actions to

perform in a particular state is model-free temporal difference reinforcement learning.

We shall turn to this scheme now.

1.3.2.2 Model-free TDRL

In model-free TDRL, the rat updates its estimate of the reward it receives

with successive trials, but does not maintain any information about how one state of

the world transitions to the next. Although this formulation would appear to be most
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suited to brain stimulation rewards, it also implies that the rat does not keep track of

any information above and beyond total net reward, and therefore does not maintain

a representation of how key decision variables change throughout the experiment. In

its simplest form, the rat has an expectation for reward, pursuant to costs, in any

particular state. When the actual value (net reward) differs from what is expected,

a discrepancy signal modifies the value of the state that followed the action.

During training, a rat using model-free reinforcement learning systems will

try to minimize the discrepancy between the total net reward earned at a point in

time and the total net reward it expected for that point in time, called a reward

prediction error. Before any training occurs, the rat has no expectancy for reward.

When the rat first holds the lever long enough to fulfil the work requirement, the lever

is retracted and an electrical reward is delivered. At this point, there is a discrepancy

(a prediction error) between the value of the state that is brought about by lever

pressing and its expected value. As a result, the optimum V ∗(S) is different, because

the total discounted sum of future rewards is larger than expected. At time t, the rat

expects an optimal total net discounted value of V ∗(St), but receives rt + γV ∗(St+1)

instead. The reward prediction error can be expressed as

δt = [rt + γV ∗(St+1)] − V ∗(St)

or the difference between rewards (immediate and predicted to come) actually deliv-

ered and those that were predicted to have been delivered (Dayan and Abbott, 2001).

The name temporal-difference reinforcement learning comes from the assumption that

learning involves an update to the value of actions according to the degree to which

the rewards and costs incurred at each time step violate expectation. When the re-

ward prediction error (δt) becomes 0, the predicted value of a trial state corresponds

to the total net discounted reward that is delivered in that state.

- 28 -



If the rat increments its estimate of the total net reward of this state in pro-

portion to the discrepancy between that expected and that observed (δt), the next

time around, the rat will behave with an updated estimate of V ∗(S ′). By induction,

the discrepancy will appear earlier and earlier in responding to the first moment the

reward can be predicted. Neural activity appearing like such a discrepancy signal has

been observed in non-human primates (Apicella et al., 1991) and forms the basis of

a major computational model of dopamine signalling (Montague et al., 1996).

The degree to which the discrepancy affects a subject’s revised estimate of

the trial state’s expected total net reward is set by a learning rate parameter. If

the learning rate parameter is 1, the current estimate is simply replaced by the last

obtained reward. In contrast, if the learning rate parameter is 0, the current estimate

is never updated. Since the policy depends on the current estimate of the total

discounted reward of all states, in the absence of any model of what rewards may be

expected from lever-pressing, the animal will need to re-learn that mapping every time

the subjective intensity and opportunity cost of the reward changes. If the current

estimate is updated rapidly, temporal-difference reinforcement models require the rat

to either (A) learn at a very high rate updating over very few time steps, or else (B) to

have a model of how the task is designed. The former is not very likely without some

process allowing the learning rate to be tuned to the task structure, since performance

would be highly dependent on the immediately previous rate of reinforcement on

variable interval schedules, an observation that does not obtain (Gallistel et al., 2001,

though see Neiman and Loewenstein, 2013). Instead, we propose that rats develop a

model of how the operant task is set up allowing them to tune the rate at which the

value of lever-pressing is updated—in other words, a model of their world.
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1.3.2.3 Average-reward temporal difference model

One solution to the infinite-horizon problem that does not involve exponential

discounting is to penalize actions with a long latency. Niv (2008) developed a model

in which animals choose both what to do and the latency with which to perform it.

When waiting a long time before lever-pressing, the rat forgoes the opportunity to

collect rewards for longer. When waiting a very short time, the rat incurs a non-

negligible vigour cost for performing the lever-press with a shorter latency. The task

for the rat is to maximize its net rate of reward when choosing actions and latencies

with which to perform them. Each state is associated with an optimal total net

future reward corresponding to the rewards that may be reaped now (subtracting

costs), and those that may be reaped when following an optimal policy from now

on (subtracting costs), all expressed as a difference from the average rate at which

rewards will be delivered when following an optimal policy. If there are only two

punctate trial states (lever is up, lever is down), two punctate actions (lever press,

groom), and rewards and costs are delivered and levied at punctate state transitions,

two recursively-defined equations specify the value of each state. If we presume that

the lever can only be down if the action taken is a press, and up if the action is to

groom, the two equations become

V ∗(up) = reward(up)-cost(groom)

+P[groom | up] V ∗(up)

+P[press | up] V ∗(down)

−average reward∗ ,

and

V ∗(down) = reward(down)-cost(press)

+P [groom | down] V ∗(up)

+P[press | down] V ∗(down)
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−average reward∗ ,

where V ∗ represents the optimal total net reward and P [action|state] is the policy.

The system can easily be re-written as

V ∗ = r∗ − c∗ + T V ∗ − R̄∗, or

(1 − T )V ∗ = r∗ − c∗ − R̄∗,

where T is a state-transition probability, V ∗ is the total net reward rate when engaging

in an optimal policy, r and c are immediate rewards and costs, respectively, and R̄∗

is the average reward rate when the policy is optimal.

Since this definition only holds when the policy is optimal, the solution to the

system of equations directly provides the optimal policy. As the rows of T in the

above expression must all sum to 1 (the sum of the probabilities of transitioning from

a state to every possible state is necessarily 1), the matrix is rank n-1 (in our example,

1) rather than full rank (in the above example, 2). Subtracting the average rate of

reward when the policy is optimal allows the system to be solved up to an additive

constant (Niv, 2008), thereby solving the infinite horizon problem.

The average-reward formulation described by Niv (2008) proposes that animals

choose both an action as well as a latency with which to perform the action. The

rat may choose to begin a press more quickly, thereby incurring a heavy cost related

to its vigour of responding, but sacrificing fewer rewards, or to begin a press more

slowly, thereby incurring a lower vigour cost but sacrificing many rewards from waiting

longer. The model penalizes both fast responding as a function of the vigour cost

divided by the latency, as well as slow responding as a linear function of the average

rate of reward and the latency. In essence, the total net reward obtained in a state S
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by following policy π is

Vπ(S) = Ur(S) − Cu(a) − Cv(a)
τ

− R̄τ +
∑
S′

P [S ′|S, a]Vπ(S ′)

where action a and latency τ are given by the policy, states provide unit reward

Ur when they are visited, actions incur unit cost Cu each time they are performed

and variable cost Cv related to how fast they are performed, and the average rate of

reward R̄ decreases as the latency to perform actions is increased.

In her original formulation, the rat makes punctate actions—lever pressing,

nose poking, or “other”—and obtains food rewards by lever pressing according to a

ratio schedule of reinforcement, which can be collected by nose poking into the feeder.

Although attractive, the concept of vigour as described here only makes sense when

the various activities are punctate and occur following a latency. It is only in this type

of task that “vigour” as it is defined makes any sense. When the rat must choose what

to do and how long to do it for, rather than how quickly to do it, the costs the rat

incurs will necessarily differ from this proposed hyperbolic relationship. The longer

the rat chooses to perform an action, the more effort it must put into that action.

The trade-off between doing something more quickly and losing reward opportunities

disappears. The longer the animal chooses to spend performing an action, the greater

both the vigour and opportunity costs.

As a result, we propose an action selection mechanism that differs from the

average reward model in three important respects. First, the animal selects what to

do and for how long to do it, rather than how soon to do it. An alternate, but equally

valid way to say this is that specific activities, which may or may not be directly

observable, are chosen by the animal and the animal chooses when those activities

terminate. Second, the animal selects actions according to a policy that depends

on the scalar, not additive combination, of subjectively mapped key determinants of
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decision, which we call the payoff. Third, and perhaps most importantly, the action

to be selected is not chosen on the basis of a slowly updating policy. Instead, the

chosen action is the result of a rapidly-updating (“filling-in”) process that integrates a

model of the task demands with internal and external stimuli that directly sets what

to do and the probability per unit time that the action will cease.

1.3.3 The matching law

A very different approach to modelling the action-selection problem derives

from Herrnstein’s Matching Law. The matching law states that the ratio of response

rates for two sources of reward will match the ratio of rates at which those two sources

deliver rewards. Rather than providing a normative basis for what the animal ought

to do in any given circumstance, the Matching Law provides an empirical basis for

what animals actually do. The matching law states that relative response rate over an

entire trial will match the relative rate of reinforcement on that trial, mathematically

instantiated as
Rexperimenter

Rextraneous

= Rfexperimenter

Rfextraneous

where R is the response rate and Rf is the rate of reinforcement (de Villiers and

Herrnstein, 1976). Assuming there is a constant “amount” of behaviour k to be

partitioned between the two, the expression can be reduced to

Rexperimenter = k
Rfexperimenter

Rfexperimenter + Rfextraneous

.

Although the Matching Law describes what animals do over long periods of

time, it does not describe performance on the molecular level. The explanation that

Herrnstein gave (Vaughan, 1981; Herrnstein and Prelec, 1991) is melioration, which

proposes that animals respond to local rates of reinforcement in choosing which action

to perform. For example, suppose that one manipulandum (A) provides rewards at
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a rate of one reward per second and the other (B) provides them at a rate of one

every two seconds. If the rat were to press 6 times per second on A, the local rate

of reinforcement from that option would be 1/6. If it were then to press 6 times per

second on the B, the local rate of reinforcement from that option would be 1/12. Since

the local rate of reinforcement from option 1 is much higher than from option 2, the

rat may then decide to allocate 10 responses per second to A, and 1 per second to B. In

this case, the local rate of reinforcement from A would become 1/10, while that from

B would become 1/2. As the local rate of reinforcement from A is much lower than

from B, the animal will shift responding to B. When the local rates of reinforcement

from both alternatives are equal—that is, 10 responses per second to A producing a

local rate of 1/10 and 5 responses per second to B producing a local rate of 1/10—

the animal also matches the relative rate of responding (10/5) to the relative rate of

reinforcement (1/0.5). Melioration theory is not uncontroversial (Green et al., 1983),

as matching in this case is also a maximizing strategy, and neither melioration nor

maximization can account for molecular level performance with the same normative

framework that is afforded by the temporal-difference reinforcement learning models

described above.

As we will show, matching emerges from real-time level interactions between

the rat and the lever, and though matching is not built on first principles, the only

assumptions made in our modelling of real time performance are that (1) the an-

imal bases its decision on payoff, and (2) the stream of holds and releases can be

decomposed into multiple types of actions, (3) some of which have payoff-dependent

duration.
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1.4 Neural substrates

The implementation of action selection in neural machinery involves multi-

ple interacting regions, which have been ascribed various functions depending on the

quantitative approach used to model action selection. Below, we describe four struc-

tures that have been extensively studied in the context of action selection, from purely

model-free, purely model-based, average-reward, and Matching Law-scaling points of

view: the medial forebrain bundle, the ventral striatum, the dorsal striatum, and

the orbitofrontal cortex. Their contribution to decision-making likely integrates all

approaches, as a single approach to the action-selection problem is unlikely to be

exclusively correct in modelling how animals partition their time among competing

goals. Nonetheless, a parsimonious, yet, comprehensive description of performance

in real time could provide a stronger basis for identifying how a particular structure

participates in an animal’s ongoing decision to engage in one of a variety of behaviours

in a particular context.

1.4.1 Medial forebrain bundle

The region this dissertation will most directly investigate is the medial fore-

brain bundle, as it passes through the location at which the electrode is implanted.

The medial forebrain bundle is a large tract of fibres running ventrally from the ol-

factory tubercle to the tegmental mesencephalon, and neurons with cell bodies in

dozens of locations send projections though the bundle both in ascending and de-

scending directions (Nieuwenhuys et al., 1982; Veening et al., 1982). Although the

electrode has the potential to induce activation in any subset of this heterogeneous

collection of axons running near the tip, those neurons responsible for the rewarding

effect likely represent only a small fraction of those coursing past the electrode. Early

studies (Wise, 1982) supposed that the rewarding effect was produced by directly ac-
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tivating ascending dopamine fibres. The behaviourally-derived characteristics of the

neurons involved in the rewarding effect of medial forebrain bundle stimulation are,

however, incompatible with known properties of dopamine neurons: the first-stage

neurons have short absolute refractory periods (Yeomans and Davis, 1975; Yeomans,

1979); they are likely fine and myelinated and have fast conduction velocities (Shizgal

et al., 1980; Bielajew and Shizgal, 1982); and at least a subset of them project in the

anterior-posterior direction (Bielajew and Shizgal, 1986). Although VTA dopamine

neurons are activated by the electrical stimulation (Hernandez et al., 2006), it is highly

unlikely that dopamine is itself the cable along which reward-producing stimulation

has its effect.

Similarly, computational models of the activity of dopamine cells (Montague

et al., 1996), whose activity as measured in electrophysiological recordings appears

to track the discrepancy between expected and obtained rewards, assume that the

electrode is a dopa-trode: electrical stimulation causes dopamine neurons to fire,

dopamine neurons adjust the synaptic weights involved in assigning value to stimuli

like the lever, and the self-stimulating rat engages in lever-pressing because of the

increased value of the lever. Since the discrepancy between expected and obtained

rewards is the proximal cause of electrical stimulation, these synaptic weights either

grow to infinity or saturation. Thus, the rat would always come to expect that lever-

pressing will provide a maximal reward. This view is also incompatible with empirical

findings: rats will adjust performance to sub-maximally rewarding brain stimulation

(Hodos and Valenstein, 1962) and can respond to a wide range of stimulation strengths

at differing rates (Hodos and Valenstein, 1960).

Instead, electrical stimulation induces a volley of action potentials that ap-

pears to be spatio-temporally integrated by a network, or system of networks, whose

peak activity is encoded somewhere in a memory engram of the subjective intensity

of the rewarding effect (Gallistel et al., 1974). The growth of this intensity with stim-
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ulation strength is well-described by a power function at low pulse frequencies that

saturates at high pulse frequencies (Simmons and Gallistel, 1994), and can thus be

reasonably approximated by a logistic function. We propose that the rat maintains

this key subjective decision variable, as well as other subjective decision variables like

the opportunities foregone, the effort expended, and the risk involved, in memory,

and they are subsequently combined multiplicatively, as suggested by Baum (1979)

and later by Leon and Gallistel (1998). The scalar combination, termed “payoff” in

the remainder of this thesis, is the organizing principle by which actions are selected.

Factors that may be deemed more “cognitive,” like statistical regularities inherent in

the operant task structure, also have representations which may inform and poten-

tially very rapidly update the payoff that can be expected from engaging in a variety

of actions. Below, we briefly describe three regions that have been heavily implicated

in the process of action selection, and briefly describe how they may fit into this

organization.

1.4.2 Orbitofrontal cortex and task modelling

One region that has garnered interest in the study of decision-making is the

orbitofrontal cortex (OFC). Activity within the OFC has been correlated with flavour

perception of pleasant foods (Kringelbach et al., 2003; Rolls, 2005), delay (Roesch

and Olson, 2005), risk (Kepecs et al., 2008) and cost (Kennerley et al., 2009), and

responses within the region are highly heterogeneous. Lesions of orbitofrontal cortex

impair discriminations between outcomes that differ with respect to their identity but

not their value, but abolish the facilitation in learning a cue-response pairing when

the outcomes of the two responses differ by their value (McDannald et al., 2011).

These results suggest a general mechanism is at work in the orbitofrontal cortex that

provides a mapping of task-related outcome identity information (what, when, how

likely, how hard, under which circumstances) to other stimuli, responses, and goals.
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As we shall discuss later, the process is similar to what is meant by a world model,

which establishes how stimuli both internal and external to an agent are related to

each other, if indeed they are.

1.4.3 Ventral striatum and value updating

Another region that has received considerable attention is the ventral striatum,

a major component of the basal ganglia system. The ventral striatum receives afferent

connections from cortical structures, including the orbitofrontal cortex (Eblen and

Graybiel, 1995) as well as subcortical structures like the hippocampus (Kelley and

Domesick, 1982), amygdala (Kelley et al., 1982) and ventral tegmental area (Ikemoto,

2010). Activity in sub-populations of ventral striatum cells correlates with reward

receipt (Apicella et al., 1991), some show anticipatory responses (van der Meer and

Redish, 2009), and others fire prior to specific cued actions but not the nature of

the cues that preceded them (Taha et al., 2007). These results would imply that

the ventral striatum is involved in some way with the mapping between actions and

the degree to which these actions ought to be chosen. As will be argued later, it is

possible that neurons within the ventral striatum integrate task-specific information

regarding the set of world models the rat may have acquired in training with specific

and non-specific outcomes so that the mapping between actions and their desirability

may be maintained.

1.4.4 Dorsal striatum and response-outcome gating

In contrast to the ventral striatum, in which activity is tied to updating the

mapping between actions and their putative payoffs in exploratory phases of a task

(van der Meer and Redish, 2009), the dorsal striatum may maintain this mapping for

as long as necessary. Ensemble recordings of the dorsal striatum show an increase

in the coding efficiency of units during decision-rich portions of a spatial naviga-

- 38 -



tion task as the correct path is learned (van der Meer et al., 2010). Human func-

tional neuroimaging studies have found differential activation in the dorsal striatum

in response to high-calorie visual food stimuli when presented to obese individuals

(Rothemund et al., 2007). Lesions of the dorsal striatum disrupt the acquisition of

a dual-operant task when each response alternative provides a different (sucrose or

food pellet) reward, as well as subjects’ sensitivity to devaluation of the outcomes

(Yin et al., 2005). Post-training lesions also impair performance and render animals’

lever-pressing insensitive to devaluation of the outcomes that each response bring

about. These results appear to imply that the dorsal striatum is sufficient for an

accurate representation of the mapping between actions and outcomes, and necessary

for acquiring and maintaining that mapping. It is possible that while ventral striatum

is involved in integrating task-specific information with current payoff estimates to

update the desirability of an action, the dorsal striatum is involved in maintaining

the map.

1.5 This thesis

1.5.1 A computational molar model

In this thesis, we will elaborate on a molar model of performance for brain

stimulation rewards based on a modification of Herrnstein’s Matching Law, termed

the Shizgal Reinforcement Mountain Model. In essence, brain stimulation delivered

to the medial forebrain bundle elicits a volley of action potentials that travel caudally

to a downstream network that performs a spatio-temporal integration of the signal.

Peak activity is then recorded in an engram of subjective reward intensity, the growth

of which can be fairly well approximated by a power function at low pulse frequen-

cies that rises to asymptote at high pulse frequencies (Simmons and Gallistel, 1994).

The engram provides the information required to direct future behaviour, and this
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representation is combined with the subjective impact of other key determinants of

decision like the cumulative amount of time the lever must be depressed (the price),

the force required to depress the lever, and the probability that a reward is delivered

following successful completion of the work criterion. The scalar combination of these

quantities we term the “payoff,” and it will be a central organizing principle of this

thesis. It is on the basis of the payoff that the rat allocates its time between self-

stimulation and non-self stimulation activities. At the molar level, we have modelled

the dependence of time allocation to self-stimulation activities on payoff as the ratio of

suitably transformed payoff from self-stimulation to the sum of suitably transformed

payoffs from self-stimulation and non-self stimulation activities. Manipulations that

affect reward circuitry prior to the peak detection stage, and thus before an engram

can be recorded, will alter the sensitivity of the psychophysical translation of pulse

frequency into subjective reward intensity. That is, any interference with informa-

tion processing before a reward intensity can be recorded will change the ability of

stimulation pulses to drive the integration network to a particular relative level of

reward intensity. Interference with information processing upstream from or at the

output of the spatio-temporal integration network will ultimately alter the absolute

scaling of the reward intensity without affecting its sensitivity to inputs. Since the

relevant decision variable is presumed to be a scalar combination of the arbitrarily

scaled intensity with the subjective impact of the price, and given that the arbitrary

scaling can be simply set to 1, changes beyond the output of the peak detection stage

will result in changes to the animal’s inferred responsiveness to the price. When we

define a criterion price at which the payoff from a maximal reward will only produce

half-maximal time allocation, manipulations occurring at or beyond the peak detec-

tion stage will result in changes in this criterion, whereas manipulations prior to the

peak detection stage will result in changes in the pulse frequency that produces a half

maximal reward.
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A distinction can thus be made between the sensitivity of the reward-growth

function, mapping stimulation strength into subjective reward intensity, and its gain.

When reward growth is made more sensitive to changes in stimulation strength with-

out altering the gain, weaker stimulation will have a greater subjective impact, but

strong stimulation will be unaffected. When the gain of reward growth is increased,

all stimulation strengths are scaled. Similar processes occur in sensory-perceptual

systems; adaptation to the darkness of a movie theatre alters the visual system’s

sensitivity to light, such that even a few photons will be perceptible. As one leaves

the movie theatre, one is blinded because even moderate light is perceived at maxi-

mum. An increase in gain would, in contrast, make all lights, bright and dim–appear

brighter. The mountain model can similarly distinguish changes in the sensitivity of

the reward substrate, which affect only the relative impact of rewards, from changes

in gain, which affect only the absolute impact of rewards.

The model, in its current state, has been previously validated (Breton et al.,

2013; Arvanitogiannis and Shizgal, 2008) with respect to its ability to correctly de-

tect the effect of a manipulation affecting the substrate for self-stimulation, and has

proved useful in reinterpreting the effects on self-stimulation produced by alterations

in dopaminergic transmission (Hernandez et al., 2010). A previous experiment val-

idated the strong positive prediction that manipulation of the directly stimulated

neurons (increasing the duration for which they are stimulated) should affect the

sensitivity of the psychophysical process translating pulse frequency into subjective

reward intensity (Breton et al., 2013). However, in a subset of animals, the weaker

negative prediction that this manipulation should not affect the gain or absolute scal-

ing of the psychophysical process was not supported. One proposed mechanism for

the observed changes in gain was that stimulation in these animals provoked activity

in multiple integrators with different strength-duration trade-off functions. Decreases

in train duration would then displace the strength-duration relationship in one of
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these integrators sufficiently that it no longer contributes to the stored record of re-

ward. The hypothesis relies on the assumption that, indeed, changes in the subjective

intensity of a reward are dissociable and orthogonal from changes in the subjective

opportunity cost. Similarly, alterations in dopaminergic neurotransmission, either by

cocaine (Hernandez et al., 2010) or GBR-12909 (Hernandez et al., 2012), produced

reliable changes in gain with unreliable or trivial changes in sensitivity as assessed by

the mountain model. These previous studies have assumed that changes in gain (Pe)

are orthogonal to and experimentally dissociable from changes in sensitivity (Fhm).

This thesis will demonstrate that manipulations of the payoff from self-stimulation

that do not alter the post-synaptic impact of the stimulation can indeed be correctly

identified using the Shizgal Mountain model.

In the chapters that follow, we shall first validate the molar model’s capacity to

identify the stage of processing at which risk acts. Then, we shall use the estimates of

subjective reward intensity and opportunity cost inferred in fitting this molar model

to describe some of the supra-molar strategies that rats may use in our procedures

and the molecular processes by which actions are selected in real time.

1.5.2 World models

Although a well-trained rat’s performance on any given trial can be modelled

in the aggregate by the Shizgal Reinforcement Mountain, it could be even more use-

ful to describe performance on the molecular level. Trial performance reduces the

entire stream of holds and releases to a single number, and the Shizgal Reinforcement

Mountain uses trial performance to identify the stage of processing at which a manip-

ulation has occurred. Since our experimental protocol follows a definite structure, it

is possible that the rat develops a model of its own—a world model—of the statistical

regularities it encounters in the course of testing.

World models allow the rat to quickly learn which actions are optimal in a
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variety of settings. For example, if it learns that the pulse frequency and price of

trains of brain stimulation rewards will remain constant throughout a trial, the rat

only needs a single exemplar of price and frequency to tune its optimal policy of

pressing and releasing. If it learns that following a trial of very low pulse frequencies

it will be presented with a trial with a very high payoff, it can begin working as soon

as the high payoff trial has begun to collect rewards at as fast a rate as possible. If it

learns that following a trial with intermediate payoff, it will be presented with a trial

with very low payoff, then it can forgo pressing entirely.

Chapters 3 and 4 will explore the question of whether rats construct a world

model of the triad structure of the session, and whether they construct a world model

of the stability of the trials.

1.5.3 A computational molecular model

If rats can be said to have a session model of triad structure and a trial model

of trial structure, it should be possible to describe what animals do in real time once

the subjective intensity and price of the electrical reward are known. This description,

which I call a computational molecular model of performance, provides a means of

identifying what actions the animal takes in real time. Such a model makes possible

a much more fine-tuned analysis of how various manipulations affect performance

in real time. For example, the computational molecular model makes possible the

investigation of whether activity in various brain regions is related to the rat’s varied

behavioural states, some of which may not be directly observable even in principle. It

also allows for a detailed description of what lesions and pharmacological interventions

do to the propensity of the rat to enter various behavioural states. Indeed, a real-time,

molecular model of choice is indispensable for experiments in which millisecond-scale

physical measurements—electrophysiological recordings, electrochemical assays, and

optogenetic manipulations—are obtained.
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Chapter 5 concerns this descriptive model. The computational molecular

model of performance assumes that the various observable activities the rat is in—

pausing after reinforcement, holding, releasing for a short while, releasing for a long

while—are the result of a mixture of underlying behavioural states with characteristic

properties. The hidden behavioural states produce stay durations in each activity ac-

cording to characteristic gamma distributions, whose mean depends only on the payoff

for the trial. Following this descriptive model, we compare the proportion of time

allocated to holds or short (tapping-related) releases predicted by the computational

molecular model to the molar prediction of the Shizgal Reinforcement Mountain. If

the two are in good agreement, then the molar performance described in the Shizgal

Reinforcement Mountain Model is an emergent property of molecular model of real

time performance.
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Chapter 2

A computational molar model of performance for

brain stimulation reward

2.1 Introduction

For many animals, the longer one forages, the longer one leaves oneself open

to predation. Often, if an animal fails to find food, it will starve. The longer it

forages, the less opportunity it will have to copulate, find water, or hide. Pulled by

the various goals that would be advantageous for them to pursue, successful animals

nonetheless efficiently balance competing objectives. Indeed, for any species to be

successful, it must successfully trade off costs and benefits inherent to one goal with

the opportunities and risks from goals it has foregone.

Instrumental responding is no different from naturalistic action selection in this

respect. Experimental animals must arbitrate among competing goals of experimenter-

delivered rewards and those not under experimenter control. An animal that is given

the opportunity to harvest brain stimulation rewards will have to balance pursuit

of electrical pulses with the rewards that accompany grooming, exploring, and rest-

ing. Below, we develop a model of performance for these rewards—the Mountain

Model—and provide a reasoned basis for evaluating how performance is changed

when variables are manipulated. Indeed, operant responding is the result of a series

of trade-offs, translations and combinations. As a result, the tools needed to ascertain

how a manipulation has altered responding and what stage of processing has been

affected need to take these multiple transformations into account.
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2.1.1 The Shizgal Mountain Model

Performance for rewarding brain stimulation is not simply a reflection of its

subjective impact. Multiple factors affect whether or not an animal will invest time

and energy in obtaining any reward, and brain stimulation is no different in this

regard. The amount of time an animal will invest in holding down a lever will depend

on the intensity of the rewarding effect produced by the stimulation, the opportunities

forgone by holding the lever, and the energetic demands required to maintain its

depression. So long as the stimulation is strong, the opportunities forgone are few,

and the energetic demands are negligible, the rat will devote almost all of its time

to lever-pressing. When the stimulation weakens, the opportunity costs grow, or the

energetic demands place an increasing burden, the rat will devote less time in pursuit

of the reward. This conjecture implies that the central decision variable for the rat

in pursuit of brain stimulation rewards, the single criterion to be traded off, is the

payoff derived from self-stimulation activities compared to the payoff derived from all

other activities available to the rat in the operant chamber.

When a rat harvests a train of brain stimulation reward, the cathodal pulses

induce activity in the fibres of passage and local somata surrounding the electrode

tip, injecting a volley of action potentials in, among others, the first-stage neurons

composing the substrate within the medial forebrain bundle responsible for the re-

warding effect. The injected signal is characterized by an aggregate rate code. The

rat behaves as if a small number of fibres (low current stimulation) firing at a high

rate (high frequency stimulation) produces a reward of equal magnitude to a larger

number of fibres (high current stimulation) firing at a low rate (low frequency stimu-

lation). These findings (Gallistel, 1978) imply that a process, occurring downstream

from the first-stage neurons, effectively performs an integration over time and space.

The peak activity in this integrator network is committed to memory (Gallistel et al.,
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1974). In parallel, a process must have committed to memory the average amount

of time invested in obtaining the reward, as well as the average amount of effort ex-

pended, in order for these variables to affect future behaviour. These stored subjective

determinants of performance are combined, presumably in scalar fashion, for the rat

to arrive at a subjective estimate of the payoff that self-stimulation will offer him. A

similar process presumably occurs in evaluating the payoff from all other activities:

the stored record of the rewards that can be derived from grooming and resting, for

example, are combined with the effort and opportunity costs of performing them to

provide the self-stimulating rat with the payoff it can expect to receive from these ex-

traneous activities. Action selection is simply the process of allocating time between

pursuit of competing goals such that the overall payoff derived from all activities is

maximal.

Figure 2.1 shows the presumed sequence of events leading up to a decision

regarding the allocation of time to work (self-stimulation) and leisure (non-self stim-

ulation) activities. First, the electrode induces a volley of action potentials in the

substrate within which it is embedded. This volley of action potentials travels down

the fibres to one or more networks that perform a spatio-temporal integration. The

peak activity of this volley of action potentials is identified by a peak detector and

stored in a memory engram that represents the subjective intensity of the rewarding

effect of the brain stimulation. In parallel, the rat revises its estimate of the opportu-

nity cost of acquiring trains of brain stimulation by considering the average amount of

time it spent holding the lever to earn the reward (the price, P) and the opportunities

thus foregone. In addition, the rat revises its estimate of the energetic requirements

(ξ) of acquiring brain stimulation trains and the probability that it will be rewarded

(Pr). The stored records of these subjective determinants of performance are com-

bined multiplicatively, updating the rat’s estimate of the payoff that lever-pressing

will provide. The rat apportions its time to work and leisure activities on the basis
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Figure 2.1. Sequence of events in the decision to press. When a rat harvests a brain
stimulation reward, the stimulation induces a volley of action potentials that travel to
a network that integrates the injected signal over space and time (Σ). This integra-
tion results in a subjective reward intensity (I); the peak activity of this subjective
intensity signal is committed to memory in an engram. In parallel, the probability
of reinforcement (Pr), the amount of time required (P ), and the effort invested in
acquiring rewards (ξ) is also determined, turned into subjective variables (risk, op-
portunity cost, and effort cost) and committed to memory. Their scalar combination
provides the rat with the payoff it can expect from self-stimulation activities (Ub). A
comparison of the payoff from self-stimulation with the payoff the rat expects from
all other activities it can perform in the operant box (Ue) provides the rat with the
proportion of time it will spend engaged in self stimulation-related activities (TA),
which will drive performance for rewards.
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of the subjective payoffs it can expect to derive from them.

This model requires that processes implement the psychophysical transfor-

mation of objective experimental variables, like stimulation strength, price, reward

probability, and exertion, into subjective determinants of choice, like subjective re-

ward intensity, subjective opportunity cost, subjective probability, and subjective

effort cost. The psychophysical function that describes the translation of stimulation

strength into subjective reward intensity, or the reward-growth function, has been

well described (Simmons and Gallistel, 1994; Hernandez et al., 2010). The reward

growth function can be reasonably well approximated by a logistic function whose

value grows as a power function at low strengths (pulse frequencies) and saturates at

high strengths. This function is a critical component of the model, as it prescribes

a nonlinearity in a processing stream that otherwise contains multiple scalar com-

binations which cannot, in principle, be distinguished. The reward-growth function

establishes that there is some pulse frequency that will produce a maximal reward (as-

suming the duration and current remain constant), beyond which higher frequencies

will fail to raise the subjective intensity of the rewarding effect.

Figure 2.2 shows the sequence of events in the decision to press, when focus-

ing on the reward growth, payoff-computation, and behavioural allocation functions.

Suppose there are five pulse frequencies, A, B, C, D, and E, ordered from lowest to

highest. A rat may respond sub-maximally for rewards of pulse frequencies A and

B, while responding at a maximal rate for rewards of pulse frequencies C, D and E

(extreme right-hand side of figure 2.2). Given a choice between pulse frequency A and

B, the rat prefers to respond for B, and when given a choice between pulse frequencies

B and C, the rat prefers to respond for C. This is relatively unsurprising, because the

rat’s single-operant performance demonstrates that the rat responds more to C, D,

and E than B, and the rat responds more to B than A. However, even though the rat

responds at the same, maximal rate to pulse frequencies C, D, and E, it may have a
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Figure 2.2. Simplified sequence, focusing on reward growth and behavioural allocation
functions. The subjective intensity of the stimulation (I) is a logistic function of pulse
frequency (f); peak activity in the network that implements this psychophysical trans-
formation is committed to memory. Consequently, while pulse frequencies A through
D elicit different remembered reward intensities, pulse frequencies D and E elicit the
same, maximal reward intensity. Intensity is then combined with probability (Pr),
opportunity cost (P ), and effort cost (ξ) multiplicatively to provide the animal with a
payoff from self-stimulation activities (Ub). Performance itself is a non-linear function
of the payoffs from self-stimulation activities (Ub) and non-self stimulation activities
(Ue). As a result of this composition of functions (TA = b(g(x, y)), where b and g
are the non-linear behavioural-allocation and reward-growth functions, respectively),
even though the rat allocates equal proportions of time to acquiring stimulation trains
of pulse frequencies C, D, E, their subjective intensities are not equal. In effect, the
performance level motivated by any given pulse frequency is not a reflection of its
underlying reward intensity alone.
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preference, measured in a dual-operant setting, of D to C, and no preference between

pulse frequencies D and E. This implies that the subjective intensity of the rewarding

effect is both non-linear (since it saturates at high pulse frequencies) and convolved

with a process that translates the intensity into performance (since stimulation pro-

ducing equal response rates are not necessarily equi-preferred). Because the rat’s

preference (or lack thereof) between two trains of different pulse frequencies is gov-

erned by the subjective intensity that they produce, pulse frequencies D and E may

produce subjectively equal reward intensities, while pulse frequencies C and D may

produce different subjective reward intensities. Furthermore, the rat’s performance

for pulse frequencies C and D in a single-operant setting is not a direct reflection of

their subjective intensity, but rather, a functional composition of the reward growth

and behavioural allocation functions, both of which are non-linear.

Unlike linear functions, for which location (position along the abscissa) is

confounded with scale (position along the ordinate), a non-linear function allows us

to interpret the effect of a manipulation very clearly. In the case of the reward-growth

function, a change in the location of the logistic is identical to a change in the relative

subjective impact of stimulation strengths, such that weaker stimulation produces a

more intense rewarding effect or stronger stimulation produces a less intense reward.

A maximum reward, however, remains at a constant absolute value; it is simply the

relative impact of each additional stimulation pulse that is altered. A change in the

scale of the reward-growth function is identical to a change in the absolute impact of

stimulation strengths, such that the intensity of all stimulation trains is multiplied

by a constant. The relative impact of a particular train will remain constant, even

though its absolute value will be scaled up or down.

At constant train duration and current, the pulse frequency whose subjective

impact is half-maximal (Fhm) is an index of the relative impact of stimulation trains.

When injected action potentials are more effective at producing a level of reward rela-
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tive to maximum—that is, the reward system is highly sensitive—the pulse frequency

that produces a half-maximal reward will be lowered. As such, a manipulation that

alters Fhm will act prior to the output of the process that identifies the peak activ-

ity in the substrate and commits the subjective intensity of the rewarding effect to

memory. It is therefore possible to identify a manipulation of the first-stage neurons

themselves, like prolonging the duration of the train or increasing the current of the

stimulation pulses (Breton et al., 2013; Arvanitogiannis and Shizgal, 2008). In con-

trast, because the output of the reward growth function, implemented by the peak

activity of a spatio-temporal integration network, is committed to memory and com-

bined in scalar fashion with the other determinants of the decision, any alteration of

the neural machinery of choice beyond the output of the peak detector will scale the

reward growth function along the ordinate.

The payoff from brain stimulation reward is a scalar combination of the reward

growth function with psychophysical translations of required work time (P ), required

effort (ξ), and probability of reinforcement (Pr). The resulting payoff (Ub) is compared

to the payoff from everything else the rat could do in the operant chamber (Ue), such

as grooming, resting, and exploring. A common means of describing the translation of

payoff into performance, and the means we have adopted here, is to adapt Herrnstein’s

Matching Law (Herrnstein, 1974) to the single operant context (McDowell, 2005;

de Villiers and Herrnstein, 1976; Hamilton and Stellar, 1985, see) using a suitable

exponent (A) to take into account the partial substitutability of the fruits of work

with those of leisure. In this case, the payoff from everything else is equal to the payoff

from brain stimulation reward when the rat spends equal time engaged in each; as a

result, the proportion of time allocated to self-stimulation will be 0.5 when work and

leisure are equi-preferred. If we define a price, Pe, at which a maximal reward (Imax)

produces half maximal time allocation, the payoff derived from leisure activities will
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be

TA = UA
b

UA
b + UA

e

TA =
( Imax

P (1+ξ)Pr)A

( Imax

P (1+ξ)Pr)A + UA
e

0.5 = UA
b

UA
b + UA

e

Ub = Ue at TA = 0.5

Ue = Imax

Pe(1 + ξ)Pr

where Ub is the payoff from brain stimulation rewards, Ue is the payoff from extraneous

(“leisure”) activities, Imax is the maximum subjective intensity of the rewarding effect,

P is the opportunity cost (“price”) of the reward, ξ is the effort cost (“exertion”) of

the reward, and Pr is the probability of reinforcement.

Re-arranging terms, the price at which a maximal reward produces half-

maximal time allocation, Pe, is the following function of the maximal intensity of

the reward, the effort cost of the reward, the probability of reward, and the payoff

from everything else:

Pe = Imax

Ue(1 + ξ)Pr

Substituting the equation of the logistic reward growth function for the intensity of

the rewarding effect, and expanding the payoffs,

TA =
(Imax

fG

fG+F G
hm

× Pr

(1+ξ)P )A

(Imax
fG

fG+F G
hm

× Pr

(1+ξ)P )A + (Imax × Pr

(1+ξ)Pe
)A

.

Simplifying terms, we obtain the following prediction of time allocation as a function
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of pulse frequency and price.

TA =
( fG

fG+F G
hm

)A

( fG

fG+F G
hm

)A + ( p
Pe

)A

As stated above, a manipulation that affects the circuitry that underlies deci-

sion making at any point between the electrical stimulation and the peak detection

process will result in a change in the pulse frequency that produces a half-maximal

reward, Fhm. A manipulation that affects decision making circuitry beyond the out-

put of the peak detector—one that alters Imax, Ue, ξ, or Pr—will result in a change

in the price at which a maximal reward drives only half-maximal performance, Pe.

Thanks to the non-linearity inherent in the reward growth function, it is possible

to identify whether or not a manipulation has occurred beyond the peak detection

process. Because of the scalar combination of the subjective determinants of choice,

multiple manipulations will similarly and indistinguishably affect the resulting 3D

time allocation function (Hernandez et al., 2010).

Previous validation studies of this mountain model have established that a

manipulation known to affect the first-stage neurons directly can indeed be correctly

identified. A different version of the model, in which the relevant experimental vari-

ables were the rate of reinforcement and number of pulses injected, correctly identi-

fied alterations in train duration and pulse current as manipulations affecting first-

stage neurons directly (Arvanitogiannis and Shizgal, 2008). However, Conover et al.

(2001a) found that, at least in the case of brain stimulation reward, the assumption

that operant tempo was independent of rate of reinforcement did not hold, compli-

cating interpretations of the Arvanitogiannis et al. (2008) results that were obtained

under an infinite-hold variable-interval schedule of reinforcement. Furthermore, the

data in that experiment were obtained by systematically varying a single indepen-

dent variable (pulse frequency or programmed rate of reinforcement) while holding
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the other constant. Breton et al. (2009) found that this experimental design distorted

performance, by reducing the evaluability of price, which requires multiple exemplars

for the rat to gain an accurate estimate of the opportunity cost of brain stimulation

rewards In a separate validation experiment, Breton et al. (2013) used a cumulative

handling time schedule which provides a tighter control of the rate of reinforcement.

Breton et al. (2013) delivered stimulation trains 1.0s and 0.25s in duration, and ob-

served differences in Fhm from one duration condition to the next. Additionally,

Breton et al. (2013) used the experimental design suggested by Breton et al. (2009),

which dramatically increases the evaluability of relevant independent variables by

presenting pulse frequency-price pairs in random order alongside high payoff (low

price, high pulse frequency) and low payoff (low price, low pulse frequency) trials

that provide anchors for evaluating the payoff on randomly selected test trials. These

validation studies establish that the mountain model, in its many incarnations and

across multiple performance-probing procedures, is capable of correctly identifying a

manipulation affecting the reward circuitry prior to the output of the peak detection

process.

Fewer studies have been conducted, however, explicitly altering the payoff of

brain stimulation reward without affecting the directly stimulated substrate. Ar-

vanitogiannis (1997) altered the payoff derived from leisure activities by delivering

sporadic leisure-contingent stimulation; although this produced changes in Re, the

rate of reinforcement that drove performance for a maximal reward to 50% time

allocation (related indirectly to the reciprocal of Pe), the effects were messy. Provid-

ing background stimulation during leisure activities would indeed increase the payoff

from leisure-related sources of reward, but also drastically increases the degree to

which leisure-derived and work-derived rewards can be substituted for one another.

Moreover, such a manipulation did not alter the payoff from brain stimulation reward

directly; rather, it alters performance for a given payoff without altering the payoff
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itself. To determine whether the mountain model can, indeed, correctly detect an

orthogonal change occurring beyond the output of the peak detector that also alters

the payoff from brain stimulation reward, we compared performance for certain re-

wards to that for risky rewards. The probability of reinforcement is expected to alter

the rat’s estimate of the opportunity cost for rewards, in the sense that it will have to

devote more time for every reward delivery when successful completion of the work

requirements (the price) does not always lead to a train of electrical brain stimulation.

In addition to validating the ability of the mountain model to correctly iden-

tify post-peak detection manipulations, the degree to which a particular probability

changes the payoff from self-stimulation can be quantified. If Pe1 is the price at which

a maximum, certain reward produces a payoff from self-stimulation that is equal to

the payoff from everything else, and Pe2 is the price at which a maximum, risky reward

produces a payoff from self-stimulation that is equal to the payoff from everything

else, then it follows that the ratio of the two is the factor by which the rat discounts

a risky reward compared to a certain one. For example, if the ratio between a max-

imal reward delivered with probability 0.75 and a maximal reward delivered with

certainty (probability 1.00) is 0.75, then the rat discounts two identical (maximal)

rewards by a factor of 0.75. If that ratio is 0.7, then the risky reward is relatively

under-weighted; if that ratio is 0.8, the risky reward is relatively over-weighted, as

compared to the normative probability. As a result, in addition to testing whether

the mountain model could correctly identify a post-peak detection effect, we set out

to quantify the probability discounting function for reward probabilities ranging from

0.5 to 1.0.
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2.1.2 Probability discounting

2.1.2.1 Previous studies

The study of how risk impacts the selection of actions that lead to probabilistic

outcomes has been of considerable interest to economists and neuroscientists alike.

In the classical economic analysis of decision-making under uncertainty, the agent

weighs the gains by their probability of occurrence to extract an expected value for

either option, and performs the action which will lead to the greatest expected value.

Fundamentally, the process that drives the decision is arbitrary and the ultimate out-

come is of utmost importance. In contrast, the typical neuroscientist takes for granted

the assumption that agents maximize this expected value, and studies correlates of

this expected value to identify where economic determinants of decision-making are

represented (van Duuren et al., 2008, 2009; Pennartz et al., 2011).

The idea that humans maximize objective, probability-weighted objective out-

comes is not without its detractors. Kahneman and Tversky (Kahneman and Tversky,

1979) proposed that losses loom larger than gains (that is, the objective loss −x is

much more undesirable than the objective gain of x is desirable). For example, indi-

viduals will have a strong aversion to an option that pits a gain with 50% probability

against an equally likely loss of the same amount of money, and of two gambles with

symmetric outcomes (a gain of x with probability 0.50 or a loss of x with a proba-

bility of 0.50), people will choose the one in which the expected gain/loss is smallest.

Furthermore, Kahneman and Tversky propose that while outcomes with very low

probabilities (0.001 and 0.002) carry more-than-normative weight in a stated op-

tion, non-certain (non-zero and non-unitary) probabilities carry less-than-normative

weight. Individuals overwhelmingly (73%) prefer a lottery where the probability of

winning 6000 Israeli pounds with probability 0.001 (and the complementary prob-

ability of nothing) to one where the probability of winning 3000 Israeli pounds is
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0.002, implying that the ratio of probabilities 0.001/0.002 is greater than 1/2—the

normative value (Kahneman and Tversky, 1979). Moreover, individuals prefer (72%)

a 0.001 probability of winning 5000 Israeli pounds to the objective expected value of

the ticket (5 pounds) for certain (Kahneman and Tversky, 1979).

Despite overweighting small probabilities, individuals prefer (82%) 2400 pounds

with certainty to a gamble where they can win 2500 pounds with probability 0.33,

2400 pounds with probability 0.66, or nothing with probability 0.01. This preference

implies that the utility of 2400 pounds is more desirable than the utility of 2500

weighted by 0.33 and summed with the utility of 2400 weighted by 0.66, or

u(2400) > 0.33u(2500) + 0.66u(2400).

Subtracting the final term (0.66 times the utility of 2400 pounds) from both sides,

we obtain a preference of

0.34u(2400) > 0.33u(2500).

In other words, the preferences imply that 2400 Israeli pounds with probability 0.34

is better than 2500 pounds with probability 0.33.

In a separate question, respondents had to choose between 2500 Israeli pounds

with probability 0.33 (or 0 with probability 0.67) and 2400 pounds with probability

0.34. A large majority of individuals (83%) opted for the first choice, which is opposite

what would be expected from above. The two preferences imply that the sum of the

weight associated with a probability of 0.66 with that associated with a probability of

0.34 is less than the sum of their objective probabilities, 1. As a result, for probabilities

that are neither a few tenths of a percent nor trivial (0 and 1), the impact of a

probabilistic outcome on the subjective value of the option for which it is a part is

under-weighted compared to its normative value. In the decades since Kahneman and
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Tversky (1979) proposed their prospect theory, which describes choice as a result of

a concave function of gains, a convex function of losses, and a non-linear function of

probability that is discontinuous at 0 and 1, many other researchers have probed the

degree to which risky options are devalued (Rachlin et al., 1991; Gonzalez and Wu,

1999). Individuals consistently violate the assumptions of expected utility theory,

according to which equal outcomes for pairs of gambles cancel each other out.

There is a relative paucity of research on probability discounting in non-human

animals. Studies of the degree to which rewards become less interesting when they are

made probabilistic do not usually perform the adequate psychophysics. MacDonald et

al. (1991) tested the proposition that rats would exhibit a similar preference reversal

as demonstrated by Allais (Allais, 1953) in humans. Suppose a decision-maker is

presented with the following choice: A) Y dollars with probability p or X dollars with

probability (1-p), or B) Z dollars with probability q or X dollars with probability

(1-q). If the individual prefers A over B, we can assume that

pY + (1 − p)X > qZ + (1 − q)X,

so we can also assume, multiplying both sides by a constant, that

rpY + (1 − rp)X > rqZ + (1 − rq)X.

If the decision-maker is presented with choice C) Y dollars with probability rp or X

dollars with probability (1-rp), or D) Z dollars with probability rq or X dollars with

probability (1-rq), the preference is reversed for small values of r.

This effect, called the common ratio effect (because in both gambles, the ratio

of probabilities of Y to Z is the same) has been observed in many cases, and was

investigated in water-deprived rats making choices between levers that delivered either

A) 8 cups of water with probability 1, or B) 13 cups with probability 0.75 or 1 cup with
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probability 0.25. Following this preference test, rats were given the choice between

two different outcomes that maintain a ratio common to the first: C) 8 cups of water

with probability 1/3 or 1 cup with probability 2/3, or D) 13 cups with probability

1/4 or 1 cup with probability 3/4.

MacDonald et al. (MacDonald et al., 1991) found that rats, indeed, preferred

the certain option (A) when it was available, but their preference switched when the

options were multiplied by a common factor. In other words, rats appear susceptible

to the certainty effect, and show preference reversals similar to those that led Kah-

neman and Tversky (1979) to propose prospect theory in explaining choice between

uncertain outcomes.

Despite these studies, most investigators assume that delivery of 4 food pel-

lets is 4 times as rewarding as a single food pellet and that a reward delivered with

0.75 probability will be 75% as desirable as the same reward delivered with certainty

(van Duuren et al., 2009). In each case, a psychophysical mapping exists between

the variable that can be manipulated and its subjective impact. In order to truly

assess how much less valuable a reward has become by virtue of its uncertainty, the

psychophysics of that reward must be conducted. In the case of brain stimulation,

the subjective intensity of the rewarding effect of stimulation is a (non-linear) logis-

tic function of the pulse frequency (Simmons and Gallistel, 1994). The rat’s actual

performance is a non-linear function of this subjective intensity, the subjective op-

portunity and effort costs, and the payoffs the rat derives from other activities. As a

result, the comparison between riskless and probabilistic rewards at a single strength

and response requirement is an inaccurate assay of how much risk has discounted the

reward.

As an example, consider rewards delivered with a probability of 0.75. Even

when the objective probability and its subjective impact are given a one-to-one map-

ping, such a risky reward would raise the subjective opportunity cost 4/3-fold, as the
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rat must expend (on average) 4/3 as much time in pursuit of the reward when it is

only delivered 3/4 of the time compared to when it is always delivered. If a rat is

presented with a maximally intense reward at a sufficiently low price, the observed

effect of probability would be undetectable, as performance would still be nearly

maximal. If the response requirement is raised, the observed effect of probability on

performance will be much more pronounced. As a result, some researchers may detect

an effect, and some may not. Only by measuring the performance that results from

many reward strengths and opportunity costs can the true effect of probability on

performance be assessed. Only when the subjective intensity of the reward is accu-

rately estimated can the true degree to which it is degraded by probabilistic delivery

be found.

2.1.2.2 The present study

The probability that a reward will be delivered when the response requirement

(price) has been fulfilled is not likely to affect the effectiveness of the stimulation to

drive a given relative level of subjective reward intensity. It will, however, affect the

subjective opportunity cost of obtaining rewards, since the rat will have to spend

more time lever-pressing per reward when the reward is not delivered every time the

lever has been held for the required amount of time. For example, the rat will have to

spend roughly twice as much time depressing the lever when the reward is delivered

with a probability of 0.5 as it would when the reward is delivered with certainty.

As a result, although the payoff from working for electrical rewards is altered

by the probability that the reward will actually be delivered, the subjective intensity

of the reward the rat eventually receives will not be affected by its probability. In

effect, the probability of reward delivery affects decision-making beyond the peak

detection stage, leaving Fhm unaffected while altering the payoff from self-stimulation.

A probabilistic reward will therefore produce a decrement in Pe (the benchmark for
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manipulations that occur beyond the peak-detection stage) and leave Fhm unchanged.

