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ABSTRACT

Design and Implementation of Piecewise-Affine Observers for Nonlinear Systems

AZITA MALEK

This thesis is divided into two main parts. The contribution of the first part is to de-

sign a continuous-time Piecewise-Affine (PWA) observer for a class of nonlinear systems.

It is shown that the state estimation error is ultimately bounded. The bound on the state

estimation error depends on the PWA approximation error. Moreover, it is shown that the

state estimation error is still convergent and ultimately bounded when the output of the

system is only available at sampling instants. The proof of convergence is presented in

two parts: conditions dependent on the sampling time and conditions independent of the

sampling time. In addition, ultimate boundedness of the state estimation error is proven

in the presence of norm bounded measurement noise. It is shown that the bound on the

state estimation error is dependent on the sampling time, PWA approximation error and

the bound on the norm of the noise. The proposed approach for observer design leads to a

convex optimization which can be solved efficiently using available software packages.

The contribution of the second part is to implement the proposed PWA observer on

a real setup of a wheeled mobile robot (WMR) available at the Hybrid Control Systems

(HYCONS) Laboratory of Concordia University. Although some researchers have applied

different types of observers to experimental applications, practical implementation of PWA

observers has not been given much attention by researchers. In this thesis for the first time a

PWA observer is applied to the WMR. The WMR is an example of a nonlinear system with

iii



a sampled output in the presence of measurement noise. The results of the experimental

implementation validate the proposed theoretical results in the first part.
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“If we knew what it was we were doing, it would not be called research, would it? ”

— Albert Einstein
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Chapter 1

Introduction

This chapter includes the motivation and a review of the relevant literature on main topics

of this thesis. The main contributions and the structure of the thesis are also stated in this

chapter.

1.1 Motivation

It is not always possible to measure all the states of real systems. This might happen due to

the high cost or limitations of the sensors. Generally, it is desired to have information about

all states of the system in control applications. For example, applying a state feedback

controller to the system requires information about all states of the system. Observable

states can be estimated by state observers. Observers estimate the states of the system using

the system’s model, its inputs and its outputs. The estimated state, which is obtained by the

observer, can be used in different observer-based applications [3, 4, 5]. Therefore, it is very

important to have accurate and reliable estimation of the states. There are different ways

to test an observer’s performance and accuracy. A commonly used parameter to show the

reliability and accuracy of the observers is the state estimation error, which is the deviation

of the estimated state from the measured state [6, 7, 8].

Starting with the work of Luenberger, [6, 7, 8] the problem of observer design for

1



linear systems has been discussed in the literature. However, most of the dynamical systems

exhibit nonlinear behavior. Consequently, it is very important to study the problem of

observer design for nonlinear systems.

Designing observers for nonlinear systems is a difficult and challenging task. There

is no method for observer design that works for all classes of nonlinear systems. Some

methods of nonlinear observer design are based on the linearized models of the nonlinear

systems [9, 10, 11] and only work within a small range around the equilibrium point for

which the system is linearized. This is a motivation to study more general methods that

work at a global scale.

Piecewise-Affine (PWA) systems are natural models for dead zone [12, 13], satu-

ration [13, 14], relays [15, 16] and hysteresis [17, 18]. PWA systems are also good ap-

proximations for nonlinear systems [19, 20, 21]. All smooth nonlinear functions can be

uniformly approximated by a PWA function over a simplicial partition [20, 22, 23]. There-

fore, PWA observer design could be an alternative approach to design observers for a more

general class of nonlinear systems. PWA systems have been an active area of research

[17, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Observer design for PWA systems has also

been studied in the literature [35, 36, 37, 38]. In this thesis, an observer is designed for the

PWA approximation of a class of nonlinear systems yielding a convergent state estimation

error.

Designing observers for a PWA approximation of nonlinear systems leads to a method

that is a convex optimization approach in terms of Linear Matrix Inequalities (LMIs). Con-

vex optimization programs minimize convex functions over convex sets. There are many

efficient and reliable ways to solve such problems with analysis tools and computer-aided

programs [39]. This has made convex optimization as one of the most popular problems in

many areas such as control [40].

In real applications, the observer is implemented inside a computer. The output of the

system, which is given to the observer, is measured at sampling instants. The system with
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the output that is only available at sampling instants is considered a sampled-data system.

In this thesis, the observer is designed such that the state estimation error still converges

when the output of the system is only available at sampling instants. Furthermore, in real

environments noise exists almost everywhere and affects the operation of the systems. It

is very important to consider the existence of noise in theoretical work. In this thesis,

it is proven that the state estimation error is ultimately bounded in the presence of norm

bounded measurement noise. In other words, the proposed observer is robust to norm

bounded measurement noise.

The experimental motivation of this theoretical work is the application to a Wheeled

Mobile Robot (WMR) available at the Hybrid Control Systems (HYCONS) Laboratory of

Concordia University. The WMR is modeled by nonlinear equations that can be approxi-

mated by a PWA model. The states of this system are the position, the heading angle and

the heading angle rate. The position is measured by capturing images by a camera and the

heading angle can be calculated based on the information from the camera, but the heading

angle rate is not measured. The measurements are affected by image noise which one of its

common types is Gaussian [41]. Furthermore, according to the sampling time of the sen-

sors, the output is only available at sampling instants. A PWA observer is proposed in this

thesis that is able to estimate all the states of the system with convergent state estimation

error.

This thesis addresses the design of continuous-time PWA observers for a class of

nonlinear systems with a sampled output. At first, the problem is discussed by assuming

that noise does not exist in the system. Then, the problem is studied by considering the

presence of norm bounded measurement noise. To validate the observer design approach,

the observer is applied to the real setup of the WMR.
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1.2 Literature Survey

This section will be broken into five subsections. The first part presents a literature review

on linear observer design methodologies. The second part will review the literature of

nonlinear observer design approaches. The third and the fourth parts will present literature

reviews on PWA observers and sampled-data observers, respectively. The last part of the

literature survey studies the existing work on experimental implementation of observers.

1.2.1 Linear Observers

Commonly, the problem of estimating the states of a system is referred to as the problem

of observer design for the system [11]. For linear observers the state reconstruction has a

close relation with observability and can be used in connection with the design of linear

regulators [42]. Starting with the work of Luenberger [6, 7, 8], the problem of observer

design for linear systems has been discussed in the literature [43, 44, 45, 46, 47, 48] and

references therein. The proposed observer by Luenberger [8], has the same structure as

the linear system except it contains a linear function of the difference between the esti-

mated output and the measured output, which is injected to the observer. This method is

frequently called output injection. The observer gain can be designed by arbitrarily placing

the eigenvalues such that the state estimation error is stable. The observer can be full-order

or reduced-order. In full-order observers all the states of the system are estimated while in

reduced-order observers only some of the states are estimated.

There exist also sliding mode observers for linear systems which are designed by

transforming the linear system into block-observable form [49, 50, 51, 52, 53]. One of

the differences between the sliding mode observer and Luenberger observer is injection

of a nonlinear discontinuous term into the sliding mode observer. The discontinuous term

enables the observer to reject disturbances and a class of mismatch between the system and

the observer [54]. Hence, sliding mode observers are more robust than other existing types
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of observers [52, 54]. The discontinuous term drives the observer trajectories such that the

state estimation error goes to a surface in the error space. The sliding surface is usually

set so that the deviation of the observer’s output from the system’s output is forced to go

to zero [54]. Also, a wide variety of parameter estimation problems can be solved by the

sliding mode observer design approach [52].

Although the mentioned methods are applicable to all linear systems with observ-

able states, many real systems exhibit nonlinear behavior. For example, vehicle models

such as autonomous land vehicles [20], rotorcraft unmanned aerial vehicles [21] and a he-

licopter pitch model [19]. Thus, it is very important to study observer design approaches

for nonlinear systems.

1.2.2 Nonlinear Observers

Designing observers for nonlinear systems is considered a difficult problem, since there is

no unique method that works for all classes of nonlinear systems. For a linear observable

system, any input distinguishes any two distinct states, while for nonlinear systems this is

no longer true [55]. Several research studies have been conducted on nonlinear observer

design [10, 42, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,

98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109] and this is still an open area of

research.

There are different methods for nonlinear observer design such as: Lyapunov-based,

geometric, sliding, Lie-algebraic, backstepping and high-gain observers. Some examples

of Lyapunov-based observers are the ones suggested in [42, 56, 57, 58, 59, 60, 61, 62, 63].

In [42], a procedure is proposed to check the stability of the state estimation error for a given

observer gain but it does not suggest a method for designing the observer gain. Choosing

the observer gain in [42] is a trial and error procedure that is not feasible for higher-order

systems. In [56] some sufficient conditions for the existence of an observer are proposed
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which are difficult to satisfy. One of the conditions is existence of a certain Lyapunov-like

function. The author of [57] has generalized the method of [56], but the system still needs

to satisfy some restrictive necessary conditions. In [58] an algorithm is presented to design

an observer gain for a class of nonlinear systems. The procedure in [58] is a recursive

algorithm that solves the Ricatti equation. The only information from the nonlinear part that

is used by the method in [58] is the Lipschitz number. Reference [59] contains an observer

design algorithm that uses the Lyapunov auxiliary theorem. The restriction in [59] is that

the system should be either locally asymptotically stable at the origin or unstable with the

eigenvalues that are all in the right half-plane. The author of [60] has provided the reader

with a numerical approach for solving the methodology presented in [59]. The solution

in [60] can be obtained by deriving a linear matrix equation. In [61] a nonlinear observer

design methodology is proposed for a special class of systems. The authors of [62] have

presented a nonlinear observer for a class of nonlinear discrete-time systems. Reference

[63] contains a Lyapunov-based observer design method with application to diesel engines.

Geometric methods of observer design are based on transforming the nonlinear sys-

tems into linear systems [10, 64, 65, 66, 67, 68, 69, 70]. In [10], a methodology based on

extended linearization is proposed for observer design. Extended linearization is the fam-

ily of linearization of the nonlinear system parameterized by the constant operating points.

Although extended linearization is better than linearization about a single point, it is not

global. Extended linearization problems are solvable locally which means that some of

the results are just valid in the presence of controlled dynamics [11]. An observer design

methodology is presented in [67] that is based on transforming the system into nonlinear

observer canonical form and performing an extended linearization for multi-input multi-

output systems. With reference to extended Kalman filter, the method in [67] is called

extended Luenberger observer.

Some other existing methods of nonlinear observer design are based on the Lie-

algebraic approach [71, 72, 73, 74, 75, 76, 77]. The goal in such methods is to transform
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the nonlinear system into a linear system by using Lie-algebraic tools and designing linear

observers for it. Another common approach in Lie-algebraic methods is to transform the

system into a system for which all the nonlinearities are measurable [71]. In the case that

the nonlinearity just depends on the output, an observer can be designed easily by output

injection and pole placement. The main drawback of this approach is to assume that the

nonlinear term is perfectly known. Modeling errors can cause problems in stability of the

state estimation error. Another difficulty in Lie-algebraic observer design methods is the

existence of transformations for transforming the system into the linear or nonlinear ob-

servable form. Normally, it is extremely difficult to satisfy the conditions for this approach.

Even if all the conditions are satisfied, it is very difficult to obtain the transformation and

transform the system into the observable form. In [71], a transformation is proposed to

transform single-input single-output nonlinear systems into the observable form. It is very

difficult to satisfy the necessary conditions for the existence of the transformation. More-

over, it is very difficult to calculate the transformation if the transformation exists. Using

the methodology in [71] for higher-order systems, requires many partial differential equa-

tions to be solved. The authors of [72] have extended the results of [71] to make it easier

to solve, but there are still some restrictions. In [73] the same problem as [71] is discussed

for multi-input multi-output systems. Reference [74] contains a transformation for single-

input single-output nonlinear systems into the observer form in order to design adaptive

observers. In [75], an extension to [74] is provided for multi-input multi-output systems.

High-gain observers are another class of observers that are robust to modeling er-

rors [110]. Reference [78] provides the reader with a study on high-gain observers and

their applications in controller design. The peaking phenomenon is an intrinsic feature of

any high-gain observer that rejects the effect of the disturbances such as modeling error

[78]. The Peaking phenomenon can destabilize the closed loop system by transforming

an impulsive-like behavior from the observer to the plant [78]. When it is desired to de-

sign a controller for the system whose states are being estimated by a high-gain observer,
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the controller has to be globally bounded in order to protect the system from the peak-

ing phenomenon [78]. A High-gain observer is basically an approximate differentiator.

This can cause practical limitations in cases such as existence of measurement noise [78].

High-gain observers are studied in different applications including, but not limited to, sta-

bilization [79], adaptive control [80], sliding mode control [81, 82], switching control [83]

and feedback control [84]

Another method for nonlinear observer design is based on the sliding mode theorem

[111]. In comparison with other types of observers, sliding mode observers are more robust

[52, 54]. The reason is injection of a nonlinear discontinuous term which rejects the distur-

bances and a class of mismatch between the system and the observer [54]. The trajectories

of the observer are forced by the nonlinear discontinuous term to go to a surface in the

error space. The equation of the surface is usually a function of the difference between the

observer’s output and the system’s output, which is forced to converge to zero [54]. There

are several research studies on sliding mode observers with different applications such as

control, fault detection and isolation [52, 85, 86, 87, 88, 89, 90, 91, 92, 93].

Backstepping observer design is another method for estimating the states of nonlin-

ear systems. This method is mainly applicable to the systems in triangular form. In [103]

exponentially convergent backstepping observers are designed for a class of parabolic Par-

tial Differential Equations (PDEs). The authors of [104] have proposed a methodology for

designing backstepping observers for a class of nonlinear single-output systems. In order to

design the observer proposed in [104] the system must be in a specific triangular observer

form. The proposed method in [104] guarantees exponentially convergence of the state

estimation error, if the initial estimation error is not too large. In [105] in order to control a

nonlinear single-output system with adaptive output-feedback controller the derivatives of

the output are needed which some of them are estimated using high-gain observer and the

rest are estimated using backstepping observer. In [106] a backstepping observer is used as

a residual generator for fault detection and isolation of a class of nonlinear systems. The
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authors of [107] have designed a backstepping observer for a nonminimum-phase system

in order to stabilize the system with output feedback. In [108] a backstepping observer

design approach for a class of state affine systems is proposed. The authors of [109] have

proposed an observer backstepping control for wind turbines.

Moreover, some researchers have studied the problem of Linear Parameter Varying

(LPV) observer design in the literature. In [112] the problem of LPV observer design for an

industrial semi-active suspension is studied. The authors of [113] have used LPV observer

in order to perform fault detection. Also, in [114, 115] and the references therein, the

problem of observer design for LPV systems is addressed.

Sometimes uncertainties exist in nonlinear systems. The reason could be the ex-

istence of unknown inputs or lack of knowledge about the system’s nonlinearities. In

[89, 94, 95, 116] some techniques are proposed to design observers for systems with un-

certainties. In other words, in these methods not all the information about the system is

needed for designing an observer. References [96, 97, 102, 117, 118] contain comparative

studies on many different nonlinear observer design techniques including Kalman filter,

Thau’s method, adaptive observers, high-gain observers, multi-stage nonlinear observers,

sliding mode observers and equivalent control-based sliding mode observers. There is no

exact conclusion on the performance or ease of design of these observers.

Although there exist several research studies in the area of nonlinear observer design

techniques, since no unique method exists for all classes of nonlinear systems, this is still

an open area of research.

1.2.3 Piecewise-Affine Observers

PWA systems provide a powerful modeling framework for complex dynamical systems

which are modeled by nonlinear functions. Furthermore, a broad range of nonlinear sys-

tems which are frequently used in engineering applications can be accurately approximated

by PWA systems [119].
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PWA systems [17, 24, 25, 26] and in particular observer design for PWA systems

[35, 36, 37, 38] have been studied in the literature. There are different approaches for PWA

observer design in the literature [120, 121, 122, 123]. The references that are discussed

in this section are mostly the ones that design PWA observers through an LMI-based ap-

proach. The authors of [35] were the first to design an observer for PWA systems. Then,

the work of [35] was extended in [3, 124]. In [36, 125] a methodology for designing a

bimodal continuous-time PWA observer with asymptotically stable state estimation error

is proposed. The proposed observer in [36, 125] is used for fault diagnosis. Reference [37]

contains the problem of observer design for discrete-time PWA systems without consid-

ering the affine term. Another approach for state estimation that is presented in [37] uses

particle filtering in a noisy environment. In [38] the problem of observer design is dis-

cussed for both continuous-time and discrete-time PWA systems, however, the affine term

is neglected.

