
SEMANTIC-BASED MULTI-FEATURED RANKING ALGORITHM FOR

SERVICES IN SERVICE-ORIENTED COMPUTING

AMMAR ALSAIG

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

NOVEMBER 2013

c© AMMAR ALSAIG, 2013

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Ammar AbdulBasit Alsaig

Entitled: Semantic-Based, Multi-Featured Ranking Algorithm for Services in

Service Oriented Computing

and submitted in partial fulfillment of the requirements for the degree of

Master in Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 ______________________________________ Chair
 Dr. T. Popa

 ______________________________________ Examiner
 Dr. J. Paquet

 ______________________________________ Examiner
 Dr. O. Ormandjieva

 ______________________________________ Co-supervisor
 Dr. V. S. Alagar

 ______________________________________ Co-supervisor
 Dr. M. Mohammad

Approved by __
 Chair of Department or Graduate Program Director

__
 Dr. Christopher W. Trueman, Interim Dean

Faculty of Engineering and Computer Science

Date __

Abstract

Semantic-based Multi-featured Ranking Algorithm for Services in Service-oriented

Computing

Ammar Alsaig

Service-Oriented Computing has brought great benefits for both service requesters and service

providers. The potential of this paradigm cannot be achieved without efficient discovery and

selection processes. The rapid-increasing volume of services and the heterogeneity of their

features make the discovery and selection of services challenging. In this thesis we provide a

novel vector-based ranking algorithm. The algorithm is both user-centric and semantic-based.

It overcomes all restrictions and limitations that exist in previous vector-based ranking algo-

rithms. We introduce fair ranking rules and apply them in our algorithm. The algorithm has

been examined thoroughly with respect to its performance, accuracy and algorithmic complex-

ity. We provide experimental results that show the significance and dominance of our solution

over the existing ones.

iii

Acknowledgments

Above all, I thank God for enlightening me with the knowledge and empowering me with the

strength to complete this work. I thank him for surrounding me with kind people to only some

of whom it is possible to give particular mention here. Without people around me, this thesis

would not have been possible.

I am profoundly thankful and grateful for the support, teachings, and guidance of professor

Vangalur Alagar. His knowledge and expertise in the field of mathematics and algorithms

helped to build and improve the work in this thesis. Moreover, the guidance, support, and

friendship of my co-supervisor , Dr. Mubarak Mohammad, has been valuable both academically

and personally, for which I am extremely grateful.

I would like to extend my deepest thanks to my wife Duaa for her personal support and

great patience at all times, it would have been a lonely road without her support. Without

her and my children, Wedad , Sarah, and Yassir, I would not have been here. I also would

like to express my thanks to my parents, and sisters for giving me their unequivocal support

along the way, as always, for which my mere expression of thanks likewise does not suffice. A

special thanks to my sister, Alaa who shared with me the difficulties and the joys of my years

in Canada. She was a friend, a sister and a continuous support.

Last but not least, I would like to extend my gratitude to the Saudi Cultural Bureau for their

financial support. I thank their staff for being always there for me to provide help.

iv

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.0.1 Contributions . 4

2 Basic Concepts and Fair Ranking Requirements 5

2.1 Basic Concepts . 5

2.1.1 Service . 7

2.1.2 Query . 8

2.1.3 Weights . 8

2.1.4 Matching . 9

2.1.5 Ranking . 11

2.2 Requirements for a Fair Ranking Algorithm . 14

2.2.1 Consumer Perspective . 14

2.2.2 Algorithmic Perspective . 15

2.3 Summary . 17

3 Literature Review 18

3.1 Ranking Algorithms . 19

v

3.1.1 Ranking Based on Vector-Based Similarity Measures 19

3.1.2 Ranking Algorithms Based on Graph-based Similarity Measures 21

3.1.3 Ranking based on Recommender Systems 22

3.1.4 Multi Criteria Decision Making . 24

3.1.5 Analysis of Current Multi-featured Ranking Solutions 35

3.2 Similarity Measures . 38

3.2.1 Vector-based Similarity Measure . 39

3.2.2 Distance-based SMs: Current State of the Art 40

3.2.3 Criteria of Similarity Measure Evaluation . 41

3.2.4 Evaluation Method . 45

3.2.5 Observations and Analysis . 50

4 General Overview on the Proposed Solution 57

4.1 Basic Information about The X-Algorithm . 58

4.2 The X-Algorithm Front-end . 58

4.2.1 Options provided to user . 58

4.2.2 Conceptual Structure of User Request . 60

4.3 The X-Algorithm Back-end . 63

4.3.1 Preparation Phase . 63

4.3.2 Multiplication Phase . 65

4.3.3 Sorting Phase . 67

4.3.4 General Pseudo Code of the Back End . 67

4.4 Summary . 69

5 Deeper Look Into The X-Algorithm 70

5.1 Weights . 70

5.2 Modes, Semantics and the value of X . 72

vi

5.2.1 Ranking Modes . 72

5.2.2 Semantics . 73

5.2.3 Defining Scores Types . 74

5.2.4 Exact Mode . 76

5.2.5 Best Mode . 76

5.2.6 Similarity Measure Pseudo Code . 84

5.3 Symmetry in Exact Mode and Semantic Preference 87

5.3.1 Symmetry . 87

5.3.2 Semantic Preference . 90

5.4 Scaling Method . 98

5.5 Essential Option . 101

5.6 All Best Option . 108

5.6.1 The AllBest Value . 109

5.7 Range Option . 114

5.8 Algorithm Pseudo-code . 118

5.9 Common Problems and Solutions . 120

5.9.1 Missing Feature Problem . 120

5.9.2 Mathematical Problems . 120

5.9.3 Compensation and Non-compensation Problem 121

5.10 Summary . 121

6 Accuracy, Complexity, and Performance 123

6.1 Accuracy . 123

6.1.1 Why Google’s data? . 124

6.1.2 Problem of current ranking algorithm in Google Store 124

6.1.3 Collecting and Analysing Google Store’s data 125

vii

6.1.4 Applying our solution . 126

6.2 Complexity . 135

6.3 Performance . 135

6.3.1 Type 1 Dataset: Fixed Number of Features and Variable number of Services136

6.3.2 Type2 Dataset: Variable number of Features and Fixed Number of Services 137

6.4 Summary . 139

7 Ranking Composite Services 140

7.1 Request Structure for Simple Services In a Composition 141

7.2 Constructing Composite Request from Extended Simple Requests 142

7.3 Responding to a Composite Request . 144

7.4 The Complexity of Ranking Composed Services . 149

7.5 Summary . 150

8 Conclusion and Future Work 151

8.1 Evaluation . 152

8.2 Future Work . 153

Bibliography 156

Appendix 161

A Symmetry Calculations For Similarity Measures 161

B Limits Calculation For Similarity Measures 165

viii

List of Figures

1 Different categories of existing ranking algorithms 19

2 Ranking Algorithm Based on Similarity Measure . 20

3 Structure of a service in graph-based model . 22

4 General Structure of Recommender Systems . 23

5 AHP pairwise comparisons . 28

6 Different vector-based similarity measures . 39

7 Dataset for testing the Symmetry property . 46

8 Dataset for testing the Normalization property . 47

9 Dataset for testing the Sensitivity to Small Changes property 48

10 Examining the Symmetry Feature in similarity measures 49

11 Examining the upper bounds of the similarity measures 51

12 Examining the Sensitivity to Small Changes Feature in similarity measures 53

13 The conceptual structure and Pseudo Code of the user request 61

14 An illustration of the Preparation Phase . 64

15 Illustration of the Multiplication Phase . 66

16 Illustration of the entire structure of X-Algorithm 69

17 Classification of semantics based on data types . 74

18 The difference in RC behaviour when subtracted from ”1” 75

19 Different scores assignment in Exact Mode. 75

ix

20 Types of Score assignment for More is Better Semantic 77

21 Types of scores assignment for Less is Better Semantic 80

22 Example of the method used to unify denominators 89

23 The way of applying the BoostValue on the properties based on the semantics

when Exact Mode is ON . 95

24 Simple example that illustrates AllBest method . 110

25 The assignment of different score types with Range Option 115

26 User Interface to build Query . 126

27 A snap shot of the top nine Google Data as shown in the website at the time of

writing . 127

28 Results for Case1 . 128

29 Results for Case2 . 129

30 Results for Case3 . 129

31 Results for Case4 . 130

32 Results for Case5 . 131

33 Results for Case6 . 132

34 Results for Case7 . 133

35 Results for Case8 . 134

36 Results for Case9 . 134

37 This figure shows how the results exhibits a linear growth 137

38 This figure shows how the results exhibits a linear growth 138

39 The structure of ESRS request . 142

40 An illustration of the Service composition . 145

41 The Ranking Algorithm in FrSeC Framework . 154

x

List of Tables

1 Evaluation of Ranking Methods from Consumer Perspective 35

2 Evaluation of Ranking Methods from Algorithm Perspective 36

3 Similarity Measures that produce numbers in the range [0,∞], [Cha07] [Dan80] 41

4 Similarity Measures that produce numbers in the range [0, Constant], [Cha07]

[BB08] [Ibr12] [JRVF09] . 42

5 Comparison between all Similarity Measures. 55

6 Results of 1− RC applied on q = 10, and s = [0,20] 78

7 Results after removing 1 from the case s > q . 79

8 Results after adding 1 to the case s > q . 79

9 User Request . 86

10 The values of features of each Service . 86

11 The ranks of each Service based on the X-Algorithm 86

12 The asymmetric results produced by F ract ionas ymmet ric 88

13 The symmetric results produced by F ract ions ymmetric 89

14 User Request . 95

15 Available Services . 96

16 Scores with acc = 1 . 96

17 Results of scores for the features of the available Services with ”acc = 0.1” 97

18 Motivation to use Scaling for MB and LB Semantics. 99

xi

19 Scaled Scores in Different Semantics. 101

20 User Request . 112

21 available services . 113

22 Results after applying AllBest Method. 114

23 The top nine Services at the time of testing on Google Play Store 127

24 Query for Case1 . 128

25 Query for Case2 . 128

26 Query for Case4 . 130

27 Query for Case5 . 130

28 Query for Case6 . 131

29 Query for Case7 . 132

30 Query for Case8 . 133

31 Query for Case9 . 134

32 Execution time when number of Services increases 136

33 Execution time evaluation when number of features increases. 138

34 The Structure of CRS request for m ESRS. 144

35 ESRS for Hotel Service . 146

36 ESRS for Air Travel Service . 146

37 Available Hotel Services . 146

38 Available Air Travel Services . 146

39 The Structure of CRS request for the two Simple Requests Rqh and Rqf 147

40 Ranks for available Hotel Services for ESQS Rqh . 147

41 Ranks for available Air Travel Services for ESQS Rqf 148

42 The different composition plans (C Plan) for Hotel and Air Travel Services. . . . 148

43 Ranks of the different composition plans based on the Composite Request de-

fined by the user . 148

xii

44 The Structure of CRS request for the two ESRS requests Rqh and Rqf 149

45 This Table shows the ability/inability to integrate the X-algorithm options together152

46 Evaluation of the X-Algorithm with respect to consumer perspective requirements 153

47 Evaluation of the X-Algorithm with respect to consumer perspective requirements 153

xiii

Chapter 1

Introduction

Service-Oriented Computing (SOC) [SH06] has been well established as the main software de-

velopment paradigm. It uses Service as the fundamental element for the development of appli-

cations in meeting social needs. SOC promotes development of distributed service applications

in heterogeneous environments and provide customers to seek services with easy to use inter-

faces. An architectural model of SOC in which service is a first class element is called Service-

Oriented Architecture (SOA) [Erl04]. The main elements of this architecture are service registry,

service planner, service provider and service requester. A service provider prepares services and

publishes them in service registry. A service provider can browse the contents of service reg-

istry, and then query the system for seeking services that match user queries. The planner is to

deliver the services that match the user query. Given the large volume of services in the registry

and the heterogeneous nature of services, finding the services that match a query according to a

user’s request and ranking them in a decreasing order of importance to the user are non-trivial

tasks. There has to be an automatic and efficient method that can deliver ranked services to

users based on their preferences. It is this problem that is addressed in this thesis.

A service can be described by many features. Typical features of a service are its functional-

ity, its price, and other properties that describe the qualitative characteristics of the service. For

1

example, an air travel service is described by its routing, price, and class of travel. Therefore,

service discovery process is not based on one feature or criterion of the service, but rather on

many features. These features, both qualitative and quantitative features, are heterogeneous in

nature. A survey of services offered by current service-based systems in many domains, such as

Health Care, Power Distribution, On-line Banking, and On-line Shopping, will convince us that

people use them out of necessity but are dissatisfied with their performance. We use the term

“performance” in a wider sense, to mean the ability of the system to provide users the facility

to construct complex requests as well its ability to deliver services that best match the user

requests. Both these user-centric essentials are almost non-existent in existing systems. We can

say that the service models in these systems are awfully inadequate to express complex service

requirements of clients, inept to adapt to changing contextual situations, and insufficient to

meet the expected needs of clients. Above all, there is no accountability when the system does

not meet user expectations. To remedy this situation Ibrahim [Ibr12] proposed a rich service

model, and a framework for SOC. Ibrahim also studied many query types, methods for query

processing, and proposed one method for ranking services. In this thesis, we focus on service

ranking.

The vector-based ranking algorithm [Ibr12] is the first contribution in SOC for ranking

services on multiple features. This algorithm is executed by the planning unit in the FrSeC

framework [Ibr12]. In Chapter 3 we critically review and analyse all ranking algorithms that

were known including Ibrahim’s algorithm. After further scrutiny we found many limitations

of all these algorithms. This motivated us to study and contribute to provide a solution that

would remedy all the shortcomings and overcome the challenges faced by previous works in the

literature of service ranking. The ranking algorithm developed in this thesis can be used in the

planning unit of the FrSeC framework, as well as for ranking services in any service-oriented

framework.

Our comprehensive study of the existing service ranking algorithms lead us to identify not

2

only their inadequacies, but also lead us to the conviction that we need a ranking algorithm that

is both user-centric and semantic-based. The user-centric semantic-based ranking algorithm

that we have developed can be customized to work correctly for all application domains. The

proposed ranking method will enable the requester to formulate a “request” that specifies the

query, the preferred semantics, and preferences for seeking services that not only match the

query features but also agrees with the specified semantics. The ranking is driven by the

semantics specified in the user request. The algorithm will rank services in decreasing order of

“satisfaction” to the specified semantics.

In general, no two consumers are likely to have the same set of preferences in selecting

a service or buying a product. The set of preferences will depend on their personal opin-

ions on the quality attributes of the service. Consequently, a service request must be made

user-centric. As an example, a user might prefer cheapest air travel service between two des-

tinations, whereas another user might prefer a non-stop service between the two destinations,

regardless of ticket price. The user request contains a query that specifies the attributes of the

service, and semantics. That is, a query will specify features that are to “match” features in

selected services and a semantic will specify the ‘meaning’ (semantics) for matching. A user

might require exact match of features whereas another user might prefer best match of features.

Since the meaning of “match” itself may be different for different users we defined different

modes, called “best match” and “exact match” in the system. These modes are in line with their

common sense usage. We allow the user to submit such mode along with a query and semantic

references within the request. In general, the semantic preferences that apply to each feature

in the query will be part of ‘service request’. That is, the ranking method provides the users a

wide range of different options to specify in order that they can tailor the results to meet their

own needs. To the best of our knowledge, there is no method that considers all the mentioned

perspectives.

3

1.0.1 Contributions

The significant contributions of this thesis are:

• A set of criteria for fair ranking.

• A literature survey and critical evaluation of existing ranking algorithms.

• A semantic-based ranking algorithm called the X-Algorithm.

• An extension of the X-Algorithm to rank composite services.

These contributions are presented in the following manner. In Chapter 2 we discuss fair

ranking and present our fair ranking criteria. In Chapter 3 we evaluate the existing ranking

algorithms with respect to fair ranking requirements. In Chapter 4 we present a conceptual

user interface to be used with the X-Algorithm. Also, we present the phases of the X-Algorithm

execution. In Chapter 5 we discuss the different semantics and options that are normally

used by consumers in choosing and judging services in everyday life. Also, we present the

X-Algorithm and outline its details with examples. In addition, we introduce compensation. In

Chapter 6 we present an experimental results to examine accuracy, performance and complexity

of our algorithm. In Chapter 7, we extend the X-Algorithm to rank composite services. In

Chapter 8, we summarize our achievements and outline future extensions.

4

Chapter 2

Basic Concepts and Fair Ranking

Requirements

In this chapter, we present the basic concepts of ranking algorithms. We first informally discuss

how we perform implicit ranking of services in our daily life. Then, we explain how this im-

plicit ranking should be made explicit when seeking online services. After that, we define basic

terminologies involved with seeking online services. Also, we bring out some of the problems

associated with ranking online services and we emphasize the need for a fair ranking algo-

rithm, which does not exist today. Finally, we enumerate and briefly explain the requirements

necessary to perform fair ranking.

2.1 Basic Concepts

In real life when we want to consume (buy) a service (product), we encounter many options.

Then, we have to make a decision on which service (product) to choose. Services are described

by the desired service features. For instance, when we book a flight some of the service features

are number of transits to reach destination, in-flight food quality, and seat preference. Based

5

on these features, users decide which airlines to choose.

In general, not all features are of the same concern to all consumers. Some consumers

maybe interested in only a single feature, some others maybe interested in multiple features.

This requires consumers to define features that capture their interest. For instance, when

renting an apartment consumers have to define some points of interest such as price, quality,

and location to help real estate agents to find them the best apartment that matches their

requirements.

Requirements of consumers are diverse. Some consumers will have specific requirements

that they are looking for, in that they want a service that matches exactly their requirement

as much as possible. For instance, consumers may look for an exact number of “stars” when

they want to book a hotel room. On the other hand, some consumers may be looking for

cheaper price, additional amenities, and good dining quality. Some others may have a mix of

both requirements, in the sense that some features are essential while some other offers are at

an acceptable level. Another example is when consumers look for an apartment to rent, they

usually have a specific requirement for the number of rooms, but they may compromise on

location and rent amount.

On many instances some features may contradict others. This contradiction leads to a

trade-off in final selection. It is accepted that a higher quality apartment implies a higher cost

for the consumer. This trade-off is resolved by knowing which feature is more important for a

consumer. A consumer may compromise the low price for a better quality if the quality feature

is more important than the cost. In other words, the renter would be willing to trade the

low cost features for features of higher quality. However, there is no objective decision that

can be made automatically regarding level of importance, because every consumer may have

different degree of importance attached to different features. Therefore, it is the responsibility

of consumers to define the level of importance for each feature of the service they desire. For

instance, it is the responsibility for the person who’s looking for an apartment to inform the

6

most important and the less important features to the real-estate agent. This will enable the

agent to consider the most important features first, then following it the less important ones.

Eventually, consumer definition of interesting features and features of importance would have

an impact on ordering service selection.

We go through similar experience when we consume online services. We will encounter

many options in selecting Services. In this thesis the emphasis on Service ranking and not on

Service modeling. As such, we consider a Service to be a vector of features. Also, we usually

have specific requirements which we formulate as a Query. Within a Query we attached a

degree of importance, referred to as Weight, with each Query attribute. Finally, the available

Services are matched with the Query to produce a list of Services that best fit our requirements in

decreasing order of satisfaction. This process is referred to as ranking. Collectively, we refer to

this process as ranking of online services based on weighted query. In order to rigorously explain

this process algorithmically we define the concepts Service, Query, Weight, Matching and Results

in the following sections.

2.1.1 Service

By Services we refer to the available options that we find in the market when we seek a Service.

Each Service is described by single feature or multiple features. We refer to features of Service as

attributes. Thus, a Service is defined as a list of attributes, where each attribute represents a

feature of the Service.

Service = [at t ribute1, at t ribute2, . . . , at t ributesn]

Example 1. Suppose a car rental service is described by the three features price, car_status, and

deposit_price, we represent the car rental service as

CarRentalService = [price, carStatus, deposi tPrice]

7

Because each Service is considered an alternative to the user, we use the terms alterna-

tive and Service interchangeably.

2.1.2 Query

Query is defined by consumers. It includes their specific requirements regarding a Service.

Thus, a Query is represented as a list that includes one or more attributes. These attributes

represent the favourable values of the features they want in the sought service. Hence, a

Query is represented as

Quer y = [value1, value2, . . . , valuen]

Each value in Query list corresponds to one of the attributes in the Service definition. For

instance, a specific Query for the CarRentalService in Example 1 is

Quer y = [$200, New, $50]

where,

$200 corresponds to price feature of the service.

New corresponds to carStatus feature.

$50 corresponds to deposi tPrice feature.

2.1.3 Weights

Weights refer to the level of importance associated with each value defined in the Query. As

explained earlier, the importance of introducing weights is to resolve the trade-offs. The weight

corresponding to a Query is a vector of values, such that there is a one-one correspondence

between a favourable value of the Query vector and the value of the weight vector. Thus, the

lengths of these vectors are equal. Each numerical value in the weight vector represents the

level of importance that the consumer associates with the corresponding favourable feature

8

value in Query. Hence, corresponding to a Quer y = [value1, value2, . . . , valuen] there exists a

weights vector called

Weight = [W1, W2, . . . , Wn]

The weight values in a weight vector can be given either numerically or as literals that can be

interpreted by common sense semantics. As an example, the weight vector,

Weight = [Least Impor tant, Most Impor tant, Not Impor tant]

may be used to specify the preferences of Service features. For numerical values, we use num-

bers in a specific scale, such as [0− 5], where 0 represents the lowest importance and 5 rep-

resents the highest importance. For the CarRentalService shown in Example 1, the weights

associated with the Query Q = [$200, New, $50] can be Weights = [5,3, 0], where 5 is a

weight associated with $200 (price feature), 3 is a weight associated with New (carStatus

feature), and 0 is a weight associated with $50(deposi tPrice feature).

2.1.4 Matching

Matching is a core concept of the decision making process. This is because we make our de-

cisions considering options that satisfy all or most of our requirements. However, this process

is performed implicitly in real life. In contrast, in digital world, Matching should be accom-

plished algorithmically. Specifically, matching process puts a user Query against the set of all

available Services and produces a Matching Score. This score is a number assigned to each fea-

ture of each Service and is interpreted as a means of rewarding a specific Service feature for

matching the corresponding feature in Query. Matching Algorithms produce Matching Scores

based on Matching Rule/Matching Measure, where a rule defines a specific reward or penalty

when matching or mismatching occurs. Matching Scores related to one Service are eventually

aggregated into one value. This value represents the Matching degree of each Service to Query.

We determine the Matching degree by taking the weights of each feature. A simple method

9

to calculate degree is to multiply each Matching Score by the corresponding weight. However,

this simple method is insufficient to discriminate between Services that are relevant to a user

Query .

Let us consider Example 1, in which each Service is described by the three features price,

carStatus, and deposi tPrice. Assume we have three Services, S1, S2 and S3 as three available

Services in the market.

S1 = [$300, New, $100]

S2 = [$200, UsedAN DGoodCondit ion, $60]

S3 = [$60, UsedAN DBadCondit ion, $10]

Consider Q = [$300, New, AnyValue] to be the consumer’s Query and W = [5, 3, 0] be

the weights. In this case, the consumer is interested only in the features price and carStatus.

Let the Matching Rule be defined as follows:

MatchingRule =

⎧⎨⎩ MatchingScore = 1 if (Qi = Si)(Matched)

MatchingScore = 0 if (Qi �= Si)(Mismatched)

By putting Q against the available Services, we can intuitively conclude that S1 is the choice.

Practically, this conclusion has been drawn based on Matching concept, where each element

in the Query list is compared with the corresponding element in each Service list. Thus, by

applying the defined Matching Rule on Query with each Service, we find out the following

results

Query Weights Service Matching Scores
[$300, New, AnyValue] [5, 3,0] [$300, New, $100](S1) [1, 1,0]
[$300, New, AnyValue] [5, 3,0] [$200, Used/GoodCondit ion, $60](S2) [0, 0,0]
[$300, New, AnyValue] [5, 3,0] [$60, Used/BadCondit ion, $10](S3) [0, 0,0]

By multiplying each matching score with the corresponding weight and calculating the

total, we obtain the following results,

10

Weights Matching Score Weighted Scores Total
[5,3, 0] [1,1, 0](S1) [5,3, 0] 8(S1)
[5,3, 0] [0,0, 0](S2) [0,0, 0] 0(S2)
[5,3, 0] [0,0, 0](S3) [0,0, 0] 0(S3)

So, we conclude that S1 matches Q because it receives the highest Matching score. However,

this is a trivial case that is unlikely to happen in real life. For example, consider another

Query definition Q = [$150, AnyValue, $65]. Also, assume the weights are defined as W =

[5, 0,3]. In this case, there is no full match. Particularly, the value $150 in Q does not match

any of the corresponding features in the available Services. Similarly, the value $65 in Q does

not match any of its counterparts in the available Services. By applying the same Matching

Rule, we find the following results,

Weights Matching Score Weighted Scores Total
[5,0, 3] [0,0, 0](S1) [0,0, 0] 0(S1)
[5,0, 3] [0,0, 0](S2) [0,0, 0] 0(S2)
[5,0, 3] [0,0, 0](S3) [0,0, 0] 0(S3)

It is not surprising that all results are Zeros. This is because the Matching Rule has de-

termined that all the available Services are not relevant to the defined Query. This case is

more common in practice. As shown in this example, Matching provides no information as to

which Service is better. To deal with similar cases where Matching is not effective we introduce

Ranking concept.

2.1.5 Ranking

Ranking is a process to rank Services based upon the closeness of a Service with respect to a

given Query. The difference between Matching and Ranking is that Matching rewards a Ser-

vice feature only if it exactly matches the corresponding Query feature, whereas Ranking re-

wards every feature of a Service based upon its closeness to the corresponding Query feature.

Similar to Matching, we also perform ranking implicitly in real life. In many cases, we prefer

11

a Service over another although none of the available options match our requirements com-

pletely. Nevertheless, we make our decision based on what we think is the best trade-off. In

fact, we even say some statements that reflect our implicit ranking such as “It is not the best

choice, but good for its price”, which means that we gave up some quality for a cheaper price.

This also means that there was no option that meets all the desired requirements. In online

Services, Ranking process cannot be performed intuitively. We need a precise algorithm for

ranking. In Ranking algorithms, Ranking Score (rank) is assigned to each alternative based on

a specific rule or measurement. Thus, each alternative is ordered by its rank, such that the

highest ranked Service reflects higher relevance or closeness to consumer requirement. Thus,

Ranking considers partial-matches and uses rules for measures for closeness.

Ranking algorithm must be designed with great care in order that the result produced by

the algorithm reflects our intuitive expectations. The following example, similar to the one

given in Matching section, illustrates that some ranking algorithms may mislead. We consider

four Services to be ranked for a given Query vector and a weight vector.

S1 = [$300, New, $100]

S2 = [$200, Used/GoodCondit ion, $60]

S3 = [$60, Used/BadCondit ion, $10]

S4 = [$145, New, $105]

Q = [$150, AnyValue, $100]

W = [5, 0, 3]

where,

S1,S2,S3,S4 are the available Services in the market.

Q is the consumer Query.

W is the consumer level of importance associated with the Query.