The degree to which probability affects Pe can also be used to quantify the de-

gree to which probabilistic rewards are discounted as compared to their riskless coun-

terparts. Provided the probability of a reward affects all opportunity costs equally,

and affects neither effort costs nor the payoff from all other activities, then the decre-

ment in Pe that results from the probabilistic nature of a reward is itself a proxy

for the decision weight of that reward. If an animal is willing to work 30 seconds

for a maximal reward given with certainty, and it is willing to work only 20 seconds

for that same reward delivered with 0.75 probability, then the probabilistic reward

is effectively under-weighted in the decision. In this example, a 4/3-fold decrement

in probability is subjectively weighted as a larger, 3/2-fold decrement in payoff. In

other words, the probabilistic reward carries less weight than would be normatively

expected.

The psychophysical mapping between an outcome’s objective probability and

its subjective impact on choice has been extensively studied in humans (Kahneman

and Tversky, 1979) and provides one of the two important bases of prospect theory,

which seeks to answer how humans evaluate economic gains and losses under risk.

Since the decisions presented to people are word-and-number problems, it would be

easy to assume that the fact that human beings underweight non-trivial probabili-

ties and overweight very low probabilities results from being literate and numerate.

No “prospect theory” of rats has ever been advanced, despite various risk preference

reversals in rats and pigeons (Kalenscher and van Wingerden, 2011; Kacelnik and

Bateson, 1996). In many experiments in which rats perform a probabilistic task, the

subjective decision-weight of a probabilistic reward is presumed equal to its objective

probability (Roitman and Roitman, 2010; Gilbert et al., 2011; Zeeb and Winstan-

ley, 2011; St Onge et al., 2010, 2011; Cardinal and Howes, 2005). It remains to be

shown whether prospect theory is universally true, or whether non-human animals
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underweight middle probabilities as humans do.

The goal of the following experiment is two-fold. First, we wished to validate

the ability of the Reinforcement Mountain Model to correctly identify a manipulation

that occurs strictly beyond the output of the peak detector. To do this, we fit the

model to two types of trials the rats were exposed to in random order: riskless

trials on which reward is always delivered when the response requirement is met, and

risky trials on which reward is delivered with non-certain (0.75 or 0.5) probability

when the response requirement is met. Second, we wished to quantify the degree

to which the two probabilities of reinforcement affected the payoff, thereby deriving

the objective-to-subjective psychophysical mapping of probability at 0.75 and 0.50

objective probability values.

2.2 Methods

2.2.1 Surgical procedure

Long-Evans rats (Charles River, St-Constant, QC) weighing at least 350g at

the time of surgery, were stereotaxically implanted bilaterally with macro-electrodes

aimed at the lateral hypothalamic level of the medial forebrain bundle. Macro-

electrodes were fashioned from 00-gauge insect pins insulated to within 0.5mm of

the tip with Formvar enamel. Rats received a subcutaneous injection of Atropine

(0.02 to 0.05 mg/kg) to reduce mucous secretions, an intra-peritoneal injection of a

Ketamine/Xylazine cocktail (87 mg/kg and 13 mg/kg, respectively) to induce anaes-

thesia, subcutaneous buprenorphine (0.05 mg/kg) as an analgesic, and intramuscular

Penicillin (0.3 ml) to reduce infection. Rats were maintained on 0.5% isofluorane at

a flow rate of 800 ml/min for the duration of stereotaxic surgery. Stereotaxic coor-

dinates for stimulating electrodes were 2.3mm posterior to bregma, 1.7mm lateral to

the midline, and halfway between 9mm from the skull surface and 8.2mm from dura
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mater. A return wire was affixed to two of the skull screws anchoring the implant.

The head cap, containing Amphenol pins connected to each stimulating electrode and

the return wire, was cemented on the skull surface (anchored by a minimum of 5 skull

screws) with dental acrylic.

Immediately following surgery, rats were given a second injection of buprenor-

phine (0.025 mg/kg). Rats were also given mild analgesic injections (Anafen, 5

mg/kg) 24 and 48 hours after surgery. Rats were allowed to recover for at least

one week from the day of surgery before screening for self-stimulation began.

2.2.2 Behavioural protocol

Following surgical implantation of stimulation electrodes, rats were screened

for self-stimulation behaviour in non-computerized operant chambers in which every

depression of the lever triggered a 500ms train of 0.1ms cathodal pulses delivered to

one of the hemispheres, on a continuous reinforcement schedule. Only animals who

quickly learned to avidly depress the lever without stimulation-induced involuntary

movements or evident signs of aversion (vocalizations, withdrawal or escape behav-

iors) were retained for this study. Currents were tested from 200 to 1000uA, adjusted

for each rat and each electrode to provide optimal performance.

After screening, rats underwent operant training in the computer-controlled

testing boxes that would eventually be used for the experiment. All tests were con-

ducted in the dark phase of their light/dark cycle. Rats were first presented with a

repeating sequence of 10 trials in which the first two trials were identical and each

subsequent trial delivered stimulation that decremented in pulse frequency by 0.1

common logarithmic steps. Trials were signalled by a house light that flashed for

the duration of a ten-second inter-trial interval; priming stimulation consisting of

the highest pulse frequency the animal could tolerate at a train duration of 500msec

was delivered two seconds before the end of the trial. Each trial lasted 25 times the
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objective price, allowing the rat to obtain a maximum of 25 rewards if it held the

lever continuously throughout the trial. The price, pulse frequency, and probability

of reinforcement were held constant for the duration of a trial. A cumulative handling

time schedule (Breton et al., 2009) was in effect for the remainder of the experiment.

In this schedule of reinforcement, a reward is delivered only when the cumulative

amount of time the rat has spent holding the lever reaches a set criterion (the “price”

of the stimulation). For this first phase of training, the price was set to 1s. Pulse

frequencies were adjusted throughout to ensure a range of frequencies that produced

high time allocation ratios, a range that produced low time allocation ratios, and a

range that produced intermediate time allocation ratios.

When performance on such training “frequency sweeps” was reliably high on

high-frequency trials and low on low-frequency trials, as determined by visual in-

spection, rats were presented with a repeating sequence of 10 trials in which the

first two trials were identical and each subsequent trial delivered stimulation that

incremented in price by 0.125 common logarithmic steps. The pulse frequency deliv-

ered on these trials was as high as the animals would tolerate without involuntary

stimulation-induced movements or vocalizations. Training on these “price sweeps”

was considered complete when low prices produced reliably high time allocation ra-

tios and high prices produced reliably low time allocation ratios, as determined by

visual inspection.

Following “price sweep” training, rats were presented with a repeating se-

quence of 10 trials in which the first two were identical and each subsequent trial

decremented in pulse frequency and incremented in price. The actual prices and fre-

quencies of stimulation were arrayed along a line that passed through a price of 4s

and the pulse frequency delivered during price sweeps, and through the price and

frequency that produced half-maximal performance on price and frequency sweeps,

respectively, in logarithmic space. Training on these “radial sweeps” was considered
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complete when high payoff (high frequency, low price) trials produced reliably high

time allocation ratios, and low payoff (low frequency, high price) trials produced

reliably low time allocation ratios by visual inspection.

When training was complete, animals progressed to the discounting portion of

the experiment. Preliminary fits to the frequency, price, and radial sweeps were used

to aim three vectors in the sample space of prices and pulse frequencies: a vector of 9

frequencies obtained at a price of 4s (the frequency pseudo-sweep), a vector of 9 prices

obtained at the highest frequency the animal would tolerate (the price pseudo-sweep),

and a vector of 9 price-frequency pairs that was arrayed along the line that passed

through the intersection of the frequency and price pseudo-sweeps and through the

anticipated value of Fhm and Pe. The vectors thus formed describe the set of price-

frequency pairs that would be delivered on certain (P=1.00) trials. These vectors were

shifted leftward along the price axis by 0.125 common logarithmic units (decreasing

all prices on those trials by roughly 25%) for the list of price-frequency pairs that

would be delivered on risky trials where the probability of reinforcement following

successful completion of the work requirement was 0.75. The vectors were shifted

leftward along the price axis by 0.30 common logarithmic units (decreasing all prices

on those trials by roughly 50%) for the list of price-frequency pairs that would be

delivered on risky trials where the probability of reinforcement following successful

completion of the work requirement was 0.50.

The first probability condition rats encountered was 0.75 (P1vp75). A master

list combining the frequency, price, and radial pseudo-sweeps for P=1.00 and P=0.75

conditions was assembled. The central 5 price-frequency pairs of each pseudo-sweep

(the 3rd through the 8th elements of each pseudo-sweep when ordered by payoff) were

repeated in this master list. As a result, we collected twice as many observations of

the time allocation ratio in the dynamic range of the performance curve, reducing our

uncertainty about the position of the curve along either the frequency or price axes.
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This master list was then randomized in a new list, providing one full “survey,” or a

full description of performance at each point in the parameter space that was tested.

Rats were presented with repeating triads in which the first trial delivered the

highest pulse frequency the animal could tolerate at a price of 1s. The price and

pulse frequency of the stimulation delivered on the second trial were drawn without

replacement from the randomized list. The third trial of the triad delivered 10Hz

stimulation, a pulse train so weak the animals would never work for it, at a price

of 1s. This triad sequence was repeated until all trials in the master list had been

presented, for a maximum session duration of 9h a day. On certain trials (P=1.00),

the reward was always delivered when the cumulative amount of time the rat spent

holding the lever reached the price on that trial. On risky (P=0.75) trials, the reward

was only delivered with a probability of 0.75 when the cumulative amount of time the

lever had been depressed reached the price on that trial. Only one lever was armed

on any given trial.

For rat MA5, the same lever served as manipulandum for both certain (P=1.00)

and risky (P<1.00). For rats DE1, DE3, DE7, PD8, DE14, DE15, DE19 and DE20,

one lever was mapped to all trials in which reward was certain and the other lever

was mapped to all trials in which reward was risky. In all cases, a steady cue light

mounted above the lever signalled that reward would be delivered with certainty,

while a flashing cue light (300ms on, 300ms off) signalled that the reward would not

be delivered with certainty.

When performance was judged stable by visual inspection for 8 consecutive

“surveys,” or, in other words, when the entire master list had been presented 8 times

and led to reliably high time allocation ratios on high payoff trials, reliably low time

allocation on low payoff trials, and intermediate time allocation ratios on intermediate

trials, the probability of reinforcement was changed to 0.50 (P1vp5). A new master

list was created by amalgamating the frequency, price, and radial pseudo-sweeps for
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the certain (P=1.00) condition with the new risky (P=0.50) condition. As above, the

central 5 points of each pseudo-sweep were double-sampled. The list was presented

again, in triads for which the 2nd trial was now randomly drawn without replacement

from the new master list.

When performance on this new probability condition was judged stable by

visual inspection for 8 consecutive “surveys,” the location of the certain (P=1.00) and

risky (P=0.50) rewards was switched (P1vp5sw). A steady cue light still signalled

that the lever would always deliver reward, and a flashing cue light still signalled

that the lever would not always deliver reward, but the mapping of levers to those

probabilities was inverted. If, for example, the lever delivering certain rewards was

on the left side for the previous two probability conditions, the right lever would

now fulfil that role, and vice-versa. This switch enabled us to partly control for

side-preferences.

After rats completed 8 stable surveys comparing certain and risky rewards,

the probability was changed again to 0.75 (P1vp75sw). A master list was constructed

again by amalgamating pseudo-sweeps for the P=1.00 condition with those for the

P=0.75 condition, double-sampling the central 5 price-frequency pairs as above. The

levers maintained their inverse mapping, and the 2nd trial of every trial was drawn

at random without replacement from this final master list. Data collection continued

until 8 stable surveys were collected under this switched certain (P=1.00) compared

to risky (P=0.75) condition.

Rats DE1, DE3, and DE7 began the experiment as MA5, with probabilities

mapped to the same lever but signalled with a steady or flashing light. As no difference

in performance was observed under either P1vp75 or P1vp5 between certain and

risky conditions, mapping of levers to probabilities was instituted, as described above.

Then, 8 stable surveys at P1vp75 and 8 (DE1), 5 (DE3) or 6 (DE7) surveys at P1vp5.

In summary, rats were presented with a triad sequence of trials in which the
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first delivered strong, inexpensive stimulation, the second delivered a trial of random

price and frequency drawn from the P1vp75, P1vp5, P1vp5sw or P1vp75sw lists, and

a third trial delivered weak, inexpensive stimulation. The order of the probability

conditions was always P1vp75, followed by P1vp5, P1vp5sw, and finally P1vp75sw.

Rat MA5 did not undergo the lever-switch conditions, as a single lever was used for

both conditions. Due to the substantial duration of the individual conditions, most

rats did not complete the entire experiment. Rat DE1 became ill at the start of

P1vp5, rat DE7 became ill at the start of P1vp5sw, PD8 became ill midway through

P1vp5, DE14 became ill at the end of P1vp5sw, and DE15 became ill at the end of

P1vp5.

2.2.3 Statistical analysis

The dependent measure was corrected time allocation, the proportion of trial

time the animal spent working for brain stimulation rewards. The correction involved

including lever releases lasting less than 1s along with lever holds as our measure of

corrected work time (Hernandez et al., 2010). Corrected time allocation was therefore

calculated as the total amount of time the lever was depressed (for any period of

time) or released for less than 1s, divided by the total trial time. The Reinforcement

Mountain Model surface

TA = (TAmax − TAmin)
( fG

fG+F G
hm

)A

( fG

fG+F G
hm

)A + ( p
Pe

)A
+ TAmin

was fit to the corrected time allocation measured at each combination of pulse fre-

quency (f), price (p), and probability condition. The only parameters of the model

that were free to vary between probability conditions were Fhm, the location of the

surface along the frequency axis, and Pe, its location along the price axis. Slope

(A, G), ceiling (TAmax) and floor (TAmin) parameters were not free to vary between
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probability conditions. Separate fits were conducted for P1vp75, P1vp5, P1vp5sw

and P1vp75sw conditions.

A bootstrapping approach was used to derive the confidence intervals around

Fhm, Pe, and the probability condition-induced difference in both. The bootstrap-

ping and fitting algorithms were both implemented in MATLAB R2011b (The Math-

works, Natick, MA). Corrected time allocation values were sampled 1000 times from

the observed data with replacement. For example, if 8 time allocation values were

observed at a particular price, pulse frequency, and reward probability, the boot-

strapping procedure would obtain 1000 samples of 8 time allocation values obtained

pseudo-randomly from that list of 8 (with replacement). A mountain surface was fit

to each of the 1000 re-sampled replications, thereby producing 1000 estimates of Fhm

at each probability condition and 1000 estimates of Pe at each probability condition.

The 95%, bootstrap-derived confidence interval about Fhm and Pe was defined as the

range within which the central 950 sample Fhm and Pe values lay, excluding the lowest

and highest 25. Similarly, we computed the difference between estimates of Fhm and

Pe during riskless and risky trials by obtaining the difference for each replication. In

other words, each replication had an estimate of Fhm for riskless (P=1.00) trials and

one for risky (P=0.75 or P=0.50) trials, and the parameter difference in Fhm for the

replication was the difference between each. The 95% bootstrap-derived confidence

interval about the difference in Fhm and Pe was defined as the range within which

the central 950 sample differences lay for each parameter, excluding the lowest and

highest 25. Our criterion for statistical reliability was non-overlap of the 95% confi-

dence interval about the difference with 0. A probability-induced difference in Fhm

or Pe was therefore considered statistically reliable if and only if the 95% confidence

interval about the difference did not include 0. Any confidence interval around a

difference that included 0 was considered statistically unreliable.

To evaluate our parsing of the probability conditions, we fit a series of moun-
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tains to the data from trials in the P=1.00 conditions of each phase. Risk-less test

trials were extracted from the P1vp75, P1vp5, P1vp5sw, and P1vp75sw phases, and

a mountain surface was fit to the data from each rat according to which slope (A,

G) and range (TAmax, TAmin) parameters were common to all conditions and loca-

tion (Fhm, Pe) parameters were free to vary among the different phases. The same

re-sampling method was conducted as described above. We then obtained the dif-

ference, where applicable, in estimated Fhm (or Pe) values between P1vp75 and each

phase that followed it for the 1000 re-sampled estimates, and identified the central

tendency (median) of the 1000 differences between P1vp75 and P1vp5, P1vp75 and

P1vp5sw, and P1vp75 and P1vp75sw. These differences provide an indication of the

degree to which Fhm and Pe fluctuated throughout the experiment. Because of large

fluctuations occurring in the course of months-long testing conditions, we chose to

consider each presented pair of probabilities separately rather than in the aggregate.

2.3 Results

2.3.1 Stability of Fhm and Pe

All phases of the experiment—P1vp75, P1vp5, P1vp5sw and P1vp75sw—have

the P=1.00 condition in common. Since the data from P=1.00 conditions differ across

phases with respect to time, statistically reliable changes in the estimated Fhm and

Pe for the P=1.00 across the experimental phases would complicate aggregating all

of the data together. In the absence of any drift, the estimated Fhm and Pe values for

rewards delivered with certainty would be identical in all phases, thereby justifying a

single, three-way comparison between P=1.00, P=0.75, and P=0.50 conditions. We

therefore sought to test the null hypothesis that mountain estimates when the reward

was riskless were identical in all phases of the experiment.

Figure 2.3 shows the difference in Fhm (left) and Pe (right) between the first
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Figure 2.3. Stability of Fhm and Pe across phases of riskless conditions. The estimated
Fhm (left) and Pe (right) of the P=1.00 condition are compared across each phase of
the experiment, normalized to the first (P1vp75) condition encountered. Although
there is little evidence for a systematic drift in parameters over time, there are large
reliable (though non-systematic) changes from one condition to the next in all animals.
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phase of the experiment and each subsequent phase, along with the bootstrap-derived

confidence interval associated with that difference. Although there is a clear indication

of a steady drift in the parameter values from the start to the end of the experiment

in only one rat (DE3), all other animals show statistically reliable changes (confidence

intervals about the difference that do not include 0) in those parameters at least at

one point in time. Since probabilistic and risk-less trials are presented inter-digitated

in random fashion, these drifts in Fhm and Pe would constitute part of the statistical

noise in estimating the probability-induced difference in those parameters. Over the

course of the entire experiment, however, these data suggest it is unreasonable to

assume the subject and electrode/brain interface that underwent the first phase of

the experiment is in every way the exact same subject and electrode/brain interface

when it underwent the second phase of the experiment, occurring perhaps many

months later. We therefore present here separate comparisons of probability values

for each phase of the experiment, for each subject that was tested in that phase.

2.3.2 Effects of probability on Fhm and Pe

2.3.2.1 P1vp75

All rats completed the first phase of the experiment, P1vp75. In order to

gauge the estimated difference in parameters from one condition to the other, the list

of 1000 estimates of Fhm and Pe for the riskless condition obtained by re-sampling were

subtracted from the 1000 estimates of Fhm and Pe for the risky (P=0.75) condition.

The median of riskless estimate − risky estimate was used as a measure of central

tendency for the change in parameter estimate produced by risk. The 2.5% and

97.5% percentiles of the differences were used as an estimate of the 95% confidence

interval surrounding the difference in Fhm and Pe between 1.00 and 0.75 probability

conditions.
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Figure 2.4. Shift in Fhm and Pe for P1vp75. Bar graphs (left) provide the magnitude
(±95% bootstrap confidence interval) of the difference in Fhm (red) and Pe (blue) from
riskless (P=1.00) to risky (P=0.75) conditions in the first phase of the experiment.
Positive numbers indicate that the risky conditions have greater estimates, while
negative numbers indicate that the estimates are lower on risky trials. The box-
whisker plot (right) provides the median (middle line), inter-quartile range (box), full
range (whiskers), and mean (square) of the estimated differences.
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Figure 2.4 shows the estimated difference in Fhm and Pe for all animals. In the

left-hand panel, the bar graph depicts, for all animals, the estimated difference in Fhm

(red) and Pe (blue) along with the bootstrap-estimated 95% confidence interval about

the difference. In the right-hand panel, a box-whisker plot depicts the estimated dif-

ference (red for Fhm, blue for Pe) collapsed across all animals. Although some animals

showed only modest or unreliable shifts along the price axis, the median difference

between risk-less and risky rewards is a 0.14379 decrease, with an interquartile range

spanning from 0.10817 to 0.16865. Conversely, although one animal (DE1) showed

a statistically reliable shift along the frequency axis, the median difference across all

animals is approximately zero (−0.01791, IQR spans −0.0385 to 0.03159).

2.3.2.2 P1vp5

Rats DE3, DE7, PD8, DE14, DE19 and DE20 completed the second phase

of the experiment, P1vp5. As above, the list of 1000 estimates of Fhm and Pe fit

by the bootstrapping procedure was used to derive the estimated difference in Fhm

and Pe produced by risk. The 1000 estimates of Fhm at each probability condition

were subtracted from each other, and the 1000 estimates of Pe at each probability

condition were subtracted from each other. The median difference was used as a

measure of central tendency of the difference produced by risk, and the 2.5% and

97.5% percentiles were used as the bounds of the 95% confidence interval surrounding

the difference.

Figure 2.5 shows the difference in parameter estimate produced by delivering

rewards with 50% probability. The left-hand panel shows the estimated difference

in Fhm (red) and Pe (blue) for these 5 animals between risky (probability of 0.50)

and riskless (probability of 1.00) rewards. Error bars represent the 95% confidence

interval about this difference. The right-hand panel collapses the estimated differ-

ence across all rats, depicting a box-whisker plot of the difference in Fhm (red) and
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Figure 2.5. Shift in Fhm and Pe for P1vp5. Bar graphs (left) provide the magnitude
(±95% bootstrap confidence interval) of the difference in Fhm (red) and Pe (blue) from
riskless (P=1.00) to risky (P=0.5) conditions in the second phase of the experiment.
Positive numbers indicate that the risky conditions have greater estimates, while
negative numbers indicate that the estimates are lower on risky trials. The box-
whisker plot (right) provides the median (middle line), inter-quartile range (box), full
range (whiskers), and mean (square) of the estimated differences.
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Pe (blue) produced by risk. Although two animals (DE7, DE14) showed a reliable

shift in Fhm, overall, delivering rewards with a probability of 0.5 did not alter Fhm

systematically. Instead, as expected, risky rewards produced large (median of 0.30199

common logarithmic units) statistically reliable shifts in Pe. The change in Fhm pro-

duced by delivering rewards with a probability of 0.5 had a median value of 0.02056,

with an interquartile interval spanning from −0.02482 to 0.05908. The change in Pe,

in contrast, had a median value of −.30199 with an interquartile interval spanning

from −0.45593 to −0.23712.

2.3.2.3 P1vp5sw

Rats DE3, DE14, DE19 and DE20 completed the third phase of the exper-

iment, P1vp5sw. In this condition, the mapping between levers and probabilities

switched, such that probabilistic rewards were associated with the right lever and

certain rewards were associated with the left lever. The procedure for estimating the

difference in Fhm and Pe produced by probability was the same as for phases P1vp75

and P1vp5.

Figure 2.6 shows the difference in parameter estimates between probability

conditions, with lever-to-probability mappings switched. In the left-hand panel, the

difference in Fhm (red) and Pe (blue) is shown for each rat, accompanied by the

bootstrapped-derived estimates of the 95% confidence intervals. In the right-hand

panel, the difference is collapsed across all 4 animals in a box-whisker plot. Although

the shift in Fhm is not statistically reliable in only two cases (DE19, DE20), the

difference produced by a change in probability is inconsistent across the small number

of rats that made it to this stage of the experiment, and inconsistent with the changes

in Fhm that were observed in previous probability conditions. Estimated differences

in Pe are similarly accompanied by wide confidence intervals, but their magnitude is

more consistent across animals than the difference in Fhm. The median difference in
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Figure 2.6. Shift in Fhm and Pe for P1vp5sw. Bar graphs (left) provide the magnitude
(±95% bootstrap confidence interval) of the difference in Fhm (red) and Pe (blue) from
riskless (P=1.00) to risky (P=0.5) conditions in the third phase of the experiment,
when the mapping of lever sides to probability are switched with respect to the second
phase. Positive numbers indicate that the risky conditions have greater estimates,
while negative numbers indicate that the estimates are lower on risky trials. The box-
whisker plot (right) provides the median (middle line), inter-quartile range (box), full
range (whiskers), and mean (square) of the estimated differences.
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Fhm for this phase of the experiment was a 0.01212 decrease, with an interquartile

range spanning from −0.01264 to 0.08674, while the median difference in Pe was a

0.3418 decrease, with an interquartile range spanning from −0.24 to −0.37072.

2.3.2.4 P1vp75sw

Rats DE19 and DE20 completed the final phase of the experiment, P1vp75sw.

In this phase, the probability of reinforcement on the risky lever was increased back to

0.75, but the lever mapping was retained as in the third phase (P1vp5sw). Estimated

differences in parameter estimates and their associated confidence intervals were com-

puted as before, using the list of 1000 estimates in the bootstrapping procedure.

Figure 2.7 shows the effect of probability on the estimated difference in param-

eter estimates for this final phase of the experiment. The figure depicts the change

in Fhm (red) and Pe (blue) produced by delivering rewards with a probability of 0.75

rather than 1.00. The difference was not collapsed across animals, as only two rats

survived to the end of the experiment. Qualitatively, the shifts observed during this

replication of the P1vp75 condition are comparable to those observed in the first

phase of the experiment, albeit with much greater variability. Rat DE19 showed only

a very modest shift in Pe during phase P1vp75, which went in the opposite direction

(and was not reliably different from 0) in phase P1vp75sw, while DE20 showed a

slightly larger shift in Pe during phase P1vp75 that was slightly reduced during phase

P1vp75sw. The shift in Fhm was only reliable for DE20, which is inconsistent with

the shift in Fhm observed for this animal in the first phase of the experiment.

2.3.3 Magnitude of the difference in Fhm and Pe

The estimated difference in Fhm and Pe induced by a given probability con-

dition can be collapsed across animals and lever-mapping conditions to provide an

estimate of how probability affects each parameter. Figure 2.8 shows the box-whisker
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Figure 2.7. Shift in Fhm and Pe for P1vp75sw. Bar graphs (left) provide the magni-
tude (±95% bootstrap confidence interval) of the difference in Fhm (red) and Pe (blue)
from riskless (P=1.00) to risky (P=0.75) conditions in the final phase of the experi-
ment, when the mapping between levers and probabilities are switched with respect
to the first phase. Positive numbers indicate that the risky conditions have greater
estimates, while negative numbers indicate that the estimates are lower on risky tri-
als. The box-whisker plot (right) provides the median (middle line), inter-quartile
range (box), full range (whiskers), and mean (square) of the estimated differences.
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Figure 2.8. Magnitude of the difference in Fhm and Pe across all conditions. Box-
whisker plots show the change in Fhm (red) and Pe (blue) resulting from a decrease in
probability to 0.75 (dark symbols) and 0.50 (light symbols). Squares represent means,
whiskers represent the full range of differences. Negative numbers indicate that risk
decreases the estimate; positive numbers indicate that risk increases it. Filled circles
represent differences for each animal in each condition.
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plot of all the shifts in Fhm and Pe observed between P=1.00 and P=0.75 conditions

(collapsing P1vp75 and P1vp75sw together), as well as the bar-whisker plot of all

the shifts in Fhm and Pe observed between P=1.00 and P=0.50 conditions (collapsing

P1vp5 and P1vp5sw together). The shift in Fhm is close to 0 for both probabilistic

rewards (median increase of 0.02422 for 0.75 and median increase of 0.02056 for 0.50),

whereas the shift in Pe is probability dependent. When rewards are delivered with

0.75 probability, the estimate of Pe decreases by 0.13598 (the inter-quartile range

spans 0.07531 to 0.16481) compared to those delivered with a probability of 1.00.

When rewards are delivered with 0.50 probability, the estimate of Pe decreases by

0.33089 (inter-quartile range spanning spans 0.23712 to 0.4095) compared to those

delivered with a probability of 1.00.

2.4 Discussion

2.4.1 Utility of the mountain model

The Reinforcement Mountain Model has been proposed as a means to infer

the stage of processing at which a manipulation acts to alter reward seeking. Ac-

cording to the model, manipulations that alter the pulse frequency that produces a

half-maximal reward (Fhm) occur prior to the output of a circuit that integrates the

aggregate activity induced by the stimulation electrode. In other words, manipula-

tions that alter Fhm presumably operate on neurons responsible for the rewarding

effect of electrical stimulation of the medial forebrain bundle. In contrast, manipula-

tions that alter the price that drives equi-preference between a maximally rewarding

train of brain stimulation and all other activities (Pe) occur at or beyond the out-

put of the integration network, modifying the payoff from self-stimulation activities,

rescaling the output of the peak detector, or changing the payoff from everything else.

As a result, manipulations that alter Pe do not affect the primary neurons responsible

- 82 -



for brain stimulation reward per se, but at some later stage instead.

Previous validations of the Reinforcement Mountain Model have focussed on

demonstrating its capacity to identify a manipulation known to affect putative reward

neurons. For example, Arvanitogiannis et al. (2008) validated the Reinforcement

Mountain Model’s ability to correctly identify that alterations in both train duration

and current occur prior to the output of the peak-detection stage. More recently, Bre-

ton et al. (2013) validated the model’s ability to correctly identify the stage at which

alterations in train duration affect brain reward circuitry using same the experimental

procedure as used in the present paper. Other studies have used the mountain model

to infer the stage of processing at which cocaine (Hernandez et al., 2010), the specific

dopamine transporter blocker, GBR-12909 (Hernandez et al., 2012), and cannabinoid

antagonists (Trujillo-Pisanty et al., 2011) act. The authors of these studies have gen-

erally concluded that the predominant effect of these pharmacological interventions

occurs beyond the output of the peak detector, altering Pe with small and inconsistent

effects on Fhm. However, it has not, until now, been shown that the Reinforcement

Mountain Model can correctly identify such an effect.

We report a large, probability-dependent decrease in Pe, as predicted by the

Reinforcement Mountain Model, that is accompanied by small, unreliable, and in-

consistent shifts in Fhm. These results suggest that the model is, indeed, capable

of correctly identifying a manipulation known to affect payoff without affecting the

effectiveness of the induced rate of impulse flow in driving reward intensity to a given

proportion of its maximal level. Along with the findings reported by Breton et al.

(2013), the results of this experiment establish that the Reinforcement Mountain

Model is a valid means of addressing which stage of processing a manipulation acts.

If the Reinforcement Mountain Model is a valid tool for identifying stages of

processing that are affected by a manipulation, it can be used to isolate manipulations

of early stages of the stimulated reward circuitry from all other types of manipula-
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tions. For example, a lesion to the cell bodies from which primary reward fibres orig-

inate would increase Fhm without altering Pe. A pharmacological intervention that

improves the efficacy of the primary reward neurons’ input to the spatio-temporal in-

tegration process would decrease Fhm without altering Pe. A drug that decreases the

subjective effort cost of lever-pressing would increase Pe without altering Fhm. A drug

that scales down the magnitude of all rewards by a constant factor would decrease Pe

without altering Fhm. With this new valid psychophysical tool, a world of possibilities

is opened for re-interpreting the effect of a multitude of causal manipulations.

Moreover, the method used here is limited neither to electrical rewards nor

to lever-pressing. It would be possible to perform a similar analysis using a differ-

ent reward—such as sucrose—of varying strength (like concentration), or a different

manipulandum—such as a nose-poke hole—with varying work requirements (like time

spent). A similar logic would apply: the objective reinforcer, time spent, and caloric

expenditure involved would each be psychophysically mapped to subjective determi-

nants of choice, the scalar combination of which would be compared to the payoff of

all other activities. By fitting a similar “sucrose mountain,” varying sucrose concen-

tration and work requirements, one would be able to extract the stage at which a

manipulation has occurred.

2.4.2 A rat prospect theory?

The magnitude of the shifts in Pe from riskless to risky trials suggest that the

mapping between the objective probability of a prospect and the weight it carries in a

decision is linear. Indeed, the degree to which price must compensate for probability

in our hands is approximately what would be normatively expected if the probability

simply scaled by its reciprocal the opportunity cost of seeking rewarding brain stim-

ulation. Suppose the effect of a reward delivered with 1/2 probability was to double

the subjective opportunity cost of the reward. In such a case, a simple halving of
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the price would compensate for the lowered probability. Similarly, if the effect of a

reward delivered with 3/4 probability was to increase the subjective opportunity cost

by 4/3-fold, the probabilistic nature of the reward would be completely compensated

for by reducing the price by a factor of 3/4. The expected difference in Pe would

be a decrement of 0.125 common logarithmic units (the common log of 0.75) from

a probability of 1 to 0.75, and that expected difference would be a decrement of 0.3

common logarithmic units (the common log of 0.50) from a probability of 1 to 0.50.

The median shift in Pe from a probability of 1.00 to 0.75 was approximately 0.13598.

This suggests that the subjective impact of rewards delivered with 75% probability

was to devalue them by 73%, with an inter-quartile range spanning 68.4% to 84.1%.

Similarly, the median shift in Pe from a probability of 1.00 to 0.50 was approximately

0.33089. This shift implies that rewards delivered with 50% probability were devalued

by 47%, with an inter-quartile range spanning 38.9% to 57.9%.

Unlike what is observed in human participants asked to evaluate probabili-

ties in word-and-number problems (though see Hertwig et al., 2004), there was no

clear evidence of a non-linear mapping between objective probability and subjective

decision weight in our data. If we attribute a decision weight of 1 to a probability

of 1, the subjective decision weight of a reward delivered with 0.75 probability was

approximately 0.73, and that of a reward delivered with 0.50 probability was approx-

imately 0.46. It remains to be shown whether, like humans, the subjective decision

weight of very low probabilities is overweighted compared to the normative value.

Various groups (van Duuren et al., 2009; Burke and Tobler, 2011) have attempted to

record from populations of neurons while animals made choices among probabilistic

prospects. In all of these cases, the mapping of both magnitude and probability to

their subjective equivalents has been assumed linear for the purposes of correlating

activity to various determinants of decisions. The present study provides evidence

that, at least in the case of rewarding brain stimulation delivered with probabilities of
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0.75 and 0.50, the assumption of a one-to-one mapping holds at the level of precision

we were able to achieve.

The median shift in Fhm induced by a probabilistic reward is, as predicted

by the mountain model, within the level of session-to-session noise one would ex-

pect. However, the median shift in Pe induced by probabilistic rewards is large and

probability-dependent. Assuming the probabilistic nature of the reward alters only

the rat’s subjective evaluation of the opportunity costs of acquiring it, rather than

the payoff from everything else or the subjective effort costs of self-stimulation, the

shift in Pe can be used to derive the approximate subjective decision weight of the

risky reward. At a probability of 1, the subjective decision weight is necessarily 1:

the rat knows it will get rewarded if it invests a sufficient amount of time into lever

pressing at the expense of all other activities. At a probability of 0.5, normative

accounts of how the rat ought to allocate his time would dictate that, because the rat

must (on average) fulfil the work requirement twice in order to trigger an electrical

reward, the subjective opportunity cost ought to double. This would mean that if a

maximal reward delivered with certainty will require a price Pe1 to drive the payoff

from self-stimulation to the same level as that of everything else, a maximal reward

delivered with a probability of 0.5 will require only half of Pe1 to drive its payoff to

that of everything else. The subjective opportunity cost of that reward has effectively

doubled. The data presented here provide evidence that the payoff from rewards de-

livered with 0.75 and 0.5 probabilities is scaled by roughly 0.75 and 0.5 compared

to rewards delivered with certainty. Figure 2.9 provides a graphical representation

of the derived subjective weight of the two probabilities (the anti-log of the shift

riskless − risky) as a function of the objective probability of reinforcement, along

with the standard error of the mean surrounding this estimate. When looking across

rats, collapsing across lever mappings, the function is remarkably close to the identity

function (i.e., subjective equals objective probability).
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Figure 2.9. Derived subjective-to-objective mapping of probability. The dotted straight
line provides a reference for what the mapping of probability would be if subjective
risk were equal to objective probability. Assuming that P = 1.00 is subjectively
interpreted as 1.00, the anti-log of the change in Log10[Pe] from riskless to risky is an
index of the subjective probability. Blue circles indicate the mean derived subjective
probability of rewards (±SEM) delivered with P = 0.75 and P = 0.50 probabilities.
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2.4.3 General discussion

The purpose of the current experiment was two-fold: to confirm the Reinforce-

ment Mountain Model’s validity in correctly identifying an effect occurring beyond

the output of the spatiotemporal integrator, and to quantify the degree to which

various probabilities of reinforcement affect the payoff from self-stimulation. When

rats were presented with trials in which rewards were delivered probabilistically, we

observed no replicable, stationary, consistent differences in Fhm compared to trials in

which rewards were delivered deterministically. However, we observed large, consis-

tent and reliable changes in Pe that were dependent on the probability of reinforce-

ment. As a result, the evidence we present here supports all the predictions of the

model. The Reinforcement Mountain Model could correctly identify that probabilis-

tic reinforcement, which does not affect the translation of stimulation strength into

subjective reward intensity, did not affect reward circuitry prior to the output of the

peak detection stage, by showing no statistically reliable evidence of a change in Fhm.

Conversely, the Reinforcement Mountain Model correctly identified that probabilistic

reinforcement, which affects the payoff from self-stimulation, affected reward circuitry

beyond the output of the peak detection stage, by showing overwhelming evidence of

a change in Pe. Furthermore, probabilistic reinforcement has a greater impact on the

payoff when the probability is lower, and the difference in Pe between probabilistic

and deterministic trials was also probability-dependent.

The present experiment cements the validity of the Reinforcement Mountain

Model by providing the obverse set of predictions from Arvanitogiannis and Shizgal

(2008) and Breton et al. (2013). In those experiments, the Reinforcement Mountain

Model was shown to be a valid means of identifying that a manipulation acting prior

to the output of the peak detector, and not after, has occurred. In these experiments,

train duration (Breton et al., 2013; Arvanitogiannis and Shizgal, 2008) or pulse current
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(Arvanitogiannis and Shizgal, 2008) were altered, and changes in Fhm were observed in

the absence of changes in Pe (with some notable exceptions). In contrast, the present

experiment demonstrates that altering probability of reinforcement led to changes in

Pe in the absence of changes in Fhm.

With this valid measurement tool, it is now possible to identify the stage of

processing at which a large number of manipulations act. For example, the Rein-

forcement Mountain Model has been used to identify the stage of processing at which

cocaine (Hernandez et al., 2010), the dopamine transporter blocker GBR-12909 (Her-

nandez et al., 2012), the CB1 receptor antagonist AM-251 (Trujillo-Pisanty et al.,

2011), and the neuroleptic pimozide (Trujillo-Pisanty et al., 2012) act. The entire

catalogue of manipulations affecting brain reward circuitry can be re-examined in the

Reinforcement Mountain Model context, providing a more refined means of identi-

fying which manipulations alter the psychophysical mapping of stimulation strength

to subjective reward intensity, and which of them alter the payoffs of self-stimulation

and other activities, independently of the first-stage neurons responsible for the re-

warding effect. It would be very useful, indeed, to incorporate recent advances in

optogenetics with the Reinforcement Mountain Model to identify the source of the

rewarding effect of electrical stimulation. ‘
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Chapter 3

The rat’s world model of session structure

3.1 Introduction

As an animal navigates its environment, it will come across patches where

food is bountiful, patches where food is scarce, patches where food is delectable and

patches where food is barely worth eating. Similarly, a patch where foraging will

provide a high payoff (low cost, high quality food) at one moment may provide a

much lower payoff (high cost or low quality food) at a later time. In order to select

actions advantageously, the animal stands to benefit from a cognitive map of where

and when the payoff from foraging will be high and when it will be low. When the

payoff from pursuing food rewards is negligible, the advantageous choice is to pursue

other goals. If the payoff from pursuing a reward changes predictably, an animal

benefits tremendously from accurately developing and quickly updating a cognitive

model of how the payoff from that reward changes over time.

In parametric paradigms entailing two- and three-dimensional measurement

of performance for brain stimulation reward, there are certainly periods of time in an

experimental session when the reward will have a high subjective intensity and the

cost of obtaining it will be low, as there are periods of time when it is sufficiently

weak that the animal will prefer to engage in other activities in the operant chamber.

Indeed, in the randomized-triads design described in Chapter 2, the pattern of changes

in payoff is largely predictable. Every three trials, a high-intensity, low-cost reward

will be delivered, every three trials, a reward of variable intensity and cost will be

delivered, and every three trials, a low-intensity reward will be delivered. These trials

are presented in sequential fashion for months at a time, leading to the question:

do rats working for brain stimulation reward develop a cognitive “map” of when the
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payoff from self-stimulation will be particularly high and when it will be particularly

low? It would certainly be advantageous for the rat to be able to predict these changes

in strength and contingency, allowing it to select actions far more efficiently than if

it had to first obtain a reward of potentially negligible intensity before implementing

a behavioural policy.

The following chapter concerns the existence of such a map, which we call a

“world model” of session structure. After establishing that rats working for BSRs

behave as if they had a model of the triad structure of an experimental session, we

attempt to uncover the rule they might use to infer the current trial’s payoff.

3.1.1 World Model

In the commonly used curve-shift paradigm for inferring the effects of manip-

ulations on self-stimulation behaviour (Miliaressis et al., 1986), stimulation strength

is systematically decreased, in logarithmic steps, from pulse currents, frequencies or

train durations that produce asymptotically high responding to those that produce

asymptotically low responding. The sequence of trials on these “sweeps” is repeated

for the duration of the session, systematically decreasing from very strong to very

weak and returning to strong. On average, the animal allocates all of its time re-

sponding to strong stimulation, and none of its time responding to weak stimulation.

However, researchers will sometimes find anecdotally an animal that responds vigor-

ously, on a few select trials, to stimulation that should not be particularly motivating.

The duration of each trial is usually kept fixed in these protocols, which means the

animal can, in principle, know when the stimulation will be highly rewarding again.

It is quite possible, in this light, that on some of those very weak stimulation trials,

the rat begins to expect that working at the lever will have a high payoff soon.

Indeed, this account of self-stimulation behaviour implies that the rat has a

somewhat noisy internal “model” of the structure of the session. Following the trial
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on which the stimulation is weakest will be a trial on which the stimulation strength

has been reset to its maximum value, and following a trial on which the stimulation

strength is strong will be a trial on which the stimulation is slightly weaker. It

would behove the rat working for brain stimulation rewards, or indeed any reward,

to exploit the statistical regularities in the world within which it lives and to infer

the “kind” of trial that it is about to encounter, either with regard to the payoff,

the strength, or the opportunity cost of the reward to come. The complex session

structure of the randomized design used in Chapter 2, which entails both predictable

and unpredictable features, provides a promising opportunity to probe the rat’s ability

to exploit the regularities inherent in our triad design and infer a payoff for trials that

it would not be able to ascertain without an internal representation of the triad

structure of experimental sessions.

3.1.2 Introduction to the world model of triad structure

3.1.2.1 Common assumptions

Model-free reinforcement learning accounts of performance for rewards imply

that the rat keeps track only of the magnitude of the reward it receives. During

training, a rat only learns that certain trial states (like the blackout delay during

which the reward is delivered and all lever pressing activities that preceded it) have a

particular value. The rat can therefore base its decision to press on the cached value

of the current trial state, and if an action can be taken that will lead it to a better

total net reward when considering all the costs it will incur, the rat will take such an

action. When acting optimally—that is, when implementing an optimal policy—the

rat takes actions for which the total net reward it expects is maximal.

According to Bellman’s equation (Bellman, 1952), the total net reward at a

point in time can be recursively defined as the sum of the current total net reward ob-
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tained, R(t), with the total discounted sum of future rewards expected when following

an optimal policy. The value of a state at time step t is the sum of the immediate

net reward at time step t with the discounted value of the next state, which is itself

the sum of the immediate net reward at time step t + 1 with the discounted value of

the state at time step t + 2, and so on. In other words, this formulation defines the

value of a state visited at time step t as

V (St) = R(t) + γ
∑

k

T (St = j, St+1 = k)V (St+1)

where γ is an exponential temporal discount factor and T is a function that returns

the probability of transitioning from state St = j to state St+1 = k.

In order to find the total net reward from lever-pressing at time step t, then,

one would add to the (possibly zero) reward delivered at time step t the discounted

sum of the total net rewards from all trial states that can be reached from lever-

pressing at time step t, weighted by the probability that these states can be reached.

In the simple scenario where the states can be “lever up” and “lever down”, the

total net reward from lever-pressing will be the (possibly zero) reward delivered when

pressing summed with the temporally-discounted rewards obtained from continuing

to press at time t + 1 and the temporally-discounted rewards obtained from engaging

in other activities at time step t + 1. Just before the end of the required response

interval (the price), the rat may choose to press, which will then lead to a reward, or

to engage in other activities which will not. If the delivery of a reward is surprising—

that is, the rat obtains a reward it may not have been expecting—then the rat must

alter its estimate of the value of all lever-pressing (and non-pressing) states that led

to this surprising reward. The value V̂ (St) is updated for the time step just preceding

reward delivery. The updated values can then be used to shape a policy that is closer

to optimal. The next time the animal is in state St−1, just before the state that led
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to reward delivery, there will again be a discrepancy, which will prompt the animal

to update V̂ (St−1). Eventually, the estimated value of states cease to change, and the

rat necessarily acts in a way that is optimal in the sense that it will pursue a policy

that will provide it with the greatest net reward at the highest rate.

This model-free learning account implies that the value of taking an action

in a state will be altered as a function of the discrepancy between the cached, or

expected, value of a state and the reward that is actually delivered. The rat has an

expectation for reward when the trial state is S at time t (V̂ (St)), and an expectation

for reward from future trial states S ′ at time t + 1 (V̂ (St+1)). As a result, at time

t, the rat expects that the state it is in will have value V̂ (t) and that the next trial

state it visits will have value V̂ (t + 1). If the net reward the rat obtains at time t

(R(t)) differs from expected, then the discrepancy is

δ(t) = R(t) + γ
∑

k

T (St = j, St+1 = k)V̂ (St+1) − V̂ (St)

where R(t) is the net reward obtained at discrete time step t, γ is a temporal discount

factor, and T (St, S ′
t+1) is the probability of transitioning from state S at time step t

to a state S ′ at time t + 1, and V̂ (St+1) is the total net reward expected from future

states.

This delta describes the difference between the current estimate of the value

expected by being in state S at time step t, V̂ (t), and the actual total net reward by

being in state S at time step t, R(t) + γT (St, S ′
t+1)V̂ (t + 1). The value of state S at

time t can then be updated based on this discrepancy by the following learning rule

(Dayan and Abbott, 2001)

V̂ (St) ← V̂ (St) + α · δ(t)

where α is a parameter that sets the learning rate. The value of a state will be
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updated at rate α to a unit step change in reward. With higher values of alpha, a

given discrepancy will drastically alter the total net reward expected the next time

the animal encounters state S; with lower values, a given discrepancy will have a very

small effect on the expected total net reward.

From this formulation, it is clear that the animal does not learn the mapping

between current states and future states as a function of the actions it can take in the

current state. All that is learned by this scheme is the total discounted net reward

obtained in the current state. The rat learns throughout training the total discounted

net reward it can expect from lever-pressing states, and adjusts its estimate of this

value as the rewards and response requirements change. The rat’s decision to press—

its policy—will depend on the currently cached expected value of pressing.

Suppose, for example, that the rat has acquired during training an expectation

that lever-pressing for 1s will lead to a reward of maximum intensity. When the

conditions change, say the response requirement is increased to 4s and the reward

delivered is sub-maximal, the rat must update its evaluation of the total net reward

it can expect after it has held the lever for 1s and has not yet received a reward. As

it holds the lever and updates the total net reward it can expect from various trial

states, the rat’s estimate of those values converges on the “true” total net reward it

can expect by following an optimal policy, and learning ceases until conditions change

again. The rat must re-learn, as soon as brain stimulation is no longer at the expected

intensity or delivered at the expected time, the value of lever-pressing and non-lever

pressing states that may now be encountered.

3.1.2.2 Model-based reinforcement learning

In contrast, model-based formulations imply that the rat learns, in as simple a

sense as suffices, how states (and stimuli) are related to each other: taking a particular

action will lead to various trial states, each of which will bring about a net reward
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that may depend on motivational variables internal to the rat. For example, the rat

may learn that pressing the lever for a period of time when it is extended will bring

about a blackout period accompanied by a subjective reward. In the case of a rat

working for food rewards, it may learn both that it receives a food reward of intensity

I and the flavour F of the food reward that will be delivered. If the food is devalued,

either by selective satiety or by explicitly pairing the food with illness, a rat using a

model-based learning system will cease to respond on the lever.

The underlying mapping implies that rats behave as if they investigate a simple

decision tree. In the context of the experimental procedure I will describe below, the

mappings underlying a model-based account of session structure are: if the current

trial is a leading bracket, the payoff will be high; if the current trial is a test trial, the

payoff will be intermediate on average and selected at random from a finite set; if the

current trial is a trailing bracket, the payoff will be low. Once that very simple tree

has been investigated, the rat need only implement an optimal policy based on the

payoff it can expect from lever pressing in the state predicted to come. The cached

value of trial states for trials with a completely known payoff need not be updated,

because they have in essence already been learned. Only during the test trial, when

there will be real variance to the payoff that can be expected, must the rat update its

estimate. Without a model of how states of the world transition to each other, the

rat would have to re-learn the net reward from pressing on every trial, regardless of

whether the rewards and costs changed predictably.

Consider the case in which a rat that has learned a simple, yet, effective world

model: Leading trials will deliver high-intensity rewards at a price of one second; they

are followed by test trials delivering variable reward intensities and prices that, on

average, provide an intermediate payoff; they are followed by trailing trials delivering

low-intensity rewards at a price of one second and are followed by leading trials. As

the rat is about to begin a trial, the rat can look ahead in the decision tree to the
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correct state it will find itself in for the trial to come, identify the series of decisions

it should take in order to maximize the total discounted net reward it will receive by

taking that series of actions, and simply implement this optimal policy. The total

discounted net reward it can expect to receive in any trial state for the trial to come

has been represented somewhere which requires no further updating. The simplest

state transition function, TS→S′ , is a 3x3 permutation matrix with rule “if the last

state was trailing, the next state is leading; if the last state was leading, the next

state will be test; if the last state was test, the net state will be trailing; no other

state transitions are allowed in the world.” The expected value of lever pressing in

each of those states, V̂ (S ′), is also an easy function to describe: “if the state is a

leading bracket trial, the payoff will be high; if the state is a test trial, the payoff will

be variable and intermediate on average; if the state is a trailing bracket trial, the

payoff will be low.” More complex state transition (T ) and value (V̂ (S)) functions

are, obviously, also possible. The rat may count the number of trials, expecting a

low payoff every three trials, a high payoff every three trials, and a variable payoff

every three trials. An exhaustive search is also possible: if the last trial was a leading

bracket trial with high payoff, the next trial could be any of the different test trials

with varying probability; if the last trial was one of those test trials, the next trial

is a trailing bracket trial with low payoff; if the last trial was a trailing bracket trial,

the next trial will be a leading bracket trial.

We propose that instead of searching an exhaustive tree, the rat forms a state-

transition function for the sequence of trials, thereby efficiently using a simple world-

model of the trial sequence to retrieve a cached mean value of the payoff it expects

from lever pressing as well as the variance in payoff (or lack thereof), from the start

of the trial. The overall payoff it expects can then set a policy that governs action

selection before the intensity and response requirements of the electrical reward it

can receive are known.
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3.1.2.3 Characteristics of the post-priming pause

In the randomized-trials design, high-payoff trials are always followed by trials

with varying payoff, which are always followed by trials with low payoff, which are

subsequently followed by high-payoff trials. Each trial is demarcated by the occur-

rence of a ten-second inter-trial interval, during which the overhead house light flashes

and priming stimulation of constant, high pulse frequency is delivered 2s before the

trial begins. At this point in the trial, a rat with no world model whatsoever would

have no idea what the trial’s payoff will be. Since there is no relevant state informa-

tion for re-evaluating the total net reward from lever-pressing, the rat’s best estimate

of the payoff from lever-pressing will be its long-run expected value.