Many researchers have also studied the problem of observer design for switched lin-

ear systems [126, 127, 128, 129]. Switched systems are a class of systems containing both

continuous dynamics and discrete events [40]. In [126], an observer design methodology

is proposed which guarantees stability of the state estimation error for switched linear sys-

tems. The problem is discussed in both continuous-time and discrete-time, but the fact that

the state of the system and the estimated state can be in different regions is not considered.

Reference [127], consists of the problems of stability of the state estimation error, mini-

mization of the error and a projection method for state estimation of discrete-time switched

linear systems. The situation when the state and the estimated state lie in different regions

is not considered in [127]. In [128], an observer design methodology with stable state es-

timation error is presented for discrete-time switched linear systems with bounded noise.

The proposed method in [128] is not an LMI-based approach. The method in [128] is also

applicable to mode estimation.

The problem of observer design for Piecewise-Linear (PWL) systems is also studied
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in the literature [130, 131, 132]. PWL functions are made up of linear pieces. The differ-

ence between PWL and PWA systems is that in PWL systems there is no affine term while

PWA systems contain affine terms. In [130], an observer is proposed for a PWL bimodal

system in both discrete-time and continuous-time. The authors of [131] have discussed the

problem of observer design for a continuous-time PWL system. In [132], the problem of

observer design is studied for a PWL system that contains disturbance, process noise and

measurement noise.

To the best of the author’s knowledge there is no work in the literature that designs

a continuous-time PWA observer for the PWA approximation of a nonlinear system with

a convergent state estimation error when applied to the nonlinear system. Since many real

systems which exhibit nonlinear behavior can be approximated by PWA systems, designing

a PWA observer can be a good approach to deal with the problem of observer design for

nonlinear systems. This thesis will present a method for PWA observer design for nonlinear

systems with the output available only at sampling instants.

1.2.4 Sampled-Data Observers

As discussed in previous sections, for continuous-time systems with continuous-time out-

puts several methods for observer design have been proposed. In real applications observers

are implemented inside computers. The output of the system that is given to the observer

is measured at sampling instants. The system with an output only available at sampling in-

stants is called a sampled-data system. The problem of observer design for linear and non-

linear sampled-data systems has been studied in recent years [133, 134, 135, 136, 137, 138].

Reference [134] contains the problem of observer design for a discrete-time approximation

and emulation of a nonlinear sampled-data system. In [135], the problem of observer design

for nonlinear sampled-data Lipschitz systems with exact and Euler approximated models

is discussed. In [136], an observer-based fault-tolerant controller is designed for a class of

nonlinear sampled-data systems. The authors of [137] have proposed an observer design
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methodology for nonlinear sampled-data systems via approximate discrete-time models.

Reference [138] addresses the problem of observer design for continuous-time systems

with sampled output measurements. The author in [139, 140] has discussed stability of

sampled-data PWA systems under state feedback. However, by assuming that all the states

are measurable, no observer is designed in [139, 140].

Although in real observer implementations the output of the system is sampled and

although PWA systems have proven to be good approximations for nonlinear systems, to

the best of the author’s knowledge there is no contribution in the literature on PWA observer

design for nonlinear systems with a sampled output.

The problem in this thesis is not to design a sampled-data observer, but it is rather to

apply a continuous-time PWA observer to a nonlinear system with a sampled output. The

state estimation error is shown to be convergent when the continuous-time PWA observer

is applied to the nonlinear system with a sampled output. The methodology of [139, 140]

is used to discuss the stability of the state estimation error for a class of nonlinear sampled-

data systems after designing a continuous-time PWA observer.

1.2.5 Experimental Implementation of Observers

Although PWA observer design has been studied in the literature as discussed in Section

1.2.3, unfortunately, its practical implementation has not been given much attention by

researchers. However, some researchers have applied other types of observers to different

experimental applications [131, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,

153, 154, 155]. In [141] a Luenberger observer is applied to a tethered wing wind power

system in order to perform an observer-based control. In [142] a linear hybrid observer

is used for battery state of charge estimation. The method of observer design in [142] is

based on designing separate observers for each subsystem, which does not guarantee the

stability of the state estimation error in case of arbitrary switching between the observers.

The authors of [143] have presented a new methodology referred to as the smooth variable
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structure filter, which is used for estimating the stator winding values of a brushless DC

motor. In [144] a high-gain observer is applied to an experimental setup of an inverted pen-

dulum on a cart. Reference [145] contains the problem of applying a nonlinear observer

to a single-ended primary inductor converter. In [146] a cascade nonlinear observer that is

designed for a class of cascade nonlinear systems is used for state estimation of an exper-

imental induction motor benchmark. The authors of [147] have used an observer for esti-

mating the velocities of two cooperative industrial robots. In [148] a nonlinear observer is

used for state estimation and parameter estimation of an induction motor and the efficiency

of the observer is shown on an experimental setup of an induction motor. The authors of

[149] have applied interconnected high-gain observers to induction motors to perform the

state estimation. Also, in [150] high-gain observers are designed to estimate the mechani-

cal and magnetic variables of an induction motor and use the estimated states to control the

system. The authors of [151] have proposed an extended state observer for experimental

observer-based control of a flexible-joint robotic system. References [131, 152] contain

the problem of implementation of a PWL observer on a harmonically excited flexible steel

beam with a one-sided support, which is an example of flexible mechanical systems with

one-sided restoring characteristics. Also, in [152] an observer is applied to an experimental

setup of a dynamic rotor system that is a benchmark for motion systems with friction and

flexibility. It should be noted that PWL functions are not as accurate as PWA functions in

approximating nonlinear functions. In [153], an observer is designed based on the mean

value theorem [156, 157] and it is used for estimating the slip angle of a Volvo XC90 sport

utility vehicle. In [154] an observer is designed to estimate the position, velocity and distur-

bance torque in a surface permanent-magnet machine. In [155] an adaptive backstepping

observer is designed for estimating the rotor-flux of an induction motor drive. To the best

of the author’s knowledge, there is no work in the literature that applies a PWA observer to

an experimental setup. In this thesis a PWA observer is applied to an experimental setup of

a WMR that is available at the HYCONS Laboratory of Concordia University.
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1.3 Objectives and Contributions

This thesis addresses the design of continuous-time PWA observers for a class of nonlinear

systems with a sampled output. Based on observer theory for PWA systems, sufficient con-

ditions are proposed such that a continuous-time PWA observer can be used to estimate the

states of a nonlinear system with a sampled output yielding a convergent state estimation

error. The method for observer design is a convex optimization approach in terms of LMIs.

It is shown that the state estimation error converges to a region and the size of the region

depends on the sampling time and the PWA approximation error.

In the following the main contributions of this thesis are summarized:

• A continuous-time PWA observer is designed for a class of smooth nonlinear sys-

tems yielding a convergent state estimation error. It is proven that the state estimation error

is ultimately bounded when the output of the nonlinear system is only available at sampling

instants. It is shown that the proposed observer is robust to norm bounded measurement

noise by proving the ultimate boundedness of the state estimation error in the presence of

norm bounded measurement noise. The proposed design methodology can be cast as a set

of LMIs which is based on a convex optimization approach that can be solved efficiently

using available software packages. Using the proposed method leads to numerical values

for the observer gains.

• A continuous-time PWA observer is implemented on an experimental setup of a

WMR for the first time. The experimental setup of the WMR is available at the HYCONS

Laboratory of Concordia University and is an example of a nonlinear system with a sampled

output in the presence of measurement noise. The WMR is modeled by nonlinear equations

that can be approximated by a PWA model. The state estimation results of this experiment

validate the proposed theoretical results in this thesis. The state estimation errors regarding

all states of the system (position, heading angle and heading angle rate) are shown to be

ultimately bounded and convergent.
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1.4 Structure of the Thesis

This thesis is structured as follows. Chapter 2 consists of preliminaries and prerequisites.

After a brief review of PWA systems, the problem of PWA observer design is addressed.

Then, a review on definitions of boundedness and ultimate boundedness is provided. Fur-

thermore, some nonlinear observer design techniques are reviewed in Chapter 2. The prob-

lem of PWA observer design for nonlinear systems is presented in Chapter 3. After a

brief introduction, the problem of designing continuous-time PWA observers for a class

of nonlinear continuous-time systems is explained. It is followed by presenting the results

on stability of the state estimation error for the nonlinear continuous-time system. Then,

stability of the state estimation error for nonlinear sampled-data systems is studied in two

parts: conditions dependent on the sampling time and conditions independent of the sam-

pling time. The last problem discussed in Chapter 3 is to design continuous-time PWA

observers for a class of nonlinear systems with a sampled output in the presence of mea-

surement noise. Finally, some simulation examples are provided in Chapter 3 to show the

validity of the results. Chapter 4 addresses the WMR modeling, wireless communication,

and a discussion of the electronics and sensors related to the experimental setup. Chapter 4

is closed by presenting the results regarding the implementation of the proposed observer

on the WMR setup. Finally, conclusions are drawn and suggestions for future studies are

made in Chapter 5.
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Chapter 2

Preliminaries and Prerequisites

2.1 Introduction

This chapter contains four sections. In Section 2.2 the mathematical representation of PWA

systems is reviewed. Section 2.3 presents the structure of PWA observers. Section 2.3 also

contains prerequisites needed for stability analysis of the state estimation error. Section

2.4 provides the reader with some definitions on boundedness and ultimate boundedness.

Some approaches for nonlinear observer design are studied in Section 2.5.

2.2 Review of Piecewise-Affine Systems

Hybrid systems are a class of systems containing both continuous dynamics and discrete

events [40]. PWA systems are a class of hybrid systems with affine subsystems. PWA

systems are also a natural model for hybrid dynamical systems containing switching such

as dead zone [12, 13], saturation [13, 14], relays [15, 16] and hysteresis [17, 18]. Further-

more, PWA systems may result from PWA approximations of nonlinear dynamics [125].

All smooth nonlinear functions can be uniformly approximated by a PWA function over

a simplicial partition [20, 22, 23]. Although a PWA approximation of a nonlinear system
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works at a global scale, it does not have the same complexity of the nonlinear system lo-

cally [125]. In other words, using a PWA model of a complex nonlinear system provides

a global approximation of the system with locally simpler affine dynamics [125]. Some

examples of nonlinear systems approximated by PWA dynamics are tunnel diode circuits

[20], autonomous land vehicles [20], rotorcraft unmanned aerial vehicles [21] and a heli-

copter pitch model [19].

PWA systems are obtained by partitioning a subset of the state space X into a set of

regions Ri such that each subsystem is affine [20, 40]. The state space representation of a

PWA system is described as

ẋ(t) = Aix(t)+Biu(t)+bi

y(t) =Cix(t)
(2.1)

for x ∈ Ri, where u(t) ∈ Rm, x(t) ∈ Rn and y(t) ∈ Rp represent the input, state and output of

the system, respectively. The matrices Ai, Bi and Ci are matrices with appropriate dimen-

sions and contain real entries. The vector of constant values bi is called the affine term and

contains real entries. For the regions containing the origin in its closure the affine term is

zero, i.e. bi = 0.

In slab systems for which the switching just depends on one linear combination of

the states, the regions are defined as

Ri = {x|di < HT x < di+1} (2.2)

with i = 1, ..,q, where q is the number of regions, or equivalently

Ri = {x|‖Eix+ fi‖< 1} (2.3)

When the switching depends on only one state, H is a vector of zeros except for the element

corresponding to the state that is responsible for the switching of the system and we have

Ei =
2HT

di+1 −di
(2.4)
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Figure 2.1: PWA approximation of y = x2 for x ∈ [−1, 1].

and

fi =
−(di+1 +di)

di+1 −di
(2.5)

Note that
q⋃

i=1

R̄i = X (2.6)

and

R̄i ∩ R̄ j = φ (2.7)

Different algorithms exist in the literature to obtain PWA approximations of nonlinear

systems [20, 21, 158, 159, 160, 161, 162, 163]. In Figure 2.1 a PWA approximation of

nonlinear function y = x2 for x ∈ [−1, 1] is shown. This nonlinear function is approximated

by a PWA function in three regions [21].

PWA systems have been studied in the literature in different subjects such as PWA

approximations [20, 21, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167], analysis of

PWA control systems [17, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] and controller/observer

design for PWA systems [14, 25, 26, 35, 36, 37, 38, 168, 169, 170].
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2.3 Review of Piecewise-Affine Observer Design

Designing observers for PWA systems leads to a convex optimization problem through an

LMI-based approach. Convex optimization programs can be solved efficiently using soft-

ware packages such as SeDuMi [171] and YALMIP [172]. This has made such programs

as one of the most popular problems in many applications [39, 40]. Before presenting the

PWA observers, the definitions of convex functions and convex optimization problems are

provided.

Definition 2.3.1. [39] A function fi : Rn → R is convex if for all x, y ∈ Rn and all α, υ ∈ R

with α +υ = 1, α > 0 and υ > 0, the functions satisfy

fi(αx+υy)� α fi(x)+υ fi(y) (2.8)

Definition 2.3.2. [39] The following problem is called a convex optimization problem.

minimize f0(x)

subject to fi(x)� gi, i = 1, ...,m

where f0, ..., fm : Rn → R are convex and the constants g1, ...,gm are the limits, or

bounds, for the constraints.

For the system defined in (2.1), a PWA observer has the structure as follows [35]

ˆ̇x(t) = A jx̂(t)+B ju(t)+b j +L j(Cix(t)−Cjx̂(t))

ŷ(t) =Cjx̂(t)
(2.9)

for x̂ ∈ R j, where x̂ denotes the estimated state and the observer gain for R j is given by L j.

The structure of the PWA observer is almost the same as the one for a linear observer except

that the PWA observer includes the affine term and several regions. Moreover, the observer

gain for each region has a different value. A scheme of the PWA observer is depicted in

Figure 2.2.

The state estimation error is defined as

e(t) = x(t)− x̂(t) (2.10)
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Figure 2.2: PWA observer schematic.

which is the deviation of the state x(t) from the measured state x̂(t). The state estimation

error is commonly used for discussing performance of observers. When the state estimation

error converges to zero, it means that all the states are estimated correctly.

It should be considered that the state of the system and the estimated state generated

by the observer can either be in the same or in different regions. Depending on q which

is the number of regions, q2 different cases can happen. To discuss stability of the state

estimation error all the cases should be considered.

According to (2.10) the dynamics of the state estimation error for the system and the

observer defined in (2.1) and (2.9), respectively, is

ė(t) = (A j −L jCj)e(t)+(Ai −A j +L j(Cj −Ci))x(t)+(Bi −B j)u(t)+(bi −b j) (2.11)

for x ∈ Ri, x̂ ∈ R j.

The objective is to design an observer with stable state estimation error. In order to

design observer gains, stability of the state estimation error must be taken into account.

Due to the structure of (2.11), it is not possible to provide stability of the state estimation

error by pole placement in the same way as linear observers. To discuss stability of the
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state estimation error, a candidate Lyapunov function should be defined. The complete

discussion on this problem will be presented in Chapter 3.

One of the tools needed to prove stability of the state estimation error is the S-

procedure, which is explained in Lemma 2.3.1.

Lemma 2.3.1. S-procedure [173]: Let f0 and f1 be quadratic functions of the variable

ζ ∈ Rn. If there exist λ � 0 such that for all ζ

f0(ζ )� λ f1(ζ ) (2.12)

Then f0(ζ )� 0 for all ζ such that f1(ζ )� 0.

Proof. See reference [173].