12

Assume that our ranking rule is defined as follows

RankingRule =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5 if Qi = Si

3 if |Qi − Si | ≤ Qi

2
& Qi �= Si

0 otherwise

By applying the Ranking Rule on each feature of the Query and the available Services, we

obtain the following results,

Weights Ranking Score Weighted Scores Total
[5,0, 3] [0, 0,5](S1) [0, 0,15] 15(S1)
[5,0, 3] [3, 0,3](S2) [15, 0,9] 24(S2)
[5, 0,3] [0, 0,0](S3) [0,0, 0] 0(S3)
[5,0, 3] [3, 0,3](S4) [15, 0,9] 24(S4)

By looking at the total ranks for all Services, we find that Services S2 and S4 received the

maximum rank, S3 received the minimum rank, and S1 received an intermediate rank. How-

ever, the options in S2 and S4 are different. For a consumer service S4 is much closer to Q than

S2. This becomes evident by looking at the following table in which the deviation between the

values of Services and the Query are shown.

Feature Q |S2 i −Qi | |S4 i −Qi |
price 150 50 5

carStatus − − −
deposi tPrice 100 40 5

Since the difference between Q and S4 is less than the difference between Q and S2, we

can say that S4 is closer. Nevertheless, the ranking algorithm ranked S2 and S4 equally. The

ranking method not only does not help the consumer to choose the Service closest to the re-

quest but it misleads the consumer by assigning similar ranks to different Services as if they

provide the same level of quality. Therefore, we say that this Ranking Method is unfair. In the

following section we explain fair Ranking and motivate the necessity to show convincingly that

an algorithm is fair.

13

2.2 Requirements for a Fair Ranking Algorithm

Fairness is a loose term that has many perspectives. Therefore, we define fairness from two

specific perspectives; from consumer perspective and from algorithm perspective. We discuss

both views in the following subsections.

2.2.1 Consumer Perspective

A fair ranking algorithm from a consumer point of view is generally an algorithm that can

produce results based only on the consumer’s requirements, without any influence by other

factors inherent to the algorithm or the system. Also, it is an algorithm that provides the

consumer the closest Service to a Query. Specifically, a fair ranking algorithm is an algorithm

that embraces the following characteristics.

• Allows consumers to look for better values: This means that the algorithm can find better

values than the ones defined in the user request if the user demands it. For example,

when a consumer defines a price a ranking algorithm that supports better values will find

cheapest deals and provide them first. In a cheapest deal the price may not be closest to

what was specified in a Query, but it is better for the consumer.

• Allow ranking based on numerical and non-numerical values: The will allow consumer to

be able to use literal (textual) or numerical features in a Service. This reduces some of

the restrictions on the consumer in finding the Service that best suits the requirement.

• Performs ranking Online (On-Spot) and without making any assumptions regarding con-

sumer’s requirement: Specifically, in addition to requirements consumers will have level

of importance, and other options. Some ranking algorithms [SKR99] include offline anal-

ysis and consider other system-related criteria that are not related to the consumer re-

quirements. This kind of analysis may result in ranking some Services higher not because

14

they are close to consumer’s requirement but because they meet some other system-

related criteria. As a result, consumers do not receive a list that is characterized by only

their requirements. The fair ranking algorithm that we discuss later will consider only

consumer inputs and do not make other input or assumptions. This helps consumers to

find Services tailored on their requirements as opposed to the output from other algo-

rithms that make algorithmic assumptions and anticipatory consumers needs.

• Provide options to consumers to manipulate results: This helps consumers to see the

results from different perspectives. Thus, they can choose the best trade-offs or best

deals. For instance, consumers can find answers for questions like “what is the cheapest

price for a best quality?, what is the cheapest price for specific rate?”, and so on.

In addition to the above characteristics that are necessary for fairness, we include efficiency

and user-friendliness as two desirable characteristics for our fairness algorithm. The reason for

including efficiency is that consumers hate to wait. In online businesses, one of the greatest

enemies to business success is slow ranking or slow operations. In fact, waiting for too long

often causes a loss for both consumers and Service providers. This is because consumers end up

not selecting any Service as a result of the slow process. The reason to include user-friendliness

is to enable consumers build queries without taking too much time to understand how to build

a request. Also, building requests should be simple regardless the number of required features

and the integrated options attached to it.

2.2.2 Algorithmic Perspective

From the algorithmic perspective a fair ranking should be consistent, flexible and timely. Below

is a list of characteristics for an algorithmic perspective of fairness.

• Considers different semantics: It is necessary to support the idea of finding better values

purely from an algorithmic view. To be able to find better values, the algorithm should

15

have a definition of what is a "better value"? Is a higher value better or is a lower

value better? The answer depends upon the semantics of the features being compared.

For some features, such as reliability, quality, and performance, ‘higher’ is better. For

some features such as, cost and weight, ‘lower’ is better. For features that are described

textually or by logical values (true/false) only exact match is acceptable.

• Produces normalized results: Normalization means producing the same range of num-

bers for all range of inputs. However, the specific definition of normalization is irrelevant

in this view. In this level, normalized results implies that the numbers produced by the

algorithm have a maximum value. Thus, regardless of the input, the output produced is

always up to a maximum number. Knowing the maximum values produced by the algo-

rithm make it more maintainable and manageable in the sense that it allows investigating

the accuracy and the correctness of the results. Arbitrarily unknown results are hard to

track and difficult to examine. In addition, knowing a maximum boundary helps in other

subsequent processes that might use these numbers as input.

• Remains consistent: The algorithm produces the same result for the same input at any

given time. That is, the environment in which the algorithm is executed should not have

an impact on the generated results. This is because as mentioned earlier, we consider the

fair ranking algorithm to be purely dependant on the consumer’s requirement.

• Accepts input in any range (from 0 to ∞): Some ranking algorithms [Ibr12] perform

ranking only on a specific range. This puts restrictions on consumers in the sense that

they cannot look for any values.

• Has no limitation on number of features included: Some algorithms [MMM12] accept

only a specific number of features. This is because the number of features increase the

complexity of the calculations to produce the results. However, we define a fair ranking

16

algorithm as an algorithm that offers freedom of choice regarding number of features.

Thus, a consumer can include as many features as are necessary.

• Provides different options for results manipulation: The ranking algorithms are exposed

to many inputs and different cases. For example, when two features are of the same

importance to the consumer, and one is the best in a Service and the other is the best in

another Service, which Service should the ranking algorithm rank higher? In this case,

there is no guarantee that a specific response would be the best for the consumer. To

overcome this, a fair ranking algorithm should allow consumers to have other options

that can force some changes on the ranking method and generate different results. As a

result, a consumer can view the results from different perspectives.

• Is built on a simple concept: This requirement is important to be able to integrate all the

above mentioned requirements into the ranking method while maintaining the perfor-

mance. Complex methods are difficult to comprehend and, thus, harder to change.

2.3 Summary

In this chapter, we introduced a general view on the actions we perform when we seek a

Service in real life. Then, we explained how we pass through similar experience when we seek

online Services. After that, we introduced the basic terminologies and concepts used in online

business. Also, we discussed, through examples, the associated difficulties when seeking online

services. There, we illustrated the need for a Fair Ranking Algorithm. We followed that by

providing the definition of Fair Ranking Algorithm. Finally, we defined the requirements needed

to perform fair ranking from two different perspectives; consumer perspective and algorithm

perspective. We illustrated the basic concepts with simple examples.

17

Chapter 3

Literature Review

In this chapter, we review the published solutions for multi-featured Service ranking. We first

review multi-featured ranking algorithms, categorized into (1) ranking based on Recommender

Systems, (2) ranking based on Multi-Criteria Decision Making, and (3) ranking based on Simi-

larity Measure. For each category, we provide a discussion on what the method is, how it works

and why it is not a suitable solution for our problem. Then, we present a brief explanation and

analysis of the current common solutions for the multi-featured ranking problem. However,

there does not exist much work done in this category. So, we narrow down our study on Sim-

ilarity Measures. We introduce a number of Similarity Measures and evaluate them in terms of

evaluation criteria introduced in Chapter 2.

18

Figure 1: Different categories of existing ranking algorithms

3.1 Ranking Algorithms

In this section, we briefly explain the published ranking algorithms, by putting them into four

categories. Algorithms in each category follow one specific approach. The categories are (1)

Ranking Based on Vector-Based Similarity Measures, (2) Ranking Based on Graph-Based Sim-

ilarity Measures, (3) Ranking Based on Recommender Systems, and (4) Ranking Based on

Multi-Criteria Decision Making, as depicted in Figure 1. For each approach, we provide a dis-

cussion regarding the functionality of the method, introduce the advantages of this method

and finally evaluate the method in terms of fair ranking algorithm requirements introduced in

Chapter 2. At the end of this section, we include an overall evaluation which compares all the

mentioned methods. In addition, we introduce an analysis of how current Service provisioning

websites adopt these methods to solve multi-features ranking problem.

3.1.1 Ranking Based on Vector-Based Similarity Measures

Similarity Measure (SM) is a method that calculates the degree of closeness (similarity) between

two items. Similarity Measures can be one of two types; graph-based and vector-based. A

detailed on Similarity Measures is presented in the next section. In this section, we discuss

19

Figure 2: Ranking Algorithm Based on Similarity Measure

the ranking algorithms built on Similarity Measure concepts where the main scoring system

employed in the ranking algorithm is based on Similarity Measure. Most of the published

ranking algorithms fall under this category. Although there are many ranking algorithms based

on Similarity Measures, to the best of our knowledge there exists only one ranking algorithm

[Ibr12] that is proposed for multi-featured Services. Since our focus in this thesis is on ranking

multi-featured Services we limit our review to the multi-featured Service ranking algorithm of

Ibrahim [Ibr12].

The vector-based ranking algorithm [Ibr12] is a normalized ranking algorithm that pro-

duces results in the range (0, 1). It only considers ranking the numerical features of Services.

Also, this method can be applied to ranking complex or composed Services. The measure for

ranking is defined by the following formula.

RankingMeasure =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 Qi ≥ Si

2− Si

Qi
Qi < Si < 2Qi

0 Si ≥ 2Qi

(1)

where, Qi represents the i th attribute of the consumer Query, and Si represents the correspond-

ing i th attribute of a Service.

20

Although this algorithm is based on a simple and intuitive measure, it fails to rank Ser-

vices fairly. That is, by looking closely at the algorithm, we find that all values of attributes

of Services that are less than or equal to the value of attributes defined in Query receive the

highest score. This indicates that the algorithm does not consider “better values” than the one

provided in the requirement. Also, it always considers a Service value that is greater than the

value in the Query to be worse. This means that it’s semantic suits only certain domains, such

as cost. Moreover, the algorithm considers Service attributes that are twice the Query attributes

as irrelevant by assigning them all the lowest ranking score. This means that the algorithm is

useful only in a specific range of input, namely for Service values that lie in the range [Qi , 2Qi],

as depicted in Figure 2.

3.1.2 Ranking Algorithms Based on Graph-based Similarity Measures

Objects that encapsulate more than one feature can be represented as graphs [BM08]. A vertex

in the graph represents a feature of the object and an edge represents a relationship between

two features of the object. Figure 3 is an object with four features and four relationships. A

Graph-Based Similarity Measure(GSM) is a measure that finds the degree of similarity between

two given graphs. Ranking Based on GSM(RGSM) is a ranking algorithm that depends on a

GSM to produce ranks.

RGSM models are mainly used in Pattern Recognition [DX08] [Mih04], and Image pro-

cessing [RB09] applications. In these applications the ability to produce accurate results, inves-

tigate relationships between attributes and work with objects with varying number of features

are more important than performance and simplicity. In fact, GSMs are known for their ability

to build relations between nodes. Also, GSMs models function with binary and non-binary ob-

jects and they can produces accurate results with objects of different lengths. However, GSM

models have a limited mathematical support [Mih04]. In fact, this is one of the major reasons

why most of the ranking algorithms are not based on graphs. Also, GSM models are complex

21

Figure 3: Structure of a service in graph-based model

and run in exponential time. This means that their performance is not efficient in terms of

generating fast response to requests.

In Service ranking, we need a numerical measure and hence we need a model that is wealthy

in terms of mathematical support. We need operations like summing two objects which are not

possible with GSM. Also, unlike in Image Processing applications, we do not need to have

internal relationships between the attributes of a Service. For instance, in a car rental Services,

there is no need for a relationship between a car model and a car colour. Collectively, they are

just features that describe the product or the Service. In addition, we need a fast and simple

method that can handle Gigabytes of Services in a timely fashion which cannot be offered by

GSM models. For these reasons, GSM cannot be a solution for our ranking problem.

3.1.3 Ranking based on Recommender Systems

Recommender Systems are engines that rank the objects or items based on consumer ratings and

feedback. Some systems also consider the user’s previous behaviour or profile [SKR99] [OH11].

It is usually an offline mechanism as it comprises heavy-load processes. That is, the recommen-

dations and user profile are periodically collected, analysed and finally aggregated to a number

22

Figure 4: General Structure of Recommender Systems

that reflects a rank to particular object. Then, the objects are ordered based on the aggregated

score collected at recommendations calculation periods. Therefore, a user is only required to

enter a textual descriptive information regarding a specific object, such as object name, to ob-

tain the desired object. The general structure of recommender systems is illustrated in Figure 4

The motivation for using recommendation systems for ranking can be threefold. First, it

simplifies Query construction process for users. Second, it includes some intelligent processing

in the sense that the system can anticipate what the users desire and provide it before they ask

for it. Third, it benefits users and providers by directing the right Services to the right users.

Although the simplification of building queries is achieved, achieving the other two goals

is not certain. In fact, due to the complication involved with the recommendation mechanism,

problems like the harry potter problem [AT05] arose. In this problem, due to the pervasiveness

of the film “Harry Potter” it was recommended at all times to all users, even for cases where

the searched topic was irrelevant to the film’s content. As an attempt to solve similar problems,

some studies [Han09] have proposed solutions like grouping users based on many criteria

such as age and interest to preserve the relevance of the recommended items. Also, trusting

the validity of recommendations is another concern regarding this ranking approach. From

trusting perspective, false and meaningless feed-backs are serious problems. False feedback is

23

a feedback from a dishonest user who intend to maliciously degrade the rating of a certain

provider, while meaningless feedback is an irrelevant feedback that was not meant to be for a

particular product or a feedback that comes from an irrelevant user who’s not interested in this

particular category of products. For instance, a false feedback can be generated by a user who

is loyal to another provider, while a meaningless feedback can come from a user whose interest

does not match the category of the Service or product. Some solutions have been proposed to

solve trusting issues [ZWQZ11]. They propose a framework that employs trust management

models that use some methods to verify and authenticate user credentials and authorizations.

To sum up, because our goal is to provide a user-dependant ranking algorithm that can

provide response on demand and in a timely manner, the recommendation systems cannot be

our solution. Specifically, recommendation systems do not fit our fair ranking requirements for

the following reasons. First, they lack the accuracy needed to satisfy specific user requirement,

thus they are not user-dependant only. This is because they are based on anticipation rather

than specific Query built by user. Second, they are offline methods, require tracking historical

data, and consequently may not meet timeliness. This is against one of the main goals of

our ranking algorithm which we claim to be timely. Third, they involve complicated, heavy-

load processes and still face unsolved difficulties. Fourth, they are subjective and inconsistent

processes that may vary from time to time. Therefore, recommender systems are not useful for

fair ranking.

3.1.4 Multi Criteria Decision Making

Multi-Criteria Decision Making(MCDM) is considered a sub-discipline of Operations Research

(OR) [Kah08]. MCDM is basically concerned with selection problems. These problems can be

either fuzzy and subjective or numerical and objective. Many problems that can only be stated

fuzzily, such as finding partners for marriage, making friends, and some that require making

business decisions from anticipatory or observed information, are solved by MCDM method.

24

The goal of MCDM is to turn these problems into models based on numerical values and deal

with them mathematically to arrive at a decision with the best trade-offs. Similar to ranking,

MCDM is to produce scores for each alternative indicating their preference.

Because MCDM is to solve selection problems, some may argue that it is not relevant to

ranking. It is true that in ranking no selection need to be made, because we can reorder based

on relevance to input. However, we consider ranking and MCDM related for the following

reasons. Although MCDM is used to make a decision, it does so based on some scores that it

computes for each alternative which is similar to ranking. This means that we can use MCDM

to rank. In many real-life applications selection of Services is based on ranking. For example,

according to the empirical study reported in [Joa02, PHJ+07], 75% of Google users never

scroll past the first page. Also, based on the report [GJG04, LHB+08] users usually look at

the five top results in the list. This means, improper ranking may lead to improper selection or

even non-selection, which happens when users do not care to select any alternative. For these

reasons, it is legitimate to consider ranking as MCDM and vice versa.

MCDM consists of two main types. These are Multiple-criteria evaluation problems and

Multiple-criteria design problems. In the former, the alternatives are either finite and known

or predefined at the beginning of the process [Kah08]. This is similar to the situation for

Service ranking. In the latter the alternatives are not defined and solutions might be infinite

[Tek06]. So we consider only solutions to MCDM evaluation problems as suitable for ranking

Services. Analytical Hierarchical Process (AHP) [Saa08] is a MCDM method that has been

used to rank Services of the cloud [GVB12]. In this work, Service Measurement Index (SMI)

defines a set of business-relevant Key Performance Indicators (KPIs) that provide a specific

criteria for comparing business services. Thus, AHP method is applied on a pre-defined criteria

and compare it given a specific user Query. The advantages and disadvantages of AHP are

discussed [MMM12] [GHTH11]. These are summarized below.

25

Advantages of AHP

• The method is flexible and has the ability to check inconsistency between preferences. 1

• It has the ability to rank objective and subjective data of a hierarchical nature.

• It decomposes the big comparison between Query and alternatives into a number of pair-

wise comparisons. Thus the larger problem is decomposed into smaller problems and

their solutions are combined to get a solution to the original problem.

• It is the most reliable MCDM method.

Disadvantages of AHP

• It has the potential for Rank reversals, which means that the method produces unexpected

inconsistent changes in the results when a change is performed on the alternatives set.

That is, it is not a stable method that can be used for fair ranking.

• It allows compensation, which happens when good features of a Service hides the bad

features. This is caused by the additive aggregation method adopted by the AHP method.

• It is a very complex and lengthy process, especially as the number of alternatives increase.

This is because AHP decomposes the ranking into (n(n−1)/2)∗(m(m−1)/2) (where n is

number of criteria in a query and m is the number of alternatives) pairwise comparisons.

• For each pairwise comparison AHP requires users to input their preferences based on

(1− 9) scale. However, users may find it difficult to choose the appropriate number.

In short, AHP cannot be expected to produce a fair solution, for the following reasons.

First, it requires intensive calculations of high complexity as the number of attributes increases.

This implies that we have to impose some limitation on the number of features associated with

1Inconsistency happens when the preferences are inconsistent. For example, if a is preferred over b, and b is
preferred over c, then a should be preferred over c. otherwise, the preference is inconsistent.

26

objects. Second, users may fail to understand the impact of each number in the scale (1,9)

defined for AHP. This misunderstanding can cause an inconsistent choice by the user. Third, the

inconsistency problem associated with rank reversals, albeit the attempts to solve it, remains an

open issue. As a result, AHP is not the best option for building a timely, simple, user-dependent

and multi-featured ranking algorithm. The example shown below is to bring out the complexity

of AHP method and to support our view that much simpler and faster algorithms might achieve

the same result as AHP.

Example 2. In this example, we solve a ranking problem using the AHP method, and the vector-

based ranking algorithm introduced in [Ibr12]. This example highlights the difference between

the complexity of AHP and the vector-based algorithms, although they achieve the same result.

Problem Statement:

A car is described by the three criteria price, shipping_time and shipping_cost. It is required to

choose the best car for a given query Q = [$30000, 25da ys, $1000], given the three alternatives

a1, a2, a3.

a1 = [$35000, 20da ys, $1500]

a2 = [$40000, 30da ys, $1200]

a3 = [$50000, 40da ys, $900]

Figure 5 graphically depicts the number of pairwise comparisons associated with three Ser-

vices with three features.

Solving the problem using AHP:

We explain the nine steps involved in AHP method without going into the mathematical rationale

for this approach. Such details can be found in [GVB12]. For each AHP step we explain the

calculations done in that step and illustrate the calculation for the above problem.

27

Figure 5: AHP pairwise comparisons

• Step 1. Make (n(n− 1)/2) ∗ (m(m− 1)/2) pairwise comparisons and estimate the relative

weights.

In our problem n = 3 and m = 3. We compare a1 against a2, a1 against a3 and finally, a2

against a3 for each criterion. This means that we are going to make 3cri teria∗3al ternatives = 9

comparisons. Based on AHP definition, we have a 0 . . . 9 scale to estimate the preference of

one alternative over the other.

Criterion: Price

a1
9 7 5 3 1 3 5 7 9

a2
∗

Note the star on number 5 is the scale, which indicates that we prefer price of a1 five times

over a2. Preferences for other comparisons are shown next.

a1
9 7 5 3 1 3 5 7 9

a3
∗

a2
9 7 5 3 1 3 5 7 9

a3
∗

28

Criterion: Shipping_time(stime)

a1
9 7 5 3 1 3 5 7 9

a2
∗

a1
9 7 5 3 1 3 5 7 9

a3
∗

a2
9 7 5 3 1 3 5 7 9

a3
∗

Criterion: Shipping_cost(scost)

a1
9 7 5 3 1 3 5 7 9

a2
∗

a1
9 7 5 3 1 3 5 7 9

a3
∗

a2
9 7 5 3 1 3 5 7 9

a3
∗

• Step 2. The Eigen vector (EV) is calculated. In this example we calculate an

approximation only. For more information refer to [Tek06].

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

price a1 a2 a3

a1 1 5 9

a2
1
5

1 5

a3
1
9

1
5

1

sum 1.31 6.2 15

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

scost a1 a2 a3

a1 1 5 9

a2
1
5

1 5

a3
1
9

1
5

1

sum 1.31 6.2 15

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

stime a1 a2 a3

a1 1 1
3

1
7

a2 3 1 1
5

a3 7 5 1

sum 11 6.3 1.34

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
• Step 3. The Reciprocal Matrix (RM) using EV is calculated. This is done by dividing each

element of the EV matrix by the sum of its column. Thus, each element becomes

normalized, and the column sum becomes 1.

29

⎛⎜⎜⎜⎜⎜⎜⎝

price a1 a2 a3

a1 0.76 0.81 0.60

a2 0.15 0.16 0.33

a3 0.09 0.03 0.07

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

scost a1 a2 a3

a1 0.76 0.81 0.60

a2 0.15 0.16 0.33

a3 0.09 0.03 0.07

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

stime a1 a2 a3

a1 0.09 0.05 0.11

a2 0.27 0.16 0.15

a3 0.64 0.79 0.75

⎞⎟⎟⎟⎟⎟⎟⎠
• Step 4. The priorities(PR) for each alternative on each criterion is calculated. This

calculation for each alternative is basically the average of each raw of RM of that

alternative.

Criterion:price

PRa1
= 1

3
(0.76+ 0.81+ 0.60) = 0.733

PRa2
= 1

3
(0.15+ 0.16+ 0.33) = 0.203

PRa3
= 1

3
(0.09+ 0.03+ 0.07) = 0.06

Criterion:stime

PRa1
= 1

3
(0.76+ 0.81+ 0.60) = 0.733

PRa2
= 1

3
(0.15+ 0.16+ 0.33) = 0.203

PRa3
= 1

3
(0.09+ 0.03+ 0.07) = 0.06

Criterion:scost

30

PRa1
= 1

3
(0.09+ 0.05+ 0.11) = 0.084

PRa2
= 1

3
(0.27+ 0.16+ 0.15) = 0.193

PRa3
= 1

3
(0.64+ 0.79+ 0.75) = 0.724

• Step 5. The Principle Eigen value(λmax) is defined as

λmax = Priori t ya1 ∗ RMC1+ Priori t ya2 ∗ RMC2+ Priori t ya3 ∗ RMC3,

where C refers to column sum of RM, calculated in Step 2. For our example, the

calculations of λmax for the three criteria are shown below.

priceλmax = 0.733 ∗ 1.31+ 0.203 ∗ 6.2+ 0.06 ∗ 15= 3.1

st imeλmax = 0.733 ∗ 1.31+ 0.203 ∗ 6.2+ 0.06 ∗ 15= 3.1

scostλmax = 0.084 ∗ 11+ 0.193 ∗ 6.3+ 0.724 ∗ 1.34= 3.1

• Step 6. The Consistency Index (CI), defined as

C I =
λmax − 3

2
,

is calculated. Calculation of C I for each criterion is shown below.

C Iprice =
3.1−3

2
= 0.05

C Istime =
3.1−3

2
= 0.05

C Iscost =
3.1−3

2
= 0.05

• Step 7. The Consistency Ratio CR= RI
C I

, where RI is the Random Consistency

Index [Saa83] is calculated. The calculated value of CR is considered consistent if

31

CR>= 10%. In [Saa83] the Random Index RI for n= 3 is given as 0.58 when n= 3.

Using it for our example, we calculate CR for each criterion,

CRprice =
0.05
0.58
= 0.086 ∗ 100= 8.6%< 10% consistent

CRstime =
0.05
0.58
= 0.086 ∗ 100= 8.6%< 10% consistent

CRscost =
0.05
0.58
= 0.086 ∗ 100= 8.6%< 10% consistent

• Step 8.The relative weights of each criterion are calculated. In calculating the weight of

each criterion CW, we assume that price is the most important to the user, then shipping

cost and finally the shipping time.

price
9 7 5 3 1 3 5 7 9

stime
∗

price
9 7 5 3 1 3 5 7 9

scost
∗

stime
9 7 5 3 1 3 5 7 9

scost
∗

We apply the same steps applied previously on the pairwise comparisons between each

alternative. That is, we apply the steps from (step2) to (step7). Hence,

PRprice =
1
3
(0.75+ 0.64+ 0.79) = 0.72

PRstime =
1
3
(0.11+ 0.09+ 0.05) = 0.08

PRscost =
1
3
(0.15+ 0.27+ 0.16) = 0.19

Also, we find,

λmax = 3.11

C I = 0.053

32

CR= 0.095 ∗ 100= 9.5%< 10% consistent.

• Step 9. The final rank is calculated by applying the following formula for each alternative.

F inalScoreal ternative = CWcriterion1
∗ PRal ternative + · · ·+ CWcriterionn

∗ PRal ternative

The calculations for our example are shown below,

Criterion Weight Alternative Ranks

price 0.72 a1rank = 0.72 ∗ 0.73= 0.531

a2rank = 0.72 ∗ 0.20= 0.147

a3rank = 0.72 ∗ 0.06= 0.043

stime 0.08 a1rank = 0.08 ∗ 0.08= 0.061

a2rank = 0.08 ∗ 0.08= 0.017

a3rank = 0.08 ∗ 0.08= 0.005

scost 0.193 a1rank = 0.19 ∗ 0.08= 0.016

a2rank = 0.19 ∗ 0.09= 0.037

a3rank = 0.19 ∗ 0.72= 0.140

To calculate the final rank for each alternative, we simply add all it’s ranks. For example,

for a1 we add the ranks for a1 in price , in stime and in scost. Thus,

Alternative Final Ranks

a1 0.531+ 0.061+ 0.016= 0.608

a2 0.147+ 0.017+ 0.037= 0.201

a3 0.043+ 0.005+ 0.140= 0.188

As the results indicate, a1 > a2 > a3 where ”> ” means better.