In contrast, a rat with even an elementary world model would have no problem

quickly adjusting the reward it expects from lever pressing. Supposing the rat had

built a world model whereby the state of the world depends on the state of the world

before the flashing house light, the flashing house light signals valuable information

about the total net reward the rat can expect to receive from lever-pressing. There is,

of course, also the possibility that the rat learns a much more complex state-transition

function which requires keeping track of what type of trial the previous trials were,

and inferring what type of trial it is in based on the number of trial types in the

cycle and the current phase. We suggest, instead, a simpler world model: the rat

categorizes the trial types in a way similar to the way we have categorized them,

and acts on its best guess of the current trial type based on a best guess of the trial

type that has just come to pass. Using such a world model allows the rat to rapidly

update the payoff from lever-pressing, thanks to a richer representation of what is

meant by a state, incorporating both observable variables (lever-up, lever-down) and

extrapolated variables (leading, test, trailing). The decision to press or not can thus

be made quickly and without requiring the rat to slowly update the net rewards and

costs inherent to acquiring brain stimulation rewards.
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Once the rat begins pressing, it accumulates information about the objective

price as it holds down the lever. The rat may interrupt its pressing, returning to the

lever after some time, accumulating more information about the objective price until

the work requirement is satisfied and the lever is retracted. A reward is delivered,

with some probability that may or may not be 1, a blackout delay elapses, and the

lever extends back into the cage.

The critical period to test the existence of a world model of triad trial struc-

ture is the first pause made as the trial begins. It occurs following the priming

stimulation delivered in the inter-trial interval; as a result, we call it the post-priming

pause (PPP). Throughout this period of time, the rat has no information to guide

its behaviour except for the world model it may have developed as a result of being

presented with triads repeatedly for weeks or months.

When the payoff is high, it would behoove the rat to begin pressing as quickly

as possible, because the longer it waits, the fewer rewards it will be able to collect.

When the payoff is low, the rat will benefit much more from doing all the other things

it is possible for the rat to do in the operant chamber, such as exploring, grooming,

and resting. When the payoff is unknown, but intermediate on average, the PPP will

be intermediate.

It follows that the PPP is an ideal period of time to analyze if we are to infer

whether the rat has developed a world model of the triad structure of the session. Not

only can we identify whether the rat behaves as if it has a world model, but we also

have a normative account of how long the duration of the PPP ought to be: short on

leading bracket trials, longer on test trials, and longest (possibly censored by the end

of the trial) on trailing bracket trials. A purely model-free account would make a very

different prediction: on leading bracket trials following trailing trials, a PPP based

on the last payoff would be longest; on test trials following leading bracket trials, the

PPP would be shortest; and on trailing trials, the PPP would be inversely related to
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the payoff of the test trial that preceded it.

3.1.2.4 A description of the rat’s world model

On the null hypothesis that the rat maintains no model of the triad structure of

the session, the very first pause it makes following the priming stimulation (the post-

priming pause, or PPP) will be independent of trial type. In this case, the duration of

the PPP will be, on average, the same for all trial types. If a model-free reinforcement

learning scheme governed their decision to wait before a press, the PPP will depend

on the payoff of the last trial: long on leading trials (following trailing trials) and

short on test trials (following leading trials). On trailing trials, they will be inversely

related to the payoff of the test trials that preceded them. This is because the rat

using a model-free reinforcement learning scheme will begin the next trial expecting

the payoff it had received on the preceding trial. If, on the other hand, the rat has a

rule upon which to base the payoff on the current trial, the PPP will depend on trial

type in a predictable manner: trial types with a high payoff (leading bracket trials)

will have a short PPP, while trial types with a low payoff (trailing bracket trials) will

have a long PPP. Whenever the payoff of the trial cannot be known beforehand, as is

the case for test trials, the PPP will be independent of the payoff to come—barring

some extraordinary form of rat prescience.

We propose that, rather than slowly updating the reward expected from press-

ing, the rat has a simple internal model of session structure. If there is a simple rule

to be found, it could either involve counting (lead-test-trail-repeat) or comparing (last

trial leading-like/test-like/trailing-like). Errors in either of these processes are cer-

tainly possible. It is not unreasonable to assume that a rat counting trials may lose

track of the trial type it is in while working for brain stimulation rewards. Similarly,

a rat comparing the last trial to its best-fitting category may mis-classify a test trial.

We turn to these potential errors in world-model inference below.
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Assuming the rat is counting trials, errors in the count, and thus uncharacter-

istically long or short PPP durations, will be spread over all trials. On the other hand,

if the rat uses the reward contingency of the previous trial to gauge the current trial’s

type, the PPP will be uncharacteristically short on trailing bracket trials that follow

test trials that resemble the leading or trailing bracket trial. In essence, test trials

that are sufficiently close in subjective intensity and opportunity cost to the trailing

bracket trial will lead a rat using this comparative rule to infer that the current trial

is a leading rather than a trailing bracket trial, resulting in an uncharacteristically

short PPP. Similarly, test trials that are sufficiently close in subjective intensity and

opportunity cost to the leading bracket trial will lead a rat using a single trial look-

back rule to infer that the current trial is a test rather than a trailing bracket trial,

resulting in a PPP of equally uncharacteristic duration.

Figure 3.1 shows a diagram of our proposed simplified world model when work-

ing in a randomized-triads experiment. The rat maintains a simple set of rules, en-

capsulated in the estimated state-transition function T̂S→S′ , that provide the rat with

an estimate of the subjective opportunity cost (P̂st+1) and reward intensity (Îbsrt+1)

on the trial to come based on the cached subjective opportunity cost (P̂st) and reward

intensity (Îbsrt) on the trial that has just elapsed. The expected payoff from the up-

coming trial (E[Ut]) is simply a scalar combination of the estimates provided by the

state-transition function. This expected payoff can then set the duration of the PPP.

When the PPP terminates uncensored, it necessarily terminates on a hold, which

allows the rat to continuously update the subjective opportunity cost of stimulation

for the current trial. When the price is paid and the lever retracts, the objective price

(and therefore, the subjective opportunity cost) is transparently known, at least in

principle. If the reward is delivered with certainty, lever retraction also coincides with

delivery of the BSR, which allows the rat to update its estimate of the intensity of

the reward on the current trial as well as the payoff. The rat maintains a representa-
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Figure 3.1. Diagram of the proposed world model of session triad structure. Over
the course of the trial, the rat obtains an estimate of the subjective opportunity cost
(Ps) and reward intensity (Ibsr) in effect, which together define the state of a trial
in the session. The rat has learned a state-transition function (T̂S→S′) that describes
how the state of the last trial (S) transitions to the state of a new trial (S′). This
state-transition function allows the rat to make a prediction about the opportunity
cost (P̂s) and reward intensity (Îbsr) that can be expected on the trial to come, cued
by the inter-trial interval. The elements of the state also allow the rat to make a
prediction of the payoff from self-stimulation than can be expected on the trial to
come (E[Ubt ]). Lever-pressing allows the rat to revise its estimate of the opportunity
cost, and reward delivery allows the rat to revise its estimate of the reward intensity,
which could, in principle, be updated continuously throughout the entire trial. By
the end of the trial, the rat uses the estimate of Ps and Ibsr along with the state
transition function to predict conditions on the next trial. Assuming performance
depends on an estimate of the payoff, the period of time between delivery of the
priming stimulation during the inter-trial interval and the first lever-press produced
by the rat (post-priming pause, PPP) is an estimate of the expectation the rat has
of the trial to come.

- 102 -



tion of the previous trial’s subjective opportunity cost and reward intensity (or those

it had inferred if those values were not updated) as well as a representation of the

current trial’s determinants of decision. If the rat begins lever-pressing, these values

are updated as the rat earns a reward. If the rat earns no rewards, the current trial’s

expected opportunity cost and reward intensity are not updated. When the flashing

house light signals a new trial, the most recent estimates of subjective opportunity

cost and reward intensity are used to infer what the opportunity cost and intensity

will be.

To test whether there is any evidence of a world model, we assessed the du-

ration of this PPP as a function of trial type. Moreover, we tested which of the two

rules—counting or comparison—accounted best for the pattern of PPP durations if

this duration was reliably related to trial type. Finally, we gauged the degree to which

the test trial needed to be similar to the leading bracket trial to induce a mistake if

rats indeed used a rule based on comparison. Taken together, the findings from each

of these analyses provide support for the working hypothesis depicted in figure 3.1.

3.2 Methods

3.2.1 Behavioural protocol

The data analysed are a subset of the results presented in Chapter 2. Ten rats

were the same as in Chapter 2, and thus underwent the protocol described above.

Since for all of these rats, except MA5, the active lever on risk-based test trials was

different than on leading and trailing bracket trials, we focus here on only those triads

for which the probability of reinforcement was one. It would be easy for an animal to

learn the repeating pattern of trial types in a triad when the active lever during test

trials is different from the active lever during bracket trials; the results reported here

concern only those trials which could potentially pose confusion to the rats, when
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the active lever is the same for all trial types. All leading trials preceding a test trial

for which the reward was not delivered with certainty, all trailing trials following a

test trial for which the reward was not delivered with certainty, and all test trials for

which the reward was not delivered with certainty were excluded from the analyses

reported here.

The data from the ten subjects of the probability discounting experiment were

supplemented by data from six subjects of a subjective-price study carried out by

Rebecca Solomon. These six rats received implants similar to those in the probability

discounting experiment, using the same surgical and screening protocols as described

in Chapter 2. For animals F3, F9, F12, F16, F17 and F18, a train of electrical

stimulation pulses was delivered when the lever had been held for a cumulative amount

of time defined as the objective price. Throughout a trial, signalled in the same way

as the animals that underwent the probability discounting experiment, the objective

price and pulse frequency delivered were held constant. The duration of the trial was

the larger of 25 times the objective price and 25 seconds.

3.2.1.1 Screening and training

For animals F3, F9, F12, F16, F17 and F18, following surgical implantation

and screening for self stimulation, as described in Chapter 2, animals were presented

with trials during which the price was kept constant at 4s, and the pulse frequency

of the electrical stimulation decreased in constant common logarithmic steps. This

frequency sweep training entailed presenting the same ten trials repeatedly for a

maximum of 4 hours, where the first and second trials had identical price and pulse

frequency, and trials 3 through 10 of the series delivered decreasing pulse frequencies

when the lever was held for a cumulative 4 seconds. The current (as high as the rat

could tolerate), train duration (500 ms), and pulse duration (0.1ms) were kept con-

stant throughout all phases of the experiment. Pulse frequencies were adjusted such
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that they spanned the dynamic range of performance, from high frequencies resulting

in asymptotically high performance to low frequencies resulting in asymptotically low

performance. Frequency sweep training was conducted until there was little variabil-

ity in performance from ones series presentation to the next, as determined by visual

inspection.

After frequency sweep training, rats were presented with trials during which

the pulse frequency was kept constant at the highest pulse frequency the animal could

tolerate. The objective price of the electrical stimulation increased in constant loga-

rithmic steps from one trial to the next. This price sweep training entailed presenting

the same ten trials repeatedly for a maximum of 4 hours, where the first and second

trials had identical price and pulse frequency, and trials 3 through 10 of the series

required increasing cumulative amounts of time to be spent holding the lever (the ob-

jective price) in order for an electrical reward to be delivered. Objective prices were

adjusted such that they spanned the dynamic range of performance, from low prices

resulting in asymptotically high performance to high prices resulting in asymptoti-

cally low performance, as above. Price sweep training was conducted until there was

little variability in performance from one series of ten trials to the next, determined

by visual inspection.

3.2.1.2 Randomized triads training

Following training, rats were presented with the randomized sweep procedure

described in Chapter 2, drawing test trials without replacement from the following

aggregated list of price-frequency pairs:

the 9 pulse frequencies at an objective price of 4s that were presented at the end of

frequency sweep training (frequency pseudo-sweep),

the 9 prices at the highest pulse frequency the animal could tolerate that were pre-

sented at the end of price sweep training (price pseudo-sweep), and
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9 prices and frequencies arrayed along a line extending from the intersection of the

frequency and price pseudo-sweeps to the presumed coordinates of Fhm and Pe, in

log-log space (radial pseudo-sweep).

The presumed coordinates of Fhm and Pe were estimated at first by using

the pulse frequency that produced half-maximal performance during frequency sweep

training (for Fhm) and the price that produced half-maximal performance during price

sweep training (for Pe). The list of price frequencies and pulses was adjusted through-

out this phase of the experiment to ensure each pseudo-sweep drove performance from

maximum to minimum. Triads (leading bracket-test-trailing bracket) were presented

for a maximum of 8 hours per session in this phase; in most cases, presentation of all

the trials in the randomized list (a survey) required only one experimental session to

complete.

Before beginning experimental sessions described below, rats were given a final

set of frequency sweep training sessions, conducted as above, but with the objective

price set to 0.125 seconds. This ensured that any competing motor effects did not

interfere with the animal’s performance at this very low price; if the maximum pro-

portion of time an animal could allocate to self-stimulation activities in this condition

was below 0.6, the duration of the blackout delay (during which the reward was de-

livered) was increased from 2s to 4s for only those animals in the 0.125s frequency

pseudo-sweep described below.

3.2.1.3 Randomized triads procedure

In the case of rats DE1, DE3, MA5, DE7, PD8, DE14, DE15, DE19 and DE20,

experimental sessions were arranged in the same triad structure as the preliminary,

three-pseudo sweep randomized design: a leading bracket trial preceded every test

trial, and a trailing bracket trial followed every test trial.

In the case of rats F3, F9, F12, F16, F17 and F18, test trials were chosen to
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maximize a sampling of the parameter space (log-frequency and log-price) in very low

price regions, in order to assess the degree to which decreases in price fail to require

compensatory decreases in frequency to maintain a given level of performance. The

parameters of test trials (price-frequency pairs) for rats F12, F16, F17 and F18 were

sampled without replacement from a list that contained:

14 pulse frequencies at an objective price of 8s (8s frequency pseudo-sweep),

14 pulse frequencies at an objective price of 4s (4s frequency pseudo-sweep),

14 pulse frequencies at an objective price of 2s (2s frequency pseudo-sweep),

14 pulse frequencies at an objective price of 1s (1s frequency pseudo-sweep),

14 pulse frequencies at an objective price of 0.5s (0.5s frequency pseudo-sweep),

14 pulse frequencies at an objective price of 0.25s (0.25s frequency pseudo-sweep),

14 pulse frequencies at an objective price of 0.125s (0.125s frequency pseudo-sweep),

14 objective prices at the highest pulse frequency the animal could tolerate (price

pseudo-sweep), and

14 pulse frequencies and prices arrayed along a ray extending from the intersection

of the 4s frequency pseudo-sweep and the price pseudo-sweep to the presumed coor-

dinates of Fhm and Pe, in log-log space.

For rats F3 and F9, only 9 pulse frequencies were presented, with the central

5 presented twice as often, as described in chapter 2.

An example of the nine pseudo-sweeps from which test trials were sampled

is provided in Figure 3.2. Points along any given pseudo-sweep for rats F12, F16,

F17 and F18 were spaced such that the most extreme two values at each end of the

sweep were spaced twice as far apart as the central ten. While the highest and lowest

two frequencies might be spaced 0.1 common logarithmic units apart, the central ten

would be spaced 0.05 common logarithmic units apart.
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Figure 3.2. Arrangement of pseudo-sweeps in subjective-price study. For rats F12,
F16, F17 and F18, price-frequency pairs were sampled at random from the vectors de-
picted here. Red squares indicate the 4s frequency pseudo-sweep, blue circles indicate
the price pseudo-sweep, and green diamonds indicate the radial sweep. These pseudo-
sweeps are analogous to the three pseudo-sweeps collected from rats in Chapter 2.
Magenta triangles (from bright to black) indicate the extra frequency pseudo-sweeps
collected at low (bright magenta, 0.125s) to high (black, 8s) prices. In the case of rats
F3 and F9, the price-frequency pairs were obtained as in Chapter 2: nine different
pairs per pseudo-sweep were obtained, with the middle 5 sampled twice as often as
the extreme 4. In the case of F12, F16, F17 and F18 depicted here, 14 different
price-frequency pairs were obtained from each pseudo-sweep, where the extreme 4
were twice as spread as the centre 10. In the example here, the difference between
the highest and second-highest price of the price pseudo-sweep is 0.27 common log
units, while the difference between the third- and fourth-highest is 0.135 common log
units.
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3.2.2 Mountain fit

Rats F3, F9, F12, F16, F17 and F18 encountered a large number of very low

objective prices. As a result, a modified version of the mountain model was fit to the

data for these animals. Rather than assume that decreases in price in the low range

required compensatory increases in pulse frequency to maintain a constant level of

performance, the model that was fit assumed that the relevant decision variable was

the subjective opportunity cost of self-stimulation. It would indeed be unreasonable

to assume that a change in objective price from 0.001 to 0.002 seconds requires the

same proportional change in pulse frequency as a change from 4 to 8 seconds in

order to motivate the rat to work. As a result, we assumed that the psychophysical

mapping between objective prices and subjective opportunity costs is scalar at high

prices and is constant at very low prices: the subjective opportunity cost of holding

for 0.125 seconds would be equivalent to that of holding for 0.25 seconds, but the

subjective opportunity cost of holding for 8 seconds would be twice that of holding

for 4 seconds. Solomon et al. (2007) have already established that such a mapping can

account for choice between two levers that deliver stimulation of differing price. The

Reinforcement Mountain Model that was fit to the time allocation data generated

by these animals therefore included two extra parameters: the minimum subjective

opportunity cost (SPmin), below which further decreases in objective price do not

change the opportunity cost, and the sharpness of the transition between this region

and the scalar region (SPbend). Estimates of the parameters in the set of equations

Ps = SPmin + SPbend × ln
(

1 + e
SPmin−po

SPbend )
)

Irel = fG

fG + F G
hm

TA = IA
rel

IA
rel +
(

Ps

Pe

)A
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were inferred using the bootstrapping approach described in Chapter 2. Details of the

subjective opportunity cost model have been previously described in Solomon et al.

(2007).

The mapping between objective price and subjective opportunity cost was

then inferred from parameters SPmin and SPbend using the first equation above in

rats F3, F9, F12, F16, F17 and F18. The psychophysical mapping of pulse frequency

to subjective reward intensity was inferred from the parameters Fhm and G that

were fit from the Reinforcement Mountain Model using the second equation above.

Payoff was defined as the ratio of the relative subjective reward intensity (Irel) to the

subjective opportunity cost (Ps).

3.2.2.1 Robust Analysis of Variance

To determine whether the rats could detect the type of trial that had just

begun, before any information about the stimulation strength and opportunity cost

of the reward had been revealed, we extracted the duration of the first pause at

the start of the trial, immediately following priming stimulation delivered during the

inter-trial interval. This post-priming pause (PPP) reflects a period of time before

the animal even begins to work, thereby giving a preliminary indication of the payoff

the rat expects to receive on the trial to come. If the trial began with the rat holding

down the lever, the post-priming pause was assigned 0 duration. Systematic changes

in PPP related to the triad trial types (leading, test, and trailing) would indicate

systematic differences from trial type to trial type in the animal’s expectancy for the

trial to come. This systematic expectancy forms the basis for what we term the rat’s

world model, in the sense that the rat behaves as if he has a model of the world upon

which to base expectations for the payoff to come.

In some cases, there are many instances of PPPs that were censored by the

end of the trial; the rat simply did not press for the duration of the trial in these
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cases. As a result, we used robust estimates of central tendency and variability, and

performed a one-way robust ANOVA on the PPP durations for each trial type. To

calculate the robust ANOVA, PPP durations were assigned weights according to the

one-shot version of Tukey’s bisquare estimator (Hoaglin et al., 1983)

wi =

⎧⎪⎪⎨
⎪⎪⎩

0 if |ui| > 1

1 − (u2
i /c2)2 if |ui| ≤ 1

where

ui = yi − ỹ

c × MAD

using a bisquare tuning constant (c) of 4.4685, and the median PPP duration

(ỹ) of the trial type, where MAD is the median absolute deviation from the median.

The resulting robust estimate of the mean PPP duration for a trial type was the

weighted sum of the durations divided by the sum of the weights. The grand mean

PPP duration across all trial types was the weighted sum of all durations divided by

the sum of all weights.

The (robust) total sum of squared deviations of PPP durations from the grand

mean PPP duration (SST ) was, similarly, the sum of the weighted squared deviation

of PPP durations from the grand mean duration. The error term is the (robust)

sum of squared deviations of individual PPP durations from their mean trial type

PPP duration (SSS/A), calculated similarly to SST . As total variability (SST ) can be

partitioned into variability due to different trial types (SSA) and variability due to

noise in the process that generates PPP durations (SSS/A), the difference SST −SSS/A

is a measure of the variability that can be attributed to differences in trial type.

The (robust) degrees of freedom for the error term SSS/A is given by

dfS/A =
∑

j

((
∑

i

(wij))2 −
∑

i

(w2
ij)/
∑

i

(wij)
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which smoothly varies the degrees of freedom in error for k groups between 0 (when

all weights are 0) to n1 −1+n2 −1+ . . .+nk −1 (when all weights are 1). As a result,

the robust error variance (MSS/A) is the robust SSS/A divided by the robust dfS/A,

where dfS/A is a real (rather than integer) number. The variance in PPP duration

due to trial type is the robust SSA divided by 2, as there were only 3 trial types. The

F test then proceeded as in the non-robust case, taking the ratio MSA/MSS/A, using

a real-valued rather than integer-valued dfS/A.

If the F ratio was found to be statistically significant at the 0.05 level, three

Bonferroni-corrected post-hoc tests were conducted: leading trial vs test trial, test

trial vs trailing trial, and trailing trial vs leading trial PPP durations. Each com-

parison used the robust methods described above, calculating the grand mean and

the variance in PPP duration within trial type conditions only across the two groups

being compared.

3.3 Results

3.3.1 Duration of the post-priming pause on each trial type

Figure 3.3 depicts a bar graph, for each rat and in each condition they encoun-

tered, of the relationship between trial type and PPP duration. On leading bracket

trials, the duration of the PPP is often very short, while on trailing bracket trials,

the PPP is generally censored at 25 seconds by the end of the trial. On test trials,

the duration of the PPP is greater than the leading bracket trial (ranging from 0.24

to 12.25 seconds longer). The duration of the PPP on test trials is also always much

shorter than on trailing trials (ranging from 6.2 to 23.7 seconds shorter). Although

there is variability between animals in the mean duration of this pause, there is little

variability in their pattern: on leading bracket trials, the PPP is nearly 0, on trailing

bracket trials, the PPP is usually censored by the end of the trial at 25 seconds, and
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Figure 3.3. Post-priming pauses depend on triad trial type. Top panel shows, for each
rat in each condition, the mean PPP on leading bracket, test, and trailing bracket
trials. In every case, there is a lawful (short, medium, long) relationship between the
payoff on the trial to come and the duration of the first pause taken. Lower left panel
shows a box-whisker plot of the durations, with the means indicated with squares.
Lower right panels show examples of the best (bottom, F12, η2 = 1), typical (middle,
DE1, η2 = 0.9) and worst (top, DE3, η2 = 0.44) cases in which trial type predicts the
duration of the PPP in terms of their η2 value. Bar graphs on far right show robust
mean PPP durations with their associated robust standard errors for each trial type.
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the PPP on test trials is somewhere between that of the two bracket trials, with a

median 3 seconds longer than on the leading bracket and 19.11 seconds shorter than

on the trailing bracket. Since there is no way for the rat to know the current trial

type without having developed a world model of how the current trial type is related

to previously seen trials, these results provide very strong evidence for the existence

of a world model of the randomized trials design.

The robust ANOVA revealed a statistically significant effect of trial type on

PPP duration in all 15 animals tested, and in all conditions the rats encountered

(p<0.0001 in all cases). The magnitude of this effect, as calculated by η2, ranged

from 0.44 to nearly 1.0, indicating that the vast majority of the variance in PPP du-

ration throughout the experiment could be accounted for by differences in trial type,

for all rats. Bonferroni-corrected post-hoc comparisons of each test trial showed that

each trial type was characterized by a distinct PPP duration, in the expected direc-

tion: PPPs on trailing bracket trials were significantly longer than leading bracket

(p<0.0001 in all cases) or test trials (p<0.0001 in all cases), and PPPs on leading

bracket trials were significantly shorter than those on test trials (p<0.0001 in all

cases).

The bottom left panel of Figure 3.3 is a box-whisker plot of the mean PPP

on leading bracket, test, and trailing trials. Overlain on the plot is the mean PPP

for each animal in each condition encountered at the start of each trial type. The

pattern seen in the aggregate is equivalent to that seen on a rat-by-rat basis: the

PPP is reliably shorter on leading bracket trials than on trailing bracket trials, and

though mean PPP durations vary greatly between animals on test trials, they tend

to have a duration that is intermediate between leading and trailing bracket trials.

The bottom right panel of Figure 3.3 shows three examples of the mean and

standard errors surrounding the robust estimates of the PPP duration on leading

bracket, test, and trailing bracket trials. The topmost bar graph shows animal DE3 in
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the second phase of the P1vp5 condition (during which the levers mapped to rewards

delivered with certainty and those delivered with a probability of 0.5 are switched

compared to the previous condition). This case represents the series of post-priming

pauses for which trial type accounted for the least variance in PPP duration (η2 was

0.44). For comparison, we also show a typical result (DE1, P1vp75 condition, centre

bar graph; η2 was 0.90) and the data set for which almost all the variance in PPP

duration could be accounted for by trial type (F12, bottom bar graph; η2 was nearly

1.00). The aggregate pattern seen in the upper and lower left panels results from

the same pattern seen in each animal, with variation between subjects only in the

absolute values of the different pause durations, but not their overall ordering.

If this is true, there must be some type of rule by which rats use either the

price and pulse frequency in effect on the previous trial or the current position in the

triad to infer the current trial’s payoff. The following section will attempt to answer

what kind of rule they may be using by considering the PPP on trailing bracket trials,

which follows a test trial of variable price and pulse frequency.

3.3.2 Heuristic for trial position

3.3.2.1 Analysis

Two complementary strategies may be used to infer the payoff to be expected

on a given trial in the triad. The first and simplest strategy would be to consider

the characteristics of the trial that has just come to pass. Predicting the leading

bracket trial, with its fixed high payoff, is trivial, because it always follows a trailing

bracket trial, with fixed low payoff. However, avoiding this prediction following a

low-payoff test trial would be difficult. Predicting the occurrence of the test trial

(though not its payoff) is similarly easy, because it, too, follows a trial with a fixed

payoff. With enough exemplars of test trial payoffs, an expectation can be formed
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for the trial that follows a trial with exceptionally high payoff. However, avoiding

this prediction following a high-payoff test trial would be difficult. Finally, although

predicting the payoff of the trailing bracket trial is easy because it is fixed, the trailing

bracket occurs after a trial with pseudo-randomly selected payoffs. If the rat were to

use this one-trial look-back strategy, it could be misled on the trailing trial by the

payoff presented on the test trial. A particularly high-payoff test trial would mislead

the rat into making a post-priming pause on the next (trailing bracket) trial more

characteristic of a test trial, whereas a particularly low-payoff test trial would mislead

the rat into making a post-priming pause on the next (trailing bracket) trial more

characteristic of a leading bracket trial.

Assuming the rat uses a single-trial look-back rule to infer the payoff on the

current trial, there is one set of test trials that will lead the rat to confuse a test trial

for a leading bracket trial: when the price is 1 second and the stimulation delivers a

maximal reward. As a result of confusing the test trial with a leading bracket trial,

the PPP that the rat takes on the trailing bracket trial should be shorter than usual.

The rat will be led to believe that the current trial is a test trial when, in fact, it is

a trailing bracket trial.

Similarly, the rat will confuse a test trial for a trailing trial when the price for

stimulation during the test trial is 1 second and the stimulation is weak. As a result

of confusing the test trial with a trailing bracket trial, the PPP that the rat takes

on the trailing bracket trial should also be shorter than usual. The rat will be led to

believe that the current trial is a leading bracket trial when, in fact, it is a trailing

bracket trial.

A second, more cognitively demanding solution is to maintain a representation

of both the trial type sequence (as above) and the animal’s current position in the

sequence. A rat exclusively using this second strategy may be inaccurate in its count,

resulting in uncharacteristically short pauses on trailing bracket trials that are inde-
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pendent of the payoff on the test trials that preceded them. Whereas using a one-trial

look-back rule for retrieving stored transitions would produce systematic differences

in PPP duration on trailing bracket trials as a function of test trial opportunity costs

and reward intensities, a counting model would produce no such systematic differ-

ences.

Test trials that resemble the leading or bracket trials will induce an error—

that is, uncharacteristically short PPPs—if the animal is using a single-trial look-back

strategy. To determine whether the payoff on the previous test trial had an impact

on the post-priming pause at the start of the following trailing trial, we conducted a

one-way robust ANOVA on the PPP durations during trailing trials that followed test

trials on which the price was 1s (the price in effect during leading and trailing bracket

trials) for each particular reward intensity for each rat. One-way robust ANOVAs were

also conducted on the PPP durations that followed test trials delivering the highest

pulse frequency of each frequency pseudo-sweep (thereby making them similar to

leading bracket trials delivering high-frequency stimulation at a 1s price), as well as all

those delivering the lowest pulse frequency of each frequency pseudo-sweep (thereby

making them similar to trailing bracket trials delivering low-frequency stimulation

at a 1s price). Bonferroni-corrected post-hoc tests were conducted following each

ANOVA to identify PPP durations that were significantly different from the others

based on the price and frequency encountered on the previous trial.

3.3.2.2 Confusing trials

Figure 3.4 shows the mean (and standard error) estimated PPP on trailing

bracket trials as a function of the subjective reward intensity of the test trial that

preceded it, when that test trial delivered stimulation at a 1 second price (the price of

the leading and trailing bracket trials). In all cases, the robust ANOVA is statistically

significant at the 0.0001 level and accounts for a large proportion of variance in PPP
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Figure 3.4. “Leading”-like and “trailing”-like test trials induce an error on subsequent
true trailing trials. The mean PPP duration (±SEM) on the trailing bracket trial is
plotted as a function of the subjective reward intensity in effect on the preceding test
trial, when the price in effect on that test trial was 1s (circles). When the last trial had
a similar price and reward intensity as a leading trial (high reward intensity, 1s price),
rats make uncharacteristically short post-priming pauses on the subsequent trailing
trial that are similar to those made following true leading trials (diamonds). When
the last trial had a similar price and reward intensity as a trailing trial (low reward
intensity, 1s price), rats also make uncharacteristically short post-priming pauses that
are similar to those made following true trailing trials (triangles).
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duration (η2 ranged from 0.44 to 0.82). Most notably, when the test trial presented

rewards of either negligible or nearly maximal magnitude at a 1s price, rats make

reliably shorter PPPs, while at intermediate magnitudes, rats make PPPs typical of

the trailing trial overall. In many cases, the PPPs produced following test trials in

which reward intensity was highest (“leading”-like test trials) and lowest (“trailing”-

like test trials) are comparable to those produced following true leading and trailing

bracket trials. Bonferroni-corrected post-hoc tests on the PPP durations revealed

significant differences (p<0.0001 in all cases) between these PPP durations following

test trials delivering either near-minimal or near-maximal reward intensities at a

1 second price, and the PPP duration following the test trial which delivered an

intermediate (the 5th highest in the case of rats F3 and F9, or the 8th highest in the

case of rats F12 through F18) subjective reward intensity at a 1 second price. In effect,

rats presented with “leading”-like test trials are misled to believe the trailing bracket

is a test trial and make shorter pauses before beginning to work for stimulation they

would otherwise ignore. Similarly, rats presented with “trailing”-like test trials are

misled to believe the trailing bracket is a leading bracket trial and make very short

pauses before working for stimulation they would otherwise ignore. In contrast, when

rats are presented with test trials that are neither “leading”- nor “trailing”-like are

not misled and ignore the weak stimulation they can expect to receive on trailing

bracket trials.

Figure 3.5 is a depiction of the duration of the PPP on the trailing bracket

trial when that trial follows a potentially misleading test trial. In the top panel, the

mean PPP on trailing trials that follow a “leading”-like test trial is plotted in dark

grey for each rat, along with the overall mean PPP on trailing trials (black bars) and

the mean PPP on trials that follow true leading bracket trials (light grey bars). In

the bottom panel, the mean PPP on trailing trials that follow a “trailing”-like test

trial is plotted in dark grey for each rat, along with the overall mean PPP on trailing
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Figure 3.5. Misleading test trials induce unusually short post-priming pauses on sub-
sequent trailing trials. In the upper panel, mean PPP duration for each animal is
plotted as a function of whether it follows a true leading bracket (light), a test trial
that is similar to a leading bracket (dark) or a test trial that is not similar to a leading
bracket (black). In the lower panel, mean PPP duration for each animal is plotted
as a function of whether it follows a true trailing bracket (light), a test trial that
is similar to a trailing bracket (dark) or a test trial that is not similar to a trailing
bracket (black).
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trials (black bars) and the mean PPP on trials that follow true trailing bracket trials

(light grey bars). In all cases, the mean PPP is uncharacteristically short, indicating

some degree of confusion. In 4 of 6 cases, the mean PPP on trailing trials that follow

a “leading”-like test trial is comparable to the mean PPP on test trials that follow

a “true” leading bracket trial. Similarly, in 4 of 6 cases, the mean PPP on trailing

trials that follow a “trailing”-like test trial is comparable to the mean PPP on leading

trials that follow a “true” trailing trial.

These results are consistent with the hypothesis that rats rely a great deal

on the subjective reward intensity and price of the previous trial to infer an as-yet

unknown payoff. Although in 2 of 6 cases the mean PPP is substantially greater

than expected when using only a single trial look-back rule, the mean PPP is still

substantially lower than expected when using only a counting rule. Since these two

rules are not mutually exclusive, a rat could potentially rely on both at any given

time. Alternately, it is possible that the rat can discriminate between the subjective

reward intensity delivered on maximally confusing test trials and the bracket trials

for which they would be confused. If the rat can easily discriminate between a reward

with a subjective reward intensity of 0.01 and one with a subjective reward intensity

of 0.02, the test trial will not sufficiently resemble the trailing trial to mislead the rat.

If test trials that resemble in price and pulse frequency the leading (or trailing)

bracket trial produce uncharacteristically short post-priming pauses, the question

becomes: to what degree must the price of stimulation on the test trial differ from

the leading or trailing bracket trials to induce this confusion? It is to this question

that we now turn.

3.3.2.3 A Gradient

Given that rats are susceptible to confusing strong-stimulation/low-price test

trials with the leading trial, it would be interesting to determine which prices induce
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this confusion and which ones do not. The generalization gradient—that is, the

relationship between the objective price on a test trial and its ability to confuse the

rat into behaving as if the following trial is a test trial—will reflect the type of heuristic

used to infer the next trial. As the rat does not have access to the pulse frequency of

the stimulation, any rule for inferring the next trial type will involve the subjective

intensity of the rewarding effect. However, the rat could use the objective price and

subjective intensity in its table lookup strategy, the subjective opportunity cost and

subjective intensity, or the payoff (the scalar combination of subjective opportunity

cost and intensity) of the previous trial to infer the identity of the next trial. In

essence, if the basis for determining whether the last trial was a leading bracket trial

involves a comparison of the last trial’s objective price with the leading bracket trial’s

objective price, then the gradient for generalization will be steep: if the last trial

presented rewards at an objective price that is not reasonably close to one second,

the rat’s hypothesis that the last trial was a leading bracket trial will be accurately

rejected and the rat will not confuse the following trailing bracket trial for a test

trial. However, if the basis for determining the trial type of the last trial is the

subjective opportunity cost of acquiring BSRs, then the gradient for generalization

will be considerably shallower: if the last trial presented rewards at any of a number

of objective prices that leads to the same subjective opportunity cost, the rat will

fail to reject the hypothesis that the last trial was a leading trial and will therefore

confuse the following trailing bracket trial for a test trial.

To investigate this generalization gradient and determine how the objective

price on the preceding test trial relates to the PPP on the trailing bracket trial that

follows it, we performed the same robust ANOVA on the duration of trailing trials

as a function of the price of the test trial that preceded them for test trials that

delivered the highest stimulation frequency available. Bonferroni-corrected post-hoc

tests were then conducted on these data to assess which test trials were followed by
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Figure 3.6. A generalization gradient of the similarity of “leading”-like test trials to
true leading trials. The duration of the PPP (± SEM) taken on trailing bracket trials
is plotted as a function of the objective price in effect on the preceding test trial
(circles), when that test trial delivered very strong stimulation that is similar to that
delivered on a true leading bracket trial (triangles).
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uncharacteristically low PPPs on the trailing trial. In every case, the robust ANOVA

was statistically significant at the 0.0001 level, and accounted for 44% to almost 100%

of the variance in PPP duration. These results are summarized in figure 3.6.

Figure 3.6 depicts this generalization gradient for each rat by plotting the

duration of the trailing trial PPP as a function of the price in effect during the

“leading”-like test trial that preceded it. Figure 3.7 depicts the generalization gradient

by plotting the duration of the trailing trial PPP as a function of the price in effect

during the “trailing”-like test trial that preceded it. In most cases, there is a threshold-

like relationship between PPP and the objective price of the preceding test trial, with

uncharacteristically low PPPs below 4s and the typical, censored PPP following test

trials delivering rewards at a four- or eight-second price.

3.3.2.4 Is this a stimulus or a decision variable discrimination?

It is clear from these data that the objective price is an important determinant

of whether an animal that uses a single trial look-back rule will confuse the test trial

with either of the bracket trials. Nonetheless, it is possible that the animal bases its

heuristic not on a stimulus-discrimination rule (“was the last trial’s price sufficiently

close to the leading bracket’s price”), but rather, on a decision variable rule (“was the

last trial’s subjective opportunity cost sufficiently close to that of the leading bracket’s

subjective opportunity cost”). Other groups have shown that rats can discriminate

a 400ms tone duration from a 250ms tone duration (Kelly et al., 2006), and even

random noise bursts in the 10ms to 50ms range (Pai et al., 2011). These results

certainly imply that a 0.25s price can be timed fairly accurately, at least in principle.

A rat that could not distinguish 2s, 1s, 0.5s, 0.25s and 0.125s intervals would certainly

treat these objective prices equivalently, and would certainly be misled by a test trial

delivering nearly-maximal or minimal rewards at any of those prices. Given that

animals can distinguish stimuli of durations much shorter than the prices used, it is
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Figure 3.7. A generalization gradient of the similarity of “trailing”-like test trials to
true trailing trials. The duration of the PPP (± SEM) taken on trailing bracket trials
is plotted as a function of the objective price in effect on the preceding test trial
(circles), when that test trial delivered very weak stimulation that is similar to that
delivered on a true trailing bracket trial (triangles).
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unlikely that the prices used are not discriminable. Instead, we suggest that when

animals treat test trials presenting a 0.125s price as though they had just encountered

a bracket trial, rats do so on the basis of equivalent subjective opportunity cost rather

than the rats’ inability to time short latencies.

Figure 3.8 presents the generalization gradient as a function of the deviation

of the test trial’s subjective opportunity cost from that of the leading (upper left) or

trailing (upper right) bracket trial, rather than the objective price (lower panels). In

all animals showing a clear confusion effect, the generalization gradient is consistent

with a decision variable rule. Whereas there is little confusion at subjective oppor-

tunity costs much greater than that of the leading (or trailing) bracket, when the

subjective opportunity costs are equivalent, rats apt to be misled by the test trial

show considerable confusion regarding whether the trial to come will be a trailing

bracket trial.

3.3.2.5 Is last payoff the relevant heuristic

Given that the generalization gradient is consistent with a decision variable

rule (“the last subjective intensity and opportunity cost were trailing-like”), it would

be tempting to conclude that rats base their decision about whether the test trial that

has just occurred is a leading or trailing bracket on the payoff from the trial. The

payoff is a scalar combination of subjective intensity and opportunity cost, and an

even simpler rule would require a comparison of the payoff on the last trial rather than

each of its individual determinants (subjective intensity and opportunity cost). If the

basis for inferring that the last trial was a leading bracket depends on having a very

high payoff—delivering highly rewarding stimulation at a very low cost—then a test

trial delivering equivalently low-cost, high-intensity stimulation would indeed confuse

the rat. However, because there is only one way for the payoff to be nearly maximal,

it would be impossible to distinguish a rule based only on the payoff (“was the last
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Figure 3.8. The generalization gradient for “leading”- and “trailing”-like test trials is
consistent with a subjective opportunity cost discrimination. The mean PPP during
trailing bracket trials is plotted as a function of the deviation of the variable on the
test trial that preceded it from the variable on true bracket trials. In the top row,
the variable is the subjective opportunity cost, while in the bottom row, the variable
is the objective price. The left-hand column plots the PPP on trailing bracket trials
that followed test trials delivering weak stimulation, as a function of the deviation of
test trial variables from a true trailing bracket. The right-hand column plots the PPP
on leading bracket trials that followed test trials delivering strong stimulation, as a
function of the deviation of test trial variables from a true leading bracket. Different
symbols and colours represent different animals.
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Figure 3.9. Low-payoff, but differently priced test trials do not induce confusion. The
left-hand panel shows the duration of the PPP for each rat when the trial follows a
true trailing trial (on leading trials, green), when the trailing trial follows a low-payoff
test trial where the stimulation and price are unlike trailing trials (high intensity/high
price, blue), when the trailing trial follows a low-payoff test trial where the price is
unlike trailing trials (low intensity/high price, cyan), or on trailing bracket trials in
general (red). The right-hand panel shows a box-whisker plot of the PPP durations
on each of these kinds of trials. In all cases, the PPPs on low-payoff trials are unlike
what they would be if the rats were mistaken (at left, in green) and similar to what
they would be if the rats were not mistaken (at right, in red).
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trial’s payoff sufficiently close to that of the leading bracket trial”) from one based

on the appropriate combination of subjective opportunity cost and reward intensity

(“were both the subjective opportunity cost and intensity of the last trial sufficiently

close to those of the leading bracket trial”).

Luckily, there are many combinations of intensity and price that will produce

nearly minimal payoffs. One could provide inexpensive stimulation that is sufficiently

weak (as is the case on trailing bracket trials), strong stimulation that is sufficiently

expensive (as is the case on the highest-priced test trial of the price pseudo-sweep), or

sufficiently weak stimulation that is also sufficiently expensive (as is the case on the

highest-priced, lowest-intensity test trial of the radial pseudo-sweep). If the rat used

a purely payoff-based rule to identify the trial it has just encountered, PPP durations

on trailing trials following these low-payoff test trials would be uncharacteristically

low and similar to those on leading trials. If, on the other hand, the rat used a rule

based on the appropriate combination of key decision variables, these low-payoff trials

will fail to confuse the rat, and the rat will produce a PPP that is typical of trailing

bracket trials. To identify whether these types of test trials could confuse the rats,

we plot in the left-hand panel of figure 3.9 the duration of the PPP on trailing trials

that follow high-intensity but high-priced test trials (the highest-priced test trial of

the price pseudo-sweep) and trailing trials that follow low-intensity and high-priced

test trials (the highest-priced test trial of the radial pseudo-sweep). For comparison,

we include the mean PPP duration on leading trials that follow low-intensity and

low-priced trailing trials, and the mean PPP duration on trailing trials following all

test trials. In all but two animals (in one condition each, for only one of the two

trial types), low payoff trials with subjective opportunity costs and reward intensities

that are different from those on the trailing bracket trial induce no confusion about

whether the trial to come is a trailing trial.

The right-hand panel of figure 3.9 shows a box-whisker plot of the mean PPP
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duration on leading bracket trials, trailing bracket trials that follow a test trial with

highly rewarding but expensive stimulation, trailing bracket trials that follow a test

trial with low intensity and high price stimulation, and trailing bracket trials across all

test trial types. Overlain on the box-whisker plot are individual mean PPPs observed

on each trial type for each rat and condition they encountered. The range of mean

PPP durations on trailing trials following these two kinds of low-payoff trials is no

different from those on trailing trials in general, and differs considerably from those

on leading trials, suggesting little or no confusion about whether the trial to come

will be a trailing bracket trial. Therefore, the rat uses the subjective intensity and

opportunity cost individually—not their combination into the payoff—to infer the

identity of the trial to come.

3.4 Discussion

3.4.1 A world model of session structure

Model-free temporal difference reinforcement learning models imply that rats

learn only the value of a state rather than the full state-transition function. In other

words, the rat using only a model-free learning scheme knows at best that conditions

have changed when the inter-trial interval begins, but because such a rat does not

maintain a model of how the session progresses, it cannot know in what way they

have changed. Consequently, the rat that relies on a model-free learning scheme

will not act on an expectation for the trial to come. When no representation of the

identity of states is maintained, the rat’s performance must be based only on feed-back

mechanisms that map states to their total net discounted reward. In this case, the rat

will expect that conditions on a new trial will be the same as those on the previous

trial; as a result, the duration of the PPP would be longest on leading trials (because

they follow a trial of low payoff), shortest on test trials (because they follow a trial
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of high payoff) and intermediate on average on trailing trials (because they follow a

variable trial). When a world model is maintained, the rat’s performance can be based

on what states it can expect to follow from actions taken in the current state, rather

than just their value. In other words, a world model of the triad sequence allows

performance to operate on a feed-forward mechanism: the rat has an expectation

for the trial to come before it obtains evidence of the consequences of its actions.

For example, a representation of “trailing bracket follows test trial” allows the rat to

flexibly alter the value of lever-pressing without having to uncover that value through

trial and error, and without having to rely on what the value of lever-pressing has

been so far. Indeed, the predictions of a model-free learning scheme are opposite to

the results reported here: the rat takes pauses, before the payoff can be known, that

are indicative of the payoff to come rather than the payoff on the trial that has come

to pass.

Our results imply that well-trained rats behave as though they had a model of

how triads progress based on a look-back rule to the conditions (subjective intensity

and opportunity cost) of the preceding trial. We have presented evidence that rats

indeed form this world model of the triad structure, and a potential heuristic rule

that rats use to infer the current trial type. Post-priming pause durations vary sys-

tematically depending on the trial type to come. Since the price and pulse frequency

on a new trial are not signalled at trial onset, the duration of the post-priming pause

must reflect some world model of how the trial types of a triad progress. That the

duration of the post-priming pause on trailing trials, though usually censored by the

end of the trial, can further be related to the price and intensity of the preceding test

trial provides some evidence about the nature of this world model. A rat that sim-

ply counted would be expected to show uncharacteristically short PPPs on trailing

trials regardless of the trial type—it is equally likely to make errors in counting no

matter what the test trial’s objective price and subjective reward intensity happen to
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be. Instead, rats produce uncharacteristically short PPPs following test trials that

closely resemble the leading bracket trial in terms of subjective reward intensity and

subjective price. Moreover, the generalization gradient for how closely a test trial

must resemble a leading bracket trial in order to “confuse” the rat suggests that it

is on the basis of the subjective opportunity cost and reward intensity that the rat

infers which trial type has just occurred and which trial type will follow. Finally, the

discriminative stimulus used to infer the payoff on the trial to come is largely a vector

of the subjective opportunity cost and reward intensity encountered on the previous

trial, rather than their scalar combination (the trial’s payoff). Animals do not confuse

test trials delivering very low payoffs, resulting from subjective opportunity costs and

reward intensities that differ from the trailing bracket trial, with a trailing bracket

trial, though they do confuse test trials on which the subjective opportunity costs

and reward intensities are similar to trailing bracket trials with trailing bracket trials.

These results are inconsistent with a purely model-free description of perfor-

mance on this task. One would have to assume one of two results in the purely

model-free approach. The rat could maintain a running average of the net expected

value from pressing across all trials, in which case the rat reaches the end of the trial

without an accurate estimate of the net expected value of lever-pressing. Results from

chapter 2 allow us to rule out this interpretation, since performance is highly payoff-

dependent. Otherwise, if the rat manages to update the value of lever-pressing to the

“correct” level by the end of a trial, a purely model-free approach would assume that

the payoff from self-stimulation expected on trial t is the payoff from self-stimulation

encountered on the previous trial, such that when the rat begins a trailing bracket

trial, it expects to obtain the same reward it had received on the previous test trial.

When the rat begins a leading bracket trial, it expects to obtain the same reward it

had received on the previous trailing trial. Clearly, the pattern of PPP durations is

inconsistent with this: rats behave as though they expect to obtain a reward they
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have not yet seen. Instead of the behavioural inertia predicted by a purely model-free

approach, we observe a striking prescience in the rats’ PPP that can be attributed to

the deterministic progression of leading bracket, test, and trailing bracket trials. The

payoff they expect to receive is a reflection of a one-trial look-back rule in a world

model that encapsulates a simple set of syllogisms: if the last trial was sufficiently

similar (in subjective opportunity cost and reward intensity) to a leading bracket

trial, the next trial is likely a test trial; if the last trial was sufficiently similar to a

trailing bracket trial, the next trial is likely a leading bracket trial; if the last trial

was different from a leading or trailing bracket trial, the next trial is likely a lead-

ing bracket trial. Although basing one’s decision to begin lever-pressing on this set

of syllogisms may sometimes lead to an error, it is considerably less demanding to

implement than a counting rule that requires maintaining an abstract representation

for the counting index while performing an unrelated task. Even following months

of exposure to the randomized-triad design, correct detection of the trailing trial’s

occurrence when it follows a test trial that is sufficiently similar to either bracket

trial is a very rare occurrence. In a majority of cases, we observe PPP durations that

are consistent with a simple, one trial look-up rule.

Rats appear to behave as though they have the world model depicted in figure

3.1. On trial t − 1, rats maintain a representation (S) of the subjective opportunity

cost (Ps) and reward intensity (Ibsr) for the trial. When the inter-trial interval begins,

rats infer the subjective opportunity cost (P̂s) and reward intensity (Ibsr) of the trial

to come (S′). We make this assumption because rats will readily identify the leading

bracket trial following the trailing bracket trial even though the rat rarely ever obtains

a sample of the subjective opportunity cost and reward intensity on trailing bracket

trials. The inference is made on the basis of a simple state-transition function:
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if St = [P̂st ; Îbsrt ] was sufficiently similar to the vector

⎡
⎢⎢⎣ 1s

Imax

⎤
⎥⎥⎦

then S ′
t+1 = [P̂st+1 ; Îbsrt+1 ] will be ⎡

⎢⎢⎣ P̄s

Ībsr

⎤
⎥⎥⎦

(where P̄s and Ībsr represent the mean opportunity cost and reward intensity on test

trials); if St = [P̂st ; Îbsrt ] was sufficiently similar to the vector

⎡
⎢⎢⎣ 1s

Imin

⎤
⎥⎥⎦

then S ′
t+1 = [P̂st+1 ; Îbsrt+1 ] will be

⎡
⎢⎢⎣ 1s

Imax

⎤
⎥⎥⎦ ;

if St = [P̂st ; Îbsrt ] was neither [1s; Imax] nor [1s; Imin], then S ′
t+1 = [P̂st+1 ; Îbsrt+1 ] will

be ⎡
⎢⎢⎣ 1s

Imin

⎤
⎥⎥⎦ .