One of the advantages of using the S-procedure is that instead of studying stability of

the state estimation error with dynamics for x ∈ Ri, x̂ ∈ R j in the whole state space, it can

be just studied for x ∈ Ri, x̂ ∈ R j. In this thesis, the S-procedure is applied in regions whose

projection in the x, x̂ plane are circles. The circles are an approximation of the rectangles

that are the intersection of two slab regions, as shown in Figure 2.3. One of the slab regions

is the region in which the state of the system is operating and the other one is related to

the estimated state. The intersection is approximated by the circle with minimum area that

contains the rectangle (see Figure 2.3). The circle is defined by

εi j = {x, x̂|‖ HT x− γi ‖2
+‖ HT x̂−β j ‖2 � r2

i j} (2.13)

where γi, β j and ri j are coordinates of the center and radius of the circle related to the case

x ∈ Ri, x̂ ∈ R j and are defined by

γi =
di+1 +di

2
(2.14)

β j =
d j+1 +d j

2
(2.15)

ri j =

√(
di+1 −di

2

)2

+

(
d j+1 −d j

2

)2

(2.16)
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Figure 2.3: Covering circle with minimum area (x ∈ Ri, x̂ ∈ R j).

2.4 Boundedness and Ultimate Boundedness

Lyapunov analysis can be used to show boundedness of the solution of the state equation

(for example boundedness of the state estimation error defined in (2.11)) when there is no

equilibrium point at the origin [110]. Before starting the discussion on boundedness and

ultimate boundedness, some definitions will be presented.

Definition 2.4.1. [110] Let f (x) be defined on an interval I. Suppose that two positive

constants L and α can be found such that

| f (x1)− f (x2)|� L|x1 − x2|α ∀x1, x2 ∈ I (2.17)

Then f is said to satisfy a Lipschitz condition of order α .

Definition 2.4.2. [110] A function f (x) is globally Lipschitz if it satisfies the Lipschitz

condition on Rn for α = 1.

Definition 2.4.3. [110] A function f (x) is Lipschitz on a set W if it satisfies the Lipschitz

condition on W for α = 1.

Definition 2.4.4. [110] A function f (x) is locally Lipschitz on a domain D ⊂ Rn if each

point of D has a neighborhood D0 in which f satisfies the Lipschitz condition for all points

in D0 with some Lipschitz constant L0 and α = 1.
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Note that, in Definition 2.4.3 the condition must be satisfied for all points in W , but

in Definition 2.4.4 the condition must be satisfied for a small neighborhood of each point.

In what follows some definitions are provided on boundedness and ultimate bound-

edness [110]. Consider the system

ẋ = f (t,x) (2.18)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in x where

D ⊂ Rn contains the origin.

Definition 2.4.5. [110] The solutions of (2.18) are uniformly bounded if there exists a

positive constant c, independent of t0 � 0 such that for every a ∈ (0,c), there is β = β (a)>

0 independent of t0, such that

‖ x(t0) ‖� a ⇒‖ x(t) ‖� β ,∀t � t0 (2.19)

Definition 2.4.6. [110] If (2.19) holds for arbitrarily large a, the solutions of (2.18) are

globally uniformly bounded.

Definition 2.4.7. [110] The solutions of (2.18) are uniformly ultimately bounded with ulti-

mate bound b if there exist constants b > 0 and c > 0, independent of t0 > 0, such that for

all a ∈ (0, c) there is t1 > 0 independent of t0 such that

‖ x(t0) ‖� a ⇒‖ x(t) ‖� b ∀ t � t0 + t1 (2.20)

Definition 2.4.8. [110] If (2.20) holds for arbitrarily large a, the solutions of (2.18) are

globally uniformly ultimately bounded.

In what follows some mathematical properties regarding the matrix norm are pre-

sented.

Definition 2.4.9. Let Rm×n denotes the vector space containing all m× n matrices with

entries in R. If ‖ A ‖ denotes the vector norm of matrix A in Rm×n,

‖ A ‖� 0 and ‖ A ‖= 0 iff A = 0 for all A ∈ Rm×n (2.21)
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‖ αA ‖= |α| ‖ A ‖ for all α ∈ R and A ∈ Rm×n (2.22)

‖ AB ‖�‖ A ‖‖ B ‖ for all A,B ∈ Rm×n (2.23)

For m = n

‖ A ‖2 = σmax(A) (2.24)

where σmax(A) defines the maximum eigenvalue of the square matrix A.

Moreover, it can be proven that [110]

σmin(A)� ‖ A ‖2 � σmax(A) (2.25)

where σmin(A) is the minimum eigenvalue of the square matrix A. In this thesis, ‖ A ‖ refers

to the ‖ A ‖2.

2.5 Nonlinear Observers

A detailed literature survey on nonlinear observer design techniques is provided in Section

1.2.2. In this section, the nonlinear observer design methods that are applicable to the

special class of systems considered in this thesis and in particular the WMR example that

we are interested in, are studied. The following class of nonlinear systems is considered

ẋ(t) = f (x)+Bu(t)

y(t) =Cx(t)
(2.26)

where f (x) is smooth and nonlinear in one of the states, x(t) ∈ Rn is the state vector, u(t) ∈
Rk is the input, y(t) ∈ Rl is the measured output, B and C are real matrices with appropriate

dimensions.

The methods that are studied in this section are later used in Chapter 3 to design

observers for the WMR system in order to compare the results with the PWA observer.
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• Nonlinear Observers with Output Injection

In this section, a nonlinear observer design approach is studied that is applicable to

the systems for which the nonlinearity just depends on the input and the output. Further-

more, a method of transformation is presented for transforming the nonlinear systems into

the observable form (2.27) in order to design observers. Consider the following class of

nonlinear systems

ẋ = Ax+ γ(y,u)

y =Cx
(2.27)

where x, y and u define the state, output and input, respectively. The nonlinear function γ

depends on the input and the output of the system.

If (A,C) is observable, the following observer can be used to estimate the states of

the nonlinear system defined in (2.27) [71].

˙̂x = Ax̂+ γ(y,u)+L(y−Cx̂) (2.28)

where x̂ is the estimated state and L is the observer gain.

The state estimation error defined in (2.10) for the system and the observer defined

in (2.27) and (2.28) is given by

ė = (A−LC)e (2.29)

Designing observer gain L such that A−LC is Hurwitz, which means its eigenvalues

have negative real parts, guarantees asymptotic stability of the state estimation error. As

the poles of A−LC are placed farther from the origin, the state estimation error converges

faster. It should be noted that if the eigenvalues of A− LC are placed very far from the

origin, we get larger values for observer gains. On the other hand, since this value is

multiplied by the state estimation error, it can cause problems such as amplification of any

noise that might be obtained from measuring the output, for poles that are very far from

the origin. For this reason it is not desired to place eigenvalues of A−LC very far from the

origin.
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Although the proposed method for nonlinear observer design is very easy, it is just

applicable to the special class of nonlinear systems defined in (2.27). However, there are

systems for which the nonlinearity depends on the states that are not being measured.

Therefore, the studied method is just an answer to a limited number of nonlinear observer

design problems. Moreover, the main drawback of this method is that it is assumed that the

nonlinear function γ(y,u) is perfectly known. This assumption affects the state estimation

error in case of modeling errors.

In [71] some conditions are proposed to transform the system

ẋ = f (x)+g(x)u

y = h(x)
(2.30)

into the observable form (2.27). Before presenting the conditions, two definitions are pro-

vided.

Definition 2.5.1. [71] The Lie bracket of [ f ,g] is defined as

[ f ,g] =
∂g
∂x

f − ∂ f
∂x

g (2.31)

where ∂g
∂x and ∂ f

∂x are Jacobian matrices. Also [ f ,g] can be written as ad f g where

adk
f g = [ f ,adk−1

f g] (2.32)

with

ad0
f g = g (2.33)

Definition 2.5.2. For a scalar function h and a vector field f the Lie derivative is defined

as

L f h =
∂h
∂x1

f1 + ...+
∂h
∂xn

fn (2.34)

Lemma 2.5.1. [71] Sufficient conditions for existence of a transformation from system

(2.30) into the observable form (2.27) are as follows

Rank(
∂φ
∂x

) = n (2.35)
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where

φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h

L f h

.

.

.

Ln−1
f h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.36)

and there must exist a vector τ such that

∂φ
∂x

τ = b (2.37)

with

b =
[
0 0 . . . 1

]T
(2.38)

and τ must satisfy⎧⎪⎪⎨
⎪⎪⎩
[adi

f τ,ad j
f τ] = 0, 0 � i, j � n−1

[g,ad j
f τ] = 0, 0 � j � n−2

For the system defined in (2.26) which is linear in the input, [g,ad j
f τ] is equivalent to

[B,ad j
f τ] and is calculated as follows

[B,ad j
f τ] =

∂ (ad j
f τ)

∂x
B (2.39)

Normally, it is very difficult to satisfy the conditions for existence of such transformations.

In addition, if the transformation exists it is not easy to calculate the transformation and

transform the system into the observable form.

• Sliding Mode Observers

The structure of the sliding mode observer is very similar to the standard full-order

Luenberger observer with replacement of the linear innovation term (linear function of

the difference between the estimated output and the measured output) by a discontinuous

function. Two commonly used discontinuous functions in sliding mode observer design
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are the sign function and the saturation function. Due to occurrence of chattering in the

systems the saturation function is preferable to the sign function. Consider the following

system [89]

ẋi
1 = xi

2 +bi
1(y,u)

...

ẋi
qi−1 = xi

qi
+bi

qi−1(x
i
2, ...,x

i
qi−1,y,u)

ẋi
qi
= ai(xd,x0)+bi

qi
(xd,x0,u)

(2.40)

where i denotes the ith subsystem of a nonlinear system, qi is the size of the ith subsystem

and xd is a vector containing (x1, ...xqi) states of the ith subsystem of the nonlinear system.

Lemma 2.5.2. [89] For the system defined in (2.40) the following sliding mode observer

can be designed

˙̂xi
1 = x̂i

2 +bi
1(y,u)+λ i

1sign(ei
1)

˙̂xi
2 = x̂i

3 +bi
2(x̂

i
2,y,u)+λ i

2sign(ei
2)

...

˙̂xi
qi−1 = x̂i

qi
+bi

qi−1(x̂
i
2, ..., x̂

i
qi−1,y,u)+λ i

qi−1sign(ei
qi−1)

˙̂xi
qi
= ai(x̂d, x̂0)+bi

qi
(x̂d, x̂0,u)+λ i

qi
sign(ei

qi
)

(2.41)

where

ei
j = (λ i

j−1sign(ei
j−1)) (2.42)

for j = 2, ...,q and

ei
1 = ei

1 = yi − x̂i
1 (2.43)

where, λ i
qi

are large enough scalars.

Proof. See [89].

For the system defined in (2.26) which is linear in the input, (2.40) can be rewritten
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as follows⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋi
1

ẋi
2

...

ẋi
qi−1

ẋi
qi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . . . . . 0

0 0 1 . . . 0

...
...

0 . . . . . . 0 1

0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi
1

xi
2

...

xi
qi−1

xi
qi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bi
1(y)

bi
2(x

i
2,y)
...

bi
qi−1(x

i
2, ...,x

i
qi−1,y)

ai
qi
(x̂d)+bi

qi
(xd,y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+Bu (2.44)

for which an observer can be designed with the following structure⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̂xi
1

˙̂xi
2

...

˙̂xi
qi−1

˙̂xi
qi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . . . . . 0

0 0 1 . . . 0

...
...

0 . . . . . . 0 1

0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂i
1

x̂i
2

...

x̂i
qi−1

x̂i
qi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bi
1(y)

bi
2(x̂

i
2,y)
...

bi
qi−1(x̂

i
2, ..., x̂

i
qi−1,y)

ai
qi
(x̂d)+bi

qi
(x̂d,y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ i
1sign(ei

1)

λ i
2sign(ei

2)

...

λ i
qi−1sign(ei

qi−1)

λ i
qi

sign(ei
qi
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+Bu

(2.45)

The WMR example can be rewritten such that its subsystems are in the form of

(2.44).

• Backstepping Observers

To design a backstepping observer according to [108], the nonlinear system needs to

be broken into state affine single output subsystems in the following form

ẋ1 = a1(u,y)x2 +b1(u,x1)

...

ẋn−1 = an−1(u,y)xn +bn−1(u,x1, ...xn−1)

ẋn = fn(x)+bn(u,x)

y = x1

(2.46)
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An observer must be designed for each subsystem independently.

Lemma 2.5.3. [108] The following backstepping observer can be designed to estimate the

states of the system defined in (2.46)

˙̂x1 = a1(u,y)x̂2 +b1(u, x̂1)+φ1(x̂)(y− x̂1)

...

˙̂xn−1 = an−1(u,y)x̂n +bn−1(u, x̂1, ...x̂n−1)+φn−1(x̂)(y− x̂1)

˙̂xn = fn(x̂)+bn(u, x̂)+φn(x̂)(y− x̂1)

(2.47)

where

φi =
gn+1,n−i+1

Kn−iKi−1
+

Kn−1

Ki−1Kn−i
(

∂ fn

∂ x̂n−i+1
) (2.48)

for i = 1, ...,n

and

Kr =
r

∏
i=0

ai (2.49)

with a0 = 1.

The formulas to obtain gi, j for different values of i and j can be found in the Ap-

pendix.

Proof. See [108].

For the system defined in (2.26) which is linear in the input, (2.46) can be rewritten

as follows⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

...

ẋn−1

ẋn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1(y) . . . . . . 0

0 0 a2(y) . . . 0

...
...

0 . . . . . . 0 an−1(y)

0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(y)

b2(x2,y)
...

bn−1(x2, ...,xn−1,y)

fn(x)+bn(x,y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+Bu

(2.50)
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for which an observer can be designed with the following structure⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̂x1

˙̂x2

...

˙̂xn−1

˙̂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1(y) . . . . . . 0

0 0 a2(y) . . . 0

...
...

0 . . . . . . 0 an−1(y)

0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂1

x̂2

...

x̂n−1

x̂n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(y)

b2(x̂2,y)
...

bn−1(x̂2, ..., x̂n−1,y)

fn(x̂)+bn(x̂,y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(x̂)(y− x̂1)

φ2(x̂)(y− x̂1)

...

φn−1(x̂)(y− x̂1)

φn(x̂)(y− x̂1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+Bu

(2.51)

The WMR model can be broken into single-output subsystems in the form of (2.50)

in order to design a backstepping observer based on Lemma 2.5.3.

• High-Gain Observers

Consider the following system

ẋ = Ax+βφ(x,z,u)

ż = ψ(x,z,u)

y =Cx

ζ = q(x,z)

(2.52)

where u ∈ RP is the input, y ∈ Rm and ζ ∈ Rs are measured outputs, x ∈ Rρ and z ∈ Rl are

state vectors and

A = block diag[A1, ...,Am], Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . . . . . 0

0 0 1 . . . 0

...
...

0 . . . . . . 0 1

0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ρi×ρi

(2.53)
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β = block diag[β1, ...,βm], βi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ρi×1

(2.54)

C = block diag[C1, ...,Cm],Ci =
[
1 0 . . . . . . 0

]
1×ρi

(2.55)

where 1 � i � m and ρ = ρ1 + ...+ρm represents m chains of integrators.

Lemma 2.5.4. [110] In order to estimate the states of the system defined in (2.52) a high-

gain observer with the following structure can be designed

ˆ̇x = Ax̂+βφ0(x̂,ζ ,u)+H(y−Cx̂) (2.56)

where

H = block diag[H1, ...,Hm], Hi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α i
1

ε
α i

2

ε2

. . .

α i
ρi−1

ερi−1

α i
ρi

ερi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ρi×1

(2.57)

The positive constants α i
j are chosen such that the roots of

Sρi +α i
1Sρi−1 + ...+αρi−1

i S+α i
ρ j
= 0 (2.58)

are in the left half-plane for all i = 1, ...,m and φ0(x,ζ ,u) is a nominal model of φ(x,z,u).

Furthermore, φ(x,z,u) must be locally Lipschitz in its arguments and globally bounded in

x.

Proof. See [110].
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For the system defined in (2.26) which is linear in the input, (2.52) can be rewritten

as follows

ẋ = Ax+βφ(x,z)+B1u

ż = ψ(x,z)+B2u

y =Cx

ζ = q(x,z)

(2.59)

where

B =

⎡
⎣B1

B2

⎤
⎦ (2.60)

For the system defined in (2.59) a high-gain observer can be designed with the following

structure

ˆ̇x = Ax̂+βφ0(x̂,ζ )+B1u+H(y−Cx̂) (2.61)

According to Lemma 2.5.4 a high-gain observer can be designed for the nonlinear model

of the WMR.