Vector-based Ranking Algorithm [Ibr12]:

There are only three steps in this method.

33

1. Step 1. Assume user’s weights are given for each criteria, in a row vector W. Based on

the algorithm’s definition, a weight is a value within the range [1-5], where higher value

indicates higher importance.

2. Step 2. calculate the property ranks matrix PR based on the following definition. The rows

of PR are the features and the columns are the alternatives.

PR=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 Q ≥ al ternative

2− al ternative
Q

Q < al ternative < 2Q

0 al ternative ≥ 2Q

(2)

3. Step 3. Compute the product W × PR. The result is a row matrix, giving the rankings of the

alternatives.

Solution based on the above Algorithm for our Example:

1. The weights are as in AHP method.

Wprice = 5 Wstime = 1 Wscost = 3

2. We calculatePR based on Algorithm 2.

PR=

⎛⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3

price 0.833 0.667 0.333

st ime 1 0.8 0.4

scost 0.5 0.8 1

⎞⎟⎟⎟⎟⎟⎟⎠
3. We compute W × PR.

F inalRank = [5,1, 3] ∗

⎡⎢⎢⎢⎢⎢⎢⎣
0.833 0.667 0.333

1 0.8 0.4

0.5 0.8 1

⎤⎥⎥⎥⎥⎥⎥⎦
34

F inalRank = [4.165+1+2.5, 3.335+0.8+2.4, 1.665+0.4+3] = [6.665,6.535, 5.065]

The result indicates, a1 > a2 > a3 where ”> ” means better.

As the example shows, both AHP and the vector-based method of Ibrahim [Ibr12] have achieved

the same results. The example highlights the complexity of AHP algorithm, which is many orders

of magnitude higher when the number of features and the number of alternatives increase. Nev-

ertheless, AHP remains a strong method that resolves fuzzy problems and make the most accurate

decisions compared to other MCDM methods. However, we are not dealing with fuzzy problems, so

AHP is not a preferred choice. Also, the vector-based approach of Ibrahim [Ibr12] has deficiencies

which we want to overcome. So, our goal in this thesis is the investigation of simple, fast, yet

considerably accurate vector-based methods for fair ranking.

3.1.5 Analysis of Current Multi-featured Ranking Solutions

In Chapter 2 we discussed the requirements of a fair ranking algorithm from Consumer and Al-

gorithm perspectives. We apply these requirements to the ranking algorithms that we discussed

in the previous section. We summarize our findings in Table 1 and Table 2. It is clear from this

summary that none of the methods satisfy the fairness criteria.

��������������
Requirement

Methods
Vector-Based Graph-Based

Recommender
Systems

MCDM

ability to find better
values

× × � �
numerical/non-numerical

values
× � � �

online ranking without
assumptions

� � × �
options available to
manipulate results

× × × ×
Fast response

� × × ×
allow user-friendly

Query building
� � � ×

Table 1: Evaluation of Ranking Methods from Consumer Perspective

35

��������������
Requirement

Methods
Vector-Based Graph-Based

Recommender
Systems

MCDM

Different Semantic
Support

× × � �
Normalized outputs

� × � �
Consistent outputs

� � × ×
accept input range (0,∞) × � × �
No limitation on number

of features
� × � ×

Provide options for
results manipulation

× × × ×
built on simple concept

� × × ×
Table 2: Evaluation of Ranking Methods from Algorithm Perspective

All websites and E-businesses tackle the multi-featured ranking problem using a combina-

tion of two methods. One method is one of the multi-featured ranking methods introduced

previously in this chapter, i.e. VSM, GSM, Recommender, or MCDM. The second method is the

concept of filtration.

The multi-featured ranking methods employed in modern websites do not include con-

sumer requirements. They perform ranking in two levels. The first level is performed offline

before publishing the Services. This level includes ranking Services based on multi-criteria de-

fined by the website developers and administrators. This includes factors like price, provider

reputation, recommendations, number of sales, payment issued by provider to increase rank

and more criteria that are not defined by consumers. Then, the second level of ranking is an

online ranking where they consider the textual description of the Service provided by the con-

sumer in addition to a single criterion which is the rate/rank they produced in the first level

of ranking. For example, in ebay.com or Amazon.com, the user is prompted to insert a textual

description of the desired Service/product. Then, Services are provided in a certain order. This

order is based not only on the textual match but other implicit criteria defined by the website

developers.

The second method used to have multi-featured effect is the filtration. This concept is about

36

removing the irrelevant items from the result list. That is, the user is provided with certain tools

or filters specific to each application domain. Through these filters, consumers can filter out the

unfavourable products/Services. This is performed on-spot once a user clicks or choose those

filters. For example, when a user wants to see items of a ranged price, there is no ranking

performed. Rather, there is a filtration process that goes over all the results and filters out

those products that are not within the specified price range.

Although the combination of the mentioned methods together provides the consumers with

a multi-featured-like ranking, it can not be considered a fair ranking. This is due to the follow-

ing reasons:

• The offline multi-featured ranking considers many factors. These factors are not depen-

dant on the user request only. Thus, the user may receive unexpected results. This may

lead in non-selection problem since the top ranked Services may not be the best for the

user.

• Filtration does not provide consumers with other options. To clarify, in real life when

we consider a specific price range, we would like to hear about those Services that meet

our requirements first. However, we don’t mind hearing about those that meet all our

requirements but slightly violate the range. This gives us the exposure on wider range

of Services and provide us with a pure freedom to make a choice. In the same view, this

allows providers to have opportunity to be exposed to wider range of consumers.

Some may argue that having internal offline ranking is beneficial for website developers. In

particular, it gives developers opportunity to make financial benefits by controlling the rank

list. For example, developers could ask for some extra fees to locate particular providers on

top of the list in particular Service domain. Although we don’t support the idea of having any

internal control in the result list, we think that fair ranking algorithm can still offer this option,

with no need to offline ranking, if it has been integrated with the proper options.

37

Based on the evaluation shown above, we can see that there are no available methods that

meet all our requirements. Nevertheless, we see that vector-based ranking are closest to our

requirements. Thus, we dive into this type and try to investigate the basis of it as an attempt

to come up with a method based on vectors that can meet all our requirements. The basis of

vector-based ranking algorithms is called vector-based Similarity Measure , which will be our

discussion in next section.

3.2 Similarity Measures

Similarity Measure is a metric that is used to calculate the degree of similarity between two

items. It can be deterministic or probabilistic. SM is deterministic when its results don’t change

over time, and it’s a probabilistic otherwise. Figure 6 shows the different types of vector-based

similarity measures. Probabilistic Similarity Measure is used when solving fuzzy problems that

depends on how the similarity is perceived at a certain time which might not be applicable in

another time [AE07]. It is generally related to personal experience such as taste of product,

or opinion about someone or something. Thus, it is not a useful measure within our scope of

study. On the other hand, deterministic Similarity Measure produces the same output if given

the same input at any given time based on calculations not on how it’s perceived [AE07] which

makes it relevant to our ranking problem. It can be applied on numbers, images, documents

and any other comparable objects. However, Similarity Measures are mainly needed when a

graded scale result is required. That is, the output expected of SM is a range of numbers

indicating the degree of relevance between the compared objects. For example, SM for two

documents can be 0, 5, or 10, indicating that the documents are not related, related by 50%,

or identical.

38

Figure 6: Different vector-based similarity measures

3.2.1 Vector-based Similarity Measure

From the review done in previous sections, we conclude that Ranking Algorithms that meet all

our requirements do not exist. Also, we found out that the Vector-Based Ranking Algorithms

are the closest one to our requirements. Therefore, we decided to narrow down our investiga-

tion to Vector-Based Similarity Measures (VSM) which are the basis of Vector-Based Ranking

Algorithms.

Vectors can be a way of describing a multi-featured objects. A dimension in the vector is

also called a feature or an attribute. However, these vectors are not the vectors introduced in

mathematics and physics which are represented in vector space. Rather, the vectors we are

referring to are known as feature vectors [PS09]. Basically, a feature vector is an object that

contains, or is described by, multiple features [SB09]. This object and its multiple features are

represented as a point in multiple dimensions in the feature space [LM98]. Nevertheless, we

are still able to use vectors algebraic operations such as Dot Products, and Scalar Products on

such vectors. For example, a car can be described as a feature vector, where the car’s colour is a

feature, its mileage is a feature and its price is a feature and so on. Thus, a VSM is a Similarity

Measure that is used to calculate the degree of similarity between two given vectors.

39

The two types of VSM are Feature-based VSM (VFSM) and Distance-based VSM (VDSM)

[XNJR02] [T+77]. The difference between the two types is that when comparing two objects

in VFSM, the concept is to validate the equality between each attribute, and calculate the final

results based on how many attributes of the objects are identical. For instance, for the vectors

Q = [a, b, c] and V = [b, b, b], the similarity is 1. On the other hands, in VDSM the similarity of

two objects is the number of attributes that differ in their vector representation. For example,

for the vectors Q = [1, 2,3] and V = [2,3, 4] the similarity under VDSM is 3.

VFSM is beneficial when the only needed information is the equality between two features

of a Service. This can work perfectly with non-numeric data types that don’t provide more than

true/false kind of information such as strings and boolean. Our ranking algorithm is dependant

on numbers as well. In fact, one of the key requirement of our ranking algorithm is to be able

to perform comparisons between features. That is, which feature is less or more than the other.

However, VFSM model cannot provide such an information. This concludes that VDSM is more

applicable to our case. Nevertheless, we might need to integrate the concept of VFSM in our

model when we use strings and boolean data types.

VDSM has been used in numerous scientific fields such as machine learning [Aga11],

bioinformatics, genealogy, chemistry, information retrieval [Sig05], computer science, math-

ematics, image processing and many other fields [CYT05]. Thus, number of diverse VDSM

exists. Therefore, a complete review of all of them is out of reach. However, we provide a

review on most of the recent ones and ones that are highly related to our topic.

3.2.2 Distance-based SMs: Current State of the Art

We have grouped the Similarity Measures based on the range of data they produce. That is,

we have created a table for each group. Similarity Measures that produce unbounded results,

i.e. [0,∞] Formulas listed in Table 3 produce unbound values, while formulas listed in Table 4

produced bounded values.

40

(A) Euclidean Dist.L2 dEuc =
2

�
d∑

i=1

|Si −Qi |2 (B) City BlockL1 dCB =
d∑

i=1

|Si −Qi |

(C) Chebyshev L∞ dCheb = max |Si −Qi | (D) Minkowski Lp dMk =
p

�
d∑

i=1

|Si −Qi |s

(E) Kulczynski dkul =

d∑
i=1

|Si −Qi |
d∑

i=1

min(Si ,Qi)

(F) Gower dgow =
1
d

d∑
i=1

|Si −Qi |

(G) Lorentzian dlor =
d∑

i=1

ln(1+ |Si −Qi |) (H) Inner Product dI P =
d∑

i=1

SiQi

Table 3: Similarity Measures that produce numbers in the range [0,∞], [Cha07] [Dan80]

*where Si is the ith attribute of a Service and Qi is the ith attribute of user Query

3.2.3 Criteria of Similarity Measure Evaluation

Similarity Measure is the core of Vector-Based Ranking Algorithms. Because our goal is to come

up with a fair ranking algorithm, our Similarity Measure should be built with considerations

to the requirements of fair ranking algorithms introduced in Chapter 2. However, because

the introduced requirements were concentrated on ranking level, it had the two perspectives

consumer and algorithm. On the contrary, our discussion here is at a lower level, and thus,

consumer perspective is irrelevant at this stage, and part of algorithm perspective will be rel-

evant to our discussion. Nevertheless, we will perform some changes to the requirements of

fair ranking algorithm, in order to make them focused on Similarity Measures. Particularly, the

requirements related to “Support Semantics, Consistency of results, Input range, Restrictions

on number of features, and Options for results manipulation” are considered not relevant to

Similarity Measures. We add the two new requirements Symmetry and Sensitivity to Small Dif-

ferences that are relevant to Similarity Measure level. Finally, we redefine the two requirements

Normalized outputs and Simplicity, that were introduced previously but explained generally.

41

(I) Sørensen dsor =

d∑
i=1

|Si −Qi |
d∑

i=1

(Si +Qi)

(J) Soergel dsg =

d∑
i=1

|Si −Qi |
d∑

i=1

max(Si ,Qi)

(K) Cosine Scos =

d∑
i=1

SiQi

√√√√√ d∑
i=1

S2
i

√√√√√ d∑
i=1

Q2
i

(L) Canberra dcan =
d∑

i=1

|Si −Qi |
Si +Qi

(M) Jaccard djac =

d∑
i=1

(Si −Qi)
2

d∑
i=1

S2
i +

d∑
i=1

Q2
i −

d∑
i=1

SiQi

(N) Harmonic Mean dHM = 2
d∑

i=1

SiQi

Si +Qi

(O) Dice ddice =

d∑
i=1

(Si −Qi)
2

d∑
i=1

S2
i

d∑
i=1

Q2
i

(P) Angular Similarity SAng = 1− cos−1(Scos)
π

(Q) RC SRC =
d∑

i=1

|Qi − Si |
max(Qi ,Si)

(R) Service Ranking dSR =
d∑

i=1

2− Si

Qi

Table 4: Similarity Measures that produce numbers in the range [0, Constant], [Cha07]
[BB08] [Ibr12] [JRVF09]

*where Si , Qi are the ith attributes of Service,Query respectively. RC is Relative Change

Therefore, the following is a set of requirements that are relevant to Similarity Measures evalu-

ation:

• Symmetry: With respect to Similarity Measure we define symmetry in this section.

• Normalized Outputs: With respect to Similarity Measure we redefined Normalized outputs

in this section.

• Sensitivity to Small Differences: We define this concept with respect to Similarity Measure.

• Simplicity: Specific to Similarity Measure, redefined in this section

42

In the following discussion we explain these requirements, their importance for fair ranking,

and provide examples.

1. Symmetry: Let B = [b1, b2, . . . , bk], B′ = [b′1, b′2, . . . , b′k] be two Services, and Q =

[q1, q2, . . . , qk] be a Query. Let f be the function that computes the degree of similar-

ity between every pair of components of the vectors. We say f has symmetry property if

f (bi ,qi) = f (b′i , qi) whenever |bi − qi |= |b′i − qi |

Example 3. Let q = 100, b = 10+ q = 110, b′ = q − 10 = 90 where q is an attribute

in the user Query, b and b′ are values of attributes in two different Services. A symmetric

Similarity Measure should produce equal scores for b and b′ with respect to q.

Symmetry is important for the following two reasons:

• When a user expects exact match and exact matching is not possible in the available

Services, the Similarity Measure with symmetry produces the rankings which are

closer to user expectation.

• To pave the road for introducing semantic preference in our ranking algorithm.

During ranking, it is better to group together similar Services, which is achieved by

Similarity Measure and then apply semantics within a group to discriminate the best

semantically. To clarify this point, let us consider the semantics of attributes. Let

the cost attribute be q in Query, and b,b′ are attributes in two different Services as

defined above in Example 3. Then, even though b and b′ have the same difference

from q, b′ is better as it is less costly. Because symmetry will force b and b′ to be

ranked the same, we boost the score of b′ by adding a small constant value to it.

Because the constant is small, it won’t produce imbalance in the overall ranks, and

at the same time it would make b′ rank higher than b. Further details on the choice

of boost value are introduced inChapter 5.

43

2. Normalized scores: Scores are normalized, in the sense that they are adjusted to a com-

mon scale. Consequently, scores are bounded. As an example, let the attribute of a

single-attribute Query be q = 100 and the attribute values of three single-attribute Ser-

vices be a = 90, b = 80 and c = 70. The scores produced by the Similarity Measure are

normalized if they are relative to the same bound. If the normalization constant is chosen

to be 100, the normalized scores for a, b and c are 0.90, 0.80 and 0.70 respectively.

This criterion is important for the following reasons:

• To produce interpretable results. In fact, similarity measures in a ranking system

maybe exposed to unbounded numbers. Theoretically, the attributes of Services and

Query are lower bounded by zero but upper bounded by +∞. This means that

if the Similarity Measure does not produce normalized outputs, it will produce an

unexpectedly sparse numbers which cannot be understood.

• To minimize the influence of big numbers (scores) in the final ranking. When a

Query has many attributes, the ranking or scoring system has to aggregate the sub-

scores in some manner to compute the final score. One example of aggregation is

the additive aggregation, in which all sub-scores are added to compute the final

score. Having differences in the range of values of attributes will affect the fairness

of the results in the sense that attributes with big values will have more influence

on the total rank. By normalization of each attribute value, this influence can be

eliminated.

3. Sensitive to small changes: We want a Similarity Measure to be able to detect small

differences between Services. As an example, let a Query be described by a single attribute

q, where q = 50, and let available Services also described by single-attributes b and c,

where b = 50.01 and c = 50.02. A Similarity Measure is sensitive to small difference if it

produces different scores for b and c.

44

This characteristic is necessary for the following reasons:

• To ensure fairness of ranking it is necessary that even a small difference in the input

should make a difference in the produced ranks.

• The algorithm can be employed to a variety of application domains where a small

percentage of change is crucial to correct ranking. These include trading in precious

metals and dealing with the presence of chemicals in food and drugs.

4. Simple: A Similarity Measures should be simple to calculate and easy to apply. Mathemat-

ically simple means that it’s function definition is linear. Also, it should not be prone to

mathematical violations such as division by Zero. Practically simple means it can be ap-

plied easily. This involves that it involves minimum number of operands and operations.

The simplicity is important for the following reasons:

• To easily integrate the Similarity Measure with user preferences and other options.

• To easily integrate other features of our algorithm such as semantic-awareness and

different datatypes support.

• To introduce composition and other subsequent calculations while maintaining the

timeliness of the execution.

3.2.4 Evaluation Method

In this section, we explain the experimental analysis conducted on the Similarity Measures listed

in Tables 3, 4 for the three specific properties symmetry, normalized output and sensitivity to

small changes. The goal of this exercise is to test each published method for its potential for

use in a fair Service ranking. In order to achieve this goal we created specific datasets for testing

specific properties, and used Matlab [HL97] for numerical calculations, analysis, and graphical

displays.

45

Figure 7: Dataset for testing the Symmetry property

We restricted to Query and Services with two attributes. The outcome of the experiments do

not depend on the Query, but rather on the available Services and the methods that compute

similarity measures, so we fixed the Query Q = [120,14] and varied the datasets of available

Services for conducting the experiments.

Let Sx = [at t1, at t2] be a Service. In general, many Services are created by assigning values

at random to at t1, and at t2. However, it is sufficient to make an analysis for symmetry and

other properties on one attribute at a time. Therefore, we can fix the value of one attribute

in the Service, say at t2, and then vary the values of at t1 to create a dataset. There is no loss

of generality in fixing the value of at t2 to 14, which is the same as the value of the second

attribute in the Query. The reason is if we choose any other number there will be a constant

(the difference between the value of at t2 and q2) factor throughout the calculations and it will

not affect the final outcome.

We use the notation Q(1) to refer to the first attribute of the Query, and Q(2) to refer to the

second one. Similarly, Sx(1) refer to the first attribute of the xth Service, and Sx(2) refer to the

second attribute of the xth.

The numbers of Q(1) and Q(2) were chosen randomly with no specific reasons. However,

values of Sx were chosen carefully to examine specific characteristics.

In the following paragraphs, we explain more details about each characteristic:

46

Figure 8: Dataset for testing the Normalization property

1. Testing Symmetry Property: We created the dataset in Figure 7. We started our Ser-

vices list with Service S1(1) = 0. Then, we added a value of 10 to first attribute of the

next Service in each step. Hence,

S2(1) = S1(1) + 10= 10

,

S3(1) = S2(1) + 10= 20

...

Sx(1) = Sx−1+ 10 where x �= 1

The last Service in the dataset, S25 = 2×Q(1) = 240 which is an image to S1(1) around

Q(1). We call this dataset a symmetric dataset because each Service in the dataset has

an image around Q. We compute the similarity using each one of the function defined

Table 3 and Table 4. We plot the results of this study in Figure 10. In addition to

the practical study, we formally examined the symmetry property for each function and

included the results in Appendix A.

2. Testing Normalized Output Property: Figure 8 displays the dataset used to test this

property. We took a large dataset because we wanted to examine whether scores are pro-

duced within specific range no matter how large is the difference between the Query and

47

Figure 9: Dataset for testing the Sensitivity to Small Changes property

the Service. Our practical findings is plotted in Figure 11. Additionally, similar to Sym-

metry, we have supported our practical finding with a formal study on each Similarity

Measure in Appendix B.

3. Testing Sensitivity to Small Changes Property: Figure 9, shows the dataset used to test

this property. We made a dataset with small differences between each Service. Thus, we

started our Services list with Service S1(1) = 119.00. Then, we added a value of 0.01 to

first attribute of the next Service in each step. Hence,

S2(1) = S1(1) + 0.01= 119.01

,

S3(1) = S2(1) + 0.01= 119.02

...

Sx(1) = Sx−1+ 0.01 where x �= 1

The last Service in the dataset, S201 = 121.00 which is an image to S1(1) around Q(1).

Hence, the dataset ranged between [119.00−121.00]. We illustrate our findings regard-

ing sensitivity in Figure 12.

48

Q(1) = 120, Sx(1) = [0− 240], #Services =25

Figure 10: Examining the Symmetry Feature in similarity measures

49

3.2.5 Observations and Analysis

Similarity Measures (A),(B),(C), and (D) in Table 3 come under Minkowski family, and their

characteristics are similar. Thus we only include one of them, which is Euclidean distance.

Similarity Measures (H) and (N) in Table 3 are not considered, as they fail to comply with any

of the required characteristics. Below, we evaluate each Similarity Measure in terms of the

requirements introduced earlier.

1. Symmetry: Based on Figure 10, Similarity Measures (E), (H), and (R) from Table 3

and Similarity Measures (I), (J), (K), (L), (M), (N), (O), (P), and (Q) from Table 4 are

asymmetric. On the other hand, Similarity Measures (A), (F) and (G) from Table 3 are

symmetric. The reason why (A),(F) and (G) are symmetric is because they are either

divided by a constant like (F) or they are based on absolute difference, i.e not normalized.

However, if we look at the asymmetric Similarity Measures, we find all of them normalized

which is the main reason why they are not symmetric. That is, because they are all

normalized to the values of S, Q or a sum of both, any change in the values of Q or S

generates a change in the final value, even if it is a symmetric change. For example, The

Similarity Measure (L) is normalized to |Q+S| Table 4, thus, if we consider Q = q, and

S1 = q+ 10. By substitution in (L) formula we find dcan =
10

2q+10
. However, if we assume

S2 = q− 10, which is an image value to S1 around Q, we find dcan =
10

2q−10
which is not

equal to 10
2q+10

.

50

Q(1) = 120, Sx(1) = [0−12000], #Services =1201, with difference of 10 between each Service

Figure 11: Examining the upper bounds of the similarity measures

51

2. Normalized Outputs: By looking at Figure 11, we can identify the bounded and un-

bounded Similarity Measures. Specifically, All Similarity Measures in Table 3 are un-

bounded where all Similarity Measures in Table 4 are bounded. As mentioned previously,

symmetry and normalization are contradictory features. The absence of one allows the

presence of the other. This is explained earlier in the symmetry discussion introduced

above.

52

Q(1) = 120, Sx(1) = [119.00−121.00], #Services =201, with difference of 0.01 between each
Service

Figure 12: Examining the Sensitivity to Small Changes Feature in similarity measures
53

3. Sensitivity to Small Differences: In Figure 12, we find two types of shapes. shapes

that are curvy in the middle, and shapes that are pointy. This difference indicates the

ability/inability of the Similarity Measure to capture small changes in S values. The curvy

shapes are formed because the Similarity Measure produced similar results for different

S values that differ by 0.01. In fact, the results are not exactly similar, but there are

high precision differences that a regular arithmetic tool would consider them similar.

Although this problem can be avoided by using special arithmetic tools that can detect

high precision variations, it is not preferable solution since this complexity is created

only with 0.01 difference. The pointy shapes are formed because the Similarity Measure

produced different results with each change in S values, which is an indication of the

ability to capture small differences in the input. There are only three Similarity Measures

that are insensitive to small changes in the input data. These are Similarity Measures

(K), (M), and (O) in Table 4. The reason behind this limitation is the fact that the

results of these Similarity Measures are normalized to big numbers. Thus, the bigger

the denominator in Similarity Measures the higher the precision of the change in the

produced numbers and the less the ability of regular arithmetic tools to detect them.

Although the curves in Figure 12 are symmetric, they don’t prove the presence of this

characteristic in the corresponding Similarity Measure. The curves are symmetric simply

because the numbers are different from each other by a very small difference which make

the results almost similar and hide the asymmetric nature of Similarity Measures. For

instance, consider our Similarity Measure to be (I) and assume Q = 10 and let’s have two

symmetric inputs S1 = 9.99, S2 = 10.01. Hence, by substituting in Similarity Measure (I),

we get rs1 = dsor =
|9.99−10|
10+9.99

= 0.00050025, while rs2 =
|10.01−10|
10+10.01

= 0.00049975. Thus,

the difference between rs1 and rs2 is 0.0000005 which cannot be detected in the graph.

Remark. Similarity Measures (J) and (Q) in Table 4 seem to be similar but they are not. In

54

���������Criterion
SM

(A) (E) (F) (G) (I) (J) (K) (L) (M) (O) (P) (Q) (R)

Symmetry
� × � � × × × × × × × × ×

Normalized outputs × × × × � � � � � � � � ×
Sensitivity

� � � � � � × � × × � � �
Simplicity

� � � × � � × � × × × � �

Table 5: Comparison between all Similarity Measures.

essence, in (J) the division is performed once between the total of differences over the total of

maximum values. However, in (Q), the division is performed for each element of S. The difference

is not clear in the graphs because we assumed that the other element of the S vector is fixed.

However, if we assume for instance that S = [110,15] and Q = [120,20], we find out that (J)’s

result is R(J) = 0.107 while (Q)’s result is R(Q) = 0.333. This means that (J) produces smaller

number, and details of each element of S might be lost with large set of S. One the other hand,

(Q)’s result keeps more details about each element.

Table 5 summarizes the comparison between the Similarity Measures in Table 3 and Table 4

In summary, none of the examined Similarity Measures meets our requirements. However,

there are six Similarity Measures that meet three requirements out of four. These are Similarity

Measures (A), (F), (I), (J), (L), and (Q). The first two don’t meet the normalization require-

ment. The rest lack the symmetry characteristic. We want to avoid the mathematical study

involved with normalizing unbounded numbers. Thus, we exclude (A) and (F) from our list of

options. As a consequence, we are left with Similarity Measures (I), (J), (L), and (Q). The Sim-

ilarity Measures (I) and (J) are excluded because they aggregate the results of all attributes of

Query and Service in one step. This makes it hard on us to integrate scalars with each element.

Also, all the candidate Similarity Measures except (Q) have denominators as total values. This

increases the value of denominator and thus increases the precision needed to recognize small

differences. Unlike other candidates, Relative Change (Q) Similarity Measure shows a simple

55

structure and captures highest details. Also, it only includes one number in the denominator

which makes it always able to capture smaller differences. Thus, we decide to improve on it

and try to customize it to meet our required characteristics.