The expected payoff (E[Ut]) on trial t—which involves a scalar combination

of the relevant key decision variables—can concisely inform the rat of how long its

PPP should last. The PPP is terminated (except on non-ambiguous trailing bracket

trials) with a lever-press, at which point the rat can update the expected subjec-
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tive opportunity cost (revising P̂st+1), which itself allows the rat to also update the

expected payoff from self-stimulation for the trial. A reward may then be delivered,

which allows the rat to update the subjective reward intensity it can expect to receive

for lever-pressing (revising Îbsrt+1), and simultaneously allows the rat to update the

expected payoff from self-stimulation once again. On unambiguous trailing bracket

trials, the rat usually never presses, so the subjective opportunity costs and reward

intensities have not been updated since their expectation ([P̂st+1 , Îbsrt+1 ] = [1s, Imin])

at the beginning of the trial (t + 1), and the rat can still infer that the next trial,

S ′
t+2, will be a leading bracket trial. For example, suppose you were asked to identify

whether a dim light appeared red when it is briefly flashed. Following many trials,

you recognize that after a red light, you will be presented with a violet light of varying

red and blue hues; after a violet light, you will be presented with a blue light; and

after a blue light, you will be presented with a red light. If you had blinked and

missed the dim blue light, you would still be able to infer that the next trial would be

red. We propose that the state transition function, formalized by the above if-then

statements, provides the rat with a cached expectation of subjective opportunity cost

and reward intensity which can be revised when the animal begins to lever-press and

obtains an electrical reward. If no revision is made, the rat simply uses this cached

vector to infer the next trial type on the basis of the state transition function, which

then updates the subjective opportunity cost and reward intensity to those predicted

for the next trial when the current trial is over. This differs from counting in the sense

that it is not necessary to maintain a representation of the number of trials in a cycle

and the current phase; instead, the rat only needs to maintain a representation of the

opportunity cost and reward intensity of the current trial type and their relationship

to those that can be expected when the house light flashes again.
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3.4.2 How does the rat learn this world model?

Given that when it first encounters the randomized-triad design, the rat cannot

have a world model of how leading bracket trials lead to test trials, test trials lead

to trailing bracket trials, and trailing bracket trials lead to leading bracket trials, the

question becomes: how does this world model arise throughout training?

One possibility is that rats use some variation of the hidden Markov model

(HMM) in which the trial types are latent (or “hidden”) states which present the rat

with subjective opportunity costs and reward intensities according to some underlying

emission probability. The rat’s task is to then infer the hidden state that emitted

the observable decision variables on every given trial. One problem with such an

approach is that it is computationally intensive, requiring infinite memory of the

entire sequence of subjective opportunity costs and reward intensities encountered

on each trial thus far, and requiring the rat to identify across a large set of possible

hidden state sequences that which is most likely. Furthermore, because the number

of hidden trial types, their state-transition function, and the probability that they

“emit” subjective opportunity costs and reward intensities is not known, the animal

must estimate these model parameters on-line. To our knowledge, no group has

provided a truly on-line description of how such a model could be learned.

This description of how the world model is learned must take into account

three ideas, all of which must operate simultaneously. First, the rat must estimate

how many trial types there are. If there are k latent states which present opportunity

costs and reward intensities with some emission probability, the number of underlying

latent states k needs to be estimated. Second, the rat must estimate the mean and

variance of the key decision variables that identify a given trial type, which set the

emission probabilities with which trial types produce subjective opportunity costs

and reward intensities. Finally, the rat must estimate the state-transition function,
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which sets the probability that one trial type proceeds to another. Each of these

estimates is fundamentally interconnected; without some estimate of how many trial

types there are, there is no way to know what types of subjective opportunity costs

and reward intensities they will present or their progression. Regardless of how the

learning process is modelled, it must reflect the animal’s remarkable capacity to infer

a fairly complex world model based only on the sequence of subjective opportunity

costs and reward intensities, using limited mnemonic resources.

3.4.3 Representing the world model

Representation of this world model is an equally non-trivial question. Our

results suggest that the rat maintains a representation of the subjective opportunity

cost and reward intensity, which form the basis of the compound “stimulus” that the

rat can use to infer the payoff on the next trial. In the case of the leading and trailing

bracket trial, there is a single subjective opportunity cost and a single subjective

reward intensity for which a representation is needed. However, in the case of the

test trial, the animal will encounter any of a range of opportunity costs and reward

intensities sampled pseudo-randomly from a finite set. In a strict sense, a model-based

reinforcement learning model would assign each combination of subjective reward

intensity and opportunity cost a state. The rat must then maintain a large state

space and a complex state-transition function whereby the trial state corresponding

to the leading trial leads to any of the possible trial states with equal probability, the

trailing trial state leads to the leading trial state with certainty, and all possible trial

states lead to a trailing trial with certainty.

Instead of this potentially cumbersome and computationally intensive scheme,

we propose that the rat maintains three representations and a simple state-transition

function. One trial state is the leading bracket trial, for which the rat maintains a

representation of high-intensity, low-cost stimulation with minimal variability. One
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represents the trailing bracket trial, for which the rat maintains a representation of

low-intensity, low-cost stimulation with minimal variability. Finally, one represents

the test trial, for which the rat maintains a representation of the central tendency

of subjective reward intensity and opportunity cost along with an estimate of the

variability in intensity and cost. The transition function here is a simple permutation

matrix of the three trial types represented: a leading bracket is followed by a test

trial, a test is followed by a trailing bracket trial, and a trailing is followed by a leading

bracket trial.

Some modellers (Ma et al., 2006; Pouget et al., 2000; Deneve et al., 2007) have

argued that populations of neurons represent a probability distribution over stimulus

values, and that in neurons with Poisson noise, Bayesian inference reduces to a simple

linear combination of population activities. In our procedure, the rat must identify

the upcoming trial type stimulus (s) given various cues (c), such as the subjective

opportunity cost and reward intensity of the trial the rat has just encountered. As-

suming a flat prior and a Gaussian likelihood function for the probability of the cues

given a trial type stimulus, P [c1, c2|s], the reciprocal of the variance (in other words,

the precision) of the posterior distribution of the trial type stimulus given the cues ,

P [s|c1, c2], is the sum of the precisions of each likelihood function:

1
σ2

s|c1,c2

= 1
σ2

c1|s
+ 1

σ2
c2|s

If two populations of neurons now encode the cues as firing rates r1 and r2

using gains g1 and g2 with Poisson-like noise, the sum of the population responses,

P [r1 +r2|s] will also have a Poisson-like distribution with variance proportional to the

sum of the gains. As a result, the precision of the sum of the population responses,

P [r1 + r2|s], will equal the sum of the precisions of each population P [r1|s] and

P [r2|s], implying that the sum of the population responses can indeed encode the
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posterior probability of the trial type stimulus given the sum of the response rates.

Ma et al. (2006) have established that under a wide variety of conditions, such as

non-Gaussian and non-translation invariant tuning curves, a linear combination of

various populations produces a distribution with properties identical to the posterior

distribution. With such an encoding scheme, representing the relevant statistical

properties of leading bracket, test, and trailing trials in the cortex is inherent in

how the “product of experts” (the linear combinations of multiple contributing sub-

populations) naturally represents the posterior probability of trial type given cues.

3.4.4 The first reward encounter

The findings here paint an interesting picture of the period of time before the

payoff from self-stimulation can be known with certainty. The rat appears to engage

in a leisure bout that is dependent on the payoff expected to come—short if the payoff

is exceptionally high, long if the payoff is exceptionally low, and intermediate (though

short) if the payoff is, on average, intermediate. Since the rat could not know what

the payoff from self-stimulation will be without some model of how the different trial

types progress, our results imply that, from the very start of the trial, the rat has,

either directly or indirectly, a representation of the expected payoff.

If the rat begins the trial with an expectation of the payoff from self-stimulation,

then as soon as the rat begins holding the lever, it ought to revise that payoff. On

true leading bracket trials, no revision will be necessary, as there is no variance in

the decision variables that contribute to the payoff from self-stimulation. On true

trailing bracket trials, the rat virtually never presses, so no update can be performed.

On test trials, and trailing trials following test trials resembling either bracket, the

rat ought to continuously update its estimate of the subjective opportunity cost as

it holds the lever for longer periods of time. As a result, the estimate of the payoff

ought to improve as the rat continues to lever-press: after 6s of pressing, the rat
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knows the subjective opportunity cost must be at least that of 6s, which narrows the

set of possible prices. As soon as the rat has completed the response requirement, a

reward is delivered (on non-probabilistic trials), which then makes the payoff entirely

deterministic.

Two issues are of importance here. First, the rat may want to significantly

reduce its uncertainty about the expected payoff on a given trial. This is not a concern

on leading and trailing bracket trials, where uncertainty surrounding the payoff would

be virtually zero (as suggested by the exceptionally short and low-variance PPP on

leading bracket, and typically long censored and low-variance PPP on trailing bracket

trials). On test trials, however, where the rat can expect to encounter any one of a

fairly large range of objective prices (roughly 2.5 common logarithmic units in the case

of F rats) and subjective reward intensities (roughly 1 common logarithmic unit), the

rat could indeed be driven to reduce this uncertainty so that it may better exploit the

alternative providing the greatest net return on its time investment. If there is such

a principle at work, the usually competing interests of exploration—seeking out the

payoffs from the different sources of reward that may be available—and exploitation—

pursuing the goal that will provide the greatest payoff—are aligned. On bracket trials,

where exploration can be thought of as negligible, the rat clearly exploits the most

attractive alternative: BSR in the case of leading, and “other” activities in the case

of trailing bracket trials. On test trials before the payoff is known with any certainty,

exploration is synonymous with pursuing the goal of acquiring BSRs, or exploitation.

This principle may explain why PPPs on test trials are much closer in duration to

those emitted on leading bracket trials than simply the halfway point between leading

and trailing bracket trials.

Second, the rat may, at least in principle, have a virtually error-free represen-

tation of the payoff for the trial as soon as it has earned a reward. If this is true,

the rat does not need to update its estimate of the payoff in the slow, incremental
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manner that is described in model-free reinforcement learning models. It may—as

we shall demonstrate in Chapter 4—have yet another world model of how rewards

progress within a single trial: from the time an inter-trial interval ends to the time

a new inter-trial interval begins, the payoff from self-stimulation will be constant.

With such a model, the rat need not slowly update the values of lever-pressing states

leading up to reward delivery in a model-free reinforcement-learning process. The

rat only needs to keep track of the payoff from self-stimulation it can transparently

obtain from the subjective opportunity cost and reward intensity of the first reward it

receives in a trial. As a result, the period of time in the trial before the delivery of the

first reward is, in a sense, distinct from the period of time in the trial following the

first reward delivery. It is to this question that we shall return in the next chapter.

3.4.5 Final remarks

Our results pose certain constraints on the neural machinery that underlies

action selection. First, we would expect to find neurons involved in the representation

of not only the key decision variables controlling performance, such as subjective

opportunity cost and reward intensity, but also in the representation of trial type.

Second, the populations of neurons involved in representing trial type would need to

encode trial type as particular combinations of key decision variables. Finally, there

must exist a mechanism by which the previous trial type provides a signal for the

trial type to come, and that signal may require computation of the expected payoff

from lever-pressing in order to choose a PPP of appropriate duration. In essence, the

rat needs machinery that can implement the world model by which they appear to

base their decision to begin pressing following a cued inter-trial interval.

It has been argued (McDannald et al., 2012) that neurons in orbito-frontal

cortex participate in model-based learning mechanisms. If so, a rat devoid of its

orbito-frontal cortex would presumably be incapable of forming this world model,
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and would thus produce PPPs that do not systematically vary with the identity of

the upcoming trial in the randomized-triad design. However, even if this were the

case, there are multiple means by which to interfere with the apparently model-based

performance we describe here. Neurons of the orbito-frontal cortex may indeed be

involved in implementing the state-transition function or representing the various

trial states. Additionally, they may be involved in representing the payoff expected

on the trial (FitzGerald et al., 2009), or they may implement the mechanism by

which the key decision variables are updated throughout the trial (Noonan et al.,

2010). Lesions to rat orbito-frontal cortex would not provide sufficient evidence that

the region is involved in the implementation of model-based learning in this paradigm,

since interference with any of these functions would result in altered PPP durations.

Similarly, ventral striatum has been implicated in a wide range of action-selection

tasks (reviewed in van der Meer and Redish, 2011; McDannald et al., 2011; Yacubian

et al., 2007; Prévost et al., 2010; Beyene et al., 2010), but it would be impossible to

tell, on the basis of lesion studies alone, what its role would be in the model-based

decision-making apparent in selecting PPP durations.

Electrophysiological recordings may provide complementary evidence about

what role, if any, the orbito-frontal cortex and ventral striatum play in selecting a

PPP duration. Neural correlates of the subjective opportunity cost to come, regard-

less of subjective reward intensity, or of the subjective reward intensity, regardless of

subjective opportunity cost, active before the rat has had a chance to update these

values, would provide evidence of how and where the expected trial parameters are

encoded. Furthermore, if activity in these neurons changes as a function of our pre-

sumed updating process—that is, those encoding subjective opportunity cost changed

in activity with ongoing lever-pressing and those encoding subjective reward intensity

changed in activity with ongoing reward delivery—then the same populations that

encode the most recent estimates would provide the appropriate basis for inferring
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the next trial type, as predicted by the model laid out in figure 3.1. Importantly,

if there are populations of neurons in charge of implementing the rule as we have

described it, their activity should accurately anticipate the subjective opportunity

cost and reward intensity that would be predicted to follow the previous trial during

the inter-trial interval.

New opto-genetic methods (Boyden et al., 2005; Han, 2012) have emerged

that permit causal manipulations to be made at time scales as fine as discussed here.

Neurons involved in the formation of a world model of the session’s triad structure

would be prevented from doing so when they are specifically silenced in the training

phase of the experiment. In contrast, if one were to silence the neurons involved in

switching between maps of trial types (that is, those that implement the syllogism),

the rat would be expected to emit a PPP that is more typical of the last trial’s post-

reinforcement pause than the new trial type. In other words, if the rat is prevented

from updating its world model following an unambiguous test trial, the first pause

it makes when the inter-trial interval ends and a trailing bracket trial begins will be

typical of the first pause it takes following lever extension on the previous trial rather

than of the first pause it takes at the start of a trailing bracket trial.

Irrespective of which structures are involved in the model-based elements of the

randomized-triad design and how they may contribute, our results provide evidence

that well-trained rats behave as though they have developed a non-trivial model of

how trials in the triad proceed. In light of these findings, it is quite possible that under

slightly different conditions, when there more than 3 different trial types, rats are

capable of inferring at least the payoff for the trial to come. It is quite possible, indeed,

that when there are many trial types in simple ascending-pattern (as is the case on

progressive ratio schedules of reinforcement) or descending-pattern (as is common in

the curve-shift paradigm) sequences, rats easily learn a world model in which there

are only two rules. If the last trial delivered rewards at a sufficiently high subjective
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opportunity cost or with sufficiently negligible intensity, the next trial will deliver

rewards appropriately minimal opportunity cost or maximal intensity. If not, the

next trial will deliver rewards at a slightly greater cost or lower intensity. In both this

systematic-sequence and the randomized-triads designs, the state-transition function

can be thought of as a simple permutation matrix for which the trial encountered at

time t is a deterministic function of the trial encountered at time t−1. Assuming rats

have a world model during these systematic sequences that closely resembles (at least

in spirit) the world model depicted in figure 3.1, our model makes two empirically-

testable predictions. First, the subjective opportunity cost and reward intensity trials

in the sequence are cached and updated only when the rat lever-presses. When the rat

does not press, it does not update these values, and they remain unchanged from the

cached value predicted from the state transition function. The sequence of trials can

still progress according to the deterministic world model in well-trained rats, thereby

allowing them to predict with reasonable accuracy when the sequence will return to

its highest-payoff value even when they have not pressed in multiple trials. Second,

assuming a single trial look-back rule for the randomized-triads design, inserting a

probe trial with particularly low payoff anywhere in the sequence will “trick” the

rat into believing the next trial will have a high payoff, regardless of their current

position in the repeating sequence. It remains to be seen whether the principle of a

world-model with a single trial look-back rule operates under a wider variety of testing

procedures, or whether it is an artefact of the randomized-triads design. Nonetheless,

we believe the principles at work can be generalized to multiple contexts. Further

studies are needed to establish the conditions under which rats develop a world model

such as that observed here. For example, rigorous simulation studies of our proposed

world model would have to be conducted to deeply understand the implications,

sufficiency, and predictions of our account.

In conclusion, our results provide evidence of the existence of a trial-type
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based world model in the randomized-triad design, as well as a potential heuristic

by which animals would implement this world model. The apparent behaviourally-

derived rules used to implement this world model provide some constraints on how

the brain represents its various pieces. We propose that the key decision variables in

effect on a particular trial are inferred on the basis of a single trial look-back rule,

and that these key decision variables are updated throughout the trial if necessary, a

process which may or may not involve model-free reinforcement learning systems.

It is clear that the well-trained rat begins a trial with an expectation of what

the payoff will be in the randomized-triads experimental procedure, and at least

during test trials, will have to revise its estimate as it acquires more information

about the subjective opportunity cost and reward intensity. Although the rat may

have a good estimate of the type of trial it can reasonably expect based on the trial

that just elapsed, there will be variability in the payoff that is actually delivered on

test trials. The rat can update its estimate of the subjective opportunity cost of the

reward as it holds down the lever; as it harvests rewards, it can similarly update its

estimate of the subjective reward intensity. As the payoff is the scalar combination

of reward intensity, opportunity cost, probability, delay, and effort cost, the payoff

can also be revised as the rat obtains more information about the determinants of

decision-making. We shall now turn to the rapidity and time scale over which this

update occurs in the next chapter.
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Chapter 4

The rat’s world model of trial structure

4.1 Introduction

Matching refers to the general observation that the relative rate of responding

for one option compared to its alternatives is equal to the relative rate at which

that alternative provides reinforcement (Herrnstein, 1961). On concurrent variable-

interval schedules, for example, pigeons will typically allocate their pecks to a given

pecking key in proportion to the relative rate at which that manipulandum delivers

grain pellets. This is a near-optimal strategy in the sense that other strategies will

not provide substantially higher overall rates of reinforcement (see Heyman and Luce,

1979, for a description of the true maximizing strategy); it is nearly optimal because

the variable-interval holds the reward for the animal indefinitely as soon as it is

armed. If one pecking key provides rewards at an average rate of 1 per second, and

the alternative pecking key provides rewards at an average rate of 1 per 3 seconds, on

average, after pecking at the first key for 3 seconds, the second key will be armed and

ready to deliver a reward. As the probability that a reward will be waiting for the

animal increases as it pursues other goals, the optimal strategy is to alternate between

the two experimentally available activities, allocating one’s time to each goal in direct

relation to the rate at which that goal delivers rewards. In other words, the animal

ought to match its responding to the relative rate of reinforcement.

The process by which this matching behaviour occurs has long been believed

to require a feed-back mechanism. Reward receipt, the consequence of instrumental

responding in these procedures, would feed back onto its perceived cause, thereby

strengthening the association between response and outcome. Thorndike (1898) was

first to describe this Law of Effect, whereby instrumental conditioning occurred be-
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cause of a gradual strengthening of the association between the experimenter-desired

response and a subject-desired stimulus. This principle was further formalized by Sut-

ton and Barto (1981), using the temporal-difference reward prediction error (RPE) as

the critical signal driving instrumental learning. The RPE represents the discrepancy

between the total reward at time t + 1 that is expected at time t and the actual

reward delivered at time t + 1; a large (positive or negative) RPE results from a large

discrepancy, which consequently adjusts the total reward expected at that time in

proportion to the magnitude of the RPE. With sufficient training, the RPE disap-

pears, as the expected total reward begins to approach the true total reward. This

computational framework has been useful in designing intelligent machines and has

been used to describe the activity of phasic dopamine activity in the ventral tegmental

area (Montague et al., 1996).

Purely model-free descriptions of instrumental responding rely heavily on this

temporal-difference reinforcement learning model. Performance is the result of im-

plementing a behavioural policy that uses the total future expected reward at every

time instant, whereby the value of taking a particular action in a particular trial state

is the maximum temporally-discounted reward that can be expected by taking that

action in that trial state and assuming one pursues an optimal strategy from there

on. The total future expected reward of any given action-trial state pair is gradu-

ally updated as the animal engages with its environment; when the RPE associated

with the total future expected reward of action-trial state pairs is nil, the animal is

said to have “learned” the task. In this description of the task of a rat responding

for electrical brain stimulation in the randomized-triads design, the rat begins a new

trial expecting the value of lever-down states to be the same as those it was expect-

ing at the end of the last trial. When those expectations are violated because the

price-frequency pair in effect have changed, a purely model-free description predicts

that the set of expectations—and the behavioural policy they collectively set—will
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change gradually as the rat obtains more and more rewards.

In contrast, model-based descriptions imply a sort of feed-forward mechanism.

Just as the rat has a world-model of how trials within a triad progress throughout the

session (Chapter 3), the rat may have a world-model of how reward deliveries progress

throughout the trial. On this view, an internal representation of the constancy of the

price and pulse frequency from the time the house lights cease to flash to the time they

begin flashing again would not require gradual changes to the expected total future

rewards within a trial. Instead, the rat would know that conditions will be stable,

and will be able to set these expectations in a single, step-wise change following a

sufficient number of exemplars, as soon as it has information about the subjective

opportunity cost and reward intensity of the electrical stimulation on offer. As a

result, the rat’s behavioural policy, both in terms of the duration of the pause it

decides to make following each reward delivery and in terms of the overall proportion

of time it decides to allocate to harvesting those rewards, will cease to change as soon

as the payoff from self-stimulation is known.

The idea of a feed-forward model is not new. Mark and Gallistel (1994) found

that rats adjusted their performance quickly (within one or two reward deliveries)

to signalled changes in the rate of reinforcement on concurrent-interval schedules of

reinforcement. Mazur (1995b) found that pigeons adjusted much more slowly, on the

order of tens of minutes, to an unsignalled change, but the time scale over which

the rates of reinforcement on each pecking key were stable was also on the order

of many days. Gallistel et al. (2001) resolved this apparent discrepancy by showing

that rats adjusted to unsignalled changes as quickly as would be expected by an ideal

detector. Rats took a long time to adjust to an unsignalled change in average rates on

a concurrent variable-interval schedule delivering moderately high pulse frequencies

when the average rate of reinforcement on each of the two levers was stable for long

periods of time. When the average rates were only stable over short periods of time,
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rats adjusted to unsignalled changes within one or two reward deliveries. This implies

that rats adjust the duration of time spent working for an alternative as soon as a

change in the rate at which the alternative delivers rewards can be detected.

The following chapter provides evidence that in the case of rats working for

electrical brain stimulation, for which the reward is delivered after the lever has been

held for a fixed cumulative period of time and whose subjective opportunity cost

and reward intensity is constant throughout a signalled trial, rats behave as though

there has been a single, step-like change to their behavioural policy. Furthermore,

we provide evidence that, consistent with the ideal-observer description, this step-like

change predominantly occurs as soon as theoretically possible: following delivery of

the first reward.

4.1.1 A world model of the reward encounter

The defining feature of a trial in the curve-shift (Miliaressis et al., 1986) method

is that the response requirement and reward magnitude are fixed. The trials are

usually cued in some way, and the animal may harvest as many rewards as trial

and schedule constraints allow in exchange for fulfilling the response requirement.

Although we have previously shown in Chapter 3 that the rat readily forms a world

model of how the subjective opportunity cost and reward intensity change from trial

to trial, the rat may have an additional model of how the subjective opportunity

cost and reward intensity remain constant throughout a single trial. We define the

reward encounter as the period within a trial, from the time the lever extends into

the operant chamber to the time the lever retracts from successful completion of the

response requirement or the end of the trial. On trials when the payoff—a scalar

combination of the key decision variables—is high, there may be many such reward

encounters, as the rat earns many rewards. On trials when the payoff is low, there

may be very few reward encounters, as the rat earns very few rewards. Just as the rat
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has formed a representation of how trials lead to each other in a predictable way, as

demonstrated in Chapter 3, the rat may also form a representation of how successive

reward encounters are predictably identical with respect to the subjective opportunity

cost, reward intensity, and probability of reinforcement.

We describe this world model—one regarding the stability of key determinants

of decision within the trial—as a world model of the reward encounter. Without such

a world model, the rat would need to slowly extract and update an estimate of the

payoff. In the standard model-free reinforcement learning approach, the rat updates

its estimate of the total net reward from lever-pressing according to a delta rule

(Dayan and Abbott, 2001) that specifies the degree to which the current total net

reward differs from the current estimate.

In the randomized-triads design, the cumulative amount of time the lever

must be held in order to harvest a reward (the price) and the pulse frequency of the

stimulation in effect during a test trial are drawn pseudo-randomly from a finite set

of price-frequency pairs. It has already been established, in Chapter 3, that the rat

behaves as if it had an expectation regarding the subjective opportunity cost and

subjective reward intensity for the trial to come. This expectation, on test trials,

is usually different from the subjective opportunity cost and reward intensity of the

BSR to come because of the random sampling method in force. A rat using purely

model-free reinforcement learning mechanisms would have to gradually update its

estimate of the subjective opportunity cost and reward intensity associated with self-

stimulation over multiple reward encounters before it obtained an accurate estimate

of the payoff it can expect from self-stimulation.

In contrast, a rat using a model that states that the subjective opportunity

cost and intensity of the reward is fixed for the duration of a trial would only need

a small number of exemplars—possibly a single reward delivery—before it updated

its estimate of the payoff from self-stimulation in a single step. Since there is no
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variability in subjective opportunity cost or reward intensity throughout the trial,

the rat can simply “fill-in” the appropriate value for the payoff and immediately

implement a single policy.

It is clear that at the onset of any test trial in the randomized-triads design, the

rat cannot know how long the lever will need to be depressed in order for the reward

to be delivered or how strong the stimulation will be when the reward is delivered.

As established in Chapter 3, the duration of the pause that begins the trial (the

post-priming pause, PPP) is, in part, a function of the payoff from self-stimulation

that can be expected for that trial: shortest on leading bracket trials, longer on

test trials, and longest (usually censored) on trailing bracket trials. Given that the

payoff from self-stimulation on test trials is variable, we focus here on the duration of

pauses within this trial type. On leading and trailing bracket trials, the rat need not

update its estimate of the payoff. The rat begins the test trial with an estimate of

the payoff that will often be inaccurate, and produces a PPP that partly reflects the

rat’s estimate of the average payoff to come. Following delivery of the first reward of

the test trial, the payoff from self-stimulation will usually require revision. Once the

blackout delay, a period of time when the lever is retracted from the chamber and the

reward is delivered, elapses, the rat takes a (possibly zero-duration) pause. As this

pause follows reinforcement, we call it the post-reinforcement pause (PRP).

Any gradient descent scheme, such as model-free reinforcement learning, will

require a gradual change in the PRP. In its classical formulation (Montague et al.,

1996), model-free operant conditioning is similar to classical conditioning: the ma-

nipulandum represents a stimulus for which an action (like lever-pressing) will lead

to a total discounted net reward. At time step t, the value of the lever-down state

(V̂t) is the reward delivered at time step t (Rt) and the value of the next time step

(V̂t+1) discounted by a factor γ: V̂t = Rt + γV̂t+1. When a reward is delivered that

violates expectation, there is a reward prediction error (δt), formalized as the dif-
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ference between the current value and the rewards predicted to come. The current

estimate of the value of a state at a point in time is updated in proportion to the

magnitude of this reward prediction error: when δt is a large positive number, the

animal has obtained a much larger reward at time t than expected, and when δt is a

large negative number, the animal has obtained a much lower reward at time t than

expected.

The crux of model-free reinforcement learning schemes is in this reward pre-

diction error signal. Over multiple reward deliveries, the value of a lever-down state

is modified according to an update rule whereby the old value is increased (when δt

is positive) or decreased (when δt is negative) by a factor α:

V̂tnew ← V̂told
+ αδt

where δt = Rt + γV̂t+1old
− V̂told

. For example, suppose a reward R delivered at t = 10

time steps is 1 arbitrary unit, when no reward was expected (V̂t=20 = 0). The first

time such a reward is delivered, it induces a positive reward prediction error, since

δt=10 = Rt=10 + γV̂t=11 − V̂t=10 = 20 + 0 − 0 = 1,

so the value of the lever-down state becomes

V̂t=10 ← V̂t=10 + αδt=10 = 0 + α × 1 = α.

The next time the manipulandum extends into the chamber, all values up to 9 steps

have not changed, but the value of a lever press at 9 time steps violates expectation,

since in this second time around,

δt=9 = Rt=9 + γV̂t=10 − V̂t=9 = 0 + γα − 0 = γα.
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The third time the manipulandum extends into the chamber, the value of a lever

press at 8 time steps violates expectation, and is similarly updated. Every time the

manipulandum extends into the chamber, the value of lever-pressing is updated for

one time step earlier, until the first time point at which the reward can be predicted.

In the classical conditioning case, the conditional stimulus that predicts reward is

presented at random intervals, and thus the first time a reward can be predicted is

the onset of this conditional stimulus. Operant conditioning accounts of performance

presume that the conditional stimulus is the manipulandum, and the value of action-

state pairs is learned as in the classical conditioning case.

Even when the learning rate (α) is one—that is, the value of lever-pressing

is updated immediately to its new value—gradient descent models like model-free

reinforcement learning imply that performance will change gradually. In the above

example, the first time a surprising reward of 1 arbitrary unit is delivered at t = 10

time steps,

δt=10 = 1 + 0 − 0 = 1, and

V̂t=10 ← 0 + 1 = 1.

The next time the manipulandum extends into the chamber, although Rt +γV̂t+1 − V̂t

does not change from time steps 1 through 8, at time step 9,

δt=9 = 0 + γ × 1 = γ, and

V̂t=9 ← 0 + γ = γ.

Thus, even when the value of a state is updated to the last reward delivered, this

value must back-propagate, one time step at a time, to the earliest time a reward

can be predicted: presentation of the conditional stimulus, in the case of classical

conditioning, or extension of the manipulandum into the operant chamber, in the
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case of operant conditioning.

From this description, it is clear that changes in performance must be grad-

ual when feed-back mechanisms are at work. The back-propagation model works in

the classical conditioning and simple, punctate lever-pressing situations because the

stimulus onset is itself unpredictable. On repeated stimulus (or manipulandum) pre-

sentations, the discrepancy back-propagates to the earliest time the reward can be

predicted. Indeed, for the animal to solve the assignment of credit problem—that is,

identifying the state-action pair that led to reward—classical model-free formulations

(Montague et al., 1996) require back-propagation, which gradually updates the value

of all state-action pairs that led to a temporally distant reward. Until this back-

propagation is complete, the rat’s decision to press must be based on a mechanism

that updates the value of a lever-press one time step at a time. Once the value of all

state-action pairs no longer needs an update—that is, the back-propagation mech-

anism has collided to the first possible time step at which reward can be predicted

over possibly many reward deliveries—the rat can pursue an action selection policy

based on a stable estimate of the discounted total net reward to come.

However, if the rat has a world model of the reward encounter, the rat will

not need to update its estimate of the payoff from self-stimulation gradually. After

it has obtained a sufficiently large number of exemplars, the payoff can be updated

as a step function, producing a step-like change in both the duration of the PRP and

the proportion of time it allocates to self-stimulation activities. Whereas a rat using

model-free reinforcement learning principles can only represent the value of lever-

pressing, a rat using model-based reinforcement learning principles also represents

how states are interrelated. In the case of a world model of trial structure, the rat

maintains a representation of the stability of the price and reward intensity in effect

on a trial: every time the lever extends into the operant chamber, from the time

the house lights flash until they flash again, the price and intensity will be constant.
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As the function that maps the transition of one trial state (from lever-extension to

lever-retraction) to the next is an identity function, the rat can effectively update the

payoff from lever-pressing in a single step. Without such a state-transition function,

the rat must gradually update the value of lever-pressing on every trial.

To test which of these two accounts best described the behaviour of rats, we

compared two models of the evolution of PPPs and PRPs throughout the test trial.

One model, the gradual change model, implies that pauses (both PPP and PRP)

are sampled from a distribution of first-pauses whose mean changes smoothly over

multiple reward encounters and whose mean remains stable following this suitably

long transition. The second, the step model, implies that pauses are sampled from

one distribution of first-pauses for the first n reward encounters, and sampled from a

single distribution of pauses for subsequent reward encounters.

We further tested the hypothesis that the rat’s estimate of payoff from self-

stimulation is updated incrementally by considering the total proportion of time al-

located to self-stimulation within each reward encounter. If the estimate changed

gradually, as the result of a hill-climbing mechanism, the proportion of time allo-

cated to self-stimulation would gradually reach a steady point. If the estimate had

changed abruptly, the proportion of time allocated to self-stimulation would also

change abruptly. By looking at the first derivative of time allocation during reward

encounters with respect to the number of rewards earned, it is possible to determine

whether well-trained rats behave according to a purely model-free mechanism (with

consistent, gradual changes that slowly reach a derivative of 0) or a partly model-

based mechanism (with an abrupt change followed by a derivative of 0). If the rat

behaves as though the payoff is updated by small iterative changes, this analysis will

also show the time scale over which learning the payoff from self-stimulation for a

given trial occurs. If the rat behaves as though the payoff is updated step-wise, this

analysis will also show how many exemplars are necessary before the payoff estimate
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is updated.

4.1.2 Work bouts

Prior to the delivery of the first reward, there is no reason to believe per-

formance is completely dictated by the payoff from self-stimulation. Indeed, post-

priming pauses on test trials (Chapter 3) are often closer to those on leading bracket

trials than halfway between leading and trailing bracket trials. It is possible, then,

that something in addition to the expected payoff drives performance prior to the

trial’s stable period. Our hypothesis for the period of time prior to the delivery of the

first reward is that both expected payoff and the desire to uncover the payoff drive

time allocation in this period of time to a high value. In other words, when the rat is

still unsure of the payoff it can expect from self-stimulation, the goal of exploitation

(taking advantage of the source of reward with the greatest payoff) is aligned with

the goal of exploration (identifying the payoffs from all possible sources).

To verify this, we determined the number of corrected work bouts, which

include holds and all releases lasting less than 1s that return to a hold, on all trials

of all payoffs in the period of time before the payoff is known. We hypothesize that

in this period of time, the rat will tend to earn its first reward in a single, continuous

work bout. A similar analysis was conducted on the number of corrected work bouts

emitted from the time the first reward is delivered onward. When the price is low, the

animal will necessarily earn its rewards by engaging in a single, continuous work bout,

regardless of whether a reward has been delivered during the trial. At higher prices,

the rat may partition its time among work and true leisure bouts. If the period of

time prior to the first reward delivery is in some sense “special,” we hypothesize that

the price at which the rat begins to engage in multiple work bouts will be higher for

these reward encounters than on subsequent reward encounters, after the rat knows

(in principle) the subjective opportunity cost and reward intensity of the stimulation
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it is to receive.

4.2 Methods

4.2.1 Behavioural protocol

The rats were the same as in Chapter 3. The data reported here were collected

during the test trial type in the randomized-triads design already described. Test

trials were preceded by leading bracket trials, during which the pulse frequency was as

high as the animal would tolerate without interfering effects, such as forced movements

and vocalizations, and the price was 1 second. Test trials were followed by trailing

bracket trials, during which the pulse frequency was too low to support responding

(10Hz) and the price was 1 second. Trials were cued by a 10 second inter-trial interval;

2 seconds before the end of the interval, a train of priming stimulation of pulse

frequency equal to that delivered on leading bracket trials was delivered. The price,

pulse frequency, and probability of reinforcement in effect for the test trial was drawn

pseudo-randomly from a list, as has been described before.

Following successful completion of the work requirement—the lever was held

for a cumulative amount of time defined as the price—the lever retracted, the trial

clock stopped, and a BSR was delivered. Two seconds after lever retraction, it was

extended again into the cage and the trial clock re-started. This period is defined as

the blackout delay. The duration of the trial, without blackout delays, was set to the

greater of 25 seconds or 25 times the price, allowing the rat to harvest a maximum

of 25 rewards if it had been holding the lever continuously for the entire trial. Often,

the rat obtained many fewer than 25 rewards, because it did not continuously hold

the lever for the entire trial.

In the case of rats MA5, DE1, DE3, DE7, PD8, DE14, DE15, DE19 and DE20,

probabilistic test trials were drawn pseudo-randomly along with test trials for which
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the probability of obtaining a reward following successful completion of the work re-

quirement was 1. Test trials for which the probability of reinforcement was less than

1 have been excluded from the present analysis for simplicity. For all rats but MA5,

the active operant on probabilistic trials was mapped to a different lever, provid-

ing additional prior information about the payoff on the trial. Furthermore, reward

encounters in the probabilistic case do not cleanly map onto identical exemplars of

the payoff to be expected from lever-pressing. To simplify performance comparisons

across rats, we focus here on the case that is universal to them all: trials on which

the probability of reinforcement is 1, but whose payoff is still uncertain because it

may take on any of a list of values.

4.2.2 Statistical analysis

When using a model-free reinforcement learning scheme, a reward prediction

error will appear at earlier and earlier time steps following each reward encounter,

until the prediction error reaches the first time step at which a reward can be pre-

dicted. In the period of time when this reward prediction error is back-propagating,

an animal using model-free reinforcement learning mechanisms will base its action

selection policy on state-action values that change from reward encounter to reward

encounter. As soon as the reward prediction error reaches the first point at which

a reward can be predicted, and the values of each state-action pair converge, the

rat’s action selection policy will no longer change from reward encounter to reward

encounter.

When using a feed-forward scheme, the rat can simply “fill-in” a payoff, rapidly

updating the value of state-action pairs as soon as the payoff can be known. In the

period of time before the current trial’s payoff can be filled in, an animal using model-

based reinforcement learning mechanisms will base its action selection policy on state-

action values that have not yet been updated; as soon as the payoff is known, there
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is no need to slowly update the value of state-action pairs. The rat simply revises its

action selection policy according to the new, rapidly-updated payoff.

To determine which of the two descriptions of the rat’s performance throughout

the trial best captured the behavioural data, we compared two models of the durations

of post-priming and post-reinforcement pauses following each lever extension into the

cage during test trials. In one of them, pauses are modelled as samples drawn from a

distribution with an unstable mean, that is, with a mean that begins at some value

for the first reward encounter, ends at some value for the last m reward encounters,

and transitions smoothly between the two for at least 1 reward encounter. In the

other, pauses are modelled as samples drawn from two distributions, that is, from

one with a particular mean for the first n reward encounters and one with a different

mean for the subsequent reward encounters n + 1 to the end.

In addition, we examined the proportion of time allocated to self-stimulation

during each reward encounter, from the time the lever extended into the cage to the

time it was retracted, either because the response requirement had been fulfilled or

because the trial had come to an end. A purely model-free account of performance

throughout the trial would predict a gradual change in time allocation across reward

encounters until the rat’s internal estimate matched the putative “true” value. A

partly model-based account would predict no change until a sufficient number of

reward exemplars had been delivered, followed by an abrupt change when the update

was made, followed by no change.

4.2.2.1 Modelling gradual and step-like changes in PPP and PRP

To determine which of the two descriptions better accounted for performance,

we fit two models of the post-priming and post-reinforcement pauses by maximum

likelihood. Figure 4.1 provides an example of the two models, gradual-change (dotted

red line) and step-change (solid black line) models. The figure shows the value of the
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Figure 4.1. Comparison of gradual and step changes in distributional parameters
across successive reward encounters. Parameters of the distributions generating post-
priming (following 0 rewards) and post-reinforcement pauses (following rewards 1
through n) can either change gradually (red dashed line) or abruptly (solid black
line). Here, Θ subsumes all parameters of the stochastic process that generates the
pause, which in the case of a gamma distribution, would be the mean and standard de-
viation. Assuming the post-priming pause is drawn from a distribution parametrized
with Θ1 = {μ1, σ1}, and the last post-reinforcement pause is drawn from a different
distribution parametrized by Θ2 = {μ2, σ2}, we have modelled the non-stationarity in
two different ways: either the parameters change gradually over m rewards, or there
is a step change following m rewards. The initial segment refers to the period of time
before the parameters of the process that produces post-reinforcement pauses reach
their final Θ2 values.
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parameters of the distribution of post-priming and post-reinforcement pauses as a

function of the number of rewards that have been earned in the trial. The ordinate

is a place-holder for the parameters of the distribution of pauses, which in the case

we have modelled below, subsumes the mean and standard deviation (in other words,

Θ = {μ, σ}).

The dashed red line provides an example of the first model, a gradual-change

model. According to the gradual-change model, the first pause (the post-priming

pause) is drawn from a gamma distribution with mean μ1 and standard deviation

σ1 (i.e., Θ begins at some initial value). Pauses m (m = 6 in the figure, after 5

rewards have been earned) to the end of the trial are drawn from a separate gamma

distribution with mean μ2 and standard deviation σ2 (i.e., Θ reaches a final value).

Pauses in between, from 2 to m−1 (in the figure, m−1 = 5, after 4 rewards have been

earned), are drawn from a gamma distribution whose mean and standard deviation

are straight-line functions of the reward encounter, starting at μ1 for the pause on

reward encounter 1 and ending at μ2 for the pause on reward encounter m (i.e., Θ

gradually changes from its initial to final value).

Pauses censored by the end of the trial were excluded from the analysis; if the

rat had only ever collected one reward, we considered this to be infinite evidence in

favour of a step-change model, since there was no way a gradual change model could

account for this pattern of behaviour. The very infrequent case of a post-priming

pause censored by the end of the trial, indicating that the rat simply never bothered

to obtain a sample of the payoff, were excluded entirely from the analysis, as it would

be impossible to arbitrate between the two models which was better at explaining the

data. In total, only 459 trials (of 16007, or under 2.8%) across all animals, conditions,

and price-frequency pairs were excluded.

The solid black line of figure 4.1 provides an example of the second model, the

step-change model. According to this model, the first n pauses (n = 5 in the figure,

- 161 -



after 4 rewards have been earned) are drawn from a gamma distribution with mean

μ1 and standard deviation σ1 (in other words, Θ begins at an initial value). Pauses

n + 1 (in the figure, n + 1 = 6, starting on 5 rewards earned) to the end of the trial

are drawn from a separate gamma distribution with mean μ2 and standard deviation

σ2 (in other words, Θ reaches a final value). There are no transitional pauses.

In the case of a gradual change, we define an initial segment, extending from

the PRP following reward 1 to the PRP following reward n. Throughout this ini-

tial segment, the parameters of the distribution from which PRPs are sampled varies

smoothly as a straight-line function from the parameters that describe the distribu-

tion of PPPs to those that describe the stable segment that extends from the PRP

following reward n + 1 to that following the very last reward. For the step-change

model, we can define an initial segment (from the post-priming pause, following re-

ward 0, to the post-reinforcement pause following reward n), and a stable segment

(from reward encounter n + 1 to the last reward encounter).

In the case of the step-change model, for each initial segment of length S,

from a length of one (that is, only the PPP is included in the initial segment) to

two less than the maximum number of rewards delivered for trials on which each

price-frequency pair was in effect, we identified the maximum-likelihood estimates

of the parameters of a gamma distribution from which the pauses within the initial

segment were drawn as well as the maximum-likelihood estimates of the parameters of

a gamma distribution from which all pauses following the initial segment were drawn.

These estimates provide the necessary information for calculating the probability of

observing all pauses in the trial, assuming a step-like change, for an initial segment

of length S.

In the case of the gradual-change model, for each initial segment of duration

S + 1, we identified the maximum-likelihood estimates of the parameters of a gamma

distribution from which all pauses within the stable segment were drawn, as well as
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the maximum-likelihood estimates of the parameters of a gamma distribution from

which all post-priming pauses were drawn. These estimates provide the necessary in-

formation for calculating the probability of observing all pauses in the trial, assuming

a gradual change, for a transition of duration S + 1. We then noted, for each initial

step-change segment of duration S and initial gradual-change segment of duration

S +1, the probability of the data assuming a step-like change (in the case of an initial

segment of duration S), as well as the probability of the data assuming a gradual

change (in the case of a transition segment of duration S + 1).

To compare the two models—gradual or step-like—we marginalized the likeli-

hood of each model with respect to initial segment lengths and transition durations.

We summed the probability of the data, assuming a step-like change, across initial

segments of all lengths S, and the probability of the data, assuming a gradual change,

across transition segments of all durations S +1. As a result, the first calculation pro-

vides the overall probability of the data, assuming a step-like change, when the initial

segment contains 1, 2, or N reward encounters. The second calculation provides the

overall probability of the data, assuming a gradual change, when the transition takes

1, 2, or N − 1 reward encounters to occur.

The ratio of the two probabilities provides the Bayes factor for one model

compared to the other. The ratio of the probability of the data, given a step-change

model, to the probability of the data, given a gradual-change model, for example, is

the odds in favour of a step-change model. If this number is large (or, alternately,

its logarithm is positive), then regardless of the duration of the initial segment of

either model, a step-change model better accounts for the data than any gradual-

change model. If this number is vanishingly small (or, alternately, its logarithm is

negative), then regardless of the durations of the initial segment of either model, a

gradual-change model better accounts for the data than any step-change model.

Following calculation of the Bayes Factor for each price-frequency pair in each
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non-probabilistic condition for each rat, we extracted the value of S (if the common

logarithm of the Bayes Factor was positive) or S + 1 (if the common logarithm of the

Bayes Factor was negative) for which the data were maximally likely. These values

represent the maximum-likelihood estimate of the number of rewards the rat earned

strictly before pauses could be said to be sampled from a single gamma distribution;

this number therefore indicates the maximum-likelihood estimate of how many reward

deliveries were necessary before behaviour could be said to have stabilized.

4.2.2.2 Time allocation difference

To describe the evolution of pauses in the trial, we computed the discrete

equivalent of the derivative of the proportion of time allocated to self-stimulation in

each reward encounter. For each reward encounter, defined as the period of time

from lever extension (the end of the inter-trial interval or blackout delay) to lever

retraction (the start of a new inter-trial interval or blackout delay), we summed the

total time the lever was held with the total time the lever had been released for less

than one second to obtain an estimate of the amount of time spent working for the

BSR during the reward encounter. This work time was divided by the total duration

of the reward encounter, including the total time the lever was depressed and the

total time the lever was released, to obtain an estimate of time allocation for the

reward encounter.

The time allocation difference was then calculated as the difference between

time allocation on reward encounter n and time allocation on reward encounter n−1,

the immediately preceding reward encounter, from the second reward encounter on-

wards. According to a model-free description of how the rats update the subjective

opportunity cost and reward intensity in effect on a trial, this difference should grad-

ually reach 0 over multiple reward encounters. If the rat has an estimate of the payoff

based on the value of these key decision variables at the start of the trial, purely
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model-free mechanisms would update this estimate incrementally as more rewards

are earned. For example, time allocation might be relatively high on the first reward

encounter from overestimating the payoff. When the first reward is earned, the pay-

off may be revised downward, producing a slightly lower time allocation. After n

rewards, the rat’s payoff estimate would reach the true payoff, and time allocation on

all subsequent reward encounters would be the same. Taking the difference of time

allocation with respect to reward encounter, a negative difference would be seen for

the first n+1 reward encounters, reaching a value of 0 when the estimate of payoff

became accurate.

In contrast, according to a model-based description, this difference will not

be a smooth, continuous function. For the first n (where n could be as small as 1)

reward encounters, time allocation will be constant, yielding a difference of 0. As

soon as the payoff has been updated, time allocation will change, producing a large

positive or negative number. Finally, for all reward encounters after the change,

time allocation will be constant again, reflecting the new (accurate) payoff estimate,

yielding a difference of 0 again.

4.2.2.3 Work bouts before and after the first reward is delivered

The above analyses imply two distinct periods of the trial: an adjustment

period (when pauses can be understood as realizations of a stochastic process with

distributional characteristics Θ1 that are either stationary or non-stationary), followed

by a stable period (when pauses can be understood as realizations of a stochastic pro-

cess with stationary distributional characteristics Θ2). At the boundary between the

two, some process has occurred—either as a gradual or a step function—that has

altered behaviour. It is natural, then, to ask whether the patterning of work bouts

also differs between two periods of trial time we will demonstrate are different: prior

to the delivery of the first reward, when the key determinants of decision-making
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have not yet been revealed, and following the delivery of the first reward, when those

key determinants have, in principle, been uncovered. Indeed, when trial parame-

ters are not yet known, the usually competing goals of exploration and exploitation

are aligned: exploration of the mapping between actions and rewards requires the

rat to lever-press, thereby appearing no different than exploitation of the rewards

derived from lever-pressing. Following the first reward delivery, the payoff from self-

stimulation can (in principle) be known completely, so exploitation and exploration

are once again antagonistic: he may greedily exploit the option (self-stimulation or

extraneous activities) with the better reward, or sub-optimally explore whether the

foregone option has increased in value.

To test whether the rat’s willingness to work prior to the delivery of the first

reward of a trial is different from that in subsequent periods of the trial, we extracted

the number of corrected work bouts (holds and releases lasting less than 1s together)

emitted by the rat resulting in a reward delivery, for either the time prior to or

following the delivery of the first reward. This allows us to examine whether there

are differences in how vigorously an animal will work for a reward it has not yet

received, compared to when it knows what the payoff from self-stimulation will be.

On each reward encounter that resulted in a reward delivery, both the objective price

and the number of corrected work bouts (holds and taps, together, uninterrupted

by a TLB) was recorded. For each objective price tested and in each of the two

periods of trial time considered, the maximum-likelihood estimate of the mean and

confidence interval of a Poisson process that generated the number of work bouts

was determined. The confidence level for the intervals was adjusted to maintain a

5% family-wise error rate for the number of comparisons that were made: one for

each unique objective price. As a result, the width of the confidence interval around

each estimated number of work bouts per delivered reward was (0.95)(1/c), where c

is the number of unique objective prices tested. We then determined the highest
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price for which the maximum-likelihood estimate was significantly less than (that is,

the upper bound on its confidence interval was strictly less than) 2 corrected work

bouts per reward delivery. In other words, a 95% confidence interval about the mean

number of bouts extending from 1.2 to 2 would indicate that on 97.5% of reward

encounters resulting in a reward, that reward was obtained in fewer than 2 corrected

work bouts. The highest price at which the 95% confidence interval (corrected for

multiple comparisons) is strictly less than 2 provides the highest price at which the

rat earns rewards in a single, continuous press. Any higher, and the rat unequivocally

allocates at least two presses to obtaining the reward; any lower, and the rat cannot

be unequivocally said to require multiple corrected work bouts to obtain a single

reward.

4.3 Results

4.3.1 Two models of post-priming/reinforcement pauses

Figure 4.2 is a histogram of the common logarithm of the Bayes Factors,

including those for which the Bayes Factor was infinite. In these latter cases, the

animal only ever collected one reward before ceasing all responding, producing a

single uncensored post-priming pause. In the upper inset, the region from -3 to 3 is

highlighted. Commonly, Bayes Factors from 1 to 3 (common logarithms from 0 to

0.47) are considered trivial evidence, from 3 to 10 (common logarithms from 0.47 to

1) are considered substantial evidence, from 10 to 30 (common logarithms from 1 to

1.47) are considered strong evidence, from 30 to 100 (common logarithms from 1.47

to 2) are considered very strong evidence, and over 100 (common logarithm greater

than 2) are considered decisive evidence (Jeffreys, 1998).