• Interconnected Observers

Another approach to design observers for nonlinear systems is to design intercon-

nected observers. Sometimes a system is not in the form for which an observer is available

but it can be seen as an interconnection between several subsystems for which an observer

can be designed. Then, an observer for each subsystem will be designed. This is shown in

Figure 2.4, taken from [1], for a system broken into two subsystems, where Σi denotes the

ith subsystem for which the observer Oi is designed.

In Chapter 3 also an interconnected observer is designed for the WMR model.
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Figure 2.4: Interconnected observers (taken from [1]).

2.6 Summary

In this chapter some general concepts of PWA systems, PWA observer design and some

definitions on boundedness and ultimate boundedness are provided. Furthermore, nonlin-

ear observer design techniques are reviewed. This background material will be used in the

rest of the thesis.
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Chapter 3

Piecewise-Affine Observer Design for a

Class of Nonlinear Systems

3.1 Introduction

In this chapter the design of PWA observers for a class of nonlinear systems with a sampled

output is studied. The problem of observer design is solved through a convex optimization

approach in terms of LMIs. The state estimation error is shown to be ultimately bounded

and convergent to a region when a continuous-time PWA observer is applied to a nonlinear

system with a sampled output. The state estimation error converges to a region and the size

of the region depends on the sampling time and the PWA approximation error. As the sam-

pling time and/or the PWA approximation error decrease, the size of the region decreases.

The proof of convergence is broken in two parts. First, the continuous-time PWA observer

is applied to the nonlinear continuous-time system and it is proven that the state estima-

tion error is ultimately bounded where the bound is proportional to the upper bound on the

PWA approximation error. Then, it is shown that the state estimation error is still conver-

gent when the continuous-time PWA observer is used for state estimation of the nonlinear

sampled-data system. Being interested in studying stability of the state estimation error for
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sampled-data systems arises from the fact that in real applications the observer is imple-

mented in a computer and the output is only available at sampling instants. Furthermore,

stability of the state estimation error in the presence of norm bounded measurement noise

is studied in this chapter.

This chapter is organized as follows. In Section 3.2, a class of nonlinear systems and

their PWA approximation are represented. Then, the observer which guarantees exponen-

tial stability of the state estimation error for the continuous-time PWA approximation of

the nonlinear system is presented. Moreover, stability of the state estimation error when

the proposed observer is used for state estimation of the nonlinear continuous-time system

is studied in Section 3.2. Section 3.3 provides the results on stability of the state estimation

error when the observer is applied to the nonlinear system with a sampled output. Then, the

results independent of the sampling time and dependent on the sampling time are presented

in Section 3.3. In Section 3.4 stability of the state estimation error for the nonlinear system

with a sampled output in the presence of norm bounded measurement noise is studied. Sec-

tion 3.5 contains some numerical examples and simulation results to show the application

of the main results. The chapter is closed by a summary and conclusions.

3.2 Piecewise-Affine Observer Design for a Class of Non-

linear Continuous-Time Systems

The following class of nonlinear systems is considered

ẋ(t) = f (x)+Bu(t)

y(t) =Cx(t)
(3.1)

where f (x) is smooth and nonlinear in one of the states, x(t) ∈ Rn is the state vector, u(t) ∈
Rk is the input, y(t) ∈ Rl is the measured output, B and C are real matrices with appropriate

dimensions. In other words, f (x) has the following structure

f (x) = Āx+ f̄ (xz) (3.2)

36



where Ā is a real matrix with appropriate dimensions, f̄ (xz) is the nonlinear term and xz is

the state number z of the system (3.1).

Remark 3.2.1. Although the class of functions in (3.1) is not the most general form of

nonlinear systems, many real systems can be modeled in this form. Some examples of this

class of systems are autonomous land vehicles [20], rotorcraft unmanned aerial vehicles

[21] and a helicopter pitch model [19].

To design observers for the system defined in (3.1) a PWA approximation of the form

(3.3) is obtained (see [21] for an algorithm to obtain the PWA model),

ẋ(t) = Aix(t)+Bu(t)+bi

y(t) =Cx(t)
(3.3)

for x ∈ Ri, where Ri with i = 1, ..,q are slabs and defined as

Ri = {x|di < HT x < di+1} (3.4)

or equivalently

Ri = {x|‖Eix+ fi‖< 1} (3.5)

where H is a vector of zeros except for one element corresponding to the state xz that

represents the nonlinearity of the system and

Ei =
2HT

di+1 −di
(3.6)

and

fi =
−(di+1 +di)

di+1 −di
(3.7)

The PWA observer has the structure as follows [35]

ˆ̇x(t) = A jx̂(t)+Bu(t)+b j +L jC(x(t)− x̂(t))

ŷ(t) =Cx̂(t)
(3.8)

for x̂ ∈ R j, where L j, j = 1, ...,q are the observer gains.
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The state estimation error is defined as

e(t) = x(t)− x̂(t) (3.9)

To show stability of the state estimation error the S-procedure [174], as presented

in Lemma 2.3.1, will be used. As explained in Section 2.3, the S-procedure is applied in

regions whose projection in the xz, x̂z plane are circles.

Before presenting the main results a lemma will be stated. Lemma 3.2.1 is a mod-

ified version of the theorem presented in [36] for bimodal PWA systems, where also the

S-procedure has been used in a different way. Note that, prior to designing the PWA ob-

server, observability of the PWA system should be checked using the proposed theorems

on observability of PWA and hybrid systems [175, 176, 177, 167]. In order to have an

observable PWA system the following observability matrices must have full rank.

Oi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C

CAi

...

CAn−1
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

Oi j =

⎡
⎢⎢⎢⎢⎣

C

CA j

CAiA j

⎤
⎥⎥⎥⎥⎦ (3.11)

for i, j = 1, ...,q. Equation (3.10) is regarding the observability of the system in Ri and

(3.11) refers to the observability of the system when it goes from Ri to R j.

Lemma 3.2.1. For a given α > 0 the state estimation error defined in (3.9) regarding the

system (3.3) and the observer defined in (3.8), is exponentially stable with a rate of at least

α , if there exist P > 0, λi j < 0 and Yj with i, j = 1, ...,q verifying

• for i = j

AT
j P−CTY T

j +PA j −YjC+αP � 0 (3.12)

38



• for i 
= j⎡
⎢⎢⎢⎢⎣

AT
j P−CTY T

j +PA j −YjC+αP+λi jHHT PAi j −λi jHHT Pbi j +λi jβ jH

AT
i jP−λi jHHT 2λi jHHT −λi j(β j + γi)H

bT
i jP+λi jβ jHT −λi j(β j + γi)HT λi j(γ2

i +β 2
j − r2

i j)

⎤
⎥⎥⎥⎥⎦� 0

(3.13)

where γi, β j and ri j are defined in (2.14), (2.15) and (2.16), respectively and

Ai j = Ai −A j (3.14)

bi j = bi −b j (3.15)

The observer gains can be obtained by

L j = P−1Yj (3.16)

Proof. According to (3.9) the dynamics of the state estimation error for the system and the

observer defined in (3.3) and (3.8) is

ė(t) = (A j −L jC)e(t)+(Ai −A j)x(t)+bi −b j (3.17)

for x ∈ Ri, x̂ ∈ R j. Equation (3.17) is equivalent to

ė(t) = (A j −L jC)e(t)+Ai jx(t)+bi j (3.18)

where Ai j and bi j are defined in (3.14) and (3.15), respectively.

To show stability of the state estimation error the following candidate Lyapunov func-

tion is considered.

V (t) = e(t)T Pe(t) (3.19)

where P > 0. Then, for exponential stability of the state estimation error with a rate of at

least α > 0, it is sufficient to show

V̇ = ė(t)T Pe(t)+ e(t)T Pė(t)�−αe(t)T Pe(t) (3.20)
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• for i = j

Equation (3.18) leads to

ė(t) = (A j −L jC)e(t) (3.21)

Replacing (3.21) in (3.20) and substituting PL j = Yj in order to have a convex problem

yields

AT
j P−CTY T

j +PA j −YjC+αP � 0 (3.22)

which is equivalent to (3.12).

• for i 
= j

Replacing (3.18) in (3.20) and writing in matrix form yields the following matrix

inequality for x ∈ Ri, x̂ ∈ R j

⎡
⎢⎢⎢⎢⎣

e(t)

x(t)

1

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

AT
j P−CT LT

j P+PA j −PL jC+αP PAi j Pbi j

AT
i jP 0n×n 0n×1

bT
i jP 01×n 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e(t)

x(t)

1

⎤
⎥⎥⎥⎥⎦� 0 (3.23)

In order to have a convex problem, all the elements of (3.23) must be linear functions.

Therefore, PL j = Yj is substituted in (3.23), which leads to

⎡
⎢⎢⎢⎢⎣

e(t)

x(t)

1

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

AT
j P−CTY T

j +PA j −YjC+αP PAi j Pbi j

AT
i jP 0n×n 0n×1

bT
i jP 01×n 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e(t)

x(t)

1

⎤
⎥⎥⎥⎥⎦� 0 (3.24)

Recalling εi j from Chapter 2,

εi j = {x, x̂|‖ HT x− γi ‖2
+‖ HT x̂−β j ‖2 � r2

i j} (3.25)

for x ∈ εi j Equation (3.25) can be rewritten in matrix form as

⎡
⎢⎢⎢⎢⎣

e(t)

x(t)

1

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

HHT −HHT β jH

−HHT 2HHT −β jH − γiH

β jHT −β jHT − γiHT γ2
i +β 2

j − r2
i j

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e(t)

x(t)

1

⎤
⎥⎥⎥⎥⎦� 0 (3.26)
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Using Lemma 2.3.1, Equations (3.24), (3.26) and relaxing Ri ×R j to εi j leads to⎡
⎢⎢⎢⎢⎣

AT
j P−CTY T

j +PA j −YjC+αP PAi j Pbi j

AT
i jP 0n×n 0n×1

bT
i jP 01×n 0

⎤
⎥⎥⎥⎥⎦�

−λi j

⎡
⎢⎢⎢⎢⎣

HHT −HHT β jH

−HHT 2HHT −β jH − γiH

β jHT −β jHT − γiHT γ2
i +β 2

j − r2
i j

⎤
⎥⎥⎥⎥⎦

(3.27)

where λi j < 0 for i, j = 1, ...,q are scalars. Equation (3.27) is equivalent to (3.13).

Remark 3.2.2. For the circles containing the origin the S-procedure cannot be used. Such

cases can only happen when i = j. According to Lemma 3.2.1, Equation (3.12) which does

not include the S-procedure is used for such cases.

3.2.1 Stability of the State Estimation Error for the Nonlinear Continuous-

Time System

The proposed observer defined in (3.8) with the gains that are obtained from Lemma 3.2.1

is now applied to the nonlinear continuous-time system defined in (3.1). Theorem 3.2.1

provides a result on stability of the state estimation error.

Theorem 3.2.1. Let

δappi = f (x)−Aix−bi (3.28)

be the PWA approximation error for x ∈ Ri, χP = σmax(P)
σmin(P)

be the condition number of matrix

P with σmax(P) and σmin(P) the maximum and minimum eigenvalues of matrix P, respec-

tively. Assume that there is a solution to the design problem from Lemma 3.2.1. For any

0 < θ < 1 define

μθ =
2 ‖ δappi ‖ χP

3
2

αθ
(3.29)
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When the PWA observer obtained from Lemma 3.2.1 is applied to the nonlinear continuous-

time system defined in (3.1), the state estimation error is globally uniformly ultimately

bounded by μθ and the trajectories of the state estimation error converge to the set

Ω = {e|V (e)� σmax(P)ν2} (3.30)

where

ν = μθ χP
− 1

2 (3.31)

Proof. Using (3.1), (3.8) and (3.9) the dynamics of the state estimation error is as follows

ė(t) = (A j −L jC)e(t)+( f (x)−A jx−b j) (3.32)

for x̂ ∈ R j. Equation (3.32) can be rewritten as

ė(t) = (A j −L jC)e(t)+Ai jx(t)+bi j +δappi
(3.33)

for x ∈ Ri, x̂ ∈ R j, where Ai j, bi j and δappi are defined in (3.14), (3.15) and (3.28), respec-

tively.

• for i = j

Equation (3.33) is equivalent to

ė(t) = (A j −L jC)e(t)+δappi
(3.34)

Replacing (3.34) in the derivative of the candidate Lyapunov function defined in (3.19) and

using matrix P > 0 and observer gains that are designed by (3.12) and calculated by (3.16)

yields

V̇ = e(t)T [AT
j P−CTY T

j +PA j −YjC]e(t)+2e(t)T Pδappi (3.35)

• for i 
= j

Replacing (3.33) in the derivative of the candidate Lyapunov function defined in

(3.19) and using matrix P > 0 and observer gains that are designed by (3.13) and calculated
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by (3.16) yields

V̇ =

⎡
⎢⎢⎢⎢⎣

e(t)

x(t)

1

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

AT
j P−CTY T

j +PA j −YjC PAi j Pbi j

AT
i jP 0n×n 0n×1

bT
i jP 01×n 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e(t)

x(t)

1

⎤
⎥⎥⎥⎥⎦+2e(t)T Pδappi

(3.36)

The rest of the proof is the same for i = j and i 
= j. Using Lemma 3.2.1, Equations (3.12)

and (3.35) for i = j and (3.24) and (3.36) for i 
= j implies that

V̇ �−αeT Pe+2eT Pδappi
(3.37)

Since

−αeT (t)Pe(t)�−ασmin(P)‖ e ‖2 (3.38)

and

2eT Pδappi � 2σmax(P) ‖ e ‖‖ δappi ‖ (3.39)

equation (3.37) can be rewritten as

V̇ �−ασmin(P)‖ e ‖2 +2σmax(P) ‖ e ‖‖ δappi ‖ (3.40)

For any 0 < θ < 1, adding and subtracting αθσmin(P)‖ e ‖2 to (3.40) leads to

V̇ �−α(1−θ)σmin(P)‖ e ‖2 −αθσmin(P)‖ e ‖2 +2σmax(P) ‖ e ‖‖ δappi ‖ (3.41)

If

−αθσmin(P)‖ e ‖2 +2σmax(P) ‖ e ‖‖ δappi ‖� 0 (3.42)

or alternatively

‖ e ‖� 2 ‖ δappi ‖ χP

αθ
(3.43)

then (3.41) leads to

V̇ �−α(1−θ)σmin(P)‖ e ‖2 (3.44)
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Since

V (e)� σmax(P)‖ e ‖2 (3.45)

therefore

−α(1−θ)σmin(P)‖ e ‖2 �−α(1−θ)χ−1
P V (e) (3.46)

then, (3.44) and (3.43) lead to

V̇ �−α(1−θ)χ−1
P V (e) (3.47)

Define

Λ = {e| ‖ e ‖� ν} (3.48)

where ν is defined in (3.31). According to (3.47) for e ∈ Rn \Λ

V (e(t))�V (e(t0))e−α(1−θ)χ−1
P (t−t0) (3.49)

Using σmin(P)‖ e ‖2 � V (e) � σmax(P)‖ e ‖2 and (3.49) it can be concluded that for e ∈
Rn \Λ

‖ e(t) ‖�‖ e(t0) ‖ χ
1
2
P e−0.5α(1−θ)χ−1

P (t−t0) (3.50)

Then according to (3.50) there will be a positive and finite time t1 > t0 for any 0 < θ < 1

such that e(t1) ∈ Λ. Note that Λ ⊆ Ω. This can be proved by contradiction. Assume that it

is not true that Λ ⊆ Ω. Then, there exists at least one e∗ ∈ Λ for which eT∗ Pe∗ > σmax(P)ν2,

a contradiction because eT∗ Pe∗ � σmax(P)ν2 for e∗ ∈ Λ. Since V̇ � 0 at the boundary of Ω,

Ω is an invariant set for the state estimation error. Consequently, since e(t1) ∈ Λ ⊆ Ω, then

e(t) ∈ Ω for all t � t1 and all 0 < θ < 1.