56

Chapter 4

General Overview on the Proposed

Solution

In this chapter, we introduce a general overview of the proposed fair ranking algorithm, the

X-Algorithm. We first provide the basic mathematical background for the algorithm. Then, we

explain the algorithm in the two dimensions, the front end and the back end. The front end rep-

resents the part of the algorithm that relates to end-users, where users need to define a query,

preferences and make use of the options offered by the algorithm. There, we introduce, in

abstract, all the options available for the user. Also, we illustrate how they can be conceptually

structured altogether as one entity. After that, we introduce the back end, where the algorithm

performs the actual ranking based on users’ entries and requirements passed through the front

end. As part of this discussion, we briefly discuss the steps to obtain the final ranking results.

At the end of the chapter, we briefly summarize the information given in this chapter.

57

4.1 Basic Information about The X-Algorithm

The X-algorithm is a user-based, semantic-based and vector-based ranking algorithm; It is to

rank Services in service-oriented systems. The Algorithm is called The X-Algorithm because of

the "X" variable that is used to introduce semantic-awareness in the ranking algorithm. De-

tails about this variable and how it helps to rank diverse semantics differently is introduced

in next chapter. It is user-based in the sense that it produces results based on only the user’s

requirements. That is, it does not make any assumptions or infer any knowledge from exter-

nal resources or previous behaviour such as recommender systems. The X-Algorithm is also

a semantic-aware algorithm. This is because the ranks produced by the algorithm considers

the semantics or type of data in addition to its value. Finally, the algorithm is a vector-based

algorithm as it considers Query, Services and all other listwise variables as feature-vectors1.

Essentially, the X-Algorithm is based on a Similarity Measure, called Relative Change(Q), intro-

duced in the previous chapter.

4.2 The X-Algorithm Front-end

This section is divided into two subsections. In the first subsection, we enumerate the options

offered by the X-algorithm to end-users. Also, we introduce a brief explanation for each option.

In the second subsection, we illustrate, through figures, the conceptual structure of the user

request, including the Query, Weights, and Preferences. Finally, we introduce a pseudo code for

the user request.

4.2.1 Options provided to user

In this subsection, we enumerate the available consumer options that enforce changes on the

results. The algorithm offers two types of options; feature-option and query-option. The feature

1feature-vectors are n-dimensional vectors that are used to describe a specific object [LM98, LY93]

58

options can be set for each feature separately. On the other hand, query-option is an option

that can be set for the entire Query, and cannot be different for different features in the Query.

Feature-Options

1. Exact/Best Mode: Each feature of the Query can be in one of these modes. Exact Mode

means the user is interested to find Services that exactly match the values in the Query. In

contrast, Best Mode means the user is interested to find better values than the one defined

in the Query. That is, in Exact Mode the value defined in the Query is considered the best

value, while in best mode, the value defined in the Query is the minimum requirement.

2. Range of values: This option is available only for numerical features. It implies that the

user chooses to enter range of values rather than one single value. An example is when

the user enters a range of accepted price.

3. Essential values: This option is available for numerical and non-numerical features. It

allows the user to make one feature or group of features as non-negotiable. This prompts

the algorithm to first meet this/these essential feature(s) and then the other non-essential

features.

4. Semantics: This option can be either system-based or user-based. In case it is to be set

by the user, it is included in the user request. Through this option the user can define the

meaning for better or worse to a specific feature. Thus, the features can be ranked based

on the semantics. For example, if a cheaper price is better for a user, the semantic for

this feature should be “Less is Better”. This will prompt the algorithm to prefer the less

expensive prices over the more expensive ones. Similarly, if the user defines it as “More is

Better”, the algorithm will prefer the more expensive prices over the less expensive ones.

59

Query-Options

1. AllBest option: This option is available for the entire Query. Once set, it prompts the

algorithm to prefer the Services that meet all requirements for all features first. Thus, it

forces the algorithm to prefer Services that offer meet all requirements (even if minimum

requirement) for all features over ones that offer good values for all features but violate

the requirement of one feature.

2. Algorithm Accuracy: This option can be either a system-based or a user-based option. In

case it is considered a user-based, it is included in the user request. Thus, user can set

the accuracy of the algorithm as to indicate an acceptable error rate.

3. Essential Accuracy: Similar to algorithm accuracy, it can be based on system or users.

When it is a user-based, it is included in the user request as to indicate the error rate of

the essential option. Thus, this option is in effect only if essential option is "ON" for any

feature.

4.2.2 Conceptual Structure of User Request

In this subsection, we provide a conceptual structure of the user request. User request consists

of three entities; Query which includes the preferred values for each feature, Weights which

includes level of importance for each value defined in Query, and Preferences which contains

the options enumerated in the previous subsection. To combine those three entities in one

object, we introduce the conceptual structure in Figure 13.

Example 4. In this example, we provide a user request for a wireless service. Assume the wireless

service has the four features: Price per month(CAD), service range(meter), Internet Speed(MB/second),

Download Limit Per Month(GB). Thus, it’s defined as

Q = [Price(CAD),ServiceRange(m), Speed(MB/s), Download(GB/month)]

60

Figure 13: The conceptual structure and Pseudo Code of the user request

Assume that the user is interested in a range of prices and prefers the price to be within the range

(80-40). However, within the range the user thinks less values are better. Also, the user is

interested in better(higher) Internet speed and download limit where the minimum requirement

is (15 MB/second) and download limit of (120 GB/month). However, for security purposes, the

user wants the exact service range specified in the Query as to not make the wireless service to

be accessible from outside certain area. The user wants to see first the services that meet all

requirements. Hence, the most important feature is the price, then comes the service range, then

61

come speed and download limit which are of the same importance.

Assume our weights are in the range (0,5) where 5 means most important, and 0 means not

important. Considering user requirements, we can translate the requirements to query, weights

and preferences. Hence,

• Price: Options Range and Essential are used. This is because price is non-negotiable feature.

Also, the semantic of price is “Better is Less” as the user wants to see less values within the

range first.

• Service Range: Exact Mode option is used. Thus, algorithm will look for exact values or

closest to one defined in the query.

• Speed: Best Mode option is used with the semantic “Better is More”. This is because higher

speed and download are better as the user specified in the requirements.

• Download: Best Mode option is used with the semantic “Better is More”.

• Because user wants to see services that meet all requirements first, ShowAll option is used.

• For options that are not specified by users, like Mode or semantics for any feature, we use

ANY to indicate that it does not matter for the user.

• In this example, we assume the accuracy is set by the system.

Following the conceptual structure introduced earlier, and considering the definition of the user

request defined above, we define the following pseudo code for the user request.

62

Algorithm 1: Pseudo Code of the user request object

1 begin
2 Class: UserRequest
3 Query= [80,10,10,120]
4 Weights= [5,5,3,3]
5

// feature-options preferences
6 Range = [40,0,0,0]// 40 is a lower value of the price range
7 Mode= [ANY ,Exact,Best,Best]
8 Essential= [True,False,False,False]
9 Semantic= [Bet ter Less,ANY ,Bet terMore,Bet terMore]

10

// query-options preferences
11 AllBest=True
12 end

4.3 The X-Algorithm Back-end

The back end of the algorithm is where the actual ranking performed. The X-Algorithm per-

forms ranking in three different phases. These phases are: Preparation Phase, Multiplication

Phase and Sorting Phase.

4.3.1 Preparation Phase

This phase is divided into two steps: the Measuring Step and the Scaling Step. In the Mea-

suring Step, the attributes of Query and Service are involved in a pairwise comparison. This

comparison produces unnormalized numbers that are based on different scales. Therefore, the

results of the pairwise comparison proceeds to the next step which is Scaling Step. Thus, the

goal of Preparation Phase is the following:

1. Perform pairwise comparison between the attributes of Query and available Services.

2. Consider the following parts of the user request: Query, Semantic, Mode, Range, and

Algorithm Accuracy.

3. Normalize the results of pairwise comparison to a common scale.

63

Figure 14: An illustration of the Preparation Phase

4. Generate the Prepared Matrix (PM).

In Measuring Step, the algorithm uses Query, Semantics, Mode, Range, and the Algorithm

Accuracy as specified in the user request. In addition, the available list of Services is considered

another input in this step. Hence, the algorithm takes each attribute of Query and compare it

against an attribute of one Service using the defined Similarity Measure defined in next Chapter.

In Scaling Step, the produced numbers from the Measuring Step are justified into a common

scale. Hence, each pairwise comparison result passes through a scaling method. This scaling

64

method adjusts the results to one common scale that is used for all other results. Finally, results

of the Scaling Step are recorded in the Prepared Matrix(PM). The rows of this matrix are the

attributes of different Services with respect to the attributes of Query. That is, the ith row is

PM matrix contains the scores of the ith attributes of available Services with respect to the

ith attribute in Query. The columns of PM matrix are the available Services. The PM matrix

is generated using the following components from the user request: Query, Mode, Semantic,

Range and Algorithm Accuracy. Also, the results in PM are all normalized to a common scale.

Figure 14 illustrates both steps.

4.3.2 Multiplication Phase

In this phase, the results are tailored to the needs of consumers. In essence, the level of

importance, whether essential or not, are used in this phase. Hence, Weights, Essential, and

Essential Accuracy are considered in the calculations. This phase is introduced to perform the

following tasks:

1. Calculate the total Weight vector (Regular Weight + Essential Weight)

2. Multiply PM by the Weight vector.

3. Generate the Unsorted Ranks (UR) list.

4. Apply AllBest preference based on the user request.

The level of importance introduced to the PM matrix by multiplying the Weight vector by

the PM matrix. However, because Essential option is basically an extra weight assigned to the

essential feature to outweigh the importance of other non-essential features, we divide Weight

vectors to two sub-vectors; Regular Weight vector and Essential Weight vector. Hence,

Weight = RegularWeights+ EssentialWeights

65

Figure 15: Illustration of the Multiplication Phase

After this addition, the Weight vector is multiplied by the PM matrix to produce what’s

called the Unsorted Ranks (UR). Hence,

UR=Weight ∗ PM

UR= (weight1, weight2, . . . , weightn) ∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11 S12 . . . S1n

S21 S22 . . . S2n

...
...

...
...

Sm1 Sm2 . . . Smn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where,

Smn is the score of the mth feature of the nth Service. Thus, the total rank of the ith Service is

66

calculated as,

TotalRankSi
= weight1 ∗ S1i + weight2 ∗ S2i + . . .+ weightn ∗ Sni

Since UR is a list of unsorted ranks of all Services ,

UR= [TotalRankS1
, TotalRankS2

, TotalRankSn
]

UR is a list that contains the final ranks of all Services but these ranks are unsorted. This

introduces us to the final phase, the Sorting Phase. In Sorting Phase there is one last user

preference that is used which is AllBest option. Generally, AllBest preference prompts the

algorithm to add values to the final rank as to prefer Services that meet at least all the minimum

requirements of the Query . The added value is obtained based on some calculations introduced

in Chapter 5. Figure 15 depicts the Multiplication Phase.

4.3.3 Sorting Phase

This phase receives UR vector from the Multiplication Phase and applies a sorting algorithm

to sort the list. Any sorting algorithm can be employed to sort the list in non-increasing order

of ranks. However, we preferred the Quick Sort algorithm because it is stable [CLRS09]. The

output of this phase is what we call Sorted Ranks (SR). Thus, this phase is to perform the

following tasks:

1. Apply a sorting algorithm on UR vector and sort it in non-increasing order.

2. Generate the Sorted Ranks (SR).

4.3.4 General Pseudo Code of the Back End

In this subsection, we provide an abstract pseudo code of the back end. This pseudo code is

shown in Algorithm 2.

67

Algorithm 2: General Pseudo Code of the X-Algorithm Back End

1 begin
// Preparation Phase
Input: query, range, semantic, algoAccuracy, mode, ServicesList
Output: PM matrix

2 for i← NumberO f Services do
3 service← ServiceList[i]
4 for j← NumberO f FeaturesInQuer y do
5 pre f erences← [range, mode, al goAccurac y, semantic]
6 unnormalizedRank←

Similari t yMeasure(service[j], quer y[j], pre f erences)
7 normalizedRank← ScalingMethod(unnormalizedRank)
8 PMi j ← normalizedRank
9 end for

10 end for
11

// Multiplication Phase
Input: essential, essentialAccuracy, AllBest, weights, PM
Output: UR list

12 essentialWeight ← calculateEss(essential, essentialAccurac y)
13 TotalWeight ←Weights+ essentialWeight
14 UR← DotProduct(TotalWeight, PM)
15 UR← Appl yAllBest(AllBest, UR)
16

// Sorting Phase
Input: UR list
Output: SR list(Descending Order)

17 SR←QuickSor tDescending(UR)
18

19 end

68

Figure 16: Illustration of the entire structure of X-Algorithm

4.4 Summary

In this chapter we have introduced the basic concepts of the X-Algorithm. We explained the

X-Algorithms from two different views: front end back end. For each view, we discussed its

functionality and its pseudo code. Figure 16 summarizes the structure of the X-Algorithm.

69

Chapter 5

Deeper Look Into The X-Algorithm

In this chapter, we expand the general information provided in previous chapter with details.

We discuss each feature of the X-algorithm in terms of why and how it was integrated. Also,

we support each option by a comprehensive example that touches all dimensions of the op-

tion. Finally, we provide an inclusive pseudo code that takes into consideration all options and

characteristics of the algorithm.

5.1 Weights

Weight is a non-negative number assigned to represent level of importance for each feature

in a Query. Thus, Weight Vector has the same length as Query. This vector is to be eventually

multiplied by a matrix to be defined later in order to produce the ranks of Services. The different

kinds of weights are defined as follows:

1. Significant (weight = 0.005): This weight is the highest weight (wh) in our algorithm.

It is assigned to a feature with highest significance.

2. Normal (weight = 0.003): This weight is assigned to a feature of a normal importance.

Most of the features are usually at this level of importance.

70

3. Low (weight = 0.001): This weight is assigned to a feature if it is not considered impor-

tant, yet its existence causes measurable impact on the generated ranks.

4. Insignificant(weight = 0.0001): The feature assigned this weight is not considered by

the algorithm unless it is required to discriminate between equal Service rankings. That is,

if two Services have all features of similar quality and differ from each other only because

of an insignificant feature, the Service with better insignificant feature ranks higher. This

means that there is a slight consideration given for insignificant feature. This weight (wl)

is the lowest among the weights .

5. Do Not Consider(weight = 0): A feature of this weight will not be considered in the

generated ranks even if qualities of other features match. Users can achieve the same

results by not including this feature in Query definition at all.

The defined weights have two main characteristics. First, they are small. The reason is that

in our ranking algorithm, we construct a matrix by integrating many options that may increase

the matrix elements. If the weights are not small numbers, when we multiply this matrix with

the weight vector the final rank value may grow exponentially and become unmanageable.

Second, the difference between weights is set as 0.002. In previous works [Ibr12] sequential

weights, such as 1, 2,3, . . . or 0.01, 0.02,0.03, . . . have been used. Based on our practical ob-

servations we found that sequential weights of small order, such as 0.001 and 0.002, are not

very effective and can easily make almost similar results. Based on empirical study, we found

0.002 to be sufficient to make the desirable difference. So, we use a distance of 0.002 between

weights to generate measurable difference between the ranks.

71

5.2 Modes, Semantics and the value of X

We introduce modes as a means to provide more options to users in specifying their prefer-

ences and to simulate real life experience. In this section, we introduce the different ranking

modes offered by the X-Algorithm. Also, we discuss how the modes give the basis to introduce

semantic-awareness to the X-Algorithm. Then, we introduce the semantics of data encountered

by the algorithm. After that, we integrate the semantics into our algorithm. We follow this by a

pseudo code illustrating how all semantics are handled in the X-Algorithm. Finally, we provide

an example illustrating that our method is able to rank based on the semantic of inputs.

5.2.1 Ranking Modes

When we look for Services in real life, we have two types of requirements. First type of require-

ment is met by exact matching. Examples of such requirements include finding the number

of rooms in a hotel, the model of a car that can accommodate five passengers, and products

with specific brand names. Second type of requirement is met through the minimum needs.

Examples of this type include booking a hotel which has at least 3 stars, finding a product with

at least 1 year warranty, and finding a job that pays at least $50,000 per year. In some online

Services we want to be able to look for exact values to some features of the Query, and better

values for other features. As an example, in online film renting Service we usually want to see a

specific film while we always look for better/cheaper price. Thus, we want the name feature of

the film Service to be an exact match and the price/cost feature to be a better value. Therefore,

we introduce two modes of ranking in our algorithm, called Exact Mode and Best Mode. The

Exact Mode prompts the algorithm to look for an exact match to a specific feature in a Query,

while Best Mode prompts it to look for better values than a specific feature in Query.

However, before diving into the details of Exact Mode and Best Mode, we have to define

the meaning of the word "better". In some cases, “Less is Better” and in some others “More

72

is Better”. This motivates us to study three kinds of semantics of the data encountered by

the X-Algorithm. These are (1) Less is Better(LB), (2) More is Better(MB), and (3) Exact is

Better(EB).

5.2.2 Semantics

Generally, data that we use to seek online Services include numerical and non-numerical types.

Examples of numerical data include cost, weight, and percentage. Examples of non-numerical

data include product names, product codes, and addresses. Numerical data can be data that

are better as they increase in value, such as quality-related data. Examples are star ranking of a

hotel, recommended rating of a Service , and reliability. It is also possible that some numerical

data are considered better as they decrease in value. Examples include cost, waiting time in

between repairs, and shipping time. The kinds of non-numerical data that we come across

are of string or boolean types. String types, for names and addresses, must have an exact

match. Boolean values, such as availability of a property in a product, which is described as

"True/False" must be matched exactly. We summarize below our discussion on the semantic

classification of data encountered by the X-Algorithm. Figure 17 illustrates the summary.

1. Numerical: There are two types.

• better as the value increase (MB), and

• better as the value decrease (LB).

2. Non-numerical: There are two types.

• String values (EB), and

• Boolean values (EB).

73

Figure 17: Classification of semantics based on data types

5.2.3 Defining Scores Types

In this section, we define two types of scores, called Reward Score (reward) and Penalty Score

(penal t y). These two types of scores will be generated by our Similarity Measure. In later

sections we discuss how to assign semantics in different modes.

1. Reward Score(reward): This score is assigned to the attribute of Service that offers an

equal value or better one than the one defined in Query. It can be a single value that

is assigned in one specific case, or a range of values that fluctuates between a minimum

reward (minReward) and a maximum reward (maxReward). The value of minReward

is fixed for all modes and semantics. It is also the value assigned when Reward Score is

a single value, while the value of maxReward might be different for different semantics

and modes, as will be explained in later sections.

2. Penalty Score(penal t y): This score is assigned when the attribute of a Service has a value

74

Figure 18: The difference in RC behaviour when subtracted from ”1”

Figure 19: Different scores assignment in Exact Mode.

that is worse than the value required in Query. Unlike reward, penal t y is always in the

range [minPenal t y to max Penal t y]. The value of minPenal t y is a value less than the

value of minReward. The penal t y score will approach the value of max Penal t y as the

provided value in Service gets worse than the value defined in user Query.

Having introduced modes and score types we explain in the following sections how scores are

assigned at different modes. We recall the definition of Relative Change RC (Q) Similarity

Measure introduced in Chapter 3.

75

5.2.4 Exact Mode

By definition, RC is to generate scores that represent the similarity between two numerical

inputs. The RC Similarity Measure generates an output in the range [0, 1]. Let q and s be

numerical values, where q is related to an attribute in Query, and s is related to the same

attribute in a Service. RC Similarity Measure considers the three different cases q < s, q > s

and q = s. Basically, RC generates the lowest score when q = s, and it generates graded score

that approaches 1 as the difference between q and s increases (for cases q < s and q > s).

However, in Exact Mode we want the opposite behaviour. Specifically, we want the reward

value to be assigned when exact match occurs (q = s), and we want a decreasing graded score

that approaches 0, namely increasing penal t y value, as the difference between values of q and

s increases. Because the scores are bounded above by 1, the behaviour of RC can be reversed

by subtracting the generated scores from 1. Thus, the highest score will be generated when

q = s and graded scores approaching 0 will be generated when the deviation between s and q

gets higher. We used this reversing function 1− RC , whose behaviour is shown in Figure 18,

to be able to generate proper scores. Figure 19 shows how the values of penal t y and reward

are defined for Exact Mode. Based on this discussion we define,

RCEXAC T =

⎧⎨⎩ 1 s = q

1− |q−s|
max(q,s) s < q, s > q

(3)

Remark. The benefit of normalization is brought out in our approach. Because the results of RC

are bounded above by 1 and the calculations are normalized to lie in the interval [0, 1], we are

able to reverse the behaviour of the RC results.

5.2.5 Best Mode

For Best Mode, we need to understand what "better" means for each semantic. Then, we try to

incorporate this meaning into our Similarity Measure. However, the problem associated with

76

Figure 20: Types of Score assignment for More is Better Semantic

finding better values is that we don’t know what is the best value in the available Services.

Unlike Exact Mode where we assign reward to exact match, when finding better values there

is no specific value to which we can assign rewards. To overcome this obstacle, we assign

reward and penal t y differently for the three types of semantics MB, LB, and EB.

MB Semantic

In MB semantics "More is Better". Fixing on the same attribute in a Service and Query, this

means that the Service in which this attribute value is higher than the attribute value in the

user Query is to be preferred. That is, a higher value in Service is better than a lower one. Thus,

the value defined in the Query is the minimum acceptable value for the client. For example,

when we look for a Service that rates 3/5 or higher, we are using MB as a semantic for the

rating feature. In technical terms, we want our Similarity Measure to assign higher reward

for features with higher values. Hence, minReward should be assigned when once minimum

requirement is met, and the reward value should be increased towards maxReward as the

value of Service attribute goes higher than the value defined in Query . On the other hand, the

penal t y value should be applied when the value of Service attribute is less than the value of

the Query attribute and it should approach max Penal t y as the value of Service attribute goes

further below the value defined in the Query. Assume s denotes the value of a Service attribute,

77

and q denotes the value of the same attribute in Query. We define the RC function for MB as

shown below:

RCMB =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
penal t y s < q

minReward s = q

v, v ∈ [minReward, maxReward] s > q

Figure 20 shows how the score types are defined for MB semantic. We need to assign values to

penal t y , minReward, and v in such a way that penal t y < minReward < v < maxReward,

and v approaches maxReward as s − q increases. We fix minReward at 1, and adapt RC

function from Figure 18 (b) to define penal t y and v. We find that the left half of Figure 18

(b) meets our requirement. That is, when s and q values are close the score is high. However,

when s exceeds the value of q the score drops down towards 0 while we want it to continue

increasing. To motivate what we do to achieve this behaviour, we take a simple example.

Assume q = 10, and we have different values of s that range in the interval [0, 20]. Using the

formula 1− |q−s|
max(q,s) from Figure 18 we obtain Table 6.

q s case RD
10 0 s < q 1− 1= 0
10 2 s < q 1− 0.8= 0.2
10 6 s < q 1− 0.4= 0.6
10 8 s < q 1− 0.2= 0.8
10 10 s = q 1− 0= 1
10 12 s > q 1− 0.167= 0.833
10 14 s > q 1− 0.286= 0.714
10 16 s > q 1− 0.375= 0.625
10 18 s > q 1− 0.444= 0.556
10 20 s > q 1− 0.5= 0.5

Table 6: Results of 1− RC applied on q = 10, and s = [0,20]

In this table, we find that the computed results for s ≤ q are consistent with MB require-

ment. On the other hand, scores generated for values of s > q show a behaviour that is quite

opposite to what we want. This seems to be because of the 1 that we subtract the score from.

Therefore, we remove 1 from the case s > q as an attempt to keep the increasing behaviour of

78

the scores. Now we obtain scores as shown in Table 7.

q s case RD
10 0 s < q 1− 1= 0
10 2 s < q 1− 0.8= 0.2
10 6 s < q 1− 0.4= 0.6
10 8 s < q 1− 0.2= 0.8
10 10 s = q 1− 0= 1
10 12 s > q 0.167
10 14 s > q 0.286
10 16 s > q 0.375
10 18 s > q 0.444
10 20 s > q 0.5

Table 7: Results after removing 1 from the case s > q

Results in Table 7 shows an increasing behaviour for the scores generated for case s > q.

Yet, because the results of the RC Similarity Measure are bounded above by 1, it does not

exceed the value of 1. Therefore, scores need to be “scaled”, which we achieve by manually

shifting the scores by 1. Table 8 shows the result after shifting the scores of case s > q by 1.

This shifting will change the original upper bound of RC from 1 to 2. Thus, MB semantics will

produce bounded scores.

q s case RD
10 0 s < q 1− 1= 0
10 2 s < q 1− 0.8= 0.2
10 6 s < q 1− 0.4= 0.6
10 8 s < q 1− 0.2= 0.8
10 10 s = q 1− 0= 1
10 12 s > q 0.167+ 1= 1.167
10 14 s > q 0.286+ 1= 1.286
10 16 s > q 0.375+ 1= 1.375
10 18 s > q 0.444+ 1= 1.444
10 20 s > q 0.5+ 1= 1.5

Table 8: Results after adding 1 to the case s > q

The results in Table 8 shows the behaviour we need under MB semantics. We come to the

79

Figure 21: Types of scores assignment for Less is Better Semantic

following definition of score:

RCMB =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
| − 1| s = q

| − 1+ |q−s|
q
| s < q

| − 1− |q−s|
s
| s > q

(4)

Remark. Now the range of scores generated under MB semantics is different from the range for

scores generated in EM semantics. This shows that scaling method is necessary when we fix RC

function.

In Equation 4, the operation performed when the case is s < q is subtraction, where the

operation performed when the case is s > q is addition. Changing the sign of −1 would result

in reversing the operations performed and thus reverse the overall outcome. Also, we used

| − 1|, instead of 1, just for the sake of uniformity and explicitly pointing out the scaling.

LB Semantic

The Semantic LB means "Less is Better". It indicates that the less the value for a specific feature

in a Service the better it is. Figure 21 shows how different score types are assigned for LB

semantic. For example, price is usually better when it is less, i.e. cheaper. Thus, the behaviour

we expect with this semantic is the opposite to the one defined for MB. Therefore, it is sufficient

to changing −1 in Equation 4 to +1 to arrive at the formula for LB semantics.

80

RCLB =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|+ 1| s = q

|+ 1+ |q−s|
q
| s < q

|+ 1− |q−s|
s
| s > q

(5)

In Equation 5, as opposed to MB, the operation performed in the case s < q is addition,

i.e. a reward is granted, where the operation performed in the case s > q is subtraction, i.e. a

penalty is assigned. Now, to combine both semantics in one definition, we refer to the semantic

by X . We define the value of X as follows,

X =

⎧⎨⎩ −1 Best Mode, semantic = MB

+1 Best Mode, semantic = LB
(6)

Using the definition of X from Equation 6 in Equation 4 and Equation 5, we arrive at the

definition of RCX Similarity Measure. This definition is semantic-aware and is used in Best Mode.