The median Bayes Factor was found to be 2.881 (common logarithm of 0.46),

which indicates that regardless of how many transitional or initial post-reinforcement
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Figure 4.2. Bayes factors comparing step- to gradual-change models of pauses. His-
togram of Log10[Bayes Factors] observed in all price-frequency pairs of test trials of
all animals in all conditions. Infinite Bayes Factors indicate that the rat collected a
single reward and ceased responding, as the post-reinforcement pause following the
first reward is censored by the end of the trial. The insets show the histogram in the
region around a Log10 of 0 (top) in addition to a coarse grouping showing the number
of Bayes Factors providing at least substantial evidence in favour of a gradual-change
model (< −0.5), trivial evidence (−0.5 to 0.5), or at least substantial evidence in
favour of a step-change model (> 0.5).
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pauses one considers, a model according to which the distribution of pauses changes in

step-wise fashion is just under 2.9 times more likely than a model according to which

the distribution of these pauses changes gradually. This value of the Bayes Factor is

just under what would be considered substantial evidence. Although many (533, or

43.2%) Bayes Factors are in the trivial range (with common logarithms ranging from

-0.5 to 0.5), many (482, or 39.0%) also decidedly favour the step-change model, and

a vanishingly small number provide any evidence that favours the gradual-change

model. This is more clearly shown in the lower inset of figure 4.2, which depicts

the proportion of price-frequency pairs that fall within the trivial and substantial-

or-better ranges in favour of either the gradual-change model (negative values) or

the step-change model (positive values). A considerable proportion of Bayes Factors

provide at least substantial evidence in favour of a step-change model, while virtually

none provide any evidence (trivial or better) in favour of a gradual-change model.

Indeed, 698 (56.6%) price-frequency pairs represent at least substantial evi-

dence in favour of a step-change model, and only 2 represent substantial evidence in

favour of a gradual change model, while no price-frequency pairs revealed strong or

greater evidence in favour of gradual change. Figure 4.3 is a bar graph that depicts the

number of price-frequency pairs for which the Bayes Factor falls into each qualitative

category, for either the gradual-change (left) or step-change (right) models.

Finally, figure 4.4 is a histogram of the maximum-likelihood estimates of the

number of reward deliveries required before pauses can be said to have been sampled

from the same, underlying gamma distribution. Overwhelmingly, that estimate is

1: the median of the maximally likely number of reward deliveries required before

the pauses the rat makes all come from the same (possibly payoff-dependent) gamma

distribution is just one. Indeed, in only 32.3% of cases is the maximum-likelihood

estimate greater than one reward delivery. The data provide a preponderance of

evidence in favour of a step-change in post-priming and post-reinforcement pauses,
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Figure 4.3. Qualitative categories of Bayes factors comparing step- and gradual-
change models of pauses. Using Jeffreys’ (1998) qualitative descriptions of Bayes
factors comparing step- and gradual-change models of first-pause durations, there is
little evidence to support a gradual-change model, very often trivial evidence to sup-
port a step-change model, and a preponderance of substantial, strong, very strong,
or decisive evidence to support a step-change model.
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Figure 4.4. Maximum-likelihood estimate of the number of pauses in initial segments
of either step- or gradual-change models. Histogram of the number of rewards re-
quired before a step- or gradual-change (the model with the best evidence) has been
completed. The estimate is preponderantly one reward before performance changes,
with comparatively very few instances of two or more rewards.
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and the maximally likely time at which the step-change occurs is following the first

reward delivery. It is still possible that although the post-reinforcement pauses are

constant throughout the trial, the rat’s behavioural policy may gradually change

regardless. For example, the rat may interrupt its self-stimulation activities for longer

and more frequent periods of grooming and exploring as its estimate of the payoff is

gradually revised downwards, or shorter and fewer periods as the estimate is gradually

revised upwards. It is to this question we shall now turn in identifying whether rats

make a single, step-wise change to their behavioural allocation policy following a single

exemplar of the payoff, or they make gradual changes throughout the trial as they

update their estimate of the reward they can expect to receive and the opportunities

they will have to forgo as they pursue electrical rewards.

4.3.2 Change in time allocation from reward encounter to

reward encounter

The model comparison outlined above provides overwhelming evidence in

favour of a step-change mechanism rather than a gradual-change mechanism. The

natural next question becomes: how few reward deliveries are necessary before the rat

behaves as though the estimate of payoff had been abruptly updated? We conducted

an ANOVA on the difference in the proportion of time allocated to self stimulation

with respect to reward encounter for every animal, for each combination of pulse

frequency and price that was encountered on test trials. The step-change model

implies that there will be a single reward encounter at which the change in time al-

location is statistically different from zero, and will be zero otherwise. The reward

delivery corresponding to that single reward encounter is the number of exemplars

necessary before payoff is updated. For example, if the change in time allocation is

statistically different from 0 following two rewards, and nowhere else, then the rat

behaves as though it requires two exemplars of pulse frequency and price before it
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abruptly updates its estimate of the payoff for the remainder of the trial. If, as will

be demonstrated below, the change in time allocation is statistically different from

0 only following one reward, and nowhere else, then the rat behaves as though it

requires a single exemplar of pulse frequency and price before it abruptly updates its

estimate of the payoff for the remainder of the trial.

Figure 4.5 shows the mean absolute value of the difference of time allocation

with respect to reward encounter number, from the first reward delivery to the tenth,

for all animals. The general pattern, viewed across all animals, is consistent with

the maximum-likelihood estimates of the step-change model derived above: time

allocation changes suddenly (either becoming greater or smaller) between the first

and second reward encounters, but ceases to change systematically from the second

reward encounter onward. A within-subjects ANOVA conducted on the unsigned

difference in time allocation with respect to reward number confirms this visualization,

revealing a significant effect of reward encounter on the change in time allocation

(F (9, 106313) = 1792.3, p << 0.05, η2 = 0.128).

We further tested at which point time allocation ceased to change by conduct-

ing a series of comparisons between the change in time allocation following reward

encounter n and all subsequent reward encounters. In other words, we compared the

change in time allocation following the first reward delivery to the mean change fol-

lowing the second through tenth reward deliveries, then the change in time allocation

following the second to the mean change following the third through tenth, and so

on. To maintain a 5% family-wise error rate, we calculated the exact per-comparison

probability for 9 comparisons as 1 − (1 − 0.05)(1/9), or 0.0057. Although the change

in time allocation following the first reward delivery was significantly different from

all subsequent reward deliveries (F (1, 106313) = 13.63, p < 0.05 family-wise), time

allocation ceased to change from the second reward delivery onward (F ranged from

6.6 × 10−4 to 0.38). Figure 4.6 depicts the mean squared deviations associated with
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Figure 4.5. Absolute difference in time allocation for all animals. Mean unsigned
change in time allocation from one reward encounter to the next as a function of
the number of rewards earned, for the first 10 reward deliveries, for each rat. Time
allocation changes drastically following the first reward delivery, but ceases to change
thereafter.
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Figure 4.6. Post-hoc test of the within-subject change in time allocation across suc-
cessive reward encounters. Mean squared deviation of each comparison (± SEM)
as a function of the orthogonal comparison being made. While the change in time
allocation following one reward delivery is significantly greater than the mean of all
subsequent changes in time allocation, the change in time allocation following the
second and subsequent reward deliveries are no different than each other and not
reliably different from 0.
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each single-df comparison (1 vs 2 through 10, 2 vs 3 through 10, etc.) along with

their standard error. The mean squared deviation in the absolute value of the time

allocation difference following one reward compared to the ten rewards that follow is

significantly greater than 0, while the mean squared deviations of unsigned time allo-

cation differences following two through nine rewards compared to those that follow

are, for all intents and purposes, zero.

4.3.3 First reward encounter is different from subsequent re-

ward encounters

Figure 4.7 provides a comparison of the crude estimates of the vigour with

which a rat will work for electrical rewards before and following the first reward

delivery. The upper left-hand panel is the mean number of corrected work bouts

(per lever retraction) one representative rat engages in, for each price, before any

rewards are delivered. Also indicated is the associated, 95% family-wise confidence

interval. Asterisks indicate means that are significantly below 2 (maintaining a 0.05

family-wise error rate across all prices). The upper right-hand panel is the mean

number of corrected work bouts (per lever retraction) that rat engages in from the

first reward delivery onward. As with the left-hand panel, asterisks indicate means

that are significantly below 2. Our crude estimate of the vigour is the highest price

for which the estimated number of corrected work bouts is significantly less than 2:

at lower objective prices, the rat usually (though not exclusively) engages in a single

work bout to obtain a single reward, but at higher prices, the rat is always most likely

to obtain the reward after two or more bouts. Dotted lines indicate, in each case,

this crude estimate of vigour: the highest price at which the rat obtains rewards in a

single bout of work.

The bottom panel of Figure 4.7 depicts the mean logarithm of the highest

price at which the number of corrected work bouts per lever retraction is significantly
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Figure 4.7. Number of work bouts required to obtain a reward. The top left panel
shows the maximum-likelihood estimate (± 95 % confidence interval, family-wise)
of the number of corrected work bouts (holds interrupted only by releases lasting
less than 1s) required to obtain a reward as a function of the objective price, prior
to the delivery of the first reward, for a single animal. The top right panel shows
this estimate as a function of the objective price following the first reward delivery.
Asterisks indicate estimates that are significantly less than 2 (two tailed, family-wise
correction). Dotted lines indicate the highest price at which rewards are earned in
significantly fewer than two bouts. The bottom panel is a bar graph of the highest
price at which rewards are earned in fewer than two bouts for all animals. The
asterisk here indicates a statistically significant within-subject difference in this price
(p < 0.05).
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less than 2 for all animals in all conditions, before and following the first reward

delivery. A paired-samples t-test was performed on the difference in the logarithm

of the highest price at which the number of corrected work bouts is significantly less

than 2, to identify whether there was an effect of the first reward delivery. The t-

test revealed a significant effect of the first reward delivery on this crude estimate

(t(26) = 2.77, p < 0.05), indicating that rats were willing to work for higher prices

before the payoff was completely known compared to after it was transparent in

principle, across all conditions they encountered. This result, combined with the

above two results concerning the model comparison and time allocation difference,

implies that there are indeed two distinct periods of time, the boundary of which can

be delineated by the delivery of the first reward of the trial.

4.4 Discussion

4.4.1 Stable trial responding

In our hands, performance for rewarding brain stimulation is remarkably sta-

ble following a step change between the time the payoff from self-stimulation cannot

be known to the time it is (in principle) completely transparent. A contrast of two

models—one in which performance in some initial period switches abruptly to a sta-

ble period to one in which performance changes gradually over a number of price-

frequency exemplars until it is stable—provides evidence that, no matter how long

or short the initial or transitional periods are, the model for which the data are more

likely is generally the step-change model. The median Bayes Factor, across all price-

frequency pairs encountered in all conditions for all rats, is just under what would

be considered substantial evidence, with a considerable proportion of price-frequency

pairs providing what we have termed “infinite evidence” in favour of a step change

model. As soon as the rat “knows” what the subjective opportunity cost and reward
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intensity of the electrical brain stimulation will be, the animal rapidly switches to a

behavioural policy that reflects that payoff, rather than gradually adjusting it over

a number of trials. The maximum likelihood estimate of the number of reward de-

liveries required for the animal to perform this switch is an equally overwhelming

answer: following just one reward delivery, pauses can be said to come from a sin-

gle, underlying distribution for the remainder of the trial, for the great majority of

price-frequency pairs across all animals.

One could imagine that despite stable post-reinforcement pauses following the

first reward encounter, overall performance reflecting an underlying behavioural pol-

icy could change gradually as the rat obtains more exemplars of the payoff from self-

stimulation. For example, the rat may opt to maintain a constant post-reinforcement

pause but interrupt its lever-pressing with more and longer bouts of leisure activi-

ties, such as grooming, resting and exploring as its estimate of the payoff from self-

stimulation was revised to lower and lower values over a number of rewards. When

the payoff is better than expected, the rat may opt to interrupt its lever-pressing with

fewer and shorter bouts of non-lever pressing activities it can engage in throughout

the trial. Such a behavioural policy would make the proportion of time allocated

to lever-pressing change gradually as more rewards were delivered. Further confirm-

ing the model-comparison results and maximum-likelihood estimates extracted from

them, the change in time allocation from reward encounter to reward encounter was

significantly greater following the first reward delivery compared to all subsequent

reward deliveries, and was no different for all subsequent reward deliveries.

Moreover, an animal’s willingness to work is different from the time the reward

is unknown to the time it is delivered. Whereas an animal will engage in a single,

continuous work bout (releasing the lever only for a very short period of time to

tap) up to high prices when the subjective opportunity cost and intensity have not

yet been revealed, the same animal will engage in a continuous work bout up to a
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significantly lower price when the subjective opportunity cost and intensity have been

revealed compared to when they have no yet been revealed.

Taken together, these results imply that the rat can maintain a world model

of the constancy of the payoff if that constancy is cued. As a consequence of this

world model, if the payoff is not known when the trial begins, the rat can update its

estimate of the payoff in a single step-like change following the delivery of a single

reward. This would not be true if the rat had no world model of the constancy of the

payoff throughout the trial: the rat would need to learn de novo what the subjective

opportunity cost and reward intensity of the electrical reward are every time a new

trial was presented.

The idea of world models in rodents is certainly not new. As a world model

refers to a representation of how states transition to each other, this description is

an extension to the operant conditioning domain of Tolman’s original concept of a

cognitive map. In Tolman’s (1948) formulation of cognitive maps, the rat does not

simply evaluate the net reward associated with an action. Instead, the rat forms a

representation of the relationship between external environmental cues and the path

that has been taken through them. For example, consider a hungry rat that is allowed

to explore a Y-maze in which one arm was baited with water and the other with food.

Assuming a purely model-free learning mechanism, the total net reward from visiting

the water arm of the Y-maze is 0, and thus, no reward prediction error is made:

the rat expects no reward, receives no reward, and does not update the value of

heading to the water-baited arm. The total net reward from visiting the food arm

comes as a surprise: the rat expects nothing at the end of the arm, receives food, and

updates the value of heading to the food-baited arm. Such an animal cannot know

what the state will be when it heads left or right, because that information is neither

learned nor represented. Despite this, rats trained in this way were found to quickly

head toward the water-baited arm of the Y-maze when subsequently water deprived,
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indicating that they had a cognitive map of where to find food and water. The idea

of a cognitive map is isomorphic to a model-based, feed-forward model of operant

performance: the rat acts based on a mapping, not of food and water locations, but

rather, of the varying demands that will be placed on the rat to obtain rewards of

varying strength.

If rats indeed behave as though they have a model of the constancy of the

subjective opportunity cost and reward intensity throughout the trial, then this model

must be learned from the time the animal first encounters the flashing light of a

trial. When the rat is first placed in an operant chamber for training, the flashing

house lights are necessarily meaningless, as the rat has never seen the house light cue

before. Over the course of multiple reward deliveries, the rat forms a representation

of the amount of time the lever will have to be held and of the magnitude of the

reward to be delivered, in addition to representations that may or may not change

like the probability of reinforcement. As a new trial begins, the house light cue is

presented again, and the rat must maintain a new representation of the new subjective

opportunity cost and reward intensity in effect for the new trial. Given that the

subjective opportunity cost, reward intensity, and (in the case of rats undergoing the

probability experiment) probability of reinforcement vary considerably from trial to

trial, the only reliable signal provided by the flashing house light is that a change in

any of the key determinants of decision may have occurred, and the variance in those

key determinants will be zero from the offset of the flashing house light to its onset

at trial’s end. It is possible that the rat maintains a representation of this change (as

implied in Chapter 3) and a representation of the non-variance in the determinants

of the payoff from self-stimulation.

Testing where this representation is maintained is a straightforward empirical

question in principle, provided one were recording in the correct location. Rats could

be presented with trials differing with respect to the variability of an easily controlled
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determinant of the payoff: the subjective opportunity cost. Rats would be presented

with the randomized-triads design, though in addition to the pseudo-random selection

of the test trial from a list of prices and pulse frequencies, any given trial in the

sequence could require a fixed or variable work requirement before a reward was

delivered. In other words, an appropriately-cued lead, test, or trailing trial would

deliver stimulation when the lever had been held for a fixed, cumulative amount of

time (as is the case for the present experiment), or for a variable, cumulative amount

of time. Assuming a sufficiently well-trained rat, putative neurons responsible for

signalling that the payoff may have changed would predictably fire at the start of

every trial type regardless of the variability in opportunity cost. Putative neurons

responsible for signalling the variance (or lack thereof) in opportunity cost would show

differential activity following each cue type. Actually conducting such an experiment,

however, would be a herculean task, as the number of price exemplars the rat would

need to sample before it had a reasonably accurate estimate of the average subjective

opportunity cost on any given trial is very large indeed. Nonetheless, the question

is empirical and would provide a mechanism for the neural basis of model-based

decision-making.

4.4.2 Fast learning or filling in?

Given that rats require only one exemplar of the payoff on a particular trial

in order to set a behavioural policy that will guide performance for the remainder of

the trial, it is unlikely any feed-back mechanism can explain these data. Either each

time step is so large that it is meaningless (there is only one time step for which to

update the value of state-action pairs), or there is truly a simple representation of

within-trial stationarity somewhere in the brain: if the house light begins to flash,

then the key determinants of the decision will stay constant until it flashes again.

Much like the previously-described world model of the triad structure of the session,
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we have presented considerable evidence here that the rat behaves as though it has a

world model of the constancy of the key determinants of its decision to press within

a trial.

Our results are closely related to and extend findings regarding performance

for brain stimulation rewards in the rat when those rewards were delivered at rates

that changed in either a cued or un-cued fashion (Gallistel et al., 2001; Mark and

Gallistel, 1994; Mazur, 1995a). Gallistel et al. (2001) found that when the average

rate of reward changed in un-cued fashion following either long (weeks) or short

(hours) periods of time, rats’ stay durations at each of the levers of a concurrent

variable interval schedule tracked fairly closely the performance of an ideal, Bayesian

observer. When changes in the average rates occurred on the order of hours, rats

adjusted phenomenally quickly to the new contingency, while when the average rates

of each lever were stable on the order of days and weeks, rats adjusted considerably

more slowly. Their analyses also demonstrate that performance does not track the

immediately local rate as suggested by Mark and Gallistel (1994), per se, but rather,

reflected the average rate.

One way that model-free reinforcement learning could arguably account for

this step-like change is by assuming that the payoff from self-stimulation acts as a

discriminative stimulus. In this case, the rat has learned over the course of training

every combination of subjective opportunity cost and reward intensity it is likely to

encounter, extracted the appropriate total future reward from taking every action in

every trial state, and implements that pre-learned behavioural strategy as soon as it

encounters the combination again. Given the combinatorial explosion that would be

involved, and previous results implying that rat performance approximates an ideal

detector of change in concurrent variable-interval schedules (Gallistel et al., 2001), we

find this proposition unlikely. As we argue below, a more satisfying account of the

process underlying the observed step-change from post-priming to post-reinforcement
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pause, as well as from overall performance before the first reward delivery to following

first reward delivery, can be found in a feed-forward, “filling in” model.

4.4.3 An extension of ideal-detector theory

When conditions are stable, it would behove an animal working under a

variable-interval schedule of reinforcement to require a large number of exemplars

before inferring that the average rate has changed, since the experienced rates of re-

inforcement are the result of an exponential process. When conditions are unstable, a

small number of exemplars ought to be necessary. The duration for which conditions

have been stable places a high prior probability for the average rate of reinforcement.

In order to infer that these rates have changed, an animal would require substantial

evidence before the mean was updated. In contrast, variable conditions place a flatter

prior probability for the average rate of reinforcement, which require less evidence to

infer that there has been a change in rate. When there is a great deal of evidence

that a patch should deliver berries at a rate of 3 per minute, a few anomalous obser-

vations should not lead a foraging animal to infer that a change in rate has occurred.

Similarly, when conditions change rapidly, and there is no evidence of a particular

rate of reinforcement, less evidence should be necessary for an animal to infer that a

change in rate has occurred.

In the present experiment, an ideal detector of change would necessarily require

a single exemplar of the payoff to infer that a change has occurred. As there is

no variability in the work requirement, and therefore in the rate during work, any

change, even if it were unsignalled, would require only one reward to be detected.

This is a proposition that could be, in principle, tested empirically: if the price of the

electrical reward, which sets the reciprocal of the rate of reinforcement during work,

were to abruptly change midway through the test trial, but remain constant for the

remaining duration of the trial, the rat would re-adjust its performance in step-wise
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fashion. Similarly, if the subjective intensity of the electrical reward were to change

step-wise midway through the test trial, and then remain constant, the rat would

re-adjust its performance in an equally step-wise fashion. In this sense, our proposal

that rats in the randomized-triads design develop a world model of the constancy of

the trial from reward encounter to reward encounter is simply a special case of the

proposal that rats behave as though they are ideal detectors of change.

Since both initial pauses and overall performance change in step-like fashion

following the first reward, the question becomes: what do these behavioural mea-

sures reflect about the rat’s policy? Model-free learning mechanisms require a back-

propagating mechanism to the earliest point a reward can be predicted, which would

result in gradual changes in the animal’s action selection policy. It is therefore un-

likely that our results can be explained by a simple hill-climbing process that updates

the estimate of reward over multiple reward deliveries, revising the magnitude of the

reward to the same degree on every iteration and the subjective opportunity cost as

the lever is held for the required cumulative amount of time. Instead, we propose

that if such an update occurs, the rat takes into account statistical properties of the

environment to tune the rate at which estimates of key determinants of decisions are

revised. In the case of brain stimulation rewards delivered in cued trials for which

these determinants are constant, the statistical properties of this environment (for-

malized here as a world model of the reward encounter) allow the rat to update its

estimates of the determinants that matter in a single step.

If we assume that rats use a strategy that is at least partly model-based, then

there is necessarily a “filling in” mechanism driving the rat’s behavioural policy: as

soon as the payoff is known completely and with certainty, as it is following the first

reward delivery, the rat can simply “fill in” this payoff into what it ought to do, from

the moment the lever extends back into the cage at the end of the blackout delay. Prior

to this point in time, before the payoff is completely known, the rat may have updated
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its estimate of the subjective opportunity cost as it held the lever and adjusted how it

partitions its time on the basis of this on-going estimate. However, from the time the

first reward is delivered until the trial ends, performance is completely stable. Post-

reinforcement pauses can be said to have come from the same underlying gamma

distribution, and the proportion of time allocated to lever-pressing (which is the ratio

of corrected hold time to the sum of post-reinforcement pause, corrected hold and

release times) for each reward delivered after the first cease to change. Since the

amount of time the lever is held per reward will be constant, only the time the lever

is released can make the proportion of time allocated to lever-pressing per reward

change. Since two of the three components of time allocation do not change, and

time allocation itself does not change, the third component (all releases following the

first lever-press following a reward delivery) also cannot change. In other words, the

entire behavioural policy—when to start pressing, how long to press, and how long to

release—is fixed from the time the first reward is delivered and the payoff is known.

This “filling in” mechanism has been described elsewhere (Gallistel et al., 2001)

as a feed-forward model of Thorndike’s (1898) law of effect. Rather than waiting for

observable consequences of behaviour to inform the animal about the best course

of action, the feed-forward description implies that an internal world model of the

animal’s situation informs the animal about the best course of action. We demonstrate

here that rats indeed behave as though they have an internal world model of the

price-frequency constancy, and that a single reward is sufficient in providing payoff

information that will feed forward to the rat’s behavioural policy for the combination

of subjective opportunity cost and reward intensity it can expect to receive throughout

the trial.
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4.4.4 The decision to quit

In many instances, rats earn a single reward and cease to respond, our so-called

“infinite evidence” conditions of the contrast between gradual-change (purely model-

free) and step-change (at least partly model-based) descriptions of the task of learning

the subjective opportunity cost and reward intensity of the electrical stimulation on

offer during a trial. This work-then-quit behaviour could be the result of either of

two processes. The animal may not have ceased responding, per se, but has engaged

in a post-reinforcement pause drawn from a distribution with a central tendency

sufficiently long that its duration is censored by the end of the trial. Alternately

or in tandem, armed with a world model of how trials progress (Chapter 3), the

animal may have opted to wait until the leading bracket trial, with known high

payoff, would be presented again. Regardless of which process drives the animal

to apparently cease responding entirely, both imply the above-described “filling in”

mechanism: the currently expected payoff from self-stimulation, updated in step-wise

fashion following the delivery of a single reward, sets the duration of the pause to

be taken before the animal begins responding. As the proportion of time allocated

to self-stimulation per reward is also set by this single-step updated expected payoff,

it is possible that all components of the behavioural policy that make up the molar

measure of performance are also set when the payoff is “filled in.” In other words,

it is altogether possible that the internal representation of payoff sets not only the

duration of the post-reinforcement pause, but also of each lever-press to make, of

each short lever release, and of each bout of the various other activities the rat could

perform in the operant chamber. We shall return to this hypothesis in Chapter 5.
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4.4.5 Conclusions

The results presented here suggest that rats behave as though they have a

world-model of how a test trial will progress. Not only does a single, step-change

model account for initial (post-priming and post-reinforcement) pauses better than

a gradual-change model, no matter how long it takes for the step- or gradual-change

to occur, but that step-like change usually occurs following a single exemplar of the

reward to be delivered, at least in the case of risk-less rewards. This finding runs

contrary to the predictions of a purely model-free description of performance for

rewarding brain stimulation in the randomized-triads design, according to which the

association between actions (namely lever-pressing) and consequences is gradually

adjusted as the reward prediction error is driven to zero over the course of many

reward deliveries. If such a “gradual” updating process occurs, the rate at which

estimates of the determinants of the decision are revised must at least be subject to

the statistical properties of the environment.

Given the presumed involvement of ventral tegmental dopamine neurons in

signalling the temporal difference reward prediction error that is critical to model-

free accounts of performance for rewards, it would be interesting to use the methods

and analyses developed here to gauge how interference with dopamine efflux affects

model-free and model-based performance, if it does at all. For example, it would be

possible to ascertain whether dopamine receptor antagonists like pimozide alter the

rapidity of adjustments to new subjective opportunity costs and reward intensities

over the long time scales over which they act, and whether that adjustment occurs

step-wise or gradually.

Similarly, new optogenetic techniques allow for the selective excitation or inhi-

bition of dopamine neurons on the millisecond time scale over which reward prediction

errors are presumed to have their effect. If phasic dopamine neurons truly encode
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this reward prediction error, then inhibiting them in the appropriate time window

following each reward would artificially indicate to the rat that the reward it had

received was always less rewarding than expected. The post-reinforcement pause

would decrease continually throughout the trial as the reward was predicted to be

ever smaller, until it was censored by the trial. Meanwhile, the overall proportion of

time allocated to self-stimulation per reward would decrease until it reached a lower

asymptote, despite the reward’s constant pulse frequency.

In contrast, if phasic dopamine signalling is related to dopamine tone, which

itself is related to the absolute intensity of the rewarding effect, its effort cost, or

the payoff that can be expected from engaging in any other activity while in the

operant chamber, as suggested by Hernandez et al. (2010), then selectively activating

dopamine neurons in the same time window will continue to produce the step-like

changes in initial pauses and overall performance described here. If the effect of

decreased dopamine tone is on the payoff from self-stimulation or leisure activities,

rather than the process by which the payoffs are updated, the rat will continue to

update the payoff from self-stimulation in a single step. Enhanced dopamine signalling

will simply change what that payoff is. The results, methods, and analyses presented

here provide a fertile starting point for understanding how manipulations affect the

animal’s on-going behavioural policy. A profound understanding of how various neural

circuits store, process, and implement the various components of this policy is a truly

daunting task, but the tools and results described here are easily applicable to the

further understanding of how human and non-human animals decide and choose.
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Chapter 5

A molecular model of performance for brain stimu-

lation reward

5.1 Introduction

Although there have been many attempts to characterize the moment-to-

moment action selection problem (Pyke et al., 1977; Staddon, 1992; Montague et al.,

1995; Sutton and Barto, 1981; Niv et al., 2007), few have attempted to apply their

descriptions to brain stimulation rewards. This is surprising, as intra-cranial self-

stimulation provides direct access to neural machinery involved in implementing the

decision. The electrode is in an identifiable location and provides a reward that is

not only devoid of extraneous sensory characteristics, but also from which the animal

will not become sated.

Traditional models of real-time performance have been framed in the context

of temporal-difference reinforcement learning, describing punctate actions (Montague

et al., 1996), or punctate actions accompanied by latencies (Niv et al., 2006), as

a Markov or semi-Markov decision process. In these models, the animal holds a

representation of a small number of states of the world and the decisions it can make

in each of those states, and either bases action selection on a cached value of the

action in a state (if using model-free learning) or a tree search (if using model-based

learning).

Previous chapters have revealed two major behavioural processes that seem to

operate in the well-trained animal.

1. An expected payoff from self-stimulation on trial T can be inferred from cached

values of the price and intensity of rewards on trial T − 1. In other words, the rat
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maintains a simple one-trial look-back world model of the state transition function

from trial T − 1 to trial T . Unlike what is proposed by model-free learning schemes,

the rat does not base its action-selection policy on the reward it received on the last

trial. Instead, the rat bases its action-selection policy on the payoff for the trial to

come based on its estimate of the trial type that has just come to pass (trial T − 1)

and its estimate of the trial sequence it encounters (the state transition function T̂ ).

2. Following a very small number of reward deliveries, which may potentially be the

very first reward delivered, the payoff on a test trial is known for certain and no

longer requires updating. Unlike feedback-based reinforcement learning schemes, the

rat does not gradually adjust its action-selection policy in response to a backward-

propagating reward prediction error. Instead, the rat “fills-in” the appropriate payoff

as soon as it can be known. In other words, the rat maintains a simple one-shot

update rule for the payoff from self-stimulation on test trials. The ultimate result of

this one-shot update process is that reward delivery provides the necessary stimulus

to set the action selection mechanism for the remainder of the trial.

In light of these two findings, we provide a new account of the action selection

problem. The rat develops a world model with two components: the next trial type it

can expect, and the stability of the subjective opportunity cost and reward intensity

on any given trial. As soon as the costs and rewards on a trial can be known, the

rat then allocates its time among the competing activities that can be observed. The

various activities directly observable to an investigator who has access to the record of

lever presses and releases are the result of various “hidden” processes. These hidden

processes, or behavioural states, generate stay durations with characteristic distri-

butional properties, terminating on other observable activities. The rate at which

one hidden behavioural state is terminated when the animal engages in a particular

activity is entirely set by the payoff the animal can expect from self-stimulation ac-

tivities during the trial. Real-time performance is the result of the ongoing hidden
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behavioural states that have control over what the animal does, and action selection

is determined by which hidden behavioural state will take control for a given level of

payoff.

5.2 Introduction to the CTMC

5.2.1 Continuous-time Markov chains

Action selection is usually described in the reinforcement learning literature as

a series of point events, leading from one trial state to another as decisions are made.

In contrast to these approaches, we present a portrayal in which the rat has a model

of the trial—that is, parameters remain constant—and a model of the session—that

is, the session’s triad structure—which provide the rat with an expected payoff. In

our model, the rat is in one of a variety of behavioural states when it engages in a

particular activity for a period of time, and the duration of time the rat spends in

some states is purely a function of the payoff the rat expects to get according to its

world models. The concept of a “state” moves from the external world (like the state

“One tenth of a second from the state which brings rewards”) to the internal world

(e.g., “I am holding patiently”).

Let us assume that the rat has a model of the world based on a few simple

rules, like a) the first trial the rat encounters will have a high payoff, b) the occurrence

of a flashing house light signifies that the state of the world has changed, c) the payoff

following the flashing light depends in some way on the price and reward intensity

that has just been encountered or inferred, and d) the payoff will not change until

the house light flashes again. If the rat expects a high payoff, it will devote its time

almost exclusively to acquiring trains of brain stimulation. If the rat expects a low

payoff, it will devote its time almost exclusively to all other activities it can perform

in the operant chamber, such as grooming and exploring.
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When the rat spends its time doing other things, it still faces an action selection

problem: it can groom, explore, or rest, but it cannot perform all those actions at

once. If some process sets how long the animal performs each of those actions, an

experimenter with access only to the stream of holds and releases cannot distinguish

between these activities.

A continuous-time Markov chain (CTMC) describes the behaviour of a system

as a series of processes that terminate with a characteristic rate. If the system truly

obeys the Markov property, all one needs to know is the current state of the system to

predict what the future states may be. As a result, each state of the system must have

a constant rate of failure. If every state of the system has a characteristic, constant

rate of failure, then the dwell times in every state will be exponentially distributed.

In other words, CTMCs describe an underlying system as a set of exponentially

distributed processes which each terminate with characteristic rate onto each other.

Suppose the following simple CTMC holds true: the rat begins a trial with

a post-priming pause, which terminates with characteristic rate on a hold, which

terminates with characteristic rate on a release, which terminates with characteristic

rate on a hold, until the whole system is stopped when the cumulative amount of

time spent holding reaches the price or the cumulative amount of time in all these

activities reaches the trial time. In this chain, future activities can be predicted on the

basis of only the current activity: there is some constant probability that the current

activity will fail and its termination will lead with a particular known probability

to another activity. Action selection in this chain is simply the implementation of a

characteristic termination rate when the animal is performing a particular activity.

Dwell times in each activity would be the directly observable result of the action

selection process in real time. Overall trial performance in this case emerges from the

differential probabilities that the rat will begin and cease to perform various activities,

such that trials where the payoff from self-stimulation is high will favour holding and
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discourage pausing or releasing, while trials where the payoff is low will favour pausing

and releasing over holding.

The directly-observable activities the rat engages in are not likely to be purely

Markov processes. If that were so, the dwell times in the various activities we can

detect would be sampled from an exponential distribution that peaks at 0 and decays

constantly over time. Instead, the rat likely spends some minimum amount of time

performing an action. At the very least, it spends at least as much time performing

the action as we can detect. The amount of time the rat spends in any particular

activity might therefore be better modelled as the result of a non-exponential process

whose termination rate increases over small time frames and approaches exponential

behaviour the longer the rat has been performing that action.

When the distribution of dwell times in directly observable activities is not

exponential, the chain can no longer be strictly called “Markovian,” because the

probability of switching from activity A to activity B is no longer constant over time.

The probability of switching from A to B when A terminates may still be constant,

so there is still a “Markovian” element to the chain: assuming A has stopped, there is

a constant probability that the next activity will be B. Chains of this type are called

“semi-Markov,” since termination rates may not be independent of time, but are

constant at transition points. The model we present here is a continuous-time, semi-

Markov chain involving activities which can be directly observed, and behavioural

states which may not.

5.2.2 Previous models

5.2.2.1 Melioration

Matching refers to the observation that on concurrent variable-interval (VI)

schedules of reinforcement, animals will tend to allocate their relative rates of re-
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sponding to each alternative in proportion to the relative rates of reinforcement. The

response requirement on any given operant is sampled from an exponential distri-

bution or a geometric approximation thereof, the effect of which is that there is a

constant probability per unit time that engaging with the manipulandum will deliver

rewards. Importantly, the VI schedule of reinforcement traditionally used to study

matching has an infinite hold: as soon as it is armed, the manipulandum remains

armed until the next response is made. These two features ensure that matching

is very nearly optimal: no other pattern of relative responding to the concurrently

available alternatives will substantially increase the number of rewards an animal

may obtain. In single-operant contexts, matching has been generalized (de Villiers

and Herrnstein, 1976; McDowell, 2005) such that response rate is related to the rate

at which experimenter-controlled rewards are delivered relative to the other rewards

that an animal may derive from the operant chamber context, such as grooming, ex-

ploring, and resting. Although some of the assumptions of matching have been found

not to hold in the case of brain stimulation rewards (Conover et al., 2001b), it has

been a useful framework for studying decision-making in animals.

Since matching is very nearly the optimal strategy in concurrent VI schedules,

some (Williams and Royalty, 1989) have argued that matching is the result of a max-

imizing algorithm. At any point in time, the animal may emit responses with the

highest probability of reinforcement, which would result in approximately matching

behaviour. However, Herrnstein and Heyman (1979) tested animals on a concurrent

VI/VR schedule of reinforcement, under which pigeons allocated their pecking be-

tween one key providing 3.2 seconds of access to a food hopper according to variable

intervals with means of 15, 30, or 45 seconds and another providing access to the food

hopper according to variable ratios with means of 30, 45, and 60 responses. In their

hands, although pigeons matched their relative responding to the relative obtained

rates of reinforcement, their performance did not maximize the overall rate of rein-
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forcement. Pigeons had a strong bias toward the VI schedule, rather than the VR

schedule predicted by a maximization account.

One proposed mechanism (Vaughan, 1981) by which matching occurs is melio-

ration. According to this hypothesis, if the local rate of reinforcement (the number of

reinforcements obtained while working at a manipulandum per unit time spent there)

of an alternative is less than the local rate of reinforcement obtained elsewhere, the

animal will be pulled toward the richer of the two. For example, if pecking key A

provides grain at a rate of 1 every 45 seconds and pecking key B provides grain at

a rate of 1 every 15 seconds, as the pigeon spends more and more time pecking at

key A, the probability that a response at B will be reinforced increases. At the point

where the local rate of reinforcement from A begins to fall below that of B, the pigeon

will switch to responding on key B. As it spends a greater amount of time at key B,

the probability that a response at A increases, until the local rate of reinforcement

from A exceeds that of B, resulting in another switch. This result obtains because the

reward is held in trust so long as the rat has not yet lever-pressed; as time marches

on, the probability that the lever is armed will increase and the rat will surely be

rewarded for a lever press. If the pigeon were to peck at a rate of once every 15 sec-

onds on key A (delivering rewards at rate 1/45), it would receive a reward once every

three pecks; if the pigeon simultaneously pecked at a rate of once every 45 seconds on

key B (delivering rewards at rate 1/15), it would receive a reward once every press.

Melioration proposes that because the local rate of reinforcement on pecking key B

is greater than that on pecking key A, the pigeon will allocate more pecks to B. If

the pigeon now pecks once every 5 seconds to B and once every 60 seconds to A,

the local rate of reinforcement will be 1 pellet per 3 responses at B and 1 pellet per

response at A. When the local rate of reinforcement from A exactly matches that of

B—say the pigeon pecks at A at a rate of once every 15 seconds (local rate of 1/3)

and at B at a rate of once every 5 seconds (local rate of 1/3)—the pigeon is also
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matching its relative rate of responding (1/15
1/5 ) to the relative rate of reinforcement

(1/45
1/15). Melioration proposes that the differential local rate of reinforcement drives

the animal to alter its responding to the option providing rewards at the higher local

rate until there is no difference in the local rate of reinforcement from the two options

available.

Data from Gallistel et al. (2001) imply that the factor controlling allocation of

responses to alternatives is not their relative local rates of reinforcement. Stay dura-

tions for levers on either side of an operant chamber would be expected to fluctuate

not only with changes in the programmed rate of reinforcement, but also with un-

usually long intervals sampled from the variable-interval distributions. If local rates

of reinforcement were the source of matching behaviour measured on the molar level,

then rats working under concurrent VI/VI schedules delivering electrical brain stim-

ulation would be influenced by unusually low rates of reinforcement that may occur

simply by randomly sampling intervals from an exponential distribution. Unfortu-

nately for the melioration hypothesis, the distributions of stay durations (as assessed

by log-survivor plots) at a wide range of immediately-preceding inter-reward intervals

were virtually superimposable. It mattered little whether the immediately previous

local rate was low (that is, the inter-reward interval was high) or high: the probability

of remaining at the lever per unit time was identical regardless.

In explaining these data, the authors advocated a feed-forward control of per-

formance, rather than the feed-back system implicit in melioration. Feed-back sys-

tems require the rat to select the action entirely according to immediate consequences:

responding at a rate of 1/15 seconds at A produces a local rate of reinforcement of 1/3

responses, while responding at responding at a rate of 1/45 seconds at B produces

a local rate of reinforcement of 1/1 responses. In contrast, a feed-forward system

maintains a representation of the environment that allows an animal to quickly react

when it perceives changes to its situation. They propose that one system evaluates
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the rate of reinforcement from the options, and another evaluates whether that rate of

reinforcement is likely to have changed. If a change in the overall rate is likely to have

occurred, the animal adjusts its performance as quickly as could be done in principle.

If the environment is highly variable or highly stable, the threshold for identifying

a change in rate is tuned accordingly. Note that in the feed-forward case, the rat’s

actions are not the result of the immediate consequence of its actions. Instead, the

rat’s actions are the result of a model of its environment.

Given the evidence suggesting a feed-forward, rather than feed-back mecha-

nism for the emergence of matching, how can one model the moment-to-moment basis

for the behaviour observed on a molar scale?

5.2.2.2 Model-based reinforcement learning

One feed-forward description of real-time performance involves endowing the

experimental subject with a model of the identity, magnitude, and cost of the re-

wards to come. For example, a master chess player may have a model of all board

configurations their opponent may respond with for each piece they could move. The

current configuration of the board provides a stimulus that informs the player which

action is optimal if he wants to achieve the goal of a check-mate only if the player

also maintains a mapping of how the board can evolve and projects this mapping

sufficiently into the future. In an operant context, a pigeon may have learned that

responding at a blue pecking key an average of 30 times leads to 4 seconds of access to

a water bowl, while responding at the red pecking key leads to 3 seconds of access to

a food hopper approximately every 45 seconds. In this case, the mapping of pecking

keys to the magnitude of the water and food rewards, their identity, and their costs

are learned and encoded in memory.

Model-based reinforcement learning has been especially useful in the context of

goal-driven evaluative systems. Importantly, a habit-driven (that is, not model-based)
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evaluative system maintains a representation of magnitude but not identity, making

it resistant to reinforcer devaluation. If all that is learned is that the blue pecking

key delivers 1 arbitrary unit of reward while the red pecking key delivers 2 arbitrary

units of reward, then subsequent devaluation of the food delivered by the red pecking

key but not the water delivered by the blue pecking key will not affect a habit-driven

system. In contrast, a goal-driven (that is, model-based) evaluative system maintains

a representation of both identity and magnitude, making it vulnerable to reinforcer

devaluation.

In the model-based formulation, some stimulus is necessary to provide the

appropriate information. As discussed in Chapters 3 and 4, rats working for brain

stimulation rewards in the randomized-triads design behave as though they have a

model of the triad progression of trials within a session, cued by the inter-trial interval,

and a model of the progression of reward encounters within a trial. The appropriate

stimulus, however, is a vector of subjective determinants of decision: trials during

which the reward intensity is high and subjective opportunity cost is low are cued by

the occurrence of an inter-trial interval and the combination of low reward intensity

and subjective opportunity cost on the trial that preceded the inter-trial interval

cue. Moreover, this vector of intensity and opportunity cost does not need to be

explicitly uncovered, as rats rarely respond on trailing bracket trials of a repeating

triad of leading, test and trailing trials. This implies that the expected combination

of intensity and opportunity cost may be updated, but even when it isn’t, it provides

the appropriate signal of which of the three trial types will follow.

Within a test trial, the payoff is unknown prior to the delivery of the first

reward. As soon as the first reward is delivered, at least in the case of risk-less rewards,

rats behave as though they have a constant behavioural policy for the duration of

time they are earning rewards. Post-priming and post-reinforcement pauses, as well

as the overall proportion of time spent harvesting rewards, change abruptly between
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the time the subjective opportunity cost and reward intensity are unknown to the

time they are, in principle, completely determined. Here again, key determinants

of decision-making (opportunity cost and reward intensity) provide the necessary

stimulus for implementing a complete behavioural policy.

If the stimuli that signal the appropriate action to be taken are the deter-

minants of the decision itself, a model-based description of the task simplifies to a

simple filling-in process. When there is no objective variability in the opportunity

cost, reward intensity, and probability of reinforcement, the rat can simply pursue a

behavioural policy based on its best current estimate of what the scalar combination

of these decision variables will be. On this view, the representation of the payoff

from self-stimulation competes with that of extraneous activities, which each set the

probability that rats will engage in “work-related” or “leisure-related” activities.

A similar model has been formulated by Gallistel et al. (2001). In modelling

performance on concurrent VI/VI schedules of reinforcement, they assumed that stays

on either side were stochastic, exponential processes related to the combination of re-

inforcement rate and magnitude (the income) for that side. When conditions fluctuate

frequently, the rat obtains a small number of exemplars following the point at which a

change is perceived to have occurred, re-estimates the obtained incomes, and adjusts

performance accordingly. When they are stable for long periods of time, the rat’s

estimates reflect a compromise between new and old rates.

5.2.3 Description of the mixture model

In the model we present here, the scalar combination of subjective opportu-

nity cost, reward intensity, and probability determine the leaving rate (and thus its

reciprocal, the stay duration) of a wide array of behavioural states composing the

various observable activities in which the rat engages. External stimuli, such as the

flashing house light, signal a change in trial type and that conditions will be stable
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until the light flashes again. During test trials, the first reward delivery allows the

rat to revise its initial estimate of the payoff in a single step, providing the rat with

an appropriate internal stimulus that dictates how it ought to allocate its time. Prior

to this, the rat’s performance is strongly influenced by its uncertainty of the payoff

to come, setting a consistent behavioural policy at this phase of the trial that differs

from the later, stable phase of the trial that follows the first reward delivery.

5.2.3.1 Activities

In our treatment of real-time performance, the animal may be engaged in

one of six activities that are directly evident from the stream of holds and releases

at the lever. These behavioural activities are: post-priming pauses (PPPs), post-

reinforcement pauses (PRPs), holds, taps, true leisure bouts (TLBs) and censored

true leisure bouts. We discuss each activity below.

Post-reinforcement and post-priming pauses occur between the time the lever

extends into the operant chamber to the first time the lever is held. The first such

pause in a trial, as defined in Chapter 3, is the PPP, as it occurs 2 seconds following

the onset of the constant priming stimulation that is delivered during the inter-trial

interval. Post-reinforcement pauses, in contrast, occur following every subsequent

lever extension, usually (and in the case of rewards delivered with certainty, always)

preceded by the delivery of reinforcement.

Holds refer to every depression of the lever. When the subjective opportunity

cost of the reward is sufficiently low, there may be many holds, all censored by lever

retraction. As the opportunity cost increases, there may be fewer holds, and when it

is sufficiently high, any given hold may be much less likely to result in the completion

of the work requirement.

Finally, lever releases occurring after the lever has been held may either be

short or long (Conover et al., 2001b). When the reward intensity is high and the
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subjective opportunity cost is moderately low, rats will often release the lever for

short periods of time, quickly re-engaging the lever. These short pauses, uncensored

by the end of the trial and lasting under a second, we define as taps. They may be

included in the psychological perception of work, since the rat is close to the lever,

and may even still have a paw on the manipulandum while the lever is released. In

contrast, the rat may switch to a different goal after depressing the lever, leaving

it to explore, groom and rest. These longer pauses, lasting a second or more, we

define as true leisure bouts, as we presume that the animal is engaged in activities

unrelated to self-stimulation and related, instead, to the extraneous leisure activities

it can perform in the operant chamber.

Censored true leisure bouts (CTLBs) refer to pauses of any type (following

lever extension at the start of a reward encounter or following a hold in the midst of

a reward encounter) that are censored by the end of the trial but last longer than 1s;

when they occur, the animal has engaged in an activity that lasts at least as long as

the entire trial. A 1s criterion was used to ensure that very short pauses that were

censored by the end of the trial were not counted as CTLBs. We have isolated CTLBs

from PPPs, PRPs, taps and TLBs to facilitate the extrapolation of performance in

real time to the whole trial.

5.2.3.2 Hidden states

Since there is no way to know exactly what the animal is doing in the operant

chamber from glancing at the stream of lever releases and holds that is available, each

behavioural activity (PPP/PRP, CTLB, hold, tap, and TLB) may comprise various

“hidden” behavioural states. For example, TLBs may include grooming, exploring

and resting bouts that each have characteristic termination rates. The distribution

of dwell times in TLB activities would therefore be a mixture of multiple behavioural

states that the animal is in and which would be directly observable only given the ap-
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propriate equipment. Moreover, hidden behavioural states may produce behavioural

patterns that would not be observable even in principle. For example, the hold ac-

tivity may include a mixture of “patiently waiting” and “impatiently tapping” states,

or tapping-related releases may include long-interval and short-interval distributions.

In each case, only a careful interrogation of the distributions of dwell times making

up each activity would reveal the number and characteristics of hidden behavioural

states that compose them.

5.2.3.3 Expected payoff

In our modelling, we have assumed that the most important determinant of

dwell times within each hidden behavioural state is the expected payoff from self-

stimulation. Given the degree to which the mountain model, a molar model of

performance for rewarding brain stimulation, can explain performance for risk-less

and risky options based on a scalar combination of subjective reward intensity, op-

portunity cost, and probability of reinforcement (the payoff), we consider the most

important determinant of the behavioural allocation function to be the payoff that

can be expected from self-stimulation activities and the (presumably constant) payoff

from non-self stimulation activities. Our choice of determinant for the action-selection

process was motivated by a feed-forward model (Gallistel et al., 2001) according to

which the leaving rate on one side of a concurrent VI/VI schedule is proportional to

both the expected income (or payoff) derived from the other side and the expected

income relative to all sources of reward. Similarly, we have assumed that the rate at

which a hidden behavioural state is terminated is a function of payoffs that may be

obtained from self-stimulation and from extraneous leisure activities.

The model proposed below assumes that performance on the molar level is the

result of the rat filling in a value for the payoff it can expect from self-stimulation,

which biases the durations of the underlying behavioural states it will engage in.
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When a hidden state terminates uncensored, a hidden state from a different be-

havioural activity is begun. Although each activity we can observe is composed of

the same underlying behavioural states with particular distributional characteristics

(like a shape and scale), their mean depends on the expected payoff. The animal’s

pattern of responding is therefore completely, though non-deterministically, described

by the payoff it can expect to receive. In other words, the payoff from self-stimulation

will bias the animal to spend more time in some activities and less time in others as

a result of altering the rate at which those activities terminate.

When that payoff is not known with certainty, as is the case on test trial types

in the randomized-triad design, the first reward encounter will have different, though

consistent characteristics: the usual trade-off between exploration and exploitation

is disrupted. During this first reward encounter, the outputs of exploration and

exploitation both consist of work. As a result, the animal would be biased toward

working longer. Until the subjective opportunity cost is sufficiently high to indicate

to the animal that no matter how great the subjective intensity of the reward to come,

self-stimulation will not be worthwhile, the rat will depress the lever until a reward

is delivered.

We present here a two-phase model of performance for rewarding brain stim-

ulation, in which the first phase is characterized by a short PPP and a single, long,

continuous work bout (including holds and taps), while the second is characterized by

a continuous-time semi-Markov chain of hidden behavioural states, the probability

of which is determined by the payoff from self-stimulation, and for which leisure-

related activities (PRPs and TLBs) are highly sensitive to alterations in payoff while

work-related activities (holds and taps) are not.
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5.3 The CTMC

The model we shall present below is, in essence, hierarchical. The various

directly-observable activities (PRP, hold, tap, TLB) are made up of various hidden

behavioural states. The probability that an animal engaged in an activity has entered

a particular state is constant across payoffs. The probability that the particular

state terminates may or may not be payoff-dependent. Behavioural states can be

collectively observed through various activities that transition to each other in often

trivial ways. For example, the probability of transitioning from a PRP, tap or TLB to

a hold is one. If a TLB is going to terminate uncensored by the end of the trial, it must

necessarily be followed by a hold. Similarly, if a hold is going to terminate uncensored

by lever retraction following successful completion of the work requirement, it will

necessarily terminate on either a tap or a TLB. The relative probability of each

transition (hold to tap contrasted with hold to TLB) is also a function of the current

expected payoff. Finally, the probability per unit time of ceasing responding for the

remainder of the trial may also be a function of the currently expected payoff.

Figure 5.1 is a schematic of how we have modelled the entire reward encounter,

from the time the lever is extended into the chamber to the time it is retracted, start-

ing from the time the rat has estimated the payoff. Prior to the time the subjective

opportunity cost and reward intensity are revealed, the rat’s performance reflects the

payoff it expects to receive.