Since for all t � t1 and all 0 < θ < 1 we know that e(t) ∈ Ω, then according to (3.30)

σmin(P)‖ e ‖2 �V (e)� σmax(P)ν2 (3.51)

then, (3.51) leads to

‖ e ‖� μθ∀t � t1 (3.52)

with μθ defined in (3.29).
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Remark 3.2.3. The size of the region to which the trajectories of the state estimation error

converge decreases as the size of the PWA approximation error decreases.

3.3 Piecewise-Affine Observer Design for a Class of Non-

linear Sampled-Data Systems

In this part it is assumed that the output measurements are only available at sampling in-

stants kT , where T > 0 is the sampling time. In other words

ẋ(t) = f (x)+Bu(t)

y(kT ) =Cx(kT ) (3.53)

The observer now is described as

˙̂x(t) = A jx̂(t)+Bu(t)+b j +L jC(x(kT )− x̂(t))

ŷ(t) =Cx̂(t)
(3.54)

The state estimation error dynamics for the continuous-time PWA observer applied to the

nonlinear sampled-data system, based on (3.9), (3.53) and (3.54) is

ė(t) = (A j −L jC)e(t)+( f (x)−A jx(t)−b j)+L jC(x(t)− x(kT )) (3.55)

for x̂ ∈ R j, which is equivalent to

• for i = j

ė(t) = (A j −L jC)e(t)+δappi +L jCδ̄Samp (3.56)

• for i 
= j

ė(t) = (A j −L jC)e(t)+Ai jx(t)+bi j +δappi +L jCδ̄Samp (3.57)
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for x ∈ Ri, x̂ ∈ R j, where Ai j, bi j and δappi are defined in (3.14), (3.15) and (3.28), respec-

tively, and δ̄Samp is the error due to the sampling defined as

δ̄Samp = x(t)− x(kT ) (3.58)

Also,

δSamp = L jCδ̄Samp (3.59)

Stability of the state estimation error when the continuous-time PWA observer is applied to

the nonlinear sampled-data system is studied in the following section.

3.3.1 Stability of the State Estimation Error for the Nonlinear Sampled-

Data System

In what follows, two sets of conditions for stability of the state estimation error for the

continuous-time PWA observer applied to the nonlinear sampled-data system are provided.

In the first part the problem is discussed independently of the sampling time, whereas in

the second part conditions dependent on the sampling time are provided for stability of the

state estimation error.

Conditions Independent of the Sampling Time

In Theorem 3.3.1 it is stated that the state estimation error is ultimately bounded when the

continuous-time PWA observer is applied to the nonlinear sampled-data system.

Theorem 3.3.1. Let δappi and δsamp be as defined in (3.28) and (3.59), respectively, χP =

σmax(P)
σmin(P)

be the condition number of matrix P. Assume that there is a solution to the design

problem from Lemma 3.2.1. For any 0 < θ < 1 define

ηθ =
2(‖ δappi ‖+ ‖ δsamp ‖)χP

3
2

αθ
(3.60)

When the PWA observer obtained from Lemma 3.2.1 is applied to the nonlinear sampled-

data system, the state estimation error of the nonlinear sampled-data system defined in
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(3.53) is globally uniformly ultimately bounded by ηθ and the trajectories of the state

estimation error converge to the set

Σ = {e|V (e)� σmax(P)ζ 2} (3.61)

where

ζ = ηθ χP
− 1

2 (3.62)

Proof. The proof of Theorem 3.3.1 is the same as the proof of Theorem 3.2.1 with ‖ δappi ‖
replaced by ‖ δappi ‖+ ‖ δsamp ‖ because

‖ δappi +δsamp ‖�‖ δappi ‖+ ‖ δsamp ‖ (3.63)

Remark 3.3.1. Applying the continuous-time PWA observer to the nonlinear sampled-

data system, the state estimation error converges to a region and the size of the region

depends on the sampling error and the PWA approximation error. The size of the region

decreases as the PWA approximation error and/or the sampling error decrease. Since

sampling error depends on the deviation of the continuous-time state from the last measured

state during the sampling interval, changes in the size of the region after convergence of

the state estimation error, depends on the changes of the state at each sampling interval.

Though, the state estimation error is ultimately bounded with the bound presented in (3.60).

Conditions Dependent on the Sampling Time

In Theorem 3.3.2 convergence of the state estimation error for the nonlinear sampled-data

system with conditions dependent on the sampling time is discussed.

Theorem 3.3.2. Let δappi and δsamp be as defined in (3.28) and (3.59), respectively, χP =

σmax(P)
σmin(P)

be the condition number of matrix P. Furthermore,

A = maxi=1,...,q ‖ Ai ‖ (3.64)
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b = maxi=1,...,q ‖ bi ‖ (3.65)

‖ B ‖= B̄ (3.66)

‖C ‖= C̄ (3.67)

‖ u ‖�U (3.68)

L = max j=1,...,q ‖ L j ‖ (3.69)

Assume that there is a solution to the design problem from Lemma 3.2.1. For any 0 < θ < 1

define

ρθ =
2χP

3
2

αθ
(‖ δappi ‖+LC̄T [AX(k,T )+ B̄U +b]) (3.70)

When the PWA observer obtained from Lemma 3.2.1 is applied to the nonlinear sampled-

data system, the state estimation error is globally uniformly bounded by ρθ and the trajec-

tories of the state estimation error converge to the set

Π = {e|V (e)� σmax(P)ξ 2} (3.71)

where

ξ = ρθ χP
− 1

2 (3.72)

Proof. Integrating (3.3) for t ∈ [kT,(k+1)T ] yields [139]

x(t)− x(kT ) =
∫ t

kT
Ai(τ)x(τ)dτ +

∫ t

kT
B(τ)u(τ)dτ +

∫ t

kT
bi(τ)dτ (3.73)

Equation (3.73) is rewritten as

‖ x(t)− x(kT ) ‖� A
∫ t

kT
‖ x(τ) ‖ dτ +(t − kT )[B̄U +b] (3.74)
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Since all possible dynamics in a PWA system are affine, finite escape times cannot occur

when the coefficients of each affine system are uniformly bounded and therefore there will

be a finite constant

X(k,T ) = supkT�t�kT+T ‖ x(t) ‖ (3.75)

such that

‖ x(t) ‖kT�t�kT+T � X(k,T ) (3.76)

For (3.74), the highest possible bound is the one corresponding to t = (k+1)T which leads

to

‖ x(t)− x(kT ) ‖� AT X(k,T )+T [B̄U +b] (3.77)

On the other hand (3.59) leads to

‖ δSamp ‖� LC̄ ‖ x(t)− x(kT ) ‖ (3.78)

Equations (3.77) and (3.78)

‖ δSamp ‖� LC̄(AT X(k,T )+T [B̄U +b]) (3.79)

which using the results of Theorem 3.3.1 leads to

‖ e ‖� 2χP
3
2

αθ
(‖ δappi ‖+LC̄T [AX(k,T )+ B̄U +b]) (3.80)

Remark 3.3.2. The continuous-time PWA observer defined in (3.8) can be used for state

estimation of the nonlinear sampled-data system defined in (3.53). The state estimation

error converges to a region and the size of the region depends on the sampling time and the

PWA approximation error. The size of the region decreases as the sampling time and/or the

PWA approximation error decrease. This is illustrated in Figure 3.1.
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Figure 3.1: PWA Observer Design for a Class of Nonlinear Sampled-Data Systems.

3.4 Piecewise-Affine Observer Design for a Class of Non-

linear Sampled-Data Systems in the Presence of Norm

Bounded Measurement Noise

In this part it is assumed that measurement noise exists in the nonlinear sampled-data sys-

tem. The objective is to implement the continuous-time PWA observer that is designed for

the noise free situation on the nonlinear sampled-data system in the presence of measure-

ment noise.

The following structure is considered for the system

ẋ(t) = f (x)+Bu(t)

y(kT ) =Cx(kT )+ v
(3.81)

where v is the measurement noise and it is assumed to be norm bounded. In other words,

the noise has a known upper bound.

For the system defined in (3.81) the PWA observer has the following structure

ˆ̇x(t) = A jx̂(t)+Bu(t)+b j +L j(Cx(kT )+ v−Cx̂(t))

ŷ(t) =Cx̂(t)
(3.82)

In Theorem 3.4.1 it is shown that when the continuous-time PWA observer (3.82)

is applied to the system defined in (3.81), the state estimation error is still convergent. In

other words, the continuous-time PWA observer is robust to norm bounded measurement

noise.
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Theorem 3.4.1. Let δappi and δsamp be as defined in (3.28) and (3.59), respectively, χP =

σmax(P)
σmin(P)

be the condition number of matrix P. Assume that there exists κ > 0 such that the

noise term v from (3.81) satisfies ‖ v ‖< κ . Suppose that there is a solution to the design

problem from Lemma 3.2.1. For any 0 < θ < 1 define

ϑθ =
2(‖ δappi ‖+ ‖ δsamp ‖+Lκ)χP

3
2

αθ
(3.83)

When the PWA observer obtained from Lemma 3.2.1 is applied to the nonlinear sampled-

data system in the presence of norm bounded measurement noise, the state estimation error

is globally uniformly ultimately bounded by ϑθ and the trajectories of the state estimation

error converge to the set

S = {e|V (e)� σmax(P)φ 2} (3.84)

where

φ = ϑθ χP
− 1

2 (3.85)

Proof. The dynamics of the state estimation error for the system defined in (3.81) and

observer defined in (3.82) is as follows

ė(t) = (A j −L jC)e(t)+ f (x)−A jx−b j +L jC(x− x(kT ))−L jv (3.86)

for x̂ ∈ R j, which is equivalent to

• for i = j

ė(t) = (A j −L jC)e(t)+δappi +δSamp −L jv (3.87)

• for i 
= j

ė(t) = (A j −L jC)e(t)+Ai jx(t)+bi j +δappi +δSamp −L jv (3.88)

where Ai j, bi j, δappi and δSamp are defined in (3.14), (3.15), (3.28) and (3.59), respectively.
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The following inequality is obtained for the derivative of the candidate Lyapunov

function defined in (3.19) using Lemma 3.2.1, Equations (3.12) and (3.87) for i = j and

(3.24) and (3.88) for i 
= j

V̇ �−αeT Pe+2eT Pδapp j +2eT PδSamp −2eT PL jv (3.89)

Using (3.69) and

‖ v ‖< κ (3.90)

leads to

−2eT PL jv � 2 ‖ e ‖ σmax(P)Lκ (3.91)

The rest of the proof is the same as the proof of Theorem 3.2.1 with ‖ δappi ‖ replaced by

‖ δappi ‖+ ‖ δsamp ‖+Lκ .

Remark 3.4.1. The continuous-time PWA observer can be used for state estimation of the

nonlinear sampled-data system with norm bounded measurement noise yielding a conver-

gent state estimation error. The trajectories of the state estimation error converge to a

region. The size of the region depends on the PWA approximation error, sampling time and

the size of the bound on the norm of the noise.

In Table 3.4 the results of the proposed theorems on ultimate bound of the state

estimation error are compared.

System Bound on the State Estimation Error

Nonlinear Continuous-Time System
2‖δappi‖χP

3
2

αθ

Nonlinear Sampled-Data System (Independent

of the Sampling Time)

2(‖δappi‖+‖δsamp‖)χP
3
2

αθ

Nonlinear Sampled-Data System (Dependent

on the Sampling Time)

2χP
3
2

αθ (‖ δappi ‖+LC̄T [AX(k,T )+ B̄U +b])

Nonlinear Sampled-Data System with Mea-

surement Noise

2(‖δappi‖+‖δsamp‖+Lκ)χP
3
2

αθ
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Figure 3.2: WMR schematic.

3.5 Numerical Example

In this section a numerical example with simulation results is provided to show the appli-

cation of the main results.

Example 3.5.1. Wheeled Mobile Robot (WMR):

In this example a dynamical model of a WMR is presented [20, 125]. The nonlinear

state space equations are

ẏ = u0 sinψ

ψ̇ = R

Ṙ =
M
I

(3.92)

where ψ is the heading angle with time derivative R, y is the signed distance of the cart to

the x axis and M is the torque and it is the input to the system. The constant velocity is

u0 = 1m
s and the moment of inertia is I = 1kg.m2. In Figure 3.2 the schematic model of the

WMR is provided.

The system dynamics are described as⎡
⎢⎢⎢⎢⎣

ẏ

ψ̇

Ṙ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y

ψ

R

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

sinψ

0

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎦M (3.93)
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Figure 3.3: PWA approximation of “sinψ”.

In this example the nonlinear term is sinψ which is approximated for ψ ∈ (−π
2 ,

3π
2 )

by two lines as illustrated in Figure 3.3. The bimodal PWA approximation of the system is

obtained by the following state space partitioning [21]

R1 = {x ∈ R3|ψ ∈ (−π
2
,

π
2
)} (3.94)

R2 = {x ∈ R3|ψ ∈ (
π
2
,
3π
2
)} (3.95)

as follows

∀x ∈ R1⎡
⎢⎢⎢⎢⎣

ẏ

ψ̇

Ṙ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y

ψ

R

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎦M

(3.96)
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∀x ∈ R2⎡
⎢⎢⎢⎢⎣

ẏ

ψ̇

Ṙ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0 −0.6366 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y

ψ

R

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

2

0

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎦M

(3.97)

C =

⎡
⎣1 0 0

0 1 0

⎤
⎦ (3.98)

In order to have an observable system the following observability matrices must have full

rank.

O1 =

⎡
⎢⎢⎢⎢⎣

C

CA1

CA1A1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.99)

O2 =

⎡
⎢⎢⎢⎢⎣

C

CA2

CA2A2

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 −0.6366 0

0 0 1

0 0 −0.6366

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.100)

O12 =

⎡
⎢⎢⎢⎢⎣

C

CA2

CA1A2

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 −0.6366 0

0 0 1

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.101)
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O21 =

⎡
⎢⎢⎢⎢⎣

C

CA1

CA2A1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 1 0

0 0 1

0 0 −0.6366

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.102)

Since, O1, O2, O12 and O21 have full rank, the PWA system is observable.

The LMIs defined in Lemma 3.2.1 are solved using SeDuMi [171] and YALMIP

[172] in MATLAB. By considering α = 4.041 the following parameters are obtained,

L1 =

⎡
⎢⎢⎢⎢⎣

625.6122 −643.1309

−12.4697 18.3164

−35.1906 67.4576

⎤
⎥⎥⎥⎥⎦ (3.103)

L2 =

⎡
⎢⎢⎢⎢⎣

636.5618 −643.3714

−12.6996 18.3232

−35.8737 67.5422

⎤
⎥⎥⎥⎥⎦ (3.104)

The initial conditions are considered such that the system and the observer are in different

regions at the initial time.

x0 =
[
0.5 3π

4 0.1

]T
(3.105)

x̂0 =
[
0 0 0

]T
(3.106)

At first, the PWA observer is applied to the nonlinear continuous-time system. Figures 3.4,

3.5 and 3.6 show the estimation and the estimation errors of the position y, heading angle

ψ and heading angle rate R, respectively. All the states are estimated correctly after a short

time. In other words, state estimation errors have converged to zero after a few seconds.

Figure 3.7 illustrates the regions related to the PWA approximation in which the

observer is operating. Table 3.1 summarizes the results of the state estimation for the

nonlinear continuous-time system.
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Figure 3.4: Estimation and estimation error of the position “y” of the nonlinear continuous-

time system, using PWA observer.

Figure 3.5: Estimation and estimation error of the heading angle “ψ” of the nonlinear

continuous-time system, using PWA observer.

57



Figure 3.6: Estimation and estimation error of the heading angle rate “R” of the nonlinear

continuous-time system, using PWA observer.

Then, the observer is applied to the nonlinear sampled-data system with sampling

time T = 0.2s. The estimations and the state estimation errors of the nonlinear sampled-

data system are shown in Figures 3.8, 3.9 and 3.10. As expected, the state estimation errors

have converged to small regions after a short time. In other words, the state estimation

errors are ultimately bounded. This continuous the results of the theorems which indicated

that the state estimation error is ultimately bounded when the PWA observer is applied to

the nonlinear sampled-data system.

Table 3.2 shows the results of the state estimation for the nonlinear sampled-data

WMR Model.