RCX =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|X | s = q

|X + |q−s|
q
| s < q

|X − |q−s|
s
| s > q

(7)

EB Semantic

The Semantic EB means "Exact is Better". In this semantic exact match is possible, because EB

includes string and boolean data types in which the concept “better values” does not exist. EB

semantic is based on "match or mismatch" concept where there is no need to associate modes

with Service requests. So, we can decide to assign reward when equality occurs between an

attribute value in a Service and the value of the same attribute in Query, and assign a penalty

when mismatch occurs. However, we wish to add to the algorithm more flexibility to users and

simulate real life experience. So we decided to allow a Query attribute for EB to be defined as a

set of options (string values). For example, if a user is looking for a laptop where its colour can

81

be either black or white, the attribute value for colour attribute in the Query can be specified

as colour = {black, white}. In turn, the algorithm would grant the reward to the laptop

whose colour is included in the set of options provided by the user. Since each attribute in a

Service has a unique value s, whereas the user can specify set of values q for the same attribute

in a Query we use the set notation (s ∈ q) to denote the presence of Service attribute s in the

set of values q defined in Query. We write (s �∈ q) to denote the absence of s in q. Even with

this slight extension we are still requiring a full match.

We allow another extension in which partial match between Service feature and user spec-

ified feature is possible. This partial match is restricted to string values. For example, if q is

defined as a set of strings ′x ′ and ′ y ′ such that q = [′x ′,′ y ′], and the attribute of a Service was

found to be s =′ xm′, the algorithm won’t consider the partial match between x(the value of

first option of q) and ′xm′(the value of s). Thus, if we consider the concept of "match/mismatch"

only, ranking EB type becomes very limited. To overcome this limitation we consider the pos-

sibilities that qi is a subset of s or s is a subset of qi , as an attempt to introduce partial match.

We denote these situations by (q ⊂ s) and (s ⊂ q), respectively.

The partial match, (q ⊂ s) or (s ⊂ q), should receive a reward than the mismatch, (s �= q)

and lower score than the exact match (s = q) or (s ∈ q). For example, consider that we are

looking for a product under the names ’dictionary’ or ’oxford dictionary’, and the Query at-

tribute that represents the name of dictionary is q, where,

q = [′dic t ionar y ′,′ ox f ord_dic t ionar y ′]

Suppose the attributes s1, s2, and s3 are the name attributes of three different available Ser-

vices where,s1 =′ dic t ionar y ′, s2 =′ ox f ord ′ and s3 =′ t ranslator ′. Based on our definition,

s1 should get the reward (full match), s2 gets a lower rank (partial match) and s3 gets the

lowest rank (mismatch).

In Chapter 3, we introduced Feature-Based Similarity Measures that examine only equality

82

between features of Query and Service. In the aforementioned discussion, we have extended

the Feature-Based Similarity Measure to include partial matches. The symbol SMEB denotes the

Feature-Based Similarity Measure used with EB semantic. In order to be consistent with the

highest and lowest ranks produced for MB and LB semantics, within bounds, we define SMEB

as below:

SMEB =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 s = q , s ∈ q

0.5 s ⊂ q,q ⊂ s

0 s � q

(8)

Remark. Boolean Values are based on Match/Mismatch concept. The above discussion is irrelevant

to boolean since it only has two values (True/False).

To arrive at a uniform notation, we need to adjust the values of X to include the EB seman-

tics. Since EB is not involved in RC, X can be any value different from the values used for MB

and LB. We choose this value to be Zero. Hence,

X =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 EB

+1 LB

−1 MB

(9)

Once the algorithm detects X = 0, it calculates the output based on Equation 8. Now,

we have integrated all semantics in Best Mode. Also, we have integrated Exact Mode earlier.

We want to make a unified definition for numerical types and another one for non-numerical

types. This is to simplify implementation process. This requires us to include Exact Mode in the

definition of X .

83

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 EB

+1 LB

−1 MB

+1 Exact Mode, s > q

−1 Exact Mode, s < q

(10)

Finally, the definition of similarity measure is

SMX =

⎧⎨⎩ SMEB X = 0

RCX (Best Mode or Exact Mode) and (X = −1 or X = 1)
(11)

where RCX is defined in Equation 6 and SMEB is defined in Equation 8

5.2.6 Similarity Measure Pseudo Code

Hereunder is the pseudo code for SMX , which includes all situations of X .

84

Algorithm 3: Psuedo code for SMX for handling different data types (MB,LB and EB) and
for modes Exact and Best based on the value of X

Result: Services ranked based on value of X
Input: ithattribute of Query(q),ithattribute of Service(s),X

1 begin
2 if semantic == EB then
3 X ← 0
4 else
5 if Mode == Exact then
6 if s < q then
7 X ←−1
8 else
9 X ← +1

10 else // Mode = Best
11 if semantic == LB then
12 X ← +1
13 else
14 X ←−1
15 if X==0 then // EB semantic
16 if s = q OR s ∈ q then
17 R← 1
18 else if q ⊂ s OR s ⊂ q then
19 R← 0.5
20 else
21 R← 0
22 else // MB,LB semantics for both modes (Exact&Best)
23 if s = q then
24 R← |X |
25 else if s < q then
26 R← |X + (q−s)

q
|

27 else
28 R← |X + (s−q)

s
|

29 end

85

Example 5. This example illustrates the outcome of Algorithm 3 when it is applied to a Query

which has different data types and both ranking modes. The user request Q and four Services S1,

S2, S3, and S4 are defined in Table 9 and Table 10 respectively.

Features’ names Price(f1) Rating(f2) Colour(f3) Weight(f4)
Features’ Semantics LB MB EB LB
Ranking Mode Best Best Best Exact
User Query 1000 CAD 4 stars [’RED’,BLACK’] 4 Pounds

Table 9: User Request

Services Price(f1) Rating(f2) Colour(f3) Weight(f3)
S1 900 CAD 9 stars ’RED’ 6 Pounds
S2 1500 CAD 7 stars ’WHITE’ 2 Pounds
S3 400 CAD 3 stars ’BLACK’ 3 Pounds
S4 1000 CAD 4 stars ’BLACK&WHITE’ 2.7 Pounds

Table 10: The values of features of each Service

According to Algorithm 3, we calculate the scores for each feature and their total. The result is

shown in Table 11.

�����������
Services

Ranks
Price(f1) Rating(f2) Colour(f3) Weight(f4) Total Rank

S1 1.1 1.56 1 0.67 4.33
S2 0.67 1.43 0 0.5 2.6
S3 1.6 0.75 1 0.75 4.1
S4 1 1 0.5 0.675 3.175

Table 11: The ranks of each Service based on the X-Algorithm

We notice that although values of S1 f4
and S2 f4

have the same distance from Q f3(the third

column in Table 9) they have different ranks. However, based on Exact Mode definition the

rank should be produced based on the distance from the Query and thus they should have the

same ranks. So, Algorithm 3 needs to be sharpened. This issue is resolved in next section.

86

5.3 Symmetry in Exact Mode and Semantic Preference

In this section we discuss symmetry and semantic preference (SP). In Chapter 3 we have de-

fined symmetry property of Similarity Measure. We use the same notation as before. Fixing the

attribute, we let q denote its value in a Query, and s1 and s2 denote its values in two Services.

Similarity Measure has similarity property if it produces the same rank for the attribute in the

two Services if | q− s1 | = | q− s2 |. We say that values s1 and s2 are ‘images’ around q. Clearly,

one of the Service value is higher than the other. In Exact Mode, the user might prefer the lower

value (as in cost) if no exact match is possible. So, we discuss Semantic Preference(SP) to as-

sign higher rank to Service attribute that is preferred by the user. It is clear that SP is dependant

on the presence of symmetry.

5.3.1 Symmetry

Suppose a consumer wants to rent an apartment for $1000/month. However, there is no

apartment matching the user requirement. Assume the closest available options are apartments

with rents $800/month and $1200/month. Since both options differ by the same difference

from the defined requirement, both should capture a similar degree of the consumer’s interest.

That is, the Similarity Measure should produce similar scores for both options.

Our Similarity Measure RCX for Exact Mode, as defined in Equation 3 in Section 5.2, looks

like,

RCEXAC T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|1| s = q

| − 1+ |q−s|
q
| s < q

|+ 1− |q−s|
s
| s > q

(12)

RCEXAC T does not have symmetry property. It is due to the different denominators in the

fractional parts of its definition for the cases s > q and s < q. In order to achieve symmetry

we have to unify the denominators, without violating the bounded outputs and normalization

87

properties. We first tried the fraction

F ract ionas ymmet ric =

max(q, s)

where
 = |q − s| to replace the fractions |q−s|
q

, and |q−s|
s

. This does not produce the desired

results, as illustrated in Table 12 for q = 10, s1 = [0, 2,4, 6,8], and s2 = [20,18, 16,14, 12,10].

Since |s2− q|= |s1− q|, the Service attribute values are symmetric with respect to the Query at-

tribute value, however their ranks are not equal.

F ract ionas ymmet ric (q = 10)
|q− s1|= |q− s2| s1 ↑ s1 < q s2 ↓ s2 > q

10 0 1 20 0.5
8 2 0.8 18 0.44
6 4 0.6 16 0.38
4 6 0.4 14 0.29
2 8 0.2 12 0.17

Table 12: The asymmetric results produced by F ract ionas ymmet ric

To remedy the situation, we need to understand the behaviour of the function

max(q,s) , for

s ∈ (0,∞) and for a fixed q. Suppose s1 > q and s2 < q. For the case s1 > q the denominator

max(q, s1) = s1 of F ract ionas ymmet ric is in the range (q,∞). For the case s2 < q the denom-

inator max(q, s2) = q of F ract ionas ymmet ric is not in the range (q,∞), because it is an open

interval. We need to push this denominator by the amount s2 − q, which is the image of s2

around q. This will give the new denominator s′2 = |s2 − q| + q, which lies in (q,∞) to the

case s2 < q. In the light of this discussion, we define s′ =
+ q, where
 = |q − s|, as the

denominator for case s < q, and s = max(q, s) as the denominator for the case s > q. Figure 22

illustrates the achieved symmetry for a simple example.

Thus we arrive at the refined definition F ract ions ymmetric:

F ract ions ymmetric =

⎧⎨⎩

s′ s < q

s

s > q
(13)

88

Figure 22: Example of the method used to unify denominators

where,
= |q− s|, s′ =
+ q

By applying the fraction F ract ions ymmetric on the same example given above we obtain the

results listed in Table 13. Now, the symmetry property is restored.

F ract ions ymmetric (q = 10)
|q− s1|= |q− s2| s′1 s1 ↑ s1 < q s2 ↓ s2 > q

10 |10− 0|+ 10= 20 0 0.5 20 0.5
8 |10− 2|+ 10= 18 2 0.44 18 0.44
6 |10− 4|+ 10= 16 4 0.38 16 0.38
4 |10− 6|+ 10= 14 6 0.29 14 0.29
2 |10− 8|+ 10= 12 8 0.17 12 0.17

Table 13: The symmetric results produced by F ract ions ymmetric

Remark. When we unified the denominators, we have caused the bounds of the output to fluctuate.

We might need to scale the results for reasons that are already highlighted in the previous section.

Scaling method is discussed in next section.

89

5.3.2 Semantic Preference

Semantic Preference(SP) is the process of scoring an attribute of a Service higher than an at-

tribute of another Service because it is semantically better. For example, assume the price of two

Services has the same difference from the price defined in Query such that the price of the first

Service is more than Query and the price of the second Service is less than Query. Consumers

tend to prefer the second Service as it is cheaper than the first Service. This is the meaning of

“semantically better”.

Since scores produced for symmetric attributes of different Services with respect to Query are

identical, we can introduce a manual change on the Similarity Measure to enforce the semantic

preference. Basically, this manual change is a value that is added to the Similarity Measure of

the semantically better attribute which we call the BoostValue. However, since we have many

available Services, when we perform the manual change, we have to be aware not to disturb

the fairness of the scores. This implies the following points:

• The introduction of BoostValue should not affect other characteristics of the Similarity

Measure, such as normalization, sensitivity to small changes, and simplicity.

• The introduction of BoostValue should allow semantic preference within the symmetric

attributes and not adversely affect any other attribute.

To clarify, let score1,score2 and score3 be the scores of the price feature in three different

Services. Suppose their values are 1.2, 1.2,1.3, and score1 and score2 are scores of symmetric

attributes. Now, the BoostValue that does not disturb the fairness should not make 1.2 better

than 1.3, and should only affect the scores of symmetric attributes. This is challenging because

we don’t know how close the other scores are to the scores of symmetric attributes. In other

words, we don’t know how small should be the value of BoostValue that will not affect other

surrounding scores related to other attributes. In the case of our example, BoostValue can be

any value that is smaller than 0.1. But what if there is another score, say score4 = 1.21,

90

then BoostValue should be less than 0.01. Therefore, there has to be an acceptable error rate

specified for each application domain. In order to achieve these goals, we make a change in

the Similarity Measure definition (of symmetry) rather than change the scores computed by it.

We need to refine the symmetric Similarity Measure for Exact Mode which has been defined as

follows:

RCExact =

⎧⎨⎩ | − 1+

s′ | s < q

|+ 1−

s
| s > q

(14)

where,
= |q− s| ,s′ =
+q, q an attribute in Query, s an attribute in Service, and s′ an image

of s around q.

In order to achieve the first requirement of BoostValue, we introduce it to change the de-

nominator of RCExact . This will ensure that the value of the fraction won’t exceed 1 and thus

the total won’t exceed the maximum bound. Also, because the number to be added is small, it

will not affect the sensitivity of the Similarity Measure. Moreover, because it is just a numer-

ical value it will not affect the simplicity of the Similarity Measure. However, to make sure it

won’t affect other attributes related to other Services, we have to define an acceptable accu-

racy that is specific to consumers/application domain. However, the question is what is the

Boost Value(BV) that can be added to the denominator and shift all the semantically better

features within a specific accuracy level? A formal justification of finding this value is in order.

Assume we have a feature fa and fb which are attributes in servicea and serviceb respec-

tively. Assume that both fa and fb have the same difference from the value of the Query q. That

is, |q− fa| = |q− fb|, where fa < q and fb > q. This means that fa is semantically better than

fb. We calculate the Prepared Matrix PM for fa and fb as follows:

PMfa
= 1− |q− fa|

f ′a
(15)

We substitute f ′a = q+ |q− fa| in Equation 15 to get

PMfa
= 1− |q− fa|

q+ |q− fa| (16)

91

Similarly,

PMfb
= 1− |q− fb|

fb
(17)

Since |q− fa|= |q− fb| we can substitute fb with fa in Equation 17 to get

PMfb
= 1− |q− fa|

q+ |q− fa| (18)

Now, we want to add a boost value BV to the denominator of the PM function of fa in Equa-

tion 17.

PMfa
= 1− (q− fa)

q+ (q− fa) + BV
(19)

The value BV added to the denominator should make PM of fa better than the rank of fb, yet

it must be within the accuracy level acc of the system. That is, it does not exceed the score of

the next Service servicec . That is, |q− fa| can be at most |q− fc |+ acc, where fc is an attribute

in servicec .

|q− fa|= |q− fc |+ acc = (fc − q) + acc (20)

where fc > q

Similar to fa we can calculate PM for fc by the formula,

PMfc
= 1− |q− fc |

fc
(21)

However, from Equation 20, we can calculate fc in terms of fa and say,

fc = q− fa − acc + q = 2q− fa − acc (22)

Now, we want PMfa
to be more than PMfb

with the help of BV but less than PMfc
, so,

PMfb
< PMfa

< PMfc
(23)

Thus, from Equation 18, Equation 19 and Equation 21 in Equation 23 we find,

1− (q− fa)
q+ (q− fa)

< 1− (q− fa)
q+ (q− fa) + BV

< 1− (fc − q)
fc

92

After subtracting 1 from all sides and then multiplying by -1 to get rid of the minus sign (note

the change in the direction of the inequality as a result of multiplying by -1) we get

(q− fa)
q+ (q− fa)

>
(q− fa)

q+ (q− fa) + BV
>
|q− fc |

fc

since we want to solve for BV , we take the reciprocals in the above inequality. We get

q+ (q− fa)
(q− fa)

<
q+ (q− fa) + BV

(q− fa)
<

fc

|q− fc |
After simplification we get the inequality

0< BV <
fc ∗ (q− fa)
|q− fc | − (2q− fa)

We can replace the absolute function |q− fc | by fc − q, because fc > q. Thus, we arrive at

0< BV <
fc ∗ (q− fa)
(fc − q)

− (2q− fa)

which can be simplified as follows:

i.e., 0< BV <
q fc − fa fc

(fc − q)
− (2q− fa)

i.e., 0< BV < ��q fc −���fa fc − �2q fc +���fa fc + 2q2− q fa

(fc − q)

Now, from Equation 20, we substitute for fc

0< BV <
−q(2q− fa − acc) + 2q2− q fa

((2q− fa − acc)− q)

Hence,

0< BV <
−��2q2 +��q fa + q ∗ acc +�

�2q2 −��qPa

q− fa − acc

Thus, in order to make an addition to the denominator that will not affect other Services within

a pre-set accuracy, the value of BV should be

0< BV <
q ∗ acc

q− fa − acc
(24)

93

To make sure that the value of BV is valid with all values of q towards infinity, we calculate the

limit of the right side of Equation 24. To avoid indeterminate form ∞
∞ in the limit, we divide

throughout by q, q > 0.
q ∗ acc ∗ 1

q

(q− fa − acc) ∗ 1
q

=
acc

1− fa

q
− acc

q

(25)

By applying the limit function on Equation 25, we find,

lim
q→∞

q ∗ acc ∗ 1
q

(q− fa − acc) ∗ 1
q

=
limq→∞ acc

limq→∞ 1− limq→∞ fa

q
− limq→∞ acc

q

= acc

As a result, the value BV that would remain valid for all values of q up to infinity should be

more than 0 and less than acc. That is any value for BV in the interval (0, acc) may be chosen.

Hence, the RCExact function with semantic preference would become

RCExact =

⎧⎨⎩ | − 1+

s′+(BV∗X) | s < q

|+ 1−

s
| s > q

(26)

where the value of "X" is the same one defined earlier (+1 for LB and −1 for MB semantics).

This will cause the overall score of the case s < q to increase in case of LB semantic because it

is the preferable case, and decrease with MB semantics.

Figure 23 shows how the BoostValue is applied in our algorithm. Basically, it is not applied

on a particular feature where symmetry occurs, but rather it is applied on all the attributes

that fall under the case s < q. To clarify, for LB semantics the value BoostValue is added to

the denominator (because x = +1), which in return will increase the overall value of the

score. Therefore, all values of all attributes under this case in the LB semantics will receive

this privilege. On the other hand, if the semantic is MB, BoostValue will be subtracted from the

denominator (because x = −1) which will result in decreasing the overall score generated for

this case, and thus, make the other case, i.e. s > q, better.

94

Figure 23: The way of applying the BoostValue on the properties based on the semantics when
Exact Mode is ON

Example 6. In this example, we illustrate the symmetry and semantic preference principles. We

perform those concepts for both semantics, MB and LB in Exact Mod. The user request is shown

in Table 14. The available Services are shown in Table 15.

- Price(f1) Reliabil i t y(f2)
Semantic LB(X = 1) MB(X = −1)

Ranking Mode Exact Mode Exact Mode
Quer y 200$ 50%

S ystem Accurac y(acc) 1

Table 14: User Request

95

We have chosen the values of service attributes such that they are ordered according to their close-

ness to the corresponding values defined in Query.

priceS3
� priceS4

� priceS1
&priceS2

and,

rel iabil i t yS2
&rel iabil i t yS1

� rel iabil i t yS4
� rel iabil i t yS3

where the symbol� means ”bet ter than” and the symbol & means ”similar quali t y”.

- Price(f1) Reliabil i t y(f2)
Service1(S1) 150$(s < q) 90%(s > q)
Service2(S2) 250$(s > q) 10%(s < q)
Service3(S3) 249$(s > q) 91%(s > q)
Service4(S4) 249.9$(s > q) 90.1%(s > q)

Table 15: Available Services

We have applied the Similarity Measure, RCExact (Equation 26), considering the semantic prefer-

ence with a system accuracy of 1, (BV = 1) as defined in user request. Then, we have recorded the

results in Table 16.

Services Price Rel iabil i t y
S1 0.8007 0.5556
S2 0.8 0.5506
S3 0.803 0.5495
S4 0.8003 0.5549

Table 16: Scores with acc = 1

By looking at the results for each feature of available Services, we find that the symmetry in

price features between PriceS1
and PriceS2

has been broken correctly. That is, the semantically

better(cheaper) value (PriceS1
) has received a higher score. However, the features PriceS3

and

PriceS4
provide closer values to the price feature defined in Query. So, they should receive higher

scores than PriceS1
and PriceS2

even after boosting the score of S1 for being semantically better.

Indeed, PriceS3
received higher score, but not PriceS4

. This is because the difference between

96

PriceS4
and the symmetric feature PriceS2

is less than the system accuracy, i.e. acc = 1, while the

difference between PriceS3
and the symmetric feature is equal to system accuracy which makes it

preserves its position.

Similarly, in Rel iabil i t y feature Services S1 and S2 are symmetric. Based on the definition of

Semantic Preference, BoostValue is to be applied only for the case FeatureService < FeatureQuer y

either by subtracting or adding it to the denominator. Because reliability attribute belongs to MB

semantics subtracting the denominator by BoostValue in the case FeatureService < FeatureQuer y

should be done. As a result, the symmetry between Reliabil i t yS1
and Reliabil i t yS2

is bro-

ken in favour of the the feature Rel iabil i t yS1
. However, this subtraction made the attribute

Rel iabil i t yS2
become worse than Reliabil i t yS4

although Reliabil i t yS2
is closer to Reliability de-

fined in Query than Reliabil i t yS4
by 0.1. Similar to Price, the inaccuracy of the result is because

the system accuracy is set to 1, thus the Semantic Preference will not consider cases for differences

between Services less than 1.

To correct the results shown above, we set the accuracy to acc = 0.1, we obtain the scores recorded

in Table 17. Note how score of PriceS1
has become better than the score of PriceS2

, yet it remains

less than the score of PriceS4
. Similarly, the score of Rel iabil i t yS2

has become less than the score

of Rel iabil i t yS1
, yet it remains higher than the score of Rel iabil i t yS4

.

Services Price Rel iabil i t y
S1 0.8001 0.5556
S2 0.8 0.5551
S3 0.803 0.5495
S4 0.8003 0.5549

Table 17: Results of scores for the features of the available Services with ”acc = 0.1”

97

5.4 Scaling Method

Scaling is a function f that change a value x in a finite interval (a, b) to a value x ′ = f (x)

in another interval [A, B]. The function f satisfies the property that if x < x ′ in [a, b] then

f (x)< f (x ′), x
x ′ =

f (x)
f (x ′) .

The scaling function that we use is a linear transformation based on the geometry of a line

segment [Tek06].

nv =
(nmax − nmin)(v − cmin)

(cmax − cmin)
+ nmin (27)

where v ∈ [cmin, cmax], and nv ∈ [nmin, nmax].

Basically, there is no need for scaling when we use the original Similarity Measure RC.

However, because we have introduced new characteristics to this Similarity Measure, such as

semantics and symmetry, the generated scores have been perturbed. Fair ranking should be

consistent, as defined in Chapter 2. The ranks produced by the Similarity Measure SMX should

be as expected by the user’s expressed requirements. So, penalties and rewards are to be

produced based on the difference between the Query’s attributes and the Services’ attributes.

In any semantics, if a Service attribute (s) differs from the same Query attribute (q) by an

amount a, the penal t y or reward assigned to s should always be a function of a. That is, it is

independent of Query or Service but depends only on the deviation between the values of their

attributes in each semantics.

Example 7. We use the same notation as before to denote by q a Query attribute value and s

to denote the corresponding Service attribute value. Suppose q = 10. We apply the Similarity

Measure SMX (defined in Equation 11 in Section 5.2) on different Services, given by their s

values s = [0,2, 4,6, 8,10, 12,14, 16,18, 20,22, 24,26, 28,30]. With each value of s we consider

all semantics and modes, except EB semantics for which the range is already defined in the previous

section.

Table 18 shows that the penalty produced by SMX for s = 12 in LB semantics is equal to the

98

Modes Best Mode Exact Mode ANY
Type LB MB ANY EB

������S
Case

s < q s > q s < q s > q s < q s > q ANY

score type reward penal t y penal t y reward penal t y penal t y ANY

0 1+ 0.50 - 0.50 - 0.50 - -
2 1+ 0.44 - 0.56 - 0.56 - -
4 1+ 0.38 - 0.63 - 0.63 - -
6 1+ 0.29 - 0.71 - 0.71 - -
8 1+ 0.17 - 0.83 - 0.83 - -

10 1(rewardmin) 1(rewardmin) 1 (reward) -
12 - 0.83 - 1+ 0.17 - 0.83 -
14 - 0.71 - 1+ 0.29 - 0.71 -
16 - 0.63 - 1+ 0.38 - 0.63 -
18 - 0.56 - 1+ 0.44 - 0.56 -
20 - 0.50 - 1+ 0.50 - 0.50 -
22 - 0.45 - 1+ 0.55 - 0.45 -
24 - 0.42 - 1+ 0.58 - 0.42 -
26 - 0.38 - 1+ 0.62 - 0.38 -
28 - 0.36 - 1+ 0.64 - 0.36 -
30 - 0.33 - 1+ 0.67 - 0.33 -
... -

... -
... -

... -
+∞ - 0 - 2 - 1 -

s = (0,∞) (1, 1.5) (0,1) (0.5,1) (1,2) (0,1) (0, 1) (0,1)

Table 18: Motivation to use Scaling for MB and LB Semantics.

one produced for s = 8 in MB semantics. This implies that their penalties are consistent. However,

the range of penalties produced in LB is (0, 1), while the range of penalties for MB is (0.5, 1). This

is normal because the values of s lie in the interval (0,+∞). That is, we don’t consider negative

values in the inputs which makes the lower bound of MB penalties stops at 0.5. As a result, there

has to be a difference in the ranges. However, the range (0.5, 1) is very tight. Our example is using

small values of s and q. However, if bigger values are used the tightness of the range will become

clearer, and the difference between the produced results becomes high in precision. To illustrate this

point, consider the values s = [99,98], q = 100 with MB semantics. Since s < q for both values of

s, a penalty should be assigned. When s = 99 the assigned penalty is penal t y = 0.99497, while

for s = 98 the assigned penalty is penal t y = 0.989899. Hence the difference, di f f1 = 0.0051,

99

between the two penalties is very small. We solve this issue by widening the range (0.5,1) to (0,1)

by using the Scaling Method introduced earlier in this Section. After scaling, the penalties are

penal t y = 0.98994 for s = 99 and penal t y = 0.979798 for s = 98. The difference between

penalties is di f f2 = 0.01014, which is an improvement by (di f f2−di f f1)
di f f1

∗ 100 = 98.82%. As

explained earlier, because of the difference in the input range between LB and MB in the penalty

zone, and to produce similar penalties, we should scale the values of LB to the range (−1, 1).

Hence, the penalties in MB semantics stop at 0 when inputs stop at 0, while the penalties of LB

continue to −1 as inputs approach +∞.

For assigning the rewards we follow a similar procedure. The rewards in the semantics LB

will stop at 2 when inputs reach ”0”, while the rewards in MB semantics continue to ”3” as inputs

approach +∞.

As for Exact Mode, it is a different concept. This is because the reward in this mode is assigned

in only one instance, when the value of q matches the value of s. For all other values of s we assign

penal t ies. Similar to Best Mode, a scaling method is required to stretch the scores up to the range

(0,1) for the case s < q and (−1, 1) for the case s > q.