Five labelled white boxes represent the five different activities available after

the first reward has been delivered. Within four of those activities (post-reinforcement

pause, hold, true leisure bout, and tap), there are multiple hidden behavioural states.

Although activities can transition to each other, for simplicity of modelling, hidden be-

havioural states do not. When one hidden behavioural state terminates (for example,

a short hold), a completely different activity is begun (for example, a tapping-related
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Figure 5.1. Molecular model of a reward encounter. When the RE begins (top left
corner), the rat may initiate an uncensored post-reinforcement pause, a hold, or a
censored pause. These activities (white boxes) comprise multiple hidden behavioural
states (small circles) with different probabilities of occurrence (wi) and within which
the rat will spend a possibly payoff-dependent time (μi = F (Ub)). When the rat
leaves a hidden behavioural state, it transitions at rate αS,S′ to a new activity, like
a hold, or one of multiple different releases, such as TLBs, taps, and CTLBs. When
the hold has been visited for a cumulative amount of time, the hold time is censored
by lever retraction, at which point a new reward encounter may begin.
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release). The preponderance of a hidden behavioural state in generating dwell times

for the activity in question is wi (its weight). The payoff estimate for the trial deter-

mines the mean μi of the distribution from which dwell times of a hidden behavioural

state will be drawn. The expected dwell time in an activity is the convex combina-

tion of its component parts (∑i wiμi where ∑i wi = 1), and activity S transitions

to activity S′ by following the arrows in the activity-transition diagram presented in

figure 5.1 at a rate of αS,S′ .

The reward encounter proceeds as follows. The lever extends into the operant

chamber, which begins the reward encounter (yellow box, top left corner). The rat

may cease responding altogether with probability P [PRP censored] set by the payoff,

or if not (with probability P [PRP uncensored]), may begin pressing immediately with

probability P [PRP = 0]. If the first pause in responding is neither censored by the

end of the trial, nor shorter than can be measured, the rat begins a PRP of non-zero

duration. This PRP activity is actually the result of multiple (in the schematic, three)

hidden behavioural states. The probability that the rat is in behavioural state i while

performing the PRP activity is wi, and the duration for which the rat is in said state

i is given by μi. As a result, the expected duration of the PRP (μP RP ) is the convex

combination ∑i wi · μi, where ∑i wi = 1. The rate at which the PRP is terminated

is 1/μP RP , and this termination leads to a hold. When a hold begins, it, too, is the

result of multiple (in the schematic, two) hidden behavioural states, and the expected

duration of the hold (μH) is the convex combination of these holding-related hidden

behavioural states.

The hold terminates, when uncensored, on a release. The probability that a

lever release will be censored by the end of the trial is

P [Rel censored];
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if the release is not censored by the end of the trial (with probability P [Rel uncensored]),

it will either be a short, tapping-related release occurring with probability

P [uncensored rel is tap]

or a long, leisure-related TLB release occurring with probability

P [uncensored rel is TLB].

Both the TLB and tap activities are made up of hidden behavioural states, and as

with the PRP and hold activities, their termination rate is the reciprocal of the convex

combination of their respective hidden behavioural states. The only state in which

the rat is presumed to remain once entered is the CTLB state, which can be reached

with probability

P [PRP censored]

if the rat begins the CTLB at the start of a reward encounter, or

P [Rel censored]

if the rat begins the CTLB following a hold. When the cumulative time that the lever

has been held reaches the price, the hold bout will be censored by the retraction of

the lever, possibly followed by reward delivery. At this point, a new reward encounter

may begin.

In addition to indirectly setting the termination rate of an activity, we have

assumed that the payoff can set four separate probabilities:

1. the probability that the rat begins the reward encounter in the CTLB state

P [PRP censored]
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2. the probability that the rat begins the reward encounter with a PRP of 0 duration

P [PRP = 0]

3. the probability that a long pause in responding is censored by the end of the trial

P [Rel censored]

4. the probability that an uncensored pause in responding is less than 1s due to lever

tapping

P [uncensored rel is tap]

All other transition probabilities are either trivial (1 or 0) or calculable from the above

four relationships (e.g., P [PRP uncensored] = 1 − P [PRP censored]). It is possible

that one or more of these probabilities is payoff-independent, as we will empirically

demonstrate later.

Figure 5.2 is a schematic of how we have modelled the dependency of dwell

times in an activity on the expected payoff. Following the first reward delivery, and

every reward delivered thereafter, the rat has an up-to-date estimate of the payoff

from self-stimulation. This estimate sets the duration of an activity: while the relative

composition of the hidden behavioural states making up an activity remains the same,

their hazard functions will reach a different final level, thereby changing the expected

duration of the activity. The rat then remains in a given behavioural state for a

period of time sampled from the appropriate distribution of dwell times or until its

sojourn is censored by an experimenter-enforced event, such as retracting the lever
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Figure 5.2. Dependency of dwell times on payoff. The expected payoff from self-
stimulation (E[Ub]) is presumed to set the mean dwell time in any payoff-dependent
hidden behavioural states. As any observed activity is the result of a dwell time
chosen with some probability from one of its component hidden states, the dwell times
in an activity will be stochastic realizations of the distribution that characterizes
a particular state at a particular payoff level, with mean μi and shape κi. The
distribution from which the dwell time is selected is chosen with probability wi =
P [Activity = Si]. Bottom row shows the dependence of the mean of each hidden state
(y-axis) on payoff (x-axis); horizontal lines and shaded areas represent the predicted
mean and standard deviation of the distribution setting dwell time durations. Vertical
lines indicate from where, in the panels above, dwell times are sampled. The middle
row shows the probability density function (rotated 90 degrees) of each hidden state.
At the top, an example of the resulting log-survival plot is depicted as a function of
the log-dwell time and payoff, where hot colours signify high payoffs. Overlain on this
3D log-survival plot are the three functions setting the means of the hidden states
that make up this hypothetical activity.

- 210 -



and initiating a blackout delay or inter-trial interval. In the schematic example, high

self-stimulation payoffs reduce the amount of time spent in states S2 and S3 when

performing the activity, but the mean dwell time in state S1 is constant across payoffs.

As a result of its effect on the means of individual hidden states of an activity, the

payoff will alter the expected sojourn in that activity: overall, the rat will spend less

time performing this hypothetical activity by virtue of spending less time in each of

its component behavioural states. At the top of the figure, we show the log-survival

function plotted at each log-dwell time (y-axis) and payoff (x-axis, it is inverted such

that ribbons closer to the reader represent high payoffs and those farther away are low

payoffs) that results from the mixture of payoff-dependent and independent states.

For simplicity and symmetry, we expected that dwell times in leisure-related

activities would be sensitive to the payoff from self-stimulation, and dwell times in

work-related activities would be sensitive to the payoff from everything else. To test

this, we first checked whether the dwell times in each activity were dependent on

the payoff from self-stimulation. We could therefore assess whether the payoff from

self-stimulation affected the activities we presumed they would (PRP, TLB) and did

not affect the activities we presumed they wouldn’t (holds, taps).

The CTMC assumes that dwell times in any given state will be independent

of history. This includes the time spent in the PRP; in other words, the duration

of the PRP on one reward encounter can not be dependent on performance during

prior reward encounters if the Markov property is to hold. One would expect the

PRP on reward encounter n to be highly similar to that on reward encounter n − 1

if the constant payoff from self-stimulation throughout the trial had set them both.

In a scenario where the Markov property does not hold, the duration of the PRP

bears some relationship, above and beyond the payoff, to activities performed on the

preceding reward encounter, such as the amount of time spent holding and tapping.

To test this, we performed a two-stage hierarchical linear regression on the logarithm
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of each PRP. The first stage of the hierarchical linear regression predicted the log-

PRP duration based on the logarithm of the payoff from self-stimulation for the trial

from which it came. The second stage predicted the log-PRP duration from both

the log-payoff and the log-corrected work bout (which sums consecutive holds and

taps) from the reward encounter that just preceded it. If this second model predicts

additional variance in log-PRP durations that cannot be attributed to the log-payoff,

the Markov property does not hold in the case of PRPs with non-zero duration.

In the case of TLBs, the Markov assumption means that the time spent en-

gaged in the TLB activity is sampled with the same probability from any of the

behavioural states that make it up, no matter how long the animal spent holding

or tapping beforehand. One could argue that following a longer work bout (that is,

holding and tapping), the exhausted rat will take a longer true leisure bout. We

assessed the degree to which this was true by correlating the duration of every TLB

activity with the duration of the corrected work bout that immediately preceded it.

A strong positive correlation would imply that these two activities do not obey the

Markov rule: the duration of a TLB would be dependent on the duration of time

spent in hold and tap activities. In contrast, the absence of a correlation would imply

that the duration of a TLB is independent, at least to a first-order approximation, of

the rat’s lever-pressing history.

5.4 Methods

5.4.1 Behavioural protocol

Rats were the same as in Chapters 2, 3 and 4. Rats were presented with triads

of trials, starting with a leading bracket trial presenting high-frequency stimulation

at a 1s price, a test trial presenting stimulation of a frequency and price that was

pseudo-randomly drawn without replacement from a list, and a trailing bracket trial
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presenting low-frequency stimulation at a 1s price.

In the case of rats DE1, DE3, MA5, DE7, PD8, DE14, DE15, DE16, DE18

and DE19, test trials were drawn from a list containing 3 pseudo-sweeps for each pair

of reinforcement probabilities presented (1 vs 0.75, 1 vs 0.50, 1 vs 0.50 with lever

locations switched, and 1 vs 0.75 with lever locations switched). Performance during

each probability condition of each pair was analysed separately. Pseudo-sweeps were

sets of pairs of prices and frequencies either arrayed along the frequency axis at the

same 4s price (frequency pseudo-sweep), arrayed along the price axis at the same

high frequency (price pseudo-sweep), or arrayed along a ray that passed through the

intersection of the previous two sweeps and the presumed Fhm and Pe values for the

mountain fit described in Chapter 2 (radial pseudo-sweep).

In the case of rats F3, F9, F12, F16, F17 and F18, test trials were drawn from

a list containing 9 pseudo-sweeps. Three of the pseudo-sweeps were identical to those

presented above. The other 6 were price-frequency pairs arrayed along the frequency

axis at 0.125s, 0.25s, 0.5s, 1s, 2s, and 8s prices.

Performance presented throughout this chapter was obtained exclusively dur-

ing test trials of the randomized-triads design.

5.4.2 Statistical procedures

We began by first testing some of the assumptions of the model by determining

the proportion of variance, if any, that could be accounted for by previous performance

when controlling for the payoff in effect during the trial. It was then possible to

identify the various components of the continuous-time semi-Markov chain (CTMC),

by fitting increasingly complex mixtures of exponential and gamma distributions to

the dwell times observed in four, non-overlapping categories of behavioural activities

(PRPs, holds, taps and TLBs) and transitions to a fifth (CTLBs) from the first

reward delivery onward. These components, and the payoff-dependent probabilities
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of transitioning from one activity to the next, were individually fit for each animal.

When the various components of the CTMC had been identified, we extrapo-

lated what molar performance, from the first reward delivery onward, would be if the

rat’s behavioural policy were governed by this continuous-time semi-Markov model.

The extrapolation provides both a qualitative and quantitative description of how

well the CTMC accounts for performance not only on the molecular level, which is

its stated purpose, but also on the molar level.

5.4.2.1 Testing the Markov assumption for PRPs

Our CTMC assumes that every reward encounter following the first reward

delivery is essentially the same: whether one considers the beginning, middle, or end

of the trial, the animal behaves as though it passes through a number of hidden

behavioural states, measurable as activities, and either obtains a reward or stops

responding altogether. We sought to test whether the duration of the PRP was

dependent in any way on previous lever-pressing activities by performing a linear

regression of the logarithms of the PRP durations (excluding, of course, nil durations)

against the logarithms of the total corrected work bouts that preceded them.

If the time spent working and the post-reinforcement pause are both related

to the payoff from self stimulation, then the time spent in each of those activities

will necessarily be related to each other. If the Markov property does not hold for

PRPs, then there will be variability in PRP duration that can be attributed to the

time spent in previous activities, such as the last work bout, and not to the payoff

alone. We calculated the proportion of variance in log-PRP duration that could be

uniquely attributed to the payoff and not the duration of the corrected work bout that

resulted in the reward delivery, and the proportion that could be uniquely attributed

to the last corrected work bout and not the payoff. A single corrected work bout was

the sum of all hold times and tap times that were uninterrupted by an intervening
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TLB. For example, if the rat held for 1s, released for 0.5s, and held again for 0.75s

before engaging in a TLB for 10s, the total corrected work bout that preceded the

10s TLB was 2.25s. We isolated the bouts from the period of time following the first

reward delivery, that is, from reward encounters 2 onward, and included only those

work bouts that were censored by lever retraction. These proportions were assessed

by comparing a “larger” model to two “smaller” models:

1. Using only log-payoff as a predictor,

2. Using only the log-duration of the last corrected work bout as a predictor, and

3. Using both log-payoff and log-duration of the last corrected work bout as a pre-

dictor.

The proportion of variance accounted for by model 3 results from two pre-

dictors. Subtracting the proportion of variance accounted for by payoff (model 1)

provides an estimate of the increase in predictive power that the last corrected work

bout alone contributes to log-PRP duration. Subtracting the proportion of variance

accounted for by the last corrected work bout (model 2) provides an estimate of the

increase in predictive power that the payoff alone contributes to log-PRP duration.

If the Markov property did not hold, the duration of the last corrected work bout

would have to have had at least some influence on the duration of the subsequent

PRP. As such, we extracted the proportion of variance in log-PRP that could be

uniquely attributed to the log-last corrected work bout, as well as that which could

be uniquely attributed to the log-payoff.

5.4.2.2 Testing the Markov assumption for TLBs

A key assumption of the CTMC is that transitions from one state to another

are independent of previous states. Although the rat may enter a state that is charac-

terized by a gamma distribution, and its dwell time in that state will therefore not be

independent of the amount of time already in the state, when that state terminates,
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the Markov property assumes that the rat transitions to other states with constant

probability. It does not matter that the rat has been transitioning between holds and

taps for a long or a short time—the duration of the TLB when the work bout ter-

minates uncensored is presumed to be drawn from the same mixture of distributions

that each characterize a hidden behavioural state.

To determine whether the duration of any TLB depended on the duration

of time spent working (that is, all holds and taps) before that point, we correlated

TLB durations with the total corrected work bout duration that preceded them. The

total proportion of variance in TLB duration accounted for by the last corrected work

bout was extracted across all price-frequency pairs presented to each animal in each

condition.

5.4.2.3 Inferring hidden behavioural states

As a first step, we identified whether the expected dwell time in an activity

was payoff-dependent by extracting the maximum-likelihood estimate of the mean

dwell time for the activity at each payoff in all subjects and conditions together. The

data were then restricted to the range of payoffs that was common to all animals and

conditions, and we performed a linear regression of the log-maximally likely mean

dwell time onto the logarithm of the payoff. The deviance of this regression is a

measure of error, and the deviance of a null model for which payoff has no effect on

dwell time (an intercept-only model) is a measure of total variability. Their difference

is the variability predicted by payoff. The proportion of the total variability that was

explained (a pseudo R2 statistic) was then calculated for each activity. It is on the

basis of these R2 statistics that we chose to model dwell time as payoff-dependent or

independent.

Each non-overlapping behavioural activity (PRP, hold, tap, TLB, CTLB)

could comprise multiple hidden components. In order to balance comprehensive-
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ness with parsimony, we fit increasingly complex mixtures of exponential and gamma

distributions to the set of dwell times in each activity, for which the mean of each com-

ponent of the mixture was potentially a logistic function of the logarithm of the payoff,

with constant shape parameter (in the case of gamma distributions) and mixture pro-

portions. Exponentially-distributed components were assumed to be payoff-invariant,

while the logarithm of the mean of gamma-distributed components could be a logistic

function of payoff. Payoff-sensitive, exponentially-distributed components are a spe-

cial case of payoff-sensitive, gamma-distributed components, where the shape param-

eter equals one, and payoff-insensitive gamma-distributed components are a special

case where the slope of the logistic function of payoff is 0.

If payoff-dependent dwell times could be justified, we fit up to 5 components,

starting with one gamma-distributed component whose mean was a scaled sigmoid

function of payoff. We then attempted a fit with one exponential component whose

mean was constant across payoffs and one payoff-dependent gamma-distributed com-

ponent. In each attempt, first the number of gamma components was incremented

(from 1 to the number of components), then the total number of components. This

continued until the weight of any component was below 0.1 on a fit attempt or the

number of components would have become 6.

If the assumption of a payoff-dependent dwell time was not justified, we fit

up to 5 components, starting with one exponentially-distributed component whose

mean was constant across payoffs. We then attempted a single gamma-distributed

component. In each attempt, first the number of gamma-distributed components

was incremented (from 0 to the number of components), then the total number of

components. This continued until the weight of any of the components of a fit attempt

was under 0.1, or the number of components would have become 6.

We then identified among all combinations of exponentially- and gamma-

distributed hidden states that which had the lowest Akaike Information Criterion
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(AIC, Akaike, 1976). Attempts to fit too complex or too parsimonious a model to

the set of dwell times in an activity would have high AIC values, while a model that

was sufficiently complex to explain the data without extraneous parameters would

have low AIC values.

The AIC is defined as twice the number of parameters minus twice the loga-

rithm of the likelihood function for the maximally likely set of fit parameters:

AIC = 2nparm − ln(L).

The probability of n data points, as a function of k mixing proportions w and distribu-

tional parameters Θ (where Θ corresponds to the mean in the case of exponential dis-

tributions, a vector with shape and scale parameters as entries for payoff-independent

gamma distributions, and a vector with logistic and shape parameters as entries for

payoff-dependent gamma distributions) is the likelihood,

L = P [x1, . . . , xn|Θ1, w1, . . . , Θk, wk] =
n∏

i=1
(

k∑
j=1

(wjP [xi|Θj])).

In other words, it is the product of the convex combination of the probability

of each dwell time according to each hidden behavioural state weighted by its mixing

proportion. In the case of censored observations, the survivor function was used. In

the case of uncensored observations, the density function was used. For example, the

likelihood of a mixture of two components, with weights of 0.4 and 0.6, and means of

1s and 2s, for a single uncensored dwell time (x1) of 1.6s is given by

P [x = x1|Θ1, Θ2] = P [x = 1.6|μ1 = 1] × 0.4 + P [x = 1.6|μ2 = 2] × 0.6.
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Similarly, the probability of a single censored dwell time (x2) of 1.6s is given by

P [x ≥ x2|Θ1, Θ2] = P [x ≥ 1.6|μ1 = 1] × 0.4 + P [x ≥ 1.6|μ2 = 2] × 0.6.

The probability of observing both x1 and x2 is the product of the above prob-

abilities. The fitting algorithm identified the parametrization of Θs (which comprises

all the distributional characteristics of each hidden behavioural state) and ws (which

sets the preponderance of each hidden behavioural state in an activity) for which this

likelihood L was maximal.

The number of parameters for any given model of an activity is two or five

for every gamma-distributed component. In the case of components with payoff-

dependent means (nγvar), there is one for the shape, one for the intercept of the logis-

tic, one for its slope, one for its minimum asymptotic value and one for its maximum

asymptotic value. In the case of components with payoff-independent means (nγconst),

the slope is fixed at 0, the maximum and minimum are fixed at the mean, and only the

intercept is free to vary. There is one parameter for every exponentially-distributed

component (nExponential, the shape has a value fixed at one and one parameter deter-

mining the mean is free to vary). Finally, there is one parameter for all but one of the

total number of distributions: k-1 of the components have a parameter determining

their mixing proportion, and the mixing proportion of one of the components is not

free to vary. This number of parameters, nparm = 2nγconst+5nγvar +nExponential+(k−1),

is what we used to evaluate the parsimony of our model. To ensure parsimony in how

a behavioural activity was described, we considered only the mixture model which

produced the lowest AIC value.

In summary, we identified sets of w and Θ values (one for each hidden state/mix-

ture component) for which the likelihood function was maximal and for which the
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AIC was minimal, where

Θi = [μi]

for payoff-invariant exponential components, where μi is the mean of distribution i,

Θi = [κi, μi]

for payoff-invariant gamma components, where κi is the shape parameter of distribu-

tion i,

Θi = [κi, β0i
, β1i

, Mini, Maxi]

for payoff-dependent gamma components, where β0i
is the intercept, β1i

is the slope,

Mini is the minimum and Maxi is the maximum predicted log-mean dwell time for

component i at a particular payoff.

We identified the maximum-likelihood estimates of the parameters describing

each activity iteratively in a manner similar to the expectation-maximization algo-

rithm. In each iteration of a fit, assuming the most recently fit set of k constant (for

payoff-independent exponentially- and gamma-distributed components) and logistic

functions (for payoff-dependent gamma-distributed components), and k shape param-

eters (in the case of gamma distributions), we first obtained the maximum-likelihood

estimates of the mixture proportion of the first k − 1 components.

This fit was constrained such that the sum of the proportions could not be

greater than 1 or less than 0. Once a maximum-likelihood fit of the mixing propor-

tions was complete, the algorithm used the most recently fit values to identify the

maximum-likelihood estimates of the logistic and constant functions setting the loga-

rithm of the mean. This fit was constrained such that the expected dwell time for any

hidden behavioural state was at most the longest observed dwell time for that activity

and greater than 0. As the survivor function is a monotonically increasing function

of the mean (for a score x, the survival probability of x never decreases as the mean
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increases), the probability of a set of censored observations can be made arbitrarily

large. For example, for a score x = 0.1s, the survivor function is 0.37 (i.e., 37 % of

dwell times are at least 0.1s) when the mean is 0.1s, 0.90 when the mean is 1.0s, and

0.99 when the mean is 10.0s. As a result, the mean of any component at any payoff

was constrained to be at most the longest dwell time observed for that activity across

all payoffs, and at minimum, the shortest dwell time. Shape parameters of gamma

distributions were constrained to be at least 1. A value of 1 indicates an exponential

distribution. When a state is composed of exponentially-distributed sub-states, both

of which must terminate in order for the state to terminate (for example, observing

a “tapping release” may require “release paw from lever” and “resume lever-press”

to be completed), dwell times in the state will have a gamma distribution with a

shape parameter greater than 1. Shape parameters between 0 and 1 imply that a

state is made up of a mixture of sub-states, with one component terminating more

quickly than others. As uncovering the components of a mixture is the purpose of

the algorithm described here, states were not allowed to have shape parameters that

were less than 1.

To ensure that each component was uniquely specified, behavioural states were

sorted from largest mixing proportion to smallest. This ensured that component 1

always referred to the most preponderant component of the mixture of distributions,

component 2 the second, and so on. Following this second phase of the algorithm, the

logarithm of the probability of all dwell times in the activity given the fit parameters

(the log-likelihood) was calculated and compared to its value on the previous iteration.

The algorithm continued to fit w, then Θ, values until the log-likelihood changed by

less than 0.001 (the parameter values converged) or 500 iterations had been performed.

All fits converged well before the 500 iteration limit was reached. Three starting values

were used for this process: where payoff-dependent, logistic functions were set to have

a slope of 0, −50 and 50 and an intercept that set the midpoint of the logistic function
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at the midpoint of the logarithm of the payoffs tested. In all cases, the starting shape

parameter of all components was set to 1 and the starting maxima and minima of the

logistic functions, where applicable, were set to the maximum and minimum observed

dwell times in the activity.

5.4.2.4 Inferring transition probabilities

Inference of the preponderance of each state (its mixing proportion wi) pro-

vides the probability that a dwell time in an activity is sampled from the distribution

that is characteristic of that state. Inference of the parameters that set each state’s

distributional characteristics (Θi), which could be

1. a mean μi for exponential,

2. a shape-mean combination [κi, μi] for gamma, or

3. a shape-scaled logistic combination [κi, β0i
, β1i

, Mini, Maxi] for payoff-dependent

gamma distributions,

provides the probability per unit time that any state will terminate. The total ex-

pected duration of a sojourn in the activity is the weighted combination (convex

because the weights sum to one) of the duration of each of its component states
∑

i(wiμi). The termination rate of an activity is the reciprocal of its total expected

duration. The transition rate from one activity to the next is thus almost completely

specified by the set of wis and Θis.

For most links in the chain, the probability of a transition from one observable

activity to another, and from one hidden behavioural state to another, is trivial: it is

either 0 or 1. For example, when a PRP has terminated, no matter which behavioural

state may have actually occurred, it necessarily terminates on a hold with probability

1. When a tap or TLB terminates, no matter which behavioural state may have

actually occurred, it must also necessarily terminate on a hold with probability 1.

However, a hold could terminate on a long, censored release or an uncensored release,
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and the uncensored release could be either a tap or a TLB. We therefore needed to

explicitly model two probabilities: the probability that the rat would not return to

work after releasing the lever, and if it did, the probability that an interruption to

lever-pressing resulted in either a tap or TLB. We performed a logistic regression,

using log-payoff as the sole predictor for a binomial outcome: either that a release

would be censored by the end of the trial and last longer than 1s, in the case of the

probability of a CTLB, or that an uncensored release was either a tap or a TLB,

in the case of the probability of a tap. The former logistic regression provides the

probability of transitioning from a hold to a CTLB, assuming a hold has terminated

(P [Relcens]), while the probability of transitioning from a hold to either a tap or TLB

is obtained by subtracting this number from one (P[Relunc] = 1 − P [Relcens]). The

second logistic regression provides the probability that an uncensored release is a tap

(P [Relunc = tap]) at each level of payoff; subtracting this number from 1 provides the

probability that an uncensored release is a TLB (P[Relunc = TLB] = 1 − P [Relunc =

tap]).

5.4.2.5 Inferring starting probabilities

Two cases require further explicit modelling. As stated, the CTMC assumes

that following reward delivery, there is a PRP of non-zero duration that terminates on

a hold. Although this is often the case, it is not a universal occurrence. For a select few

rats with highly effective electrodes for which stimulation does not appear to induce

any additional movement, the rat depresses the manipulandum as the lever re-enters

the operant chamber. In this case, the first activity the rat performs in a reward

encounter is a hold rather than a PRP. We address this reality by modelling zero-

duration PRPs explicitly. Following reward delivery, there is some payoff-dependent

probability that the CTMC will begin directly in a hold activity, thereby forcing the

PRP to last zero seconds. We performed a logistic regression on the proportion of not
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immediately-aborted reward encounters that were begun directly in the hold activity,

as a function of the logarithm of the payoff.

A second special-case of the PRP concerns the so-called CTLB activity. It is

possible that there are actually multiple hidden behavioural states related to censored

true leisure bouts. For example, a rat may return to work after tens of minutes in

anticipation of the next trial. In order to simplify the analysis, we considered only

PRPs and releases that were censored by the end of the trial and lasted longer than

1s. We performed a logistic regression on the proportion of reward encounters that

were immediately aborted (that is, the PRP was longer than 1s and censored by the

end of the trial), as a function of the logarithm of the payoff.

5.4.2.6 Extrapolating to the entire trial

Once the rat has obtained an estimate of the payoff, this estimate sets the

duration of the various hidden behavioural states that compose each activity. The

activity will have an expected dwell time equal to the convex combination of the

weight of each behavioural state and its mean. The reciprocal of this dwell time

defines the rate at which the activity is left. From the above-mentioned hidden

behavioural states, transition probabilities, and special-case transitions, a complete

picture of performance on a reward encounter can emerge.

The rate αA,A′ at which an activity A transitions to another activity A′ is the

product of the reciprocal of its mean dwell time multiplied by the probability that A′

follows A (αA,A′ = 1/μA · P[A → A′]). In many instances, the transition probability

P [A → A′] is either 0 or 1. Uncensored PRPs, taps, and TLBs are always followed by

holds. In the case of transitions from holds, the probability of a transition to a tap,

TLB or censored true leisure bout may be somewhere in the interval [0,1]. Holds could

terminate on censored (CTLB) or uncensored releases; if uncensored, a release could

be a tap or a TLB. Both of these probabilities have been explicitly modelled above.
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As a result, every potential transition rate is completely specified in the model.

We can define a series of differential equations for the evolution of performance

in the CTMC in terms of these transition rates: at any time t, the rate at which an

activity is left is the sum of all transition rates leading away from it, and the rate at

which it is entered is the sum of all transition rates leading toward it. If αij is the

transition rate from activity j to i, and αii is the (negative) transition rate away from

activity i, then the probability at any time t that the rat engages in activity i is a

differential matrix equation of the form

∂

∂t
P [activity = i at time t] = AP [activity = i at time t]

where A is a matrix whose entries are the elements αij and αii. For example, suppose

the probability of being engaged in activity A is 1, and A′ is 0, and further suppose

that the rate αA,A′ = 0.25. After 1s, the probability of being engaged in activity A′ is

0.25, and the probability of still being engaged in activity A is 0.75. Another 1s later,

the probability of transitioning from A to A′ is still 0.25, so of the 0.75 probability that

remains in performing activity A, one quarter of it (0.75 × 0.25 = 0.1875) transitions

from A to A′. Thus, there is now a 0.5625 probability (0.75 − 0.1875) of still being

engaged in activity A, and a 0.4375 probability (0.25 + 0.1875) of being engaged in

activity A′. In other words, the absolute change in the probability of being engaged

in activity A (0.25 at 1s, and 0.1875 one second later) depends on the probability

of already performing the activity (1.00 at 1s, and 0.75 one second later), which is

an ordinary differential equation of the form ∂/∂tP [A at t] = αA,A′P [A at t]. Since

there are multiple activities that could transition to each other, the CTMC defines a

system of these ordinary differential equations that can be elegantly condensed into

the matrix equation defined above, with the transition rates αA,A′ as entries to the

matrix A.
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If we enumerate the activities as PRP (1), hold (2), tap (3), TLB (4) and

CTLB (5), this matrix becomes:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−αP RP,H 0 0 0 0

αP RP,H −αH,R αtap,H αT LB,H 0

0 αH,tap −αtap,H 0 0

0 αH,T LB 0 −αT LB,H 0

0 αH,CT LB 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the probability of engaging in activity i at time t is a column vector with entries

arranged in the same order (PRP, hold, tap, TLB and CTLB).

The general solution to differential equations of the form ∂/∂tX(t) = AX(t)

is

X(t) = C1e
λ1tU1 + . . . + CneλntUn

where Ck is a constant, and λk and Uk are the kth eigenvalue and eigenvector, re-

spectively. In the case of engaging in some activity at any given point in time, this

becomes

P [activity = i at time t] = C1e
λ1tU1 + . . . + CneλntUn,

with Ck, λk and Uk the kth constant, eigenvalue, and eigenvector.

The constant is solved according to the appropriate starting probabilities

in each state. The probability of starting in the CTLB activity is P [PRPcens].

The probability of starting in either of the two non-CTLB activities (PRPs and

holds) becomes 1 − P [PRPcens], which sets the probability of starting on a hold

to (1 − P [PRPcens]) · P [PRPunc = 0], and of starting on an uncensored PRP to

(1 − P [PRPcens]) · (1 − P [PRPunc = 0]). All other starting probabilities are 0. At

t = 0, the exponential terms of the probability equation disappear (as e0 = 1), so the
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starting probabilities define a simple linear system of form

starting probability = C1U1 + . . . + CnUn = [U1 . . . Un]

⎡
⎢⎢⎢⎢⎢⎢⎣

C1

. . .

Cn

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which can be solved for the vector of Cks directly.

This general solution provides the probability, at any time t, that the rat is

performing each of the 5 activities, when approximating the overall termination of an

activity as a true time-invariant Markov process (i.e., all activities are exponentially

distributed). This seemed a reasonable approximation, as the modal shape parameter

for an activity was usually one, which is indicative of an exponentially-distributed

process. The time spent engaging in each of the above-mentionned five activities

is simply the integral of the probability of performing the activity in question over

time. For example, if at time t = 0.0s, there is a 0.8 probability of performing a PRP

activity, and a 0.2 probability of performing a hold activity, the rat has effectively

spent 0.08s in a PRP and 0.02s in a hold between t = 0 and t = 0.1s. If, at time

t = 0.1s, there is now a 0.7 probability of performing the PRP activity and a 0.3

probability of performing a hold, the rat has effectively spent 0.07s in the PRP and

0.03s in the hold activity between t = 0.1 and t = 0.2s. Summing these together,

the rat has accumulated a total of 0.08 + 0.07 = 0.15s in the PRP and 0.05s in

the hold activity since the start of the reward encounter. We performed a numerical

integration, at 0.1s time steps (the resolution of our behavioural apparatus) until one

of the following conditions was true:

1. The total time accumulated in hold activities reached the price, or

2. The total time accumulated in all activities together reached the reward encounter

time predicted by a linear regression of log-reward encounter duration on log-objective

price and log-subjective reward intensity.
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The linear regression used above to predict the duration of the reward en-

counter used the log-subjective intensity, as a more valuable reward will drive the

reward encounter to be shorter, as well as the log-objective price. This was done

because even if the subjective opportunity cost of rewards will be equal when the

price is 0.01s or 0.02s, the rat will have to actually hold the lever for 0.01s or 0.02s,

and thus, the reward encounter will last, at minimum, twice as long in the 0.02s case

than it does in the 0.01s case. At a constant objective price, increases in reward

intensity should decrease the duration of the reward encounter, and at a constant

subjective reward intensity, increases in objective price should increase the duration

of the reward encounter.

This allowed us to extrapolate the results of our molecular model, which speci-

fies behaviour on a moment-to-moment time scale, to the molar level, which describes

behaviour on the scale of reward encounters and whole trials. The numerical inte-

gration of the system of differential equations provides the evolution of performance

over arbitrary time scales, while the stopping criteria (either the objective price or the

predicted reward encounter duration) provide a reasonable time scale over which to

evaluate the integration. This modelling allows us to estimate the proportion of time

allocated to holding and tapping, but only for the period of time the rat is actually

working. In order to extrapolate time allocation to the entire trial, this time alloca-

tion was multiplied by the probability of not starting on a CTLB (1 − P [PRPcens]),

because all reward encounters begun with a CTLB will necessarily have a time allo-

cation of 0.
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5.5 Results

5.5.1 Testing the assumptions of the model

5.5.1.1 PRP is independent of previous work bout

To test the Markov assumption with respect to the duration of the PRP, we

performed a linear regression of the logarithm of the PRP duration as a function

of the logarithm of the payoff and the logarithm of the last corrected work bout.

This analysis did not include PRPs of 0 duration (for obvious reasons), and excluded

instances where the last corrected work bout was equal to the objective price. This

exclusion was performed to maximize the proportion of variance that can be uniquely

attributed to each predictor: last corrected work bout duration or payoff, which is a

scalar combination of the objective price with other key determinants of the decision

to press.

Figure 5.3 is a box-whisker plot of the proportion of variance in log-PRP du-

rations that can be accounted for by only the log-payoff (Log[Ub]) and by only the

log-last corrected work bout (Log[CWB]) when the rat did not obtain a reward follow-

ing a single, continuous hold. Overall, the log-last corrected work bout accounts for

no variance (median of 0.00145) above and beyond what can be accounted for by the

log-payoff, while the log-payoff uniquely accounts for considerable variance (median

of 0.17696). The far-right box-whisker plot provides the ratio of the proportion of

variance uniquely predicted by log-payoff compared to log-last corrected work bout.

The median of these ratios is very large (161.6), reflecting the much greater degree

to which our proposed determinant (log-payoff) can account for the decision to wait

before pressing again than previous performance.

This linear regression provides an important confirmation that the duration of

the PRP is relatively independent of the duration of the states that came before it,
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Figure 5.3. PRP durations are independent of previous work bout. Box whisker plot of
the proportion of variance in Log10[PRP duration] that can be uniquely attributed to
the duration of the last corrected work bout (red) or to the payoff from self-stimulation
(green) and not the other. In the right-hand panel, the ratio of the proportion of
variance in Log10[PRP duration] that can be uniquely attributed to payoff to the
proportion of variance that can be uniquely attributed to the duration of the last
corrected work bout is shown in a box-whisker plot. In all cases, post-reinforcement
pauses do not bear any meaningful relationship with the duration of the last work
bout, when controlling for payoff, while being much more heavily dependent on payoff
while controlling for the duration of the last work bout.
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thereby confirming (at least to a first-order approximation) that the Markov property

holds in the case of the post-reinforcement pause. We now turn to the second type

of pause that may not be time-invariant: the true leisure bout.

5.5.1.2 TLB duration is independent of previous work bout duration

To test the Markov assumption with respect to TLBs, we performed a simple

linear regression of the log-TLB durations as a function of the log-corrected work

bout that preceded them. For the Markov assumption to hold, TLB durations (and

therefore, their logs) would need to be independent of history. As a first-order ap-

proximation, then, we set to determine whether there was any relationship between

how long the rat had worked and the duration of the pause, lasting longer than 1s,

that followed.

Figure 5.4 demonstrates this independence. The left-hand panel shows a scat-

ter (for the animal showing the strongest dependence of TLB on the last corrected

work bout) of the duration of the TLB as a function of the immediately preceding

corrected work bout: there is little evidence a systematic relationship. The right-

hand panel is a box-whisker plot of the proportion of variance in log-TLB that can

be accounted for by the log-last corrected work bout. It has a median value of 0.011,

and in no case is the relationship statistically significant at the traditional 0.05 level.

We can conclude from these data that, indeed, the Markov assumption holds (to a

first-order approximation) in the case of TLBs: they are relatively independent of

the corrected work bouts that preceded them, no matter what the payoff may be.

Regardless of whether the rat spent a great deal of time working or a short amount of

time working, the rat will spend no more or less time engaging in uncensored releases

lasting over 1s.

Having justified the Markov assumption for PRPs and TLBs, we shall now

describe the results of modelling real-time performance in the period of time following

- 231 -



10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Duration of Hold at time tD
u

ra
ti

o
n

 o
f 

T
ru

e 
L

ei
su

re
 B

o
u

t 
at

 t
im

e 
t+

1

R2=0.064

 

 

Figure 5.4. TLB duration is independent of previous work bout. The left-hand panel
provides a scatter plot of the data from F17, the animal showing the strongest de-
pendence of log-TLB duration on the log-last corrected work bout duration. The
regression line is indicated in red. The right hand panel provides a box-whisker plot
of the R2 values from all animals in all conditions; the median value occurs at ap-
proximately 0.01 (1% of the variance in log-TLB duration can be explained by the
duration of the last corrected work bout) and in no case is the regression statistically
significant. Points indicate individual R2 values.
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the first reward delivery as a CTMC, painting a portrait of each activity.

5.5.2 Modelling performance

5.5.2.1 Payoff-dependent and independent activities

Figure 5.5 provides our justification for allowing PRPs and TLBs to have

hidden behavioural states with payoff-dependent means, while restricting the hid-

den behavioural states of holds and taps to payoff-independent means. Although

the maximum-likelihood estimates of the PRP (top left) and TLB (bottom right)

duration consistently decrease with payoff across rats (R2 values of 0.48 and 0.38,

respectively), the maximum-likelihood estimates of the tap (top right) and hold (bot-

tom left) durations have much weaker relationships with payoff (R2 values of 0.07 and

0.11, respectively). All correlations were significant, but at a 5% type-I error rate,

with the number of data points observed (at minimum 1260), an R2 value of 0.003

would be statistically significant. As a result of their weaker payoff relationships, we

judged that allowing holds and taps to consist of payoff-dependent components was

not justified by the overall pattern of dwell times in these activities across all animals.

5.5.2.2 Post-reinforcement pause

Figures 5.6 and 5.7 provide a portrait of the PRP. Figure 5.6 shows the log-

survival function of the dwell times at each payoff for one animal (DE15) at each

payoff, with dwell times on a log scale. Hot colours indicate high payoffs and cool

colours indicate low payoffs. In linear space, the log-survival function is a straight

line when the underlying process is a single exponential distribution; it is convex for

mixtures of multiple distributions and concave for gamma distributions. Plotting the

log-survival (z-axis) as a function of the log-dwell time (y-axis), as has been done

here, exaggerates the convex/concave relationship for single gamma- and mixtures of
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Figure 5.5. Maximum likelihood dwell times as a function of payoff. Scatter plots of
the log-maximum likelihood dwell times in PRP (upper left), hold (upper right), tap
(lower left) and TLB (lower right) activities for all animals in the range of payoffs
common to all animals, as a function of the log-payoff. While the relationship between
log-dwell time and log-payoff is strong for both PRP and TLB activities (R2 values
are 0.48 and 0.38, respectively), the relationship is weak for both holds and taps (R2

of 0.07 and 0.11, respectively).
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Figure 5.6. Log-survival function of the PRP dwell time. The log-survival function
is shown here as a function of PRP dwell time (in logarithmic space) and payoff
(in ordinal space) overlain with the predicted dwell times of the hidden states. Hot
colours indicate high payoffs while cold colours indicate low payoffs. At high payoffs,
the PRP rarely survives beyond a few seconds, while at low payoffs, PRP dwell times
on the order of hundreds of seconds have a higher probability of survival.
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x10000

Figure 5.7. Portrait of the post-reinforcement pause activity. Top panels show his-
tograms of the number of hidden states (upper left), the log-shape parameter (upper
centre), the slope of the sigmoid (upper right), the log-minimum dwell time (middle
centre), and log-maximum dwell time (middle right). The bottom two panels show a
box-whisker plot of the Ln-likelihood ratio of the CTMC model to a model in which
PRP durations are stochastic realizations of a single, payoff-independent exponential
process. The bottom right panel focuses on the region from 10 to 180. Red points
indicate individual Ln[Likelihood Ratio] values. Note that the scale on the bottom
left plot is in units of ten thousand.
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multiple gamma distributions; exponential distributions become convex. Gamma and

exponential (that is, gamma distributions with a shape parameter of 1) distributions

thus appear to have more concave (downward-accelerating) log-survival functions,

and mixtures have more convex (downward-decelerating) functions.

Overlain with the fit, we have indicated the hidden behavioural states in black.

In this animal, two hidden PRP behavioural states were extracted: one with a nega-

tive sloping payoff dependence and one payoff-independent component.

The plots on the first row of figure 5.7 show the number of hidden states (left),

their shape parameter (middle), and the slope of the scaled logistic function that sets

their mean (right), for each animal in each condition. In each case, we provide a

histogram and box-whisker plot of the extracted value. The post-reinforcement pause

appears to consist of one or two states (median number is 1, inter-quartile range spans

1 to 2) that is largely exponentially distributed (median κ is 1.14, or a logarithm of

0.06; inter-quartile range spans 1 to 1.44, or logarithms from 0 to 0.16). This hidden

state has a payoff-dependent mean, and the slope of the payoff-mean relationship is

negative (median slope is −4.77, inter-quartile range spans −6.9 to −2.7).

The middle row shows the minimum of the scaled logistic (middle) and the

maximum of the scaled logistic (right), for each animal in each condition. We pro-

vide, as above, a histogram and box-whisker plot of the extracted values. The post-

reinforcement pause appears to have a very low minimum (often as low as 0.1s), with

a median log of −0.26 (0.55s) and inter-quartile range spanning −0.86 (0.17s) to 0.07

(0.42s). At low payoffs, the post-reinforcement pause rises to a maximum of 1.37

(23.20s), with an inter-quartile range spanning 0.86 (7.28s) to 1.83 (68.08s).

The bottom panel of figure 5.7 shows the log-likelihood ratio of our model, in

which dwell times are sampled from a mixture of exponential and payoff-dependent

gamma distributions, compared to a null model in which dwell times are sampled from

a single, payoff-independent exponential distribution. As the range of log-likelihood
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ratios extends to 2.5 × 104, we have expanded the plot in the right-hand panel, to

focus on the region from logarithms of 10 to 180. In all cases, the log-likelihood

ratio is large, with a minimum log of approximately 11, indicating that in the worst

case, the probability of our data is approximately 60000 times (e11) more likely if we

assume our model is correct than if we assume a null model is correct, even when

taking the extra parameters into account.

5.5.2.3 Hold

Figures 5.8 and 5.9 provide a portrait of the hold activity. Figure 5.8 shows a

typical log-survival plot of the dwell times at each payoff for one animal (F9). The

payoff-independent behavioural states are indicated with a black line overlay. In this

animal, two hidden holding-related states were extracted: one with a low (log of 0.2,

or 1.6s) mean and one with a high (log of 1.1, or 12.6s) mean.

The top plots of figure 5.9 show the number of hidden states (left), their shape

parameter (middle), and their mean (right), for each animal in each condition. In

each case, we provide a histogram and box-whisker plot of the extracted value. Holds

appear to consist of two or three (median number is 2, inter-quartile range spans 2

to 3), mostly exponentially distributed (median κ is 1.25, inter-quartile range spans

1 to 1.91) hidden states. The log-dwell time in holding-related states is broadly

distributed, with a median at a log of 0.34 (or 2.19s) and an inter-quartile range

spanning a log of −0.14 (or 0.7s) to a log of 0.84 (or 6.92s).

Because multiple hidden behavioural states related to holding were identified,

and these states were forced to have payoff-independent mean dwell times, we further

identified the mean dwell time for the two most preponderant components (those with

the greatest wi). The two most preponderant components were ordered by their mean;

if only one component was identified, it was assumed to be the longest. The medians

and inter-quartile ranges of the mean dwell times for each of these two components

- 238 -



Figure 5.8. Log-survival function of the hold dwell time. The log-survival function
is shown here as a function of hold dwell time (in logarithmic space) and payoff
(in ordinal space) overlain with the predicted dwell times of the hidden states. Hot
colours indicate high payoffs while cold colours indicate low payoffs. Two components
are apparent: one with a mean that is a few seconds long, and a second with a mean
that is on the order of tens of seconds.
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Figure 5.9. Portrait of the hold activity. Top panels show histograms of the number of
hidden states (left), the log-shape parameter (centre), and predicted mean dwell time
(right). The middle two panels show a box-whisker plot of the Ln-likelihood ratio of
the CTMC model to a model in which hold durations are stochastic realizations of a
single exponential process. The bottom right panel focuses on the region from 0 to
180. Red points indicate individual Ln[Likelihood Ratio] values.
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are indicated in red in the top right panel of figure 5.9. The dwell time of the shorter

component had a median log of −0.31 (0.49s) with an inter-quartile range spanning

a log of −0.69 (0.20s) to 0.12 (1.31s). The dwell time of the longer component had a

median log of 0.87 (7.35s) with an inter-quartile range spanning a log of 0.412 (2.58s)

to 1.25 (17.7s).

The bottom panel of figure 5.9 shows the log-likelihood ratio of our model, in

which dwell times are sampled from a mixture of exponential and payoff-independent

gamma distributions, compared to a null model in which dwell times are sampled from

a single, payoff-independent exponential distribution. As above, because of the large

range spanned by the log-likelihood ratios (from 0 to 13000), the right-hand panel

focuses on the region from 0 to 180. While 3 of 52 fits (6%) have a log-likelihood

ratio of 0, indicating that our two-component model is no better than a null (single

exponential component) model, the next smallest log-likelihood ratio is 30. In 94% of

cases tested, the probability of the data according to our model is at least e30 ≈ 1013

times better than a model in which all hold times are drawn from a single exponential

distribution.

5.5.2.4 Tap

Figures 5.10 and 5.11 provide a portrait of the tap activity. The upper left-

hand panel shows a typical log-survival function of the dwell times at each payoff for

one animal (F9). Overlain with the fit, we have indicated the hidden behavioural

states in black. In this animal, two hidden tapping release-related behavioural states

were extracted: one with a very short mean (log of −1, or 0.1s) and one with a longer

mean (log of −0.45, or 0.35s).

The top plots of figure 5.11 show the number of hidden states (left), their

shape parameter (middle), and their mean (right), for each animal in each condition.

In each case, we provide a histogram and box-whisker plot of the extracted value.
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Figure 5.10. Log-survival function of the tap dwell time. The log-survival function
is shown here as a function of tap dwell time (in logarithmic space) and payoff (in
ordinal space) overlain with the predicted dwell times of the hidden states. Hot
colours indicate high payoffs while cold colours indicate low payoffs. Two components
are apparent: one with a mean that is 0.1 seconds long, and a second with a mean
that is on the order of 0.4 seconds.
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x10000

Figure 5.11. Portrait of the tap activity. Top panels show histograms of the number of
hidden states (left), the log-shape parameter (centre), and predicted mean dwell time
(right). The bottom two panels show a box-whisker plot of the Ln-likelihood ratio of
the CTMC model to a model in which hold durations are stochastic realizations of a
single exponential process. The bottom right panel focuses on the region from 2000
to 5000. Red points indicate individual Ln[Likelihood Ratio] values. Note that the
scale on the bottom left is in units of ten thousand.
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The tap appears to consist of two (median number is 2, inter-quartile range spans 2

to 2), largely gamma-distributed (median κ is 4.23, inter-quartile range spans 2.98

to 99.99) hidden states. The log-dwell time in tapping-related release states has a

median at −0.53 (or 0.30s) and an inter-quartile range spanning from −1 (or 0.1s) to

−0.44 (or 0.36). Additionally, this distribution appears to be highly bimodal, with

one mode near the median, at approximately 0.3s (log of −0.53), and another mode

at the shortest tapping-related release that can be detected, 0.1s (log of −1).

Because multiple hidden states related to tapping were identified, and these

states were forced to have payoff-independent mean dwell times, we further identified

the mean dwell times of the two most preponderant components (those with the

greatest wi). The two most preponderant components were ordered from shortest to

longest mean; if only one component was identified, it was assumed to be the longest.

The medians and inter-quartile ranges of the mean dwell times for each of these two

components are indicated in red in the middle right panel of figure 5.11. The dwell

time of the shorter component had a median log of −1.00 (0.1s) with an inter-quartile

range spanning a log of −1.00 (0.1s) to −1.00 (0.1s). The dwell time of the longer

component had a median log of −0.43 (0.37s) with an inter-quartile range spanning

a log of −0.49 (0.32s) to −0.37 (0.39s).

The bottom panel of figure 5.11 shows the log-likelihood ratio of our model, in

which dwell times are sampled from a mixture of exponential and payoff-independent

gamma distributions, compared to a null model in which dwell times are sampled

from a single, payoff-independent exponential distribution. Similarly to figures 5.7

and 5.9, the right-hand panel focuses on the region from 2000 to 5000. In all cases,

the log-likelihood ratio is large, with a minimum of approximately 2158, indicating

that in the worst case, the data is approximately e2158 > 264 − 1 (greater than can

be represented by a 64-bit unsigned integer) times more likely if we assume our two-

component model is correct than if we assume a null (single exponential component)
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model is correct.

5.5.2.5 True Leisure Bout

Figures 5.12 and 5.13 provide a portrait of the TLB. Figure 5.12 shows a

typical log-survival function of the dwell times at each payoff for one animal (DE15).

Overlain with the fit, we have indicated the hidden behavioural states in black. In

this animal, two hidden TLB behavioural states were extracted, both with negative

sloping payoff dependencies.

The plots on the top row of figure 5.13 show the number of hidden states (left),

their shape parameter (middle), and the slope of the scaled logistic function that sets

their mean (right), for each animal in each condition. In each case, we provide a

histogram and box-whisker plot of the extracted value. The post-reinforcement pause

appears to consist of two states (median number is 2, inter-quartile range spans 2 to

2) that is largely gamma-distributed (median κ is 5.11, inter-quartile range spans

1 to 13). These hidden states have a payoff-dependent mean, and the slope of the

payoff-mean relationship is negative (median slope is −8.1, inter-quartile range spans

−153.4 to 0)

The middle row shows the minimum of the scaled logistic (middle) and the

maximum of the scaled logistic (right), for each animal in each condition. We provide,

as above, a histogram and box-whisker plot of the extracted values. True leisure bout

activities appear to have a very low minimum (often as low as 1s), with a median log

of 0.23 (1.68s) and an inter-quartile range spanning 0.12 (1.31s) to 0.47 (2.92s). When

payoff is low, the dwell time in TLB-related behavioural states rises to a median log of

1.38 (23.82s), with inter-quartile range spanning a log of 0.52 (3.34s) to 1.92 (83.18s).