Then a sampling time T = 0.1s is considered for the nonlinear sampled-data system

and white Gaussian noise with variance δ = 0.01 is added to the output. Using a saturation

block, the generated white Gaussian noise is norm bounded. Figure 3.11 shows the state

estimation errors for the nonlinear sampled-data system in the presence of measurement

noise. The state estimation errors have converged to small regions around zero. As proven,

the proposed observer is robust to norm bounded measurement noise. Table 3.3 contains
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Figure 3.7: PWA regions in which the observer is operating.

the results of the state estimation for the nonlinear sampled-data system in the presence of

measurement noise.

In what follows several nonlinear observers which are presented in Section 2.5 are

applied to the nonlinear model of the WMR and the results of the state estimation are

provided. All the observer gains are designed such that 1� ts � 3 for the position, 3� ts � 4

for the heading angle and 3 � ts � 4 for the heading angle rate, where ts defines the time

at which the state estimation error reaches its steady state value. For all the observers

three experiments, as performed for the PWA observer, are done: applying the observer to

the nonlinear continuous-time system, applying the observer to the nonlinear system with

sampled output (T = 0.2s) and applying the observer to the nonlinear sampled-data system

with measurement noise (T = 0.1s and δ = 0.01). The initial conditions are considered the

same as the PWA observer implementation. Tables 3.1, 3.2 and 3.3 summarize the results

of the state estimation for different observers.
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Figure 3.8: Estimation and estimation error of the position “y” of the nonlinear sampled-

data system (T = 0.2s), using PWA observer.

Figure 3.9: Estimation and estimation error of the heading angle “ψ” of the nonlinear

sampled-data system (T = 0.2s), using PWA observer.
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Figure 3.10: Estimation and estimation error of heading angle rate “R” of the nonlinear

sampled-data system (T = 0.2s), using PWA observer.

Figure 3.11: State estimation errors for the nonlinear sampled-data system in the presence

of norm bounded white Gaussian measurement noise, using PWA observer.
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• Nonlinear Observer With Output Injection

In this part according to the material presented in Section 2.5 a nonlinear observer

with output injection is designed for the nonlinear model of the WMR.

Since the pair (A,C) is observable, placing the eigenvalues of A−LC at [−400; −4+

4i; −4−4i], the observer gain L can be calculated, where

A =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦ (3.107)

The poles of A−LC are placed such that the speed of convergence of the nonlinear

observer is as desired. The observer gain is as follows

L =

⎡
⎢⎢⎢⎢⎣

398.758 30.9828

16.0338 9.242

146.1509 43.4553

⎤
⎥⎥⎥⎥⎦ (3.108)

Figures 3.12, 3.13 and 3.14 show the estimations and the estimation errors for position,

heading angle and heading angle rate of the nonlinear continuous-time WMR system, re-

spectively. All three states are estimated correctly after a few seconds and the state estima-

tion errors have converged to small regions around zero.

The results of the state estimation for the nonlinear sampled-data system are plotted

in Figures 3.15, 3.16 and 3.17. As depicted in Figures 3.15, 3.16 and 3.17 the estimation

errors of the position y, heading angle ψ and heading angle rate R have converged after a

few seconds.

Figure 3.18 shows the state estimation errors when the nonlinear observer with output

injection is applied to the WMR nonlinear sampled-data model in the presence of measure-

ment noise.

The results show that state estimation errors converge when the nonlinear observer

with output injection is applied to the nonlinear model of the WMR.

• Sliding Mode Observer
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Figure 3.12: Estimation and estimation error of the position “y” of the nonlinear

continuous-time system, using nonlinear observer with output injection.

Figure 3.13: Estimation and estimation error of heading angle “ψ” of the nonlinear

continuous-time system, using nonlinear observer with output injection.
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Figure 3.14: Estimation and estimation error of heading angle rate “R” of the nonlinear

continuous-time system, using nonlinear observer with output injection.

Figure 3.15: Estimation and estimation error of the position “y” of the nonlinear sampled-

data system (T = 0.2s), using nonlinear observer with output injection.
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Figure 3.16: Estimation and estimation error of the heading angle “ψ” of the nonlinear

sampled-data system (T = 0.2s), using nonlinear observer with output injection.

Figure 3.17: Estimation and estimation error of the heading angle rate “R” of the nonlinear

sampled-data system (T = 0.2s), using nonlinear observer with output injection.
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Figure 3.18: State estimation errors for the nonlinear sampled-data system in the presence

of norm bounded white Gaussian measurement noise, using nonlinear observer with output

injection.

For the nonlinear system defined in (3.92) a sliding mode observer can be designed

using the approach provided in Section 2.5 with the following structure

ˆ̇ψ = R̂+λ1Sign(ψ − ψ̂)

ˆ̇R = u+λ2Sign(λ1Sign(ψ − ψ̂))

ˆ̇y = sinψ +λ3Sign(y− ŷ)

(3.109)

where λ1 = 1, λ2 = 5 and λ3 = 8 are considered.

The results of the estimation for the position, heading angle and heading angle rate

of the continuous-time nonlinear system are provided in Figures 3.19, 3.20 and 3.21, re-

spectively.

The results of the state estimation for the nonlinear sampled-data system are provided

in Figures 3.22, 3.23 and 3.24.

Figure 3.25 shows the state estimation error for the nonlinear sampled-data WMR in

the presence of measurement noise.

The results show that the state estimation errors are ultimately bounded when the
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Figure 3.19: Estimation and estimation error of the position “y” of the continuous-time

nonlinear system, using sliding mode observer.

Figure 3.20: Estimation and estimation error of the heading angle “ψ” of the continuous-

time nonlinear system, using sliding mode observer.
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Figure 3.21: Estimation and estimation error of the heading angle “R” of the continuous-

time nonlinear system, using sliding mode observer.

Figure 3.22: Estimation and estimation error of the position “y” of the nonlinear sampled-

data system (T = 0.2s), using sliding mode observer.
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Figure 3.23: Estimation and estimation error of the heading angle “ψ” of the nonlinear

sampled-data system (T = 0.2s), using sliding mode observer.

Figure 3.24: Estimation and estimation error of the heading angle “R” of the nonlinear

sampled-data system (T = 0.2s), using sliding mode observer.
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Figure 3.25: State estimation errors for the nonlinear sampled-data system in the presence

of norm bounded white Gaussian measurement noise, using sliding mode observer.

sliding mode observer is applied to the nonlinear model of the WMR.

• High-Gain Observer

The nonlinear model of the WMR defined in (3.92) can be written in the following

form for which a high-gain observer can be designed based on the method represented in

Section 2.5. ⎡
⎣ψ̇

Ṙ

⎤
⎦=

⎡
⎣0 1

0 0

⎤
⎦
⎡
⎣ψ

R

⎤
⎦+

⎡
⎣0

1

⎤
⎦u

ẏ = sinψ

ζ1 =
[
1 0

]⎡⎣ψ

R

⎤
⎦

ζ2 = y

(3.110)
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Figure 3.26: Estimation and estimation error of the position “y” of the continuous-time

nonlinear system, using high-gain observer.

For the system defined in (3.110) a high-gain observer can be designed as follows

⎡
⎣ ˆ̇ψ

ˆ̇R

⎤
⎦=

⎡
⎣0 1

0 0

⎤
⎦
⎡
⎣ψ̂

R̂

⎤
⎦+

⎡
⎣0

1

⎤
⎦u+H1(ψ − ψ̂)

ˆ̇y = sinψ +H2(y− ŷ)

(3.111)

where

H1 =

⎡
⎣α1

ε
α2

ε2

⎤
⎦ (3.112)

and

H2 =
α3

ε
(3.113)

with

ε = 0.8,α1 = 5,α2 = 6,α3 = 2.5 (3.114)

Figures 3.26, 3.27 and 3.28 show the estimation and the state estimation errors of

the position, the heading angle and the heading angle rate of the continuous-time nonlinear

system, respectively.
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Figure 3.27: Estimation and estimation error of the heading angle “ψ” of the continuous-

time nonlinear system, using high-gain observer.

Figure 3.28: Estimation and estimation error of the heading angle rate “R” of the

continuous-time nonlinear system, using high-gain observer.
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Figure 3.29: Estimation and estimation error of the position “y” of the nonlinear sampled-

data system (T = 0.2s), using high-gain observer.

The results of the estimation of the position, the heading angle and the heading angle

rate of the nonlinear sampled-data system are shown in Figures 3.29, 3.30 and 3.31, respec-

tively. Figure 3.29 is plotted for t = 60s to show the small region around zero to which the

position estimation error has converged.

The position estimation error, the heading angle estimation error and the heading

angle rate estimation error of the nonlinear sampled-data system in the presence of mea-

surement noise are shown in Figure 3.32.

The state estimation errors are ultimately bounded when the high-gain observer is

applied to the nonlinear model of the WMR.

• Backstepping Observer

To design a backstepping observer for the nonlinear model of the WMR defined in

(3.92), according to the approach provided in Section 2.5 the system should be broken into
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Figure 3.30: Estimation and estimation error of the heading angle “ψ” of the nonlinear

sampled-data system (T = 0.2s), using high-gain observer.

Figure 3.31: Estimation and estimation error of the heading angle rate “R” of the nonlinear

sampled-data system (T = 0.2s), using high-gain observer.
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Figure 3.32: State Estimation Errors for the nonlinear sampled-data system in the presence

of norm bounded white Gaussian measurement noise, using high-gain observer.

two single-input subsystems as follows

⎡
⎣ψ̇

Ṙ

⎤
⎦=

⎡
⎣0 1

0 0

⎤
⎦
⎡
⎣ψ

R

⎤
⎦+

⎡
⎣0

u

⎤
⎦

ẏ = sinψ

ζ1 = ψ

ζ2 = y

(3.115)

The system (3.115) is equivalent to

⎡
⎣Ż1,1

Ż1,2

⎤
⎦=

⎡
⎣0 1

0 0

⎤
⎦
⎡
⎣Z1,1

Z1,2

⎤
⎦+

⎡
⎣0

u

⎤
⎦

Ż2,1 = sinζ1

ζ1 = Z1,1

ζ2 = Z2,1

(3.116)

where Z1,1 = ψ , and Z1,2 = R and Z2,1 = y.
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For the system defined in (3.116) a backstepping observer can be designed with the

following structure⎡
⎣ ˆ̇Z1,1

ˆ̇Z1,2

⎤
⎦=

⎡
⎣0 1

0 0

⎤
⎦
⎡
⎣Ẑ1,1

Ẑ1,2

⎤
⎦+

⎡
⎣0

u

⎤
⎦+

⎡
⎣φ1,1(Ẑ1,1, Ẑ1,2)(Z1,1 − Ẑ1,1)

φ1,2(Ẑ1,1, Ẑ1,2)(Z1,1 − Ẑ1,1)

⎤
⎦

ˆ̇Z2,1 = sinζ1 +φ2,1(Ẑ2,1)(Z2,1 − Ẑ2,1)

(3.117)

According to (2.48), (2.49) and the Appendix

φ1,1 =C2 +C1

φ1,2 = 1+C1 +C2

φ2,1 =C1

(3.118)

where

C1 = 2,C2 = 3 (3.119)

The results of the estimation and estimation errors of the position, heading angle and

the heading angle rate of the continuous-time nonlinear system are shown in Figures 3.33,

3.34 and 3.35, respectively.

Figures 3.36, 3.37 and 3.38 show the estimations and estimation errors of the posi-

tion, the heading angle and the heading angle rate of the nonlinear sampled-data system,

respectively. Figure 3.36 is plotted for t = 80s to show the small region around zero to

which the position estimation error has converged.

Fiure 3.39 shows the state estimation errors when the backstepping observer is ap-

plied to the nonlinear sampled-data model of the WMR in the presence of measurement

noise. The state estimation errors are convergent and ultimately bounded.

• Interconnected Observers

The nonlinear system defined in (3.92) can be broken into two subsystems as follows

Σ1 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣ψ̇

Ṙ

⎤
⎥⎥⎦=

⎡
⎢⎢⎣0 1

0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣ψ

R

⎤
⎥⎥⎦+

⎡
⎢⎢⎣0

u

⎤
⎥⎥⎦

ζ1 = ψ

(3.120)
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Figure 3.33: Estimation and estimation error of the position “y” of the continuous-time

nonlinear system, using backstepping observer.

Figure 3.34: Estimation and estimation error of the heading angle “ψ” of the continuous-

time nonlinear system, using backstepping observer.
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Figure 3.35: Estimation and estimation error of the heading angle rate “R” of the

continuous-time nonlinear system, using backstepping observer.

Figure 3.36: Estimation and estimation error of the position “y” of the nonlinear sampled-

data system (T = 0.2s), using backstepping observer.
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Figure 3.37: Estimation and estimation error of the heading angle “ψ” of the nonlinear

sampled-data system (T = 0.2s), using backstepping observer.

Figure 3.38: Estimation and estimation error of the heading angle rate “R” of the nonlinear

sampled-data system (T = 0.2s), using backstepping observer.
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Figure 3.39: State estimation errors of the nonlinear sampled-Data system in the presence

of norm bounded white Gaussian measurement noise, using backstepping observer.

and

Σ2 :

⎧⎪⎪⎨
⎪⎪⎩

ẏ = sinζ1

ζ2 = y
(3.121)

where the output of the first subsystem is the input to the second subsystem. For each of

Σ1 and Σ2 observers can be designed. The gains of the observers are designed by placing

the eigenvalues of A−L1C at [−4; −3] as follows

L1 =

⎡
⎣ 7

12

⎤
⎦ ,L2 = 2.5 (3.122)

where L1 and L2 are the observer gains for Σ1 and Σ2, respectively.

The results of the estimation and estimation error of the position, the heading angle

and the heading angle rate of the continuous-time nonlinear system are shown in Figures

3.40, 3.41 and 3.42, respectively.

Figures 3.43, 3.44 and 3.45 show the estimation and the estimation errors of the

position, the heading angle and the heading angle rate of the nonlinear sampled-data WMR,
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Figure 3.40: Estimation and estimation error of the position “y” of the continuous-time

nonlinear system, using interconnected observer.

Figure 3.41: Estimation and estimation error of the heading angle “ψ” of the continuous-

time nonlinear system, using interconnected observer.
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Figure 3.42: Estimation and estimation error of the heading angle rate “R” of the

continuous-time nonlinear system, using interconnected observer.

respectively. Figure 3.43 is plotted for t = 80s to show the small region around zero to

which the position estimation error has converged.

The state estimation errors of the nonlinear sampled-data system in the presence of

measurement noise are shown in Figure 3.46.

The interconnected observer is able to estimate the states of the nonlinear WMR

system with convergent state estimation errors.

Tables 3.1, 3.2 and 3.3 summarize the results of the state estimation error for different

observers for the nonlinear continuous-time system, nonlinear sampled-data system and

nonlinear sampled-data system in the presence of measurement noise, respectively. The

results are concluded after performing the experiments for different initial conditions. The

parameters emax and erms have been commonly used to evaluate the performance of the

observers in transient and steady state, respectively [96, 178]. In this table emax shows the

maximum value for the estimation error in the transient time, and erms is the root mean

82



Figure 3.43: Estimation and estimation error of the position “y” of the nonlinear sampled-

data system (T = 0.2s), using interconnected observer.

Figure 3.44: Estimation and estimation error of the heading angle “ψ” of the nonlinear

sampled-data system (T = 0.2s), using interconnected observer.
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Figure 3.45: Estimation and estimation error of the heading angle rate “R” of the nonlinear

sampled-data system (T = 0.2s), using interconnected observer.

Figure 3.46: State estimation errors for the nonlinear sampled-data system in the presence

of norm bounded white Gaussian measurement noise, using interconnected observer.
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square error and is defined as

erms =

√
1

n
(e2

1 + ...+ e2
n) (3.123)

where e1 denotes the state estimation error at the time that the state estimation error reaches

its steady state value (ts) and en is the error at the final time (tn). In other words erms is

calculated by ignoring the transient data and uses the data starting from ts to the end.

Note that for the position y and the heading angle ψ the maximum error in the tran-

sient (emax) occurs at the initial condition and therefore it is not provided in the table.