Thus, by applying the aforementioned changes on the produced scores we obtain the scaled

scores shown in Table 19

Remark. Although there are still differences in the final upper/lower bound of the range for some

semantics, it is still considered fair, as the scores are evenly produced for all semantics. Also, the

different bounds of the range are based on the input range.

100

Modes Best Mode Exact Mode ANY
Type LB MB ANY EB

������S
Case

s < q s > q s < q s > q s < q s > q ANY

score type reward penal t y penal t y reward penal t y penal t y ANY

0 2 - 0 - 0 - -
2 1.88 - 0.1 - 0.1 - -
4 1.76 - 0.26 - 0.26 - -
6 1.58 - 0.44 - 0.44 - -
8 1.34 - 0.66 - 0.66 - -

10 1 1 1 -
12 - 0.66 - 1.34 - 0.66 -
14 - 0.44 - 1.58 - 0.44 -
16 - 0.26 - 1.76 - 0.26 -
18 - 0.1 - 1.88 - 0.1 -
20 - 0 - 2 - 0 -
22 - −0.1 - 2.1 - −0.1 -
24 - −0.16 - 2.16 - −0.16 -
26 - −0.24 - 2.24 - −0.24 -
28 - −0.28 - 2.28 - −0.28 -
30 - −0.34 - 2.34 - −0.34 -
... -

... -
... -

... -
+∞ - −1 - 3 - −1 -

s = (0,∞) (1,2) (−1,1) (0,1) (1,3) (0, 1) (−1,1) (0, 1)

Table 19: Scaled Scores in Different Semantics.

5.5 Essential Option

Non-negotiable requirements are common in real life. When we order a Service, it is possible

that we have some requirements that we are not willing to compromise. It can be with respect

to one or more features. Therefore, we incorporate the Essential Option feature for ranking

Services.

Essential Option is a feature-option, so, it can be set for each feature independently. If

a feature is not marked essential then it is regarded as not essential. We do not change the

Similarity Measure to include Essential Option, instead, we use appropriate weights to discrim-

inate and order essential features. Technically, when Essential Option is set for one feature, this

101

feature would have two weights, one is the Regular Weight reflecting user preference for this

feature and the other Essential Weight which reflects that this feature is essential. The Regular

Weight has been defined earlier in this Chapter. We discuss how to set the Essential Weight for

an essential features that will make the matching Service to be ranked higher in the list.

Both regular and essential weights are vectors having the same length as the Query, such

that each feature in Query has the corresponding weights in these vectors. In the essential

weight vector WE the weight is set to zero for non-essential features, and is set to we for an

essential feature. Considering WR denotes the regular weight vector, the weight vector for

a Query is W = WR +WE , where + denotes vector addition. The criterion for choosing the

essential weight(s) is that their choice will outweigh other features no matter how good or bad

they were. Below we explain how to calculate the essential weights.

Let N denotes the number of features in a Query. For the sake of clarity and simplicity,

assume that the first feature in the Query is an essential feature (qE) and the others are regular

and non-essential features qi . That is,

Query = {q1E ,q2, q3, q4, . . . , qN}

Let the scores for an available Service be defined as scores = (x1, x2, . . . , xN), where xi is the

ith score of the ith feature defined in Service. The total rank TR of a Service is the weighted sum

of scores. That is,

TR=
N∑

i=1

wi ∗ xi ,

where wi is the i th element of the weights vector W . We rewrite this sum as

TR=WSE +WSR (28)

where, WSE is the weighted score for all scores of services corresponding to the essential feature in

Queryand WSR is the weighted score for all non-essential features

102

In our example, there is only one essential feature. We want to calculate we for this essential

feature, allowing all other non-essential features to assume maximum possible weight wh. The

rationale is that such a value we will serve as upper bound for essential weights when the

weights of other non-essential features are less than we.

WSE = (we + wh) ∗ x1 (29)

and

WSR = wh ∗ x2+ wh ∗ x3+ · · ·+ wh ∗ xN (30)

Now, we want to define a worst case scenario for which we can obtain a value of we that

prefers a total rank over another just based on the essential feature, no matter how good or

bad other non-features are. So, we consider two Services, one which has all features in worst

case (highest penalty) and one feature which is essential in best case (highest reward), and

another that has all features in best case (highest reward) and only one essential feature which

is “slightly worse” than the one defined for the first Service. The intent is to rank the first

Service (best essential feature) on top of second Service (worse essential feature), although it

has all the good non-essential values in it. Let ai and bi denote scores of the ith feature in the

Services.

Service1 = [a1bestE , a2worst , a3worst , . . . , aNworst] where a2= a3= · · ·= aN (31)

Service2 = [b1worseE , b2best , b3best , . . . , bNbest] where b2= b3= · · ·= bN (32)

We want the total rank TR1 of Service1 to be higher than the total rank TR2 of Service2, because

a1bestE > b1worseE regardless of other non-essential features.

TR1 > TR2 (33)

103

From Equation 28,Equation 29, and Equation 30, we can say,

TR1 =WSE1+WSR1

where

WSE1= a1bestE ∗ (we + wh)

WSR1= a2worst ∗ (wh) + · · ·+ aNworst ∗ (wh) = wh ∗ (N − 1) ∗ a2worst

Thus,

TR1 = (we + wh)a1bestE + wh ∗ (N − 1) ∗ a2worst (34)

Similarly,

TR2 =WSE2+WSR2

where

WSE2= b2worseE ∗ (we + wh)

WSR2= b2best ∗ (wh) + · · ·+ bNbest ∗ (wh) = wh ∗ (N − 1) ∗ b2best

Thus,

TR2 = (we + wh)b1worseE + wh ∗ (N − 1) ∗ b2best (35)

Hence, from Equation 34 and Equation 35 in Equation 33, we can conclude,

(we + wh)a1bestE + wh ∗ (N − 1) ∗ a2worst > (we + wh)b1worseE + wh ∗ (N − 1) ∗ b2best (36)

By solving the above inequality as an attempt to obtain the value of we we find,

we > wh
(a1bestE − b1worseE + (N − 1)(b2best − a2worst))

a1bestE − b1worseE
(37)

The values for all the variables in Equation 37 are known, except for the variable b1worseE.

That is, we know the highest reward is 3, and the highest penalty is −2. Also, we know the

highest weight. Hence, a1bestE = 3, b2best = 3, a2worst = −2 and wh = 0.005. The difference

between the two essential features is the accuracy of this option, which should be defined by

the system or users as an input in the request. How accurate should this essential option be?

104

Specifically, the difference between the two essential features scores should be such that it is

possible to prefer one Service over the other. For example, if the score of an essential feature

in a Servicea is a = 2, and the score f the same feature in another Serviceb is b = 1.999, the

difference between the two scores is di f f = a − b = 0.001. If the accuracy of the essential

option is set to 0.001 it will prefer Servicea over Serviceb because the difference between the

scores of essential features is less than or equal to the accuracy of the algorithm. However, if

the accuracy of the algorithm is set to 0.01, the algorithm is not guaranteed to prefer Servicea

over Serviceb. Hence, we introduce the user-defined (or system-defined) essential accuracy

parameter EssAcc = a1bestE − b1worseE in Equation 37 to get

we > wh
(EssAcc + (N − 1)(b2best − a2worst))

EssAcc
(38)

We add 1 to the right side of Equation 38 to choose we:

we = wh
(EssAcc + (N − 1)(b2best − a2worst))

EssAcc
+ 1 (39)

Remark. The small numbers we defined as our weights helped us in obtaining the essential weight

as a manageable value. Otherwise, we will be a large number.

At this point, we have obtained the value of we that can make the essential feature becomes

the pivot of the ranking regardless of how good or bad are the other non-essential features.

Next, we add one more flexibility for this option to allow users specify the level of impor-

tance to essential features, when more than one feature is essential. This is performed using

the regular weight. That is, we multiply the essential weight we by the regular weight wr as-

signed to each feature. Hence, we create different instances of the essential we based on the

values of wr assigned for each feature. However, since the regular weights are defined as frac-

tions (divided by 1000), it will make the value of we smaller when multiplication is performed,

which might make the value of we smaller than the sufficient value to prefer Services based

on essential features. Thus, we avoid the fraction of wr by multiplying it by 1000 and then

105

multiply wr by we. That is,

wi = wri + (wei ∗wri ∗ 1000),

where, wi is the ith weight in the Weight vector defined in correspondence to the ith attribute

defined in Query vector.

Once the weight vector W is calculated and the Prepared Matrix (PM) of scores (for features

against available Services) is computed, the total ranking vector TR is calculated with the

formula

TR=W × PM

Example 8. This example illustrates how essential option is to be treated in Service ranking. The

essential option is applied on scores that have already been calculated. So, we assume that this

phase is already performed, and we have the Prepared Matrix(PM) that contains the scores of the

Services features as shown in the Table below. Let Feature1E be the only essential feature. So, the

- S1 S2 S3 S4

Feature1E 3 2.99 2.9 2.8
Feature2 −2 3 3 −2
Feature3 −2 3 3 −2
Feature4 −2 3 3 −2

user is interested to get the Service with maximum score of the essential feature no matter how

good the other non-essential features are in other Services. Let us assume that EssAcc = 0.1. Since

Feature1E is what matters, it is easy to recognize that the ranking should be:

S1� S2� S3� S4, where� means “better than”

We use the values N = 4 for number of features, worst = −2 for the worst value (shown in

the table), and best = 3 for the best value. The highest weight wh defined in our algorithm is

wh = 0.005. Using these values in Equation 39 we calculate the value of we for Feature1E.

we = 1.755

106

Since all other features are non-essential, the vector WE is defined as follows:

WE = [1.755,0, 0,0]

Let all features have the highest importance wh. So, the regular weight vector is

WR = [0.005, 0.005,0.005, 0.005]

Since there is only one essential feature, we do not multiply the regular weight by 1000. Hence,

the total weight vector W is

W =WR+WE = [1.76,0.005, 0.005,0.005]

The product TR=W × PM is the vector shown below.

- S1 S2 S3 S4

TR 5.25 5.3074 5.149 4.898

The above table clearly shows the following order of Service

S2� S1� S3� S4 where the symbol� means “better than”

This result is against the expectation of essential option definition. Although Feature1E of S1

is higher than Feature1E of S2, the total rank for S2 is higher. This is because the difference

between the values of these fatures is di f f = 0.01, which is smaller than the Essential Accuracy,

i.e. EssAcc = 0.1. Thus, by changing the value of EssAcc to 0.01, we can obtain more accurate

results. We recalculate we using the new value of EssAcc, we get we = 8.505 + 0.005 = 8.51.

Then, using the new value of we, we recompute W and W × PR, and obtain the following results,

- S1 S2 S3 S4

TR 25.5 25.4899 24.724 23.798

The new order of the Services becomes,

S1� S2� S3� S4 where the symbol� means “better than”

which clearly shows that S1 has a higher total score than S2.

107

Remark. There are two valid methods to determine the the essential mode accuracy. It can be

assigned by users at building request time, or can be pre-set based on the application domain. The

former, makes the algorithm more user-based, and adds more flexibility, dynamism and control

to users. However, the problem of this choice that users might not understand how the accuracy

works. This is because accuracy is at scores level not at inputs level. This require users to com-

prehensively understand how scores are generated. As a consequence, users might misuse it and

receive unexpected results. The latter, however, makes the algorithm more controlled and easier to

understand by users, but limits the users’ control of the output. We prefer the latter to comply with

our claim on offering a user-friendly and understandable requesting concept.

5.6 All Best Option

For a given Query, assume that scores has been assigned to the different attributes of Services.

In practice, these scores are simply added together to produce a total score. In this process,

features with highest scores may hide the effect of the lower scores, because the total score is

acceptable to the user. This effect of hiding is called compensation. The goal of AllBest Option

is to minimize the effect of compensation and to rank Services which match all Query features

(at their minimum requirements) as implied in either Exact Mode or Best Mode higher in the

final ranking.

The option AllBest can only be set for the entire Query, unlike other options that can be

set for each feature. Therefore, the change caused by this option is applied on the total ranks

produced by the algorithm rather than the scores generated by the Similarity Measure. We

propose a method that boosts the rank of each Service based on how close each feature is to the

Query. This method performs calculations aside from the calculations of scores of each feature,

yet in parallel. It records its results in a matrix called AllBest Matrix(ABM) that has a size equals

to the size of the matrix PM that holds all the scores of all features. We define the matrix ABM

108

as follows:

ABM[i, j] =

⎧⎨⎩ 1 if PM[i, j] is a reward

PM[i, j] if PM[i, j] is a penal t y
(40)

The rationale for assigning 1 is that it is the minimum reward. At the same time we do not

want to increase the penal t y . This way, we minimize the effect of compensation.

Eventually, ABM matrix will contain columns that represent Services, and rows that repre-

sent features of these Services. Each column of ABM matrix is aggregated to form what we call

the AllBest Vector(ABV) such that ABVi is the AllBest Value for the ith Service. The value ABVi

of a column is to be added to the final rank of the corresponding Service. Formally, we construct

the Vector ABV for the Services as follow:

ABV[j] =
N∑

i=1

ABM[i, j]

where, ABV[j] is the ABV value for the jth Service in PM matrix. We define the total rank for

Service j as TR′[j] = TR[j] + ABV [j]. We illustrate AllBest method with a simple example

shown in Figure 24

In the following subsection we mathematically determine the value ABV for a Service that

can make the rank of that Service higher than other Services whose ABV values are smaller.

5.6.1 The AllBest Value

Let N denote the number of features in a Query Q, and Fset is the set of features defined in a

Query and Services.

Fset = { f1, f2, f3, f4, . . . , fN}

In order to obtain a value of ABV that can work with any case, we should define a worst

case and examine our ABV with it. the worst case scenario is given by the Service Sgood =

109

Figure 24: Simple example that illustrates AllBest method

{ f1bad , f2good , . . . , fN good}, where f1bad means that the minimum requirement is not met by

that attribute and fi good , i ≥ 2 means that the ith feature gets the highest score. We call this the

worst case because the effect of compensation is fully met here. Let Smin = { f1min, f2min, . . . , fNmin},
be the Service in which every feature defined in Query is met minimally (according to mode).

The goal of all best algorithm is to rank Smin higher than Sgood .

We conduct a mathematical analysis to justify that consistency is preserved by the choice of

110

ABV values. The ABV value for TRmin (total weight corresponding to Smin) is N , and the ABV

value for TRgood (total weight corresponding to Sgood), is N−1+ y where y is the value f1bad .

In order to rank Smin higher than Sgood , we want

TRmin+ N > TRgood + y + N − 1 (41)

This is rewritten as,

TRmin+ x > TRgood (42)

where x = 1− y and 0< x < 1. Let wh be the maximum weight that a user can assign. So the

total rank for Sgood is

TRgood = wh ∗ f1bad + wh ∗ f2good + wh ∗ f3good + · · ·+ wh ∗ fN good

= TRgood = wh ∗ f1bad + wh ∗
∑
(f2good + f3good + · · ·+ fN good)

Hence,

TRgood = wh ∗ f1bad + wh ∗ (N − 1) ∗ fi good , 1< i ≤ N (43)

We calculate TRmin:

TRmin = wh ∗ N ∗ f jmin, 0< j ≤ N (44)

Thus, from Equation 43 and Equation 44 in Equation 42

wh ∗ N ∗ f jmin+ x > wh ∗ f1bad + wh ∗ (N − 1) ∗ fi good (45)

We substitute the values of f jmin = 1, fbad = 0.9 and fi good = 3 in Equation 45 to get,

wh ∗ N ∗ 1+ x > wh ∗ (3N − 3+ 0.9)

Hence,

wh ∗ N + x > 3wh ∗ N − 2.1wh

111

That is,

x > wh ∗ N − 2.1wh (46)

i.e,

1− y > 2whN − 10.5× 10−3

Which means,

1− (2wh ∗ N − 10.5× 10−3)> y

Hence,

y < 1− 2wh ∗ N + 10.5× 10−3 (47)

Substituting wh = 0.005 in Equation 47 we get,

y < 1− 0.01N − 10.5× 10−3

if N > 100 then 2wh ∗ N > 1 this means that there is a possibility for y becoming negative for

values N > 100. For values N <= 100,the value of y lies between 0 and 1. In practical user-

centric applications, we do not expect any Query or Service to have 100 features. That is, for

all practical applications the ABV values that we have chosen are consistent with our definition

of maximum/minimum penalty. Next, we give a comprehensive example to illustrate all best

option.

Example 9. Let a User Request Q be defined as in Table 20 considering that AllBest option is ON,i.e

AllBest=1. Assume that the available Services are defined as in Table 21

	
	
	

Feature 1 Feature 2 Feature 3

Query 12000 10000 400
Mode Best Best Exact

Semantics LB LB LB
ESS 0 0 0

AllBest 1

Table 20: User Request

112

	
	
	

Feature 1 Feature 2 Feature 3

Service1 1 1 700
Service2 12000 10000 400
Service3 12000 10000 440
Service4 12100 11000 420

Table 21: available services

Calculating the Prepared Matrix (PR) along with the ABM matrix, we come with the following two

matrices

PR=

⎛⎜⎝
S1↓ S2↓ S3↓ S4↓

f1→ 2.00 1.00 1.00 0.99
f2→ 2.00 1.00 1.00 0.91
f3→ 0.57 1.00 0.91 0.95

⎞⎟⎠ABM =

⎛⎜⎝
S1↓ S2↓ S3↓ S4↓
1 1 1 0.99
1 1 1 0.91

0.57 1 0.91 0.95

⎞⎟⎠ (48)

We compute vectors TR and ABV by assuming wh = 0.005,

PR=
�

0.0229 0.015 0.0146 0.0143

�
ABV =
�

2.57 3 2.91 2.85

�
(49)

Before adding this value to the total rank (TR) of Services, the ranking list would look as

follows:

TRS1 = 0.0229

TRS2 = 0.015

TRS3 = 0.0146

TRS4 = 0.0143

That is, the Service ranking is S1 > S2 > S3 > S4. This means that due to the high quality of

some of the properties of Service S1, they compensated the shortcoming of one bad feature. This is

acceptable; However, in some cases users don’t want to see this compensation.

113

Thus, by applying the final step of the AllBest Method, we get the total ranks:

TRS1 = 0.0229+ 2.57= 2.5929

TRS2 = 0.015+ 3= 3.015

TRS3 = 0.0146+ 2.91= 2.9246

TRS4 = 0.0143+ 2.85= 2.8643

Hence the ranking of Services after adding the ABV values to final ranks becomes as shown in

Table 22

Order Services
1 S2

2 S3

3 S4

4 S1

Table 22: Results after applying AllBest Method.

Note that this method does not remove compensation, but keeps it to minimal.

5.7 Range Option

In real life, looking for Services in a specific price range is common. For example, we tend to

tell shop attendants our budget, so that they provide us with products they have within our

desired price. Also, they start providing us with the least price within the specified price range

with respect to other features of the product. We would like to integrate the same facility in

online Services consumption. This is through offering the Range Option.

Technically, range option can be integrated in the X-Algorithm by making attributes of Ser-

vices within the specified range in Query receive highest scores and attributes outside the range

receive less scores, gradually as decreasing as they go further away from the specified range.

However, this would mean that all values within the range are treated at the same level of

quality, regardless of their semantics. For example, suppose a Query contains a price feature

114

Figure 25: The assignment of different score types with Range Option

defined as the range q = (1000, 5000). Now, is it fair to rank attributes of Services of price 1000

similar to those of the price 5000? if we want to give consumers options they would have in

real life, the answer is No. This is because even within the specified range, semantics count.

For LB semantics, 1000 should receive a higher score than 5000. This means that the values

of attributes within the specified range should receive a range of reward based on semantics.

Otherwise, penal t y should be assigned. The value of penal t y ranges from minPenal t y to

max Penal t y based on how far the value of the attribute is from the specified range. Thus,

for LB semantics we assign maxReward when the price feature of a Service equals to the least

value of the price range specified in Query, and for MB semantics the maxReward should be

assigned when the price feature of a Service equals to the maximum value of the price range

specified in Query. See Figure 25. Therefore, we need to perform ranking inside the range as

well as ranking outside the range.

The ranking inside the range should be done with respect to semantics specified in Query.

Thus, it is always going to be functioning as in Best Mode. That is, based on the definition of

“better”, the values within the range are ranked. In order to achieve “better” for MB semantics

and LB semantics we need to fix a reference point. We consider the mid point of the range

115

[a, b] specified in the Query as the Re f erence Value(re f):

re f =
(a+ b)

2
(50)

This reference value preserves all previous characteristics defined for the X-Algorithm such

as symmetry and consistency. We need to prefer values of Service attributes that are within

the required range specified in a Query, and at the same time consider other features of the

Service with respect to the specified semantics, yet eliminate those Services that provide val-

ues outside the specified range in a Query. So, we calculate reward as well as penal t y

with respect to re f within the range, as explained earlier. Recall that the range for penal-

ties of our algorithm is (−1,1), and it only turns to negative when |s − q| > q as shown in

Table 19 in Section 5.4. Therefore, defining the value re f as Query helps in discriminating

between the penalties generated for values inside the range and outside the range. That is,

because of the natural relationship between the reference value and the lower/upper bound

of the range (|v − re f | < re f where v ∈ (lowerBound, upperBound)), the penal t y range

produced within the range is always in the range (0, maxReward). To penalize the values

outside the range with a non-overlapping values with penalties inside the range, we introduce

another function Out O f Range Penal t y Funct ion(OPF) for calculating penalties outside the

range with respect to the same reference value re f . This function is similar to the RCX func-

tion, yet it produces negative numbers. These negative numbers decrease in absolute value as

the value of a Service attribute gets further away from the range specified in the Query. The

penalties calculated by OPF lie in the range (−1, 0), which is non-overlapping with the range

(0, maxReward). Since the function OPF performs the calculations of penalties with respect

to one value re f , it considers semantics and symmetry in the same way as RCExact . To clarify,

the values outside the range are scored based on their closeness to the range specified in Query.

116

Based on the above discussion, we come up with the following OPF function.

OPF =

⎧⎨⎩ −
s−re f

s
s > qupper

− re f −s
s′+(BV∗X) s < qlower

(51)

where, qupper and qlower are respectively the upper and lower bounds defined in Query range

for a specific feature, s is the value of the same feature in a Service, s′ = |re f − S| + re f ,

re f =
qupper+qlower

2
, BV is BoostValue and X = −1 for MB and X = +1 for LB semantics.

Example 10. This example illustrates Service ranking for a range Query, for the semantics LB

and MB. Let q = [40, 70]. Thus, qlower = 40 and qupper = 70. Let s1 = 30, s2 = 80, s3 = 50, and

s4 = 60 be the values for the same feature (as in Query) in four different Services. The reference

value re f = (40+ 70)/2= 55

Case 1: LB semantics. The following calculations are done with X = 1, and BV = 1.

Since, s1 < Qlower and s2 > Qupper , both lie outside the range. So, penalties using OPF are

calculated.

s′1 = re f + (re f − s1) = 55+ (55− 30) = 80

Using the OPF function in Equation 51 we get the penalty for s1(s1 <Qlower).

OPFs1
= − s′1− re f

s′1+ (BV ∗ X)
=

80− 55

80+ 1
= −0.3086

We calculate the penalty OPF for s2(s2 >Qupper)

OPFs2
= − s2− re f

s2
= −0.3125

Since the features s3 and s4 are within the range, they are calculated regularly as introduced before.

Thus,

s3 = |X + re f − s3

s′3+ (BV ∗ X)
|= 1.082

s4 = |X − s4− re f

s4
|= 0.917

117

Notice that the penalty in s2 is greater in absolute value than in s1. This is because s1 is semanti-

cally better than s2 (cheaper). Also, note how s3 received higher score than s4 for being cheaper as

well.

Case 2: MB semantics. X = −1. calculate s′1 for the case s <Qlower

s′1 = re f + (re f − s1) = 55+ (55− 30) = 80

Using the OPF function 51 we get the penalty for s1.

OPFs1
= − s′1− re f

s′1+ (BV ∗ X)
= −80− 55

80− 1
= −0.3165

We calculate the penalty for s2

OPFs2
= − s2− re f

s2
= −0.3125

Since the features s3 and s4 are within the range, they are calculated regularly as before. Thus,

s3 = |X + re f − s3

s′3+ (BV ∗ X)
|= 0.915

Similarly,

s4 = |X − s4− re f

s4
|= 1.083

Notice that s2 receives a lower penalty than s1. Thus, s2 in this case ranks higher than s1 as it is

semantically better. Also, s4 receives a higher score than s3.

5.8 Algorithm Pseudo-code

In this section, we present a Pseudo-code for the complete X-Algorithm. It incorporates all the

options and modes discussed in this Chapter.

118

Algorithm 4: The X-Algorithm
Data: Services in the Registry
Result: Services ranked based on users’ inputs
Input: Query, Modes(Exact,Best), RangeMode(RP), Essential(ESS), ShowBest(SABF),

RegularWeight(RW),SystemAccuracy(acc)
1 begin
2 Initialization
3 for i← NumberO f Services do
4 for j← NumberO f Quer yFeature do
5 X ← CheckFeatureSemantic(j) // X =-1(MB),+1(LB),0(EB)
6 Mode← CheckFeatureMode(j) // MODE=1(ExactMode), 0(BestMode)
7 if qi = 0 then
8 PMi j ← 0
9 else if si j = 0 OR si j = −1 then

10 PMi j ←−2
11 else if X = 0 then
12 PMi j ← EBHandler()
13 else if si j = qi then
14 PMi j ← 1
15 else if si j > qi then
16 i f (Mode = 1) X ← +1

17 PMi j ← scale(|X − si j−qi

si j
|)

18 if RP=1 AND si j > qiupper then // when Range= ON
19 re f = (upperValue+ lowerValue)/2

20 PMi j = −scale(
re f −si j

si j
)

21 end if
22 else
23 BV = X ∗ acc // BoostValue
24 i f (Mode == 1) X ←−1 // this only works if EF=1
25 s′i j ← qi + (qi − si j)

26 PMi j ← scale(|X + s′i j−qi

s′i j+BV
|)

27 if RP=1 AND si j < qi lower then // when Range=ON
28 re f = (upperValue+ lowerValue)/2

29 PMi j = −scale(
re f −s′i j

s′i j+BV
)

30 end if
31 end if
32 if PMi j ≥ 1 then // when AllBest option is ON
33 AllBesti j ← 1
34 else
35 AllBesti j ← PMi j

36 end if
37 end for
38 end for
39 WE =WE ∗ WR

1000
// when Essential option is ON

40 W =WE +WR
41 F inalRank =W ∗ PM
42 for i← 0 to size(AllBest) do
43 if SumColumn(AllBesti)≤ NumberO f Quer yFeature then
44 FR(i)← FR(i) + SABFV
45 end if
46 end for
47 end

119

5.9 Common Problems and Solutions

In this section we highlight the significance and originality of the X-Algorithm. We comment

on the common problems associated with vector-based algorithms, and highlight the methods

in X-Algorithm that overcome these problems.

5.9.1 Missing Feature Problem

This problem occurs when vectors are not of the same length which is claimed to be a limitation

in vector-based algorithms [WMZ10] [RB09]. That is, when a feature specified in a Query is

missing in one or more Service(s). Basically, this results in uneven matrix which cannot be

rigorously treated with vector algebra. In order to overcome this obstacle, we assign a penal t y

of −2, which is the maximum penalty (max Penal t y) produced by the algorithm, to each

feature missing in a Service. This will make the matrix even and valid for vector calculations.