However, the maximum dwell times appear to be almost uniformly distributed: they

are widely distributed from a log of 0, corresponding to the 1s tapping criterion (which

is the lowest possible dwell time in TLB activities), to a log of 2, corresponding to a
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Figure 5.12. Log-survival function of the TLB dwell time. The log-survival function
is shown here as a function of TLB dwell time (in logarithmic space) and payoff (in
ordinal space) overlain with the predicted dwell times of the hidden states. Hot colours
indicate high payoffs while cold colours indicate low payoffs. At high payoffs, the
probability that a TLB will survive beyond 10s is very low, while at low payoffs, the
probability that a TLB will be at least tens of minutes is very high. One component of
this two-component mixture is close to 1s and relatively payoff-independent, reflecting
a possible artifact of the arbitrary 1s criterion. The other component of this mixture
is highly payoff-dependent.

- 246 -



x10000

Figure 5.13. Portrait of the true leisure bout activity. Top panels show histograms of
the number of hidden states (upper left), the log-shape parameter (upper centre), the
slope of the sigmoid (upper right), the log-minimum dwell time (middle centre), and
log-maximum dwell time (middle right). The bottom two panels show a box-whisker
plot of the Ln-likelihood ratio of the CTMC model to a model in which TLB durations
are stochastic realizations of a single exponential process. The bottom centre panel
focuses on the region from −1400 to 0, while the bottom right panel focuses on the
region from 100 to 2000. Red points indicate individual Ln[Likelihood Ratio] values.
Note that the scale on the bottom left is in units of ten thousand.
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100s true leisure bout. We shall return to this point later.

The bottom panel of figure 5.13 shows the log-likelihood ratio of our model, in

which dwell times are sampled from a mixture of exponential and payoff-dependent

gamma distributions, compared to a null model in which dwell times are sampled

from a single, payoff-independent exponential distribution. In all but 4 (7%) cases,

the log-likelihood ratio is large, with a minimum of 154.7, indicating that in 93%

of cases, the probability of the data assuming our two-component, payoff-dependent

model is true was at least e154.7 ≈ 1.53×1067 times greater than the probability of the

data assuming a null (single payoff-independent component) model. In the remaining

7% of cases, the probability of the data assuming a null model was greater than when

assuming the mixture model we have proposed.

5.5.2.6 Starting probabilities

The top left panel of figure 5.14 shows, for a representative rat (DE1), the

relationship between the logarithm of the payoff and the probability that a reward

encounter begins with a CTLB. The prediction of the logistic regression is depicted

along with the observed probabilities and their associated 95% confidence intervals;

the proportion of variance is indicated in the legend. The top right panel of figure 5.14

shows a box-whisker plot of the overall proportion of variance in CTLB probability

accounted for by payoff across all rats and conditions. The median R2 is 0.15, with

an inter-quartile range spanning 0.09 to 0.21.

The bottom left panel of figure 5.14 shows, for a representative rat (F3), the

relationship between the logarithm of the payoff and the probability that a reward

encounter begins with a hold. The prediction of the logistic regression is depicted

along with the observed probabilities and their associated 95% confidence intervals;

the proportion of variance accounted for by payoff is indicated in the legend. The

bottom right panel shows a box-whisker plot of this proportion across all rats and

- 248 -



−2.5 −2 −1.5 −1 −0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log
10

[U
b
]

P
[P

R
P

 is
 c

en
so

re
d]

 

 
All PRPs and holds immediately following reward

Fit, logistic regression
Pseudo R2=0.142

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

−3 −2.5 −2 −1.5 −1 −0.5 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log
10

[U
b
]

P
[P

R
P

=
0]

 

 
All uncensored PRPs and holds immediately following reward
Fit, logistic regression
Pseudo R2=0.086

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

Figure 5.14. Probability that the PRP is censored, and if not, that it lasts 0s. The
upper left panel provides an example relationship of the probability of a CTLB when
the reward encounter begins as a function of payoff for a typical animal (DE1). Cir-
cles indicate proportions of times the rat began a CTLB at the start of the reward
encounter (± 95% confidence interval), solid lines indicate the logistic regression line.
The upper right panel is a box-whisker plot of the R2 values of this relationship across
all animals and conditions. The bottom left panel provides an example relationship
of the probability of starting a reward encounter immediately in the hold activity
(that is, the duration of the PRP is 0) as a function of payoff for a typical animal
(F3). Circles indicate proportions of times a reward encounter began on the hold
activity (± 95% confidence interval), solid lines indicate the logistic regression line.
The bottom right panel is a box-whisker plot of the R2 values of this relationship
across all animals and conditions.
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conditions. The median R2 is 0.07, with an inter-quartile range spanning 0.03 to 0.10.

In both cases, there is considerable variability in the proportion of variance

that can be accounted for by these logistic regressions. Some rats very rarely begin

reward encounters in a CTLB. As a result, the R2 values for the logistic regressions of

these animals is close to 0. Similarly, because of interfering motor effects, some rats

rarely begin reward encounters by immediately holding the lever down, while some

rats with highly effective electrodes are capable of depressing the lever as soon as it

begins to extend into the chamber.

5.5.2.7 Transitions from holds to releases

The top left panel of figure 5.15 shows, for a representative rat (DE15), the

relationship between the logarithm of the payoff and the probability that an uncen-

sored hold terminates on a CTLB. The curve of the logistic regression is depicted

along with the observed probabilities and their associates 95% confidence intervals;

the proportion of variance is indicated in the legend. The top right panel shows a

box-whisker plot of the overall proportion of variance in CTLB probability accounted

for by payoff across all rats and conditions. Overall, rats very rarely stop responding

entirely part-way through a trial, and the probability of doing so is largely payoff-

independent. The median R2 is 0.01, with an inter-quartile range spanning 0.002 to

0.03. These estimates are much lower than the results seen above, implying that if

the rat is going to wait until the next trial begins before the rat returns to work, it

will do so as soon as the reward encounter begins.

The bottom left panel of figure 5.15 shows, for a representative rat (DE20),

the relationship between the logarithm of the payoff and the probability that an

uncensored hold terminates on an uncensored release lasting one second or less. The

curve of the logistic regression is depicted along with the observed probabilities and

their associated 95% confidence intervals; the proportion of variance accounted for
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Figure 5.15. Probability that a hold terminates on a CTLB, and if not, that it termi-
nates on a tap. The upper left panel provides an example of the relationship between
the probability that a hold that is terminated before reward delivery will be followed
by a CTLB for a typical animal (DE15). Circles indicate proportions of times an
uncensored hold was followed by a CTLB (± 95 % confidence interval), solid lines
indicate the logistic regression line. The upper right panel is a box-whisker plot of
the R2 values of this relationship across all animals and conditions. The bottom left
panel provides an example of the relationship between the probability that a hold that
is not interrupted by a CTLB will be a tap for one representative animal (DE20).
Circles indicate proportions of times an uncensored hold that wasn’t followed by a
CTLB was interrupted by a tap (± 95 % confidence interval), solid lines indicate the
logistic regression line. The bottom right panel is a box-whisker plot of the R2 values
of this relationship across all animals and conditions. In the inset, we have provided
a histogram of the proportion of uncensored releases that have been classified as taps.
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by payoff is indicated in the legend. The bottom right panel shows a box-whisker

plot of this proportion across all rats and conditions. The median R2 is 0.02, with

an inter-quartile range spanning 0.0045 to 0.05. The inset to the bottom right panel

shows why: the probability that a release will be classified as a tap is above 70% in all

fits, and in over half of the cases, the probability that a release will be classified as a

tap is above 90%. While the probabilities of a long, censored PRP, and a short, zero-

duration PRP are payoff-dependent, these results imply that the probabilities of a

tapping-related release, and long, censored leisure bouts are both payoff-independent.

5.5.3 Molar predictions of the molecular model

Figure 5.16 depicts the first step in extrapolating from the molecular-level

performance described by the CTMC to molar, whole-trial performance. The left-

hand panel shows the linear regression of log-reward encounter duration onto log-price

and log-subjective intensity for a representative rat (DE15). Objective price was used

because at a constant reward intensity, no matter how low the objective price, its

value will affect the duration of the reward encounter: a trial for which the objective

price is 0.02s will take longer to lead to reward than one for which the objective price

is 0.01s, even though the rat may treat those two as subjectively equally costly.

As expected, there is a strong relationship between price, intensity, and reward-

encounter duration. As a result, we used this estimate of how long the rat took to

complete a reward encounter that was not censored by the end of the trial.

This estimate provides the appropriate time frame for which to evaluate the

evolution of the CTMC as described. Each activity i in the CTMC will transition

to another activity j at a rate of αji, and the rate at which it is left will be αii. For

example, if holds transition to taps, TLBs, and CTLBs at rates

αtap,hold, αT LB,hold, αCT LB,hold
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Figure 5.16. Predicting reward encounter duration for whole-trial extrapolation. The
left-hand panel provides an example regression of log-reward encounter duration as
a function of log-objective price and log-reward intensity for a representative animal
(DE15). Circles indicate mean log-reward encounter duration (± 95 % bootstrap
confidence interval), surface indicates the regression plane. The right-hand panel is a
box-whisker plot of the R2 values across all rats and conditions.
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then, necessarily, the rate at which the rat leaves the hold state will be the (negative)

sum over transition rates to all states that it leads to, or

αhold,hold = −
∑

j

(αj,hold).

These rates can be summarized in a simple, though powerful matrix differential equa-

tion
∂

∂t
P [activity = i at t] = AP [activity = i at t]

where A is a matrix whose entries are αij and αii. The solution to this system of

5 linear, ordinary differential equations gives the probability, at any point in the

reward encounter, that the rat engages in any activity i, assuming the transition

rates are time-invariant. Since the average amount of time accumulated in each

activity from the start of the reward encounter to any arbitrary time t is an integral

of the probability of engaging in each activity, integrating the time spent in each

activity from 0 to the point in time at which the reward encounter is ended provides

an estimate of how much time is spent in each activity. The time allocation thus

extrapolated (time spent in hold and tap activities divided by the time spent in

all activities) provides an estimate of the proportion of time allocated per reward

encounter. Multiplying this value by the probability of starting a reward encounter

without a CTLB provides an estimate of what the time allocation would be, were we

to extrapolate molecular performance to the level of the entire trial.

Figures 5.17 and 5.18 show the time allocation predicted by the model if we

were to extrapolate the CTMC from the reward encounter to the whole trial, for each

of the rats that underwent the subjective price experiment. The extrapolation was

performed on these animals because of the much larger quantities of data available

from which to estimate the payoff-dependent and independent hidden states. The

left panels of each row are contour plots of the time allocation extrapolated from the

CTMC. Often (though not always), the prediction is close to the data points, and the
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Figure 5.17. Extrapolated mountains and the comparison of molar TA to observed
values for subjective-price rats, part 1. Left column depicts time allocation contours
extrapolated from the CTMC. Right column compares the time allocation observed
throughout the entire trial (open circles) to that predicted by the CTMC (solid lines)
for each pseudo-sweep. Numbers in far right panel indicate the proportion of variance
in observed time allocation values that can be predicted by extrapolating the CTMC
to the entire trial.
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Figure 5.18. Extrapolated mountains and the comparison of molar TA to observed
values for subjective-price rats, part 2. Continued from 5.17.
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general dependence of molar time allocation on log-price and log-pulse frequency often

has a very similar general appearance to that of the Reinforcement Mountain Model.

The right panels show a comparison of the time allocation observed throughout the

entire trial (open circles, ± 95% bootstrap-derived confidence intervals) with the time

allocation predicted by extrapolating the CTMC to the entire trial (solid lines). There

is reasonable agreement between the two, with R2 values ranging from 0.770 to 0.933,

indicated on the far right side of each row.

5.6 Discussion

We have used a continuous-time semi-Markov model to describe performance

for brain stimulation reward in the test-trial phase of the randomized-triads design.

The model is based on a small number of core principles, simple functions, and an

assumption that responses and pauses in various observable activities are independent

of the responses and pauses that preceded them.

This is in contrast to reinforcement learning models, which model performance

as a punctate choice of what to do at discrete time steps (Montague et al., 1996), and

melioration, which models performance in terms of the local rate of reinforcement

from each source of reward. The model presented here assumes that the rat does

not learn the expected payoff over a number of rewards, as would be proposed by

model-free reinforcement learning (Montague et al., 1996); instead, the rat “fills in”

the appropriate value for the payoff and adjusts its stay durations accordingly. The

model also assumes that the key determinant of stay durations involves an accumu-

lation of time spent lever-pressing over the entire reward encounter, weighted by the

probability of reinforcement. If the local rate of reinforcement—that is, the instanta-

neous rate at which rewards are delivered on a moment to moment basis—were the

key determinant, animals would simply stop lever-pressing after the lever is retracted
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without reward delivery—making the local rate of reinforcement from lever-pressing

0. The probability of reinforcement appears to be averaged across appropriately-cued

trials (the lever for these trials is generally on a different side of the chamber and a

flashing cue light provides a discriminative stimulus). In our model, the determinant

of the stay durations in each activity (though it is only a weak predictor of hold

and tap durations) is the scalar combination of subjective opportunity cost, reward

intensity, and reward probability, rather than the local rate of reinforcement. As in

the model of Gallistel et al. (2001), which inspired the CTMC model presented here,

performance is stochastic, and the dwell time in each state is a function of the payoffs

on offer. However, the Gallistel et al. (2001) model differs from ours in that it entails

sampling of dwell times from a single, exponential distribution and alternation be-

tween options according to their combined payoffs. Model selection based on the AIC

shows that more complex distributions and mixtures thereof are required to describe

the data adequately. The alternation principle in the Gallistel et al. (2001) model is

better suited to dual-operant context than to the present single-operant context.

Our model of performance in real time differs from previous attempts: it is

not based on an optimization principle, and it more readily describes performance

as a series of non-punctate events. As a result, we shall discuss the overall pattern

of responding that is revealed by the algorithm, the response pattern of a typical

rat, the model’s ability to account for trial-level performance, and its application in

identifying the neural substrates that underlie the decision-making process.

5.6.1 Real-time performance

Our modelling suggests that the payoff sets the probability that the rat is

in one of a small number of hidden behavioural states, which are only indirectly

observable in the stream of holds and releases at the lever. These hidden behavioural

states are, by and large, characterized by a constant failure rate (the distribution of
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dwell times is roughly exponential) over the entire trial. The first reward delivery (in

the randomized-triads design) provides sufficient information to set for the remainder

of the trial:

1. The duration of PRP states,

2. the probability that the PRP state terminates at such a high rate that a reward

encounter begins, for all intents and purposes, with a hold,

3. the probability that the PRP state terminates at such a low rate that the trial

ends before the PRP, and

4. the duration of TLB states when the rat has not given up pursuit of the reward

on offer.

In each case, the payoff effectively sets the expected dwell time in states that reflect

pursuit of non-self stimulation goals: the expected dwell time in the PRP (points

1 and 2), the expected dwell time in a CTLB (3), and the expected dwell time in

TLBs (4). The expected dwell time in holds or taps (Figure 5.5, 5.9 and 5.11) and

the probability that a temporary lever release reflects a tap (figure 5.15) bear only a

weak relationship with payoff.

What emerges then is a pattern of responding in which the duration of the

post-reinforcement pause and the duration of the TLB is set by the expected payoff

from self-stimulation in effect during the trial, while the duration of a hold and tapping

release is not. Overall, then, our analyses allow us to describe, in real time, how the

animal partitions its time among the various activities in which it can engage. Given

this description, what does a typical rat do?

5.6.1.1 What does a typical rat do?

The model provides a fairly complete account of what the rat does in real

time. The rat extracts a subjective estimate of the total amount of time it worked

to earn a reward. It maintains a running average across multiple trials, according to
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a discriminative stimulus, of the probability that the reward will be delivered. The

rat then computes a payoff by performing a scalar combination of the opportunity

cost with the subjective intensity of the rewarding effect and the probability that the

reward will be delivered. Following the first reward delivery, performance follows the

same chain, with the same probability of transitioning from one hidden state to the

next, every time the lever is extended back into the cage.

The payoff sets the duration of one or two PRP states. When the payoff

is high, the PRP state reaches a minimum of 0.7s; when it is low, the PRP state

approaches a maximum of 18.5s. In the absence of forced motoric side-effects caused

by the stimulation, very high payoffs will lead the rat to engage in a 0-duration PRP

state, completely forgoing any leisure activity. The PRP states typically lead to one

of two types of holds: long-hold (as long as required to obtain the reward) and short-

hold (2s). When the typical rat temporarily leaves a hold state, it does so as part of

a tap, which consists of two states: “short” taps (0.1s in duration) and “long” taps

(0.4s). Longer, leisure-related releases are rarer, comprising a very small subset of

all uncensored releases of the lever. Nonetheless, when the TLB activity is begun,

it comprises two distinct hidden states with payoff-dependent mean. One of these

hidden states is likely an artifact of the arbitrary tapping criterion, as its maximum

is very nearly the arbitrary minimum imposed by classifying releases into taps and

TLBs; the other likely represents a true leaving process.

This picture of the typical rat’s activities is somewhat different than has been

described previously. The rat does not appear to continuously alternate between

pursuing the goals of work and the goals of leisure, as though pushed from one to

the other. Instead, the rat “consumes” its leisure activities, all at once, during the

post-reinforcement pause, works continuously until rewarded, or until it gives up,

performing the equivalent of a coin toss at each instant of trial time with a coin

whose bias depends on the payoff.
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Similarly to the model of dual-operant performance proposed by Gallistel et al.

(2001), the expected dwell time in each activity that reflects an underlying pursuit of

leisure (PRP states and putative CTLB states) is related to the payoff derived from

work activities. Unlike the Gallistel et al. (2001) model, we have proposed a non-

linear function mapping the payoff from self-stimulation to dwell time. The duration

of behavioural states in hold and tap activities is insensitive to the payoff derived

from self-stimulation. As a result, we hypothesize that the payoff from pursuing

extraneous, non-self stimulation activities would alter the duration of hold and tap

activities. This idea remains to be tested, but is empirically verifiable: background

stimulation trains have been used in molar studies (Arvanitogiannis, 1997) to validate

the Shizgal Mountain Model. If we were to increase the payoff from pursuing non-

self stimulation goals by providing electrical brain stimulation while the animal is

not lever-pressing, one would expect the termination rate of hold and tap states to

increase when background stimulation is available. Conversely, administering foot-

shock at random intervals while subjects are not lever-pressing would decrease the

payoff derived from pursuing non-self stimulation goals. As a result, one would expect

the termination rate of hold and tap states to decrease when background foot shock is

possible. In both cases, neither increasing the payoff from other activities by providing

background stimulation, nor decreasing it by providing foot-shocks, should alter the

mean dwell time in PRP and TLB activities.

In modelling the stay durations in each activity, we can further distinguish, in

principle, two types of hidden behavioural states: behavioural states that are hidden

by virtue of our inability to detect them without sufficiently sensitive equipment

(“hidden to us”) and those that may not even be detectable by behavioural means

alone (“truly hidden”). As an example of “hidden to us” states, the rat that has quit

may have opted against lever-pressing for the remainder of the trial, but may still face

an action selection problem that can be modelled by the CTMC, provided we have
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appropriate equipment to detect that the animal is grooming, resting, or exploring.

As an example of a “truly hidden” states, it may not be possible to visually detect

the difference between a “long” hold, lasting on the order of tens of seconds, from a

“short” hold, lasting on the order of a few seconds, without fitting a mixture model of

the hold durations. The value of the CTMC lies not only in its ability to detect what

may be different actions that could be detected with sensitive equipment, but also

actions that may look alike to the casual observer. The addition of video camera- and

accelerometer-based systems may help make this CTMC model richer, but may not

provide all the necessary information. For example, the typical rat has two modes of

holding, and the only way to distinguish them is on the basis of their relative means:

one appears to be short while the other is long. We find it unlikely that a review of a

video record would provide more information about what these two modes of holding

represent.

With such a rich, non-normative model of real-time performance, what can be

said about its predictions at the level of the whole trial, on the order of minutes to

hours? If molar performance is the result of molecular performance, what does the

CTMC model at the level of individual holds and pauses say about the whole trial?

5.6.2 Matching is an emergent property of the CTMC

The CTMC, as modelled and as described, makes no explicit assumptions

about the matching law, melioration, or reinforcement learning. We used two core

principles:

1. that the relevant determinant of the rat’s decision to press (the payoff) is an

expectation for the scalar combination of subjective opportunity costs accrued over

the entire encounter, reward intensities and probabilities of reinforcement, and

2. that this determinant sets what the animal actually does, be it directly observable

(activities) or latent (hidden behavioural states).
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With only these two core principles, it is possible to re-create performance that

is close to the matching law in the six subjects for which there is the most data (F3, F9,

F12, F16, F17, and F18). Although no parameters have been added to the CTMC

to ensure that the proportion of total time allocated to self-stimulation activities

match the suitably-transformed ratio of the payoff from self-stimulation to the sum

of suitably-transformed payoffs from each activity, the CTMC often re-captures this

relationship. By virtue of the way each piece fits with each other piece—the payoff-

dependent probability per unit time of ceasing a PRP state (including those with

higher- and lower-than-measurable termination rates), the payoff-dependent probabil-

ity of long-mean TLB states, and the presumed payoff-independent probability of each

hold and tap state—the CTMC reveals that matching on the molar scale is simply

an emergent property of the molecular interactions of various hidden exponentially-

and gamma-distributed behavioural states that can be quite succinctly summarized

in terms of their termination rate or mean-dwell time. Future studies will be required

to assess whether this is true in more data-poor cases, and if not, the conditions un-

der which this result obtains. Nonetheless, that performance at the molar level can

be reasonably well predicted (at least 77% of the variance in molar time allocation

is accounted for) by the multiple interacting pieces of the CTMC is an encourag-

ing first step to understanding how animals partition their time among competing

alternatives.

The CTMC model described here provides a potentially powerful tool for in-

vestigating what the animal is doing—in real time—as well as what manipulations

may do at a level that has heretofore been impossible to assess. The CTMC may even

shed light on the answer to where the components of action selection are represented

in the brain.
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5.6.3 Neural substrates

The CTMC allows us to summarize the behavioural components of real-time

performance with a relatively small number of distributional parameters. The sum-

mary is that much simpler when we consider that a large proportion (the first bin

of the log-shape parameter histograms of figures 5.7, 5.9 and 5.13 provide graphical

evidence of this) of the hidden behavioural states extracted by the algorithm are ex-

ponentially distributed, requiring only a single parameter that sets the constant rate

at which the behavioural state terminates.

An easy implementation of this scheme in neural circuitry involves a winner-

take-all competition between populations representing the various possible actions

(Neiman and Loewenstein, 2013). Populations of neurons, connected by reciprocal

inhibition to each other and recurrent self-excitation, provide a source for which

activity the animal chooses to engage in. If neurons representing the pursuit of BSR

are active, they will inhibit neurons representing the pursuit of other goals. For

example, sub-populations of neurons representing “hold the lever for a while” may

equally make reciprocally inhibitory connections with those representing “hold the

lever for only a bit” as well as self-excitatory connections. The most active sub-

population of neurons will excite itself greatly, inhibit the others, and provide the

animal with a temporary goal to pursue. The degree of noise in the representation of

competing states, their ability to drown out the currently active sub-population, and

the currently active sub-population’s ability to excite itself will each determine how

long a sub-population maintains control of the animal’s behavioural output.

Given that spike rates can be modelled as Poisson processes with a constant

termination rate (Werner and Mountcastle, 1963), the fact that most hidden be-

havioural states can be described with a single termination rate parameter is rather

encouraging. The termination rate of a behavioural state and its probability of oc-

- 264 -



currence would certainly be related to the firing rate of the neurons involved in its

representation. For example, if a sub-population is involved in representing a hold

state of 1s duration, then that population ought only be active while the animal un-

equivocally emits a short-duration hold. We would expect that sub-population to be

active only when the animal is in that behavioural state, and it would be possible to

decode, from population activity, the probability that the rat is in that behavioural

state using Bayes’ rule: the probability of being in state “short-hold,” assuming a

particular response from a large ensemble of neurons, can be decoded from the neural

response when the rat is in various behavioural states, the probability that the rat is

in this behavioural state, and probability of the neural response.

The CTMC thus also provides a solid behavioural basis for interpreting en-

semble recordings while animals engage in a single-operant task. The most rigorous

way to attribute a neural representation to activity within a population of cells is to

use Bayes’ rule to turn the tuning curve of each neuron for the proposed psychological

phenomenon (P[activity|state]), each neuron’s baseline firing rate (P[activity]) and

the probability of representing the phenomenon (P[state]) into a decoded probability

of the phenomenon being represented. For example, some neurons (population A)

may be more active than usual when the rat is in the “holding patiently” state; the

tuning curve of population A would provide the probability that these neurons fire

as a function of the duration of the hold, but not the probability that the rat is en-

gaging in a long hold based on the population’s firing rate (the decoded probability).

Provided one is recording from multiple units with different holding-related tuning

curves, a simple application of Bayes’ rule

P [state|activity] = P [activity|state] · P [state]
P [activity]

would be sufficient to relate activity in a population of neurons to a putative hidden
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behavioural state.

One important population of neurons to consider with the CTMC is in the

ventral striatum. The nucleus accumbens shell may be one candidate region that

translates the payoffs from different goals into action (Yin et al., 2008), thereby

underlying the various behavioural states of the CTMC. Prefrontal cortical regions

may provide the information regarding the expected payoff from each goal (Cohen

et al., 2002), combining the subjective opportunity costs, reward intensities, and risk

involved in acquiring each. Finally, dopamine neurons of the ventral tegmental area

may modulate activity within the nucleus accumbens (Goto et al., 2007), making

sub-populations representing some behavioural states more resilient to competition

from other behavioural states. The roles of each of these regions in the animal’s

behavioural output could easily be assessed with the CTMC model presented here,

and hypotheses concerning how each nucleus contributes to performance would be

readily tested empirically.

5.6.4 Concluding remarks

Our model opens a new universe of possibilities for investigating the effect

of manipulations to reward-valuation circuitry on hitherto unmeasurable aspects of

performance. One interesting question regards the effect of psychostimulants such as

cocaine on the pattern of responding. The Shizgal Mountain Model has been useful

in identifying the stage of processing at which manipulations act, but cannot on its

own determine how it impacts performance on the molecular level. For example,

the Mountain Model has identified that cocaine affects the neural circuitry of reward

beyond the output of the network that carries out a spatio-temporal integration of

the injected signal. In light of these findings, one could argue that the increase

in dopamine efflux to the nucleus accumbens produced by cocaine administration

scales the translation of injected pulse frequency into subjective reward intensity.

- 266 -



This explanation posits that higher dopamine tone in the nucleus accumbens would

makes all rewards more valuable by a constant factor. Others have argued that

cocaine alters the animal’s proclivity to invest effort into acquiring electrical rewards

(Salamone et al., 2005). A final means by which cocaine would alter reward processing

beyond the spatio-temporal integration of action potentials elicited at the electrode tip

involves decreasing the payoff from alternate activities in the box. The CTMC could

provide an answer to how cocaine might affect performance on the molecular level. It

may alter only the payoff from self-stimulation activities (either by scaling the reward

intensity or making pursuit of brain stimulation more effortful), which would alter

the dwell time in activities related to the pursuit of leisure rewards (PRP and TLB

state durations, and well as CTLB probabilities). It may alter only the payoff from

other activities, which we hypothesize would change the duration of states related to

the pursuit of work rewards (holds and taps). A large number of questions regarding

how a particular manipulation of neural circuitry—a pharmacological manipulation,

a lesion, or a physiological challenge—impacts the patterning of performance in real

time can now be readily answered thanks to our CTMC model. The development

of new techniques, like optogenetics, will even provide tools to assess the effect of

manipulations that occur on the same time scale as the CTMC, that is, in real time

and on the order of milliseconds.

Although causal manipulations and lesion studies can easily be conducted in

the context of the CTMC model, they are by no means the only way the CTMC model

is useful in understanding how the brain evaluates and decides. The real-time nature

of the CTMC can just as readily be transported to the study of neural correlates of

any behavioural state, presumably resulting from neural activity in neurons that can

be identified, to study where the determinants of action selection may be represented

individually and where they have been combined. The new methodology presented

here for succinctly describing the rich patterning of responses in a single-operant
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context provides a springboard for a new era in understanding how the brain evaluates

and decides on a moment-to-moment basis.
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Chapter 6

General discussion

Before the start of a self-stimulation session, the typical subject appears to be

oblivious to its environmental conditions. It often grooms itself as a consequence of

having been handled by a large primate, sniffs around the operant chamber, and rests

in the corner as the experimenter programs the day’s experimental protocol. As soon

as the large house light begins to flash, the rat awakens from its apparent stupor, and

priming stimulation invigorates its movements. As the lever extends into the operant

chamber, the rat leaps to the manipulandum and begins holding it down.

How the animal selects what to do, when to do it, and for how long to do it,

has been a burning question in psychology, neuroscience, ecology, and—in the case

of the human animal—economics. Answers to the question of action selection inform

much more than the question of motivation. In order for an animal to select an

action, the animal must learn action-outcome pairs in as simple or complex a sense

as necessary (thereby engaging learning systems), convert the outcomes of actions

into a common currency (thereby engaging valuation systems), maintain at least an

ordinal preference for the actions it can take (thereby engaging action-incentivizing

systems), and keep track of the potentially fluctuating payoffs it has obtained from

the actions available to it (thereby engaging mnemonic systems). An animal that is

unable to learn that a particular patch is bare, or remember that the patch is rife

with predators, or convert the benefits from food and those from sex into a common

currency, or at least order foraging at two patches in terms of their desirability, would

very quickly become extinct.
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6.1 The action selection problem

The action selection problem itself has been traditionally considered in the

context of instrumental conditioning. The procedure is naturally suited for answering

questions about how to choose what to do and how long for which to do it: the animal

opts between operant A and operant B, or operant A and everything else, and the

action selected directly reveals the animal’s preference between the two. It is possible

to then study how various manipulations will change what the animal elects to do,

either at the molecular level of individual holds and pauses or at the molar level of

the entire trial.

What we describe below are three descriptions of action selection. Reinforce-

ment learning models, with their deep roots in artificial intelligence and machine

learning, provide a normative account of what an animal ought to do in order to

maximize its total net rate of reward. Model-free reinforcement learning implies that

rats learn only the net reward at any given point in time, a view consistent with a

habit-learning system that is insensitive to the identity of an outcome and maintains

a representation of only the net reward that can be expected. In other words, the

rat forms only a representation that lever-pressing will lead to a reward, and nothing

else. Model-based reinforcement learning implies that rats learn not only the value

of an action in a particular state (e.g., pressing the lever is “good”), but also form a

representation of the state that will result from that action (e.g., pressing the lever

will lead to a delicious banana-flavoured food pellet). In this case, what is learned

is a model of the world, a view consistent with a goal-learning system that main-

tains a representation of both the net reward and the identity of the outcome that

can be expected. A different, non-normative description of action selection takes its

pedigree from the early days of operant psychology. The matching law (Herrnstein,

1961) is based on the observation that animals will approximately match the relative
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rate at which they respond to one operant (and therefore select it) to its relative rate

of reinforcement. The law was subsequently extended to the single-operant context

by assuming that the choice is between the experimenter-controlled action and ev-

erything else the subject can do while in the chamber. Although some (Sakai and

Fukai, 2008) have linked the Matching law to reinforcement learning models, this

also requires matching behaviour to result from the steady-state of a gradual learning

process, a result that (as we shall discuss later) does not obtain.

6.1.1 Model-free reinforcement learning

A highly general description of action selection simply requires the rat to

maintain stimulus-response contingencies: responses that lead to desirable stimuli

are strengthened, while those that do not are weakened. As a result, no action need

be “selected”: the action with greatest associative strength with rewarding stimuli is

that which the subject performs.

In natural settings, however, the rat does not have an explicit “teacher” for

which responses are desirable and which are not. The animal must explore a space

of responses, and assign credit for reward to an action it has taken in what may

have been a long chain of responses. According to reinforcement learning accounts,

the animal solves this assignment of credit problem by way of an internal “critic”

that performs an estimate of the total future net reward that can be expected from

performing any particular action. The “actor” then evaluates the optimal policy to

implement in order to obtain the greatest total net reward. The critic maintains an

estimate of the total future net reward that is expected in a particular state, and if

it is surprising—that is, the reward magnitude that was delivered is different from

what was expected—the critic module will update the expectation as a function of

the learning rate. The actor module will then use this updated expectation to tune

performance to maximize the total net reward the rat obtains.
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For example, suppose a monkey must maintain a key press when it sees a

yellow light in order to obtain a juice reward (Apicella et al., 1991). The stimuli

are presented at randomly chosen intervals, but (assuming the key is still pressed)

the juice reward is delivered two seconds after light onset. If the monkey behaves

as a model-free reinforcement learning agent, the first time the juice is delivered, at

t = 2s, it is a surprising event, with a reward of R(St=2), prompting the critic module

to update the value of the state “light came on” (with presumably 0 expected value)

at t = 2 by some learning factor α of the discrepancy:

V (St=2) ← 0 + α × (R(St=2) − 0).

If the learning rate is 1, the new value of the state at t = 2 will be the last delivered

reward, while a learning rate of 0 will mean the value of the state is never updated.

Now let us suppose the light comes on again, following an inter-stimulus interval of

random duration. The value of the state “light came on” is no longer 0, because it

incorporates both the immediate net reward (0) with the total discounted value of

future states. This, of course, differs from the initial estimate of 0, which will drive the

critic module to update the value of the state at t = 0 according to the discrepancy

between the expected reward (0) and the sum of the immediate net reward (0) with

the discounted total net future rewards (of which V (St=2) is one such future reward).

Over repeated presentations, the value of the state at each point in time converges

onto a “true” value, a process which is called “value iteration.” In this scenario, the

monkey need not learn which states follow which other states; all that needs to be

learned is that maintaining the key press will lead to a certain level of reward.

The time required to obtain an accurate estimate of the value of states is

inversely related to the learning rate of the process. If α in the expression above is 1,

then the expected value of the state “light on” two seconds after the onset of the cue
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(V (St=2)) is immediately equal to the value of the juice reward. In very few trials, the

expected value of trial states at any time after the cue light is illuminated will have

converged to their “true” values. In natural settings, however, there is variability in

the amount and timing of rewards that an animal will receive, and a high learning

rate will drive the animal to give an inordinate amount of weight to these deviations.

If the learning rate is 1 and the monkey expects that a reward of magnitude 10 will

be delivered at t = 2, presenting a reward of magnitude 10 at t = 1.9 or a reward

of magnitude 5 at time t = 2 will both drastically alter the value of the state “light

came on” at all time points. Indeed, too high a learning rate and an animal navigating

its environment would be pulled very strongly by the rare events occurring simply

because of random sampling. Too low a learning rate and the animal would require

too many trials to form an accurate representation of how much reward to expect

from its environment. Without some model of the world, what the animal should or

should not do is guided by feed-back of the total net reward that has followed previous

actions, until the function that maps values to states and actions at any particular

time (V (St)) is maximized.

6.1.2 Model-based reinforcement learning

In contrast, model-based reinforcement learning requires the rat to learn not

only that taking action A at time step t results in a particular total net reward,

but also the identity of that reward. In other words, the rat constructs not only a

stimulus-response map of the total future reward that can be expected from making a

response at a particular time, but also a stimulus-stimulus map of the stimuli that can

be expected from making a response at a particular time. Model-based descriptions

allow multiple conclusions and representations of what the state of the world will be:

if one takes action A at time t, one can expect state S ′ with total future net reward

r. This sort of description, and its contrast with model-free reinforcement learning,
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has been particularly useful in formalizing the difference between habit-based and

goal-based decision-making.

Habit-based systems of decision-making are insensitive to reinforcement deval-

uation (Dickinson et al., 1995), a result one would expect if model-free reinforcement

learning mechanisms underlie these systems. When a rat is extensively trained to

lever-press for food, habit-based systems are at play when the food is subsequently

paired with illness but the rat continues to lever-press. Although the reinforcer has

been devalued, the rat continues to respond because, in the model-free account, the

rat has learned that lever-pressing leads to a desirable total future net reward.

In contrast, goal-based systems of decision-making are sensitive to reinforcer

devaluation, a result one would expect model-based reinforcement learning mecha-

nisms underlie these systems. When a rat has not been extensively trained to lever-

press for food, goal-based systems are at play when the food is subsequently paired

with illness and the rat ceases to respond. The rat ceases to respond because, in the

model-based account, it has learned not only that lever-pressing leads to a desirable

total future net reward, but also that lever-pressing leads to food. Since that stimulus

(food) is no longer desirable, the rat stops lever-pressing.

Model-based reinforcement learning descriptions of action selection are easy

to apply when the stimuli resulting from an action are readily observable. There is no

reason the stimuli cannot be, in principle, very complex. In this case, a model-based

description is still easily applicable. For example, the chess player cannot rely on

which next move will allow him to win (though that is certainly helpful). The expert

chess player also needs to know which moves will lead to board configurations that

are more desirable than others, projected many steps into the future. Thankfully, we

do not approach all of life’s decisions the same way an expert chess player evaluates

their strategy to beat Gary Kasparov, or we would all be lost in thought.

Any problem that can be solved by model-based reinforcement learning can,
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in principle, be solved by a biological agent, provided sufficient representational ca-

pacity. For example, given infinite time and resources, the rat can form a model of

its environment that is sufficiently rich to account for the ripening of food sources,

the rise and fall of watering grounds, and the wax and wane of predator populations.

However, just as with the above chess example, a combinatorial explosion results from

increased representation: there are an estimated 5 × 1052 board configurations (Allis,

1994), and neither human beings nor computer programs have ever been capable of

representing them all in the service of a policy. This does not prevent people unlike

this author from being very good at chess, but it does suggest that certain problems

which can be solved in principle simply cannot be implemented in brains with physical

limitations.

The situation is slightly more difficult to envision when the stimuli are ill-

defined and internally-generated. Suppose the action an animal ought to do next

is informed not only by a distinct cue, but also by the subjective opportunity cost

and reward intensity that has just been in effect. At which point does the spirit

of model-based reinforcement learning break down? When the key determinants of

decision are themselves stimuli for action selection, model-based descriptions become

indistinguishable from feed-forward descriptions that propose that action selection

results from the payoffs that can be expected from pursuing each goal through an

evaluation of long-term trends in the mean and variability of payoffs in the past.

6.1.3 Matching

Matching refers to the experimental observation that animals will match the

relative rate of responding for an option to its relative rate of reinforcement (Herrn-

stein, 1961). The matching law implies that the relevant determinant of the action to

select is the rate at which it provides reinforcement. This is consistent with our view

that the key variable in action selection is a scalar combination. The idea that the rel-
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evant variables in determining matching behaviour were subjective was incorporated

early on (Killeen, 1972). Similarly, payoff involves subjective variables: subjective

opportunity cost, effort cost, reward intensity and risk. In the single-operant con-

text, the matching law reduces to a choice between pursuing experimenter-delivered

rewards and everything else, so that the rate of responding is related to the rela-

tive rate at which experimenter-controlled rewards are delivered compared to that at

which other rewards are delivered.

Two mechanisms have been proposed by which matching occurs, neither of

which has been entirely successful. The first is melioration (Vaughan, 1981), which

describes matching as the result of changing local rates of reinforcement: when the

local rate of reinforcement from one option falls below that of its competitor, the

animal switches to the competing action. If, for example, the animal responds at a

rate of 5 presses per minute on operant A delivering rewards at a rate of 1 per minute,

and at a rate of 25 presses per minute on operant B delivering rewards at a rate of 1

per 10 minutes, the local rate of reinforcement from A is 1/5, whereas that from B is

1/250. Since the local rate of reinforcement from A is considerably higher than that

from B, the animal will switch to the richer schedule. When the animal is matching,

the animal responds at a rate of 10 presses per minute on A (yielding local rate of

1/10) and at a rate of 5 per minute on B (yielding a local rate of 1/10).

A second mechanism is maximizing (Green et al., 1983), which describes

matching as the result of optimizing the total rate of reward. The variable inter-

val schedules that typically control the delivery of rewards hold rewards indefinitely

after a programmed interval has lapsed. As the animal responds for longer periods

of time to one option, the probability that a reward is waiting at the other option

increases. In the above example, if the animal simply ignored the leaner operant, it

would collect a reward every second. By matching, the animal collects one reward

every second and another reward every 10 seconds. There is no other strategy that
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will improve the overall rate at which the animal collects rewards, so in the typical

scenario, matching is simply a maximizing strategy.

Neither of these two accounts can adequately account for performance in atyp-

ical operant contexts. If response rates are an indirect proxy for the amount of time

an animal decides to spend pursuing an option, melioration implies that stay dura-

tions at each of two operants will be dictated by both the programmed relative rates

of reinforcement and unusually long intervals sampled from the variable-interval dis-

tributions. If local rates of reinforcement were the source of matching behaviour

measured on the molar level, then unusually low rates of reinforcement would alter

the local rate of reinforcement and produce changes in performance. Unfortunately

for the melioration hypothesis, stay durations were not influenced by unusually long

inter-reward intervals (Gallistel et al., 2001).

Herrnstein and Heyman (Herrnstein and Heyman, 1979) tested pigeons on a

concurrent VI/VR schedule of reinforcement, under which one pecking key delivered

rewards according to a variable interval and another according to variable ratios.

Pigeons matched their relative responding to the relative obtained rates of reinforce-

ment. The maximizing strategy would be to respond on the VR schedule to a much

greater extent than the equivalent VI. Instead, pigeons had a strong bias toward

the VI schedule, rather than the VR schedule predicted by a maximization account.

However, Green et al. (1983) argued that the value of extraneous activities, when

added to the value of lever pressing for the VR schedule, could account for the bias

toward the VI schedule. When responding on a concurrent VR-VR schedule in which

responses to one side increases the ratio on one side and responses to the other side

increase both ratios, pigeons acted according to a maximizing strategy.

If reinforcement learning models are inadequate for explaining continuous,

payoff-dependent stay durations in the randomized-triads design, and neither molec-

ular accounts of matching can provide a satisfying answer to the real-time patterning
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of performance, how can we model how the self-stimulating rat selects among the

competing activities that are available to it?

6.2 Performance in the randomized-triads design

We have collected data that provide a framework within which to study the

action selection problem. In the following section, we shall argue that working for

brain stimulation rewards is the product of a series of non-linear mappings, that the

self-stimulating rat extracts statistical regularities from the test trials it encounters

regarding both dynamic and static periods, and that actions are selected on the basis

of the payoffs that may be derived from performing them. Our data also suggest

that the way the animal partitions its time between work (lever-pressing) and leisure

(everything else) involves consumption of the benefits derived from each in a largely

all-or-none manner, rather than through rapid alternation between exertion and rest.

6.2.1 Molar-level

At the molar level, we have presented a further validation of the Shizgal Moun-

tain Model’s ability to accurately detect an effect that occurs beyond the spatio-

temporal integration of the injected electrical reward signal. The model proposes

that the overall proportion of time allocated to self-stimulation is the result of a non-

linear behavioural allocation function, which takes as its inputs the payoffs derived

from lever-pressing and those derived from performing other activities in the operant

chamber. The payoffs themselves involve a scalar combination of subjectively-mapped

variables that can, in principle, be controlled experimentally: the subjective oppor-

tunity cost, effort cost, reward intensity, and risk. These subjective determinants are

often non-linear functions of directly manipulable variables: the price (the required

total amount of time the lever must be held to earn a reward), the force required to
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hold down the lever, the physical characteristics of the electrical stimulation train,

and the probability of reinforcement. Since the mappings are non-linear, changes in

objective stimuli do not necessarily result in equivalent changes in their subjective

impact. Beyond a certain point, decrements in price are ineffective at lowering the

subjective opportunity cost (Solomon et al., 2007). Subjective effort costs should ex-

plode when the force required to hold down the lever is beyond the maximum physical

work the subject can exert.

Thanks to the non-linearities, however, changes of scale (or, alternately, gain)

are separable from changes in threshold (or, alternately, sensitivity). For example,

changes in the maximum intensity of the rewarding effect (a change of scale/gain) can

be distinguished from changes in the relative impact of each electrical pulse on the

intensity of the rewarding effect (a change of threshold/sensitivity). A manipulation

that makes all rewards better by a constant factor can be distinguished from one that

disproportionately amplifies weak rewards.

The strength of the Mountain Model resides in its capacity to take advantage of

these non-linearities. The post-synaptic effect of the stimulation’s pulse frequency, for

example, grows as a power function at low pulse frequencies and rises to an asymptotic

value at high pulse frequencies (Simmons and Gallistel, 1994). The scalar combination

of the key determinants of decision (subjective intensity, cost, exertion, risk, etc.) will

drive performance according to another non-linear function: the relationship between

payoff and performance is a sigmoid, with a maximum at high payoffs, a minimum

at low payoffs, and a smooth transition between the two (McDowell, 2005). In each

case, the non-linearity allows assignment of three parameters—sensitivity, gain, and

slope—where a linear function would allow only two (slope and intercept). When

measuring the variables together, changes to the sensitivity of the function mapping

pulse frequency to reward intensity (Fhm) can be distinguished from changes the

sensitivity of the function mapping payoff to performance (Pe).
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6.2.1.1 Detecting an effect occurring downstream from the spatio-temporal

integrator

We have presented evidence (Breton et al., 2013; Arvanitogiannis and Shizgal,

2008) that the Mountain Model can, indeed, detect changes that are known to affect

the post-synaptic integration of the directly-activated substrate for self-stimulation.

By increasing the duration of the train, neurons can be stimulated at a lower rate

in order to achieve a given (half-maximal) level of subjective reward. By decreasing

it, neurons must be stimulated at a higher rate in order to achieve that same level.

While the Mountain Model accurately detected changes in the sensitivity of the func-

tion mapping pulse frequency to subjective reward intensity in all animals, in a subset

of animals, the model also detected changes to the sensitivity of the function map-

ping payoff to performance. Further modelling demonstrated that these results could

be explained if, in those animals, at least two spatio-temporal integration systems

had been activated, consistent with a widely-discussed hypothesis that multiple sub-

systems may be involved in the temporal integration process (Arvanitogiannis et al.,

1996; Fulton et al., 2006; Shizgal et al., 2001; Carr and Wolinsky, 1993) This expla-

nation is predicated on the assumption that the model can, indeed, correctly identify

the stage of processing for manipulations occurring beyond the peak-detection stage.

The Mountain Model has been further validated here, showing that a change in

the probability of reinforcement produced large changes in the marker for manipula-

tions occurring beyond the peak detection stage, with only small or time-inconsistent

changes in the marker for manipulations occurring prior to peak detection.

6.2.1.2 Quantifying subjective risk

If we assume that no variables other than risk have changed as a result of

making the reward probabilistic, it is also possible to evaluate the degree to which

probability results in subjective risk via the Mountain Model. The degree to which
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the rat must compensate for the lower probability in terms of a constant subjective

opportunity cost is, in effect, the subjective impact of probability. If a maximally

intense reward requires a price of 30 seconds for the payoff from self-stimulation to

be equal to that of non-self stimulation, then one would expect a maximally intense

reward delivered with 50% subjective probability to require a price of 15 seconds for

the payoff from self-stimulation to be equal to that of non-self stimulation. In other

words, assuming that only risk changes, for all four payoffs to be equal, the following

two equalities must be met:

(Imax/SPe1.0) × no risk = Ue,

and

(Imax/SPe0.50) × subjective risk for 50% probability = Ue,

where Imax is the maximal intensity of a reward, Ue is the payoff from non-self stim-

ulation (everything else), and Pei
is the price at which the payoff from a maximally

intense brain stimulation reward is equal to that from everything else. Since these

two expressions must be equal to each other, the ratio of Pe1.0 to Pe0.5 will be equal

to the ratio of the risk associated with a reward delivered with probability 1.0 to the

risk associated with a reward delivered with probability 0.50.

Our results demonstrate not only the validity of the Mountain Model in cor-

rectly identifying an effect occurring downstream from the spatio-temporal integra-

tion of the injected signal, complementing previous validation attempts (Breton et al.,

2013; Arvanitogiannis and Shizgal, 2008), but also the computational power afforded

by the model. By making only one assumption—that risk should not affect the in-

tensity of the rewarding effect of brain stimulation, the subjective effort cost, or the

payoff from everything else—our model has also provided some preliminary evidence

that the mapping of probability of reinforcement to risk is scalar, or nearly so, over
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the range tested.

Overall, rewards delivered with probabilities of 0.75 or 0.50 tend to be deval-

ued to an extent that would be normatively expected. The median change in Pe from

a probability of 1 to a probability of 0.75 was found to be 0.13598, corresponding to a

subjective risk of 73%. The median change from a probability of 1 to a probability of

0.5 was found to be 0.33089, corresponding to a subjective risk of 47%. These repre-

sent modest differences, and they underline the importance of rigorous psychophysical

scaling when studying the variables that affect what an animal decides to do and for

how long they choose to do it.

The Mountain Model provides a molar description of performance for brain

stimulation rewards. It assumes that the rat’s allocation decision, at the level of

the whole trial, is based on the payoff derived from self-stimulation activities. Our

experiments, however, contain structure at a finer temporal scale than the trial. We

shall now turn our attention to how the rat makes molecular decisions about which

action to take and for how long to take it based on the session’s structure, at a

different level than can be explained by the Mountain Model.

6.2.2 World model of change

In the randomized-triads design, the rat is presented with a repeating pattern

of trial types. Each trial in a session is cued by the flash of a yellow house light

during a 10-second inter-trial interval, 8 seconds into which a single train of high-pulse

frequency priming stimulation is delivered. All experimentally manipulable variables

are constant for the duration of the trial. The pulse frequency, pulse current, pulse

duration, train duration, price, force, and probability of reinforcement are all fixed

from the time the house light stops flashing to the time it begins again. The trials

within a session progress in highly structured manner, according to triads. The first

trial (the leading bracket) is characterized by a strong reward (as high as the animal
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can tolerate) delivered at a negligible price (1s). At the start of the second trial of

a triad (the test trial), the pulse frequency, price, and probability of reinforcement

are sampled from a large randomized list without replacement. The third trial (the

trailing bracket) is also characterized by a negligible price, but the reward on offer

is sufficiently weak (10Hz) that the rat ought never be motivated to work for it.

This repeating pattern is presented for hours at a time, for days, until the list is

exhausted, at which point the characteristics in effect on test trials are sampled from

a new randomized list.

Such a repeating pattern may be difficult to a naive observer to detect. Indeed,

were the task on a human observer’s part to detect the apparent direction of motion

in an array of randomly moving dots against a contrasting background, the same

pattern of trial presentations may not be obvious at first glance. Suppose the first

trial of a repeating sequence of three presented a large proportion of dots moving

in the same direction with high contrast, the second presented a randomly selected

proportion and contrast, and the third presented a stimulus in which no dots moved

in the same direction against a highly contrasting background. How long would it

take for a human observer in these conditions, instructed to identify whether the dots

appeared to move in a particular direction and unaware of the triad structure, to act

on the basis of this repeating cycle?