Observers Transient Performance (emax) Steady State Performance (erms)

R y ψ R

PWA 7.1461 0.0014 0.00016 0.00088

Sliding Mode 3.9421 0.0061 0.00081 0.0041

Backstepping 2.308 0.0004 0.000016 0.000065

High-Gain 2.5335 0.0003 0.00022 0.0001

Output Injection 6.0806 0.0015 0.00006 0.0011

Interconnected 2.9071 0.00022 0.00011 0.00025

Table 3.1: Different observers implemented on the nonlinear continuous-time WMR

model.

Observers Transient Performance (emax) Steady State Performance (erms)

R y ψ R

PWA 7.1062 0.0444 0.0101 0.0052

Sliding Mode 3.9314 0.3247 0.0123 0.035

Backstepping 2.2956 0.0708 0.0116 0.0023

High-Gain 2.5125 0.0777 0.012 0.003

Output Injection 6.045 0.0828 0.0101 0.0097

Interconnected 2.8963 0.0677 0.0106 0.0032

Table 3.2: Different observers implemented on the nonlinear sampled-data (T = 0.2s)

WMR model.

• Robustness

In order to compare the robustness of the implemented observers for the case that

the output is sampled and in the presence of measurement noise, the following parameters

which are related to the relative change of the estimation error are defined. Relative change
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Observers Transient Performance (emax) Steady State Performance (erms)

R y ψ R

PWA 6.8145 0.1071 0.0724 0.2263

Sliding Mode 3.9111 0.2118 0.087 0.2646

Backstepping 2.3997 0.0463 0.0619 0.0749

High-Gain 2.6248 0.0442 0.0655 0.0866

Output Injection 6.2288 0.1474 0.0749 0.2507

Interconnected 3.014 0.0492 0.0682 0.1002

Table 3.3: Different observers implemented on the nonlinear sampled-data (T = 0.1s)

WMR model in the presence of measurement noise (δ = 0.01).

can be used to evaluate the robustness of the observers [179, 180, 181] as

es =
e2 − e1

e1
(3.124)

where e1 is the state estimation error (erms at steady state) of the nonlinear continuous-time

system and e2 is the state estimation error (erms at steady state) of the nonlinear system with

sampled output with sampling time T = 0.2s and

en =
e3 − e1

e1
(3.125)

where e3 is the state estimation error (erms at steady state) of the sampled-data nonlinear

system in the presence of measurement noise with variance δ = 0.01 and sampling time

T = 0.1s.

Table 3.4 summarizes the results for the position y of the WMR for different ob-

servers.

Observer es en
PWA 30.7143 75.5

Sliding Mode 52.2295 33.7213

Backstepping 171.83 112.02

Nonlinear Observer With Output Injection 54.2 97.26667

Interconnected 299.66 217.5

High-Gain 266.6081 151.2301

Table 3.4: State estimation of the position with different observers.

Table 3.5 summarizes the results for the heading angle of the WMR for different

observers.
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Observer es en
PWA 62.125 320.2638

Sliding Mode 14.2085 106.5721

Backstepping 711.92 3803.3

Nonlinear Observer With Output Injection 166.582 1241.8

Interconnected 95.84 622.11

High-Gain 53.5455 391.16

Table 3.5: State estimation of the heading angle with different observers.

Table 3.6 summarizes the results for the heading angle rate of the WMR for different

observers.

Observer es en
PWA 4.9091 256.1591

Sliding Mode 7.5366 63.5366

Backstepping 34.18 1145

Nonlinear Observer With Output Injection 7.8182 226.9091

Interconnected 11.89 402.69

High-Gain 25.39 761.05

Table 3.6: State estimation of the heading angle rate with different observers.

• Comparison

All the nonlinear observers that are applied to the WMR model are able to estimate

the states of the nonlinear continuous-time system, nonlinear system with a sampled output

and nonlinear sampled-data system in the presence of measurement noise with convergent

state estimation errors. The PWA observer which is designed for a PWA approximation

of the nonlinear system is also able to estimate the states of the system with convergent

state estimation error. The state estimation error is still bounded when the output is only

available at sampling times and in the presence of measurement noise. In the transient,

the PWA observer has a large overshoot for the position estimation error in comparison

with other observers. However, the steady state behavior which is defined by erms is almost

the same for all the proposed observers except that the sliding mode observer has a large

value for erms when estimating the position and the heading angle. Moreover, the position

estimation error of the sliding mode observer becomes unstable for the gains that yield
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lower speed of convergence.

The values of es and en show that for the position, estimation error of the inter-

connected observer, the high-gain observer and the backstepping observer have the most

increase in the presence of perturbations (sampled-output and measurement noise). There-

fore, these observers are less robust to the perturbations than the nonlinear observer with

output injection, sliding mode observer and PWA observer.

For the Heading angle the backstepping observer, interconnected observer and non-

linear observer with output injection are the ones with larger values for es and en. Then,

the high-gain observer has the largest value for es and en. The PWA observer and the

sliding-mode observer show the most robustness to the perturbations.

For the heading angle rate, the most and the least robust observers are almost the same

as the one for heading angle. The backstepping observer, high-gain observer, nonlinear

observer with output injection and interconnected observer are the ones with larger values

for es and en which means they are less robust to the perturbation than the sliding mode

observer and the PWA observer.

To conclude, the PWA observer and the sliding mode observer are more robust

to perturbations (sampled output and measurement noise). The interconnected observer,

backstepping observer, high-gain observer and the nonlinear observer with output injection

show less robustness in the presence of measurement noise and in the case that the output

is sampled.

The PWA observer is based on a convex optimization approach which can be solved

easily using available software packages. The overall performance, robustness and scala-

bility of PWA observer makes this method an alternative approach to design observers for

nonlinear systems.
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3.6 Summary

In this section a continuous-time PWA observer is designed for a class of nonlinear sampled-

data systems. The observer design is based on the PWA approximation of the continuous-

time nonlinear system. It is proven that the proposed observer can be used for state estima-

tion of the nonlinear sampled-data system yielding a convergent and ultimately bounded

state estimation error. It is shown that the state estimation error converges to a region.

The size of the region depends on the PWA approximation error and the sampling time.

As the PWA approximation error and/or the sampling time decrease the size of the region

decreases. Moreover, it is proven that despite the fact that the presence of the measure-

ment noise is not considered in the design step, the state estimation error of the proposed

observer is ultimately bounded in the presence of norm bounded measurement noise. The

ultimate bound is proportional to the upper bound on the perturbation terms (approximation

error, sampling error, sampling time and noise). This shows the robustness of the proposed

observer. Some examples were solved in this chapter and the simulation results showed the

application of the proposed theorems.
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Chapter 4

Wheeled Mobile Robot Experimental

Results

4.1 Introduction

The problem of PWA observer design for a PWA approximation of a class of nonlinear

sampled-data systems in the presence of measurement noise is addressed in this thesis. In

this chapter, the proposed observer is applied to an experimental setup of a WMR available

at the HYCONS Laboratory of Concordia University. The dynamics of the WMR are in the

class of nonlinear systems studied in this thesis. Due to the sampling times of the sensors,

the output is only available at sampling instants. Therefore, this system is considered a

sampled-data system. In addition, the data from the WMR contains measurement noise

and this makes the WMR a suitable system for validating the theorems proposed in this

thesis.

The WMR modeling and dynamic equations of the WMR are presented in Section

4.2. It is followed by a description of the wireless communication, electronics and sensors

of the WMR in Section 4.3. Then, the proposed observer is implemented on the WMR and

the results of the state estimation are provided in Section 4.4. The chapter is closed by a
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Figure 4.1: WMR schematic [2].

brief summary in Section 4.5.

4.2 Wheeled Mobile Robot Modeling

Figures 4.1 and 4.2 show the schematic and experimental setup of the WMR available at

the HYCONS Laboratory of Concordia University, respectively.

The dynamic equations of the WMR are as follows

ẏ = u0sinψ

ψ̇ = R

Ṙ =
M
I

(4.1)

where y is the signed distance to the x axis, ψ is the heading angle and R is the heading

angle rate of the WMR. There exist two inputs for the WMR system: velocity and torque.
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Figure 4.2: Experimental setup of the WMR available at the HYCONS Laboratory of Con-

cordia University [2].

The torque input is defined by M and the forward velocity u0 is assumed to be constant.

Therefore, only one input is considered in the model of the system.

The constant velocity u0 = 0.04m
s is measured for this system. The moment of inertia

I is calculated from data. Table 4.1 and Figure 4.3 show the data used for identification of

the moment of inertia I. Different steering inputs are given to the WMR. It turns around

and the period is measured. The data from Table 4.1 is approximated by a linear function

as shown in Figure 4.3. According to Figure 4.3, the slope of the line is 1
I = 0.1154 1

kg.m2

and as a result, the moment of inertia is I = 8.6655kg.m2.

Steering Input (PWM) Period Tp (sec) ψ = 2π
Tp

0 0 0

2 13.8 0.4553

4 8.6 0.7306

6 7.2 0.8727

8 5.7 1.1023

10 4.7 1.3368

12 4.3 1.4612

14 3.9 1.6111

16 3.6 1.7453

18 3.5 1.7956

Table 4.1: WMR Data.
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Figure 4.3: Moment of inertia identification.

4.3 Wireless Communication, Electronics and Sensors

The experimental setup of the WMR located at the HYCONS Laboratory of Concordia

University consists of the WMR, two Xbee wireless communication modules, one Arduino

Atmega328 board, one camera, one battery and a server computer. As shown in Figure 4.1,

the WMR has two driving wheels and a castor wheel. It has two DC motors for generating

torque as the input of the two driving wheels.

Sending commands to the WMR is performed through wireless communication. In

this system, Xbee is used for wireless communication. Xbee is a Commercial-Off-The-

Shelf (COTS) hardware that uses the ZigBee standard [182, 183]. The ZigBee standard

features a good compromise of low power consumption and long distance range [182, 184].

Two Xbee modules are used for sending the commands from the computer and receiving

the commands by the WMR. The first Xbee is connected to the computer and the second

one is installed on the WMR. One of the advantages of Xbee is its low weight and small

size which makes it suitable for using on the WMR. Figures 4.4 and 4.5 show the Xbees

connected to the computer and implemented on the WMR, respectively.

An Arduino Mega Board that is shown in Figure 4.6 is used on the WMR to process

the commands received by the Xbee. The Arduino Mega Board is a powerful, open source
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Figure 4.4: Xbee connected to the server computer.

Figure 4.5: Xbee on the WMR.

and low cost board [182]. It features a platform development environment on C++ with

several libraries [182]. Moreover, the Arduino Mega has many digital input/output and

analog pins that can be used for tests and further development. For example, adding new

sensors or actuators.

To measure the horizontal position x and the vertical position y of the WMR, a camera

is mounted on the workspace and is connected to the computer. The camera gives the

position by digital image processing [185]. Two markers (red and blue) are placed on the

WMR which are the center of the red rectangle and the blue rectangle shown in Figure

4.2. The camera captures images and these images are processed in the server computer

running Matlab/Simulink in real-time using the RTsync Blockset [182, 186]. The captured

images are processed by a custom S-function block that is running code written in C++

using the OpenCV library to identify the markers and output the positions x and y of the
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Figure 4.6: Arduino Mega board.

WMR [182, 187]. Figure 4.7 shows the camera used in this experiment.

The images captured by the camera contain noise. Noise exists in any electronic

device that transmits or receives a signal. Image noise is a random change in brightness or

color information in images and is considered electronic noise [41]. One of the common

types of image noise is white Gaussian noise [41].

The heading angle ψ is calculated by using the information from the horizontal po-

sition x and the vertical position y, as follows

ψ = arctan(
YR −YB

XR −XB
) (4.2)

where YR, YB, XR and XB are the vertical position of the red marker, vertical position of

the blue marker, horizontal position of the red marker and horizontal position of the blue

marker, respectively.

There is no sensor on the WMR to measure the heading angle rate. One is able to

have information about all the states of the system by implementing the observer on the

WMR setup.

All the data are processed in the server computer using MATLAB and a MEX file

written in C++. The commands from the server computer are sent through Xbee wireless

communication to the Arduino Mega board installed on the WMR, which is connected to

the DC motors.
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Figure 4.7: Camera used for image processing.

The power required for the motors, Arduino Mega board and Xbee wireless commu-

nication is provided by a rechargeable Lithium-ion Polymer (LiPo) battery shown in Figure

4.8. In order to recharge the battery a Turnigy Accucell-6 charger 9 should be used, which

is shown in Figure 4.9.

Figure 4.10 illustrates the communication of each part of the system with other parts.

4.4 Implementation of the Continuous-Time Piecewise-Affine

Observer on the Wheeled Mobile Robot

In this section an observer is designed and implemented on the WMR. The method of

observer design is based on the theorems proposed in Chapter 3. Before presenting the

results of the state estimation, the model of the WMR is validated using the data from the
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Figure 4.8: Lipo battery.

WMR experimental setup.

In order to perform the model validation, the same input and the same constant for-

ward velocity are considered for the experimental setup and the Simulink model of the

WMR and the outputs are compared. Moreover, both systems have started from the same

initial conditions.

Figures 4.11 and 4.12 depict the comparative studies related to the outputs (the posi-

tion and the heading angle) of the real system and the simulation model.

The erms between these results as defined in (3.123) are provided in Table 4.2 which

are small errors and validate the WMR modeling.

State erms
y (m) 0.0095

ψ (rad) 0.1148

Table 4.2: Model Validation.

Now, an observer is designed to estimate the states of the WMR. In order to design

the observer, a PWA approximation of the nonlinear system defined in (4.1) is obtained as

follows
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Figure 4.9: Turnigy Accucell-6 charger 9.

∀X ∈ R1⎡
⎢⎢⎢⎢⎣

ẏ

ψ̇

Ṙ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0 0.04 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y

ψ

R

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

0.1154

⎤
⎥⎥⎥⎥⎦M

∀X ∈ R2⎡
⎢⎢⎢⎢⎣

ẏ

ψ̇

Ṙ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0 −0.025 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y

ψ

R

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0.08

0

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

0.1154

⎤
⎥⎥⎥⎥⎦M

(4.3)

where X = [y;ψ;R] and R1 and R2 are defined in (3.94) and (3.95), respectively. Since the

position y is measured and the heading angel ψ can be obtained using (4.2), the output is

given by y =CX where

C =

⎡
⎣1 0 0

0 1 0

⎤
⎦ (4.4)
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Figure 4.10: Structure of the experimental setup.
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Figure 4.11: Position of the WMR experimental setup and the simulation model.

Figure 4.12: Heading Angle of the WMR experimental setup and the simulation model.
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The LMIs defined in Lemma 3.2.1 are solved for this system using SeDuMi [171] and

YALMIP [172] in MATLAB. By considering α = 1.67 the following observer gains are

obtained,

L1 =

⎡
⎢⎢⎢⎢⎣

105.6599 −132.1558

−6.7757 11.0076

−8.0716 21.3562

⎤
⎥⎥⎥⎥⎦ (4.5)

L2 =

⎡
⎢⎢⎢⎢⎣

107.0414 −132.0185

−6.8648 10.9962

−8.1904 21.3366

⎤
⎥⎥⎥⎥⎦ (4.6)

By placing the WMR in a random position of the workspace, the initial conditions of the

system are unknown and the initial conditions of the observer are set to

x̂0 =
[
0 0 0

]T
(4.7)

The observer is implemented in the computer and applied to the WMR experimental setup.

The experiments are performed for the open loop system which means no controller is

implemented on the system. The WMR turns around and moves while the camera captures

images and by using digital image processing the output is given to the observer. The

observer performs the state estimation online based on the information from the image

processing and the input. Also, simulations are performed for this observer and the results

are provided.

In Figure 4.13 the position y measured by the camera and the estimated position,

which is obtained by the observer are plotted. Although the real value and the estimated

value are different at the initial time, after a short time the estimated position has converged

to the real value of the position.

The heading angle ψ calculated by the information from the camera and the estimated

heading angle, which is obtained by the observer are depicted in Figure 4.14. The values

of the real heading angle and the estimated heading angle are different at the initial time,

but after a few seconds the estimated value has converged to the real value.
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Figure 4.13: Position “y” estimation of the WMR, using a PWA observer.

Figure 4.14: Heading angle “ψ” estimation of the WMR, using a PWA observer.
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Figure 4.15: Heading angle rate “R” estimation of the WMR, using a PWA observer.