At the same time it will make the missing feature receive lowest score since it does not offer

what the user has requested. Then, at the Multiplication Phase, the penalty affects the total

rank based on the weight assigned to that missing feature in Query.

5.9.2 Mathematical Problems

Some ranking algorithms, based on Similarity Measure, are prone to mathematical problems

such as division by zero and square root of minus values. Our ranking algorithm is based on

the Similarity Measure SMX is not prone to this problem because of two reasons. First, because

we adopted symmetry and our denominator is always the image around the value of Query.

Consider the fraction

|q− s|
y

in SMX , where y = s if s > q and y = s′ = |q − s|+ q if s < q. If s = 0, and because q > 0 it

is the case that s < q. Thus, the denominator is y = s′ which makes the denominator greater

120

than 0. In case q = 0 and s �= 0, it is the case s > q and thus the denominator is not 0. Division

by zero is likely only when both q and s are 0. However in this case s = q, which we examine

before we calculate similarity.

Currently, we consider the values 0 in Query as an undesired feature, while 0 in Service fea-

tures as a missing feature. Nevertheless, our algorithm is capable of dealing with it naturally.

However, we have excluded those cases since we are aiming for employing our algorithm in

online Services trading where the value 0 is inapplicable as a feature.

5.9.3 Compensation and Non-compensation Problem

Although we have come across this feature in brief in Section 5.6, we repeat it here for its

importance and because it is a common concern. As explained earlier, compensatory algorithms

allow the good features of a Service to cover for the bad features, while non-compensatory

algorithms disallow that. Because we are using an additive aggregation method, where we

sum all scores of all features of a Service to produce the Service’s final rank, we are prone to

this problem. However, since we claim we want to provide a real-life-like ranking algorithm,

we should allow compensation as it is present even in real life. Nevertheless, we should also

minimize it upon request. Therefore, we have provided the Option, AllBest to minimize this

problem. Briefly, the problem is minimized by keeping all rewards to minimum reward value.

This will ensure that the affect of the good features are degraded to minimal.

5.10 Summary

In this chapter, we have given a detailed development of X-Algorithm. We have started by

defining the concepts of penalty and reward that we have adopted in our Similarity Measure.

Then, we have explained each option of the algorithm in terms of the option’s goal, and how it

is integrated into our algorithm. With each option, we have provided an inclusive example that

121

covers all the cases of the option. After that, we have introduced a pseudo code that includes

all algorithm options and functions. Finally, we commented on the most common problems of

ranking algorithms and explained how X-Algorithm resolves them.

122

Chapter 6

Accuracy, Complexity, and

Performance

In this chapter we discuss the accuracy of the X-Algorithm by running the algorithm on a

selected subset of Google Data Store and manually validating the results. A theoretical analysis

of the algorithm complexity is also discussed. Finally, we discuss the runtime performance of

the X-Algorithm on two sets of randomly selected Service data.

6.1 Accuracy

We provide a case study to manually examine accuracy. In this case study, we apply our algo-

rithm on a real-world data. This data is Google Application Store’s data [Inc08]. First, we are

going to explain why we chose this data. Then, we will introduce the problem we are trying to

solve through this case study and propose our solution. After that, we collect and analyse the

Google Store’s data. Finally, we apply our solution on the data and show our findings.

123

6.1.1 Why Google’s data?

The reason why we chose Google Store’s data in particular is behind the nature of its data.

Since it has different semantics, i.e. MB, LB and EB, it allows us to examine our algorithm

and the potential situations it unfolds. Also, each application or product in Google Store is

multi-featured. This also complies with our algorithm as we make it to allow users to define

multi-features in Query. Last, Google Store contains huge number of data that is commonly

queried. Showing that we could improve on the current solution for such data proves our

algorithm’s practicality and significance.

6.1.2 Problem of current ranking algorithm in Google Store

Currently, Google Store ranking is based on implicit criteria ranking. These criteria such as

reviews, number of downloads, and level of usage are used to rank applications. However,

users of Google Store don’t have the ability to Query based on a specific request. For example,

if someone wants to look for cheapest application in a certain category, he/she cannot do so

in the current Google solution. Similarly, users can’t look for cheapest application with highest

rating. This limits users to see only what the implicit ranking algorithm has to offer.

To overcome this limitation, we propose the X-Algorithm as a solution. By applying our

algorithm on top of the current ranking algorithm, we can allow users to manipulate the re-

sults list based on their specific requirements. These requirements can contain different data

types and different modes as we will explain in next sections. Providing the different modes,

semantics and options, as in X-Algorithm, we provide the customers to compose a wider range

of Queries and get a more accurate ranking for their Queries.

124

6.1.3 Collecting and Analysing Google Store’s data

To be able to apply our algorithm on any data, we have to understand the data in terms of

(1) the number of attributes, and (2) potential data types. The data of Google contains four

attributes. These attributes are, name of application, rating, price and a flag that indicates

whether application is free or not. The types of data are as follows:

• Name of application: The type of the name is string in all cases. Thus, it is EB attribute.

• Rating: The rating is better as it increases. This means it is MB attribute.

• Price: The price is better as it decreases. Hence, it is considered as LB attribute.

• Free application flag: It is a boolean data type which means it is EB attribute.

We also include two other data, but we called it unrankable data as they are not included

as a criteria in ranking. These are

• Link for each product: This is necessary to make sure that we have mapped the data

correctly.

• Installed flag: This indicates if a user has installed the application already. We have

included it to be able to involve it in the ranking criteria in case we want it later on.

Having defined each attribute in Google’s data, we need now to define a method to collect

this data. Since this data is accessible through a website, we need to extract the data we need

to apply our algorithm.

Remark. This extraction is for scientific reasons only. We do not perform, by any means, repub-

lishing (Web Scraping) or reusing Google’s Data publicly.

The stages to extract Google Store’s data are explained below.

1. Parse the html file: We coded a small script that reads the html file and parses it.

125

Figure 26: User Interface to build Query

2. Write the parsed version of html to a file: We have made the script to write each html to

a different file. This is to improve the testability and fixing data errors if any.

3. Read all files and write it to one large file. Thus, the algorithm can be applied on a single

file.

4. Apply the algorithm on the large file.

6.1.4 Applying our solution

In order to make our solution more practical, we have implemented our algorithm as an HTTP

server. This server gets the request of the user from the browser, ranks the results based on

the request, and sends the ranked results back to the user. Thus, we needed to implement

an interface to the user through which requests can be made. In the user interface shown in

Figure 26, we have included all options allowed by the algorithm.

For the sake of simplicity, we have included only nine Services in the file to be ranked by

our algorithm. This is to show how we can manipulate the top nine data based on users re-

quirement. At the time of testing, the top nine Services in Google Store are the ones shown in

Table 23 and Figure 27. Also, we considered the variables EssentialAccurac y and Algorith-

mAccuracy, to be pre-set to the values 0.01, 0.1 respectively. We also assumed the semantics

of the Price feature is LB, the semantics of Rating feature is MB, and the semantics of both

Name and isF ree features is EB.

In the following paragraphs, we define a number of user Queries, and explain the differ-

ences between the rankings produced by the X-Algorithm and the original Google rankings.

126

Figure 27: A snap shot of the top nine Google Data as shown in the website at the time of
writing

Rank Name Price Rating isFree
1 Swift Keyboard 3.9 4.6 False
2 Nova Launcher Prime 4.0 4.8 False
3 Titanium Backup Pro Key root 6.4 4.8 False
4 Minecraft pocket edition 6.9 4.5 False
5 Poweramp Full version Unlocker 3.9 4.7 False
6 Swype keyboard 1.0 4.5 False
7 TuneIn Radio Pro 5.1 4.5 False
8 Beautiful Widgets Pro 1.9 4.3 False
9 Plants VS Zombies 0.9 3.4 False

Table 23: The top nine Services at the time of testing on Google Play Store

Potential Queries

1. Regular weighted Query which includes both matching modes

• Case1: When the mode of Price feature is set to Exact and the mode of Rating is set to

Best, the Query shown in Table 24 is applied to Google Data Store.

127

	
	
	

Name Price Rating isFree

VALUES plants 1 2 true
WEIGHTS low critical normal low

MODE - E B -
ESS 0 0 0 0

RANGE 0
SABF 0

Table 24: Query for Case1

Figure 28: Results for Case1

• Case2: When the mode of Price feature is set to Exact and the mode of Rating is set to

Best, the Query shown in Table 25 is applied to Google Data Store.

	
	
	

Name Price Rating isFree

VALUES plants 1 2 true
WEIGHTS low critical normal low

MODE - B E -
ESS 0 0 0 0

RANGE 0
SABF 0

Table 25: Query for Case2

Notice that in this mode the second Service in Figure 28 becomes the first Service

in Figure 29.

128

Figure 29: Results for Case2

Figure 30: Results for Case3

2. Best flag is ON

Case3: We consider the same Query shown in Table 24 with AllBest Option set to "ON"

Notice the change from the results of Case1. This is because the second Service in Fig-

ure 30 is closer to the user request than the first Service. That is, since there is a partial

match in the name, and a compliance with the requested rating, the only missing part for

a perfect match is 0.1 in price. Thus, when AllBest Option is "ON" the algorithm ranks

the Service which was ranked second in Figure 28 to the top position in Figure 30.

3. Essential flag is ON

• Case4: When Price is set to Essential attribute and Best Mode is "ON", the Query shown

in Table 26 is applied to Google Data Store.

129

	
	
	

Name Price Rating isFree

VALUES swiftkey 1 2 true
WEIGHTS low critical normal low

MODE - B B -
ESS 0 1 0 0

RANGE 0
SABF 0

Table 26: Query for Case4

Figure 31: Results for Case4

In Figure 31 the Services ranked fourth and fifth have the same Price. However,

the algorithm has ranked the item with application name "Swiftkey" higher than the

other one, because of the name criterion. This illustrates that although Essential Op-

tion is "ON" ranking maybe affected with respect to other non-essential attributes.

• Case5: When Rating attribute is set to Essential and mode is Exact, the Query defined

in Table 27 is applied to Google Data Store.

	
	
	

Name Price Rating isFree

VALUES swiftkey 1 4.7 true
WEIGHTS low critical normal low

MODE - B E -
ESS 0 0 1 0

RANGE 0
SABF 0

Table 27: Query for Case5

130

Figure 32: Results for Case5

Since Rating attribute is set to Essential in Exact Mode, the item with application

name "POWERAMP FULL VERSION UNLOCKER" and Rating 4.7 is ranked the high-

est in Figure 32. There are two Services with Rating 4.8 and one Service with

Rating 4.6 and all of them are at the same distance from 4.7. However, the algo-

rithm prefers to rank the two Services with Rating 4.8 higher than the Service with

Rating 4.6, because the semantics for Rating attribute is MB.

• Case6: When Name attribute is set to Essential, the Query shown in Table 28 is applied

to Google Data Store.

	
	
	

Name Price Rating isFree

VALUES pro 4 1 true
WEIGHTS critical low critical low

MODE - B B -
ESS 1 0 0 0

RANGE 0
SABF 0

Table 28: Query for Case6

131

Figure 33: Results for Case6

If we look at the first three Services in Figure 33, we find all of them contain the

word "PRO" which is the one used in the Query. However, the algorithm preferred

the one on top over the others that contain "PRO", because of the value of Rating

attribute. The value of Rating attribute is considered because its weight in Query has

been set to critical and the weight of Price has been set to low. Thus, when essential

requirement is met which is the existence of the word "PRO", regular ranking for

other non-essential properties is performed.

4. Range flag is ON (only works with Best Mode)

• Case7: When the Range Option is "ON" with Best Mode for Price feature, the Query in

Table 29 is applied to Google Data Store.

	
	
	

Name Price Rating isFree

VALUES Nova 5.1-3 1 true
WEIGHTS low critical normal low

MODE - B B -
ESS 0 0 0 0

RANGE 1
SABF 0

Table 29: Query for Case7

132

Figure 34: Results for Case7

In Figure 34, notice how the semantics for Ranges play a pivotal role in ranking.

That is because the semantic for Price is LB. That is, lowest values in the range are

better than higher values. Also, notice how values on top are within the range. This

shows the importance given to the feature with Range Option compared to other

features. The reason is that the attribute values that don’t comply with the set range

are punished, which affect their scores and thus affect their final ranks.

• Case8: When Range Option is "ON" with Best Mode for Rating attribute, the Query in

Table 30 is applied on Google Data Store.

	
	
	

Name Price Rating isFree

VALUES Nova 4.3-3.4 true
WEIGHTS low normal critical low

MODE - B B -
ESS 0 0 0 0

RANGE 1
SABF 0

Table 30: Query for Case8

133

Figure 35: Results for Case8

Figure 36: Results for Case9

Unlike Case7, higher values within the range are ranked higher because the seman-

tics of the Rating attribute is MB.

• Case9:When Essential and Range Options with Best Mode are set for Price, the Query

in Table 31 is applied to Google Data Store.

	
	
	

Name Price Rating isFree

VALUES Nova 5.1-2 1 true
WEIGHTS low critical normal low

MODE - B B -
ESS 0 1 0 0

RANGE 1
SABF 0

Table 31: Query for Case9

In Figure 36, the Services are ranked based on the Price attribute as it is set to

Essential. Thus, values that match the minimum values within the range are ranked

134

higher as the semantic of Price is LB. However, values outside the range are ranked

based on its closeness to the range. Similar to Essential Option, it is based on the LB

semantic as well. That is, if two values differ from the range by the same distance

on different directions, the values in favour of the semantics ranks higher than the

other.

6.2 Complexity

In the pseudo code, we have tried to minimize the number of loops to be executed. No nested

loops exist in the code except for the two main ones, one for the rows and the other for columns

of the matrix PM . Within these two loops the modes and semantic preferences, and other

options are included. The only thing that remains outside the loop is the final sorting of the

total ranks. Thus, the algorithmic complexity of X-Algorithm is twofold; (1) the time necessary

to calculate the aggregated ranks, and (2) the time necessary to sort these aggregated ranks.

Since the first one does not have any nested loop, its complexity is O(Nf ∗ Ns) where Nf is the

number of features in each Service, and Ns is the number of Services to be ranked. Quicksort

algorithm is used for the final ordering of Services. Hence, the total complexity is,

TimeX_Al go = T (Nf , Ns) = O(Ns ∗ Nf) +O(Nslog(Ns))

It is reasonable to assume that the number of features Nf is fixed for an application. That is, Nf

is a constant. Hence, asymptotically the complexity is O(Nslog(Ns)), where Ns is the number

of Services in the final order.

6.3 Performance

We evaluate the performance of X-Algorithm by measuring the execution times of the algorithm

on randomly generated large datasets. We generated two different types of datasets. In one

135

type of dataset we fixed the number of features and varied the number of Services to produce

different datasets with asymptotically increasing size. In the second type of dataset we fixed

the number of Services and varied the number of features to produce different instances of this

type.

6.3.1 Type 1 Dataset: Fixed Number of Features and Variable number of Services

We created ten datasets. The first dataset has 10000 services. Successively we increased the

size by 10000 to create the rest of the datasets. We fixed the number of features to be six with

semantics defined below.

Features : [LB, LB, MB, MB, EB, EB]

where LB,MB and EB are the different semantics for the features.

Fixing the number of features is important to measure the effect of changing the number

of Services on the execution time. Also, for a fair estimation we have included all semantics in

each Service. We ran the X-Algorithm for each dataset three times and calculated the average

of the execution times. These results are listed in Table 32. The results show a linear runtime

behaviour, as shown in Figure(A) 37.

Group # of Alternatives Execution Time (ms)

1 10,000 137.964
2 20,000 212.189
3 30,000 291.361
4 40,000 349.656
5 50,000 414.279
6 60,000 473.738
7 70,000 553.305
8 80,000 624.474
9 90,000 666.083
10 100,000 728.330

Table 32: Execution time when number of Services increases

As the figure shows, the linear model shows a good fit on the results. This is also shown in

136

1 2 3 4 5 6 7 8 9 10

x 104

−20

−10

0

10

20

residuals

(B)

1 2 3 4 5 6 7 8 9 10

x 104

200

400

600

800

Number of Alternatives
co

n
su

m
e

d
tim

e
(m

s)

(A)

y = 0.00656*x + 84.3

exec. results
linear fitting

Figure 37: This figure shows how the results exhibits a linear growth

Figure(B) 37, where the correlation coefficient (R) was calculated. This function is a statistical

function that is used to measure the goodness of the fitting model. It produces a number

between (1,−1), where +1 shows the best fit and −1 indicates the worst. As the figure shows,

R is 0.9988 which is considered to be a good fit.

6.3.2 Type2 Dataset: Variable number of Features and Fixed Number of Services

Here we examine the performance of the X-Algorithm when the number of Services is fixed

to 1000, and the number of features is varied. Because our algorithm is a user-centric, the

number of features cannot be too high. That is, if features are too many, Query becomes hard

to be built by the user. However, it is important to capture the growth of the execution time

when features increase. We ran the algorithm three times on each dataset. The first data set

has ten attributes and successively the number of attributes is increased by 10 to produce nine

other datasets. For all datasets, the Services are fixed. In all runs, we considered all the three

semantics. In Table 33 we list the average execution times for the ten datasets.

137

Group # of Features Execution Time (ms)

1 10 179.54
2 20 290.969
3 30 419.169
4 40 566.175
5 50 726.794
6 60 802.669
7 70 960.520
8 80 1096
9 90 1245
10 100 1373.667

Table 33: Execution time evaluation when number of features increases.

10 20 30 40 50 60 70 80 90 100
−40

−20

0

20

40

residuals

(B)

10 20 30 40 50 60 70 80 90 100
0

500

1000

Number of Properties per alternative

co
n

su
m

e
d

tim
e

(m
s)

(A)

y = 13.4*x + 30.4

exec. results
linear fitting

Figure 38: This figure shows how the results exhibits a linear growth

The results show that the runtime behaviour is once again linear. We calculated the Cor-

relation Coefficient R to measure the validity of the linear model. The Correlation Coefficient

shows that the linear model is a good fit. Figure(A) 38 and Figure(B) 38 show the results of

this experiment.

138

6.4 Summary

In this chapter we have provided an overall evaluation for the X-Algorithm from three differ-

ent perspectives; Results Accuracy, Algorithmic Complexity, and Runtime Performance. In our

evaluation, we exposed our algorithm to a real-world data, and randomly selected high vol-

ume data to see examine its robustness and practicality. We found that the X-Algorithm have

performed exceptionally in all settings. This shows the algorithm significance and ability to be

used in practice for wide range of applications.

139

Chapter 7

Ranking Composite Services

A Simple Service is atomic, in the sense that it cannot be split into smaller Services. A Complex

Service is obtained by putting together one or more Simple Services. It is also possible to com-

bine a simple Service with a complex Service to produce another complex Service. Since users

are to construct requests for complex Services, we assume that a complex Service is a package

of simple Services. In Service oriented computing researchers have studied different methods,

called compositions, for putting together Services as a complex Service [Ibr12]. In this thesis,

we use the terms complex Service and composite Service interchangeably.

In a social setting composite Services arise and are in great demand. As an example, a

travel package offered by a Service provider is a complex Service, which typically includes air

travel, hotel accommodations, car rental and other simple Services. A consumer can buy the

whole package offered by a Service provider, however the consumer cannot buy an individual

Service within the complex Service. This means that, in general, vacation packages offered

by several Service providers need to be compared by consumers in order to select the best

Service that meets their requirements. However, for online Services the user can either buy a

Service package or can select simple Services individually and compose them. In the former

situation, the packages are treated as single simple Services and ranked by the X-Algorithm

140

which we have discussed earlier in this thesis. In this Chapter, we discuss the latter situation

in which users cannot determine the best Service composition because of at least two reasons.

One reason is, the Services may be obtained from different Service providers. The other reason

is, to manually rank the composed Services based on the preferences of individual Services is

hard. So, there is a need to provide an automatic algorithm for ranking such compositions. In

this Chapter we explain how the X-Algorithm can be used to rank such composite Services.

7.1 Request Structure for Simple Services In a Composition

A composition is performed on many Service types. In the situation where a user wants to

compose hotel accommodation Services with airline booking Services we regard “hotel book-

ing” and “airline booking” as two Service types. So, it is necessary for the user to compose a

simple request for ranking simple Services, which has been discussed in Section 4.2.2, for each

Service type. Based upon each request options and semantics, the X-Algorithm will produce

a ranked list of available Services. In order to automatically combine and produce a ranking

for the combinations it is necessary that the user inputs more options along with the simple

request that govern the level of preference and importance of each Service type. So, we expand

the simple request structure, introduced earlier for ranking simple services, with two additional

fields Simple Request Weight(SRW) and Simple Request Essential (SRE). This extended struc-

ture, shown in Figure 39, is called Extended Simple Request Structure (ESRS). It is necessary

to automatically construct a Composite Request Structure (CRS). We explain this construction

in the next section. These two fields apply to all the Services ranked by the X-Algorithm, as

compared to the other fields under Simple Request that apply to attributes of Services to be

ranked by the X-Algorithm. That is, Simple Request (SR) field in ESRS is the user request to

rank simple Services by the X-Algorithm that fit the attribute values and semantics defined in it.

The value weight defined by the user for the attribute SRW in ESRS is the weight assigned to

141

Figure 39: The structure of ESRS request

all Services ranked in response to the Simple Request part. If the attribute SRE in ESRS is set to

”ON” (”OFF”) then all Services ranked by the X-Algorithm is set to “ON” (“OFF”). We emphasize

the necessity and importance of these two fields. In these two fields the user is required to

assign preference and level of importance (regular or essential) to the Service within the com-

position, which will lead to determining whether a simple Service in a composition can be more

important than another simple Service. Eventually, this will affect the ranks produced for the

different compositions.

Thus, a user wishing to select m different Service sets for a composition will construct

a ESRS for each Service type. Once the ESRS for all m requests are submitted, the system

environment will automatically construct a CRS, rank Services based on the SR part of each

ESRS, apply the CRS on the compositions of the ranked Service sets, and produce the rankings

of compositions.

7.2 Constructing Composite Request from Extended Simple Requests

Let RqC = {Rq1,Rq2, . . . , Rqn}, where Rqi denote the ESRS for ith Service type. In the X-

Algorithm every attribute will get a bounded score. We need to extend this concept to Ser-

vice level. So, we provide a method for calculating the “maximum rank” maxRank for each

142

Rqi . The calculation is done based on the regular ranks, and other options of the attributes

within Rqi definition in ESRS. So, this maximum rank can be calculated prior to the ranking

process. We define maxRank = MRR+M Ess+MAllBest, where:

• MRR is the maximum rank that the X-Algorithm achieves when both Essential and

AllBest options are not set.

• M Ess is the maximum rank when Essential option is set to "ON".

• MAllBest is the maximum when AllBest option is set to "ON".

Since MRR, M Ess, and MAllBest are all bounded, the value maxRank will be bounded.

1. MRR is calculated in the multiplication of the weights by the scores of Service features,

when all scores are set to the maximum reward (maxReward) and all the weights are set

to the maximum weight(wh). Thus, MRR = n ∗ wh ∗maxReward (where n is the number

of features defined in Query).

2. The method to obtain essential weight we is explained in Equation 39 in Section 5.5.

Thus, M Ess = maxReward ∗ ((wh ∗ 1000 ∗ we) + wh) ∗ ne f . (where wh and we are the

highest regular weight and the essential weight respectively, and ne f is the number of essential

features defined in the user request).

3. As explained in Section 5.6, the maximum impact caused by this option on the final rank

of Rqi is an addition of the number of features defined in Rqi to the final rank of the

results of Rqi . Thus, MAllBest = n ∗ AllBestF lag, (where n is the number of features in

Query and AllBestF lag is 0 if AllBest option is "OFF" and AllBestF lag is 1 if AllBest option is

"ON").

We include the maxRanki for ESRS Rqi in constructing CRS.

143

Remark. If our algorithm does not produce bounded output, calculating the maximum value

should be after ranking all the Services for each Rqi, and then analyse the results to find the

maximum result for each Rqi. This highlights another importance of bounded results requirement.

The X-Algorithm interface is extended so that when it receives the first ESRS structure, it

will start constructing the CRS. The CRS contains the following fields: (1) Complex Request

Query (CRQ), (2) Complex Request Weight(CRW), (3) Complex Request Essential (CRE). Ta-

ble 34 shows the CRS for the composite request that involves m ESRS requests.

- Rq1 . . . Rqm

CRQ maxRankRq1
. . . maxRankRqm

CRW SRWRq1
. . . SRWRqm

CRE SRERq1
. . . SRERqm

Table 34: The Structure of CRS request for m ESRS.

7.3 Responding to a Composite Request

The X-Algorithm receives m ESRS, constructs a CRS, and does the following steps.

1. Rank Services for each Simple Request(Rqi) using the X-Algorithm. Corresponding to Rqi

let TRi denote the total ranks of Services calculated by X-Algorithm.

2. Compute the Cartesian Product for different total ranks, TR= {TR1× TR2× · · ·× TRm}.
We represent TR in C Plan matrix as,

C Plan=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 . . . r1 j . . . r1m

r21 r22 . . . r2 j . . . r2m

...
... . . .

... . . .
...

ri1 ri2 . . . ri j . . . rim

...
... . . .

... . . .
...

rC1 rC2 . . . rC j . . . rCm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

144

Figure 40: An illustration of the Service composition

where C =| TR |. Each row in C Plan shows the rankings of simple Services in the

composition. That is, the ith row is the ranking vector of ith composition, such that

ri j ∈ TRj is the ranking of the simple Services corresponding to Rqj .

3. We regard the rows of C Plan matrix as alternates and would like to rank them with

respect to Exact Match criteria of the ranks specified in CRQ subject to the weights CRW

and the Essential option CRE specified Table 34. So, we are justified in running the X-

Algorithm considering CRS as the user request and C Plan as the available alternatives.

Figure 40 illustrates the composing algorithm of the two Services, Service(A) and Ser-

vice(B).

Example 11. In this example, we illustrate the steps of ranking Composed Services in practice.

Suppose, a user defined one Composed Request that includes two different types of ESRS Rqh and

Rqf defined in Table 35 and Table 36. For simplicity, we consider both EssentialAccurac y and

Al gori thmAccurac y are pre-set to 0.1. Also, we assume that Hotel and Air Travel Services are

145

defined in Table 37 and Table 38.