Our results imply that rats, indeed, are capable of extracting the statistical

regularities inherent in the randomized-triads design. At the very least, they act

on the basis of an expectation for payoff that they would not have were it not for

some model of the world. Without a simple model of how sessions progress, rats in

the randomized-triads design would begin working for brain stimulation rewards as

a function of the last trial type encountered. Upon starting a new trial, a rat us-

ing model-free reinforcement learning principles will behave as though it expects the

next reward to be like the last, leading the animal to produce long pauses following

- 283 -



a trailing bracket trial, short pauses following a leading bracket trial, and an average

pause of intermediate duration following test trials. Instead, our results show defini-

tively that the very first pause the rat makes—before it can know anything about

the payoff from self-stimulation—depends on the payoff of the trial type to come, in

feed-forward fashion, rather than the trial that has just elapsed. Rats spend little

or no time pausing on leading bracket trials, slightly more time in this pause on test

trials, and rarely ever bother to lever-press on trailing bracket trials. Since there is no

other way for them to know what the payoff will be on a particular trial, and every

trial is cued the same way, they must form an expectation for what the payoff will be

based on a stimulus that is not directly observable.

These data also give hints about the identity of the stimulus that allows rats

to form this expectation. In cases where animals make shorter-than-usual pauses at

the start of the trailing bracket trial, the preceding test trial presented stimulation

that was very cheap and very strong or very weak—not unlike the characteristics of

the leading and trailing bracket trials. Rats therefore appear to employ two sets of

syllogisms based on the trial that came before. If the last trial was similar to a trailing

bracket trial, then the next trial will be a leading bracket; if the last trial was similar

to a leading bracket trial, then the next trial will be a test trial. On the test trial,

the price and reward intensity may sometimes be sufficiently similar to either of the

bracket trials. As one would expect if the rat had maintained a set of three, two-trial

sequences, these misleading test trials result in an uncharacteristically short pause on

the subsequent trailing bracket trial. At sufficiently low prices and reward intensities,

the rat behaves as though it believed the test trial was a trailing bracket, and takes

a very short pause on the trailing trial rather than a long one. At sufficiently high

intensities and low prices, the rat behaves as though it believed the test trial was a

leading bracket, and takes a short pause rather than a long one.

Furthermore, the uncharacteristically short pauses on trailing bracket trials
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occur predominantly when the subjective opportunity cost is sufficiently similar, and

not necessarily when the objective opportunity cost is similar. When the price is below

a minimum value (approximately 3 to 4s), the subjective opportunity cost ceases to

change (Solomon et al., 2007). If the rat discriminated among trial types according

to the objective price, test trials with very low prices would differ from the bracket

trial price of 1s, thereby allowing the rat to discriminate among these trial types

and prevent any confusion. If the rat made the discrimination on the basis of the

subjective opportunity cost, test trials very low prices would have the same subjective

opportunity cost as bracket trials, and thus, mislead the rat to infer that the next trial

is not a trailing bracket trial. When the prices presented on test trials have a similar

subjective opportunity cost to the price in effect on bracket trials (1s), regardless of

its objective value, the rat is misled into taking a shorter-than-characteristic pause

on subsequent trailing trials. This indicates that the relevant stimuli that cue what

the next trial will bring are subjective.

Finally, when the test trial presents stimulation that is very expensive, and

therefore the payoff from self-stimulation is low, rats make their characteristically

long pause on the subsequent trailing bracket trial. In other words, the appropriate

cue is a compound stimulus involving both the appropriate subjective opportunity

cost and subjective reward intensity together, rather than their scalar combination.

Moreover, this compound stimulus provides an expectation of not only the next trial’s

payoff, which would set the duration of the pause to take, but also of the next stimuli

the rat is likely to encounter. If the relevant stimulus is a vector of subjective reward

intensity and opportunity cost, then the rat must have some mechanism for knowing

the subjective reward intensity and opportunity cost that was in effect on trailing

bracket trials on which it never worked, and therefore never obtained an estimate.

Rats take the same, short pause at the start of leading bracket trials that follow

trailing bracket trails on which the animal never pressed, suggesting that the rat
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maintains a mapping of the (possibly updated) opportunity cost-intensity compound

on one trial to that expected on the next. The pattern of errors imply that, rather

than counting to three, the rats have stored a model consisting of three, two-trial

sequences:

1) If current trial is high-intensity, low-opportunity cost (“leading-like”), next trial is

variable intensity and opportunity cost (“test-like”).

2) If current trial is low-intensity, low-opportunity cost (“trailing-like”), next trial is

high-intensity, low-opportunity cost (“leading-like”).

3) If current-trial is neither high-intensity/low-opportunity cost (“leading-like”) nor

low-intensity/low-opportunity cost (“trailing-like”), next trial is low-intensity, low-

opportunity cost (“trailing-like”).

The picture of the self-stimulating rat in the randomized-triads design is now

considerably richer: over the course of training, rats form a world model of the pro-

gression of trials within a session, the world model provides the rat with an expecta-

tion for the subjective opportunity cost, subjective reward intensity, and payoff from

self-stimulation to come, and the stimulus the rat uses to identify the next trial type

is a vector comprising each subjective determinant of the decision to press. A world

model of how trials change within a session, however, leads to the important question

of whether rats develop a world model of the stability of the payoff within a trial.

6.2.3 World model of stability

Each trial presented in the randomized-triads design may differ to a varying

extent from the trial that preceded it, but from the time the lever first extends into

the cage following the flashing house light to the time it retracts and the house light

flashes again, conditions within the trial are completely stable. If an animal is capable

of developing an inference rule for what the payoff on the next trial is expected to be,

then it is natural to ask whether an animal is capable of developing a model for what
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the payoff from self-stimulation at any given point in the trial can be expected to be.

The pause made at the start of the test trial will reflect, to a certain extent, the

payoff that can be expected. This is because this pause is different from that made at

the start of trailing bracket trials, with unquestionably low payoff, but slightly longer

than that made at the start of leading bracket trials, with unquestionably high payoff.

The test trial, however, has a payoff that has been drawn at random from a list, so the

duration of this post-priming pause cannot reflect the true payoff that can be realized

throughout the entire trial. If the duration of the pause the rat takes before it begins

to lever-press (either at the start of the trial or following lever-retraction) is in any

way related to the payoff, two options are possible: either the pause gradually changes

over multiple reward deliveries, or it changes abruptly following a sufficient number of

exemplars. Moreover, if our molar model of time allocation can explain time allocation

from each period of time between lever extension and lever retraction (either because

a reward is delivered or because the trial has ended), then the proportion of time

allocated to self-stimulation activities should also change as the estimated payoff

changes.

Our data suggest that the patterns of post-priming (when the trial begins)

and post-reinforcement (when the lever extends back into the chamber) pauses are

many orders of magnitude more likely if we assume a step-wise rather than a gradual

change. The pause following lever extension changes abruptly, in which case the

animal’s decision regarding how long to wait before lever-pressing would depend on

a single-step update rule following a sufficient number of exemplars. That number is

one, or nearly so: in most cases, the maximum-likelihood estimate of the number of

reward deliveries necessary before the duration of the first pause switches from what

it was at the start of the trial to what it will be at the end of the trial is a single

reward.

Similarly, the change in time allocation is greatest between the time the an-
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imal knows nothing about the payoff from self-stimulation to the time the payoff is

revealed. Following the first reward delivery, time allocation values cease to change

systematically. If the proportion of time the rat spends harvesting rewards is con-

trolled by the payoff, and that time allocation ceases to change following the first

reward delivery, it is unlikely that the animal continues to make meaningful revisions

to its estimate of the payoff from self-stimulation. This is further corroborated by the

change in the first pause the rat takes following lever extension: if the post-priming

and post-reinforcement pauses are both related to the payoff the rat expects to re-

ceive from self-stimulation, the rat ceases to meaningfully update its estimate of that

payoff as soon as it has obtained a single reward.

The results not only suggest that the period of time before the first reward

delivery is special, but they also suggest that it is unreasonable to treat the well-

trained self-stimulating rat as a model-free reinforcement learning agent. Were the

rat to require re-learning the value of pressing on every test trial, the process would

either produce incremental changes in pause durations and time allocations or the

rat would have a high learning rate parameter for tuning those changes based on the

experienced record of reward. Tuning the learning rate therefore requires some world

model. If a world model of the stability of the trial is required to appropriately tune

the learning rate so that it is very nearly one, learning rate tuning is subsumed by a

world model that allows a feed-forward update to key decision variables as quickly as

the model deems necessary.

It also appears implausible that the rat has “memorized” the large number of

potential pairs of prices and reward intensities that it is likely to encounter (which, in

the case of some rats, would be 126 combinations) in order to pick out the matching

combination and implement the corresponding policy. Instead, the rat appears to use

a model of how trials progress and a model of the stability of conditions within a trial

to identify, as quickly as possible in principle, the key determinants of the decision to
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press.

If the payoff itself is the stimulus that sets the appropriate policy to follow, then

this very-liberally defined model-based reinforcement learning model is no different

than one in which the payoff directly sets the probability of engaging in activities of

varying length. Such a model is discussed below.

6.2.4 Payoff-based action selection

Model-based descriptions of the task involve a table-lookup process in which

the total future net reward of a trial state—such as lever-pressing—is found within a

list of stimuli. If a cue signals that the total future net reward will be high, the rat

presented with the cue can look up the optimal policy to take without re-learning the

contingencies for reward. The rat will begin to press with some expectation for what

the total future net reward ought to be. Similarly, if a different cue signals that the

total future net reward will be low, the rat will implement the policy it has already

found to be optimal, rarely if ever sampling the lever for rewards.

The situation is slightly murkier when the stimulus itself is the payoff. If

the payoff serves as an internal cue to signal that future rewards will be sufficiently

valuable and can be acquired at sufficiently low cost to justify lever-pressing, the rat

may still look up in a table the optimal policy to implement for a given payoff. At

that point, though, the process of table lookup is no different than a process by which

the payoff informs which action to take.

We have modelled (Chapter 5) the molecular-level action selection process as

a “filling in” (that is, rapidly-updating) mechanism by which payoff directly provides

the animal with what to do and, in so doing, for how long to do it. Rather than

assuming the rat has associatively learned a pairing between a particular payoff and

the optimal policy to implement, we have assumed that the payoff sets the policy by

altering state-termination rates as a function of the payoff from competing activities.
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If the payoff is high, it will drive the self-stimulating rat to select a post-priming pause

of very short duration before starting to lever-press and will rarely, if ever, release

to lever to engage in other activities. If the payoff is low, the rat will elect to do

other things it is possible to do in the operant chamber before starting to lever press,

and will often leave that lever-pressing state to resume the alternate activities that

may be performed. In fact, this pattern often results in a censored true leisure bout:

when the payoff is sufficiently low, the rat simply stops lever-pressing altogether and

engages exclusively in other activities until the end of the trial.

The overall effect of this scheme is that the payoff sets the effective stay dura-

tion in post-reinforcement pauses, true leisure bouts and censored true leisure bouts,

while the effective stay duration in holds and taps remains constant. Since animals

in our hands engage only very rarely in uncensored true leisure bouts, the data imply

that the rat usually consumes the fruits of leisure activities in a single continuous

bout, during the post-reinforcement pause.

Furthermore, the fact that the effective stay duration in holds (which may

be censored by reward delivery) and taps is payoff invariant implies that the same

strategy—a mixture of short and long types of holds—is used no matter what the

payoff from self-stimulation will be. When the price is low and intensity is high,

all holds will be censored by lever retraction, and the maximum proportion of time

allocated will be achieved: the ratio of the price to the sum of the price and the

shortest post-reinforcement pause the rat can take. As the payoff decreases, the first

factor to make any contribution to changes in time allocation will be the duration

of the post-reinforcement pause, because many holds will continue to be censored by

lever retraction. At sufficiently low payoff, the post-reinforcement pause will be very

long, and if it terminates at all, the duration of the subsequent hold will not yield

a reward. As it terminates, the high probability of engaging in a true leisure bout

or quitting, rather than releasing the lever briefly as part of a tap, will drive time
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allocation to a minimum value.

Conover et al. (2001a) reported a strong relationship between inter-response

times and the programmed rate of reinforcement on a traditional, infinite-hold VI

schedule of reinforcement. Unlike what they found, we observed that the relationship

between tapping-related releases and payoff was weak (accounting for only 11% of

the variance in short-release duration). In their experiment, inter-response intervals

were composed of two components: just as in our modelling, dwell times in lever-

release activities comprise a short- and a long-mean component. Unlike what was

found in Chapter 5, the mean of the short-mean component of lever releases was

dependent on the VI, which would make it payoff-dependent. The differences between

the two procedures used is very likely the reason for our different findings. In an

infinite-hold VI schedule, the first response after the lever is armed is rewarded, while

in our cumulative handling time schedule, the animal is rewarded as soon as the

cumulative time the lever has been depressed reaches the experimenter-set price. As a

result, steady responding and steady holding strategies are differentially reinforced. A

steadily-holding rat will not obtain many rewards under an infinite-hold VI schedule

of reinforcement, as a reward will not be delivered until the lever is released and

pressed after being armed. A steadily-tapping rat will obtain rewards at a lower

rate under a cumulative handling time schedule of reinforcement, because every lever

release increases the time to reward without providing much leisure benefit. In our

hands, using a cumulative handling-time schedule of reinforcement, operant tempo

varies only very little with payoff. The effect of increasing payoff is to both increase

the probability that a lever release will be short, operant-related responding, and to

decrease the duration of time for which the rat engages in activities that are unrelated

to operant responding.

The many interacting components of the model—time spent in each activity,

probability of quitting, probability of releasing the lever as part of a tap compared
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to a true leisure bout—work in concert to produce curves that look like the Match-

ing Law would predict on a molar level. In other words, “matching” is an emergent

property that results from payoff-dependent sojourns in PRP, TLB, and quit activ-

ities and their transition probabilities to and from payoff-independent sojourns in

hold and tap activities. The animal matches the relative time invested in an option

to the relative rate of reinforcement because the payoff it provides sets the rate at

which a particular action will be terminated. The probability-weighted combination

of the set of actions determines the effective dwell times in activities that are directly

observable. If the effective dwell time in work bouts (holds and taps) depends on the

payoff from everything else, it is equivalent to stating that the rate at which work

is left (the reciprocal of its expected dwell time) depends on the payoff from every-

thing else, and vice-versa for dwell times in leisure bouts (PRPs, TLBs, and quits).

High payoffs from competing activities bias the animal toward selecting actions that

terminate at a high rate, while low payoffs from competing activities bias the animal

toward selecting actions that terminate at a low rate. Matching occurs because a

comparatively high VI from alternative A will result in a high leaving rate from alter-

native B, and a comparatively low VI from alternative B will result in a low leaving

rate from alternative A, resulting in

E[A]/E[B] = f(E[UA])/f(E[UB]),

where E[A] is the effective expected dwell time pursuing alternative A, E[B] is the

effective expected dwell time pursuing alternative B, f(E[UA]) is a function of the

payoff expected from alternative A and f(E[UB]) is a function of the payoff expected

from alternative B.

The model presented in Chapter 5 provides a remarkably good (though im-

perfect) account of single-operant performance in the randomized-triads design for
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each test trial, from the time the first reward is delivered onward. However, it can, in

principle, apply to leading bracket trials, for which the expected payoff is known to

be high as the trial begins, as well as to trailing bracket trials, for which the expected

payoff is known to be low as the trial begins. Given the evidence from Chapter 3 that

the rat behaves as though it has a world model of the progression of trials in a triad,

and the evidence from Chapter 4 that the rat behaves as though it has a world model

of the stability of conditions within a trial, how does the rat select which action to

do, and how long to do it, in the general framework of the randomized-triads design?

6.3 Putting it all together

Figure 6.1 provides a potential schematic of action selection in the randomized-

triads design. The rat may be in one of three different trial types: a leading bracket,

test, or trailing bracket trial. Data from Chapter 3 suggest that the rat maintains a

representation of the last trial’s expected subjective opportunity cost and intensity

(which was potentially updated) to infer the next trial’s expected subjective opportu-

nity cost and intensity. If both are sufficiently similar to the trailing bracket trial, the

rat directly infers it is currently in a leading bracket trial, a process learned through

potentially reinforcement-learning mechanisms. Similarly, if both the subjective op-

portunity cost and reward intensity are sufficiently similar to the leading bracket trial,

the rat infers it is currently in a test trial, and will begin to “explore” the mapping

of lever-pressing to payoff. Finally, if the last trial’s subjective opportunity cost and

intensity are not similar to either bracket, the rat infers it is currently in a trailing

bracket trial.

Following the exploration stage (in the case of test trials) or trial type inference

(in the case of bracket trials), the rat uses the payoff expected from self-stimulation

and the payoff expected from leisure activities to determine which activity to perform,
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Ît ← high

P̂st ← low

]

[
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Figure 6.1. Action selection in the randomized-triads design. When an inter-trial
interval begins, the trial state—a vector of the cached values of the subjective reward
intensity (I) and opportunity cost (Ps)—is used as a signal to infer the subjective
reward intensity and opportunity cost in effect on the next trial, according to state
transition function T̂ . If the trial state on the last trial was consistent with a trailing
bracket trial, the rat can update its estimate of the trial state on the current trial to
that of leading bracket trials and immediately exploit the rewards of self-stimulation.
If the trial state on the last trial was consistent with a leading bracket trial, the
rat must explore the mapping between lever-pressing and rewards and consequently
update the elements that make up the state vector (subjective opportunity cost and
reward intensity). If the trial state on the last trial was inconsistent with either
bracket type, the rat can update its estimate of the trial state on the current trial
to that of a trailing bracket trial and immediately exploit the rewards of non-self
stimulation activities. During the exploitation stage, the payoff from self-stimulation
(E[Ub]) sets the balance of time spent pursuing self-stimulation and non-self stim-
ulation activities. Activities that reflect pursuit of brain stimulation rewards are
white (holds, taps), and those that reflect pursuit of extraneous rewards are shaded.
Experimenter-enforced events, such as the inter-trial interval (ITI) and reward de-
livery are indicated in grey-outlined boxes, while dashed boxes indicate “cognitive”
operations and circles represent trial phases.
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and for how long to perform it, by setting the termination rate on these actions. In

tandem, the current estimates of the subjective opportunity cost and reward inten-

sity of the electrical reward on offer are updated, if necessary. When the rat never

worked—as is the case on most trailing bracket trials—the estimates of the subjective

opportunity cost and reward intensity are never updated from the predicted value,

and the next trial is inferred on the basis of these estimates, rather than discovered

values.

The exploration stage—assuming the rat explores the mapping between lever-

pressing and payoff on that trial—appears quantitatively different from the exploita-

tion stage. Once the mapping is known, because the rat has a world model of the

structure of the trial which may have developed over the many months it is trained,

there is no need for the estimated payoff to be revised again. The post-priming pause

occurring at the very beginning of the test trial—when the mapping between lever-

pressing and the payoff that will be delivered is as-yet unknown—is only slightly longer

than that on leading trials. Since the payoff that can be obtained on test trials is, on

average, intermediate, the short post-priming pause at the onset of test trials might

reflect a separate process that is usually at odds with self-stimulation but is aligned

with exploitation at the start of test trials. When the payoff from self-stimulation is

known, the rat may infrequently leave lever-pressing to explore whether the payoff

from everything else has changed, or resume lever-pressing from a protracted leisure

bout to explore whether the payoff from self-stimulation has changed. In this case, the

goal of exploitation—devoting one’s time to the option with the better payoff—is at

odds with the goal of exploration—investigating whether and in what way the payoff

from various activities has changed. However, at the very beginning of a test trial, the

rat does not yet know what the mapping between lever-pressing and reward will be.

In this special case, the goal of exploitation—devoting one’s time to a single option

with the presumed best payoff—is aligned with the goal of exploration—investigating
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whether and in what way the payoff from each option has changed. Once the payoff

from self-stimulation is uncovered, exploration and exploitation are, once again, at

odds.

6.3.1 The counter-factual payoff hypothesis

The model presented here is very similar to one proposed by Gallistel et al.

(2001). In it, Gallistel et al. propose that the rat extracts the current rate of rein-

forcement of each option from a small sample of intervals. The scalar combination

of reinforcement rate with other key determinants (subjective intensity, for example)

provides the income from each side, the ratio of which sets the ratio of the means of

the two exponential processes that determine how long to pursue each goal.

E[A]/E[B] = UA/UB

They further propose a linear relationship between the sum of the leaving rates from

pursuit of each goal and the sum of the experienced incomes that can be derived from

each goal.

1/E[A] + 1/E[B] = b + m(UA + UB)

Those two constraints—that the ratio of expected sojourns at each option be equal

to the ratio of incomes and that the sum of the reciprocal of the expected sojourns at

each option be a linear function of the sum of the incomes —result in the prediction

that the reciprocal of the expected dwell time in pursuit of an option will be directly

proportional to the income from the unchosen option and directly proportional to the

ratio of income from the unchosen option to the sum of the incomes from both:

1/E[A] = mUB + b
UA

UA + UB

.
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This description is similar to our view that the rat in the randomized-triads

design obtains a single exemplar of what the payoff from self-stimulation will be on

a test trial, which then sets the effective expected time the rat will spend in leisure-

related activities. As the payoff from non-self stimulation activities does not change,

the effective expected time the rat will spend in work-related activities will also not

change. Unlike the Gallistellian model, however, the time spent in pursuit of the

rewards derived from leisure does not depend on the sum of the incomes from both

pursuit of leisure rewards and pursuit of brain stimulation rewards. If that were the

case, the effective expected time the rat will spend in work-related activities would

also be payoff-dependent. Instead, what is proposed here is that the rat will select a

time to perform an action as a function of the payoff that can be derived from the

counter-factual (we call this the counter-factual payoff hypothesis). When the next

best thing the animal can do is associated with a high payoff, we propose that the

animal will select an action that can be quickly completed and terminate that action

quickly. When the next best action is associated with a low payoff, we propose that

the animal will select an action that will take longer to complete, and engage in that

activity at a more leisurely pace. For example, when the payoff from self-stimulation

is maximal, the rat may rush to the lever (if it is not already there) as quickly as

possible. When the payoff is negligible, the rat may opt to groom, an action that will

take considerably longer, and only lever press after it has been grooming for some

time.

The hypothesis is testable in principle. If, on a small subset of probe reward

encounters, the lever is not retracted and the reward is not delivered, it should be

possible to identify how long the rat is willing to work uncensored by lever retraction.

If the counter-factual payoff hypothesis is correct, there should be no difference, on

these probe reward encounters, in the duration for which rats will hold the lever across

all brain stimulation payoff conditions, because the termination rate is maintained

- 297 -



by the payoff from everything else. In contrast, background stimulation, delivered on

a variable-time schedule contingent on the lever being released, would increase the

payoff from everything else. In this case, while the termination rate of holding on

probe reward encounters would be a function of whether or not there was background

stimulation, the time spent in post-reinforcement pause activity would not.

6.3.2 Learning the rules

In the randomized-triads design, the animal only needs a single-reward sample

to identify the subjective opportunity cost and reward intensity on offer during the

test trial phase. On bracket trials, the rat knows these two determinants—as well

as their payoff—in principle as soon as the inter-trial interval begins. The temporal

dynamics of estimating the subjective opportunity cost are, in our case, moot, as the

rat’s internalized model of the stability of the trial allow the animal to update this

quantity in a single step. The data provided by Gallistel et al. (2001) provide some

independent evidence that this process occurs as quickly as an ideal detector would

allow. The question, then, is how the world models of stability and change arise

through training.

The evolution of the world model that involves a comparison between the last

trial’s subjective opportunity cost and intensity and those they reliably predict may

be a very slow process indeed. Unpublished data demonstrate that the time course

over which post-priming pauses become stable—that is, reliably short on leading

bracket, intermediate on test, and reliably censored on trailing bracket trials—is on

the order of weeks, a slow process that may indeed involve traditional reinforcement

learning mechanisms. Given that rats appear to have no problem acting as quickly

as an ideal detector of changes in reinforcement rate, it is entirely plausible that rats

may have internalized some form of a hidden Markov model (HMM) of how trials lead

to each other. In the HMM framework, the subjective opportunity cost and intensity
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provide observable signals of the type of trial the animal is in (a hidden variable).

The task for the rat is to identify the most likely next hidden variable—the next trial

type—on the basis of the observable signals it has observed and the current signals

it has encountered. When it is first placed in the randomized-triads design, the rat

has no way to know there will be, essentially, three different unsignalled trial types,

and no way to know the mapping between one trial type and the next. Some process

must occur for the rat to identify the existence of statistical regularities inherent

in the observable symbols presented, identify the number of hidden trial types that

generated those observable symbols, and identify the mapping of hidden trial types to

each other. Similarly, some process must occur for the rat to identify the stationarity

of the subjective opportunity cost, reward intensity and probability of reinforcement

throughout the trial in the face of a possibly noisy evaluative system.

A natural framework for studying these would be Bayesian (Deneve et al., 1999;

Knill and Pouget, 2004; Beck et al., 2008), according to which the animal’s model of

the world changes in complexity as a function of the quality of the predictions that

can be made (thereby revising prior probabilities, numbers of states, etc.) without

necessarily referencing a reward prediction error per-se. The rat is trained, from

the time it is screened for the effectiveness of the self-stimulation electrode, that

conditions between the time the cue signalling the start of a trial is presented to the

time the cue re-appears will be stable. This must place a high prior on the probability

that the subjective opportunity cost and reward intensity will be the same as the

last. Following training, rats are presented with the repeating pattern of trial triads

for weeks, and testing formally begins when responding is reliably high on leading

bracket and reliably low on trailing bracket trials. As a result of this training, it is

quite possible that animals have also placed a high prior probability on there being

three hidden states of the world, and on the permutation-like mapping of one hidden

trial type to the next.
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It is now possible to address a question that will be of interest to the general

neuroscience community: how can this simplified schematic of how the rat approaches

the action selection problem in the randomized-triads design be implemented in neural

circuitry? How does the brain solve the action selection problem as outlined here?

6.4 Stages of processing

The rat behaves as though it has a world model of the triad structure of the

randomized-triads design, a world model of the stability of trial conditions, and a

behavioural allocation strategy that depends on the payoff from self-stimulation (in

the case of leisure-related activities) or the payoff from everything else (in the case of

work-related activities). These processes must have some basis in neural machinery.

There must already be processes in place to perform the translation of objective

determinants (e.g. pulse frequency, price, force, probability) into subjective determi-

nants (e.g. intensity, opportunity cost, effort cost and risk). We hypothesize three

stages of processing, above and beyond those necessary for the above psychophysical

mappings : a world model-generating process, a process by which the expected out-

come of various actions are rapidly updated, and a process by which the updated map

of actions to outcomes results in the behavioural policy. A world model generating

process is necessary for the rat to use the cued inter-trial interval and unsignalled but

available intensity and opportunity cost information in inferring the expected payoff

and, potentially, its variability. Such a process is also necessary for the rat to explore

the mapping between lever-pressing and payoff only until the first reward has been

delivered. That expectation must, in some way, be tied to the saliency or desirability

of the actions to be performed in order for it to have any influence on performance.

Finally, the updated payoff from self-stimulation must be part of the process by which

actions are selected.
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One process translates the strength of the stimulation—the directly observable

and manipulable “reward strength”—into its subjective impact. Previous work has

shown that the activity of directly activated neurons is spatio-temporally integrated

by a network, or a system of networks, the peak activity of which is translated into a

subjective intensity which endures as an engram to direct future behaviour (Gallistel

et al., 1974). Subjective intensity is related to pulse frequency and train duration by

logistic and hyperbolic functions, respectively (Sonnenschein et al., 2003; Gallistel,

1978; Simmons and Gallistel, 1994). Similarly, work by Solomon et al. (2007) has

shown that the subjective impact of price increases is roughly linear at high prices,

and rolls off to a minimum subjective opportunity cost at sufficiently low prices. The

data provided in Chapter 2 suggest that the psychophysical translation in evaluating

the subjective risk of an option is linear.

As each of these psychophysical mappings provides independent information

regarding the payoff that can be expected from lever-pressing, each must inform either

directly or indirectly (via their scalar combination) the process involved in mapping

the relationship between response and outcome. In the case of bracket trials, for

which the animal need not (and does not) engage in an exploration phase, the world

model directly provides an expected payoff. As a result, the world model must either

maintain a representation of the identity of the last trial and its mapping to the next,

as well as the expected payoff from the next trial, or it must maintain representations

of the subjective impacts of the last trial’s BSR and price and their mapping to

the next. According to the former, the vague stimuli “like a leading bracket”, “like

a trailing bracket” and “unlike leading or bracket” predict the next vague stimulus

to come when the inter-trial interval is begun as well as the payoff on that trial,

which would require no further updating. According to the latter, the stimulus-

vectors “high intensity/low cost”, “low intensity/low cost” and “neither high/low

nor low/low” predict the next stimulus-vector, which can then be multiplicatively
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combined to inform the rat of the payoff. The rat can then use its world model

of stability in conjunction with the stored record of reward, opportunity cost, and

probability to gauge the degree to which some actions ought to be selected. In

other words, the subjective opportunity cost accrued over the reward encounter and

the reward intensity delivered upon successful completion, combined multiplicatively

with the risk that has been associated with the lever over many trials, provide the

animal with the mapping between lever-pressing and payoff. The mapping can thereby

influence which actions are selected and which will be neglected, and need not be

updated as the animal collects rewards.

When the animal has an expectation of the payoffs from self-stimulation (Ub)

and those from extraneous activities (Ue), these expectations must inform circuitry

that implements the action selection problem. One simple way is for the payoffs to

drive populations of neurons that collectively represent pursuit of different goals. Each

population inhibits neighbouring populations, providing an on-centre, off-surround

population coding scheme. Such a scheme is presented in figure 6.2. When the payoff

from self-stimulation is comparatively high, the increased activity inhibits pursuit of

all other goals. When the payoff from self-stimulation is comparatively low, popula-

tions involved in grooming, resting and exploring “win” the competition and make it

less likely the rat enters into hidden hold and tap behavioural states.

Given the constraints posed by the animal’s behaviour, how might the brain

implement the strategies we describe here? How may we test whether it does?

6.4.1 World models

Any neural implementation of the action selection problem we have described

would need to incorporate the great influence that world models provide. For the

rat to have a sense of “trailing is followed by leading”, for example, there must be

a population that maintains a representation of what the subjective determinants of
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Figure 6.2. Implementation of the action selection problem. To implement the action
selection problem, one may envision multiple populations of neurons responsible for
pursuit of various goals. Using lateral inhibition and excitatory feedback, each pop-
ulation acts as an on-centre, off-surround unit whereby increases to the payoff of one
goal compared to others will increase the probability of engaging in activities related
to the higher-payoff goal and decrease the probability of engaging in activities related
to other goals. For example, an increase in Ub compared to Ue will shut down, by
lateral inhibition, the probability that the rat grooms, rests and explores, increasing
the total amount of time spent holding and tapping.
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the decision to press were on the last trial, a mapping that provides the expected

values of these subjective determinants to those in effect on the previous trial, and

a process that updates these values in the face of new information. The inter-trial

interval provides a potent cue that conditions will be different; how they will differ

will depend on the mapping of stimuli to each other, and their motivational impact

will require the scalar combination of the stimuli with each other.

Since the exploration stage during test trials (the period of time before a

reward is delivered) appears to differ in terms of the duration of the pause to make, the

maximum duration of the responses made, and the overall proportion of time allocated

to lever-pressing, the motivational impact of the key determinants of decision may

not be the only process at work. The rat may “know,” in a sense, that the mapping

between responding and payoff will need to be updated on the test trial. Thus, the

mapping between subjective opportunity cost and reward intensity from one trial to

the next may involve a representation of the variance that can be expected in these

variables, as well as their mean.

One region that would be well-suited to representing the world model would

be orbitofrontal cortex. Orbitofrontal cortex has been involved in flavour-based un-

blocking (McDannald et al., 2011), temporal discounting (Roesch and Olson, 2005),

reversal learning (Rudebeck and Murray, 2008) and probabilistic learning (Roitman

and Roitman, 2010). Each of these is, essentially, a higher-order model of contingen-

cies and rewards: higher-order representations of identity (flavour-based unblocking),

of when a reward will come (temporal discounting), of changing task demands (re-

versal learning), and of relations between stimuli (risk-based discounting). Indeed, it

has even been suggested that a fundamental value signal (Padoa-Schioppa and Assad,

2006) is represented in orbitofrontal cortex. There is certainly evidence that human

orbitofrontal cortex is differentially activated by reward and non-reward outcomes

(Knutson et al., 2001) and that this anticipatory neural activity is correlated with
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subsequent behaviour. It is quite possible that the orbitofrontal cortex maintains

model-based information specific to the task. The world model may be arbitrarily

simple, as is the case when behaving as though one had asked “was the last trial like

a trailing bracket, because then the next one will be a leading bracket trial.” It may

also be highly organized, as is the case when behaving as though one had asked “what

is the sequence that guarantees my opponent a checkmate in three moves and what

steps can I take to prevent it?”

The hypothesis that model-based information is represented in sensory and

association cortical structures and is relayed to sub-cortical evaluative mechanisms

may be difficult to directly test, but it is not impossible to test some of the predictions

that arise from both the behavioural theory and its proposed neural manifestation.

Specifically, any region proposed to provide representations related to the world model

for a task would require an evidence-based modulation in firing rate. Acquisition of

the world model itself would likely involve a fairly slow-changing, synaptic-weights

based system. Acting on the basis of that world model, however, can occur quickly

when it is in place.

6.4.2 Expected payoff

The world model will provide essential information about the expected out-

come of a lever press: if the current trial follows a trial resembling a trailing bracket,

the payoff will be high, if the current trial follows a trial resembling a leading bracket,

the payoff is variable and must therefore be uncovered, and if the current trial follows

a trial resembling neither, the payoff will be low. The combination of stimuli repre-

sented that signal a change in conditions must inform a process that evaluates the

expected mapping between each action and the payoff it can be expected to provide.

This process would require stimuli—even those internal to the rat, such as subjective

opportunity cost and reward intensity—to update the mapping between an action
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and its desirability, which can then provide a sort of saliency signal to the process

that selects actions.

One means by which the binding of outcomes to actions could occur would

involve the ventral striatum, a major input region of the basal ganglia system that

receives convergent cortical inputs (Nakano et al., 1999) and dopaminergic inputs

(Voorn et al., 1986) from the ventral tegmental area (Beckstead et al., 1979; Ikemoto,

2007). Computational models of the basal ganglia (Chakravarthy et al., 2010) place

the ventral striatum at a critical point in the evaluative process: it receives inputs

from sensorimotor cortex and projects to different regions of caudate and putamen

based on cortical topography (Berendse et al., 1992). The striatum is therefore su-

perbly placed anatomically to bind a variety of actions to the degree to which they

ought to be selected—in other words, their salience. Moreover, medium spiny neu-

rons of the ventral striatum have “up” and “down” states (Plenz and Kitai, 1998),

regulated in part by dopamine influx, that could serve as a filter to weaken inputs

that are already low. Furthermore, local inhibitory connections (Lighthall and Kitai,

1983) and cholinergic tonically-active neurons (Anderson, 1978; Wilson et al., 1990)

would also improve the signal-to-noise ratio in ventral striatal representations. One

computational hypothesis of striatal activity (Chakravarthy et al., 2010) is that it rep-

resents the salience of requests from cortical structures to access the motor system.

We propose here that the process that updates the mapping between goals and out-

comes may occur at the level of the ventral striatum, using model-based information

from cortical pathways, and saliency-based information from tegmental regions.

van der Meer and Redish (2009) recorded from neural ensembles within the

hippocampus and the ventral striatum while rats navigated a multiple-T maze. Fol-

lowing two low-cost choice points (concatenated T’s), the rat would approach a final

choice point with high cost: one arm was baited along the return rail, while the

other was not. If the rat made the incorrect choice, it would have to re-start the
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maze anew without a food reward. Various hippocampal cells were active while the

animal was in a particular place, and thus, one could decode the position the rat

was representing on the basis of the population’s activity. Similarly, various cells of

the ventral striatum were active when the click of the food dispenser was sounded.

One could decode, in principle, the reward the rat was representing on the basis of

the population’s activity. The maze changed configuration every day, and thus, early

trials in an experimental session provide the rat with a mapping between actions (left,

right) and outcomes (reward, no reward). In these early trials, rats will often pause

at the final choice point, seemingly deliberating the correct option. While the rat was

immobile at the choice point, early in the day’s experimental session, hippocampal

cells were reliably activated in a sequence, which when decoded proceeded as if the

rat had walked down one arm and the other. Similarly, ventral striatum cells were

reliably activated at the final choice point as well as at reward sites, but only while the

animal was updating the map of where to go. These findings are certainly consistent

with a payoff-updating role in ventral striatum. Were the ventral striatum involved

in representing the actual payoff from taking an action, its activity would not be tied

to the short (fewer than 10 laps) period of time the mapping is updated.

Lesion studies also provide some indication that the ventral striatum is in-

volved in updating the goal-saliency mapping. In the blocking procedure, a condi-

tioned stimulus (CS) is paired with an unconditioned stimulus (US) until it reliably

elicits a conditioned response (CR). Following subsequent pairings of a compound

stimulus comprising the CS and a new, blocked stimulus (BS) with the US, presenta-

tions of the BS alone do not elicit any CR. This is because the unconditioned stimulus

is already predicted by the CS by the time the BS is presented, and therefore, no new

learning occurs. In the unblocking procedure, the US paired with the CS-BS com-

pound is different (either in quantity, for value unblocking, or in quality, for identity

unblocking) from the original US that was paired with the CS. As a result, the animal
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learns that although CS predicts a particular US, that CS when the BS is present

predicts a different US. When using a model-free strategy, the rat can learn that the

compound predicts more food but not that it predicts a different flavour of food.

When using a model-based strategy, the rat can learn both. McDannald et al. (2011)

found that NMDA lesions to ventral striatum impaired a rat’s ability to unblock value

(learning that the compound predicts more food) or to unblock identity (learning that

the compound predicts a different flavour), implying an impairment in their use of

either a model-free or model-based learning strategy. One would expect that impair-

ment of a system that updates the mapping between goals and their salience would

impair both model-free (strictly “amount” learning) and model-based (“amount and

identity” learning) strategies.

Human functional neuroimaging studies have shown a role of dorsal striatum

in the maintenance of the outcomes of actions so that they may be selected more

frequently (O’Doherty et al., 2004). In reward trials of the instrumental task, human

subjects had to choose between two stimuli, predicting a high probability of juice

reward (60% chance) or low probability of reward (30%). On neutral trials, they had

to choose between high and low probabilities of obtaining a neutral solution. In this

instrumental condition, one would expect both a process that updates the mapping

between actions and outcomes and a process that informs action selection of the

updated mapping. On a separate Pavlovian task, stimuli were presented passively

along with the reward, in yoked fashion, to individuals who simply had to identify

which of the two stimuli the computer had chosen. In this Pavlovian condition, one

would expect a process that updates the mapping of outcomes to still operate, but this

mapping need not inform action. While activity in ventral striatum was correlated

with a “prediction error” derived from reinforcement learning principles in both tasks,

the dorsal striatum was correlated with the prediction error only in the instrumental

task. Given that the “prediction error” is loosely related (though not identical) to
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changes in the payoff from each option, it is interesting that dorsal striatum showed

activation only when the updated mapping to outcomes needs to inform which action

to take.

Another experiment that supports the idea of a dorsal striatum-based action

selector comes from work by van der Meer et al. (2010). As previously described, rats

must complete three low-cost sequential choices along three concatenated T-mazes.

The final choice point will lead to either a reward or non-reward, at which point

the rat returns to the start of the maze. If the rat has chosen incorrectly at the

final choice point, it will have to re-navigate the entire maze anew. Unlike reward-

responsive neurons of the ventral striatum, whose activity at the final choice point

becomes less important as the maze is learned, neurons of the dorsal striatum became

more efficient at encoding the sequence of turns in the maze (and at not encoding

task-irrelevant portions of the maze) as the rat made more laps. If the dorsal striatum

is involved in using gated ventral striatum action-salience signals to select actions on

the basis of a noisy competition, those neurons that are most active will necessarily

gain behavioural control in the decision-rich portions of the task—that is, during the

sequence of turns in the maze—as those sub-populations are slowly updated with

respect to the degree to which the animal ought to choose them.

Lesions to the dorsal striatum prevent rats from using putative stimulus-

response associations that have been acquired over the course of training in a single

T-maze task (Packard and McGaugh, 1996). When navigating a single T maze, the

rat may have learned either or both of two contingencies: the reward is east of the

choice point (a stimulus-stimulus strategy), or the reward is right of the choice point

(a stimulus-response strategy). The rat can use either of the two strategies, which

can be assessed simply by rotating the maze 180 degrees. After 8 days of training,

rats predominantly use a stimulus-stimulus strategy, implying a model-based, goal-

directed process: a delicious food pellet lurks east of the current location. After
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16 days, rats predominantly use a stimulus-response strategy, implying a model-

free, habit-directed process: turning right is a good thing, and one need not know

why. Extensively trained rats (and, thus, rats using a model-free, habit-directed

stimulus-response process) with functionally lesioned dorsal striata began to use a

stimulus-stimulus, model-based, goal-directed strategy instead. This implies that the

goal-directed, stimulus-stimulus strategy is not lost over training, but rather, that

other, faster model-free pathways wrest behavioural control from slower model-based

solutions when feed-forward representations are unnecessary. These data suggest that

there may be multiple systems vying for control over behaviour. Indeed, it has been

proposed (White and McDonald, 2002) that the dorsal striatum, amygdala and hip-

pocampus subserve interdependent memory systems. Damage to the hippocampal

system disrupts performance on the Morris water maze (Morris et al., 1982), while

interference with normal dorsal striatum function McDonald and White (1993) dis-

rupts cued radial maze learning, and amygdaloid lesions disrupt the expression of

innate fear (Blanchard and Blanchard, 1972) and fear conditioning (Hitchcock and

Davis, 1986). It is quite possible that learning how things are related to each other

(hippocampus), which responses should be made under different conditions (dorsal

striatum) and which stimuli are of any interest (amygdala) would be processed in

different regions and would gain access to the motor system by different means.

Optogenetic methods promise to provide an important key to testing whether

the ventral striatum is indeed involved in the rapid updating process we describe, and

whether the rapid-updating propagates to dorsal striatum sub-populations. These

methods involve the insertion of genes encoding a light-sensitive protein into cells

that can be targeted with respect to the neurotransmitter released, projection area, or

somatic origin. The question of rapid mapping updating is therefore a straightforward

one: if one inhibits activity within the nucleus accumbens that is related to updating

the payoff from lever-pressing while the first brain stimulation reward of a test trial is
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delivered, one would expect to lengthen the exploration phase to two rewards rather

than one. In other words, shutting off the area specifically responsible for the updating

process while it is in progress should prevent that process from occurring. As a result,

the animal would base its actions following the first reward delivery on the same set of

saliencies it had before the first reward was delivered. If every reward is accompanied

by a selective silencing of the neurons responsible for updating the mapping between

action and payoff, although a new value of intensity and opportunity cost can be stored

and used to predict the next trial, the animal will not have used that information

during the trial to guide its behaviour. On a test trial for which stimulation is too

weak to normally support lever pressing, and for which the subjective opportunity

cost is also low, continually silencing the process that updates the mapping between

response and payoff would presumably maintain the rat in the “exploration” phase

rather than allow it to enter the “exploitation” phase. As other processes, like those

storing records of the subjective intensity and opportunity cost, would not be affected

by the mapping between response and outcome, the next expected trial would be a

leading trial (as the intensity and price are low). If the silencing in some way enhances

the reward, thereby dramatically reducing the post-reinforcement pause on these low-

payoff trials to the duration of the post-priming pause, then the next expected trial

would be a test trial. The critical tests would require some very sophisticated technical

prowess, but the general behavioural methodology is easily transferable from findings

we have already reported in Chapter 3.

6.4.3 Payoff-based selection

Provided payoff sets the probability of selecting an action and the duration

for which the animal is engaged in that action, some mechanism must subserve the

process. The previous section has provided hints about the location where the saliency

of a mapping between response and payoff could be represented and dynamically
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updated; below, we discuss what substrates may be involved in arbitrating between

competing actions available.

On our view, the process of action selection arises from noisy competition be-

tween elements representing actions and the payoffs that may be derived from their

pursuit. Neural sub-populations would therefore have to encode what to do, the

activity of which would be dependent on the payoff from competing goals. Such a

scheme is not necessarily difficult to entrust to sub-populations of neurons with local

inhibitory synapses and external diffuse excitatory synapses. The result would be an

on-centre, off-surround type of sub-population encoding, whereby the selected action

is that which is “on” and those that are not are “off.” An alternative view is to assume

that action selection emerges from reward delivery driving covariance between reward-

related circuitry and choice-related circuitry (Neiman and Loewenstein, 2013). These

models can, in fact, account for matching in the traditional infinite-hold variable in-

terval schedule. However, it is unclear whether a covariance-based synaptic plasticity

rule can account for the pattern of behaviour seen under the cumulative handling

time schedule, given that it requires the rat to accumulate subjective estimates of

opportunity cost.

A simple alternative is to assume that the rat maintains an engram corre-

sponding to the subjective intensity of the rewarding stimulation, the opportunity

cost, risk, effort, and waiting time involved in acquiring it. We propose that the final

decision variable, that which would modulate which actions are salient and which

ought to be neglected, is the scalar combination of these key subjective determinants.

Under the influence of a high payoff, a sub-population of cortical neurons representing

the higher-order goal of “acquiring rewards” would be selectively enhanced, and in so

doing, sub-populations representing “groom” and “rest” would be inhibited by local

inhibitory connections. The enhanced goal would propagate to the level of individual

motor programs like “approach lever” and “hold lever down.” Any action unrelated

- 312 -



to the pursuit of the reward would be terminated, because lateral inhibition from

BSR-related sub-populations would have terminated it, either directly or upstream.

If actions are selected on the basis of payoff and result from a competition be-

tween all motor responses possible, then inducing activity within the sub-population

responsible for representing lever-pressing actions will both (1) reduce the duration

of alternate responses and (2) increase the duration of time for which the action is

selected. In fact, one would expect the behavioural response to be tightly linked to

both ongoing activity and the trial phase. During the exploration phase, before the

rat knows what the actual payoff will be, the activity of neurons related to lever-

pressing activities would be expected to track both the action that is chosen and the

decreasing payoff of lever-pressing as the rat holds the lever down. In the exploitation

phase, the activity of neurons related to lever-pressing activities would be expected

to track only the action that is chosen. It remains to be seen whether or not this is

true, but advances in ensemble recording techniques and optogenetic methods make

these hypotheses empirically verifiable.

6.4.4 The MFB at the centre of it all

If sensory and association cortices, especially orbitofrontal cortex, are involved

in model-based learning, the striatum is involved in updating and maintaining the

mapping between the payoff and response, and sensorimotor cortices are involved in

the payoff-based selection of which action to take, where does one place the set of

neurons excited by the electrode implanted in the medial forebrain bundle?

Electrical stimulation can compete and summate with (Conover and Shizgal,

1994), and substitute for (Green and Rachlin, 1991) natural rewards like sucrose,

food, and water. It must therefore carry a signal, either directly or soon thereafter,

that is commensurate with all these stimuli. The organizing principle we have used

is to assume that this signal provides multimodal information about the underlying
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rewarding nature of a stimulus, that a leaky integration of this brief signal over its

spatial and temporal extent is conducted downstream, and that the peak activity of

the integration network is committed to memory. Animals working for brain stimu-

lation rewards respond consistently to variable and fixed schedules of reinforcement.

In order to perform an expectation over the intervals one has seen, those intervals

must have been represented somewhere, especially in the cumulative handling time

schedule which requires a reasonable estimate of the time spent at the lever to be

accumulated. It is likely that a similar representation of the subjective opportunity

is committed to memory, and possibly any other key subjective determinant of the

decision to press. These representations would have to be combined somewhere—

possibly in dorsal striatum, and possibly following an updating process in ventral

striatum—in order to inform the rat of the mapping between lever-pressing and its

expected payoff on a given trial.

The medial forebrain bundle is therefore at the very heart of this action selec-

tion system. Although stimulation via macroelectrodes does not have the specificity

necessary for determining which of the many dozens (Nieuwenhuys et al., 1982) of

fibre tracts coursing past the electrode tip are responsible for reward, much progress

has been made in deriving their characteristics. The properties of these neurons have

been behaviourally derived: the direction of conduction of at least a subset of the

neurons is likely anterior-posterior (Shizgal et al., 1980), their absolute refractory

period is short (Yeomans, 1979), and can follow pulse frequencies of up to roughly

400Hz (Solomon et al., 2010). If one could identify the neurons responsible for the re-

warding effect, it would greatly understand where each subsequent stage of processing

occurs and how that information is processed, including where world models may be

represented and how they evolve, where action-outcome mappings are updated and

maintained, where and how those mappings influence action selection. Techniques

that improve the spatial and temporal selectivity of a causal manipulation will likely
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provide the tools necessary for elucidating these pathways, while new protocols and

analysis methods, such as those presented in Chapters 2 through 5, could provide a

strong quantitative basis for evaluating theories of action selection.

6.5 Conclusions

Psychophysical methods have tremendous power to uncover the processes and

biophysical mechanisms at work in a large number of applications. For example,

painstaking work by Hecht et al. (1942) demonstrated that the retina was capable

of detecting on the order of 5 to 8 quanta of light. Were it not for carefully crafted

experiments, using the most sophisticated equipment available, it would have been

impossible to assess the incredible degree of sensitivity in the visual system. These

psychophysical data inspired a great deal of subsequent molecular and physiological

work regarding how vision is implemented in the brain. Their findings narrowed the

potential chemicals responsible for light transduction, and the biochemical cascade

that allows such minute quantities of light to result in visual perceptions. Psychophys-

ical methods provide the crucial information to direct and inspire molecular, cellular,

and systems neuroscience.

The same can be said of action selection. Crude methods, like response-rates

and the degree of a consummatory response, have been fairly good at detecting the

effect of manipulations on a gross level. Indeed, it was the percentage of time spent

responding that was originally used in demonstrating the rewarding effect of septal

stimulation (Olds and Milner, 1954). Without even an insensitive measure of choice,

it would not have been possible to assess where stimulation was effective at reinforcing

an action and where it was not. However, as the various processes that govern choice

are parsed, the methods for measuring them must also be refined. Seminal work

by Hodos and Valenstein (1962) showed that response rates alone were incapable
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of discriminating between highly rewarding stimulation that produced motoric side

effects that competing with lever-pressing and weakly rewarding stimulation. By

measuring the threshold stimulation strength at which animals would lever-press at

some criterion rate, it was possible to determine whether a manipulation had altered

motivation, in some way, or whether it had altered the motor capacity to respond. The

curve-shift method (Miliaressis et al., 1986) has since become the dominant paradigm

in assessing the effects of manipulations to rewarding brain stimulation, but it, too,

is incapable of a distinction: those manipulations that change the effectiveness of

the stimulation to induce reward from those that change other key determinants

of decision-making. This thesis presents a way to disambiguate between the two,

by assuming that intensity is evaluated separately from opportunity cost, via the

Shizgal Reinforcement Mountain model. This molar model of choice is, despite its

great usefulness, not a model of individual action selection. This thesis presents

a molecular model of choice, based on the idea that animals do not simply make

stimulus-response associations that must be re-learned when conditions change. The

organism stands between stimulus and response, and has likely extracted statistical

properties of its environment to better act upon regularities that are apparent to it.

The great challenge is to accurately describe what the animal is doing, in real time,

along with how it accomplishes it.

The methods used to infer the processes that underlie action selection will nec-

essarily need to grow in complexity as our understanding of the decision-making pro-

cess becomes more complex. New methodologies will always allow us to probe deeper

and more insightfully into the neural organization of choice. This thesis demon-

strates that along with the increased power of new technologies, the behavioural and

statistical methods we use to relate neural findings to behaviour can—and will have

to—complement the neurobiological sophistication of emerging genetic and recording

methods.
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