Figure 4.15 shows the estimation of the heading angle rate R. Since the heading

angle rate is not being measured, there is no real value to compare with the estimated

value. However, since the obtained result needs to be validated, the following equation is

considered,

Ṙ =
M
I

(4.8)

which means integrating M
I , yields the heading angle rate. Therefore, to validate the results,

the estimated value of the heading angle rate is compared to the integral of the M
I . Figure

4.15 shows that the heading angle rate is estimated correctly.

Using a zero order hold the output of the system is then sampled with the sampling

time T = 0.2s and the results of the state estimation are provided in Figures 4.16, 4.17 and

4.18. It is shown that the estimated values of the position, heading angle and heading angle

rate have converged to small regions around the real values.

Then, in order to experiment the performance of the PWA observer for larger sam-

pling times, the data given to the observer is sampled with the sampling time T = 0.9s and

the results of the state estimation are provided in Figures 4.19, 4.20 and 4.21. Figures 4.19,

103



Figure 4.16: Position “y” estimation of the WMR sampled-data (T = 0.2s), using a PWA

observer.

Figure 4.17: Heading angle “ψ” estimation of the WMR sampled-data (T = 0.2s), using a

PWA observer.
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Figure 4.18: Heading angle rate “R” estimation of the WMR sampled-data (T = 0.2s),

using a PWA observer.

4.20 and 4.21 show that the estimated values of the position, the heading angle and the

heading angle rate have converged to small regions around the real values.

Now, all the nonlinear observers that are studied in Chapter 3 are implemented on

the system. In the practical implementation the gains of the observers are designed such

that ts � 3. The conclusions are drawn after performing the experiments for different initial

conditions. Also, in order to evaluate the performance of the observers for larger sam-

pling times the sampling time T = 0.2s is considered for the outputs and experiments are

performed. Since, noise already exists in the system it is not possible to compare the ob-

servers in aspect of robustness to the noise as done in Chapter 3. However, all the observers

are compared based on their steady state performance and transient performance. All the

results are summarized in Tables 4.3 and 4.4 and then compared.

• Backstepping Observer

In this part, the backstepping observer is implemented on the WMR. The results of

the state estimation are shown in Figures 4.22, 4.23 and 4.24. All the states are estimated

correctly after a short time and the state estimation errors have converged.
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Figure 4.19: Position “y” estimation of the WMR sampled-data (T = 0.9s), using a PWA

observer.

Figure 4.20: Heading angle “ψ” estimation of the WMR sampled-data (T = 0.9s), using a

PWA observer.
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Figure 4.21: Heading angle rate “R” estimation of the WMR sampled-data (T = 0.9s),

using a PWA observer.

Figure 4.22: Position “y” estimation of the WMR, using a backstepping observer.
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Figure 4.23: Heading angle “ψ” estimation of the WMR, using a backstepping observer.

Figure 4.24: Heading angle rate “R” estimation of the WMR, using a backstepping ob-

server.
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Figure 4.25: State estimation errors of real setup of the WMR sampled-data (T = 0.2s)

experimental setup, using a backstepping observer.

The output of the system is sampled with sampling time T = 0.2s and the state esti-

mation errors are plotted in Figure 4.25.

• Sliding Mode Observer

The sliding mode observer is applied to the WMR system. The chattering phe-

nomenon occurs and it is not possible to execute the real-time program. Therefore, the

sign functions are changed to saturation function and the results of the state estimation are

provided in Figures 4.26, 4.27 and 4.28.

In this part the sampling time T = 0.2s is considered for the output of the system.

The state estimation errors are shown in Figure 4.29.

• Interconnected Observer

In this part the interconnected observer is implemented on the WMR. The results of

the estimation and estimation error of the position, the heading angle and the heading angle

rate are shown in Figures 4.30, 4.31 and 4.32, respectively.

In this part the output of the system is sampled with sampling time T = 0.2s. The

state estimation errors are shown in Figure 4.33.
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Figure 4.26: Position “y” estimation of the WMR, using a sliding mode observer.

Figure 4.27: Heading angle “ψ” estimation of the WMR, using a sliding mode observer.

110



Figure 4.28: Heading angle rate “R” estimation of the WMR, using a sliding mode observer.

Figure 4.29: State estimation errors of real setup of the WMR sampled-data (T = 0.2s)

experimental setup, using a sliding mode observer.
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Figure 4.30: Position “y” estimation of the WMR, using an interconnected observer.

Figure 4.31: Heading angle “ψ” estimation of the WMR, using an interconnected observer.
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Figure 4.32: Heading angle rate “R” estimation of the WMR, using an interconnected

observer.

Figure 4.33: State estimation errors of real setup of the WMR sampled-data (T = 0.2s)

experimental setup, using an interconnected observer.
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Figure 4.34: Position “y” estimation of the WMR, using a nonlinear observer with output

injection.

• Nonlinear Observer With Output Injection

The nonlinear observer with output injection is applied to the WMR system and the

results of the state estimation are shown in Figures 4.34, 4.35 and 4.36.

The sampling time T = 0.2s is considered for the output of the system. The position

estimation error, the heading angle estimation error and the heading angle rate estimation

error are shown in Figure 4.37.

• High-Gain Observer

In this part the high-gain observer is implemented on the WMR. The estimation and

estimation error of the position, the heading angle and the heading angle rate are shown in

Figures 4.38, 4.39 and 4.40, respectively.

In this part the sampling time T = 0.2s is considered for the output of the system and

the state estimation errors are shown in Figure 4.41.

• Piecewise-Affine Observer

In this part a PWA observer is designed such that it yields the desired speed of con-

vergence for the state estimation errors (ts � 3) to be comparable with other nonlinear
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Figure 4.35: Heading angle “ψ” estimation of the WMR, using a nonlinear observer with

output injection.

Figure 4.36: Heading angle rate “R” estimation of the WMR, using a nonlinear observer

with output injection.
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Figure 4.37: State estimation errors of real setup of the WMR sampled-data (T = 0.2s)

experimental setup, using nonlinear observer with output injection.

Figure 4.38: Heading angle “ψ” estimation of the WMR, using high-gain observer.
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Figure 4.39: Heading angle “ψ” estimation of the WMR, using high-gain observer.

Figure 4.40: Heading Angle Rate “R” estimation of the WMR, using high-gain observer.
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Figure 4.41: State estimation errors of real setup of the WMR sampled-data system (T =
0.2s), using high-gain observer.

observers. The PWA observer is implemented on the WMR. The results of the estimation

and estimation error of the position, the heading angle and the heading angle rate are shown

in Figures 4.42, 4.43 and 4.44, respectively. In this part the output of the system is sampled

with sampling time T = 0.2s. The state estimation errors are shown in Figure 4.45.

Tables 4.3 and 4.4 summarize the results of the state estimation for the WMR system

for different observers. Note that for the position y the maximum error in the transient

(emax) occurs at the initial condition and therefore it is not provided in the table.

Observers Transient Performance (emax) Steady State Performance (erms)

ψ R y ψ R

PWA 0.7505 11.0954 0.0017 0.0422 0.158

Sliding Mode 1.8805 10.7923 0.0035 0.0556 0.2899

Backstepping 0.4352 5.5699 0.0066 0.0337 0.0829

High-Gain 0.4128 7.6748 0.0087 0.0358 0.1011

Output Injection 1.1807 16.2459 0.0065 0.0367 0.1194

Interconnected 0.4338 6.1442 0.0067 0.0313 0.0746

Table 4.3: Different observers implemented on the nonlinear WMR experimental setup.

To conclude, all the implemented observers are able to estimate the states of the
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Figure 4.42: Position “y” estimation of the WMR, using PWA observer.

Figure 4.43: Heading angle “ψ” estimation of the WMR, using PWA observer.
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Figure 4.44: Heading angle rate “R” estimation of the WMR, using PWA observer.

Figure 4.45: State estimation errors of real setup of the WMR sampled-data (T = 0.2s)

experimental setup, using PWA observer.
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Observers Transient Performance(emax) Steady State Performance (erms)

ψ R y ψ R

PWA 0.847 10.9512 0.0048 0.0668 0.2018

Sliding Mode 1.9594 10.7969 0.0089 0.0718 0.3562

Backstepping 0.4109 5.485 0.0109 0.0581 0.0888

High-Gain 0.396 7.369 0.0125 0.0534 0.1027

Output Injection 1.1829 16.3329 0.0098 0.0613 0.1975

Interconnected 0.463 6.232 0.0114 0.0556 0.055

Table 4.4: Different observers implemented on the nonlinear sampled-data (T = 0.2s)

WMR experimental setup.

WMR yielding a convergent state estimation error. When implementing the sliding mode

observer the chattering phenomenon occurred and it was impossible to continue the real-

time program, which lead to changing the sign function to saturation function. All the

implemented observers show good steady state performance, which is defined by erms with

almost equal values, except the sliding mode observer that has a large value for the heading

angle estimation error when compared to other observers. Also, the sliding mode observer

yields a larger value for erms of the heading angle rate in comparison with other observers.

Moreover, the estimation errors of the sliding mode observer converge slower than other

observers which can be due to more computation needed in the sliding mode observer

structure. The high gain observer has the largest value for erms of the position. Comparing

the transient behavior, the nonlinear observer with output injection has the largest value for

the overshoot of the heading angle rate estimation error.

Table 4.5 compares different observers implemented on the WMR with the PWA

observer, where T −P stands for transient performance and SS−P stands for steady state

performance.

From Table 4.5 it can be concluded that the PWA observer and the sliding mode

observer are the most robust observers in comparison with other observers. However, the

sliding mode observer shoes poor steady state performance. Moreover, the PWA observer

has a large value in transient time for the heading angle rate estimation error. On the other

hand, the sliding mode observer has limitations such as occurrence of chattering in practical
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implementation which makes the PWA observer more suitable to implement in practice.

4.5 Summary

In this chapter a continuous-time PWA observer is designed for a continuous-time PWA

approximation of the WMR, which is an example of a nonlinear sampled-data system. The

observer is implemented on the experimental setup of the WMR available at the HYCONS

Laboratory of Concordia University. The position of the WMR is measured by capturing

images with the camera and the heading angle is obtained based on the information regard-

ing the position. Therefore, the estimations obtained from the observer are compared to

these values. The estimated values have converged to real values after a short time. The

heading angle rate is not measured, based on the WMR dynamic equations, the integral

of the input is compared to the estimated heading angle rate and it is concluded that the

heading angle rate is estimated correctly. The data given to the observer is only available

at sampling instants and contains noise. As proven in the theorems proposed in Chapter 3,

the observer is robust to the sampling error and the measurement noise which its type is not

known but it is bounded. As a result, the state estimation errors are ultimately bounded and

have converged to small regions around zero. In theory it was proven that a continuous-

time piecewise affine observer can be used for state estimation of a class of nonlinear

sampled-data systems yielding a convergent state estimation error and in this chapter real

experiments resulted in the same conclusion. Moreover, some other nonlinear observers

are implemented on the WMR and the results of the state estimation are compared to the

ones regarding the PWA observer. The PWA observer and the sliding mode observer are

the most robust observers to perturbations. However, the sliding mode observer has some

practical limitations.
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Observers T-P (emax) SS-P (erms) Robustness Note

y ψ R y ψ R

PWA
√ √ × √ √ √ √

applicable to all smooth

nonlinear systems (linear

in the input, nonlinear in

one of the states), scal-

able, can be efficiently

solved by available soft-

ware packages

Sliding Mode
√ √ √ × × × √

occurrence of chattering,

limitations in practical im-

plementation, requires that

the systems be in certain

(triangular) form, unstable

state estimation error for

lower speeds of conver-

gence

Backstepping
√ √ √ √ √ √ × requires that the systems

be in certain (triangular)

form, many calculations

needed to obtain gains

High-Gain
√ √ √ × √ √ × requires that the systems

be in certain (triangular)

form

Output Injection
√ √ × √ √ √ × only applicable to systems

with measurable nonlin-

earities (otherwise, a trans-

formation needed which

requires necessary condi-

tions which are difficult to

be satisfied)

Interconnected
√ √ √ √ √ √ × requires that the systems

be in certain form, could

be an interconnection be-

tween any above named

observers

Table 4.5: Comparison of different observers.
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Chapter 5

Conclusions and Future Research

In this chapter the contributions of the thesis are summarized and the conclusions from this

research are made. Also, potential future work is discussed in this chapter.

In Chapter 2 some preliminaries on PWA systems and PWA observer design are

reviewed. In addition, definitions of boundedness and ultimate boundedness and some

nonlinear observer design methodologies are also studied in Chapter 2.

Building on the knowledge from Chapter 2, the problem of PWA observer design

for a class of nonlinear systems is discussed in Chapter 3. The contributions of Chap-

ter 3 include designing a continuous-time PWA observer for a class of nonlinear systems

yielding ultimately bounded state estimation error. Moreover, it is proven that the state

estimation error is still convergent and ultimately bounded when the output of the system is

only available at sampling instants. Also, it is proven that when the continuous-time PWA

observer is applied to the nonlinear sampled-data system in the presence of norm bounded

measurement noise, the state estimation error is ultimately bounded. The proposed method

of observer design can be cast as a set of LMIs and is based on a convex optimization

approach which can be solved efficiently using available software packages. Performance,

robustness and scalability of the proposed PWA observer makes this method an alternative

approach for designing observers for nonlinear systems.
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In Chapter 4 a practical experiment is performed on a WMR available at the HY-

CONS Laboratory of Concordia University. After studying the WMR modeling, the wire-

less communication, electronics and sensors of the WMR are explained. The WMR is an

example of the class of nonlinear systems studied in Chapter 3. The output of this system

is available for the observer only at sampling instants. Therefore, the WMR system is an

example of nonlinear sampled-data systems that can be approximated by a PWA system to

be used for validating the proposed theorems in this thesis. Also, measurements from the

outputs of the WMR contain noise. An observer is designed for this system and the results

of the state estimation error, which are all convergent, validate the proposed theorems in

Chapter 3.

Comparing different observers, the PWA observer and the sliding mode observer

are the most robust observers. However, the sliding mode observer shows poor steady

state performance and the PWA observer has a large value in transient time estimating

the heading angle rate. In practical implementation the sliding mode observer has some

limitations such as occurrence of chattering. The overall performance, robustness, practical

implementation and scalability of PWA observer makes this method an alternative approach

to design observers for nonlinear systems.

In what follows a few suggestions for future studies are made.

• Although there are many real applications that can be modeled by the class of

nonlinear functions considered in this thesis, considering a more general class of nonlinear

systems for solving the problem of observer design can be addressed in the future.

• It would be a good idea to solve the problem of obtaining the maximum allowable

sampling time in order to have an exponentially stable state estimation error when the PWA

observer is applied to a nonlinear sampled-data system.

• In many applications, the estimated states obtained from observers are used to

control the systems. An extension of the work in this thesis could be to design a controller

for the system using the states estimated by the PWA observer. Moreover, that would be
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very interesting to try to control the experimental setup of the WMR using the estimated

states from the PWA observer.
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Appendix

The following parameters are used for designing the backstepping observer as explained in

Section 2.5.

g2,1 =C1 +
∂b1

∂ x̂1

g3,1 = 1+ c2(g2,1 −φ1)+(g2,1 −φ1)(
∂b1

∂ x̂1
−φ1)+

d
dt
(g2,1 −φ1)+K1

∂b2

∂ x̂2

g3,2 = K1C2 +a1g2,1 +
dK1

dt
+K1

∂b2

∂ x̂2

g4,1 = g2,1 −φ1 + c3(g3,1 −K1φ2)+(g3,1 −K1φ2)(
∂b1

∂ x̂1
−φ1)+

d
dt
(g3,1 −K1φ2)+

(g3,2 −K1φ1)(
∂b2

∂ x̂1
−φ2)+K2

∂b3

∂ x̂1

g4,2 = a1 + c3(g3,2 −K1φ1)+K1g3,1 +(g3,2 −K1φ1)
∂b2

∂ x̂2
+

d
dt
(g3,2 −K1φ1)+K2

∂b3

∂ x̂2

g4,3 = c3K2 +a2g3,2 +
d
dt
(K2)+K2

∂b3

∂ x̂3
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