Simple Hotel Request(Rqh) SRWh SREh

- HotelPrice(h1) Stars(h2) Location(h3)

Signi f icant 0(OF F)

Quer y 100$ 4/5 Downtown
Semantics LB MB EB

Weight Signi f icant Normal Low
Mode Best Exact −
Range − − −

Essential 1 0 0
AllBest 0(OF F)

Table 35: ESRS for Hotel Service

Simple AirTravel Request(Rqf) SRWf SREf

- TicketPrice(f1) Route(f2)

Normal 0(OF F)

Quer y 1000$ Direct
Semantics LB EB

Weight Signi f icant Normal
Mode Best −
Range − −

Essential 0 0
AllBest 1(ON)

Table 36: ESRS for Air Travel Service

- Price(hs1) Stars(hs2) Location(hs3)
HotelService1(HS1) 60$ 3.5/5 Subur b
HotelService2(HS2) 250$ 5/5 Downtown
HotelService3(HS3) 100$ 5/5 Subur b

Table 37: Available Hotel Services

- Ticket Price(f s1) Route(f s2)
AirTravelService1(FS1) 900$ Indirect
AirTravelService2(FS2) 1200$ Direct
AirTravelService3(FS3) 1000$ Direct

Table 38: Available Air Travel Services

We perform the following steps:

1. Calculate the maxRankh for the Simple Hotel Request Rqh, and maxRankf for the Simple

146

AirTravel Request Rqf ,

maxRankh = RRh+ Essh+ AllBesth

where,

MRRh = nf q ∗wh ∗maxReward = 3 ∗ 0.005 ∗ 3= 0.045

M Essh = maxReward ∗ ((we ∗ 1000wh) + wh) ∗ neq

= 3 ∗ ((0.005 ∗ 0.1+(3−1)∗(5)
0.1

+ 1) ∗ 5+ 0.005) ∗ 1= 22.59

MAllBest = 3 ∗ 0= 0

Thus,

maxRankh = 22.62

Similarly, we calculate the maxRank for the Simple Request, Rqf ,

maxRankf = MRRf +M Essf +MAllBest f = 0.03+ 0+ 2= 2.03

2. Table 39 shows the CRS request structured automatically by the X-Algorithm for this exam-

ple.

- Rqh Rqf

CRQ maxRankRqh
(22.62) maxRankRqf

(2.03)
CRW SRWRqh

(0.005) SRWRqf
(0.003)

CRE SRERqh
(0) SRERqf

(0)

Table 39: The Structure of CRS request for the two Simple Requests Rqh and Rqf .

3. Rank the available Services for each ESRS using the X-Algorithm. The Total Ranks for

different Hotel Services TRh and for different Air Travel Services TR f are shown in Table 40

and Table 41.

Service Rank
HS1 7.42
HS2 4.19
HS3 6.28

Table 40: Ranks for available Hotel Services for ESQS Rqh

147

Service Rank
FS1 2.009
FS2 1.804
FS3 1.724

Table 41: Ranks for available Air Travel Services for ESQS Rqf

4. Compute TR= TRh× TRf , which is represented as the C Plan matrix as shown in Table 42

TR= TRh× TRf

[HS1 , FS1]
[HS1 , FS2]
[HS1 , FS3]
[HS2 , FS1]
[HS2 , FS2]
[HS2 , FS3]
[HS3 , FS1]
[HS3 , FS2]
[HS3 , FS3]

=⇒ C Plan=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HS11 FS12
HS21 FS22
HS31 FS32
HS41 FS42
HS51 FS52
HS61 FS62
HS71 FS72
HS81 FS82
HS91 FS92

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 42: The different composition plans (C Plan) for Hotel and Air Travel Services.

5. Run the X-Algorithm on the Request CRS and on the available alternatives in C Plan. The

Ranks of rows in C Plan are listed in Table 43 (ordered in a non-increasing order).

Ranked TR C Plan Ranks
[HS1 , FS3] 0.0048
[HS1 , FS2] 0.0042
[HS3 , FS3] 0.0041
[HS1 , FS1] 0.0040
[HS3 , FS2] 0.0035
[HS3 , FS1] 0.0032
[HS2 , FS3] 0.0029
[HS2 , FS2] 0.0023
[HS2 , FS1] 0.0021

Table 43: Ranks of the different composition plans based on the Composite Request defined by
the user

The results shown in Table 43 are based on the Composite request CRS that does not includes any

essential weight. Assume the user defined an essential weight to Hotel Simple Services such that

148

the X-Algorithm considers first the goodness of the Hotel Services, and then the Air Travel Services

in the composition plan. Table 44 shows the request CRS with essential option set to Hotel Service.

- Rqh Rqf

CRQ maxRankRqh
(22.62) maxRankRqf

(2.03)
CRW SRWRqh

(0.005) SRWRqf
(0.003)

CRE SRERqh
(1) SRERqf

(0)

Table 44: The Structure of CRS request for the two ESRS requests Rqh and Rqf .

The results of this request is listed in the following table(ordered in a non-increasing order).

The ordering is essentially based on the Hotel Simple Services. The composite Services with a

specific Hotel name ordered on Air Travel Services.

ComposedServices Composi t ion Ranks
[HRS1 , FRS3] 2.3381
[HRS1 , FRS2] 2.3375
[HRS1 , FRS1] 2.3373
[HRS3 , FRS3] 1.3872
[HRS3 , FRS2] 1.3866
[HRS3 , FRS1] 1.3863
[HRS2 , FRS3] −0.0632
[HRS2 , FRS2] −0.0638
[HRS2 , FRS1] −0.0641

7.4 The Complexity of Ranking Composed Services

Let Rqi denote the ith ESRS in a Composite Request CRS. Let there be m number of Simple

Requests in CRS. The size of composition plan is C .

Based on the Complexity of X-Algorithm shown in Section 6.2, the time necessary to calculate

the ranks of C Plan is shown below

TimeComposed X_Al go = O(C) +O(C ∗m) +O(C log(C))

where, O(C) is the time necessary to obtain composition plans, O(C∗m) is the time necessary to calculate

149

the total ranks for m composition plans in C Plan, and O(C log(C)) is the time necessary to sort the

total ranks of C Plan.

We remark that C is essentially dependant on the number of Services ranked and composed

by the X-Algorithm and m is the number of ESRS requests. There is no obvious correlation

between C and m. For a fixed value of m, the complexity is bounded by O(C log(C)).

7.5 Summary

In this chapter we introduced the Composed Query Option for the X-Algorithm. We have illus-

trated the steps taken by the X-Algorithm to rank and respond to Composed Queries. Finally,

we introduced the Algorithmic Complexity associated with this option.

150

Chapter 8

Conclusion and Future Work

In this thesis we have developed a solution to rank Services that have many heterogeneous

features. Our algorithm contribute to the field of Service-Oriented Computing. Also, it provides

a generic solution to any ranking problem in which input and alternatives for ranking can be

described as vectors.

The X-Algorithm satisfies the fairness criteria, the scale set for comparing ranking algo-

rithms. The input to the algorithm is a request that includes query and preferences from the

user. These are applied against a set of Services in the system. The Services that match a query

and comply with the semantics preferences that are specified in the user request are selected

and ranked. X-Algorithm computes the scores for each Service attribute and a total rank for

the whole Service with respect to the user request. The selected Services are ranked based on

the total score. X-Algorithm has been extended to rank composite Services based on simple

extensions to user requests. Thus, X-Algorithm is both user-centric and semantic-based. The

semantics allow users to incorporate a wide range of options and preferences that are normally

done informally in daily life for ranking Services. These options include Ranking modes, Essen-

tial, AllBest, Range and Service composition. Generally, options may be combined. There exist

exceptions that are indicated in Table 45

151

Options ExactMode BestMode Essential AllBest Range
ExactMode Yes Yes Yes Yes
BestMode Yes Yes Yes Yes
Essential Yes Yes No* Yes
AllBest Yes Yes No* Yes
Range No* Yes No* Yes

Table 45: This Table shows the ability/inability to integrate the X-algorithm options together

*− Essential option cannot be combined with AllBest option because both of them perform
some adjustments on the ranking concept
− Exact Mode looks for exact match to one value, and Range option by default looks for num-
bers exact to ones within the range, therefore, they cannot be combined

8.1 Evaluation

We have evaluated the X-Algorithm computational level, where we conducted different exper-

iments to evaluate the performance and accuracy of the X-Algorithm in practical settings. To

validate the accuracy, we tested the behaviour of the algorithm on a case study. We tried dif-

ferent combinations of options and under each set of options the algorithm behaved exactly

as expected. A manual inspection revealed the satisfaction of user specified semantics in all

outcomes. We tested the run time efficiency of the algorithm on randomly generated data sets.

In these practical studies, we found only a linear expansion of run time. In this section we

evaluate our algorithm at a conceptual level. That is, we evaluate the X-Algorithm in terms

of its satisfaction to the consumer and algorithmic requirements we defined for fair ranking.

Table 46 and Table 47 show this evaluation.

As shown in Table 46 and Table 47, the X-Algorithm satisfies all the fair ranking require-

ments. However, we did not compare our algorithm with other algorithms. This is because

there exists no algorithm with which it is meaningfully useful to compare.

152

Fair Ranking Requirements X-Algorithm Explanation
Ability to find better values

�
By using Best Mode option

Numerical/non-numerical values
�

X-Algorithm accepts numbers, strings
and boolean datatypes.

Online ranking without assumptions
�

Outputs are generated on-spot based
on user’s input only.

Options to manipulate results
�

X-Algorithm offers many options to
users: Best/Exact Modes, Range,
AllBest, Essential and Semantic
choice.

Fast response
�

The practical evaluation shows linear
growth of the algorithms runtime.

User-friendly Query building
�

Options can be easily integrated and
structured in a simple user-interface.

Table 46: Evaluation of the X-Algorithm with respect to consumer perspective requirements

Fair Ranking Requirements X-Algorithm Explanation
Different semantics support

�
X-Algorithm considers MB,LB and EB
semantics

Normalized outputs
�

The X-Algorithm is based on the Sim-
ilarity Measure SMX which produces
normalized outputs

Consistent outputs
�

Outputs are based on inputs at any
given time. Identical inputs produce
Identical outputs.

Input range (0,∞) �
X-Algorithm puts no restrictions on
inputs.

Unlimited number of features
�

Number of features is unlimited.
Built on a simple concept

�
X-Algorithm is based on Vector-Based
Similarity Measures which are one of
the simplest and easiest ranking ap-
proaches.

Table 47: Evaluation of the X-Algorithm with respect to consumer perspective requirements

8.2 Future Work

In order to realize the full potential of the X-Algorithm it should be properly plugged in a

context-based SOA architecture as shown in Figure 41. This figure shows the interaction sce-

nario among the SOA components that jointly enable Service publication, Service discovery,

Service ranking and execution. The results of this thesis, when combined with Alaa Alsaig

153

Figure 41: The Ranking Algorithm in FrSeC Framework

[Als13], who has just completed the design and implementation of the Service registry us-

ing NoSQL technology, will cover the major tasks in Figure 41. The natural next step is to

implement the following units of Figure 41.

• Planning Unit with interfaces to the Service registry, and the query processing unit Query

Manager,

• a user interface for service requesters to compose queries with their semantic prefer-

ences, and

• Composing unit, Negotiating Unit, Execution Unit.

This is an important essential part of future work.

154

In order to be convinced of the operational ability of SOA in in Figure 41, we have num-

bered the arrows in the figure in the order in which the tasks are to be performed, from publi-

cation to execution. Service publication process is done in (1,2), and is achieved by the thesis

work of Alaa Alsaig [Als13]. A service requester interacts (3) with Query Manager who shares

relevant information with Service Registry(4) and Ranking Unit (7). The selected Services from

the Service Registry are sent to Context-based Filtering unit (5), which upon filtering are sent

to Ranking Unit (6). Both Query Manager and Context-based Query Manager units are trivial

designs, because they perform a simple task. The X-Algorithm is applied in Ranking Unit and

the results are sent to the Composing Unit (8). Service composition is necessary only for com-

posite queries. The results are provided to the user (9). In selection process the user has two

options, either to have the Service executed (14), or send a negotiation request to the Negoti-

ation Unit (10). In the later case, the negotiation request is forwarded to the service provider

(11) who responds to the request (12). The Negotiation Unit sends the response to the user

(13). This process can go on until either both parties agree or the service requester terminates

the session. In the former case the service requester requests an execution of the Service (14).

The responsibility of the Execution Unit to assure the complete delivery of the Service to the

requester.

Another important aspect of future work is related to applying the X-Algorithm for problems

that require vector-based ranking. The potential avenues to look at are ranking for admission

to educational institutions (such as medical schools) and for preference-based ranking of com-

panions in social networks.

155

Bibliography

[AE07] F. Gregory Ashby and D. M. Ennis. Similarity measures. Scholarpedia, 2(12):4116,

2007.

[Aga11] S. Agarwal. The infinite push: A new support vector ranking algorithm that di-

rectly optimizes accuracy at the absolute top of the list. In Proceedings of the SIAM

International Conference on Data Mining, 2011.

[Als13] Alaa Alsaig. Context-aware service registry modeling and implementation. Master’s

thesis, Concordia University, 2013.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible extensions.

Knowledge and Data Engineering, IEEE Transactions on, 17(6):734–749, 2005.

[BB08] J.O. Bennett and W.L. Briggs. Using and understanding mathematics: A quantitative

reasoning approach. Pearson Addison Wesley, 2008.

[BM08] J.A. Bondy and U.S.R. Murty. Graph theory. Berlin: Springer, 2008.

[Cha07] S.H. Cha. Comprehensive survey on distance/similarity measures between proba-

bility density functions. City, 1(2):1, 2007.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

156

[CYT05] S.H. Cha, S. Yoon, and C.C. Tappert. Enhancing binary feature vector similarity

measures. 2005.

[Dan80] P.E. Danielsson. Euclidean distance mapping. Computer Graphics and image pro-

cessing, 14(3):227–248, 1980.

[DX08] H. Dinh and L. Xu. Measuring the similarity of vector fields using global distri-

butions. Structural, Syntactic, and Statistical Pattern Recognition, pages 187–196,

2008.

[Erl04] Thomas Erl. Service-oriented architecture. Prentice Hall Englewood Cliffs, 2004.

[GHTH11] T. Gwo-Hshiung, G.H. Tzeng, and J.J. Huang. Multiple Attribute Decision Making:

Methods and Applications. CRC Press, 2011.

[GJG04] L.A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in

www search. In Proceedings of the 27th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 478–479. ACM, 2004.

[GVB12] S.K. Garg, S. Versteeg, and R. Buyya. A framework for ranking of cloud computing

services. Future Generation Computer Systems, 2012.

[Han09] C.W. Hang. Trustworthy service-oriented computing. Doctoral Mentoring Program,

page 7, 2009.

[HL97] Duane Hanselman and Bruce C Littlefield. Mastering MATLAB 5: A comprehensive

tutorial and reference. Prentice Hall PTR, 1997.

[Ibr12] Naseem Ismail Ibrahim. Specification, Composition and Provision of Trustworthy

Context-dependent Services. PhD thesis, Computer Science and Software Eng., Con-

cordia University, 2012.

157

[Inc08] Google Inc. Google Play Application Store. https://play.google.com/, 2008.

[Joa02] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of

the eighth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 133–142. ACM, 2002.

[JRVF09] G. Jurman, S. Riccadonna, R. Visintainer, and C. Furlanello. Canberra distance on

ranked lists. In Proceedings, Advances in Ranking–NIPS 09 Workshop, pages 22–27,

2009.

[Kah08] C. Kahraman. Multi-criteria decision making methods and fuzzy sets. Fuzzy Multi-

Criteria Decision Making, pages 1–18, 2008.

[LHB+08] L. Lorigo, M. Haridasan, H. Brynjarsdóttir, L. Xia, T. Joachims, G. Gay, L. Granka,

F. Pellacini, and B. Pan. Eye tracking and online search: Lessons learned and

challenges ahead. Journal of the American Society for Information Science and Tech-

nology, 59(7):1041–1052, 2008.

[LM98] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and data

mining. Springer, 1998.

[LY93] H-J Li and S-H Yang. Using range profiles as feature vectors to identify aerospace

objects. Antennas and Propagation, IEEE Transactions on, 41(3):261–268, 1993.

[Mih04] R. Mihalcea. Graph-based ranking algorithms for sentence extraction, applied to

text summarization. In Proceedings of the ACL 2004 on Interactive poster and demon-

stration sessions, page 20. Association for Computational Linguistics, 2004.

[MMM12] Ana Milovanović, Maja Mitričević, and And̄ela Mijalković. The analytic hierarchy

process (ahp) application in equipment selection. THE GROWTH OF SOFTWARE

158

INDUSTRY IN THE WORLD WITH SPECIAL FOCUS ON BOSNIA AND HERZEGOV-

INA.. 1880, page 1912, 2012.

[OH11] K. Oku and F. Hattori. Fusion-based recommender system for improving serendip-

ity. In Proceedings of the Workshop on Novelty and Diversity in Recommender Systems

(DiveRS 2011), at the 5th ACM International Conference on Recommender Systems

(RecSys 2011), page 19, 2011.

[PHJ+07] B. Pan, H. Hembrooke, T. Joachims, L. Lorigo, G. Gay, and L. Granka. In google

we trust: Users’ decisions on rank, position, and relevance. Journal of Computer-

Mediated Communication, 12(3):801–823, 2007.

[PS09] Selwyn Piramuthu and Riyaz T Sikora. Iterative feature construction for improving

inductive learning algorithms. Expert Systems with Applications, 36(2):3401–3406,

2009.

[RB09] K. Riesen and H. Bunke. Feature ranking algorithms for improving classification of

vector space embedded graphs. In Computer Analysis of Images and Patterns, pages

377–384. Springer, 2009.

[Saa83] Thomas L Saaty. Priority setting in complex problems. Engineering Management,

IEEE Transactions on, (3):140–155, 1983.

[Saa08] Thomas L Saaty. Decision making with the analytic hierarchy process. International

Journal of Services Sciences, 1(1):83–98, 2008.

[SB09] Julia Sidorova and Toni Badia. Syntactic learning for eseda. 1, a tool for enhanced

speech emotion detection and analysis. In Internet Technology and Secured Trans-

actions, 2009. ICITST 2009. International Conference for, pages 1–6. IEEE, 2009.

159

[SH06] Munindar P Singh and Michael N Huhns. Service-oriented computing: semantics,

processes, agents. Wiley. com, 2006.

[Sig05] A. Signorini. A survey of ranking algorithms. 2005.

[SKR99] J.B. Schafer, J. Konstan, and J. Riedi. Recommender systems in e-commerce. In

Proceedings of the 1st ACM conference on Electronic commerce, pages 158–166. ACM,

1999.

[T+77] Amos Tversky et al. Features of similarity. Psychological review, 84(4):327–352,

1977.

[Tek06] K. Teknomo. Analytic hierarchy process (ahp) tutorial. Kardi Teknomo’s page, 2006.

[WMZ10] W. Webber, A. Moffat, and J. Zobel. A similarity measure for indefinite rankings.

ACM Transactions on Information Systems (TOIS), 28(4):20, 2010.

[XNJR02] Eric P Xing, Andrew Y Ng, Michael I Jordan, and Stuart Russell. Distance metric

learning, with application to clustering with side-information. Advances in neural

information processing systems, 15:505–512, 2002.

[ZWQZ11] Y. Zhu, J. Wen, M. Qin, and G. Zhou. Web service selection mechanism with qos

and trust management. Journal of Information Computational Science, 8(12):2327–

2334, 2011.

160

Appendix A

Symmetry Calculations For Similarity

Measures

This section is to prove the absence of symmetry characteristics in the SMs introduced in the

literature survey.

Consider the following assumptions:

• each SM is tested with two different inputs S1 and S2, which are symmetric around q.

• the similarity measure is considered symmetric, if it produces similar outputs for S1 and

S2, and asymmetric otherwise.

• value of S2 is an image of value of S1 around q, which means that q− S1 = S2− q where

S1 < q and S2 > q

• assume the value of S1 = a, where a < q and since S2 is an image of S1 around q,

S2 = q− a+ q = 2q+ a which means that 2q+ a > q, FIGURE(***).

• we want to prove that SM(S1) = SM(S2) for each SM in Tables 1,2.

• LS denotes left side of equation and RS denotes right side, which means that we want to

161

prove that LS=RS where LS is the SM with S1 as input and RS is the same SM with S2 as

input.

• we assume S1 and S2 have only one value, so, any sum is removed. In other words,

since we are not using vector of values, there is no need to calculate the total ranks for

different elements of vectors, thus, sum is removed from SMs.

1. Euclidean Distance,

LS = dEuc(S1) =
2
�|S1− q|2 = 2
�|a− q|2

RS = dEuc(S2) =
2
�|S2− q|2 = 2
�|(2q− a)− q|2 = 2

�|q− a|2 = LS

Hence, Euclidean Distance is a symmetric SM.

2. Kulczynski

LS = dkul(S1) =
|S1− q|

min(S1, q)
=
|a− q|

a

RS = dkul(S2) =
|S2− q|

min(S2,q)
=
|(2q− a)− q|

q
=
|q− a|

q
�= LS

Thus, Kulczynski is an asymmetric SM

3. Gower

LS = dgow(S1) = |S1− q|= |a− q|

RS = dgow(S2) = |S2− q|= |2q− a− q|= |q− a|= LS

As a result Gower is a symmetric SM.

4. Lorentzian

LS = dlor(S1) = ln(1+ |S1− q|) = ln(1+ |a− q|)

RS = dlor(S2) = ln(1+ |S2− q|) = ln(1+ |2q− a− q|) = ln(1+ |q− a|) = LS

So, Lorentzian is a symmetric SM.

162

5. Inner Product

LS = dI P(S1) = S1q = aq

RS = dI P(S2) = S2q = (2q− a) ∗ q = 2q2− aq �= LS

Hence, Inner Product is an asymmetric SM.

6. Sørensen

LS = dsor(S1) =
|S1− q|
(S1+ q)

=
|a− q|
(a+ q)

RS = dsor(S2) =
|S2− q|
(S2+ q)

=
|q− a|
(3q− a)

�= LS

Thus, Sørensen is an asymmetric SM.

7. Soergel

LS = dsg(S1) =
|S1− q|

max(S1,q)
=
|a− q|

q

RS = dsg(S2) =
|S2− q|

max(S2,q)
=
|q− a|
2q− a

�= LS

As a result, Soergel is an asymmetric SM.

8. Cosine

LS = Scos(S1) =
S1q�
S2

1

�
q2
=

aq�
a2
�

q2

RS = Scos(S2) =
S2q�
S2

2

�
q2
=

2q2− aq�
(2q− a)2
�

q2
�= LS

So, Cosine is an asymmetric SM.

9. Canberra

LS = dcan(S1) =
|S1− q|
S1+ q

=
|a− q|
a+ q

RS = dcan(S2) =
|S2− q|
S2+ q

=
|q− a|
3q− a

�= LS

Hence, Canberra is an asymmetric SM.

163

10. Jaccard

LS = djac(S1) =
(S1− q)2

S2
1 + q2− S1q

=
(a− q)2

a2+ q2− aq

RS = djac(S2) =
(S2− q)2

S2
2 + q2− S2q

=
(q− a)2

(2q− a)2+ q2− 2q2− aq
�= LS

Thus, Jaccard is an asymmetric SM.

11. Harmonic Mean

LS = dHM (S1) = 2
S1q

S1+ q
= 2

aq

a+ q

RS = dHM (S2) = 2
S2q

S2+ q
= 2

2q2− aq

3q− a
�= LS

As a result, Harmonic Mean is an asymmetric SM.

12. Dice

LS = ddice(S1) =
(S1− q)2

S2
1q2

=
(a− q)2

a2q2

RS = ddice(S2) =
(S2− q)2

S2
2q2

=
(q− a)2

(2q− a)2q2 �= LS

Hence, Dice is an asymmetric SM.

13. Relative Change

LS = dRC(S1) =
|S1− q|

max(S1,q)
=
|a− q|

q

RS = dRC(S2) =
|S2− q|

max(S2, q)
=
|q− a|
(2q− a)

�= LS

Thus, Relative Change is an asymmetric SM.

14. Service Ranking

LS = dRS(S1) = 2− S1

q

RS = dRS(S2) = 2− S2

q

since S1 �= S2, then, LS �= RS. Thus, Ranking Service is an asymmetric SM.

164

Appendix B

Limits Calculation For Similarity

Measures

In order to be able to calculate the limit of each similarity measure we have to make the

following assumptions

• Since the value of query is the same for all services, we can consider the query as a

constant denoted by c.

• Number of properties has to be limited. Hence, we consider it as a constant too denoted

by c1.

• Since the changing part is the value of the service’s property, we will denote it as x and

substitute it by +∞

• Since the expected inputs are lower-bounded by zero and does not include minus values,

we will exclude the calculation of limx→−∞

• Since the upper-bound is all what matters for us, we won’t bother looking at limx→0.

165

1. Euclidean Distance

lim
x→∞

2
�|x − c|2

because of the absolute function, we know it is a positive value, thus,

lim
x→∞|x − c|= | lim

x→∞ x − lim
x→∞ c|=∞

2. Kulczynski

lim
x→∞

|x − c|
min(x , c)

= lim
x→∞
|x − c|

c
=
| limx→∞ x − limx→∞ c|

limx→∞ c
=
∞− c

c
=∞

3. Gower

lim
x→∞

1

c1
|x − c|= | limx→∞ x − limx→∞ c|

limx→∞ c1
=
∞− c

c1
=∞

4. Lorentzian

lim
x→∞ ln(1+ |x − c|) = lim

x→∞ ln(1+ |∞− c|) = lim
x→∞ ln(∞) =∞

5. Sørensen

lim
x→∞
|x − c|
(x + c)

=
∞− c

∞+ c
=
∞
∞

if we plug in∞ we end up with an indeterminate form ∞
∞ , thus,

lim
x→∞
|x − c|
(x + c)

× 1/x

1/x
= lim

x→∞
|1− c/x |
1+ c/x

=
1− 0

1+ 0
= 1

6. Soergel

lim
x→∞

|x − c|
max(x , c)

since x is∞ it is larger than c, so we can say,

lim
x→∞
|x − c|

x

this leads us to an indeterminate form ∞
∞ , using the same method used above,

lim
x→∞
|x − c|

x
× 1/x

1/x
=

1− 0

1
= 1

166

7. Cosine

xc�
x2
�

c2

this clearly leads to indeterminate form ∞
∞ , thus

lim
x→∞

xc�
x2
�

c2
× 1/x

1/x
=

c�
c2

assuming c is a positive number, hence

lim
x→∞

c

c
= 1

8. Canberra (same case has been addressed in SM 5)

lim
x→∞
|c − x |
x + c

= 1

9. Jaccard

lim
x→∞

(x − c)2

x2+ c2− xc

if we try plug-in method, we end up with the combined indeterminate form ∞
∞−∞ , thus,

by expanding the nominator we get,

lim
x→∞

x2− 2xc + c2

x2+ c2− xc
× 1/x2

1/x2 = lim
x→∞

1− (2c/x) + (c2/x2)
1+ (c2/x2)− (c/x) =

1− 0+ 0

1+ 0− 0
= 1

10. Harmonic Mean

lim
x→∞2

xc

x + c
leads to the form

∞
∞

hence,

lim
x→∞2

xc

x + c
× 1/x

1/x
= lim

x→∞
2c

1+ c/x
= 2c

this means that the limit is based on the value of the query, this is clearly shown in

Figure 12 where the query value is 120.

11. 1-Dice

1− lim
x→∞

(x − c)2

x2c2 a plug-in clearly leads to the form
∞
∞

thus,

1− lim
x→∞

x2− 2xc + c2

x2c2 × 1/x2

1/x2 = 1− lim
x→∞

1− (2c/x) + (c2/x2)
c2 = 1− 1

c2

167

12. Angular Disparity

lim
x→∞1− cos−1(cosine)

π

since the limit of cosine when x approaches to infinity is 1 as shown in SM 7, then,

lim
x→∞1− cos−1(1)

π
= 1− 0

π
= 1

13. Relative Change is similar to Soergel, which is bounded by 1

14. Service Ranking

2− lim
x→∞

x

c

using plugin method we find that

2−∞ = −∞

168

